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Chapter 1

Introduction

Statistics deals with logical foundations of inference from observed realizations of a given

phenomenon to (yet) unobserved values of the same phenomenon, or to unknown parameters

appearing in the probability law of the observation process. According to a classical view of

statistical inference, observations are often assumed to play a symmetric role with respect to

prevision, in the sense that, for all previsional purposes, the “chronological” order of obser-

vations is deemed irrelevant. In the frequentistic framework, the above idea of symmetry is

translated into the hypothesis that observations are thought of as independent random vari-

ables, with the same distribution affected by unknown parameters. In the Bayesian theory,

the same idea is captured by assuming that observations are conditionally independent and

identically distributed, given unknown parameters. This way of behaving is inspired by the

thought that what is unknown – parameters, in the present case – must be equipped with a

probability distribution and, therefore, considered as a random element.

This approach is powerfully criticized by de Finetti [see for instance de Finetti (1937a,

1974)], who persuasively argues that one need not assume the existence of such things. He

considers a simple example: the well-known Bayes-Laplace scheme, where observations are 0-1

random variables, the parameter θ̃ is the “unknown probability” that the single observation

is equal to one, and θ̃ is uniformly distributed in the unit interval. To get an approximate but

more realistic idea, one may consider the sequence of drawings without replacement from an

urn chosen at random among 1, 000, 001 urns, such that each one of them contains one million

7



8 CHAPTER 1. INTRODUCTION

balls and the number of white balls is 0 in the first urn, 1 in the second urn, . . . , one million in

the last urn, and the probability of each urn to be chosen is the same, i.e. 1/1, 000, 001. The

same probability distribution can be generated by the Pólya’s urn scheme (of “contagious”

probabilities): the urn initially contains two balls, one white and one black, and, after each

drawing, the ball drawn is placed back in the urn together with another one of the same color.

In the former urn scheme, the parameter θ̃ is a factual, but unknown quantity: one could

check its value if it were not forbidden to inspect the content of the urn. In the latter urn

scheme, θ̃ “is a merely fictitious, or ‘mythical’, pseudo-entity”. De Finetti asserts that it is

difficult to present θ̃ as the unknown proportion of white balls in a “hidden urn”. In fact,

such proportion should be equal to the limit of the composition of the Pólya urn considered

above as the number of drawings diverges, and this does not make sense since

“not even the Vestals would assure the continuation of such experiment for the

eternity”, which would imply, incidentally, to get “more balls than atoms in the

world”, and, on the other hand, “there is no reason to expect such limit to exist,

since ‘stochastic’ (even if strong) convergence does not guarantee any conclusion

on this point”.

As a consequence of de Finetti’s argument, it is clear that one should acknowledge at

least the theoretical possibility of experimentally verifying whether hypotheses about unknown

entities are true or false. We will call empirical any hypothesis having this property. Only

confining statistical inference to consider objective hypotheses (on observable elements), the

phrase “to learn from experience” may have a real meaning, and it is possible to approach the

problem of induction, as defined, for instance, by Hume (1748).

Bayesian statisticians very often ignore this precaution, they adopt the above hypoth-

esis of conditional independence and indiscriminately draw inferences from observations both

to empirical and to non empirical hypotheses. Diaconis (1988) is very clear on this point:

de Finetti’s alarm to statisticians introducing realms of unobservable parameters

have been repeatedly justified in the modern curve fitting exercises of today’s big

models. These seem to lose all contacts with scientific reality focusing attention

on details of large programs and fitting instead of observation and understanding
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of basic mechanism. It is to be hoped that a fresh implementation of de Finetti’s

program based on observables will lead us out of this mess.

Without assuming the existence of unobservable parameters, the previous conditional

formulation does not have a clear interpretation anymore. For this reason, it is natural to

describe the symmetry between observations resorting, instead, to the notion of exchange-

ability, as used and studied by Bruno de Finetti. As a matter of fact, if the observation

process is assumed to be infinitely extensible, the two formulations are equivalent, in view of

the well-known de Finetti’s representation theorem. On the other hand, in many situations,

as sampling from a finite population, such assumption of infinite extensibility of the observa-

tion process need not be consistent with the real situation under study. In the latter case,

one might be forced to construct probability laws for the observations without resorting to

the usual conditional formulation. Thus, our initial problem boils down to the one of finding

alternative methods to define laws for any kind of N -exchangeable or infinite exchangeable

sequences.

It must be emphasized that the assessment of an exchangeable law, without resorting

to the standard representation, forces to revise subjects and purposes of Bayesian statistical

inferences and, consequently, to get the Bayesian statistical procedures to adapt to these new

subjects and purposes.

Considering all the above remarks, we intend (a) to present specific forms of ex-

changeable laws defined, aside from the standard conditional formulation, according to the

characteristics of actual situations and (b) to work out some of their inherent statistical prob-

lems.

1.1 Inferences based on N–exchangeable observations

To start with, let us mention some remarkable facts connected with the conditional form of

laws of infinite exchangeable random sequences.

Suppose that each observation takes value in some measurable space (X,X ). Write

X
N for the N -fold product X×· · ·×X and X

∞ for X×X×· · · , and indicate by X N and X ∞

the usual product σ-fields on X
N and X

∞, respectively. In the usual Bayesian framework, the
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observation process is assumed to be extendible to infinity, that is, observations ξi are viewed

as coordinates of a random element of (X∞,X ∞).

Denote by P = P(X) the space of all probability measures on (X,X ), and by P the

σ-field induced by all evaluation maps mB : µ 7→ µ(B), µ ∈ P and B ∈ X . Any random

element from a probability space to (P,P) is said to be a random probability measure on

(X,X ).

Define the empirical distribution of

ξ(n) := (ξ1, . . . , ξn),

n = 1, 2, . . . , to be the random probability

ẽn(·) =
1

n

n∑

i=1

δξi
(·),

where δξi
(A) = 1 or 0 depending on whether ξi belongs to A or not.

The random elements ξis are said to be exchangeable if the distribution of (ξσi
)i≥1 is

the same as the distribution of (ξi)i≥1 for any finite permutation σ of (1, 2, . . . ).

Provided that (X,X ) is a “nice” space (e.g., separable and complete metric space)

and the ξns form an infinite sequence of exchangeable elements, then (ẽn)n≥1 converges in

distribution to a random probability p̃, with probability one. Moreover, these very same

ξns turn out to be conditionally independent given p̃, with the same distribution p̃. This is

the statement of the celebrated representation theorem for infinite exchangeable sequences,

provided in de Finetti (1930, 1937a) [see also Aldous (1985)].

At this stage, let us specify some further preliminary notation. Given any random

variable V , LV will denote its probability distribution; moreover, for any other random element

U , LV |U will stand for a conditional probability distribution for V given U . U
L
= V will be

sometimes written in place of LU = LV .

In this notation, de Finetti’s representation theorem can be enunciated in this way:

If (ξi)i is exchangeable, then there exists a random probability p̃ on (X,X ) such that:

Lξ(n)|p̃(A) = p̃(n)(A) (A ∈ X
n, n = 1, 2, . . . ), (1.1)

where p(n) denotes the probability that makes ξ1, . . . , ξn independent with the same distribution

p, and p̃ is the weak limit of ẽN .
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According to the terminology introduced by Aldous (1985), the random probability p̃

is called the directing measure of (ξi)i≥1.

Another equivalent version of de Finetti’s representation theorem is given by the fol-

lowing assertion:

(ξi)i≥1 is exchangeable if and only if there is a probability measure γ on (P,P) such that

Lξ(n)(A) =

∫

P

p(n)(A)γ(dp) (A ∈ X
n, n = 1, 2, . . . ). (1.2)

γ, the so-called de Finetti’s measure of (ξi)i≥1, is uniquely determined and coincides with the

distribution of p̃.

In this general formulation, p̃ takes the place of the usual unknown parameter; in this

case it is the custom to speak of Bayesian nonparametric representation and, consequently,

of Bayesian nonparametric methods. The usual parametric formulation can be recovered by

requiring that the ξns must be conditionally independent given some random element θ with

the following form:

θ̃ := t(p̃),

where t is a function defined on a subset P0 of P(X) containing the range of p̃. Such a function

– a sort of sufficient statistic for p̃ – is called parameter of the conditional law of each ξn.

For instance, think of t as a distinguished function of a vector of moments of p̃, letting P0

be the class of all probabilities in P such that those moments exist. Now, since the ordinary

Bayesian inferences concern functions of p̃, the just recalled de Finetti’s representation theorem

highlights that those inferences generally deal with hypotheses that, being related to limiting

mathematical entities, might be devoid of any empirical value.

In the parametric formulation, de Finetti’s representation theorem can be rewritten

as following:

Lξ(n)(A) =

∫

Θ

p
(n)
θ (A)Lt(p̃)(dθ) (A ∈ X

n, n = 1, 2, . . . ) (1.3)

being Θ a set containing all the realizations of θ̃.

If observations are assumed to form a finite exchangeable sequence (ξ1, . . . , ξN ), the

representations (1.1)–(1.3) do not hold anymore. Therefore, to deal with the finitary approach,

(1.1) is replaced by a finite version, which states that a finite random sequence (ξ1, . . . , ξN ) is



12 CHAPTER 1. INTRODUCTION

exchangeable if and only if, for each n ≤ N , conditionally on ẽN , ξ1, . . . , ξn are distributed as

n drawings without replacement from an urn with N balls, with NẽN ({x}) balls having label

x, for each atom x of ẽN . This and other peculiarities of finite exchangeable sequence can

be found, for instance, in Kingman (1978c), Aldous (1985), Diaconis and Freedman (1980),

Schervish (1995), Spizzichino (1982), Wood (1992).

Going back to the Bayesian framemork, notice that Lθ̃|ξ(n) denotes the a posteriori

distribution, while the predictive distribution is Lξ(n,N)|ξ(n) with

ξ(n,N) := (ξn+1, . . . , ξN ).

Predictive distributions represent the sole aspect of the finitary approach that is taken into con-

sideration by the usual conditional Bayesian standpoint, where, nevertheless, these distributions

are viewed as functionals of a posteriori laws, namely

Lξ(n,N)|ξ(n)(A ) =

∫

Θ

p
(N−n)
θ (A)Lt(p̃)|ξ(n)(dθ) (A ∈ X

N−n).

It is clear that in a pure finitary setting this expression could be inadmissible, as it

happens when p̃ does not exist because of the finiteness of (ξn)n≥1 and it does not have a clear

meaning anyway. Vice versa, Lξ(n,N)|ξ(n) can be always assessed in any case by resorting to

the definition of conditional distribution.

Given that, in a finitary framework, inferences from ξ(n) to p̃ are basically uninteresting

even when p̃ can be defined. Therefore it is to be expected that statisticians focus on empirical

versions

θ̃N = t(ẽN )

of the usual limiting parameter θ̃, and on inferences to them from ξ(n) when n < N . This

stance, which turns out to be notably significant when one is dealing with N–exchangeable

sequences of observations, traces any inferential process back to a predictive problem.

1.2 Statistical methods based on a finitary approach in

literature

The finitary approach to statistical inference have not been very often considered in literature,

with some exceptions [see, for instance, de Finetti (1972, 1974) and Roberts (1965)]. A
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very concrete situation where it really seems appropriate to resort to the finitary approach

arises when the statistician deals with a sample obtained without replacement from a finite

population with known dimension.

Consider a finite population that consists of N units labelled 1, . . . , N . Attached

to unit i let ξi be the unknown value of some character of interest. In this setting, ẽN

is the frequency distribution of the character in the population. It is natural to assign an

exchangeable distribution to the sequence (ξ1, . . . , ξN ). This reflects the assumption that

labels carry no information about the units. For this reason, in this work we shall assume

that ξ1, . . . , ξn are the values of the character related to the sampled part of the population.

Generally, the quantity to be estimated is some symmetric function (e.g. mean, median,

variance) of (ξ1, . . . , ξN ), which, in this context, is often called parameter or state of nature.

Of course, any hypotheses about such parameter is empirical since it can be always verified

(at least theoretically) taking a census of the population. Most current Bayesian statistical

methods applied in finite population sampling involve also other parameters, besides the state

of nature, since ξ1, . . . , ξN are given a joint law that makes them conditionally independent

and identically distributed given an unknown parameter θ̃∞. As explained by Ericson (1969),

the generation of a joint prior distribution [for (ξ1, . . . , ξN )] by this approach is,

barring differences in probabilistic interpretation, equivalent to viewing the finite

population as a sample from an infinite superpopulation having unknown parameter

θ̃∞.

As already highlightened in the previous paragraphs, one can see that θ̃∞ is not given any

concrete interpretation. In the area of finite population sampling, scholars usually resort

to the so called superpopulation model. However some papers related to specific statistical

problems make use of exchangeable distributions according to a finitary approach. In this

section, we shall focus on two specific proposals that are consistent with such approach: the

model proposed by Hill (1968), and the Pólya posterior.

Hill’s model. Hill considers a finite exchangeable sequence of real-valued observations such

that: (1) Ties have probability zero; (2) Conditionally upon the first n observations, the next

observation is equally like to fall in any of the open intervals between successive order statistics
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of the given sample. Under these assumptions, Hill calculates the posterior distribution of the

number of distinct values in the whole population and of the percentiles. But then he realizes

himself that there is no countably additive probability distribution on the space of observations

such that all the assumptions are satisfied. Fortunately, Lane and Sudderth (1978) establish

that the underlying probability evaluation of Hill (1968) is coherent, in the sense of de Finetti

(1975), in a finitely additive framework. More precisely, they prove that it is possible to define

a finitely additive exchangeable probability β on R
n (n ≥ 1) such that:

(A) For 1 ≤ i < j ≤ n,

β{x ∈ R
n : xi = xj} = 0

(B) For every A ⊂ R
n−1 and 1 ≤ i ≤ n,

β
{
x ∈ R

n : (x1, . . . , xn−1) ∈ A and xn = x(i)

}
= β(A× R)/n,

where x(i) is the i-th smallest coordinate of (x1, . . . , xn).

Hill (1968) argues that (B) means that the numerical characteristic under observation has

an arbitrary or “rubbery” scale and other distinctions between observations are vague. In

such case, the numerical values in the sample may be regarded as carrying only negligible

information about the overall population values. On the basis of these considerations, Hill’s

model seems to be suitable to approach inferential problems in the context of species sampling,

where the value of the character of interest has no numerical meaning, but it is just a label,

which indicates that the unit belongs to a certain species. Hill (1979), in fact, resorts to the

probability evaluation defined by (A) and (B) to obtain the posterior expectation and variance

of the number of distinct species in the population and the exact posterior probability of

finding a new species. Moreover, Berliner and Hill (1988) apply the very same model to the

field of survival analysis, and Hill (1980) shows that (B) is reasonable to be assumed in other

situations too, as in multidimensional contingency tables.

Hill (1993) introduces the nested splitting process, that is a concrete example, in a

finitely additive framework, of an exchangeable sequence that satisfies (A) and (B) for each

n ≥ 1. A real-valued random sequence (ξn)n is a nested splitting process if the predictive
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distribution of each open interval I is

Lξn+1|ξ(n)(I) =
1

n + 1
Lξ1

(I) +
n

n(n + 1)

(
Cn(I) + 1

2Dn(I)
)

n ≥ 1,

where Cn(I) denotes the number of observations among the first n that lie in I and Dn(I)

the number of ξi (with i ≤ n) that are on the boundary of I.

The Pólya posterior. Meeden and Vardeman (1991) argue that a prior distribution cannot

be always fully specified and that Bayes estimates are always based only on the posterior

distribution, and therefore they assert that, in order to approach an inferential problem in

a finite population setting, it is sufficient to create a posterior distribution “for the unseen

given the seen”, i.e. the conditional distribution of (ξn+1, . . . , ξN ) given the sample (ξ1, . . . , ξn).

They claim that a good choice for such conditional distribution is the so-called Pólya posterior,

introduced by Meeden and Ghosh (1983), i.e. the law of (N − n) drawings from an urn

containing ξ1, . . . , ξn by a Pólya scheme. This means that each ball drawn is returned to the

urn together with another one with the same label.

Note that, resorting to the Pólya posterior, the distribution of (ξ1, . . . , ξN ) is not fully

determined (since L(ξ1,...,ξn) is not assessed), and, moreover, L(ξ1,...,ξn) cannot been assessed

so that L(ξi+1,...,ξN )|(ξ1,...,ξi) is the Pólya posterior for each i = 1, . . . , N , unless one takes

ξ1, . . . , ξN all equal with probability one. In other words, the Pólya posterior does not arise as

posterior distribution from any given (reasonable) assessment of L(ξ1,...,ξN ). For this reason,

dealing with the Pólya posterior, Ghosh and Meeden (1997) talk about a “pseudo-posterior”.

The Pólya posterior was proposed for the first time by Meeden and Ghosh (1983)

approaching a particular problem: giving Bayesian justification for standard frequentistic

methods by proving their admissibility. Let us recall that a decision rule δ for θ̃N is called

admissible if there exists no decision rule δ′ dominating δ, i.e. such that R(θ, δ) ≥ R(θ, δ′) for

all θ in Θ, where R(θ, δ) denotes the risk function

θ → E(L(θ̃N , δ(ξ(n))) | θ̃N = θ).

Hsuan (1979) proves that an estimator is admissible if and only if it is stepwise-Bayes. Let

∆(π, D̃) denote the class of all Bayes rules against a prior π over D̃ ⊂ D. A rule δ is said
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to be stepwise Bayes against the sequence π1, π2, . . . of priors on Θ if δ belongs to Dj for all

j = 1, 2, . . . , where D1 := ∆(π1,D) and, for j ≥ 2, Dj = ∆(πj ,Dj−1).

The Pólya posterior arises in the stepwise Bayesian argument that proves the admis-

sibility of a variety of point estimators, in particular, the admissibility of the sample mean for

estimating the population mean. In fact, assuming that X is finite, one can find a set of priors

π1, π2, . . . , πk for (ξ1, . . . , ξN ) such that the posterior of each πj is the Pólya posterior and the

sample mean is stepwise Bayes w.r.t. π1, . . . , πk. For a detailed proof, see, for instance, Ghosh

and Meeden (1997).

One notices that the choice of the Pólya posterior is equivalent to assess the predictive

distribution of ξn+1 given (ξ1, . . . , ξn) to be equal to the empirical distribution
∑n

i=1 δξi
/N of

the sample. For this reason, Meeden and Vardeman (1991) assert that the Pólya posterior “is

a sensible predictive distribution for the unseen given the seen when the sample is assumed to

be representative” and no prior informations about (ξ1, . . . , ξN ) is available.

A weighted version of the Pólya posterior is introduced in order to take into account

prior believes about the population. In this case, X is assumed to be finite – say {b1, . . . , bd}

– and one considers a vector of real numbers w := (w1, . . . , wd) such that wi > −1 for

each i. The weighted Pólya posterior for the sample (ξ1, . . . , ξn) with weights given by the

vector w is the probability distribution (on X
N−n) of (N − n) drawings from an Pólya-urn

containing
∑n

i=1 I{bj}(ξi) + wj balls with label bj , for j = 1, . . . , d. Roussanov (1999) proves

the admissibility of the weighted Pólya posterior in finite population problems.

It should be pointed out that, in practice, the weighted Pólya posterior is the condi-

tional law of (ζn+1, . . . , ζN ) given (ζ1, . . . , ζn) if (ζi)i≥1 is an exchangeable sequence directed by

a Dirichlet process with parameter α being a discrete measure with finite support {b1, . . . , bd}

and α({bj}) = wj for j = 1, . . . , d. Moreover, if (ζi)i≥1 is an exchangeable sequence directed

by a Dirichlet process with parameter aᾱ, being ᾱ a probability measure and a > 0, then the

unweighted Pólya posterior is the setwise limit of the conditional law L(ζn+1,...,ζN )|(ζ1,...,ζn) as

the total mass a goes to zero.

What we want to stress is that the weighted and the unweighted Pólya posteriors can

be used to obtain point or interval estimations for some functions of (ξ1, . . . , ξN ), as it is shown

by Ghosh and Meeden (1997). One is forced to resort to simulation procedures since closed
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forms for the estimators of interest are not available, except for the point estimator of the

population mean, which is the sample mean. Therefore Ghosh and Meeden (1997) suggest to

calculate an approximated estimate by simulation in this way: generate the (N−n) unobserved

values of the character by the Pólya posterior (that is by simulating (N − n) drawings from a

Pólya urn); do this a big number of times – 500 or 1000, say R – obtaining R simulated copies

of the entire population; calculate the value of the quantity to be estimated for each simulated

population and then consider the mean of the R values obtained. In this way, Ghosh and

Meeden (1997) obtain point and interval estimates for the population median and interval

estimates for the mean and for the ratio of the medians of two different characters in the same

population.

Before concluding, let us point out the main differences between Pólya posterior and

Hill’s model, and the main features they share. The main difference, of course, is that the

probability distribution of (ξ1, . . . , ξN ) is fully specified in Hill’s model, but it is not if one

resorts to Pólya posterior. Moreover, Berliner and Hill (1988) highlights that the use of the

empirical measures “as predictive distribution forces one to assign a discrete distribution to

a future observation with mass only at observed data points. Unreasonable statements, as-

signing probability 0 to a future observation larger (smaller) than the largest (smallest), are a

consequence.” Instead, the predictive distribution suggested by Hill spreads mass throughout

each interval between two consecutive sample order statistics. (For the same reason, Hill’s

model differs from the probability distribution of a sequence directed by a Dirichlet process,

which puts positive mass on the observed values.) On the other hand, Hill’s model is suitable

only “in the case of extremely vague a priori knowledge” (Hill (1993)), just like the (un-

weighted) Pólya posterior. Moreover, Hill’s predictive distribution and the empirical measure

“both give essentially the same mass to any interval that contains a moderate number of ob-

servations” (Berliner and Hill (1988)). In fact, as explained by Berliner and Hill (1988), for

any open interval I containing k observations, ẽn(I) = k/n, and in Hill’s model the predictive

probability of I is not less than k−1
n+1 and not greater than k+1

n+1 , where n is the sample size.
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1.3 Peculiarities and outline of the present work

In the previous section, we talked about Hill’s model and Pólya posterior, which are very spe-

cific proposals that agree with a finitary approach, but consider only extensibleN -exchangeable

sequences. The aim of this work is to introduce, without resorting to de Finetti’s representa-

tion theorem, some general classes of laws for N -exchangeable sequences, which seem appro-

priate in some real situations, and, moreover, need not to be infinitely exchangeable. Parts of

this dissertation are based on a joint work in progress with Eugenio Regazzini and Federico

Bassetti.

We shall define two families of distributions that consist in a natural extension to

the finitary setting of two well-known families of infinite exchangeable sequences: sequences

directed by a Pólya tree process and species sampling sequences. For this reason, we start

with a review about their main features (Chapter 2).

Pólya-tree distributions were formally introduced by Lavine (1992) and Lavine (1994)

and Mauldin et al. (1992), although they had been already described by Ferguson (1974) and

some particular cases of Pólya-tree distributions were studied by Dubins and Freedman (1967)

and Mauldin and Williams (1990). The popularity they gained in the last decades is due to

the fact that they allow the possibility to put positive mass on the set of absolute continuous

probability measures. Moreover, they distinguish by their versatility. In fact, they have

been used in many different statistical fields, such as autoregressive modeling [Sarno (1998)],

regression problems [Hanson and Johnson (2002)], statistical modeling of partially observed

data [Paddock (2002)], and survival analysis [Muliere and Walker (1997), Neath (2003)].

Species sampling sequences were introduced for the first time by Pitman (1996) and

studied by Hansen and Pitman (2000), Pitman (2003), Gnedin and Pitman (2005). They

hinge upon the concept of random partition, which has been introduced by Kingman (1978b)

and studied by Kingman (1978a), Aldous (1985) and Pitman (1995). For a systematic account

on random partitions, see Pitman (2006).

Chapter 3 describes the possible representation forms of the law of a finite exchangeable

sequence, providing also some mathematical tools, which will be useful in Chapter 4. It is

known that the classical de Finetti’s theorem cannot be applied in this case, but, as mentioned

in Section 1.1, it may be replaced by a finite version, which indicates the relationship between
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the law of a finite exchangeable sequence (ξ1, . . . , ξN ) and the law of its empirical distribution

ẽN . The problem of assessing the law of ẽN is approached in Section 3.2.1. For each measurable

partition {A1, . . . , Ak} of X, we consider a p.m.f. ψA1,...,Ak
that gives, for any vector of integers

(N1, . . . , Nk), the probability that the number of ξi in Aj is Nj (j = 1, . . . , k). We find some

necessary conditions on the ψA1,...,Ak
’s for the existence of (ξ1, . . . , ξN ), and we show that

the very same conditions are also sufficient to provide a complete characterization of ẽN ,

and, therefore, of the exchangeable probability measure L(ξ1,...,ξN ) as well. After showing

how the ψA1,...,Ak
’s look like in some common examples of finite exchangeable sequences, it is

explained how such functions can be concretely assessed in order to determine an exchangeable

probability measure on X
N if X is a Polish space.

Chapter 4 and Chapter 5 introduce two new classes of distributions of N -exchangeable

sequences, which we shall call partition tree distributions and random partition distributions,

respectively. In the construction of these laws we will follow two different strategies: the

former based on partitions trees, the latter on random partitions. They enable us to consider

forms of negative correlation between past and future observations, contrary to what happens

in infinite exchangeable sequences, which permit positive correlation only. For the sake of

clarity, the aforesaid strategies can give rise to laws that exhibit inverse relation between the

conditional probability that ξn+1 belongs to a specific set A given ξ(n), and ẽN (A). Therefore,

these laws need not be infinitely extensible. On the other hand, partition tree distributions

include as specific cases laws of N -exchangeable sequences directed by a Pólya-tree process,

and random partition distributions include the laws of the initial segments, with length N , of

species sampling sequences.

Chapter 6 deals with applications of the distributions introduced in Chapter 4 and

Chapter 5 to some standard statistical problems: we show how one can estimate the mean of

the empirical measure, and we propose a bivariate model based on partition tree distributions

in order to approach regression problems.
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Chapter 2

Sequences directed by a

Pólya-tree process and species

sampling sequences

This chapter is a review about two well-known families of infinite exchangeable sequences:

sequences directed by a Pólya-tree process and species sampling sequences. The distributions

of the initial N -segments of such sequences admit meaningful representation forms, different

from de Finetti’s theorem, which – as it will be shown in Chapters 4 and 5 – lead to define more

general classes of laws of finite exchangeable sequences, which also include distributions of non-

extensible sequences. This chapter focuses on the peculiarities of Pólya tree distributions and

species sampling sequences that look more interesting according to a finitary point of view.

2.1 Pólya-tree distributions

Lavine (1992) and Mauldin et al. (1992) define Pólya-tree distributions only on particular

spaces, such as the unit interval. Here Pólya-trees distributions will be presented in relation

with more general spaces, according to the definition given, for example, by Schervish (1995).

For a systematic account about Pólya-tree processes, see also Ghosh and Ramamoorthi (2003).

21
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Let (X,X ) be a measurable space such that X is countably generated, and let Π be a

separating tree of partitions of X. This means that Π is a sequence (πm)∞m=0 of ordered, finite,

measurable partitions of X such that π0 := {X}; πm+1 is a refinement of πm for every m ≥ 0

and G := ∪∞
0 πm generates the measurable sets. Denote by Bm, 1, . . . , Bm, km

the elements of

partition πm. Moreover, it will be convenient to indicate the most recent superset of B ∈ πm

by ge(B) ∈ πm−1, i.e. the set C in πm−1 that includes B.

X

B1, 1

B2, 1

B2, 2

...

B2, k2, 1

B1, 2

...

B2, k2, 1+1

B2, k2, 1+2

...

B2, k2,2

B1, k1

B2, k2,k1−1+1

B2, k2,k1−1+2

...

B2, k2

Figure 2.1: Partitions tree.

A random probability measure p̃ on (X,X ) is said to be a Pólya tree process (or equiv-

alently its law is called Pólya-tree distribution) with parameter (Π,A), where A = {αm,j ≥



2.1. PÓLYA-TREE DISTRIBUTIONS 23

0 : j = 1, . . . , km;m = 0, 1, . . . } is a set of nonnegative numbers, if

• The collections {p̃(C | ge(C)) : C ∈ πm}, m ≥ 1, are stochastically independent (inde-

pendence between partitions), i.e. p̃ is an F-neutral process (also called tail free process;

see Ferguson (1974)).

• The collections {p̃(C | B) : ge(C) = B}, B ∈ πm, are stochastically independent for

each m (independence within partitions).

• For each B in πm and for m ≥ 0, the random vector (p̃(C | B) : ge(C) = B) has

Dirichlet distribution with parameter (αm+1,j : Bm+1,j ⊂ B) (the reference both to

random vectors and to parameters vectors implies the introduction of some order among

the descendants of ge(·), for example a natural left-to-right order).

In order to parametrize the distribution of a Pólya tree process, it is sometimes useful

to consider a sequence (α(m))m≥1 of finite measures such that, for each m ≥ 1, α(m) is defined

on the algebra Am generated by πm and α(m)(Bm,j) = αm,j for j = 1, . . . , km.

Provided that X is a Polish (i.e. complete, separable and metric) space and X its

Borel sigma-field, a necessary and sufficient condition for the existence of a Pólya tree process

with parameter A is that if Bn is a union of elements of πm for each n, B1 ⊃ B2 ⊃ . . . and

∩∞
n=1Bn = ∅, then

∞∏

k=1

(
∑

B∈πn:B⊂Bn

α(n)(B | ge(B))

)

= 0.

