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ABSTRACT

The self-organizing map (SOM) is a nonlinear machine learning algorithm that is particularly well suited for visualizing and analyzing
high-dimensional, hyperspectral time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging data. Previously, we compared the
capabilities of the SOM with more traditional linear techniques using ToF-SIMS imaging data. Although SOMs perform well with minimal
data preprocessing and negligible hyperparameter optimization, it is important to understand how different data preprocessing methods
and hyperparameter settings influence the performance of SOMs. While these investigations have been reported outside of the ToF-SIMS
field, no such study has been reported for hyperspectral MSI data. To address this, we used two labeled ToF-SIMS imaging datasets, one of
which was a polymer microarray dataset, while the other was semisynthetic hyperspectral data. The latter was generated using a novel algo-
rithm that we describe here. A grid-search was used to evaluate which data preprocessing methods and SOM hyperparameters had the
largest impact on the performance of the SOM. This was assessed using multiple linear regression, whereby performance metrics were
regressed onto each variable defining the preprocessing-hyperparameter space. We found that preprocessing was generally more important
than hyperparameter selection. We also found statistically significant interactions between several parameters studied, suggesting a complex
interplay between preprocessing and hyperparameter selection. Importantly, we identified interesting trends, both dataset specific and
dataset agnostic, which we describe and discuss in detail.
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I. INTRODUCTION

The self-organizing map (SOM) was first described by
Kohonen1 as a tool for visualizing and interpreting the topology of
a high-dimensional dataset. The SOM is a type of artificial neural
network (ANN) that uses unsupervised training of a (typically) 2D
interconnected network of neurons to produce a low-dimensional
topological map of the dataset. Detailed descriptions of the SOM
have been published elsewhere.1–4

Our group has demonstrated the utility of the SOM for the
analysis of time-of-flight secondary ion mass spectrometry
(ToF-SIMS) data.4–14 ToF-SIMS is an analytical technique for ana-
lyzing surface chemistry with nanometer depth resolution and sub-
micrometer spatial resolution, depending on instrument design and
parameters. ToF-SIMS data are hyperspectral because an entire
mass spectrum is associated with every pixel in the scan area. Such
rich datasets provide enormous analytical potential. However, this
potential is hampered by the complexity and size of the data.

More recently, we developed a way of using SOMs to visualize
hyperspectral ToF-SIMS images.4,6 Conspicuously, by incorporating
the relational perspective map (RPM),15 we have demonstrated
the power and robustness of SOMs for generating accurate models
of ToF-SIMS images, including both 2D7 and 3D14 hyperspectral
images.

Despite these successes, we have not formally investigated how
data preprocessing, such as scaling and/or normalization, com-
monly used in the analysis of ToF-SIMS data16–18 and SOM hyper-
parameter selection, affects performance. Here, we use a
grid-search approach to address this deficiency, identifying which
preprocessing steps and hyperparameters have the most impact on
SOM performance, based on a range of metrics. As part of the pre-
processing search space, we also include feature extraction (FE)
using a convolutional autoencoder (CNNAE) that we have previ-
ously applied to ToF-SIMS data.19 We opted to apply the CNNAE,
rather than other FE methods commonly applied to ToF-SIMS
data, based on its demonstrated efficacy in our study.

We quantify the impacts of preprocessing methods and hyper-
parameters on SOM performance using multiple linear regression
for two ToF-SIMS datasets. Although we use an unsupervised
SOM, both datasets are labeled, providing a more informative and
accurate analysis of data preprocessing and SOM hyperparameter
selection. The first dataset is a hyperspectral image of a polymer
microarray previously analyzed for other purposes.6,20 It was
chosen because it contained ground truth information, in that each
pixel in the hyperspectral image could be assigned to one of the 70
polymers in the microarray. The second dataset was generated by
combining independent ToF-SIMS images acquired from seven dif-
ferent nylon polymers, using a novel algorithm described below.
This algorithm generates labeled ToF-SIMS datasets with specific
levels of spectral mixing and spatial autocorrelation derived from
real acquired data (denoted as the semisynthetic data here). In the
broader machine learning (ML) literature, semisynthetic data are
routinely generated to augment real data and to enhance or investi-
gate ML performance. For example, in medical imaging, semisyn-
thetic images have been used to improve computer vision-based
classification performance.21–23 These semisynthetic datasets are
meaningfully distinct from purely synthetic data, and it is this