For a systematic account about the construction and conditions for existence of Pólya-tree

distributions and other probability measures on (P,P) see Regazzini (2004) or Ghosh and

Ramamoorthi (2003).

2.1.1 A very special case: the Dirichlet process

Pólya-tree distributions are a generalization of the well-known Dirichlet process, which was

firstly considered by Freedman (1963), but has become a basic component of nonparametric

Bayesian statistics after the apparition of a celebrated paper by Ferguson (1973).

Before defining the Dirichelet process, we need to recall the notion of (finite-dimensional)

Dirichlet distribution. Let (a1, . . . , ah) be a vector of positive numbers. A random vec-
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tor (ζ1, . . . , ζh−1) is said to have (finite-dimensional) Dirichlet distribution with parameter

(a1, . . . , ah) if and only if its law has density (w.r.t. the Lebesgue measure on R
h−1) given by

Γ(a1 + · · · + ah)

Γ(a1) · · ·Γ(ah)
xa1−1

1 · · ·x
ah−1−1
h−1 (1 − x1 − · · · − xh−1)

ah−1
ITh−1

(x1, . . . , xh−1),

when aj > 0 for each j, denoting:

Th−1 = {(x1, . . . , xh−1) ∈ R
h−1 : xj ≥ 0 for 1 ≤ j ≤ h− 1, x1 + · · ·xh−1 < 1}.

If some of the aj is zero, we still define the Dirichlet distribution convening that those

coordinates corresponding to ai = 0 are equal to zero with probability one and the rest of the

coordinates have the usual Dirichlet distribution.

Let α be a finite measure on some measurable space (Ω,F ). A random probability

measure p̃ on (Ω,F ) is said to be a Dirichlet process with parameter α if and only if, for

any finite measurable partition {A1, . . . , Ak} of Ω, the probability distribution of the random

vector (p̃(A1), . . . , p̃(Ak−1)) is the (finite-dimensional) Dirichlet distribution with parameters

(α(A1), . . . , α(Ak)). The law of a Dirichlet process is called Dirichlet distribution.

Notice that no request was made about the measurable space (Ω,F ). A good pecu-

liarity of the Dirichlet process is indeed that it can be properly defined on any measurable

space. This can be seen by resorting to its series representation presented by Sethuraman

(1994). If one confines oneself to considering only countably genereted σ-fields, then we can

say that the class of Pólya-tree distributions contains the class of Dirichlet distributions. More

precisely, a Pólya-tree process on (X,X ) with parameter (Π,A) such that

αm,j =
∑

l:Bm+1,l⊂Bm,j

αm+1, l

– or equivalently such that, for eachm ≥ 1, α(m) is a restriction to Am of α(m+1) – is a Dirichlet

process with parameter α, where α is that measure on (X,X ) such that α(Bm,j) = αm,j for

each m ≥ 0 and each 1 ≤ j ≤ km. In fact, Dirichlet process satisfies independence within and

between partitions. For a detailed proof of this fact, see Regazzini (2004).

2.1.2 Marginal, posterior, and predictive distributions

The class of Pólya-tree distributions is conjugate, in the sense that for any Pólya-tree process

p̃, its conditional distribution given ξ1, . . . , ξn (i.e. its posterior distribution) is still Pólya-tree,
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for any n. More precisely, if p̃ is a Pólya-tree with parameters (Π,A), then the conditional

distribution of p̃ given (ξ1, . . . , ξn) is Pólya-tree with parameters (Π,A∗), where

A∗ = {α∗
m,j ≥ 0 : j = 1, . . . , km; m = 0, 1, . . . },

and α∗
m,j = αm,j +

∑n
i=1 δξi

(Bm,j).

The predictive distribution of a Pólya-tree process with parameter (Π,A) is given by

(see Regazzini (2004)):

Lξn+1|ξ(n)(B)

=
α(1)(B1) + n ẽn(B1)

α(1)(X) + n
·
α(2)(B2) + n ẽn(B2)

α(2)(B1) + n ẽn(B1)
· · ·

α(m)(Bm) + n ẽn(Bm)

α(m)(Bm−1) + n ẽn(Bm−1)
(2.1)

for each B in πm and each m ≥ 1, where Bm = B and, for j < m, Bj denotes the set in πj

that contains Bm. Keeping the same notation, the marginal distribution can be expressed as

following:

Lξn+1
(B) =

α(1)(B1)

α(1)(X)
·
α(2)(B2)

α(2)(B1)
· · ·

α(m)(Bm)

α(m)(Bm−1)
(2.2)

for any B ∈ πm and m ≥ 1.

Also the subclass of Dirichlet distributions is conjugate. In fact the posterior distribution

of a Dirichlet process with parameter α is Dirichlet with parameter α+
∑n

i=1 δξi
.

Predictive distributions of Dirichlet process have a very appealing form, being a convex

linear combination of the observed frequency and the marginal distribution, which is ᾱ(·) =

α(·)/α(X):

Lξn+1|ξ1,...,ξn
(·) =

n

a+ n
ẽn(·) +

a

a+ n
ᾱ(·), (2.3)

and, moreover, they characterize it [see Regazzini (1978), Lo (1991), Fortini et al. (2000)].

2.1.3 Main differences between the Dirichlet process and the more

general family of Pólya-tree processes

The popularity that Pólya tree processes gained is mainly due to the fact that their paths can

be continuous or even absolutely continuous with probability one, while a Dirichlet distribution

always gives probability one to the set of discrete probability measures. This is considered a

drawback of Dirichlet processes, according to the usual approach to inference, which assumes
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that observations are generated by an “unknown” probability distribution. According to a

predictive approach, an important difference between Dirichlet distributions and other Pólya-

tree processes is that the second ones can be constructed so that predictive distributions turn

out to be absolutely continuous. Conditions under which the prior, the posterior, or the

predictive distribution of a Pólya-tree process turn out to be absolutely continuous can be

found in Schervish (1995) and Regazzini (2004), while Drǎghici and Ramamoorthi (2000) give

conditions for the prior and the posterior of a Pólya tree process to be mutually continuous,

as well as conditions for the prior and the posterior to be mutually singular.

On the other hand, a drawback of Pólya-trees and F-neutral distributions is their

dependence on the choice of Π: Doksum (1974) shows that, except for trivial special cases,

the Dirichlet processes are the only tail-free processes in which Π does not play any role.

2.1.4 Pólya-tree processes defined on the unit interval

Initially, Pólya tree processes were defined only on the unit interval (Mauldin et al. (1992)). Let

us focus on this spacial case, i.e. take X = (0, 1]. Let E be {0, 1} and E0 := ∅, E∗ := ∪∞
m=0E

m.

Here πm can be taken to be the set of all 2m dyadic intervals of rank m, i.e.

πm := {Iε : ε ∈ Em},

where

Iε1...εm
:=

(
∑m

j=1 εj2
−j ,

∑m
j=1 εj2

−j + 2−m
]

if m ≥ 1 and I∅ = (0, 1]. In fact, it is known that the class of dyadic intervals generates the

Borel sigma-field B((0, 1]) of (0, 1].

In this case, Π is a binary tree, and therefore we can say that p̃ is a Pólya-tree on

((0, 1],B((0, 1])) with parameter (Π,N) if there exist nonnegative numbers N = {αε : ε ∈ E∗}

such that the random variables p̃(Iε1 | Iε) with ε ∈ E∗ are stochastically independent and

each one of them has the Beta distribution with parameter (αε0, αε1).

Mauldin et al. (1992) prove that a sequence of exchangeable (0, 1]-valued random

variables directed by a Pólya-tree process, with such parameters, can be generated by an

urn scheme. They define Pólya–tree distributions using the set E = {0, 1, . . . , k}, but their

results can be described taking E = {0, 1} instead, without losing any important detail. In
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the terminology of Mauldin et al. (1992), a “Pólya-tree” is a function that assigns to every ε

in E∗ an urn u(ε) containing balls labeled as “one” and balls labeled as “zero”. Let αε0 be the

number of balls in urn u(ε) with label “zero” and αε1 the number of balls in the same urn with

label “one”, for each ε ∈ E∗. For instance, urn u(∅) contains α0 balls with label “zero” and α1

balls with label “one”, while urn u(101) contains α1010 balls with label “zero” and α1011 balls

with label “one”. The Pólya-tree u can be used to generate a sequence of random variables

ξ1,1, ξ1,2, . . . and a new tree u(1) as follows: (a) draw a ball at random from u(∅), replace it by

two with the same label, and set ξ1,1 = j1 if the ball is labeled with j1 (j1 ∈ {0, 1}), (b) draw

a ball from u(j1), replace it by two of the same color, and set ξ1,2 = j2 if the ball just drawn

has label j2, (c) go on to u(j1, j2), and continue in this fashion. Let u(1) be the new Pólya

tree that was obtained in the construction. Iterate the entire process to obtain the sequences

(ξ1,1, ξ1,2, . . . ), (ξ2,1, ξ2,2, . . . ), . . . and the Pólya-trees u(1), u(2), . . . . Finally set

ξi =

∞∑

k=1

2−kξk,i for i = 1, 2, . . . .

Mauldin et al. (1992) show that the sequence ξ1, ξ2, . . . , generated by this scheme, is an

exchangeable sequence directed by a Pólya-tree process with parameter (Π,N).
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The predictive distribution can be expressed as:

Lξn+1|ξ(n)(Iε1...εm1)

=
αε1

+ nε1

α0 + α1 + n
·

αε1ε2
+ nε1ε2

αε10 + αε11 + nε1

. . .
αε1...εm1 + nε1...εm1

αε1...εm0 + αε1...εm1 + nε1...εm

, (2.4)

where nε =
∑n

i=1 δξi
(Iε) for any ε in E∗; see Theorem 4.3 in Mauldin et al. (1992) and Walker

and Muliere (1997).

2.2 Species sampling sequences

Hansen and Pitman (2000) consider a class of exchangeable sequences that represents another

generalization of the Dirichlet process, since, as in (2.3), their predictive distribution is a linear

combination of the empirical measure and the marginal law, but the coefficients are functions

of the sample. In formula, a sequence ξ1, . . . , ξN in this class admits predictive distributions

of the form:

Lξn+1|ξ1,...,ξn
(·) =

n∑

i=1

ri,nδξi
(·) + qnν(·) (n = 2, 3, . . . ), (2.5)

for some ri,n and qn, which are non-negative product-measurable functions of (ξ1, . . . , ξn),

and for some probability measure ν on (X,X ). Hansen and Pitman (2000) focus on the case

in which ν is a diffuse measure, i.e. ν({x}) = 0 for each x in X. The only requirement that

(X,X ) needs to satisfy is to render singletons X -measurable and the diagonals {(x, y) : x = y}

X 2-measurable.

Rule (2.5) can be rewritten as follows, by grouping terms with equal values of ξi:

Lξn+1|ξ1,...,ξn
(·) =

Kn∑

j=1

pj,nδξ∗
j
(·) + qnν(·) (n = 2, 3, . . . ), (2.6)

where the ξ∗j for 1 ≤ j ≤ Kn are the distinct values among ξ1, . . . , ξn in the order that

they appear, and the pj,n and qn are some non-negative product-measurable functions of

(ξ1, . . . , ξn).

Pitman (1996) shows that the law of an exchangeable sequence satisfying (2.6) can be

represented by means of the law of an exchangeable random partition of {1, 2, . . . }.

Before presenting such result, it seems appropriate to recall the concept of exchange-

able random partition, which have been introduced by Kingman (1978a), and studied by
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Kingman (1978a); Aldous (1985) and Pitman (1995).

Given a measurable space (Ω,F ), a random partition π̃ of {1, 2, . . . } on Ω is a map

from Ω into the set P∞ of all partitions of {1, 2, . . . } such that the sets

π̃i,j := {ω ∈ Ω : i and j belong to the same component of π̃(ω)} for i, j ∈ {1, 2, . . . }

are F -measurable. π̃ is said to be exchangeable if L{Iπ̃i,j
:1≤i,j≤n} = L{Iπ̃σi,σj

:1≤i,j≤n} for any

permutation σ of {1, . . . , n} and for any n ≥ 1. Let π̃|n denote the restriction of π̃ to the

finite set {1, . . . , n} for each n ≥ 1. A random partition π̃ on a probability space (Ω,F , P )

is exchangeable if and only if there exists a symmetric function p of sequences of positive

integers, such that, for each n and for each particular partition {A1, . . . , Ak} of {1, . . . , n},

P{π̃|n = {A1, . . . , Ak}} = p(n1, . . . , nk),

where nj = |Aj | for 1 ≤ j ≤ k, nj ≥ 1, and
∑k

i=1 ni = n. The function p is called the

exchangeable partition probability function (EPPF) of π̃. An EPPF is subject to the following

sequence of addition rules:

p(n1, . . . , nk) =

k∑

j=1

p(. . . , nj + 1, . . . ) + p(n1, . . . , nk, 1) (k = 1, 2, . . . ), (2.7)

where (. . . , nj + 1, . . . ) is derived from (n1, . . . , nk) by substituting nj + 1 for nj .

Given a random sequence X1,X2, . . . , let Π(X1,X2, . . . ) denote the random partition

generated by X1,X2, . . . , i.e. such that two positive integers i and j belong to the same block

of Π(X1,X2, . . . ) if and only if Xi = Xj .

Going back to the exchangeable sequences satisfying (2.6), Pitman (1996) states the

following result:

Theorem 2.1 (Pitman (1996)). Let ν be a diffuse probability measure. An exchangeable

sequence (ξn)n≥1 satisfies (2.6) if and only if there exist a random partition π̃ and a sequence

of i.i.d. r.v.’s (ξ∗n)n≥1 with distribution ν such that

1. conditionally on {π̃ = {A1, . . . , Ak}}, ξn = ξ∗i for n ∈ Ai,

2. π̃ and (ξ∗n)n≥1 are stochastically independent,



30 CHAPTER 2. PÓLYA-TREES AND SPECIES SAMPLING SEQUENCES

3. π̃ is distributed as the partition Π(ξ1, ξ2, . . . ) generated by ξ1, ξ2, . . . , and its EPPF p

satisfies for each k and each k-sequence of integers (n1, . . . , nk) the following:

pj, n(n1, . . . , nk) =
p(. . . , nj+1, . . . )

p(n1, . . . , nk)
for 1 ≤ j ≤ k

qn(n1, . . . , nk) =
p(n1, . . . , nk, nk+1)

p(n1, . . . , nk)

provided p(n1, . . . , nk) > 0.

Pitman (1996) calls such an exchangeable sequence (ξn)n≥1 a species sampling se-

quence.

As it is explained by Hansen and Pitman (2000),

this terminology is used to suggest the interpretation of (ξn)n≥1 as the sequence

of species of individuals in a process of sequential random sampling from some

hypothetical infinite population of individuals of various species. The species of the

first individual to be observed is assigned a random tag ξ∗1 distributed according to

ν. Given the tags ξ1, . . . , ξn of the first n individuals observed, it is supposed that

the next individual is one of the j-th species observes so far with probability pj,n

and one of a new species with probability qn. Each distinct species is assigned an

independent random tag with distribution ν as it appears in the sampling process.

2.3 Normalized random measures with independent

increments

Species sampling sequences are related to the class of exchangeable sequences directed by

normalized random measures with independent increments. These have been introduced by

Regazzini et al. (2003) and studied by Prünster (2002), Nieto-Barajas et al. (2004), James

(2005), and Sangalli (2006).

A random measure µ̃ with independent increments on the real line R is a random

measure such that, for any measurable collection {A1, . . . , Ak} (k ≥ 1) of pairwise disjoint

measurable subsets of R, the random variable µ̃(A1), . . . , µ̃(Ak) are stochastically independent.

A systematic account of these random measures is given for example by Kingman (1967).
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Random measures with independent increments are completely characterized by a

measure ν on R × R
+ via their Laplace functional, more precisely for every A in B(R) and

every positive λ one has

E(e−λµ̃(A)) = exp

{

−

∫

A×R+

(1 − e−λv)ν(dxdv)

}

.

Following Regazzini et al. (2003), if
∫

R×R+(1 − e−λv)ν(dxdv) < +∞ for every positive λ

and ν(R × R
+) = +∞, one defines a normalized random measure with independent incre-

ments (NRMII) setting p̃(·) := µ̃(·)/µ̃(R). In point of fact, under the previous assumptions,

P{µ̃(R) = 0} = 0, see Regazzini et al. (2003).

Consider now a sequence (ξi)i≥1 of exchangeable random variables driven by p̃. If

ν(dxdv) = aα(dx) q(dv), (2.8)

given any N < +∞, one can restate Corollary 2 in Sangalli (2006) saying that there is a

random partition π̃, taking values in P∞, such that, for each n ≥ 1 and for each particular

partition {A1, . . . , Ak} of {1, . . . , n},

Lπ̃|n({A1, . . . , Ak}) =
ak

Γ(n)

∫

R+

λn−1L(λ)

k∏

j=1

∫

R+

vnje−λvq(dv)dλ, (2.9)

where nj = |Aj | for 1 ≤ j ≤ k, nj ≥ 1,
∑k

i=1 ni = n, L(λ) = exp{−a
∫

R+(1−e−λv)q(dv)}, and,

moreover, the law of ξ1, ξ2, . . . given π̃ satisfies Condition 1 of Theorem 2.1. Hence, if the law

of ξ1 is diffuse, (ξ1, ξ2, . . . ) is a species sampling sequence. NRMII is another generalization of

the Dirichlet process. In fact, a NRMII with ν(dxdv) = α(dx)v−1e−vdv is a Dirichlet process

with parameter α (see Regazzini et al. (2003), Prünster (2002)).
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Chapter 3

Forms of representation for laws

of finite exchangeable sequences

On the basis of the considerations contained in Chapter 1, the sequence of observations will be

assumed to be finite and exchangeable. This chapter will focus on the possible representations

of laws of finite exchangeable sequences. In particular, we shall show how such laws can be

determined by assessing the finite dimensional distributions of the empirical process. Theorem

3.4 will be used in Chapter 4 for defining new classes of exchangeable distributions for finite

sequences.

3.1 De Finetti’s theorem and exchangeable prolongable

sequences

From now on, we shall consider a finite sequence ξ := (ξ1, . . . , ξN ) of observations instead of

an infinite sequence. Such observations may refer to the values that a character of interest

assumes on the N units of a finite population or to the results in a given experiment. In the

latter case, the value N is the maximum number of trials that can be performed.

Suppose that observations take values in a measurable space (X,X ). Hence, each

observation ξi (i = 1, . . . , N) can be viewed as a measurable function from X
N into X according

33



34 CHAPTER 3. REPRESENTATIONS FOR N -EXCHANGEABLE SEQUENCES

to the following definition:

ξi(x) = xi for every x = (x1, . . . , xN ) in X
N and i = 1, . . . , N

Our goal is to assess a probability measure P on (XN ,X N ), i.e. the probability distribution

of (ξ1, . . . , ξN ).

We shall take P to be exchangeable, that is invariant under permutation, i.e. for any

permutation σ of (1, . . . , N), the distribution of (ξσ1
, . . . , ξσN

) is the same as the distribution

of (ξ1, . . . , ξN ). With such assessment of P , we can equivalently say that (ξ1, . . . , ξN ) is an

N -exchangeable sequence.

After introducing the notation we shall refer to in this and in the next chapters, let

us stress the fact that P need not satisfy representation (1.2). By de Finetti’s theorem, such

representation is satisfied for some random measure p̃ if and only if (ξ1, . . . , ξN ) is (infinitely)

extensible, i.e. it is distributed as the initial segment of some infinite exchangeable sequence.

A counter-example is easily found to show that a finite exchangeable sequence need not be

extensible. For instance, if ξ1 is a Bernoulli distributed r.v. with parameter 1/2 and ξ2 = 1−ξ1

the 2-exchangeable sequence (ξ1, ξ2) is not extensible since the two components are negatively

correlated. In fact, it is known that, given an infinite sequence η1, η2, . . . of random variables

with the same variance, if they are equally correlated (in particular if they are exchangeable),

then they cannot be negatively correlated. Indeed an easy algebraic calculation yields:

Var(
∑n

i=1 ηi) = nVar(η1) + n(n− 1)Cov(η1, η2), (3.1)

and, since the variance must be nonnegative, by (3.1) the correlation coefficient between η1

and η2 must be grater or equal than −1/(n−1) for any n, hence it must be greater than zero.

This fact was already highlighted by de Finetti (1937b), who also proposed an interesting

geometric interpretation.

In conclusion, in a finitary framework, it may be that the usual directing measure p̃

does not even exist, and, as already said in Chapter 1, it is destined to be replaced by the

empirical measure, both as object of inference, and as base to assess the joint distribution of

the observations.
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3.2 The law of the empirical measure as prior distribution

From now on, let us denote by ẽ the empirical measure of (ξ1, . . . , ξN ):

ẽ = 1
N

N∑

i=1

δξi
.

First let us stress that ẽ is a random probability measure on (X,X ), i.e. a measurable

map from (XN ,X N , P ) into (P,P). In fact, for any A belonging to X and any B belonging

to the Borel σ-algebra B(R) of R, the set

C ′ =
{

(x1, . . . , xN ) ∈ X
N : 1

N

∑N
i=1 δxi

∈ {p ∈ P : p(A) ∈ B}
}

=
{

(x1, . . . , xN ) ∈ X
N : 1

N

∑N
i=1 δxi

(A) ∈ B
}

turns out to be a union of a finite class of finite intersections of measurable sets of the form
{
(x1, . . . , xN ) ∈ X

N : xk ∈ A
}

or
{
(x1, . . . , xN ) ∈ X

N : xk /∈ A
}
. Hence, C ′ belongs to X N ,

and measurability of ẽ follows from the fact that the sets of the form {p ∈ P : p(A) ∈ B} (with

A ∈ X and B ∈ B(R)) generate P. Hence we can properly talk about the law of the

empirical measure. Moreover, we can regard such a law as a prior distribution. In fact, it

is known that we can characterize the law of an N -exchangeable sequence by the law of its

empirical measure.

3.2.1 Representation of a finite exchangeable sequence through the

law of the empirical measure

Before giving a precise formulation to the finite version of de Finetti’s theorem, which was

mentioned in Chapter 1, some more notation is necessary.

Let |A| be the cardinality of set A, and denote by Hm1,...,mh
(n1, . . . , nh) the probability

to get nj balls marked with j (j = 1, . . . , h) when one draws (n1 + · · · + nh) balls without

replacement from an urn containing mj balls marked by j. Define the multinomial coefficient

as
(

m

m1 . . .mj

)

=
m!

m1! . . .mj !
whenever m = m1 + · · · +mj .

Denote by PN the class of all probability measures p on (X,X ) such that p =
∑N

i=1 δxi
/N for some N -tuple (x1, . . . , xN ), where xi ∈ X for i = 1, . . . , N , and finally, for
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n ≤ N and for any p ∈ PN with p =
∑N

i=1 δxi
/N , let ϕn(p) be the probability distribution of

n drawings without replacement from an urn containing N balls labeled as x1, . . . , xN .

At this stage, the representation theorem for finite exchangeable sequences due to

Bruno de Finetti can be stated:

Theorem 3.1 (The finite version of de Finetti’s representation theorem). The fol-

lowing facts are equivalent:

(i) (ξ1, . . . , ξN ) is an N -exchangeable sequence;

(ii) for any n ≤ N , ϕn(ẽ) represents a regular conditional distribution for (ξ1, . . . , ξn) given

ẽ.

Proof. For the proof see either Schervish (1995) on pages 38–40 or Aldous (1985) on pages

37–38.

Theorem 3.1 describes the one-to-one relationship between the law of a finite exchange-

able sequence and the law of its empirical measure. Briefly, it says that a finite sequence of

N random elements is exchangeable if and only if, conditionally on the empirical measure ẽ,

the first n components are distributed as n drawings without replacement from an urn with

N balls and whose composition is given by ẽ.

Another less abstract representation theorem can be stated, which relates the distribution

of (ξ1, . . . , ξN ) to the finite-dimensional distributions of ẽ, i.e. the laws of the random vectors

(ẽ(A1), . . . , ẽ(Ak)) where {A1, . . . , Ak} is a measurable partition of X. Such distributions of

course are discrete. For any measurable partition {A1, . . . , Ak} of X and any vector of integers

(M1, . . . ,Mk), denote the probability that exactly Mj observations fall in Aj by

ψA1...Ak
(M1, . . . ,Mk) := P (ẽ(A1) = M1/N, . . . , ẽ(Ak) = Mk/N). (3.2)

Corollary 3.2. The following facts are equivalent:

(i) (ξ1, . . . , ξN ) is an N -exchangeable sequence;

(ii) for any measurable partition {A1, . . . , Ak} of X and any n-tuple (i1, . . . , in) of elements

of {1, . . . , k} with n ≤ N ,

P (ξ1 ∈ Ai1 , . . . , ξn ∈ Ain
) =

∑

(M1,...,Mk)

ψA1...Ak
(M1, . . . ,Mk) ·

HM1,...,Mk
(n1, . . . , nk)

(
N

M1...Mk

) , (3.3)
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where the sum runs over the finite set of all vectors (N1, . . . , Nk) whose components are

nonnegative integers that sum up to N and nj = |{l = 1, . . . , n : il = j}| for j = 1, . . . , k;

(iii) under the same assumption as (ii),

P (ξ1 ∈ Ai1 , . . . , ξn ∈ Ain
| ẽ(A1), . . . , ẽ(Ak)) =

HÑ(A1),...,Ñ(Ak)(n1, . . . , nk)
(

N
Ñ(A1),...,Ñ(Ak)

) , (3.4)

where Ñ(Aj) := Nẽ(Aj) for j = 1, . . . , k.

Proof. Trivially (ii) implies (i) (take n = N), and (iii) implies (ii).

In order to prove that (i) implies (iii), we note that by Theorem 3.1,

P (ξ1 ∈ Ai1 , . . . , ξn ∈ Ain
| ẽ) =

HÑ(A1),...,Ñ(Ak)(n1, . . . , nk)
(

N
Ñ(A1),...,Ñ(Ak)

) P − a.s. (3.5)

Since the right hand side of (3.5) depends on ẽ only through (ẽ(A1), . . . , ẽ(Ak)),

P (ξ1 ∈ Ai1 , . . . , ξn ∈ Ain
| ẽ(A1), . . . , ẽ(Ak))

= E (P (ξ1 ∈ Ai1 , . . . , ξn ∈ Ain
| ẽ) | ẽ(A1), . . . , ẽ(Ak))

= P (ξ1 ∈ Ai1 , . . . , ξn ∈ Ain
| ẽ) =

HÑ(A1),...,Ñ(Ak)(n1, . . . , nk)
(

N
Ñ(A1),...,Ñ(Ak)

) P − a.s..

Remark 3.3. Equation (3.3) in Corollary 3.2 can be rewritten as:

P (ξ(n) ∈ Ai1 × · · · ×Ain
) =

∫

[0,1]k

HNθ1,...,Nθk
(n1, . . . , nk)

(
N

Nθ1 ... Nθk

) Lẽ(A1),...,ẽ(Ak)(dθ1 . . . dθk) (3.6)

When (ξ1, . . . , ξN ) turns out to be infinitely extensible, one can heuristically derive (1.2) from

(3.6), by taking the limit as N goes to infinity, and recalling that (a) the multivariate hyper-

geometric distribution converges (uniformly) to the multinomial distribution with parameters

(n; p̃(A1), . . . , p̃(Ak)); (b) (ẽ(A1), . . . , ẽ(Ak)) converges in distribution to (p̃(A1), . . . , p̃(Ak)).

When n = N (3.3) yields a trivial reformulation of the notion of exchangeability:

ψA1...Ak
(M1, . . . ,Mk) =

(
N

M1, . . . ,Mk

)

P (ξ1 ∈ Ai1 , . . . , ξN ∈ AiN
) (3.7)

holds for any n-tuple (i1, . . . , in) of elements of {1, . . . , k} such that

Mj = |{l = 1, . . . , N : il = j}| (j = 1, . . . , k).
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3.2.2 Representation of a finite exchangeable sequence through the

finite-dimensional distributions of the empirical measure.

By Theorem 3.1, the law of a finite exchangeable sequence is determined by the specification of

the probability distribution of its empirical measure. Our aim is to identify the latter through

the finite-dimensional distributions of the empirical measure. It consists in singling out condi-

tions that are necessary and sufficient so that a family of finite-dimensional distributions may

provide a complete characterization of the law of the empirical measure of a random sequence.

Such discrete distributions are fully specified by the functions ψA1,...,Ak
by (3.2).

First we shall enunciate some necessary conditions on the ψA1,...,Ak
’s for the existence

of P , which hold in general (without hypothesis of exchangeability).

Condition 3.1. For each measurable partition {A1, . . . , Ak} of X, let (Ñ(A1), . . . , Ñ(Ak)) be

a random vector having non-negative integer coordinates whose p.m.f. is given by ψA1,...,Ak
.

Then, for each measurable partition {A1, . . . , Ak} of X:

3.1.1. Ñ(A1), . . . , Ñ(Ak) are non-negative integers and sum up to N ;

3.1.2. if {B1, . . . , Bm} is a measurable partition not coarser than {A1, . . . , Ak}, then

(
∑

l:Bl⊂A1

Ñ(Bl), . . . ,
∑

l:Bl⊂Ak

Ñ(Bl)

)

L
= (Ñ(A1), . . . , Ñ(Ak))

3.1.3. If {Cn} is a sequence of events belonging to X and such that Cn ↓ ∅, then

the sequence {(Ñ(Cn), Ñ(Cc
n))} of random vectors must converge to (0, N) in law.

Conditions 3.1.1 and 3.1.2 trivially follow by definition of ψA1,...,Ak
, while Condition

3.1.3 is due to continuity from above of P . In fact, notice that if M 6= 0

P{Ñ(Cn) = M} ≤ P{Ñ(Cn) 6= 0} = 1 − P{Ñ(Cn) = 0} = 1 − P (Cc
n × . . .× Cc

n)

which goes to zero as n→ ∞ by continuity of P .

Condition 3.1 is necessary for the existence of anN -exchangeable sequence (ξ1, . . . , ξN )

that satisfies (3.7). It is known that, by Condition 3.1, the ψA1,...,Ak
’s identify a consistent

family of (discrete) finite-dimensional-probability distributions for a random probability mea-

sure [see either Regazzini (1991) or Regazzini and Petris (1992)]. It still need to be proved that
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such random process is distributed as the empirical measure of an N -exchangeable sequence.

Hence, we shall prove that Condition 3.1 and (3.7) are sufficient to identify the exchangeable

law P . Furthermore, the very same result can be obtained also when Conditions 3.1.1-3.1.2

are satisfied only by the sets in some semialgebra1 that generates X . More precisely we can

state the following result:

Theorem 3.4 (A representation theorem for finite exchangeable sequences). Let X

be a Polish space, let X be its Borel σ-algebra and let G be a semi-algebra that generates X .

Denote by A the algebra generated by G and by A N the algebra of all finite disjoint unions

of cartesian products of sets in A .

If for any partition {A1, . . . , Ak} of X with Aj belonging to G for each j, (Ñ(A1), . . . , Ñ(Ak))

is a random vector such that:

1. its components are non-negative integers and sum up to N ;

2. if {B1, . . . , Bm} is a partition not coarser than {A1, . . . , Ak} and Bl belongs to G for

each l (l = 1, . . . ,m), then

(
∑

l:Bl⊂A1

Ñ(Bl), . . . ,
∑

l:Bl⊂Ak

Ñ(Bl)

)

L
= (Ñ(A1), . . . , Ñ(Ak));

Then there exists a unique finitely-additive exchangeable probability measure ρN on (XN ,A N )

such that

(ẽ(A1), . . . , ẽ(Ak))
L
= 1

N (Ñ(A1), . . . , Ñ(Ak)) (3.8)

for each partition {A1, . . . , Ak} of X with Aj belonging to G for each j.

Moreover, ρN can be uniquely extended to an (exchangeable) probability measure P on

(XN ,X N ) if and only if the following is true:

3. if Cn ↓ ∅ as n → +∞ and Cn ∈ A for each n, then the sequence {ẽ(Cn)} of random

variables converges to zero in law as n→ +∞.

1a class S of sets is said to be a semi-algebra if and only if:

• S, T ∈ S =⇒ T ∩ S ∈ S i.e. S is closed under intersection,

• S ∈ S =⇒ Sc is a finite disjoint union of sets in S .
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Proof. See Appendix, page 95.

Remark 3.5. As it is shown in the proof of the theorem, if one wishes to define a finitely-

additive exchangeable probability, then it is not necessary for X to be Polish. That is: if

(X,X ) is any measurable space, and the hypotheses 1 and 2 of the theorem hold, then there

exists a unique finitely-additive exchangeable probability measure ρN on (XN ,A N ) such that

(3.8) is satisfied.

Briefly, Theorem 3.4 says that it is possible to characterize the law of anN -exchangeable

sequence through the ψA1,...,Ak
’s, i.e. the finite-dimensional probability mass functions of the

process Ñ .

We shall now see how the ψA1,...,Ak
’s look like in some common examples of finite

exchangeable sequences.

Example 3.1 (independent observations). If ξ1, . . . , ξN are N independent random elements

and α is their common distribution, then

ψA1...Ak
(M1, . . . ,Mk) =

(
N

M1, . . . ,Mk

)

α(A1)
M1 . . . α(Ak)Mk .

Example 3.2 (extensible N -exchangeable sequences). If (ξ1, . . . , ξN ) are the first N coordi-

nates of an exchangeable sequence with de Finetti’s measure π, then

ψA1...Ak
(M1, . . . ,Mk) =

∫

P

(
N

M1, . . . ,Mk

)

µ(A1)
M1 . . . µ(Ak)Mkdπ(µ).

Before the next example, define the factorial of x, for x real number, by

x! =







Γ(x+ 1) if x is not a negative integer

(−1)n−1

(n − 1)!
if x = −n and n is a positive integer,

where Γ denotes the generalized gamma function. In this way, (x+ 1)! = (x+ 1)x! still holds

when x 6= 0 and the binomial (coefficient) of a of order b can be defined for any pair (a, b) of

real numbers by:
(
a
b

)
=

a!

b!(a − b)!
.

Moreover, let

x[n] := x(x+ 1) . . . (x+ n− 1).

x[n] is called the ascending factorial of x of order n.
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Example 3.3 (a sample from a Dirichlet process). Let α be a finite measure on (X,X ), and

set

ψA1...Ak
(M1, . . . ,Mk) =

(
N

M1 . . .Mk

)∏k
i=1(αi +Mi)(αi +Mi − 1) · · ·αi

(a+N)(a+N − 1) · · · a
(3.9)

that is equivalent to

ψA1...Ak
(M1, . . . ,Mk) =

k∏

i=1

(
−αi

Mi

)

(
−a

N

) =

k∏

i=1

(
αi +Mi

Mi

)

(
a+N

N

) =
1

a[N ]

k∏

j=1

α
[Nj ]
j , (3.10)

where we denote α(Ai) by αi and α(X) by a.

The p.m.f. in (3.10) is called the Dirichlet (or Beta)-compound multinomial distribution

with parameters (N ;α1, . . . , αk) [see Johnson et al. (1997), page 80] and is the natural mul-

tivariate version of the beta-binomial distribution, also known as negative (or inverse) hyper-

geometric distribution [see Johnson et al. (2005)]. In fact, the marginal p.m.f.’s of (3.10) are

of this form.

Here P is the joint distribution of the first N coordinates of an exchangeable random

sequence directed by a Dirichlet process with parameter α, whose law we shall denote by Dα.

In fact, if ξ1, ξ2, . . . is an exchangeable sequence and Dα is its de Finetti’s measure, then (3.10)

gives the finite-dimensional p.m.f.’s of the empirical measure Nẽ =
∑N

i=1 δξi
. This follows by

a simple algebraic argument considering (3.7) and knowing that the law of an N -dimensional

sample from Dα evaluated in AM1
1 × · · · ×AMk

k (where Mj ’s are positive integers and sum up

to N) coincides with the mixed (M1, . . . ,Mk)-th moment of a singular Dirichlet distribution

with parameters (α1, . . . , αk), that is:

P ((ξ1, . . . , ξN ) ∈ AM1
1 × · · · ×AMk

k ) =

∫

P

p(A1)
M1 . . . p(Ak)NkdDα(p)

=

∫

[0,1]k−1

pM1
1 . . . pNk

k

Γ(a)

Γ(α1) . . . Γ(αk)
pα1
1 . . . pαk

k dp1 . . . dpk−1

=
Γ(a)

Γ(α1) . . . Γ(αk)

∫

P

pα1+M1
1 . . . pαk+Nk

k dp1 . . . dpk−1

=
Γ(a)

Γ(α1) . . . Γ(αk)

Γ(α1 + M1) . . . Γ(αk + Nk)

Γ(a + N)

=
1

a[N ]

k∏

j=1

α
[Nj ]
j ,

(3.11)
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where pk := 1 −
∑k−1

j=1 pj .

Suppose that α is concentrated on a finite subset of X, say {b1, . . . , bh}. In this case,

it is known that (3.10) is the p.m.f. of a Pólya distribution [see Blackwell and MacQueen

(1973)]. Consider an urn containing α({bl}) balls labeled with l. Draw N balls at random

from the urn, replacing each ball drawn with two balls of the same color. Then, (3.10) is the

probability to get Nj balls labeled as l with bl in Aj , if you draw N balls from such urn and

you put back each ball drawn together with another ball with the same label.

Example 3.4 (A very simple not-extendible finite exchangeable sequence). Put X = R and

N = 2. Let B denote the Borel σ-field of R and let µ be a not degenerate probability measure

on (R,B) that is symmetric w.r.t. zero (i.e. such that µ((−∞, t]) = µ([−t,∞)) for each

t ∈ R; e.g.: a normal, a double exponential, a Cauchy distribution with scale parameter zero,

or any other distribution that is absolutely continuous w.r.t. Lebesgue measure whose density

function is an even function). If M1 +M2 = 2, set

ψA,Ac(M1,M2) =







µ(A ∩ (−A)) if M1 = 2,M2 = 0

2µ(A ∩ (−Ac)) if M1 = 1,M2 = 1

µ(Ac ∩ (−Ac)) if M1 = 0,M2 = 2,

where −A = {x ∈ R : −x ∈ A}.

It’s easy to see that P is the distribution of the exchangeable vector (Z̃,−Z̃), where Z̃ is a

random variable with distribution µ.

Put f = 1(0,+∞). Notice that the correlation coefficient of (f(Z̃), f(−Z̃)) is −1, that

is − 1
N−1 . Hence, the sequence is not extendible to a random vector of R

3 [see Spizzichino

(1982), Proposition 2.1, page 316].

In what follows, if R = I1× · · ·×Iq, R ⊇ Im = (am, bm] and x is a vertex of R (i.e.

x ∈ R, and for each m the mth coordinate xm of x is either am or bm), let sgnR x be +1 or

−1, according as the number of m’s satisfying xm = am is even or odd. For a real function

the difference of F around the vertices of R is ∆RF =
∑

x sgnR x · F (x), the sum extending

over the 2q vertices x of R.
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Example 3.5 (X = R). Let G be the class of intervals like (a, b], (a,+∞), or (−∞, b], a, b ∈ R.

If F is a symmetric distribution function (s.d.f.) and (A1, . . . , Ak) ⊂ G , set

ψA1...Ak
(M1, . . . ,Mk) =

(
N

M1, . . . ,Mk

)

∆EF,

where E = Ai1 × · · · ×AiN

and Mj = |{l = 1, . . . , N : il = j}| (j = 1, . . . , k).

Here P is the probability measure on (R,B) associated with the s.d.f. F and therefore ∆EF =

P (E).

Example 3.6 (Gaussian random variables). In Example 3.5, F can be the distribution func-

tion (d.f.) of a R
N -valued Gaussian random vector with mean vector (µ, . . . , µ) and covariance

matrix σ2R, where µ ∈ R, σ2 > 0, R is a matrix whose elements are all equal to ρ , except

those in the diagonal that are equal to 1, being ρ > − 1
N−1 . In this way, the matrix σ2R is

positive definite. In fact, σ2R is positive definite if and only if R is so and the quadratic form

associated with R is

∑

i x
2
i +

∑

i

∑

j 6=i ρ xixj = N(1 − ρ)[ 1
N

∑

i x
2
i − ( 1

N

∑

i xi)
2]

+ 1
N [(N − 1)ρ+ 1](

∑

i xi)
2

≥ 1
N [(N − 1)ρ+ 1](

∑

i xi)
2 > 0

whenever (x1, . . . , xN ) ∈ R
N\{0} if ρ > − 1

N−1 .

3.2.3 Constructing the law of a finite exchangeable sequences on a

Polish space

It is not easy to have a guess about a possible choice of the ψA1,...,Ak
’s consistently with

Condition 3.1.2 , except in the area of a family of distributions already studied in literature. In

order to be able to construct new examples of extensible and not extensible finite exchangeable

sequences on the basis of Theorem 3.4, some further considerations are necessary.

Take X to be a Polish space and let X be its Borel σ-field. Recall that in this case,

X is countably generated, i.e. there is a countable class of sets {B1, B2, . . . } generating X .
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Therefore, we can construct a separating tree of partition Π = {πm} of X by taking π0 = {X}

and πm equal to the partition generated by {B1, . . . , Bm} for m = 1, 2, . . . . Notice that

G = ∪m≥0πm is a semi-algebra of X that generates X . Resorting to the notation introduced

in Section 2.1, let (Ñm)m≥0 be a sequence of random vectors, defined on the same probability

space, such that

Ñ0 := Ñ(X) = N

Ñ1 := (Ñ(B1, 1), . . . , Ñ(B1, k1
))

. . .

Ñm := (Ñ(Bm, 1), . . . , Ñ(Bm, km
))

. . . ,

where, for each m ≥ 0, Ñ(Bm, 1), . . . , Ñ(Bm, km
) are (almost surely) non-negative integers

summing up to N , and for each C in G :

∑

B: ge(B)=C

Ñ(B) = Ñ(C). (3.12)

Notice that the hypotheses 1 and 2 of Theorem 3.4 are satisfied and therefore the probability

distribution of the random sequence (Ñm)m≥1 characterizes a finitely-additive exchangeable

probability ρN on (XN ,X N ). Since (Ñm)m≥1 satisfies (3.12) for each C in G , (Ñm)m≥1 meets

the Markov property in the sense that, for every m ≥ 1, Ñm+2 and (Ñ1, . . . , Ñm) turn out to

be stochastically independent given Ñm+1. So, to achieve our ends, it is enough to assess the

conditional distribution of Ñm+1 given Ñm, for every m ≥ 0, consistently with (3.12).

At this stage, we can define, for each A ∈ A , the random variable Ñ(A) by

Ñ(A) =

h∑

j=1

Ñ(Bj)

if A is the finite disjoint union of the sets B1, . . . , Bh in G . Such definition is consistent in

virtue of (3.12).

Finally, again by Theorem 3.4, the finitely-additive probability ρN can be (uniquely)

extended to an (exchangeable) probability measure P on (XN ,X N ), provided that

Ñ(Cn) → 0 in law (3.13)
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for any decreasing sequence (Cn)n≥1 of events in A such that Cn ↓ ∅.

In this way, an exchangeable probability distribution P is assigned to (ξ1, . . . , ξN ), so

that

P{ξ1 ∈ Bm,i1 , . . . , ξN ∈ Bm,iN
} =

1
(

N
N1...Nm

)ψBm,1,...,Bm,km
((N1, . . . , Nkm

))

holds for any m ≥ 1, any n-tuple (i1, . . . , in) of elements from {1, . . . , km} with Nj :=

|{l = 1, . . . , N : il = j}| for j = 1, . . . , km, denoting by ψBm,1,...,Bm,km
the p.m.f. of

(Ñ(Bm, 1), . . . , Ñ(Bm, km
)).

Dealing with a general X, it looks difficult to verify that a given assessment of the

conditional laws LÑm+1|Ñm
(for each m) satisfies (3.13). This is not the case if one considers

some specific spaces. If for instance X is the unit interval, it is sufficient for sigma-additivity

of P just that (3.13) holds only for dyadic intervals. It is appropriate to clarify this point

since some models based on (0, 1]-valued observations will be presented later on (Chapter 4).

Hence, take X = (0, 1] and X = B((0, 1]), and, resorting to the notation introduced

in Section 2.1.4, let πm be the set of all dyadic intervals of rank m, for each m ≥ 1, and let

A be the algebra generated by the class G of dyadic intervals.

First, note that given an infinite zero-one sequence ε∗ = (ε1, ε2, . . . ) that is definitely

zero (i.e. there exists m0 such that for any m ≥ m0, εm = 0), the set ∩m≥1Iε1...εm
is empty

and therefore, by (3.13), Ñ(Iε1...εm
) converges to zero in law, as m goes to infinity. We can

prove that this condition is also sufficient for sigma-additivity. The proof of the following

Proposition is similar to the one of Theorem 2.3.2 in Ghosh and Ramamoorthi (2003), which

is about random measures.

Proposition 3.6. Let ρ be an exchangeable finitely additive probability on A N .

Hence, ρ is countably additive if and only if Ñ(Iε1...εm
) goes to zero in law (as m

diverges to +∞), for any zero-one sequence (ε1, ε2, . . . ) that is definitely zero.

Proof. We already observed that the mentioned condition is necessary for countable additivity;

therefore we have to prove only sufficiency.

Let µ = ρ ◦ ξ−1
1 , where ξ1 is the first coordinate function on X

N . As we already

observed in analogous circumstances (in the proof of Theorem 3.4), applying Sazonov (1965)’s

results, we can prove that ρ is sigma-additive just showing that µ is so.
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Since µ is finitely additive, the function F (·) = µ(0, ·] defined on the set of dyadic

rationals is non-decreasing. Moreover, F (1) = µ((0, 1)] = 1. Since the set of dyadic rationals

is dense in R, it is sufficient to show that limx→0+ F (x) = 0 and that F is continuous to

the right. Let x be a dyadic rational. Hence, we can find m ∈ N and a zero-one sequence

(ε1, . . . , εm) of length m such that εm = 1 and x =
∑m−1

k=1 εk2−k + 2−m. Therefore if we let

εk = 0 for k ≥ m+ 1

F (x+ 2−n) = F (x) + µ(Iε1...εn
) for n > m. (3.14)

Now recall that 1
N E(Ñ(·)) = µ(·) and that weak convergence of (Ñ(Iε1...εm

))m is

equivalent to L1-convergence since each random variable in the sequence has the same finite

support. So by hypothesis, limn→∞ µ(Iε1...εn
) = 0 since (ε1, ε2, . . . ) is definitely zero and

equation (3.14) implies that limn→∞ F (x + 2−n) = F (x) for any dyadic rational x. When

x = 0, one can see that limn→∞ F (2−n) = 0 since F (2−n) = µ(Iε1...εn
), where εk = 0 for any

k.

Remark 3.7. Intuitively, this condition is due to the fact that the dyadic expansion establishes

a one to one map φ from (0, 1] onto the subset Dc of {0, 1}∞, where D is the set of all zero-one

sequences that are definitely zero. This is another way to say that for dyadic rationals we

consider the expansion that is definitely one and not the other possible one that is definitely

zero. So φ associates a cylinder in {0, 1}∞ to each dyadic interval in (0, 1]. Now, recall that any

finitely-additive probability on the algebra of the cylinders is sigma-additive [see Billingsley

(1995) on page 29]. Therefore a finitely-additive probability on the algebra of the cylinders

in {0, 1}∞ that is concentrated on Dc corresponds to a (sigma-additive) probability on the

algebra of the dyadic intervals in (0, 1].

3.3 Characterization of the law of the observations through

predictive distributions

It is possible to find necessary and sufficient conditions so that a set of predictive distributions

may be consistent with the law of a finite exchangeable sequence. In fact, the solution to the
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analogous problem found by Fortini et al. (2000) for infinite sequences of observations can be

easily adapted to the case of finite sequences in the following way:

Theorem 3.8. Let (X,X ) be a Polish space endowed with its Borel sigma-algebra, and let

ξ1, . . . , ξN be the coordinate functions on (XN ,X N ).

Then the following are equivalent:

1. P(1) is a probability measure on (X,X ) and P(n) is a transition probability w.r.t. X
n−1×

X for each n = 2, . . . , N such that:

(a) P(n)(x(n − 1), A) = P(n)((xσ(1), . . . , xσ(n−1)), A) holds true for each n = 2, . . . , N,

every subset A of X , and every permutation σ of (1, . . . , n− 1);

(b) for every A,B in X and for each n = 2, . . . , N,

∫

B

P(n+1)(x(n), A) P(n)(x(n− 1),dxn)

=

∫

A

P(n+1)(x(n), B) P(n)(x(n− 1),dxn);

2. there exist a unique probability measure P on (XN ,X N ) such that the random elements

ξ1, . . . , ξN are exchangeable, P(1) is the distribution of ξ1, and P(n) is a version of the

conditional distribution of ξn given ξ(n− 1) for each n = 2, . . . , N .

Proof. The proof is already contained in the proof given by Fortini et al. (2000) for their

Theorem 3.1.

Among other possible representations for finite exchangeable sequences, a result given

by Dellacherie and Meyer (1980) deserves to be mentioned: any finite exchangeable sequence

is a “mixture” of i.i.d. sequences if we allow the mixing measure to be a signed measure [see

also Kerns and Szekely (2005)].
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Chapter 4

Exchangeable laws based on

partition trees

The present chapter contains the description of a class of laws for N–exchangeable sequences

defined by means of Theorem 3.4, with the law of ẽ assessed according to the same idea of

partitions tree as the one used to introduce the P ólya-tree distributions. See, for example,

Ferguson (1974) and Mauldin et al. (1992). A feature of the resulting schemes, which could

be of some interest with respect to statistical inference, is that they allow negative correlation

between past and future observations, contrary to what happens, for example, in the presence

of infinite exchangeable sequences. More precisely, they allow inverse relations between the

predictive probability that a future observation belongs to a specific set A and the observed

frequency associated to A. To see the point in assessing N–exchangeable laws of this kind,

consider the following description of a concrete situation that seems to require forms of negative

dependence between predictions and observed frequencies.

Example 4.1 (Species sampling). In the species sampling problem from a community of

animals, one can consider a finite community of N units and identify each particular species

with a real number in the unit interval (0, 1], as it is usually done. Biologists classify each

organism in a hierarchical way according to different taxonomic units or taxa: Phylum, Class,

Order, Family, Genus, Species, etc. (see Fig. 4.1).
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Kingdom Phylum Subphylum Class Subclass Order Suborder Family Subfamily Tribe Genus Species

Animalia

Arthropoda

Annelida

Echinodermata

Mollusca

Chordata

Vertebrata

Mammalia

Marsupialia

Placentalia

Primates

Strepsirrhini

Haplorrhini Hominidae

Homininae

Hominini
Pan

Homo Homo S.

Gorillini Gorilla

Ponginae Pongo

Insectivora

Rodentia

Carnivora

Ursidae

Canidae

Felidae

Acinonyx

Neofelis

Felis

Panthera
Panthera leo

Panthera tigris

Aves

Reptilia

Amphibia

Urochordata
Ascidiacea

Sorberacea

Cephalochordata

F
igu

re
4.1:
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One can use the partitions tree structure intrinsic to this classification process to

assign the probability distribution of (ξ1, . . . , ξN ), where ξi denotes the species of the i–th

animal in the community. After assessing L(ξ1,...,ξN ), one can, for instance, estimate the

number of distinct species, their frequencies, the possible existence of unknown species, etc.

Now, if the animals share a common habitat, it seems reasonable to assess the above law by

taking into account possible competitions between species belonging to the same taxonomic

unit and within species. So, for instance, given that in a sample of n animals, n1 mammals

are dectected, n11 of which being carnivourous, it could make sense to assign the conditional

probability that the animal detected at the stage (n+ 1) is carnivorous, under the additional

hypothesis that it is a mammal, in such a way that it turns out to be decreasing as n11/n1

increases. ♦

4.1 Definition of the model

As mentioned at the beginning of this chapter, the tree structure is used to assess the law of ẽ.

It is time to define, in general terms, the method sketched in the previous example. Consider

a separating tree of partitions – say Π – of some space X that includes the range of each of

the random variables ξ1, . . . , ξN . This means that Π is a sequence {πm}∞m=0 of ordered, finite

partitions of X such that π0 := {X} and πm+1 is a refinement of πm for every m ≥ 0. Here

X and A stand for the algebra and the σ-algebra, respectively, generated by G := ∪m≥0πm.

Resorting to the notation introduced in Section 2.1, denote by Bm, 1, . . . , Bm, km
the elements

of partition πm. By the way, with reference to Example 4.1, the sets Bm, 1, . . . , Bm, km
play

the role of taxonomic units. As in Section 2.1, indicate the most recent superset of B ∈ πm by

ge(B) ∈ πm−1, i.e. the set C in πm−1 that includes B. In addition, those sets in πm+1 that

are included by C ∈ πm will be called descendants of C. For each B in G , define Ñ(B) to

be the (random) number of elements (ξ1, . . . , ξN ) contained in B, i.e. Ñ(B) = NẽN (B), and
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write

Ñ0 := Ñ(X) = N

Ñm := (Ñ(Bm, 1), . . . , Ñ(Bm, km
)) m = 1, 2, . . . .

The distribution of the random sequence (Ñm)m≥0 completely characterizes the exchangeable

probability measure P , as it was shown in Section 3.2.3 applying Theorem 3.4. Moreover,

recall that the sequence (Ñm)m≥0 meets the Markov property, since

∑

B: ge(B)=C

Ñ(B) = Ñ(C) (4.1)

for each C in G , and therefore the law of (Ñm)m≥0 is determined by the sequence of conditional

distributions (LÑm+1|Ñm
)m≥0. Countable additivity of P implies that

Ñ(Cn) → 0 in law (4.2)

holds for any decreasing sequence (Cn)n≥1 of events in A such that Cn ↓ ∅. In Chapter 3, it

was proved that, under some suitable conditions for (X,X ), (4.1) and (4.2) are sufficient for

the existence of the exchangeable probability measure P on (XN ,X N ).

At this stage, one is in a position to describe the particular laws LÑm
(m = 0, 1, . . . )

that will be considered in the rest of this chapter. In point of fact they are strongly reminescent

of the Pólya–tree distributions and allow forms of conjugate analysis, being destiguished by

the fact that they satisfy the following condition:

Condition 4.1. For each m in N,

4.1.1. The collections of random variables {Ñ(B) : ge(B) = C}, as C varies in πm,

are conditionally independent given Ñm.

4.1.2. For each C in πm, the collections {Ñ(B) : ge(B) = C} and {Ñ(B) : B ∈

πm \ {C}} are conditionally independent given Ñ(C).

4.1.3. For every B in πm+1 and any m ≥ 0,

a. E(Ñ(B) | Ñ(ge(B))) is a linear function of Ñ(ge(B)), P -a.s.,
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b. for any n < N and A1, . . . , An in πm+1,

E

(
N∑

i=n+1

δξi
(B) |

N∑

i=n+1

δξi
(ge(B)), ξ1 ∈ A1, . . . , ξn ∈ An

)

is a linear function of
∑N

i=n+1 δξi
(ge(B)), P -a.s. .

It should be noted that conditions 4.1.1 – 4.1.2 are tantamount to assuming that

LÑm+1|Ñm
= ×

C∈πm

LÑ(B):ge(B)=C|Ñ(C). (4.3)

One can explain the value of Condition 4.1 by means of Example 4.1. The adoption, in

Example 4.1, of a law which satisfies Condition 4.1 entails supposing that, conditionally on the

knowledge of the frequency of a taxon C in πm, any additional information on the frequencies

of other elements of πm, or of their descendants in πm+1 does not affect the prevision of

frequencies of the subsets of C.

About Condition 4.1.3, notice that it can be reformulated saying that, for every B in

πm+1 and any m ≥ 0,

a. E( Ñ(B)
M | Ñ(ge(B)) = M) does not depend on M , as M varies in the following set:

{

j = 1, . . . , N : P (Ñ(ge(B)) = j) > 0
}

;

b. for any n < N and A1, . . . , An in πm+1,

E

(∑N
i=n+1 δξi

(B)

M
|

N∑

i=n+1

δξi
(ge(B)) = M, ξ1 ∈ A1, . . . , ξn ∈ An

)

does not depend on M , as M varies in the following set:

{

j = 1, . . . , N : P
(

ξ1 ∈ A1, . . . , ξn ∈ An,
∑N

i=n+1 δξi
(ge(B)) = j

)

> 0
}

.

In relation with Example 4.1, Condition 4.1.3 requires that, given that the number of units in

a taxon C of πm is M > 0, the expected proportion of units that belong to some descendant

B of C, among those that are in C, does not really depend on M . Moreover, if one also

knows which taxa in πm+1 the n units sampled from the population belong to, the conditional

expectation of the proportion of unobserved units that belong to some descendant B of C,

among those that are in C, does not really depend on the number of unobserved units in C.



54 CHAPTER 4. EXCHANGEABLE LAWS BASED ON PARTITION TREES

From now on, any exchangeable law for (ξ1, . . . , ξN ) that satisfies Condition 4.1 will be

called partitions tree distribution. In particular, the marginal law of any element of (ξ1, . . . , ξN )

can be derived from (LÑm+1|Ñm
)m≥0, by exploiting Condition 4.1.3.a, i.e., for each B in G

such that Ñ(B) is not degenerate at zero,

P{ξ1 ∈ B} = E

(Ñ(B1)

N

) m∏

j=2

E

(

Ñ(Bj)

Mj−1
| Ñ(Bj−1) = Mj−1

)

(B ∈ πm), (4.4)

where Bm = B and, for j < m, Bj denotes the set in πj that contains Bm, and Mj is any

positive value such that P (Ñ(Bj) = Mj) is positive.

The class of exchangeable laws considered here satisfies a nice property: a partitions

tree distribution w.r.t. Π is a partitions tree w.r.t. any subsequence of Π. For the proof of

this fact and of (4.4) refer to Appendix, pages 112 and pages 102, respectively.

Two examples of partitions tree distributions will be explained in Section 4.5.

4.2 Posterior and predictive distributions

This section contains some results on predictive and a posteriori distributions relating to

partitions tree distributions. The following propositions are useful to determine the posterior

distributions for ẽ, i.e. the conditional distribution of ẽ given ξ(n), when Condition 4.1 is in

force.