distinction that enables them to improve classification accuracy (in
these examples). In our case, the algorithm we developed enables
the generation of spatially well-characterized ToF-SIMS images,
with the benefit of maintaining the properties (noise, instrument
effects, etc.) of real data. This presents a valuable methodology for
testing the performance of so-called spatially aware ML algorithms
(such as the CNNAE19 and spatial k-means24), which consider
spatial relationships between pixels.

An important caveat of this study is that, while we explore
data preprocessing and SOM hyperparameter selection together,
improved SOM performance should not be conflated with the
general superiority (or not) of any given preprocessing pipeline.
Indeed, we explicitly warn against making such generalizations.
Rather, this study is intended to demonstrate why careful consider-
ation of data preprocessing steps is important, while also showing
that preprocessing and SOM hyperparameter selection are not
independent. Given this, we discuss ways in which the study out-
comes may be valuable more generally in the paper.

II. EXPERIMENT

A. Microarray printing and ToF-SIMS

Polymer microarray printing and ToF-SIMS experimental
details for the sample studied have been described previously.6,20

Briefly, the microarray comprised 70 unique polymer spots printed
onto a poly(hydroxy ethylmethacrylate)-coated slide.6,20

ToF-SIMS data were acquired using an IONTOF TOF.SIMS 4
instrument. An analysis area of 9.2 × 9.2 mm2 (with a pixel size of
10 × 10 μm2) was scanned using a stage raster with 25 keV Bi3

+

primary ion beams and a negative ion detection mode. A low-
energy electron flood gun was employed to counteract sample
charging.

Peaks were automatically detected in the data using a count
threshold of >100 counts using the SurfaceLab6 peak search func-
tion. A total of 717 peaks were identified and selected in this way,
the summed intensities of which then constituted the hyperspectral
dataset. From this dataset, only pixels from within the polymer
dots were analyzed, which were selected by drawing elliptical
regions of interest based on the total ion count (TIC) image. This
resulted in a total of 52 440 pixels being included in the analysis.

B. Nylon sample preparation and ToF-SIMS

Nylon sample preparation and ToF-SIMS experimental details
have been described previously.8 Briefly, seven chemically similar
but distinct nylon (polyamide) materials were supplied in the pellet
form, which were cut with a scalpel blade to expose a clean, flat
surface. Samples were secured to the ToF-SIMS mount using a
double-sided tape.

ToF-SIMS data were acquired using an IONTOF TOF.SIMS 5
instrument, using pulsed 30 keV Bi3

+ primary ions in bunched
mode. A range of images were collected using positive and negative
polarities, covering 100 × 100 μm analysis areas at 128 × 128 pixels;
however, only a single positive image from each nylon type was
used in this study. A low-energy electron flood gun was used to
counteract charging.
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Data were binned using 0.1 m/z mass intervals over the range
of 1–300 m/z. The summed intensities of these intervals for each
pixel then constituted the hyperspectral dataset.

C. Semisynthetic hyperspectral data

The algorithm developed is designed to generate a semisyn-
thetic ToF-SIMS data cube by mixing C real ToF-SIMS data cubes,
each corresponding to one of the C unique classes. Let X [
R

þh�w�p�C
0 be a concatenation of C such real data cubes, where h

and w represent the two spatial dimensions and p represents the
spectral dimension (either the number of m/z channels/bins or the
number of mass peaks). We seek to generate a semisynthetic
ToF-SIMS data cube, ~X [ R

þh�w�p
0 , by mixing the data from X

using a class membership array, M [ [0, 1]h�w�C .
Formally, we calculate the spectrum of the pixel at spatial

coordinates (i, j) in ~X as

~Xi,j,* ¼
XC
c¼1

Mi,j,c � Xi,j,*,c,

i [ [1, h] and j [ [1, w],

(1)

where Mi,j,c is the (scalar) membership fraction of class c for the
pixel and Xi,j,*,c is the corresponding (vector) pixel spectrum from
the kth data cube in X. Note also that Eq. (1) could equally be
replaced by a nonlinear mixing function. For example, such a func-
tion could be designed to model ion suppression or enhancement
between interacting classes due to matrix effects, in the case of
ToF-SIMS data.