Proposition 4.1. If Condition 4.1 holds, then

LÑm+1|Ñm, ξ1,...,ξn
=

km

×
j=1

LÑ(Bm+1, l): Bm+1, l⊂Bm,j |Ñ(Bm,j); ξi: ξi∈Bm,j
(4.5)

In other words, if the prior distribution of ẽ satisfies Condition 4.1, so does its posterior

distribution, i.e. the conditional distribution of ẽ given (ξ1, . . . , ξn). In that sense, we can say

that Condition 4.1 defines a conjugate model.

Moreover:

Proposition 4.2. If Condition 4.1 holds, then, for any n ≤ N and any vector (N1, . . . , Nkm
)

of positive integers summing up to N ,

P (Ñ(Bm, 1) = N1, . . . , Ñ(Bm, km
) = Nkm

| ξ1 = x1, . . . , ξn = xn)

P -a.s.

= P (Ñ(Bm, 1) = N1, . . . , Ñ(Bm, km
) = Nkm

| ξ1 ∈ Bx1
m , . . . , ξn ∈ Bxn

m ), (4.6)
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where Bx
m denotes the set of πm which x belongs to. Moreover

P (Ñ(Bm,lj ) = Nm,lj , j = 1, . . . , d | Ñ(Bm−1,l) = M, ξ(n) = x(n))

= P (Ñ(Bm,lj ) = Nm,lj , j = 1, . . . , d | Ñ(Bm−1,l) = M, ξ1 ∈ Bx1
m , . . . , ξn ∈ Bxn

m ) (4.7)

where l1 ≤ · · · ≤ ld are such that Bm,lj is contained by Bm−1, l.

For the proof of these propositions, see the Appendix.

Proposition 4.2 says that the posterior distribution of Ñm given (ξ1, . . . , ξn) is the

same as the posterior distribution of Ñm given
{
IBm, j

(ξi) : j = 1, . . . , km, i = 1, . . . ,m
}
. This

property, which process Ñ share with F-neutral processes, makes calculations for the posterior

easy.

Applying Bayes’ theorem to the right hand side of (4.6), one gets

P (Ñ(Bm, 1) = N1, . . . , Ñ(Bm, km
) = Nkm

| ξ1 ∈ Bx1
m , . . . , ξn ∈ Bxn

m )

=
P (ξ1 ∈ Bx1

m , . . . , ξn ∈ Bxn
m | Ñ(Bm, 1) = N1, . . . , Ñ(Bm, km

) = Nkm
)

P{ξ1 ∈ Bx1
m , . . . , ξn ∈ Bxn

m }

· P (Ñ(Bm, 1) = N1, . . . , Ñ(Bm, km
) = Nkm

).

Therefore, by Theorem 3.1 one obtains the following

Proposition 4.3. If Condition 4.1 holds, then

P (Ñ(Bm, 1) = N1, . . . , Ñ(Bm, km
) = Nkm

| ξ(n) = x(n))

∝ HN1,...,Nkm
(n1, . . . , nkm

) · P (Ñ(Bm, 1) = N1, . . . , Ñ(Bm, km
) = Nkm

),
(4.8)

where nj = |{i = 1, . . . , n : xi ∈ Bm,j}| with 1 ≤ j ≤ km.

Applying Proposition 4.1 to (4.7) and arguing as for the proof of Proposition 4.3, one

can see that

P (Ñ(Bm,lj ) = Nm,lj , j = 1, . . . , d | Ñ(Bm−1,l) = M, ξ(n) = x(n))

∝ HNl1
,...,Nld

(nl1 , . . . , nld) · P (Ñ(Bm,lj ) = Nm,lj , j = 1, . . . , d | Ñ(Bm−1,l) = M), (4.9)

where l1 ≤ · · · ≤ ld are such that Bm,lj is contained by Bm−1, l. Therefore, the posterior for

(Ñ(B) : B∈πm) is uniquely identified by the conditional probability of (Ñ(Bm,j) = Nm,j :

Bm,j⊂ Bm−1,l) given that ξ(n) = x(n) and Ñ(Bm−1,l) = M , for each l = 1, . . . , km−1.
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4.3 Partition tree laws with absolute continuous marginal

and predictive distributions

By (4.4), one can assess the laws LÑm+1|Ñm
(m = 1, 2, . . . ) so that the law Lξ1

of the single

observation turns out to be a desired distribution. Moreover, it is not difficult to find a

sufficient condition under which Lξ1
is absolutely continuous w.r.t. some measure (as Lebesgue

measure).

Lemma 4.4. Let µ be a σ-finite measure on (X,X ). Assume that each element of each πm

has positive µ measure. For each x in X, define:

f(m)(x) =







1
µ(Bx

m)

∏m
k=1 E

(

Ñ(Bx
k )

Ñ(Bx
k−1)

| Ñ(Bx
k−1) = Mk−1

)

if P (Ñ(Bx
m) = 0) < 1

0 otherwise,

(4.10)

where, for each k ≥ 0, Bx
k denotes the set of πk which x belongs to, and Mk > 0 is such that

the probability P (Ñ(Bk) = Mk) is positive.

If limm→∞ f(m)(x) = f(x) a.e.-µ, and
∫

X
fdµ = 1, then Lξ1

≪ µ and f = dLξ1
/dµ.

The proof as well as the statement of this lemma is similar to that one of Lemma

1.113 in Schervish (1995) (about F-neutral processes).

Proof. We need to prove that for each B ∈ G , Lξ1
(B) =

∫

B
f(x)dµ(x). The extension to X

is straightforward.

Let B ∈ πm. By (4.4), we have, for each x ∈ B,

Lξ1
(B) = µ(B)f(m)(x) =

∫

B

f(m)(x)dµ(x).

For k > m, write B = ∪α∈ADα as the partition of B by elements of πk. Since f(k) is constant

on each Dα, we can write:

∫

B

f(k)(x)dµ(x) =
∑

α∈A

∫

Dα

f(k)(x)dµ(x) =
∑

α∈A

Lξ1
(Dα) = Lξ1

(B).

Hence we have
∫

B

f(k)(x)dµ(x) = Lξ1
(B) (4.11)
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for all k ≥ m. So,

lim
k→∞

∫

B

f(k)(x)dµ(x) = Lξ1
(B).

It is known that, by Scheffé’s lemma [see Schervish (1995), page 634–635], this implies:

lim
k→∞

f(k)(x)dµ(x) =

∫

B

f(x)dµ(x),

which the thesis follows from.

The following proposition, which provides a rule to calculate the predictive density

w.r.t. a diffuse measure, is a generalization of an analogous result stated about Pólya–tree

processes by Lavine (1992).

Proposition 4.5. Let µ be a σ-finite diffuse measure on (X,X ). Assume that Lξ1
and

Lξn+1|ξ(n) are absolutely continuous w.r.t. µ, for some n ≤ N . Let f0 = dLξ1
/dµ.

Hence, (a version of) the density of Lξn+1|ξ(n), for each x /∈ {ξ1, . . . , ξn}, is given by:

fn(ξ(n);x) =
Lξn+1|ξ(n)(B

x
m)

Lξn+1
(Bx

m)
f0(x),

where m is such that Bξi
m 6= Bx

m – i.e. x and ξi do not belong to the same element of πm – for

each i.

Proof. By Lemma 4.4, a density for the predictive distribution is given by:

fn+1(ξ(n);x) = lim
h→∞

P (ξn+1 ∈ Bx
h | ξ(n))

µ(Bx
h)

that, by Proposition 4.2, is the same as:

fn(x(n);x) = lim
h→∞
h>m

P (ξn+1 ∈ Bx
h | ξ(n) ∈ Bx1

h × . . .×Bxn

h )

µ(Bx
h)

= P (ξn+1 ∈ Bx
m | ξ(n) ∈ Bx1

m × . . .×Bxn
m )

· lim
h→∞
h>m

P (ξn+1 ∈ Bx
h | ξn+1 ∈ Bx

m, ξ(n) ∈ Bx1

h × . . .×Bxn

h )

µ(Bx
h)

.

(4.12)
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Proposition A.14 entails that:

fn(x(n);x) = P (ξn+1 ∈ Bx
m | ξ(n) ∈ Bx1

m × . . .×Bxn
m ) · lim

h→∞
h>m

P (ξn+1 ∈ Bx
h | ξn+1 ∈ Bx

m)

µ(Bx
h)

=
P (ξn+1 ∈ Bx

m | ξ(n) ∈ Bx1
m × . . .×Bxn

m )

P (ξn+1 ∈ Bx
m)

· lim
h→∞
h>m

P (ξn+1 ∈ Bx
h)

µ(Bx
h)

=
P (ξn+1 ∈ Bx

m | ξ(n) ∈ Bx1
m × . . .×Bxn

m )

P (ξn+1 ∈ Bx
m)

f0(x).

(4.13)

4.4 Construction of a partitions tree law

In this section, a general procedure is described to construct a partition tree distribution,

assessing the conditional laws LÑm+1|Ñm
for each m ≥ 0.

Let Y (X) = (Y1(X), . . . , YN (X)) be an exchangeable random vector such that each

Yi(X) takes value into {1, . . . , k1}. For j = 1, . . . , km, denote by M∗
B1, j

the maximum value

that the random variable
∑N

i=1 I{Yi(X)=j} assumes with positive probability. With a recursive

procedure as m = 1, 2, . . . , for each C ∈ πm such that M∗
C > 0, define Y (C) to be an-

other exchangeable random vector (Y1(C), . . . , YM∗
C
(C)) such that each Yi(C) belongs to

{j = 1, . . . , km+1 : Bm+1, j ⊂ C}, and define

M∗
Bm+1, j

:= max{M = 0, . . . , N : P ′
(
∑M∗

C

i=1 I{Yi(C) = j} = M
)

> 0},

for each j such that Bm+1, j ⊂ C, being P ′ the probability defined on the space that supports

all the Y (C)’s. If M∗
C = 0, set Y (C) = 0 P ′-a.s. and M∗

D = 0 for each descendant D of

C. One can take, for instance, each vector Y (C) (with M∗
C > 0) to be the outcome of M∗

C

drawings from a urn according to some particular scheme.

Finally, for each m and each C ∈ πm, set:

L(Ñ(Bm+1, j):ge(Bm+1, j)=C)|Ñ(C) = L(PÑ(C)
i=1 I{Yi(C)=j}: ge(Bm+1, j)=C

). (4.14)

In order to better explain how (4.14) can be interpreted, it is convenient to introduce

a family of discrete r.v.’s Wm,i (m = 0, 2, . . . , i = 1, . . . , n) defined on (XN ,X N , P ) such that

Wm,i =

km∑

j=1

j I{ξi∈Bm,j},
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i.e. Wm,i is equal to j if ξi falls in Bm,j .

Note that, by exchangeability, if D1, . . . ,Dh are the descendants of C, then

P (Ñ(D1) = N1, . . . , Ñ(Dh) = Nh | Ñ(C) = M)

=
P (Ñ(D1) = N1, . . . , Ñ(Dh) = Nh, Ñ(Cc) = N −M)

P (Ñ(C) = M)

=

(
N

N1...Nh N−M

)
P (FM ∩ EM )

(
N
M

)
P (EM )

=

(
M

N1 . . . Nh

)

P (FM | EM ),

where M = N1 + · · · +Nh ≤ N ,

EM = {ξ1 ∈ C, . . . , ξM ∈ C, ξM+1 ∈ Cc, . . . , ξN ∈ Cc},

FM = {ξ1 ∈ D1, . . . , ξN1
∈ D1, ξN1+1 ∈ D2, . . . , ξM ∈ Dh},

and therefore

EM ∩ FM = {ξ1 ∈ D1, . . . , ξN1
∈ D1, ξN1+1 ∈ D2, . . . , ξM ∈ Dh, ξM+1 ∈ Cc, . . . , ξN ∈ Cc}.

Hence, (4.14) can be rewritten as

P (FM | EM ) = P ′(Y1(C) = j1, . . . , YM (C) = jM ), (4.15)

where (j1, . . . , jM ) is the vector such that Bm+1,ji
= Di for i = 1, . . . ,M , or equivalently:

P (Wm+1, 1 = j1, . . . ,Wm+1, M = jM | EM ) = P ′(Y1(C) = j1, . . . , YM (C) = jM ). (4.16)

Therefore, (4.15) is tantamount to saying that, for any (j1, . . . , jM ) such that ge(Bm+1,ji
) = C

(i = 1, . . . ,M) and P (Ñ(C) = M) > 0, and for any 1 ≤ n ≤M ,

P (Wm+1, 1 = j1, . . . ,Wm+1, n = jn | EM ) = P ′(Y1(C) = j1, . . . , Yn(C) = jn). (4.17)

Notice that, for any fixed (j1, . . . , jn), the right hand side of (4.17) does not depend on

(M −n)(for any M ≥ n such that P (EM ) is positive). Hence, by Proposition A.13 (ii), (4.14)

implies Condition 4.1.3, as long as Conditions 4.1.1– 4.1.2 are also satisfied.

On the other hand, if Conditions 4.1.1– 4.1.3 hold, then, for each C in G , there exists

a random vector Y (C) that satisfies (4.14). In fact, by Proposition A.13, under Conditions
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4.1.1– 4.1.3,

P (Wm+1, 1 = j1, . . . ,Wm+1, n = jn | EM )

= P (Wm+1, 1 = j1, . . . ,Wm+1, n = jn | EM∗
C
)

=

km+1∑

jn+1=1

· · ·

km+1∑

jM∗
C

=1

P (Wm+1, 1 = j1, . . . ,Wm+1, M∗
C

= jM∗
C
| EM∗

C
)

=

km+1∑

jn+1=1

· · ·

km+1∑

jM∗
C

=1

P (Wm+1, 1 = j1, . . . ,Wm+1, M∗
C

= jM∗
C
| ξ1 ∈ C, . . . , ξM∗

C
∈ C),

if 1 ≤ n ≤M ≤M∗
C and P (Ñ(C) = M) > 0, letting

M∗
C := max

{

j ≥ 0 : P (Ñ(C) = j) > 0
}

.

Therefore, (4.17) is satisfied if, for each C in G such that P (Ñ(C) = 0) < 1, i.e.

1 ≤M∗
C := max

{

M ≥ 0 : P (Ñ(C) = M) > 0
}

,

Y (C) := (Y1(C), . . . , YM∗
C
(C)) is such that

P ′(Y1(C) = j1, . . . , YM∗
C
(C) = jM∗

C
)

= P (Wm+1, 1 = j1, . . . ,Wm+1, M∗
C

= jM∗
C
| ξ1 ∈ C, . . . , ξM∗

C
∈ C),

for any (j1, . . . , jM∗
C
) such that ge(Bm+1,ji

) = C (i = 1, . . . ,M∗
C).

Notice that in order to define the law of ẽ by (4.14), it is enough to assess the p.m.f.

of (
∑M∗

C

i=1 I{Yi(C)=j} : ge(Bm+1, j) = C), for each m and C in πm (without any particular

requirement about the joint distribution of vectors Y (C)). In this way, in fact, the distribution

of each exchangeable vector Y (C) (by means of the law of its empirical measure) is also

determined. In conclusion, if we denote by ψ(M ; ·) the joint p.m.f. of (
∑M

i=1 I{Yi(C)=j} :

ge(Bm+1, j) = C), then (4.14) can be reformulated in terms of ψ(M ; ·), making the Yi(C)

disappear, as in the following proposition, which summarizes some of the above considerations.

Proposition 4.6. Assume that Conditions 4.1.1 and 4.1.2 hold.

For each m ≥ 0 and each C ∈ πm, denote hC := |{B ∈ πm : ge(B) = C}|, and let ψC

be a function from {0, . . . , N} × {0, . . . , N}hC into [0, 1] such that

ψC(Ñ(C);N1, . . . , NhC
) = P (Ñ(D1) = N1, . . . , Ñ(DhC

) = NhC
| Ñ(C)) P − a.s.
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if D1, . . . ,DhC
are the descendants of C, i.e. the sets in πm+1 contained by C.

Condition 4.1.3 is satisfied, if and only if for each C ∈ G with Ñ(C) not degenerate

at zero and for each (N1, . . . , NhC
) such that N1 + · · · +NhC

= M ≤M∗
C ,

ψC(M ;N1, . . . , NhC
) =

∑

M1,...,MhC

HM1,...,MhC
(N1, . . . , NhC

)ψC(M∗
C ;M1, . . . ,MhC

) (4.18)

where the sum runs over all vectors (M1, . . . ,MhC
) such that M1 + · · · + MhC

= M∗
C and

M∗
C := max{M = 0, . . . , N : P (Ñ(C) = M) > 0}.

So, in order to specify a partition tree distribution, one needs to assess only the

conditional distribution of (Ñ(B) : ge(B) = C) given the event {Ñ(C) = M∗
C} for each C in

G .

Remark 4.7. Note that the Yi(C) can be used to define an algorithm to generate ξ1, . . . , ξN ,

setting:

J1,i = Yi(X) for i = 1, . . . , N

Jm+1,1 = Y1(Bm,r) if Jm,1 = r

Jm+1,i = Yl+1(Bm,r) if Jm,i = r and l = |{h < i : Jm,h = r}| (i = 2, . . . , N)

for m = 1, 2, . . . , and then putting ξi ∈ ∩mBm, Jm,i
. If singletons are measurable and (4.2)

holds, each intersection ∩mBm, Jm,i
reduces to one point (with P -probability one).

4.5 A couple of partitions tree distributions

It is immediate to verify Condition 4.1 when (ξ1, . . . , ξN ) are independent and identically

distributed. More interesting classes of distributions can be constructed according to familiar

urn schemes.

4.5.1 Hypergeometric partitions tree distributions

Let X be the interval (0, 1], and let X denote its Borel sigma-algebra. Put E = {0, 1} and

E0 := ∅, E∗ := ∪∞
m=0E

m. Define πm to be the set of all 2m dyadic intervals of rank m, i.e.

πm := {Iε : ε ∈ Em},
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where

Iε1...εm
:=

(
∑m

j=1 εj2
−j ,

∑m
j=1 εj2

−j + 2−m
]

if m ≥ 1 and I∅ = (0, 1].

In this case, Π is a binary tree and, therefore, if we assume Conditions 4.1.1 and

4.1.2, the exchangeable law P of (ξ1, . . . , ξN ) can be determined just by the assessment of

the conditional distribution of Ñ(Iε1) given Ñ(Iε) for every ε ∈ E∗. Of course, such a

distribution is supported by {0, . . . , Ñ(Iε)}. As it was explained in Section 3.2.3, no other

conditions are necessary for the existence of a finitely-additive (exchangeable) probability on

A N , consistently with such assessment. In order to be able to define a completely additive

probability on X
N , one can resort to Proposition 3.6, and one realizes that for the existence

of P it suffices that Condition 4.1.1 also holds together with

∞∏

k=2

E

(

Ñ(Iε1...εk
)

Ñ(Iε1...εk−1
)
|Ñ(Iε1...εk−1

) = Mk−1

)

= 0 (4.19)

for any zero-one sequence ε1, ε2, . . . that is definitely zero and such that Ñ(Iε1...εk
) is not

degenerate at zero for each k ≥ 1 and for any sequence M1,M2, . . . of positive integers such

that P (Ñ(Iε1...εk
) = Mk) > 0 for each k ≥ 1.

Now it will be presented a possible assessment of the conditional distribution of Ñ(Iε1)

given Ñ(Iε) for each ε ∈ E∗. Introduce a set of nonnegative integers ℵ := {αε ∈ N : ε ∈ E∗}

with α∅ := N satisfying

αε0 + αε1 ≥ αε (4.20)

for every ε ∈ E∗. At this stage, we propose to assign the conditional distribution of the

random variable Ñ(Iε1) given Ñ(Iε), for ε ∈ E∗, in such a way that it turns out to be the

same as the distribution of the number of white balls in a sample without replacement of size

Ñ(Iε) drawn from an urn of αε1 + αε0 balls, of which αε1 are white and αε0 are black.

In concrete terms, the process Ñ may be generated according to the following scheme:

• Draw N balls without replacement from an urn of α1 white balls and α0 black balls,

and suppose you get N1 white balls and N0 := N −N1 black balls.

• Now draw without replacement N1 balls from an urn of α11 white balls and α10 black

balls and N0 balls from an urn of α01 white balls and α00 black balls, respectively;
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suppose the former sample contains N11 and N01 white balls, while the latter contains

N10 and N00 black balls.

• Going on with this process, at the the m-th step, for each ε in Em−1, draw Nε balls

from an urn of αε1 white balls and αε0 black balls, and let Nε0 and Nε1 be the observed

number of black balls and of white balls respectively.

• Nε gives the number of observations that belong to Iε for each ε ∈ E∗.

Note that at the step (m + 1) the total number of balls in each urn must be greater

than the number of trials. Since the number of trials Nε at the m-th step is less than or equal

to the number of balls of the corresponding color in the urn at the (m− 1)-th step – which is

αε – everything makes sense whenever (4.20) holds true.

The aforesaid procedure gives rise to a unique exchangeable finitely-additive probability

on the algebra A N . As to the existence of a unique σ–additive extension P of such a

probability to X N , note that (4.19) becomes

lim
m→∞

m∏

j=1

αε1... εj+1

αε1... εj 0 + αε1... εj 1
= 0 (4.21)

for any zero-one sequence ε1, ε2, . . . satisfying εm = 0 and for every m ≥ k and for some k.

If the set ℵ meets (4.20) and (4.21) and the empirical process of the sequence (ξ1, . . . , ξN )

is generated by the above urn scheme, then we shall denote the distribution of this sequence

by H (ℵ).

Observe that if αε0 +αε1 = αε for each ε ∈ E∗, then (ξ1, . . . , ξN ) is distributed like in

a drawing without replacement from an urn of (α0 + α1) balls such that, for each x in (0, 1],

the number of balls labelled with x, initially contained in the urn, is the limit of αε1...εm
, as

m → +∞, where (ε1, ε2, . . . ) is the dyadic expansion of x, with the proviso that a point x

that has two expansions takes the nonterminating one.

It should be noted that the urn scheme described above can be slightly modified to

obtain the empirical process of theN–initial segment (N = 1, 2, . . . ) of an infinite exchangeable

sequence directed by a Pólya–tree process. To this end, it is enough, at each step m and for

each ǫ in Em−1, to draw Nǫ balls from an urn of αǫ1 white balls and αǫ0 black balls according

to the well–known Pólya scheme (i.e. the drawn ball is placed back in the urn along with one
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ball of the color drawn). This modification of the scheme introduced above is equivalent to

the scheme introduced by Mauldin et al. (1992) to generate a Pólya–tree process (see Section

2.1.4). In point of fact, by (4.19), one can see that (4.21) is also a necessary and sufficient

condition for the existence of a Pólya–tree distribution with parameters αε, ε ∈ E∗. The

analogous condition for the case X = R can be found in Ghosh and Ramamoorthi (2003).

It is clear that any sequence (ξ1, . . . , ξN ) distributed according to H (ℵ) is not infinitely

prolongable, i.e. it is not distributed as the initial segment of any infinite exchangeable

sequence. In fact, if it was prolongable, the sequence I{ξ1∈(0,1/2]}, . . . , I{ξN∈(0,1/2]} would also

be prolongeable, whilst it proves to have the same distribution as the one of N drawings

without replacement from an urn.

The following proposition provides useful expressions both for the law and for the

expectation of each ξi.

Proposition 4.8. Under H (ℵ) the law of each ξi is given by

P (ξ1 ∈ Iε) =
αε1

α0 + α1
·

αε1ε2

αε10 + αε11
· · ·

αε1...εm

αε1...εm−10 + αε1...εm−11
, (4.22)

for each ε = (ε1 . . . εm) in E∗, while the expectation is

E(ξ1) =

+∞∑

m=1

2−m
∑

ε∈Em:
εm=1

m∏

k=1

αε1...εk

αε1...εk0 + αε1...εk1
. (4.23)

Proof. Equation (4.22) follows by equation (4.4). In order to prove (4.23), denote by dk(x)

the k-th binary digit of x, for every x ∈ X = (0, 1]. Hence, for any x ∈ (0, 1],

x =

+∞∑

m=1

2−mdm(x), (4.24)

and then

E(ξ1) =
+∞∑

m=1

2−m
E(dm(ξ1))

=

+∞∑

m=1

2−m
∑

ε∈Em−1

P (ξ1 ∈ Iε1)

=

+∞∑

m=1

2−m
∑

ε∈Em:
εm=1

m∏

k=1

αε1...εk

αε1...εk0 + αε1...εk1
.
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Posterior and predictive distributions

Proposition 4.2 yields explicit forms for posterior and predictive distributions relating to hyper-

geometric partitions tree distributions. Suppose ξ(n) := (ξ1, . . . , ξn) has been observed and by

ñε denote the number of observations of the sample that fall into Iε, that is ñε :=
∑n

i=1 δξi
(Iε).

Now, recall that the conditional distribution of Ñ(Iε1) (with ε in E∗) given Ñ(Iε) is the hyper-

geometric distribution relating to Ñ(Iε) drawings when the initial number of white and black

balls is αε1 and αε0, respectively. Therefore, applying Proposition 4.2, it is straightforward

to see that the conditional law of
∑N

i=n+1 δξi
(Iε1) given (Ñ(Iε), ξ(n)) is the hypergeometric

distribution relating to (Ñ(Iε) − ñε) drawings when the initial number of white and black

balls is (αε1 − nε1) and (αε0 − nε0), respectively. Thus one gets

Proposition 4.9. Let the distribution of (ξ1, . . . , ξN ) be H (ℵ), where ℵ = {αε : ε ∈ E∗}.

Then the conditional distribution of (ξn+1, . . . , ξN ) given (ξ1, . . . , ξn) is H (ℵ∗) where ℵ∗ :=

{α∗
ε : ε ∈ E∗} and α∗

ε := αε −
∑n

i=1 δξi
(Iε) for each ε in E∗.

In particular, for the predictive distribution, one has

P (ξn+1 ∈ Iε1...εm1 | ξ(n)) = E

(
∑N

i=n+1 δξi
(Iε1...εm1)

N − n
| ξ(n)

)

=
αε1

− ñε1

α0 + α1 − n
·

αε1ε2
− ñε1ε2

αε10 + αε11 − ñε1

. . .
αε1...εm1 − ñε1...εm1

αε1...εm0 + αε1...εm1 − ñε1...εm

.

(4.25)

Let us stress that this assessment for the joint law of ξ1, . . . , ξN satisfies the require-

ments discussed at the beginning of this chapter, where we have considered, in Example 4.1,

the species sampling problem from a community of animals. In this case, the observations

range in the class of all species, and animals of the same species - but also of a similar species

- compete with each other. In order to better clarify this point, consider one more example:

Example 4.2 (Workers’ income). Let us suppose we are doing a survey in a community of

people about monthly incomes of workers. On the basis of the salary of the workers in a

sample, we could be concerned with estimating, for instance, the average income, and the

variability of the incomes in the community. Moreover, if we obtain informations about other

variables in the sample – such as age, gender, job, seniority – we could study their effects on

the salary, etc.

Assume that N is the number of workers in the community where our sample comes

from, and by ξi denote the income of the i-th worker in the community (for i = 1, . . . , N). In
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order to assign a probability distribution for (ξ1, . . . , ξN ), we can first consider the (random)

number of workers who receive an income bigger than a fixed threshold and the number of

those who do not. Then we can consider separately each group and split each one into two

subgroups with respect to another income threshold and so on. In general at the k-th stage we

obtain in this way 2k income intervals, and each one of them will be split into two subintervals

in the next stage. Of course, the financial resources are limited and the workers compete with

each other to get a better income. Therefore, an inverse relation between predictions and

observed frequencies seems appropriate in this case, too. ♦

Keeping in mind both Example 4.1 and Example 4.2, assume that a sample with just

one unit is taken (i.e. only ξ1 is observed). Then the predictive distribution of ξ2 should put a

lower mass around ξ1 than the (unconditional) distribution P ◦ ξ−1
1 of the single observation.

If ξ1 ∈ I1 := (1/2, 1], then the conditional probability that the second observation falls in I1

after having observed ξ1 should be lower (w.r.t. the unconditional distribution) on the set I1

and higher on I0 := (0, 1/2]; if ξ1 ∈ I0, viceversa. In fact, in our model, such probability can

be written as

P (ξ2 ∈ I1 | ξ1) = p1P (ξ1 ∈ I1) − (1 − p1)I{ξ1∈I1},

where p1 = (α0 + α1)/(α0 + α1 − I{ξ1∈I1}).

Suppose more generally that we observed ξ1, . . . , ξn and that we do not know exactly

the species ξn+1 of the (n+ 1)-th animal sampled, but we know only that it belongs to Iε. In

this case, the conditional probability that the (n+ 1)-th observation belongs to Iε1 turns out

to be a linear combination of the conditional probability P ◦ξ−1
1 and the conditional empirical

measure ẽn of the sample for the same event given Iε, that is:

P (ξn+1 ∈ Iε1 |ξ(n), ξn+1 ∈ Iε)

= pn+1P (ξ1 ∈ Iε1 | ξ1 ∈ Iε) − (1 − pn+1)
ñε1

ñε

where ξ(n) := (ξ1, . . . , ξn), and where:

pn+1 =
αε0 + αε1

αε0 + αε1 − ñε

P (ξ1 ∈ Iε1 | ξ1 ∈ Iε) =
αε1

αε0 + αε1
.
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Possible generalizations

The hypergeometric partition tree distributions differ from Pólya–tree distributions even be-

cause they require more heavy conditions on the parameters. Anyway, with some precau-

tions, their parameters can also be non-integers. In fact, for the hypergeometric p.m.f.
(

a
x

)(
b

m−x

)
/
(
a+b
m

)
it is not essential that all the parameters m,a, b are positive: with certain

restrictions we can take any two of them negative and the remaining one positive, and we still

obtain a probability mass function. The conditions under which
(

a
x

)(
b

m−x

)
/
(
a+b
m

)
provides a

honest distribution, with m,a, b taking real values, have been investigated, for instance, by

Kemp and Kemp (1956).

As far as we are concerned, it can be noted that
(

a
x

)(
b

m−x

)
/
(
a+b
m

)
is a probability mass

function on {0, . . . ,m} if a and b are two real numbers such that one of the followings is true:

• a+ b ≥ m, and

– if a ≤ m, then a is a non-negative integer;

– if b ≤ m, then b is a non-negative integer;

• a and b are both negative.

Anyway, the support of such generalized distribution is

{m ∧ (0 ∨ (m− b)), . . . , 0 ∨ (m ∧ a)}.

These facts can be easily proved taking the binomial expansion in (1+x)a+b = (1+x)a(1+x)b.

In this way, one obtains:
∑m

x=0

(
a
x

)(
b

m−x

)
/
(
a+b
m

)
= 1. Hence, we can let {αε : ε ∈ E∗} be any

set of real numbers such that α∅ := N and, for each ε ∈ E∗, one of the following is true:

• αε0 + αε1 ≥ N ∧ αε and if αεi < N ∧ αε, then αεi is a non-negative integer (i = 0, 1);

• αε0 and αε1 are both negative.

Of course, if all the αε are negative, one obtains the distribution of an N -exchangeable

sequence directed by a Pólya tree process.
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4.5.2 Exchangeable sequences directed by Pólya-tree processes

As recalled in Section 4, Condition 4.1 is inspired by the theory of Pólya-tree processes. In

point of fact, if (ξn)n≥1 is an infinite sequence of exchangeable random elements, with de

Finetti’s representation directed by some Pólya-tree distribution, then we shall show that the

law of the empirical distribution of (ξ1, . . . , ξN ) satisfies Condition 4.1 for every N .

Proposition 4.10. If (ξn)n≥1 is an (infinite) exchangeable sequence whose de Finetti’s mea-

sure is a Pólya-tree distribution with parameters {αm,j : j = 1, . . . , km}, then, for each N ,

(ξ1, . . . , ξN ) satisfies Condition 4.1 with L(Ñ(B):ge(B)=C)|Ñ(C) given by the following form of

Dirichlet-compound multinomial distribution

L(Ñ(Bm,j):ge(Bm,j)=C)|Ñ(C)({(Nm,j : Bm,j ⊂ C)}) =

∏

j∈T(C)

(
−αm,j

Nm,j

)

(−
P

j∈T(C)αm, j

Ñ(C)

)

=
Ñ(C)!

∏

j∈T(C)Nm,j !

∏

j∈T(C)(αm,j +Nm, j − 1) · · ·αm,j

(
∑

j∈T(C)αm, j + Ñ(C) − 1) · · ·
∑

j∈T(C)αm, j

(4.26)

for l = 1, . . . , km−1, if m ≥ 1 and T(C) is the vector obtained ordering the elements of the set

{j = 1, . . . , km : ge(Bm,j) = C}.

Moreover, for each n = 0, . . . , N and each m ≥ 1, if C belongs to πm and ge(Bm, j) =

C, then

E

(
N∑

i=n+1

δξi
(Bm, j)|

N∑

i=n+1

δξi
(C), ξ(n)

)

=
αm,j + n ẽn(Bm,j)
∑

r∈T(C)

αm,r + n ẽn(C)

N∑

i=n+1

δξi
(C), (4.27)

where ẽ0 ≡ 0 and ξ(0) ≡ 0 by convention.

Then, in view of (4.26)–(4.27), the distribution of (ξ1, . . . , ξN ) is a partitions tree

distribution.

Proof. Assume, as usual, that ξ1, . . . , ξN are the coordinate functions on (XN ,X N , P ), so

that P = L(ξ1,...,ξN ). In order to show that P is a partitions tree distribution, we need to find

LÑm+1|Ñm
for each m. Let (N1, . . . , Nkm

) be a vector of nonnegative integers summing up to

N and (i1, . . . , iN ) integers in {1, . . . , km} such that Nj = |{l = 1, . . . , km : il = j}|. Recalling
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the definition of Pólya-tree processes (given in Section 2.1), we can write:

P{ξ1 ∈Bm, i1 , . . . , ξN ∈ Bm, iN
}

= E





km∏

j=1

p̃(Bm,j)
Nj





= E





km∏

j=1

p̃(Bm,j | ge(Bm,j))
Nj ·

km∏

j=1

p̃(ge(Bm,j))
Nj





= E





km∏

j=1

p̃(Bm,j | ge(Bm,j))
Nj



 · E





km∏

j=1

p̃(ge(Bm,j))
Nj





=
∏

C∈πm−1

E




∏

j∈T(C)

p̃(Bm,j | C)Nj





· E




∏

C∈πm−1

p̃(C)
P

j∈T(C) Nj



 .

(4.28)

Observing that in the last term of (4.28) the first expectation is the (Nj : j ∈ T(C))-th

mixed moment of the singular Dirichlet distribution with parameters (αm,j : j ∈ T(C)) we

obtain:

P {ξ1 ∈ Bm,i1 , . . . , ξN ∈ Bm,iN
} = P {ξ1 ∈ ge(Bm,i1), . . . , ξN ∈ ge(Bm,iN

)}

·
∏

C∈πm−1

(
Y

j∈T(C)

α
[Nj ]

m,j� X
j∈T(C)

αm,j

�[Pl∈T(C) Nl]

)

,
(4.29)

where a[h] := a(a+ 1) . . . (a+ h− 1).

Note that in general,

P (Ñ(Bm,1) = N1, . . . , Ñ(Bm,km
) = Nkm

| Ñ(C) =
∑

j∈T(C)Nj : C ∈ πm−1)

=
P (Ñ(Bm,1) = N1, . . . , Ñ(Bm,km

) = Nkm
)

P (Ñ(C) =
∑

j∈T(C)Nj : C ∈ πm−1)

=

(
N

N1, . . . , Nkm

)

P {ξ1 ∈ Bm,i1 , . . . , ξN ∈ Bm,iN
}

(
N

∑

j∈T(C)Nj : C ∈ πm−1

)

P {ξ1 ∈ ge(Bm,i1), . . . , ξN ∈ ge(Bm,iN
)}

=
P {ξ1 ∈ Bm,i1 , . . . , ξN ∈ Bm,iN

}

P {ξ1 ∈ ge(Bm,i1), . . . , ξN ∈ ge(Bm,iN
)}

∏

C∈πm−1

( ∑

j∈T(C)Nj

Nj : j ∈ T(C)

)

(4.30)
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and, therefore, combining (4.29) and (4.30) one realizes that the conditional law of Ñm given

Ñm−1 can be written as a product of measures:

LÑm|Ñm−1
= ×

C∈πm−1

LÑ(B):ge(B)=C|Ñ(C),

where each factor is given by (4.26). Hence, Conditions 4.1.1–4.1.2 hold true.

At this stage, note that (4.26) is the Dirichlet-compound multinomial distribution

with parameter (Ñ(C);αm,j : j ∈ T(C)) and therefore its j-th marginal is the beta-binomial

distribution with parameter (Ñ(C);αm,j ,
∑

l 6=j:ge(Bm, l)=Cαm, l). Hence, one obtains (4.27) for

n = 1, recalling that the expectation of a beta-binomial distribution with parameters (M ;α, β)

is M · α/(α+ β). For the other cases, (4.27) follows by the fact that Pólya-tree processes are

conjugate. Since (4.27) is a linear function of
∑N

i=n+1 δξi
(C), Condition 4.1.3 also holds

true.



Chapter 5

Exchangeable laws based on

random partitions

We intend to present one specific form of (finitary) exchangeable laws defined, aside from the

standard conditional formulation, according to the characteristics of actual situations, and

to work out some of their inherent statistical problems. The exchangeable law we wish to

consider, rests on the concept of exchangeable random partition.

5.1 Introductory examples

It seems suitable to begin with the illustration of a couple of examples which could lead, in a

natural way, to the use of random partitions in order to define laws of exchangeable vectors.

The precise definition of this model, which, from now on, will be called Random Partition

Model (RP-Model), is contained in Section 5.2.

Example 5.1 (Stochastic price system). Let N subjects, labeled by 1, . . . , N , be consumers

(or users) of a specific item (or service). Note that N could be thought of as a realization of

a random number. Each of these subjects has the right to choose his own provider among

M companies C1, . . . , CM . Denote the provider chosen by the subject j with γj , and group

together, into the same class, all the subjects who refer to the same provider. This gives rise

71
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to a partition of {1, . . . , N}, say

π̃ = (π̃1, . . . , π̃ν),

defined as follows:

π̃1 := {i1,1, i1,2, . . . },

where i1,1 = 1 and subsequent elements i1,2, . . . are the labels of the subjects who apply to

the provider of 1;

π̃2 := {i2,1, i2,2, . . . },

where i2,1 is the smallest of the labels not contained in π̃1 and labels i2,2, . . . denote the

subjects who get their supplies from the same provider of i2,1, and so on. Notice that π̃ could

be expressed as a function of (γ1, . . . , γN ).

At this stage, one pairs each subject j with the unit price ξj fixed by γj . This way,

each subject belonging to the same block π̃k is bound to pay the unit price ξ∗k that amounts

to

ξi = ξ∗k (i in π̃k, k = 1, . . . , ν). (5.1)

♦

Example 5.2 (Distribution of a chemical agent in a given population). Consider N subjects

who are allowed to drink water from sources C1, . . . , CM . Arguing in the same way as in the

previous example, we obtain a partition of {1, . . . , N}, say (π̃1, . . . , π̃ν), where π̃1 contains

all the subjects who draw water from the same spring as 1, and so on, as in Example 5.1.

Moreover, like in Example 5.1, associate each subject j with the concentration ξj of a specific

bacteriological or chemical agent contained in the source γj of the water j drinks. Thus, (5.1)

holds with the sole change that ξ∗k now represents the concentration characterizing block π̃k

in π̃. ♦

Our aim is to assess a probability law both for the price system (ξ1, . . . , ξN ) in Ex-

ample 5.1 and for the concentration vector (ξ1, . . . , ξN ) in Example 5.2. To this purpose,

we try to take advantage of the organization of the above descriptions. First, we assign a

conditional probability law ρ = ρ(·|N) for π, given N , in such a way that it depends only

on {|π̃1|, . . . , |π̃ν |}, where, given a set A, |A| stands for its cardinality. Then, we assess a
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conditional probability distribution for ξ∗1 , . . . , ξ
∗
ν , given (N, π̃), so that ξ∗1 , . . . , ξ

∗
ν turn out to

be conditionally independent with distributions depending only on the cardinalities of their

respective blocks. At the end of this process we get the characterization of the probability law

of the random vector (ξ1, . . . , ξN , π̃), and we can deduce the law of (ξ1, . . . , ξN ) from it.

With this distribution in hand, in Example 5.1 one could, for instance, initiate any

kind of econometric analysis of the demand of the item, or service, taken into consideration.

Analogously, in Example 5.2, that very same distribution could be used to forecast the spread

of any disease that depends on the bacteriological or chemical agent at issue. To this end,

the original probabilistic framework needs to be extended to (ξ1, . . . , ξN , π̃, η1, . . . , ηN ) where,

with reference to Example 5.1, ηj represents the quantity requested by the j–subject and, in

connection with Example 5.2, the same symbol could denote the result of a specific medical

test on the j–th subject.

Now we show that (ξ1, . . . , ξN ) is exchangeable with respect to the law defined accord-

ing to the above steps. Moreover, we shall describe how to assess (η1, . . . , ηN ) in such a way

that ((ξ1, η1), . . . , (ηN , ξN )) turns out to be exchangeable.

5.2 Definition of the model

In order to propose a suitable probability law for problems of the same type as those sketched

in the previous examples, it is worth providing an accurate description of the statistical data

to be processed. As primary data we consider the vectors

(j, γj , ξj , ηj) j = 1, . . . , N,

where γj , in {C1, . . . , CM}, denotes an entity (provider, spring, etc.) which j decides to

interact with, ξj is a characteristic (price, concentration, etc.) of the interplay between j and

γj , and, finally, ηj is another characteristic of interest of j (the demand, etc). In Example 5.1,

(j, γj , ξj) specifies the terms of a contract, while, in Example 5.2, (j, γj , ξj) can be thought

of as the exposure to risk of subject j. As explained in the previous subsection, (γ1, . . . , γN )

induces a partition π̃ of {1, . . . , N} presented in such a way that π̃1 contains subject 1, i.e.

π̃1 = {i : i ∈ {1, . . . , N}, γi = γ1}
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and, inductively, for k = 2, 3, . . . , ν,

π̃k = {i : i ∈ {1, . . . , N}, γi = γm(k)},

where m(k) = min{i : i ∈ {1, . . . , N}, i 6∈ ∪k−1
j=1 π̃j} and ν = min{i : i ∈ {1, . . . , N ∧

M},∪i
j=1π̃j = {1, . . . , N}}. Notice that, if M is smaller than N , the class of partitions induced

by (γ1, . . . , γN ) is strictly contained in the class PN of all partitions of {1, . . . , N}. We assume

that the range of each (ξj , ηj) is contained in a product of complete separable metric spaces

X×Y equipped with its Borel σ–algebra X ⊗Y. This extra–condition of a topological nature

is required because of measurability problems connected, for example, with (5.1).

Our main goal is the assessment of a probability distribution for

ζ = (ξ1, η1, . . . , ξN , ηN , π̃),

i.e. a probability on the product measurable space (ZN ×PN ,Z
N ⊗U), where U stands for the

power set of PN and (Z,Z) = (X×Y,X ⊗Y). We identify the j–th coordinate of Ω := ZN×PN

with observation ζj := (ξj , ηj), namely

(xj , yj) = (ξj , ηj)(x1, y1 . . . , xN , yN , π) (x1, y1, . . . , xN , yN , π) ∈ Ω

for j = 1, . . . N . Moreover, we define π̃ to be the (N + 1)-th coordinate of the product space,

that is

π = π̃(x1, y1, . . . , xN , yN , π) (x1, y1, . . . , xN , yN , π) ∈ Ω.

Now we are in a position to specify the law of ζ. To this end, we begin with the definition

of a distribution for π̃, say ρ. Then, we fix a conditional law p(·|π̃) for (ξ1, . . . , ξN ) given π̃

consistently with (5.1), and, finally, we fix a conditional law q(·|π̃, ξ1, . . . , ξN ) for (η1, . . . , ηN )

given π̃ and (ξ1, . . . , ξN ). It is enough to specify p(·|π̃) for any measurable rectangle A1×· · ·×

AN , and, for the sake of definiteness, we assume that

p (A1 × · · · ×AN |π̃) :=

|π̃|
∏

k=1

α|π̃k|(∩i∈π̃k
Ai), (5.2)

where |π̃| stands for the number of the elements of π̃, |π̃j | is the number of elements of the

j–th block of π̃, and, finally, α1, . . . , αN are probabilities on (X,X ). The right–hand side of

(5.2) reveals that we are assuming that the conditional distribution of ξr, 1 ≤ r ≤ N , given
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π̃ is α|π̃φ(π̃,r)|, where φ(π̃, r) denotes the index of the block of π̃ that contains r. Thus, this

conditional law depends only on the cardinality of the block containing r. Since it is easy to

check that

p
(
ξi = ξj for every j in π̃φ(π̃,i) | π̃

)
= 1

for every i = 1, . . . , N , we can conclude that (5.2) is consistent with (5.1). Now, given

π̃ and (ξ1, . . . , ξN ), with π̃ = ([i1,1, i1,2, . . . , i1,k1
], [i2,1, i2,2, . . . , i2,k2

], . . . ), a conditional law

q(·|π̃, ξ1, . . . , ξN ) for (η1, . . . , ηN ) is specified in such a way that (ηij,1
, . . . , ηij,kj

)j=1,...,|π| are

independent, and, for each j, (ηij,1
, . . . , ηij,kj

) is exchangeable with de Finetti measure that

may depend on ξij,1
. More formally, for every B1, . . . , BN in Y, we set

q(B1 × · · · ×BN |π̃, ξ1, . . . , ξN ) =

|π̃|
∏

i=1

κξ∗
i
(×j∈π̃i

Bj), (5.3)

where κ·(·) is an (exchangeable) transition kernel on (X,X )×(YN ,YN ), that is: for every x in

X, κx(·) is a probability measure on (YN ,YN ), for everyB1, . . . , BN in Y, x 7→ κx(B1×· · ·×BN )

is X /B([0, 1])–measurable and

κx(B1 × · · · ×BN ) = κx(Bσ(1) × · · · ×Bσ(N))

for every x in X and every permutation σ of {1, . . . , N}. Note that, for simplicity, from now

on we write κx(B1 × · · · × Bk) for κx(B1 × · · · × Bk × Y × · · · × Y) for every k ≤ N . The

simplest example is to take a product kernel, which is

κx(B1 × · · · ×BN ) =

N∏

i=1

k∗x(Bi).

At this stage it turns out that the distribution P of ζ is defined through

P{ξ1 ∈ A1, η1 ∈ B1 . . . , ξN ∈ AN , ηN ∈ BN , π̃ = π}

= ρ(π)

|π|
∏

i=1

∫

X

I∩j∈πi
Aj

(xi)κxi
(×j∈πi

Bj)α|πi|(dxi),

(5.4)

assumed to be valid for any A1, . . . , AN in X , every B1, . . . , BN in Y and every π in PN . As

a consequence, one obtains

P{ξ1 ∈ A1, . . . , ξN ∈ AN} =
∑

π∈PN

ρ(π)

|π|
∏

k=1

α|πk|(∩i∈πk
Ai), (5.5)
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and, hence,

P{ξj ∈ ·} =
N∑

l=1

wl,jαl(·) (5.6)

with

wl,j := P{|π̃φ(π̃,j)| = l} =
∑

{π∈Pn : |πφ(π,j)|=l}

ρ(π) (l = 1, . . . , N).

At this point, we specify ρ in such a way that (ξ1, η1), . . . , (ξN , ηN ) is proved to be

exchangeable. As already said, ρ will be defined so that its value at π depend only on the set

of cardinalities of the blocks forming π. In other words, if for any π in PN we define

h(π) = (|{j : |πj | = 1}|, . . . , |{j : |πj | = N}|)

then ρ must satisfy

π, π∗ ∈ PN and h(π) = h(π∗) ⇒ ρ(π) = ρ(π∗). (5.7)

We present a simple example of distributions on PN that meet (5.7).

Example 5.3. Let

{Aλ(k) ≥ 0, k = 1, . . . , N : λ ∈ R}, {βλ(k) ≥ 0, k = 1, . . . , N : λ ∈ R}

be families of real functions and µN be a σ–finite measure on the Borel subsets of R, such that

KN :=
∑

π∈PN

∫

R

Aλ(|π|)

|π|
∏

i=1

βλ(|πi|)µN (dλ)

turns out to be strictly positive and finite. Then

ρ(π) = K−1
N

∫

R

Aλ(|π|)

|π|
∏

i=1

βλ(|πi|)µN (dλ)

gives a probability on PN . Since ρ can be written as

ρ(π) = K−1
N

∫

R

Aλ(|b|)
N∏

i=1

βλ(i)biµN (dλ)

with b := h(π), it is easy to check that ρ meets (5.7). ♦

Proposition 5.1. The random vector ((ξ1, η1), . . . , (ξN , ηN )) from Ω into X
N ×Y

N turns out

to be exchangeable if its law is defined by (5.4) with any ρ satisfying (5.7).
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Proof. See the Appendix, on page 120.

The authors mentioned in Chapter 1 handle partitions Π = Π(ξ1, . . . , ξN ) generated by

sampling from an exchangeable (infinite) sequence (ξ1, . . . , ξn, . . . ), namely random partitions

defined by the circumstance that i and j in {1, . . . , N} belong to the same block of Π if and only

if ξi = ξj . It is easy to see that if (ξn)n≥1 is an exchangeable sequence of random elements, then

for any N the probability law on PN of the partition generated by sampling from (ξ1, . . . , ξN )

meets (5.7). Moreover, it is easy to check that Π and π̃ have the same distribution whenever

the hypotheses of Proposition 5.1 are in force and α1, . . . , αN are diffuse probabilities.

The Random Partition Model is related to species sampling sequences and normalized

random measures with independent increments, which we already talked about in Sections 2.2

and 2.3 respectively. In fact, it is straightforward that the vector of the first N coordinates

of a species sampling sequences satisfies the hypothesis of Proposition 5.1 with α1 = · · · =

αN = α, for any N . Moreover, the same is true for an N -exchangeable sequence directed by a

normalized random measure with independent increments such that ν(dxdv) = aα(dx)q(dv).

In the latter case, by (2.9) we can write:

ρ(π) =
a|π|

Γ(N)

∫

R+

λN−1L(λ)

|π|
∏

j=1

∫

R+

v|πj |e−λvq(dv)dλ, (5.8)

where L(λ) = exp{−a
∫

R+(1 − e−λv)q(dv)}.

5.2.1 Marginal distribution and correlation between observations

The first properties of (5.4) that we want to present concerns the distribution of each (ξj , ηj)

and the correlation between ξi and ξj for i 6= j.

Proposition 5.2. Let the law of the N -exchangeable sequence (ξ1, . . . , ξN ) be the same as in

the previous proposition. Then, for any j = 1, . . . , N ,

P{ξj ∈ A} =

N∑

l=1

wl αl(A) =: α0(A) (A ∈ X ) (5.9)

with

wl := P{|π̃1| = l} =
∑

{π∈PN : |π1|=l}

ρ(π) (l = 1, . . . , N),
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and

P{ξj ∈ A, ηj ∈ B} =

∫

A

κx(B)α0(dx) (A ∈ X , B ∈ Y). (5.10)

Let f and g be real–valued measurable functions defined on (X,X ), such that
∫

X
(|f(x)|+

|g(x)|)αj(dx) is finite for every j = 1, . . . , N , then

E(f(ξ1)) =

∫

X

f(x)α0(dx) =

N∑

l=1

wlM1,l(f), (5.11)

where M1,l(f) :=
∫

X
f(x)αl(dx). Moreover, if

∫

X
|f(x)g(x)|αj(dx) is finite for every j =

1, . . . , N , then the covariance can be expressed as

Cov(f(ξ1), g(ξ2)) =

N∑

i=2

tiM1,i(fg) +
∑

i,j

sijM1,i(f)M1,j(g) (5.12)

with

ti = P{2 ∈ π̃1, |π̃1| = i}, rij =
N∑

k=2

P{2 ∈ π̃k, |π̃1| = i, |π̃k| = j},

sij = rij − titj − ti

N∑

k=1

rj,k + tj

N∑

k=1

ri,k.

Finally, if h is a real–valued measurable function defined on (Z,Z), then

E[h(ξ1, η1)] =

∫

Z

h(x, y)κx(dy)α0(dx)

whenever the last integral is well defined.

Proof. See the Appendix, on pages 120.

If

α1 = · · · = αN = α, (5.13)

then α turns out to be the common probability distribution of the ξj ’s. Moreover,

Cov(f(ξ1), f(ξ2)) = V ar(ξ1)

N∑

i=2

ti,

and, hence, Cov(f(ξ1), f(ξ2)) ≥ 0.

It is well–known that if (Xn)n≥1 is an infinite exchangeable sequence of real–valued

random elements, then Cov(X1,X2) ≥ 0. Hence, if (X1, . . . ,XN ) is exchangeable with
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Cov(X1,X2) < 0, one can argue that the sequence (Xn)1≤n≤N cannot be extended to an

infinite exchangeable sequence. As shown by the next example, there are models consistent

with Proposition 5.1, which present negative correlation.

Example 5.4 (negatively correlated random variables). Assume that (ξ1, ξ2, ξ3) is an ex-

changeable random vector valued into R
3 and distributed according to Proposition 5.1 with

ρ([1][2][3]) = p1

ρ([12][3]) = ρ([13][2]) = ρ([1][23]) = p2

ρ([123]) = 0
∫

R

xα1(dx) = 0

∫

R

xα2(dx) = K

∫

R

x2α1(dx) =

∫

R

x2α2(dx) = 1,

where p1 + 3p2 = 1 and K2 ≤ 1. Simple computations show that

Cov(ξ1, ξ2) = p2(1 − 4p2K
2).

Hence, if one chooses a couple (p2,K) for which 1/4 < p2 < 1/3 and 1/(4p2) < K2 < 1, then

the covariance turns out to be negative.

5.3 Posterior and predictive distributions

From a finitistic point of view, in order to make any kind of inference, it is essential to

handle the predictive distribution of the observations and the conditional distribution of ẽ

given the first n observations. Indeed, in a finitary setting, the conditional law of ẽ given

ξ(n) := (ξ1, . . . , ξn) plays the role of the posterior distribution of p̃ given ξ(n), in the notation

introduced in Chapter 1.

It is clear that Lẽ|ξ(n) is easily deducible from Lξ(n,N)|ξ(n), where ξ(n,N) = (ξn+1, . . . , ξN ).

More precisely, for every measurable partition (A1, . . . , Ak) of X and every k-tuple of integers
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M1, . . . ,Mk such that Mj ≥M∗
j :=

∑n
i=1 δξi

(Aj) (j = 1, . . . , k) and
∑k

j=1Mj = N , one has

Lẽ(A1),...,ẽ(Ak)|ξ(n)({(M1/N, . . . ,Mk/N)})

=
(N − n)!

∏k
i=1(Mj −M∗

j )!
Lξ(n,N)|ξ(n)(A1 × · · · ×A1

︸ ︷︷ ︸

M∗
1 times

× · · · ×Ak × . . . Ak
︸ ︷︷ ︸

M∗
k

times

).

Hence we will restrict our attention to Lξ(n,N)|ξ(n).

5.3.1 Predictive distributions

Consider an exchangeable random vector (ξ1, . . . , ξN ) whose law is characterized by Propo-

sition 5.1. For any n < N , given ξ(n) = (ξ1, . . . , ξn), denote by Π(ξ(n)) the partition of

{1, . . . , n} generated by ξ(n). Moreover, denote the distinct elements of ξ(n) by ξ∗1 , . . . , ξ
∗
n̄,

where n̄ is the number of blocks in Π(ξ(n)), i.e. n̄ = |Π(ξ(n))|. Finally, given any π in PN ,

π|n will stand for the element of Pn that coincides with the restriction of π to {1, . . . , n}. If

gn,N (· | ξ(n), π̃) denotes the conditional distribution of ξ(n,N) given (ξ(n), π̃), it is clear that

gn,N (An+1 × · · · ×AN | ξ(n), π̃) =

n̄∏

i=1

δξ∗
i

(
∩j∈πi\{1,...n}Aj

)
|π|
∏

i=n̄+1

α|πi| (∩j∈πi
Aj) (5.14)

for every An+1, . . . , AN in X , with the convention that ∩j∈∅Aj = X. Moreover, it is not

difficult to prove that, for every q in PN ,

Lπ̃|ξ(n)(q) = τξ(n)(q) :=
ρ(q)

∏n̄
i=1 a|qi|(ξ

∗
i ) I{q|n=Π(ξ(n))}

∑

π∈PN
ρ(π)

∏n̄
i=1 a|πi|(ξ

∗
i ) I{π|n=Π(ξ(n))}

(5.15)

holds true if αi(dx) = ai(x)µ(dx) (i = 1, . . . , N), µ being a σ–finite diffuse measure. See

Lemma A.16 in the Appendix. This paves the way to prove the following

Proposition 5.3. Let (ξ1, . . . , ξN ) be defined as in Proposition 5.1. If αi(dx) = ai(x)µ(dx)

(i = 1, . . . , N), µ being a σ–finite diffuse measure, then

Lξn+1,...,ξN |ξ(n)(An+1 × · · · ×AN )

=
∑

π∈PN

τξ(n)(π) gn,N (An+1 × · · · ×AN |ξ(n), π)

for every An+1, . . . , AN in X .
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In particular, if α1 = . . . αN = α, α being a diffuse probability measure, then

Lξn+1,...,ξN |ξ(n)(An+1 × . . . AN )

=
∑

π∈PN

ρ(π) I{π|n=Π(ξ(n))}
∑

q∈PN
ρ(q) I{q|n=Π(ξ(n))}

n̄∏

i=1

δξ∗
i

(
∩j∈πi\{1,...n}Aj

)
|π|
∏

i=n̄+1

α (∩j∈πi
Aj)

for every An+1, . . . , AN in X .

Now, let us consider the conditional law of (ξ(n,N), η(n,N)) given (ξ(n), η(n)). Let

hn,N ( · | ξ(N), η(n), π̃) be a conditional distribution of η(n,N) given (ξ(N), η(n), π̃). Let

(ξ∗1 , . . . , ξ
∗
|π|) be the distinct values of (ξ1, . . . , ξN ), η∗(πi) := [ηj : 1 ≤ j ≤ n, j ∈ πi],

denote by κx( · | ỹ1, . . . , ỹk) the conditional distribution of (ỹk+1, . . . , ỹN ) given (ỹ1, . . . , ỹk)

when (ỹ1, . . . , ỹN ) is an N -exchangeable sequence with distribution κx(·), and convenue that

κx(· | ∅) = κx(·). Hence, hn,N can be written as

hn,N (Bn+1 × · · · ×BN | ξ(N), η(n), π̃) =

|π̃|
∏

i=1

κξ∗
i
{×j∈π̃i,j>nBj | η∗(π̃i)}

for every B1, . . . , BN .