In addition to X, we also need to calculate a suitable M. The
algorithm we used to generate M is outlined below and is separated
into two distinct phases. This algorithm and the corresponding
phases are also detailed in Fig. S1 in the supplementary material.37

Briefly, phase 1 iteratively adds to M by randomly selecting pixel
coordinates from a spatially uniform probability distribution. Phase
2, in contrast, iteratively adds to M by assigning pixels that are
close together to the same class, thereby increasing the spatial auto-
correlation of the class assignments.

Formally, in phase 1 (Fig. S1A),37 we initialize M0 ¼ [O]h�w�C

and A0 ¼ [1]h�w, where [O]h�w�C and [1]h�w are arrays of all zeros
and all ones of size h� w� C and h� w, respectively. We define A
as the pixel availability matrix. We then iteratively select a set of
spatial pixel coordinates, (i, j), and a class index, c, where i [ [1, h],
j [ [1, w], and c [ [1, C]. This is done by first randomly drawing
c from a 1D uniform distribution along the class dimension. We
then draw (i, j) from a 2D probability distribution along the spatial
dimensions. At iteration t and for class c, this distribution is given by
the matrix

Pt
c ¼ Norm(At�1), (2)

where Norm(�) returns the input matrix normalized to unity. Note
that Pt

c is a uniform distribution across the available pixels that are
represented as ones in At�1.

We then add a 2D Gaussian distribution (neglecting the stan-
dardizing constant, which is not needed as we normalize later)

with standard deviation σ to Mt�1
c , centered around the pixel at

(i, j). That is, at iteration t, we set

Mt
i0 , j0 ,cC

t
i0 , j0 ,c ¼ Mt�1

i0 , j0 ,cC
t�1
i0 , j0 ,c þ exp � (i0 � i)2 þ ( j0 � j)2

2σ2

 !
,

i0 [ [1, h] and j0 [ [1, w]:

(3)

Note that to reduce the computational complexity in practice,
we only calculate Eq. (3) for those (i0, j0) within some neighbor-
hood of (i, j), outside of which Mt

i0 , j0 ,c � Mt�1
i0 , j0 ,c according to

Eq. (3).
In addition, we set

At
i0 , j0 ¼

0 if (i0, j0) ¼ (i, j)
At�1
i0 , j0 else

�
i0 [ [1, h] and j0 [ [1, w]

(4)

to remove the pixel from the availability matrix A. We represent
the total number of iterations in phase 1, and therefore, the total
number of pixels selected in this phase as T1.

Phase 2 (see Fig. S1B)37 is almost identical to phase 1;
however, the selection of a set of spatial pixel coordinates, (i, j), is
modified to increase the spatial autocorrelation of the class mem-
bership maps in M. Specifically, at iteration t, we first randomly
select c as in phase 1. We then use the cth class membership map,
Mt�1

c , and the pixel availability matrix, At�1, from the previous
iteration to generate the 2D probability distribution matrix Pt

c,
from which we draw (i, j). Specifically, Pt

c is calculated as

Pt
c ¼ Norm

�
Mt�1

c � At�1
�
, (5)

where � represents the Hadamard product (i.e., element-wise mul-
tiplication). Note that the inclusion of Mt�1

c is the only difference
between Eq. (5) in phase 2 and Eq. (2) in phase 1.