Now, it is easy to see that the conditional law of π̃ given (ξ(n), η(n)) is the same as the

conditional law of π̃ given ξ(n). Moreover, the conditional law of ξ(n,N) given (ξ(n), η(n), π̃)

turns out to be equal to the conditional law of ξ(n,N) given (ξ(n), π̃). See Lemmas A.16 and

A.17 in the Appendix. This leads immediately to the following

Proposition 5.4. Let (ξ1, . . . , ξN ) be defined as in Section 5.2. If αi(dx) = ai(x)µ(dx)

(i = 1, . . . , N), then

Lξ(n,N),η(n,N)|ξ(n),η(n)(A×B) =
∑

π∈PN

τξ(n)(π)

∫

A

hn,N (B | (ξ(n), x), η(n), π) gn,N (dx | ξ(n), π)

for every A in X N−n and every B in YN−n.

As a consequence of Proposition 5.3, when α1, . . . , αN are diffuse probability measures,

one has

P ({ξn+1 ∈ A} | ξ(n)) =

N∑

j=1

∆n,j(ξ(n)) αj(A) +

n̄∑

i=1

Dn,i(ξ(n)) δξ∗
i
(A) (A ∈ X ),

where

Dn,i(ξ(n)) = Di =
∑

π∈PN : φ(π,n+1) = i

τξ(n)(π) (i = 1, . . . , n̄)
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and

∆n,j(ξ(n)) = ∆n,j =
∑

π∈PN

τξ(n)(π) I{φ(π,n+1)≥n̄+1,|πφ(π,n+1)|=j} (j = 1, . . . , N).

In particular, if α1 = . . . αN = α, α being a diffuse probability measure, one has

P ({ξn+1 ∈ A}|ξ(n)) = D0 α(A) +
n̄∑

i=1

Di δξ∗
i
(A) (A ∈ X ),

where D0 = 1−
∑n̄

i=1Di. In the same way, from Proposition 5.4 one can derive the predictive

distribution for (ξn+1, ηn+1) given (ξ(n), η(n)), which is

Lξn+1,ηn+1|(ξ(n),η(n))(A×B) =
n̄∑

i=1

∑

π∈PN : φ(π,n+1) = i

τξ(n)(π) δξ∗
i
(A) κξ∗(B|η∗(πi))

+

N∑

j=1

∆n,j(ξ(n))

∫

A

κx(B) αj(dx)

for any A in X N−1 and B in YN−1. Hence, for any measurable real–valued function h on

X × Y, one has

E[h(ξn+1, ηn+1)|ξ(n), η(n)] =

n̄∑

i=1

∑

π∈PN : φ(π,n+1) = i

τξ(n)(π)

∫

Y

h(ξ∗i , y) κξ∗
i
(dy|η∗(πi))

+
N∑

j=1

∆n,j(ξ(n))

∫

X×Y

h(x, y) κx(dy) αj(dx)

if E|h(ξn+1, ηn+1)| < +∞.



Chapter 6

Some applications

The aim of this chapter is to apply the distributions introduced in Chapter 4 and Chapter 5 to

some standard statistical problems: we show how one can estimate the mean of the empirical

measure, and we propose a bivariate model based on partition tree distributions in order to

approach regression problems.

6.1 Decision theoretic formulation

As explained in Chapter 1, we shall focus on inferences from the sample ξ(n) := (ξ1, . . . , ξn)

(n < N) to empirical versions of the usual parameter, i.e. on random elements with the

following form:

θ̃ = t(ẽ),

where t is a mapping from a subset P0 of the class P of all probabilities on (X,X ) into Θ.

A decision theoretic approach will be followed. So, the statistician is assumed to have

a set D of decision rules at his disposal, and these rules are defined, for any n ≤ N , as

measurable functions from X
n to some set A of actions. Then, one considers a loss function

L, i.e. a positive real–valued function on Θ×A. The function L(θ, a) represents the loss when

the value of θ̃ is θ and the statistician chooses action a. It is supposed that

r(δ(ξ(n))) :=

∫

Θ

L(θ, δ(ξ(n)))Lθ̃|ξ(n)(dθ)

83
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is finite for any δ in D. In this case, r(·) is said to be the a posteriori Bayes risk of δ(ξ(n)).

Finally, a Bayes rule is defined to be any element δ0 of D such that

r(δ0(ξ(n))) = min
δ∈D

r(δ(ξ(n)))

for any realization (observation) of ξ(n).

6.2 Estimation of the mean

Dealing with an estimation problem, Θ and A are two subsets of R
k, and the usual loss

function is L(θ, a) = ‖θ − a‖2, i.e. the quadratic cost. Take k = 1, assume that X is R, and

consider the standard problem of estimating the mean: take t(p) =
∫

X
f(x)dp(x), where f is

some measurable function from X into itself and P0 the set of probabilites in P such that t(p)

exists.

In the usual setting, dealing with an infinite sequence of observations, the parameter

to be estimated is θ̃∞ = t(p̃) and its estimator is simply E(θ̃∞ | ξ(n)) = E(f(ξn+1) | ξ(n)). In

a finitary setting, one considers the parameter θ̃ =
∫

X
f(x) d ẽ(x) =

1

N

∑N
i=1 f(ξi), instead. In

virtue of linearity of expectation, a finitary Bayes rule is given by a a linear combination of

the sample mean and the classical estimate for the mean:

E(θ̃ | ξ(n)) =
n

N − n

1

n

n∑

i=1

f(ξi) +
N − n

N
E(f(ξn+1) | ξ(n)) (6.1)

Let us see how this estimate can be found both for the Random Partition Model and for the

hypergeometric partitions tree distributions introduced in Chapter 5 and Chapter 4, respec-

tively.

6.2.1 Random Partition model

Let (ξ1, . . . , ξN ) be distributed as in the Random Partition Model, introduced in Section 5.2.

For simplicity, take α1 = · · · = αN = α, with α a diffuse probability on (X,X ). Denote by n̄

the number of distinct values in (ξ1, . . . , ξn) and by ξ∗1 , . . . , ξ
∗
n̄ their values. Moreover, let

Dn,i(ξ(n)) = Di =
∑

π∈PN : φ(π,n+1) = i

τξ(n)(π) (i = 1, . . . , n̄)

D0 = 1 −
n̄∑

i=1

Di,
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where Lπ̃|ξ(n)({π}) = τξ(n)(π). Our goal is to evaluate

E[f(ξn+1) | ξ(n)] =

n̄∑

i=0

Difi,

where fi := f(ξ∗i ) for i = 1, . . . , n̄ and f0 :=
∫

x
f(x)α(dx).

Since an exact evaluation of E[f(ξn+1) | ξ(n)] can be computationally cumbersome

even if N is small, we shall suggest a very simple algorithm to approximate such a sum in

some particular situations.

Consider ρ as in Example 5.3 with µ(dλ) = δ0, A0 = A, and β0 = β. In other words,

take

ρ(π) = K−1
N A(|π|)

|π|
∏

i=1

β(|πi|) (6.2)

with KN :=
∑

π∈PN
A(|π|)

∏|π|
i=1 β(|πi|). Define V

(n̄)
M := {t ∈ {0, . . . ,M}n̄

:
∑n̄

i=1 ti = M},

and write X
M
n̄ for {1, . . . , n̄}M . For any x = (x1, . . . , xM ) in X

M
n̄ , set

t(x) = (|{i = 1, . . . ,M : xi = 1}|, . . . , |{i = 1, . . . ,M : xi = n̄}|), and denote

t∗ = t∗(Π(ξ(n))) := (|Π(ξ(n))|1, . . . , |Π(ξ(n))|n̄),

Wl : =
{

(b1, . . . , bl) ∈ Z
l :
∑l

i=1 i bi = l
}

.

Hence, by (6.2), letting C := KN

∑

π∈PN
ρ(π) I{π|n=Π(ξ(n))}, one can write, for every i =

1, . . . , n̄,

Di :=
∑

π∈PN : φ(π,n+1) = i

τξ(n)(π) =
KN

C

∑

π∈PN

ρ(π) I{π|n=Π(ξ(n)),n+1∈πi}

=
1

C

∑

π∈PN

A(|π|)

|π|
∏

j=1

β(|πj |) I{π|n=Π(ξ(n)),n+1∈πi}

=
1

C

N−n−1∑

l=0

(
N − (n+ 1)

l

)
∑

b∈Wl

l!
∏l

j=1 bj ! (j!)
bj

A(n̄+ |b|)
l∏

j=1

β(j)bj

·
∑

t∈V
(n̄)

N−(l+1+n)

(N − (n+ l + 1))!
∏n̄

j=1 tj !

n̄∏

j=1

β(t∗j + δij + tj)

=
1

C

N−n−1∑

l=0

(
N − (n+ 1)

l

)

Q(l)
∑

z∈X
N−l−1−n
n̄

n̄∏

j=1

β(t∗j + δij + t(z)j)

=
1

C

N−n−1∑

l=0

(
N − (n+ 1)

l

)

Q(l)
∑

z∈X
N−l−1−n
n̄

F (t(z) | i, l),
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where

Q(0) := A(n̄),

Q(l) :=

l∑

k=1

A(n̄+ k)Bl,k(β(1), . . . , β(l)) (l = 1, . . . , N − n− 1),

Bl,k being the usual partial Bell partition polynomial and

F (t | i, l) :=

n̄∏

j=1

β(t∗j + δij + tj)

with the convention that X
0
n̄ := ∅ and

∑

z∈∅ F (t(z) | i, l) = F (∅ | i, l) =
∏n̄

j=1 β(t∗j + δij).

Recall that the partial Bell polynomial of degree (n, k) is defined by

Bn,k(x1, . . . , xn) =
∑ n!

k1! (1!)k1 . . . kn! (n!)kn
xk1

1 x
k2
2 . . . xkn

n ,

where the summation is extended over all partitions of n into k parts, i.e. over all nonnegative

integer solutions (k1, . . . , kn) of the equations k1 + 2k2 + · · ·+ nkn = n, k1 + · · ·+ kn = k and

B0,0 := 1.

Analogously, it is plain to check that

D0 :=
KN

C

∑

π∈PN

ρ(π) I{π|n=Π(ξ(n)),n+1 6∈πi, i=1,...,n̄}

=
1

C

N−n−1∑

l=0

(
N − (n+ 1)

l

)

Q(l + 1)
∑

z∈X
N−l−1−n
n̄

F (t(z) | 0, l).

Hence,

E[f(ξn+1) | ξ(n)] =

∑n̄
i=0

∑N−n−1
l=0

∑

z∈X
N−l−1−n
n̄

(
N−(n+1)

l

)
Q(l + δi,0) F (t(z) | i, l) fi

∑n̄
i=0

∑N−n−1
l=0

∑

z∈X
N−l−1−n
n̄

(
N−(n+1)

l

)
Q(l + δi,0) F (t(z) | i, l)

holds true. The last equation suggests an easy way to estimate E[f(ξn+1) | ξ(n)] by a sequential

importance sampling method. That is: let (iM , lM , zM )M≥1 be a sequence of i.i.d random

variables taking values in {0, . . . , n̄} × {0, N − n − 1} × ∪N−n−1
l=0 X

N−(l+1+n)
n̄ , with common

distribution given by

q(i, l, z) = q1(i) q2(l | i) q3(z | i, l)

and q(X
N−(l+1+n)
n̄ | i, l) = 1, that is to say that zM belongs to X

N−(l+1+n)
n̄ with conditional

probability one given lM = l. Next, set

w(i, l, z) :=

(
N−(n+1)

l

)
Q(l + δi,0) F (t(z) | i, l)

q1(i) q2(l | i) q3(z | i, l)
.
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It follows that

EM̄ =

∑M̄
M=1 fiM

w(iM , lM , zM )
∑M̄

M=1 w(iM , lM , zM )

is an asymptotically unbiased and strong consistent estimator of E[f(ξn+1) | ξ(n)].

It should be emphasized that the partial Bell partition polynomials are easily com-

putable by recursion, indeed

Bn+1,k+1(x1, . . . , xn+1) =

n−k∑

r=0

(
n

r

)

xr+1 Bn−r,k(x1, . . . , xn−r)

for k = 0, 1, . . . , n and n = 0, 1, . . . See, for instance, Charalambides (2002).

6.2.2 Hypergeometric partitions tree distributions

Let X = (0, 1], and let the law of (ξ1, . . . , ξN ) be the distribution H (N), introduced in Section

4.5.1. Our aim is to evaluate
∫

X
f(x)dẽ(x). For simplicity, assume that f is a monotone

function.

Combining (4.23) and (4.25), one obtains a closed form for the predictive expectation:

E(ξn+1 | ξ(n)) =

+∞∑

m=1

2−m
∑

(ε1...εm)∈Em:
εm=1

m∏

k=1

αε1...εk
− ñε1...εk

αε1...εk−10 + αε1...εk−11 − ñε1...εk−1

, (6.3)

where ñε denotes
∑n

i=1 δ{ξi∈Iε} for every ε in E∗. This formula can be plugged in (6.1) to

obtain the Bayes rule for t(ẽ) =
∫

X
f(x) d ẽ(x), being f the identity function. The problem is

that the series in (6.3) is too cumbersome to be evaluated by a partial sum. Other procedures

are better to find a good approximation of (6.3).

Denote

Sm := {ε ∈ Em : ξi /∈ Iε, i = 1, . . . , n}

for each m ≥ 1, and write:

E(f(ξn+1) | ξ(n)) =
∑

ε∈Sm

∫

Iε

f(x) dLξn+1|ξ(n)(x) +
∑

ε∈Em∩Sc
m

∫

Iε

f(x) dLξn+1|ξ(n)(x). (6.4)

One can find the exact value of the first sum in (6.4) and approximate the second one. In fact,

if no observations fall in Iε (for ε = (ε1 . . . εm) in Em), then, by (4.25) and then by (4.22), for
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any ε′ = (ε1 . . . εm εm+1 . . . εh) in Eh with h > m,

P (ξn+1 ∈ Iε′ | ξ(n)) =
αε1

− ñε1

α0 + α1 − n
· · · ·

αε1...εm

αε1...εm−10 + αε1...εm−11 − ñε1...εm−1

·
αε1...εm+1

αε1...εm0 + αε1...εm1
· · ·

αε1...εh

αε1...εh−10 + αε1...εh−11

= P (ξn+1 ∈ Iε | ξ(n)) P (ξn+1 ∈ Iε′ | ξn+1 ∈ Iε)

=
P (ξn+1 ∈ Iε | ξ(n))

P (ξn+1 ∈ Iε)
P (ξn+1 ∈ Iε′)

=
P (ξn+1 ∈ Iε | ξ(n))

P (ξ1 ∈ Iε)
P (ξ1 ∈ Iε′).

Hence, for each dyadic interval Iε containing no observations,

Lξn+1|ξ(n)|Iε
=
P (ξn+1 ∈ Iε | ξ(n))

P (ξ1 ∈ Iε)
Lξ1

,

denoting by µ|B the restriction of a probability measure µ defined on X to the σ-field XB :=

{A ∩B : A ∈ X }, for B in X . Therefore, the first sum in (6.4) becomes:

∑

ε∈Sm

P (ξn+1 ∈ Iε | ξ(n))

P (ξ1 ∈ Iε)
E(f(ξ1) I{ξ1∈Iε}).

The second sum is contained by the interval



∑

ε∈Em∩Sc
m

P (ξn+1 ∈ Iε | ξ(n)) f(lε),
∑

ε∈Em∩Sc
m

P (ξn+1 ∈ Iε | ξ(n)) f(lε + 2−m)



 , (6.5)

where lε denotes the lower bound of Iε, i.e. lε1...εm
=
∑m

j=1 εj2
−j . So, an approximation for

E(f(ξn+1) | ξ(n)) is obtained taking the middle point of the interval (6.5), i.e.

E(f(ξn+1) | ξ(n))

≈
∑

ε∈Sm

P (ξn+1 ∈ Iε | ξ(n))

P (ξ1 ∈ Iε)
E(f(ξ1) I{ξ1∈Iε})

+
∑

ε∈Em∩Sc
m

P (ξn+1 ∈ Iε | ξ(n)) ·
f(lε) + f(lε + 2−m)

2
,

(6.6)

so that the error is bounded above by half length of the interval in (6.5), that is

∑

ε∈Em∩Sc
m

P (ξn+1 ∈ Iε | ξ(n)) ·
f(lε + 2−m) − f(lε)

2
.

If, for instance, f is the identity function, αε = K for all ε in E∗(so that Lξ1
is uniform over

(0, 1]), (6.6) becomes

E(ξn+1 | ξ(n)) ≈
∑

ε∈Em

P (ξn+1 ∈ Iε | ξ(n)) · (lε + 2−m−1), (6.7)
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and the error is not greater than

∑

ε∈Em∩Sc
m

P (ξn+1 ∈ Iε | ξ(n)) · 2−m−1.

A fictitious population was created, generating N = 2000 random variables ξ1, . . . , ξN , taking

value in the unit interval, and having joint distribution H (N), with αε constantly equal to

K = 2500. A sample of size one hundred was taken, the sample mean was calculated, and the

finitary Bayes rule was evaluated by means of (6.7), with m = 10. Then, other hundred units

were added to the sample, and the two estimates were calculated again. This was done for

eight times more. Figure 6.1 compares the finitary Bayes rules to the classical sample means

obtained. One can see that the finitary Bayesian estimate is closer to the population mean

sample size

es
tim

at
e
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Figure 6.1: Population mean estimates, increasing the sample size. Sample mean (blue circles),

finitary Bayes estimate (red circles), true population mean (black line).
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than the traditional empirical estimate.

6.3 Regression problems

Assume that two different (real-valued) phenomena are observed on each statistical unit.

Formally, that means that each observation ζi is a pair (ξi, ηi) of real numbers. Hence, the

range of each observation X × Y is a subset of R
2. Let us denote by ξ := (ξ1, . . . , ξN ) and by

η := (η1, . . . , ηN ) the sequence of observations related respectively to the first and the second

phenomenon. Assume that the statistician has to investigate about a possible relationship

between the two phenomena. Hence, some functional space F of maps from X into Y is

considered, and the purpose will be to choose a map from F to express the dependence of the

second phenomenon on the first one.

So F coincides with the space of all possible actions A. The elements fτ of F can

be indexed - as usual in regression procedures - by a parameter τ belonging to some space T .

In what follows, we shall take as F the space of all affine functions from R into itself, that is

τ = (α, β) and fτ (x) = α + β x. Other possible choices for fτ are known to be polynomials

or fτ (x) = α eβ x.

At this point two different approaches are possible. One may be concerned only with

the relationship between the two components ξn+1, ηn+1 of the outcoming observation, and

we can just take the squared loss error. In this way, the quantity to be estimated is not a

function of ẽ, but only of the next observation, and, therefore, the past observations ζ(n) does

not enter into the loss function, but only into the predictive distribution.

Instead, one may be interested in “approximating” the whole sequence of (η1, . . . , ηN )

by (fτ (ξ1), . . . , fτ (ξN )). In this other case, a natural choice for the loss function can be taken

to be
∫

X2(x− y)2ẽ(dx,dy), i.e.
∑N

i=1(ηi − fθ(ξi))
2/N . Minimizing this loss function gives rise

to the estimate, under square loss function, of the conditional expectation E(Z2 | Z1) (where

the law of (Z1, Z2) is ẽ) taking as A the affine functions.
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6.3.1 First approach

Assume we have observed ζ(n) and we are concerned with finding the formal Bayes rule for

(ξn+1, ηn+1) when the action space is the set of all affine functions from X into Y and the

loss function is L(x1, x2; τ) = (x2 − fτ (x1))
2 where fτ (x) = α + β x. In formula we want to

calculate:

argmin(α,β) E((ηn+1 − (α+ βξn+1))
2 | ζ(n)), (6.8)

which yields:

α̂n = E(ηn+1 | ζ(n)) − β̂ E(ξn+1 | ζ(n))

β̂n =
Cov(ξn+1, ηn+1 | ζ(n))

Var(ξn+1 | ζ(n))
.

(6.9)

In fact, (α̂n, β̂n) is the only zero of the gradient of the function we want to minimize

in (6.8), which is a convex function since its hessian matrix

H = 2 ·
(

1 E(ξn+1|ζ(n))

E(ξn+1|ζ(n)) E(ξ2
n+1|ζ(n))

)

(6.10)

is definitive positive [det(H) = 2Var(ξn+1 | ζ(n))].

6.3.2 Second approach

For each p ∈ P, let p1 and p2|1 denote respectively the marginal law of Z1 and the conditional

law of Z2 given Z1 when p is the law of (Z1, Z2). Suppose we are concerned with finding a

Bayes rule for t(ẽ;x), where t(p;x) =
∫
yp2|1(dy|x), choosing as action space A the set of the

affine functions. We can take as loss function:

La(p, τ) =

∫

|t(p;x) − fτ (x)|2µ(dx; p). (6.11)

If we put µ(dx; p) = p1(dx) and (Z1, Z2) has law ẽ, (6.11) yields:

La(ẽ, τ) = E[(E[Z2|Z1] − fτ (Z1))
2]

= E[(E[Z2|Z1])
2] + E[fτ (Z1)

2] − 2 E[Z2fτ (Z1)]

= E[(E[Z2|Z1])
2] +

N∑

i=1

fτ (ξi)(fτ (ξi) − 2ηi).

(6.12)
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At this point, note that it is equivalent to minimize either τ 7→ La(ẽ, τ) or

τ 7→ Lb(ẽ, τ) :=

∫

R

(y − fτ (x))2ẽ(dxdy) =
1

N

∑N
i=1(ηi − fτ (ξi))

2. (6.13)

If fτ (x) = α+ βx (τ = (α, β)), the minimizer of

τ 7→ E[Lb(ẽ, τ)|ζ(n)] (6.14)

is given by

α∗
n = E(Y ) + β∗

n E(X)

β∗
n =

Cov(X,Y )

V ar(X)
,

where L(X,Y ) =
n

N
ẽn +

(

1 −
n

N

)

Lζn+1|ζ(n).

In fact,

E(La(ẽ, τ) | ζ(n)) = E(L(X,Y )),

and, therefore, proceeding as in Section 6.3.1, one can see that the minimizer of (6.14) can be

obtained from (6.9) replacing L(ξn+1,ηn+1)|ζ(n) with L(X,Y ).

Note that when n = N , (α∗
n, β

∗
n) is the least square estimate of τ . Moreover, if n is

fixed and N diverges, (α∗
n, β

∗
n) converges to (α̂n, β̂n).

6.3.3 A numerical example

As a matter of example, assume that an exchangeable law for (ζ1, . . . , ζN ) has been assessed

such that: L(ξ1,...,ξN ) is H (N), with αε equal to a constant K for each ε in E∗, the conditional

expectation E(ηi | ξ1, . . . , ξN ) is an affine function of ξi (as i = 1, . . . , N), and each Lηi|ξ1,...,ξN

depends on (ξ1, . . . , ξN ) only through E(ηi | ξ1, . . . , ξN ). So, setting γi := ηi − E(ηi | ξi) for

i = 1, . . . , N , the random vectors (γ1, . . . , γN ) and (ξ1, . . . , ξN ) are stochastically independent.

This assessment is tantamount to assuming the existence of N exchangeable random

elements (γ1, . . . , γN ) of Y and of two real number a and b, such that

ηi = a+ bξi + γi and

E(γi) = 0
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as i = 1, . . . , N . Assume that (γ1, . . . , γN ) is distributed as the initial segment of an (infinite)

exchangeable sequence directed by a Dirichlet process with parameter α equal to a Gaussian

distribution with mean zero and variance σ2. In this way, the total mass parameter a is one.

A fictitious population of one thousand units (N = 1000) was created, generating N

random vectors ζ1, . . . , ζN with the distribution described above and a = 0, b = 1, K = 500,

σ2 = 1/4. Then, a sample of size sixteen was taken, and (α∗
16, β

∗
16) was calculated.

The results are shown in Figure 6.2: the Bayes rule line is closer to the whole popu-

lation minimum squares line than the sample minimum squares line.
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Figure 6.2: Linear regression.

Then, another sample of ten units was taken from the same population, and the

estimate (α∗
n, β

∗
n) was calculated again, but on the basis of a “bad guess” about the parameters

a and b: a0 = −0.3, b0 = 1.5. The sample size was progressively increased adding other units
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to the sample, and the same estimate was calculated each time.

As shown in Figure 6.3, the wrong choice of a0, b0 affect the result, but, as the sample

size increases, the finitary Bayes rule line (the red line) gets closer to the population minimum

squares (blue) line.
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Figure 6.3: Linear regression. Population minimum squares (blue), finitary Bayes rule (red)

line, for different sample sizes n.



Appendix A

Proofs

A.1 Proof of Theorem 3.4

Let S̃N be the class of measurable rectangles of X
N of the form Bβ1

× · · · × BβN
, where

{B1, . . . , Bm} is any (not fixed) finite partition of X, Bj belongs to G for each j, and β′ =

(β1, . . . , βN ) is a vector in {1, . . . ,m}N . Now, let SN = S̃N ∪{∅}. The first step of the proof

of Theorem 3.4 consists of the following lemma:

Lemma A.1. SN is a semialgebra that generates the algebra A N and the σ-algebra X N .

Proof. In order to prove that SN is a semialgebra, consider two sets A and B in SN , and

assume that A = Aα1
× · · · × AαN

and B = Bβ1
× · · · × BβN

, where {A1, . . . , Ak} and

{B1, . . . , Bm} are two partitions of sets in G and α′ = (α1, . . . , αN ), β′ = (β1, . . . , βN ) are two

vectors respectively in{1, . . . , k}N and {1, . . . ,m}N . Then

A ∩B = (Aα1
× · · · ×AαN

) ∩ (Bβ1
× · · · ×BβN

) = Cγ1
× · · · × CγN

,

where Cγi
:= Aαi

∩Bβi
. If A∩B 6= ∅, then, for each i, Cγi

belongs to the partition generated

by the sets A1, . . . , Ak, B1, . . . , Bm. In any case, A ∩ B ∈ SN . Hence SN is closed under

intersection. Moreover, if T belongs to SN and T = Bβ1
× · · · ×BβN

, then

T c = ∪η′ 6=β′Bη1
× · · · ×BηN

and therefore SN is a semialgebra.

95
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Let us prove that A N is the algebra generated by SN . Denote by A (G N ) the algebra

generated by the class G N of cartesian products of sets in G . First, note that A (G N ) coincides

with the algebra A (SN ) generated by SN . In fact, A (G N ) ⊃ A (SN ) since G N ⊃ SN . On

the other hand, if D1, . . . ,DN are sets in G , then the product D1 × · · · ×DN is a finite union

of sets in SN (take the partition generated by D1, . . . ,DN ); this means that G N ⊂ A (SN )

and therefore A (G N ) ⊂ A (SN ). But A (G N ) coincides with A N . In fact, on one side

A (G N ) ⊂ A N since G N is a subset of the class of cartesian products of sets in A . On the

other side, recall that A is the class of finite disjoint unions of sets in G [i.e. A is the algebra

generated by G ] and therefore if D1, . . . ,DN are sets in A , D1 × · · · ×DN is a finite disjoint

union of sets in G N , in other words it belongs to A (G N ) and therefore A N ⊂ A (G N ).

Let us prove that X N is the σ-algebra generated by SN . G N (i.e. the class of

cartesian products of sets in G ) and SN generate the same σ-algebra since they generate the

same algebra as we just proved. Hence, it is sufficient to prove that G N generates X N . Since

G N is a subset of the class of measurable rectangles, the σ-algebra σ(G N ) generated by G N

is a subset of X N .

We shall prove that σ(G N ) ⊃ X N by induction about N .

Since G 1 coincides with G , the case N = 1 is trivial. Suppose that the thesis is true

for N − 1. If C belongs to G N−1, let

FC :=
{
D : C ×D ∈ σ(G N )

}
.

Note that FC is a λ-system1 containing the π-system2 G and therefore, by Dynkin’s π − λ

theorem it contains the σ-algebra generated by G , that is X . Hence, ifD ∈ X and C ∈ G N−1,

C ×D ∈ σ(G N ), i.e. G N−1 ⊂ FD, where

FD :=
{
C : C ×D ∈ σ(G N )

}
.

1A class Λ of sets is said to be a λ-system of subset of X if and only if:

1. X ∈ Λ

2. S, T ∈ Λ, S ⊂ T =⇒ T \ S ∈ Λ

3. Sn ∈ Λ, Sn ↑ S =⇒ S ∈ Λ.

2A π-system is a class of sets closed under intersections.
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By Dynkin’s theorem, FD contains the sigma-algebra generated by G N−1, which is X N−1

by induction hypothesis. Therefore when Di ∈ X , D1 × · · · ×DN−1 ×D belongs to σ(G N ).

This implies that X N ⊂ σ(G N ) as desired.

Proof of Theorem 3.4. Define ρ̃N on SN by setting ρ̃N (∅) = 0 and

ρ̃N (Bβ1
× · · · ×BβN

) :=
ψB1,...,Bm

(N1, . . . , Nm)
(

N
N1,...,Nm

) (A.1)

where {B1, . . . , Bm} is a finite partition of X, Bj ∈ G for each j, (β1, . . . , βN ) ∈ {1, . . . ,m}N

andNj = |{i = 1, . . . , N : βi = j}|. Recall that ψB1,...,Bm
is the p.m.f. of (Ñ(B1), . . . , Ñ(Bm)).

When m = 2 we shall write for simplicity ψB1
(N1) instead of ψB1,B2

(N1, N −N1). We shall

prove that ρ̃N is finitely additive, i.e. for any B ∈ SN that is a finite disjoint union of

sets Aα′ = Aα1
× · · · × AαN

∈ SN , with α′ = (α1, . . . , αN ) ∈ A and A ⊂ N
N such that

ρ̃N (B) =
∑

α′∈A
ρ̃N (Aα′). Since B ∈ SN , B can be written as Bβ1

× · · · × BβN
, where

{B1, . . . , Bm} is a partition whose elements belong to G . Suppose that {B1,1, . . . , Bm,km
} is

a partition not coarser than {B1, . . . , Bm} such that Bj,l ∈ G and Bj,l is a subset of Bj for

l = 1, . . . , kj and j = 1, . . . ,m. Let

S :=
{
γ′ : γ′ = (γ1, . . . , γN ) ∈ N

N , γi = 1, . . . , kβi
for i = 1, . . . , N

}
.

Hence,

B =
⋃

γ′∈S

(Bβ1,γ1
× · · · ×BβN ,γN

),

where the sets in the union are pairwise disjoint and the union is finite. Note that

ρ̃N (B) =
∑

γ′∈S

ρ̃N (Bβ1,γ1
× · · · ×BβN ,γN

). (A.2)

In fact if we let

T :=
{

N ′ = (N1,1, . . . , Nm,km
) ∈ N

P
kj :

kj∑

l=1

Nj,l = Nl for j = 1, . . . ,m
}

and

S(N ′) :=
{

γ′ : γ′ = (γ1, . . . , γN ) ∈ N
N ,

|{i = 1, . . . , N : γi = l, βi = j}| = Nj,l for l = 1, . . . , kj and j = 1, . . . ,m
}
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for each N ′ ∈ T, then by (A.1),

∑

γ′∈S

ρ̃N (Bβ1,γ1
× · · · ×BβN ,γN

)

=
∑

N ′∈T

∑

γ′∈S(N ′)

ρ̃N (Bβ1,γ1
× · · · ×BβN ,γN

)

=
∑

N ′∈T

∑

γ′∈S(N ′)

ψB1,1,...,Bm,km
(N1,1, . . . , Nm,km

)
(

N
N1,1,...,Nm,km

) .

(A.3)

Since in the last term of (A.3) each addend depends only on N ′, we obtain

∑

γ′∈S

ρ̃N (Bβ1,γ1
× · · · ×BβN ,γN

)

=
∑

N ′∈T

(
N1

N1,1,...,N1,k1

)
. . .
(

Nm

Nm,1,...,Nm,km

)ψB1,1,...,Bm,km
(N1,1, . . . , Nm,km

)
(

N
N1,1,...,Nm,km

)

=

(
N1

N1,1,...,N1,k1

)
. . .
(

Nm

Nm,1,...,Nm,km

)

(
N

N1,1,...,Nm,km

)

∑

N ′∈T

ψB1,1,...,Bm,km
(N1,1, . . . , Nm,km

)

=
1

(
N

N1,...,Nm

)

∑

N ′∈T

ψB1,1,...,Bm,km
(N1,1, . . . , Nm,km

)

=
ψB1,...,Bm

(N1, . . . , Nm)
(

N
N1,...,Nm

) = ρ̃N (B).

(A.4)

In fact note that by hypothesis (2),

ψB1,...,Bm
(N1, . . . , Nm) =

∑

N ′∈T

ψB1,1,...,Bm,km
(N1,1, . . . , Nm,km

). (A.5)

We are now in position to prove that ρ̃N is finitely-additive on SN . Let (Aα′)α′∈A

be a class of pairwise disjoint sets belonging to SN , where A is a finite subset of N
N , Aα′ :=

A(α1,...,αN ) := A1,α1
× · · · × AN,αN

, and suppose that B = A1 × · · · × AN := ∪α′∈AAα′ also

belongs to SN . Notice that Ai = ∪α′∈AAi,αi
for each i. Denote by {C1, . . . , Ck} the partition

generated by the class of sets {A1,α1
, . . . , AN,αN

: α′ ∈ A}. The elements of such partition

belong to G since G is closed under intersection. Then applying (A.2) twice, we obtain that

ρ̃N (B) =
∑

Cli
⊂Ai

i=1,...,N

ρ̃N (Cl1 × · · · × ClN )

=
∑

α′∈A

∑

Cli
⊂Ai,αi

i=1,...,N

ρ̃N (Cl1 × · · · × ClN )

=
∑

α′∈A

ρ̃N (A1,α1
× · · · ×AN,αN

).

(A.6)
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Therefore ρ̃N is finitely-additive on SN . Hence, it is known that ρ̃N has a unique finitely-

additive extension ρN on the algebra A N generated by SN
3.

Let us demonstrate the second part of the thesis. We already proved that hypothesis

(3) is necessary for σ-additivity of ρN , but we shall prove that it is also sufficient.

We resort to a V.V. Sazonov’s result about perfect measures. Sazonov (1965) calls

perfect any measure µ on some measurable space (Ω,F ) if, for each real-valued F -measurable

function f and for each subset E of the line such that f−1(E) ∈ F , there exists a Borel

set B such that B ⊂ E and µ(f−1(E)) = µ(f−1(B)). Any measure on (X,X ) is perfect

since X is a Polish space endowed with its Borel σ-algebra X . He shows that any finitely-

additive measure µ on the algebra of rectangles such that each marginal is a perfect measure is

countably additive. It is known that any measure on the Borel σ-field of a Polish (i.e. complete

separable metric) space is perfect, since any tight measure µ on a metric space (i.e. such that

∀ǫ > 0, ∃ a compact set Kǫ such that µ(Kc
ǫ ) < ǫ) is perfect and any measure on a Polish

space is tight [see Parthasarathy (1967), pages 28–32]. So any measure on (X,X ) is perfect.

Moreover recall that for a finitely additive measure on an algebra, continuity from above is

sufficient for countable additivity. Consequently, we only need to prove that if hypothesis (3)

holds, than ρ(i)(A) := ρN (Xi−1 ×A× X
N−i) is continuous from above on A .

Let (Cn)n be a sequence of events in A that converges from above to the empty set.

Since ρ̃N is finitely additive and the coordinate functions ξ1, . . . , ξN are identically distributed

under ρN , then

ρN (Xi−1 × Cn × X
N−i) = ρN ({ξi ∈ Cn})

= E(ẽ(Cn)),
(A.7)

which converges to zero since (ẽ(Cn))n is a sequence of r.v.’s having – by hypothesis (1) – the

same finite support {0, 1, . . . , N} when hypothesis (3) is satisfied.

In conclusion, when hypothesis (3) holds, ρN is σ-additive on A N , and therefore, by

Carathéodary’s Extension Theorem, ρN has an unique extension3 that is a measure on the

σ-field X N generated by A N .

3See for instance the appendix on measure theory of Durrett (1996),pages 440–464.
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A.2 Properties of partitions tree distributions

This section contains the proofs of some properties of partitions tree distributions. To begin,

let us recall some notation already introduced in Chapter 4. As usual, let ξ1, . . . , ξN be the

coordinate functions on (XN ,X N , P ), and let Π = (πm)∞m=0 be a separating binary tree

of partitions of X, such that G = ∪m≥0πm generates X . Given B in πm (m ≥ 1), define

ge(B) = C, where C ∈ πm−1 and B ⊂ C. Moreover, let

ge(0)(·) := · , ge(1)(·) := ge(·) ,

ge(2)(·) := ge(ge(·)) , ge(3)(·) := ge(ge(2)(·)) , . . .

Remark A.2. Condition 4.1.1 requires that for each B in G there exists a constant cB such

that

E(Ñ(B) | Ñ(ge(B))) = cBÑ(ge(B)). (A.8)

Taking expectation on both sides, one obtains:

E(Ñ(B)) = cB E(Ñ(ge(B))),

and therefore

cB =
E(Ñ(B))

E(Ñ(ge(B)))

whenever P (Ñ(ge(B)) = 0)) < 1, while in the other case (A.8) is satisfied for any value of cB .

In other words, Condition 4.1.3 holds if and only if

E

(

Ñ(B)

Ñ(ge(B))
|Ñ(ge(B)) = M

)

=
E(Ñ(B))

E(Ñ(ge(B)))
(A.9)

for each B in G such that Ñ(B) is not degenerate at zero, and for each M ≥ 1 such

that P (Ñ(ge(B))) = M) is positive.
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We observe an important consequence of Condition 4.1.2:

Proposition A.3. Let (B(m))m∈N be a sequence of sets such that B(m) belongs to πm,

and B(m+1) ⊂ B(m) for each m ∈ N.

If Condition 4.1.2 holds, then the sequence (Ñ(B(m)))m∈N of r.v.’s is a Markov Chain.

Proof. By Condition 4.1.2,

P (Ñ(B(m)) = Mm | Ñ(B(k)) = Mk, k = 1, . . . ,m− 1)

= P (Ñ(B(m)) = Mm | Ñ(B(m−1)) = Mm−1,
∑

C∈πm−1:
C⊂B(k−1)\B(k)

Ñ(C) = Mk−1 −Mk, k < m)

= P (Ñ(B(m)) = Mm | Ñ(B(m−1)) = Mm−1).

M1

B(1)

π1

M2

B(2)

π2

M3

B(3)

π3

M4

B(4)

π4

Bc
(1) B(1) \B(2) B(2) \B(3) B(3) \B(4) B(4)

N −M1 M1 −M2 M2 −M3 M3 −M4 M4

Figure A.1: Scheme for the proof of Proposition A.3.
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Proposition A.4. If Condition 4.1.3.a holds, then, for each B in G such that Ñ(B) is not

degenerate at zero,

P{ξ1 ∈ B} = E

(Ñ(B1)

N

) m∏

j=2

E

(

Ñ(Bj)

Mj−1
| Ñ(Bj−1) = Mj−1

)

(B ∈ πm), (A.10)

where Bm = B and, for j < m, Bj denotes the set in πj containing Bm, and Mj is any

positive value such that P (Ñ(Bj) = Mj) is positive.

Equivalently,

P (ξ1 ∈ B) = P (ξ1 ∈ ge(B)) · E

(

Ñ(B)

M
| Ñ(ge(B)) = M

)

,

for each B in G such that Ñ(B) is not degenerate at zero and for each positive M such that

P (Ñ(ge(B)) = M) is positive.

Proof. Write the left hand side in (A.10) as

P{ξ1 ∈ B} =
E(Ñ(Bm))

N

=
E(Ñ(B1))

N

m∏

j=2

E(Ñ(Bj))

E(Ñ(Bj−1))
,

which is equal to the right hand side by (A.9).

Remark A.5 (Some properties of the law of the empirical measure). We now point out some

properties of the law of the empirical measure, which are just a consequence of exchangeability

of P . Let us denote Ñ(·) := N ẽ(·) =
∑N

i=1 δξi
(·). If B belongs to X and {B1, . . . , Bm} is a

measurable partition of X, then:

P (ξ1 ∈ B) = E(ẽ(B)) = E

(Ñ(B)

N

)

(A.11a)

P
{

ξ1 ∈ B, Ñ(B1) = N1, . . . , Ñ(Bm) = Nm

}

= E

(Ñ(B)

N
I{Ñ(B1)=N1,...,Ñ(Bm)=Nm)}

)

. (A.11b)

Moreover if B = Bj for some j, then

P
{

ξ1 ∈ B, Ñ(B1) = N1, . . . , Ñ(Bm) = Nm

}

=
Nj

N
P
{

Ñ(B1) = N1, . . . , Ñ(Bm) = Nm)
}

. (A.11c)
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A.2.1 Proof of Proposition 4.1 and Proposition 4.2

In order to demonstrate Propositions 4.1 and 4.2, we need some lemmas.

Lemma A.6. Equation

LÑm+1|Ñm
= ×

C∈πm

LÑ(B): ge(B)=C|Ñ(C) (A.12)

holds true for each m in N if and only if

LÑm+h|Ñm
= ×

C∈πm

LÑ(B): ge(h)(B)=C|Ñ(C), (A.13)

for any h ∈ N
+ and for any m ∈ N.

Proof. Of course, (A.13) implies (A.12) (take h = 1). We shall prove by induction on h that

(A.12) implies (A.13). Therefore, let us suppose that (A.12) holds and that

LÑm+h−1|Ñm
= ×

C∈πm

LÑ(B): ge(h−1)(B)=C|Ñ(C) for each m ≥ 1. (A.14)

Hence, for any m ≥ 1 and for any vector N(km) = (Nm,1, . . . , Nm,km
) in N

km whose compo-

nents sum up to N ,

P (Ñm+h = N(km+h) | Ñm = N(km))

= P (Ñm+h = N(km+h) | Ñm+1 = N(km+1))

· P (Ñm+1 = N(km+1) | Ñm = N(km)),

(A.15)

where for any r ∈ N
+, N(km+r) := (Nm+r,1, . . . , Nm+r,km+r

) ∈ N
km+r is such that

∑

l: Bm+r, l⊂Bm, j

Nm+r, l = Nm, j and P (Ñm+1 = N(km+1)) > 0.

By (A.12) and by induction hypothesis (A.14), (A.15) becomes:
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P (Ñm+h = N(km+h) | Ñm = N(km))

=

km+1∏

l=1

P
( ⋂

s:Bm+h,s⊂Bm+1,l

{Ñ(Bm+h,s) = Nm+h,s} | Ñ(Bm+1,l) = Nm+1,l

)

·
km∏

j=1

P
( ⋂

w:Bm+1,w⊂Bm,j

{Ñ(Bm+1,w) = Nm+1,w} | Ñ(Bm,j) = Nm,j

)

=

km∏

j=1

[

P
( ⋂

w:Bm+1,w⊂Bm,j

{Ñ(Bm+1,w) = Nm+1,w} | Ñ(Bm,j) = Nm,j

)

·
∏

l:
Bm+1,l⊂Bm,j

P
( ⋂

s:Bm+h,s⊂Bm+1,l

{Ñ(Bm+h,s) = Nm+h,s} | Ñ(Bm+1,l) = Nm+1,l

)
]

.

(A.16)

Again by induction hypothesis (A.14) from the last expression we obtain:

P (Ñm+h = N(km+h) | Ñm = N(km))

=

km∏

j=1

[

P
( ⋂

w:Bm+1,w⊂Bm,j

{Ñ(Bm+1,w) = Nm+1,w} | Ñ(Bm,j) = Nm,j

)

· P
( ⋂

s:Bm+h,s⊂Bm,j

{Ñ(Bm+h,s) = Nm+h,s} | Ñ(Bm+1,l) = Nm+1,l

)
]

=

km∏

j=1

[

P
( ⋂

w:Bm+1,w⊂Bm,j

{Ñ(Bm+1,w) = Nm+1,w} | Ñ(Bm,j) = Nm,j

)

· P
( ⋂

s:Bm+h,s⊂Bm,j

{Ñ(Bm+h,s) = Nm+h,s} |
⋂

w:Bm+1,w⊂Bm,j

{Ñ(Bm+1,w) = Nm+1,w}
)
]

=

km∏

j=1

[

P
( ⋂

s:Bm+h,s⊂Bm,j

{Ñ(Bm+h,s) = Nm+h,s} | Ñ(Bm,j) = Nm,j

)
]

(A.17)

as desired.

Lemma A.7. If Condition 4.1.2 holds, then for any m and l such that m > l and for any

B ∈ πm, Ñ(B) and (Ñ(C) : C ∈ πm−l \ {ge(l)(B)}) are conditionally independent given

Ñ(ge(l)(B)), i.e.

L(Ñ(B))|Ñm−l
= L(Ñ(B))|Ñ(ge(l)(B)). (A.18)

Proof. We shall give the proof by induction on l. For l = 1, the hypothesis trivially implies
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the thesis. Hence suppose that:

L(Ñ(B))|Ñm−l+1
= L(Ñ(B))|Ñ(ge(l−1)(B)). (A.19)

If we let N(km−l) ∈ {0, . . . , N}km−l such that P (Ñm−l = N(km−l)) > 0, then:

P (Ñ(B) = M | Ñm−l = N(km−l))

=
∑

N(km−1)∈C

P (Ñ(B) = M | Ñm−1 = N(km−1))

· P (Ñm−1 = N(km−1) | Ñm−l = N(km−l)),

(A.20)

where C is the set of all vectorsN(km−1) = (Nm−1,1, . . . , Nm−1,km−1
) such that

∑

Bm−1,h⊂Bm−l,j

Nm−1,h =

Nm−l,j for each j.

For simplicity let us assume that ge(B) = Bm−1,1 and that ge(l)(B) = Bm−l,1. More-

over, denote:

Cx1
:= {(x2, . . . , xkm−1

) : (x1, . . . , xkm−1
) ∈ C}.

Hence, by hypothesis and by (A.19), (A.20) becomes:

P (Ñ(B) = M | Ñm−l = N(km−l))

=

Nm−l,1∑

Nm−1,1=0

P (Ñ(B) = M | Ñ(Bm−1,1) = Nm−1,1)

·
∑

(Nm−1,2,...,Nm−1,km−1
)∈CNm−1,1

P (Ñm−1 = N(km−1) | Ñm−l = N(km−l))

=

Nm−l,1∑

Nm−1,1=0

P (Ñ(B) = M | Ñ(Bm−1,1) = Nm−1,1)

· P (Ñ(Bm−1,1) = Nm−1,1 | Ñm−l = N(km−l))

=

Nm−l,1∑

Nm−1,1=0

P (Ñ(B) = M | Ñ(Bm−1,1) = Nm−1,1)

· P (Ñ(Bm−1,1) = Nm−1,1 | Ñ(Bm−l,1) = Nm−l,1)

= P (Ñ(B) = M | Ñ(Bm−l,1) = Nm−l,1).
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Define, for each C in G such that Ñ(C) is not degenerate at zero,

S(C) =
{

M = 1, . . . , N : P (Ñ(C) = M) > 0
}

.

Lemma A.8. If Condition 4.1.2 and Condition 4.1.3 hold, then for any m and l such that

m > l and for any B ∈ πm such that Ñ(ge(l)(B)) is not degenerate at zero, the conditional

expectation E

(
Ñ(B)

M | Ñ(ge(l)(B)) = M
)

does not depend on M , as M varies in S(ge(l)(B)),

that is

E

(

Ñ(B)

Ñ(ge(l)(B))
| Ñ(ge(l)(B)) = M

)

=
E(Ñ(B))

E(Ñ(ge(l)(B))))

for each M in S(ge(l)(B)).

Proof. We can prove this by induction on l. If l = 1, the thesis coincides with Condition 4.1.3.

Now assume that, for each B ∈ G such that P (Ñ(ge(l−1)(B)) = 0) < 1, and for each

M in S(ge(l−1)(B)),

E

(

Ñ(B)

Ñ(ge(l−1)(B))
| Ñ(ge(l−1)(B)) = M

)

=
E(Ñ(B))

E(Ñ(ge(l−1)(B)))
. (A.21)

Equation (A.21) is tantamount to saying that

E(Ñ(B) | Ñ(ge(l−1)(B))) =
E(Ñ(B))

E(Ñ(ge(l−1)(B)))
Ñ(ge(l−1)(B)). (A.22)

By Condition 4.1.2 we can apply Proposition A.3 and we obtain:

E(Ñ(B) | Ñ(ge(l)(B))) = E(E(Ñ(B) | Ñ(ge(l)(B)), Ñ(ge(B))) | Ñ(ge(l)(B)))

= E(E(Ñ(B) | Ñ(ge(B))) | Ñ(ge(l)(B))),
(A.23)

which by Condition 4.1.3 becomes:

E

(

Ñ(ge(B))
E(Ñ(B))

E Ñ(ge(B))
| Ñ(ge(l)(B))

)

=
E(Ñ(B))

E Ñ(ge(B))
E(Ñ(ge(B)) | Ñ(ge(l)(B))). (A.24)

By induction hypothesis (A.21), the right hand side of (A.24) is equal to:

E(Ñ(B))

E Ñ(ge(B))

E(Ñ(ge(B)))

E Ñ(ge(l)(B))
Ñ(ge(l)(B)) =

E(Ñ(B))

E Ñ(ge(l)(B))
Ñ(ge(l)(B)).

So, for each M ∈ S(ge(l)(B)),

E(Ñ(B) | Ñ(ge(l)(B)) = M) =
E(Ñ(B))

E Ñ(ge(l)(B))
M,

which yields the thesis.
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Recall that, for each C in G , T(C) denotes the vector obtained ordering the elements

of the set {j = 1, . . . , km : ge(Bm,j) = C}.

Lemma A.9. Assume that Conditions 4.1.1 – 4.1.2 are satisfied.

Let A1, . . . , AN be N sets in πm+1, and denote

Nj = |{i = 1, . . . , N : Ai = Bm+1, j}| (j = 1, . . . , km+1).

If P (Ñ(Bm+1,1) = N1, . . . , Ñ(Bm+1,km+1
) = Nkm

) > 0, then, for each n ≤ N ,

P (Ñ(Bm+1, 1 = N1, . . . , Ñ(Bm+1, km+1
) = Nkm+1

| ξ1 ∈ A1, . . . , ξn ∈ An, Ñ(C) = NC : C ∈ πm)

=
∏

C∈πm

P (Ñ(Bm+1,j) = Nj : j ∈ T(C) | Ñ(C) = NC , ξi ∈ Ai : i ≤ n, ge(Ai) = C), (A.25)

where NC :=
∑

j∈T(C)Nj for each C ∈ πm.

Proof. Notice that

P (ξ1 ∈ A1, . . . , ξN ∈ AN | Ñ(C) = NC : C ∈ πm)

= P (Ñ(Bm+1, 1 = N1, . . . , Ñ(Bm+1, km+1
) = Nkm+1

| Ñ(C) = NC : C ∈ πm))

/
∏

C∈πm

(
NC

Nj : j ∈ T(C)

)

, (A.26)

which, by hypothesis, becomes

∏

C∈πm

(

P (Ñ(Bm+1, j) = Nj : j ∈ T(C) | Ñ(C) = NC)/

(
NC

Nj : j ∈ T(C)

))

=
∏

C∈πm

P (ξi ∈ Ai : i ≤ N, ge(Ai) = C | Ñ(C) = NC).

(A.27)

Combining equations (A.26) and (A.27), one obtains

P (ξ1 ∈ A1, . . . , ξN ∈ AN | Ñ(C) = NC : C ∈ πm) =

∏

C∈πm

P (ξi ∈ Ai : i ≤ N, ge(Ai) = C | Ñ(C) = NC). (A.28)

At this stage, denote

nj : = |{i = 1, . . . , n : Ai = Bm+1, j}| (j = 1, . . . , km+1)

nC : =
∑

j∈T(C)

nj (for each C inπm)
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Hence, the left hand side of (A.25) is equal to

P (ξn+1 ∈ An+1, . . . , ξN ∈ AN | ξ1 ∈ A1, . . . , ξn ∈ An, Ñ(C) = NC : C ∈ πm)

/
∏

C∈πm

(
NC − nC

Nj − nj : j ∈ T(C)

)

.
(A.29)

The conditional probability in (A.29) can be rewritten in this way:

P (ξ1 ∈ A1, . . . , ξN ∈ AN | Ñ(C) = NC : C ∈ πm)

P (ξ1 ∈ A1, . . . , ξn ∈ An | Ñ(C) = NC : C ∈ πm)
,

and, by (A.28), it becomes

∏

C∈πm

P (ξi ∈ Ai : i ≤ N, ge(Ai) = C | Ñ(C) = NC)

P (ξi ∈ Ai : i ≤ n, ge(Ai) = C, | Ñ(C) = NC)

=
∏

C∈πm

P (ξi ∈ Ai : i ≤ N,Ai ⊂ C | Ñ(C) = NC , ξi ∈ Ai : i ≤ n,Ai ⊂ C).

(A.30)

If one substitutes the conditional probability in (A.29) with the right hand side of (A.30),

then the right hand side of (A.25) is obtained as desired.

At this stage, Proposition 4.2 and in part Proposition 4.1 will be proved just for the

case n = 1.

Lemma A.10. Assume that:

(i) Condition 4.1.2 holds,

(ii) For each m ≥ 0, and each B in πm+1 such that Ñ(ge(B)) is not degenerate at zero,

E( Ñ(B)

Ñ(ge(B))
| Ñ(ge(B)) = M) does not depend on M (M in S(ge(B))),

Then:

(iii) Denoting by Bx
m the set of πm which x belongs to,

P (Ñ(Bm, 1) = N1, . . . , Ñ(Bm, km
) = Nkm

| ξ1 = x1)

P -a.s.

= P (Ñ(Bm, 1) = N1, . . . , Ñ(Bm, km
) = Nkm

| ξ1 ∈ Bx1
m ); (A.31)

(iv) For each m ≥ 0 and for each B ∈ πm+1,

LÑ(B)|Ñm, ξ1
= LÑ(B)|Ñ(ge(B)), ξ1

. (A.32)
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Proof. First we shall show that (i) and (ii) imply (iii). Let

Nh = {x ∈ X : P (ξ1 ∈ Bx
h) = 0}, N =

⋃

h∈N

Nh.

Note that N has P -probability zero.

In order to prove (iii), we shall equivalently show that for any l and any B ∈ πl

∫

{ξ1∈B∩Nc}

ϕ(ξ1) dP = P (Ñ(Bm, 1) = N1, . . . , Ñ(Bm, km
) = Nkm

, ξ1 ∈ B), (A.33)

where

ϕ(x) := P (Ñ(Bm, 1) = N1, . . . , Ñ(Bm, km
) = Nkm

| ξ1 ∈ Bx
m),

for x ∈ Nc. Let us suppose that

P (Ñ(Bm, 1) = N1, . . . , Ñ(Bm, km
) = Nkm

) > 0

(the opposite case is trivial).

We shall first consider the case in which l > m. If l > m, (A.33) becomes

P (Ñ(Bm, 1) = N1, . . . , Ñ(Bm, km
) = Nkm

| ξ1 ∈ Bm,̃) · P (ξ1 ∈ B)

= P (Ñ(Bm, 1) = N1, . . . , Ñ(Bm, km
) = Nkm

, ξ1 ∈ B), (A.34)

where ̃ denotes the index such that Bm,̃ = ge(l−m)(B). Equation (A.34) can be re-written

in the form:

P (Ñ(Bm, 1) = N1, . . . , Ñ(Bm, km
) = Nkm

, ξ1 ∈ Bm,̃) · P (ξ1 ∈ B)

= P (Ñ(Bm, 1) = N1, . . . , Ñ(Bm, km
) = Nkm

, ξ1 ∈ B) · P (ξ1 ∈ Bm,̃). (A.35)

In order to verify (A.35), notice that, combining Lemma A.7 with Lemma A.8, we

obtain that

Nm,̃ · E(Ñ(B))

= E(Ñ(Bm,̃)) · E(Ñ(B)) | Ñ(Bm, 1) = N1, . . . , Ñ(Bm, km
) = Nkm

). (A.36)

If we apply (A.11a) three times in equation (A.36) – for the second factor of the right

hand side, considering P (· | Ñ(Bm, 1) = N1, . . . , Ñ(Bm, km
) = Nkm

) instead of P (·) –, we
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obtain

Nm,̃

N
· P (ξ1 ∈ B)

= P (ξ1 ∈ Bm,̃) · P (ξ1 ∈ B | Ñ(Bm, 1) = N1, . . . , Ñ(Bm, km
) = Nkm

). (A.37)

that is

Nm,̃

N
· P (ξ1 ∈ B) · P (Ñ(Bm, 1) = N1, . . . , Ñ(Bm, km

) = Nkm
)

= P (ξ1 ∈ Bm,̃) · P (ξ1 ∈ B, Ñ(Bm, 1) = N1, . . . , Ñ(Bm, km
) = Nkm

), (A.38)

which by (A.11b) yields (A.35).

Now suppose that l ≤ m. Hence the left hand side of (A.33) is equal to

∑

Bm,j⊂B

∫

{ξ1∈Bm,j}

ϕ(ξ1) dP

=
∑

Bm,j⊂B

P (Ñ(Bm, 1) = N1, . . . , Ñ(Bm, km
) = Nkm

| ξ1 ∈ Bm,j) · P (ξ1 ∈ Bm,j)

= P (Ñ(Bm, 1) = N1, . . . , Ñ(Bm, km
) = Nkm

, ξ1 ∈ B),

and therefore (A.33) is satisfied in this case, too.

Apply Lemma A.9 - with n = 1 - to show that (i)–(iii) imply (iv).

Proposition A.11. Assume that:

(i) Condition 4.1.2 holds;

(ii) For any m ≥ 0, and every B in πm+1 such that Ñ(ge(B)) is not degenerate at zero,

(a) E( Ñ(B)

Ñ(ge(B))
| Ñ(ge(B)) = M) does not depend on M (M ∈ S(ge(B))),

(b) for any n < N and A1, . . . , An in πm+1,

E

( ∑N
i=n+1 δξi

(B)
∑N

i=n+1 δξi
(ge(B))

|
N∑

i=n+1

δξi
(ge(B)) = M, ξ1 ∈ A1, . . . , ξn ∈ An

)

does not depend on M , as M varies in the following set:

{

j = 1, . . . , N : P
(
ξ1 ∈ A1, . . . , ξn ∈ An,

∑N
i=n+1 δξi

(ge(B)) = j
)
> 0
}

.
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Then:

(iii) For any n ≤ N ,

P (Ñ(Bm, 1) = N1, . . . , Ñ(Bm, km
) = Nkm

| ξ1 = x1, . . . , ξn = xn)

P -a.s.

= P (Ñ(Bm, 1) = N1, . . . , Ñ(Bm, km
) = Nkm

| ξ1 ∈ Bx1
m , . . . , ξn ∈ Bxn

m ) (A.39)

where Bx
m denotes the set of πm which x belongs to;

(iv) For any n ≤ N , any m ≥ 0 and any B ∈ πm+1,

LÑ(B)|Ñm, ξ(n) = LÑ(B)|Ñ(ge(B)), ξ(n).

Proof. The proof will be done by induction. The thesis was already proved for the case n = 1

in Lemma A.10.

Hence, we just need to prove that the thesis holds when

P (Ñ(Bm, 1) = N1, . . . , Ñ(Bm, km
) = Nkm

| ξ1 = x1, . . . , ξn−1 = xn−1)

P -a.s.
= P (Ñ(Bm, 1) = N1, . . . , Ñ(Bm, km

) = Nkm
| ξ1 ∈ Bx1

m , . . . , ξn−1 ∈ Bxn−1
m ) (A.40a)

and for any m ≥ 0 and any B ∈ πm+1,

LÑ(B)|Ñm, ξ(n−1) = LÑ(B)|Ñ(ge(B)), ξ(n−1). (A.40b)

Let (ηn, . . . , ηN ) be a random vector, whose distribution is L(ξn, ..., ξN )|(ξ1, ..., ξn−1). By

(ii.b), the conditional expectation

E

( ∑N
i=n δηi

(B)
∑N

i=n δηi
(ge(B))

|
N∑

i=n

δηi
(ge(B)) = M

)

(A.41)

is constant w.r.t. M ∈ S(ge(B)), i.e. P (Ñ(ge(B)) = M) > 0. In order to show that, first note

that (A.41) is equal to

E

( ∑N
i=n δξi

(B)
∑N

i=n δξi
(ge(B))

|
N∑

i=n

δξi
(ge(B)) = M, ξ(n− 1) = x(n− 1)

)

. (A.42)

Observe now that if X,Y,Z are three r.v.’s such that X and Y are discrete, then we can write:

E(X | Y = y, Z = z) =
E(XI{Y =y} | Z = z)

P (Y = y | Z = z)
. (A.43)
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Applying first (A.43) and then (A.40a), (A.42) becomes

E

(
1
M

∑N
i=n δξi

(B)I{
P

N
i=n δξi

(ge(B))=M} | ξ(n− 1) = x(n− 1)
)

P
(
∑N

i=n δξi
(ge(B)) = M | ξ(n− 1) = x(n− 1)

)

=
E

(
1
M

∑N
i=n δξi

(B)I{
P

N
i=n δξi

(ge(B))=M} | ξ(n− 1) ∈ Bx1
m × · · · ×B

xn−1
m

)

P
(
∑N

i=n δξi
(ge(B)) = M | ξ(n− 1) ∈ Bx1

m × · · · ×B
xn−1
m

) ,

which is equal – again by (A.43) – to the expectation in (ii.b) when Ai coincides with Bxi
m for

each i.

Moreover, by (A.40b), Condition 4.1.2 still holds when we substitute the random vector

(ξ1, . . . , ξN ) with (ηn, . . . , ηN ). Hence, we can apply Lemma A.10 to (ηn, . . . , ηN ), obtaining

that

P (
∑N

i=n δηi
(Bm,1) = M1, . . . ,

∑N
i=n δηi

(Bm,km
) = Mkm

| ηn = xn)

= P (
∑N

i=n δηi
(Bm,1) = M1, . . . ,

∑N
i=n δηi

(Bm,km
) = Mkm

| ηn ∈ Bxn
m )

(A.44)

and

LÑ(B)|Ñm, ηn
= LÑ(B)|Ñ(ge(B)), ηn

. (A.45)

In fact, consider that Ñ =
∑N

i=n δηi
+
∑n−1

i=1 δxi
if ξ(n−1) = x(n−1). If one combines (A.40a)

and (A.44), (iii) is obtained; while (A.45) yields (iv).

Now we are in position to conclude:

Proof of Propositions 4.1 and 4.2. Proposition 4.2 is a consequence of Proposition A.11, while

Proposition 4.1 is proved combining Proposition 4.2 and Lemma A.9.

A.2.2 Some further properties of a partitions tree law

The following proposition says that a partition tree distribution w.r.t. some separating binary

tree Π does not depend “too much” on Π.

Proposition A.12. If P is a partitions tree distribution w.r.t. Π = {πm}m, then P is a

partitions tree distribution w.r.t. any subsequence of Π.
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Proof. Our aim is to prove that if the random vectors Ñm and Ñm+1 satisfy, for each m,

Condition 4.1, then, for each h > 1, the random vectors Ñm and Ñm+h satisfy the analogous

conditions, too, that is:

(i) The collections of random variables {Ñ(B) : ge(h)(B) = C}, as C varies in πm, are

conditionally independent given Ñm.

(ii) For each C in πm, the collections {Ñ(B) : ge(h)(B) = C} and {Ñ(B) : B ∈ πm \ {C}}

are conditionally independent given Ñ(C).

(iii) For each m ≥ 0 and every B in πm+h such that Ñ(ge(h)(B)) is not degenerate at zero,

a. E( Ñ(B)

Ñ(ge(h)(B))
| Ñ(ge(h)(B)) = M) does not depend on M (M ∈ S(ge(B))),

b. for any n < N and A1, . . . , An in πm+1,

E

( ∑N
i=n+1 δξi

(B)
∑N

i=n+1 δξi
(ge(h)(B))

|
N∑

i=n+1

δξi
(ge(h)(B)) = M, ξ1 ∈ A1, . . . , ξn ∈ An

)

does not depend on M , as M varies in

{

j = 1, . . . , N : P
(
ξ(n) ∈ A1 × · · · ×An,

∑N
i=n+1 δξi

(ge(h)(B)) = j
)
> 0
}

.

Conditions (i) and (ii) hold by Lemma A.6. In order to prove (iii), fix n and take

(ηn+1, . . . , ηN ) to be a random sequence with distribution Lξn+1,...,ξN |(ξ1,...,ξn). Since it was

proved that partitions tree laws are conjugate (Proposition 4.1), Lemma A.8 for n = 1, . . . , N

can be applied to get the desired result.

The following proposition shows how Condition 4.1.3 can be reformulated in terms of

the distribution of (ξ1, . . . , ξN ).

For each C ∈ G and each 1 ≤ n ≤ N , denote

Sn(C) :=
{

M = 0, . . . , N − n : P (Ñ(C) = M + n) > 0
}

.

Proposition A.13. Assume that Conditions 4.1.1–4.1.2 are satisfied.

The following facts are equivalent:

(i) Condition 4.1.3 holds;
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(ii) For any C in G , any N -tuple (A1, . . . , AN ) of sets such that ge(Ai) = C, and

any n such that 1 ≤ n ≤ N , the conditional probability

P (ξ1 ∈ A1, . . . , ξn ∈ An | ξ1 ∈ C, . . . , ξn+M ∈ C, ξn+M+1 ∈ Cc, . . . , ξN ∈ Cc)

does not depend on M , as M varies in Sn(C);

(iii) Under the same assumptions of (ii),

P (ξ1 ∈ A1, . . . , ξn ∈ An | ξ1 ∈ C, . . . , ξn+M ∈ C, ξn+M+1 ∈ Cc, . . . , ξN ∈ Cc)

=P (ξ1 ∈ A1, . . . , ξn ∈ An | ξ1 ∈ C, . . . , ξn ∈ C)

for any M in Sn(C).

Proof. Denote F0 := X
N and, for each n such that 1 ≤ n ≤ N ,

Fn : = {ξ1 ∈ A1, . . . , ξn ∈ An}

E(M)
n : = {ξ1 ∈ C, . . . , ξn+M ∈ C, ξn+M+1 ∈ Cc, . . . , ξN ∈ Cc}

D(M)
n : = Fn ∩ E(M)

n

Thus:

D(M)
n := {ξ1 ∈ A1, . . . , ξn ∈ An, ξn+1 ∈ C, . . . , ξn+M ∈ C, ξn+M+1 ∈ Cc, . . . , ξN ∈ Cc}.

We shall show that (i) is tantamount to (ii) and (ii) entails (iii). It is trivial to prove

that (iii) implies (ii).

In order to show that (i) and (ii) are equivalent, we shall assume, without loss of

generality, that A1, . . . , AN are such that P (Fn) is positive for each n ≥ 1. We want to prove

that Condition 4.1.3 holds if and only if P (Fn | E
(M)
n ) does not depend on M , as M varies in

the following set:

Un :=
{

M = 0, . . . , N − n : P (D(M)
n ) > 0

}

.

First, we show that, by Lemma A.9, Condition 4.1.3 is satisfied if and only if

E

( ∑N
i=n δξi

(An)
∑N

i=n δξi
(ge(An))

|
N∑

i=n

δξi
(ge(An)) = M, ξ1 ∈ A1, . . . , ξn−1 ∈ An−1

)

(A.46)
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does not depend on M (M ∈ Un), just when A1, . . . , An−1 are such that, for each i ≤ (n− 1),

Ai is either a descendant or the complementary of ge(An). To prove this, let A1, . . . , An all

belong to the same πm (for some m) and denote Ñ(n) =
∑N

i=n δξi
, and

Ai,j =







Ai if ge(Ai) = Bm,j

Bc
m,j otherwise,

as j = 1, . . . , km and i = 1, . . . , n − 1. In virtue of exchangeability, by Lemma A.9, for any

m ≥ 1 and any vector (Mm+1,1, . . . ,Mm+1,km+1
) summing up to (N − n+ 1), letting

Mm, l :=
∑

j:Bm+1, j⊂Bm, l

Mm+1, j (l = 1, . . . , km),

one can write

P (Ñ(n)(Bm+1, j) = Mm+1, j , j = 1, . . . , km+1 | Ñ(n)(Bm, j) = Mm, j , j = 1, . . . , km, ξ1 ∈ A1, . . . , ξn ∈ An−1)

=

km∏

j=1

P (Ñ(n)(Bm+1, l) = Mm+1, l : ge(Bm+1, l) = Bm, j | Ñ(n)(Bm, j) = Mm, j , ξ1 ∈ A1,j , . . . , ξn ∈ An,j),

which implies:

L(Ñ(n)(Bm+1, l): ge(Bm+1, l)=Bm, j)|(Ñ(n)(Bm, r),r=1,...,km, ξ1∈A1,...,ξn−1∈An−1)
=

L(Ñ(n)(Bm+1, l): ge(Bm+1, l)=Bm, j)|(Ñ(n)(Bm, j), ξ1∈A1, j ,...,ξn−1∈An−1, j)
. (A.47)

Define

Vj,i :=







l if ξi ∈ Bm+1, l ⊂ Bm,j

0 if ξi ∈ Bc
m,j ,

for j = 1, . . . , km, i = 1, . . . , N . Hence, (A.47) becomes

L(Ñ(n)(Bm+1, l): ge(Bm+1, l)=Bm, j)|(Ñ(n)(Bm, r), Vr,i:r=1,...,km,i=1,...,n−1) =

L(Ñ(n)(Bm+1, l): ge(Bm+1, l)=Bm, j)|(Ñ(n)(Bm, j), Vj,i:i=1,...,n−1). (A.48)

Therefore, we can say that, for each 1 ≤ j ≤ km and each A such that ge(A) = Bm,j , Ñ(n)(A)

and {Vr,i : r 6= j, i ≤ n − 1} are conditionally independent given (Ñ(n)(Bm,j), Vj,i : i =

1, . . . , n− 1).
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For this reason, let us assume that, for each i ≤ n−1, Ai is either a descendant or the

complementary of C = ge(An). In virtue of exchangeability, for each M ∈ Un, the conditional

expectation (A.46) is equal to

E(
∑N

i=nδξi
(An)/M |

∑N
i=n δξi

(C) = M, ξ1 ∈ A1, . . . , ξn−1 ∈ An−1)

=
E(
∑N

i=n δξi
(An)I{

P
N
j=n δξj

(C)=M} | ξ1 ∈ A1, . . . , ξn−1 ∈ An−1)

M P (
∑N

i=n δξi
(C) = M) | ξ1 ∈ A1, . . . , ξn−1 ∈ An−1)

=

(
N−n

M

)
E(
∑n+M

i=n δξi
(An)I

D
(M)
n−1

| ξ1 ∈ A1, . . . , ξn−1 ∈ An−1)
(
N−n

M

)
M P (D

(M)
n−1 | ξ1 ∈ A1, . . . , ξn−1 ∈ An−1)

=
P (ξi ∈ An,D

(M)
n−1 | ξ1 ∈ A1, . . . , ξn−1 ∈ An−1)

P (D
(M)
n−1 | ξ1 ∈ A1, . . . , ξn−1 ∈ An−1)

= P (ξn ∈ An | D
(M)
n−1).

(A.49)

Denote by h the number of Ai, with i ≤ n − 1, that are descendants of C. If h = 0, by

exchangeability, the last term (A.49) is equal to P (ξ1 ∈ An | D
(M+1)
0 ). If h > 0, let (l1, . . . , lh)

be such that l1 < · · · < lh and Ali ⊂ C for each i ≤ n − 1. Then, by exchangeability,

P (ξn ∈ An | D
(M)
n−1) is equal to

P (ξn ∈ An | ξ1 ∈ Al1 , . . . , ξh ∈ Alh , ξh+1 ∈ C, . . . , ξM+h ∈ C, ξM+h+1 ∈ Cc, . . . , ξN ∈ Cc).

Therefore Condition 4.1.3 is tantamount to require that, whenever A1, . . . , AN are descendants

of C, for each n ≥ 1 (fixed), P (ξn ∈ An | D
(M)
n−1) does not depend on M , as M varies in Sn(C).

At this point, one can see that Condition 4.1.3 is satisfied if (ii) holds, i.e. P (Fn | E
(M)
n ) is

constant w.r.t. M ∈ Sn(C). In fact, for any n > 1 and any M in Sn−1(C), E
(M)
n−1 = E

(M−1)
n ,

and therefore

P (ξn ∈ An | D
(M)
n−1) =

P (Fn ∩ E
(M)
n−1)

P (Fn−1 ∩ E
(M)
n−1)

=
P (Fn | E

(M)
n−1)

P (Fn−1 | E
(M)
n−1)

=
P (Fn | E

(M−1)
n )

P (Fn−1 | E
(M)
n−1)

.

If n = 1, then, for any M ∈ S0(C), P (ξ1 ∈ A1 | D
(M)
0 ) = P (F1 | E

(M)
0 ) = P (F1 | E

(M−1)
1 ).

On the other hand, if P (ξn ∈ An | D
(M)
n−1) is a constant function of M ∈ Sn(C) (for

each n ≥ 1), so is P (Fn | E
(M)
n ) too, since

P (Fn | E(M)
n ) = P (ξ1 ∈ A1 | D

(M+n)
0 )P (ξ2 ∈ A2 | D

(M+n−1)
1 ) · · ·P (ξn ∈ An | D

(M)
n−1).

Now, let us prove that (ii) implies (iii). Denote C1 to be C and C0 to be Cc. Hence,
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by exchangeability, we can write:

P (ξ1 ∈ A1, . . . , ξn ∈ An | ξ1 ∈ C, . . . , ξn ∈ C)

=
∑

t1,..., tN−n

P (ξ1 ∈ A1, . . . , ξn ∈ An | ξ1 ∈ C, . . . , ξn ∈ C, ξn+1 ∈ Ct1 , . . . , ξN ∈ CtN−n)

· P (ξn+1 ∈ Ct1 , . . . , ξN ∈ CtN−n | ξ1 ∈ C, . . . , ξn ∈ C)

=
∑

M∈Sn(C)

∑PN−n
i=1 ti=M

P (ξ1 ∈ A1, . . . , ξn ∈ An | E(M)
n )

· P (ξn+1 ∈ Ct1 , . . . , ξN ∈ CtN−n | ξ1 ∈ C, . . . , ξn ∈ C),

(A.50)

where the sum runs over all vectors (t1, . . . , tN−n) in {0, 1}N−n. By (ii), (A.50) becomes:

P (ξ1 ∈ A1, . . . , ξn ∈ An | ξ1 ∈ C, . . . , ξn ∈ C)

= P (ξ1 ∈ A1, . . . , ξn ∈ An | E(M)
n )

∑

t1,..., tN−n

P (ξ(n,N) ∈ Ct1 × · · · × CtN−n | ξ1 ∈ C, . . . , ξn ∈ C)

= P (ξ1 ∈ A1, . . . , ξn ∈ An | E(M)
n ),

and the proof is done.

Proposition A.14. Assume that Conditions 4.1.1—4.1.3 hold. If A1, . . . , An belong to πm

for some m and P (ξ1 ∈ A1, . . . , ξn−1 ∈ An−1, ξn ∈ ge(An)) > 0, then

P (ξn ∈ An | ξ1 ∈ A1, . . . , ξn−1 ∈ An−1, ξn ∈ ge(An))

= P (ξn ∈ An | ξn ∈ ge(An), ξi ∈ Ai : ge(Ai) = ge(An), i = 1, . . . , n− 1)
(A.51)

for each 2 ≤ n ≤ N .

Proof. Let ge(An) = C and notice that any random sequence (η1, . . . , ηN+1−n) such that

L(η1,...,ηN+1−n)( · ) = P ((ξn, . . . , ξN ) ∈ · | ξ1 ∈ A1, . . . , ξn−1 ∈ An−1)

trivially satisfies Condition 4.1.3. Hence, by Proposition A.4, one can write

P (ξn ∈ An | ξ1 ∈ A1, . . . , ξn−1 ∈ An−1)

= P (ξn ∈ C | ξ1 ∈ A1, . . . , ξn−1 ∈ An−1)

·
1

M
E(
∑N

i=n δξi
(An) |

∑N
i=n δξi

(C) = M, ξ1 ∈ A1, . . . , ξn−1 ∈ An−1)

for each M ∈ Sn−1(C).
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Therefore,

P (ξn ∈ An | ξ1 ∈ A1, . . . , ξn−1 ∈ An−1, ξn ∈ C)

=
P (ξn ∈ An | ξ1 ∈ A1, . . . , ξn−1 ∈ An−1)

P (ξn ∈ C | ξ1 ∈ A1, . . . , ξn−1 ∈ An−1)

=
1

M
E(
∑N

i=n δξi
(An) |

∑N
i=n δξi

(C) = M, ξ1 ∈ A1, . . . , ξn−1 ∈ An−1),

(A.52)

for M in Sn−1(C).

The last term in (A.52), by (A.49), is equal to

P (ξn ∈ An | ξ1 ∈ A1, . . . , ξn−1 ∈ An−1, ξn ∈ C, . . . , ξn+M−1 ∈ C, ξn+M ∈ Cc . . . , ξN ∈ Cc).

Hence, for each M in Sn−1(C),

P (ξn ∈ An | ξ1 ∈ A1, . . . , ξn−1 ∈ An−1, ξn ∈ C, . . . , ξn+M−1 ∈ C, ξn+M ∈ Cc, . . . , ξN ∈ Cc)

= P (ξn ∈ An | ξ1 ∈ A1, . . . , ξn−1 ∈ An−1, ξn ∈ C).

(A.53)

By (A.52), we need to prove that

1

M
E(
∑N

i=nδξi
(An) |

∑N
i=n δξi

(C) = M, ξ1 ∈ A1, . . . , ξn−1 ∈ An−1)

= P (ξn ∈ An | ξn ∈ C, ξi ∈ Ai, i = 1, . . . , n− 1 : ge(Ai) = C),
(A.54)

for each M in Sn−1(C).

Denote

A(i) =







Ai if Ai ⊂ C

Cc otherwise,

i = 1, . . . , n

A′ : = {ξ1 ∈ A(1), . . . , ξ1 ∈ A(n−1)}.

By (A.48), the left-hand side of (A.54) is the same as

1

M
E(
∑N

i=n δξi
(An) |

∑N
i=n δξi

(C) = M,A′). (A.55)

Arguing as in (A.49), one realizes that (A.55) is equal to

P (ξn ∈ An | A′, ξn ∈ C, . . . , ξn+M−1 ∈ C, ξn+M ∈ Cc, . . . , ξN ∈ Cc),
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which, by exchangeability, becomes:

P (ξh+1 ∈ An | ξ1 ∈ Al1 , . . . , ξh ∈ Alh , ξh+1 ∈ C, . . . , ξh+M ∈ C, ξh+M+1 ∈ Cc, . . . , ξN ∈ Cc),

(A.56)

where h = |{i ≤ n− 1 : ge(Ai) = C}|, l1 < · · · < lh and ge(Ali) = C.

Applying (A.53) (with h+1 in place of n and (Al1 , . . . , Alh , An) in place of (A1, . . . , An)),

(A.56) is the same as

P (ξh+1 ∈ An | ξh+1 ∈ C, ξ1 ∈ Al1 , . . . , ξh ∈ Alh)

that, by exchangeability, is equal to the right-hand side of (A.54), as desired.

A.3 Random partitions

Lemma A.15. For i = 1, . . . , N , let α∗
i be an exchangeable probability measure on (Zi,Zi)

and ρ be a probability measure on PN for which (5.7) holds true. If (ζ1, . . . , ζN ) is a random

vector such that

P{ζ1 ∈ C1, . . . , ζN ∈ CN} =
∑

π∈PN

ρ(π)

|π|
∏

i=1

α∗
|πi|

(×j∈πi
Cj)

is satisfied for every C1, . . . , CN in Z, then it is exchangeable.

Proof. For every permutation σ in SN and for every subset I = {i1, . . . , ik} of {1, . . . , N}

define gσ(I) = {σ(i1), . . . , σ(ik)}, and for every partition π in PN let fσ(π) be the partition

whose blocks are given by

gσ(πi) i = 1, . . . , |π|.

Observe that if F : PN × SN → R is a function such that F (π, σ) = F (fσ(π), id) for

every π in PN , then
∑

π∈PN

F (π, σ) =
∑

π∈PN

F (π, id). (A.57)

Given (C1, . . . , CN ) in X N , for every σ in SN and every π in PN set

F (π, σ) = P (ζ1 ∈ Cσ(1), . . . , ζN ∈ Cσ(N),Π = π) = ρ(π)

|π|
∏

i=1

α∗
|πi|

(×j∈πi
Cσ(j)).
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Now, note that ρ(π) = ρ(fσ(π))) and, moreover, that

|π|
∏

i=1

α∗
|πi|

(×j∈π1
Cσ(j)) =

|fσ(π)|
∏

i=1

α∗
|fσ(π)i|

(×j∈fσ(π)i
Cj).

Hence, by (A.57) exchangeability follows.

Proof of Proposition 5.1. For every k = 1, . . . , N let α∗
k be defined by

α∗
k(A1 ×B1 × . . . Ak ×Bk) =

∫

∩k
j=1Aj

k∏

i=1

κx(×k
j=1Bj) αk(dx) (A.58)

for every A1, . . . , Ak in X and every B1, . . . , Bk in Y. Since κx is an exchangeable kernel, it

follows that α∗ is exchangeable for every k. Hence Lemma A.15 yields the thesis.

Proof of Proposition 5.2. Expressions (5.9) and (5.10) follow from (5.6), (5.4), and the ex-

changeability of the (ξ, η)s, while (5.11) can be deduced from (5.9). As to (5.12), note first

that

E[f(ξ1)] E[g(ξ1)] =

N∑

l,k=1

wl wk M1,lM1,k. (A.59)

Moreover, it is easy to check that

E(f(ξ1)g(ξ2)) =

N∑

i=1

∑

π∈PN :1,2∈πi

ρ(π)M1,|πi|(fg)+
∑

i6=j

∑

π∈PN :1∈πi 2∈πj

ρ(π)M1,|πi|(f)M1,|πj |(g).

At this stage, rewrite wi as ti +
∑N

j=1 rij to get (5.12).

In order to prove Propositions 5.3 and 5.4, we need two simple preliminary results.

Lemma A.16. The conditional law of π̃ given (ξ(n), η(n)) turns out to be the same of the

conditional law of π̃ given ξ(n) and coincides with (5.15).

Proof. Let A := A1 × · · · ×An and B := B1 × · · · ×Bn, with Ai in X and Bi in Y for every
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i = 1, . . . , n. Given π in PN , let π̌ := π|n and ν := |π̌|. Observe that

E[τξ(n)(π) I{ξ(n)∈A, η(n)∈B}]

= ρ(π)
∑

Π∈PN

ρ(Π) E

[ I{π̌=Π|n}

∏ν
i=1 a|π̌i|(ξ

∗
i ) I{ξ∗

i
∈∩j∈π̌i

Aj} κξ∗
i
{×j∈π̌i

Bj}
∑

q∈PN
ρ(q) I{q|n=Π|n}

∏|q|n|
i=1 a|qi|(ξ

∗
i )

∣
∣
∣ Π(ξ(N)) = Π

]

= ρ(π)
∑

Π∈PN

ρ(Π) E

[ I{π̌=Π|n}

∏ν
i=1 a|π̌i|(ξ

∗
i ) I{ξ∗

i
∈∩j∈π̌i

Aj} κξ∗
i
{×j∈π̌i

Bj}
∑

q∈PN
ρ(q) I{π̌=q|n}

∏ν
i=1 a|qi|(ξ

∗
i )

∣
∣
∣ Π(ξ(N)) = Π

]

= ρ(π)

∫

Xν

ν∏

i=1

a|π̌i|(xi) I{xi∈∩j∈π̌i
Aj} κξ∗

i
{×j∈π̌i

Bj}

·

∑

Π∈PN
ρ(Π) I{π̌=Π|n}

∏ν
i=1 aΠi

(xi)
∑

q∈PN
ρ(q) I{q|n=π̌}

∏ν
i=1 a|qi|(xi)

µ(dx1) . . . µ(dxν)

= ρ(π) E[I{ξ(n)∈A, η(n)∈B} | Π(ξ(N)) = π]

= P{π̃ = π, ξ(n) ∈ A, η(n) ∈ B},

which yields the thesis.

Lemma A.17. The conditional law of ξ(n,N) given (ξ(n), η(n), π̃) turns out to be equal to

the conditional law of ξ(n,N) given (ξ(n), π̃) and it is given by (5.14).

Proof. Take any A in X N−n, B in Yn, C in X n, and π in PN , and observe that

P ({ξ(n,N) ∈ A} | η(n) ∈ B, ξ(n) ∈ C, π̃ = π)

=
P{η(n) ∈ B | ξ(n,N) ∈ A, ξ(n) ∈ C, π̃ = π} P{ξ(n,N) ∈ A | ξ(n) ∈ C, π̃ = π}

P{η(n) ∈ B | ξ(n) ∈ C, π̃ = π}

whenever P (ξ(n,N) ∈ A) > 0 and P (η(n) ∈ B, ξ(n) ∈ C, π̃ = π) > 0. Now, it is immediate

to check that P{η(n) ∈ B | ξ(n) ∈ C, ξ(n,N) ∈ A, π̃ = π} = P{η(n) ∈ B | ξ(n) ∈ C, π̃ = π},

and then the thesis follows.

Proof of Propositions 5.3 and 5.4. First of all, note that

Lξ(n,N), η(n,N)|ξ(n),η(n),π̃(dxn+1 . . . dxN dyn+1 . . . dyN )

= gn,N (dxn+1 . . . dxN | ξ(n), π̃) hn,N (dyn+1 . . . dyN | (ξ1, . . . , ξn, xn+1, . . . , xN ), η(n), π̃).
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Hence, by means of Lemmas A.16 and A.17, one gets

Lξ(n,N),η(n,N)|ξ(n),η(n)(dxn+1 . . . dxN dyn+1 . . . dyN )

=
∑

π

Lπ̃|ξ(n),η(n)(π) Lξ(n,N),η(n,N)|ξ(n),η(n),π̃(dxn+1 . . . dxNdyn+1 . . . dyN )

=
∑

π

τξ(n)(π) gn(dxn+1 . . . dxN | ξ(n), π)·

· hn,N (dyn+1 . . . dyN | (ξ1, . . . , ξn, xn+1, . . . , xN ), η(n), π).

At this stage both propositions follow easily.
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Saint-Flour, XIII—1983, Berlin: Springer, vol. 1117 of Lecture Notes in Math., pp. 1–198.

Berliner, L. M. and Hill, B. M. (1988), “Bayesian nonparametric survival analysis,” J. Amer.

Statist. Assoc., 83, 772–779.

Billingsley, P. (1995), Probability and measure, Wiley Series in Probability and Mathematical

Statistics, New York: John Wiley & Sons Inc., 3rd ed., a Wiley-Interscience Publication.

Blackwell, D. and MacQueen, J. B. (1973), “Ferguson distributions via Pólya urn schemes,”
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