We then use Eq. (3) to add a 2D Gaussian distribution to
Mt�1

c and Eq. (4) to remove the pixel from At�1 as in phase 1.
Phase 2 is repeated until At ¼ [O]h�w, i.e., until each pixel has
been drawn once and only once. Finally, we normalize M to unity

along the class dimension, such that
PC
c¼1

Mi,j,c ¼ 1 for all i, j.

Rather than selecting a single value for σ, for all 2D Gaussian
distributions, we draw a new σ t at each iteration from a Rayleigh
distribution, which has a probability density function

p(x; σr) ¼ x
σ2
r
exp � x2

2σ2
r

� �
, x � 0, (6)

where σr is the scale parameter. Drawing σ t at each iteration using
Eq. (6) introduces additional spatial complexity into M.

Therefore, the algorithm outlined above is controlled by two
key parameters: T1 and σr . Together, these parameters control the
level of spatial autocorrelation in the class membership maps in M
as well as the degree of mixing between classes within each pixel.
Given that M is used to calculate ~X [see Eq. (1) and Fig. S1C],37

these parameters consequently control the degree of interclass
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spectral mixing in ~X. Additionally, under the assumption of high
spatial autocorrelation in each of the C real ToF-SIMS datasets,
they also control the autocorrelation of individual ion images in ~X.
Therefore, it is possible to consider a range of values for T1 and σr

to generate M (and, therefore, ~X) with different levels of spatial
autocorrelation and spectral mixing (Fig. S2).37

To quantify spatial autocorrelation of the maps in M, we used
Moran’s I.25 To quantify spectral mixing, we propose a spectral
purity metric, SP, for a given M, defined as

SP ¼
MeanMax(M)� 1

C

1� 1
C

, (7)

where MeanMax(M) returns the mean of the maximum member-
ship fractions for each pixel in M. Note that if M is normalized to
unity along the class dimension (as in our algorithm), SP is
bounded between 0 and 1: when there is no spectral mixing (i.e.,
when M contains only zeroes and ones), MeanMax(M) ¼ 1, and
therefore, SP ¼ 1. With increased spectral mixing, MeanMax(M)
and, therefore, SP are reduced. Under the condition of maximum
spectral mixing, each element in M will be equal to 1/C, such that
MeanMax(M) ¼ 1/C and SP ¼ 0.

D. Data preprocessing and SOM training

This study used a grid search to investigate the effects of a
range of data preprocessing methods and SOM hyperparameters
on the performance of the ToF-SIMS hyperspectral data models.
Figure 1 summarizes the preprocessing methods and SOM hyper-
parameters that were investigated in the grid-search. The hyper-
spectral imaging data, after unfolding, were analyzed by several
preprocessing pipelines (Fig. 1). These involved either no process-
ing or normalization of each pixel to TIC, plus one of the following
scaling methods: min-max scaling where ion images were scaled
between 0 and 1; Poisson scaling where ion images were scaled by
the square root of their mean to account for Poisson noise;26,27 or
standardization (z-scaling) where images were mean-centered
(except for when the data were encoded by the CNNAE, which

enforces nonnegativity) then scaled to unit standard deviation.
Data were also analyzed without applying any scaling method, with
and without normalization to TIC. After preprocessing, data were
either analyzed directly or used to train a CNNAE, designed to
extract latent features from a hyperspectral dataset, as has been
described previously.19 We used an identical architecture (number
of layers, size of convolutional filters, etc.) as described previ-
ously.19 We selected 100 latent features for the encoding, and the
CNNAE was constructed using Tensorflow28 (with GPU) with the
Keras API29 in PYTHON. In total, 16 different preprocessing pipe-
lines were employed.

For each preprocessing pipeline, a range of SOMs were trained
with various hyperparameters, as outlined in Fig. 1. These included:
square or hexagonal topologies (i.e., 8 or 6 neighbors for each
neuron); planar or toroidal boundaries; map sizes of 10 × 10,
20 × 20, 30 × 30, or 40 × 40 neurons; and 1, 2, 4, 5, 8, 10, 20, 50,
100, 200, or 500 training epochs. This resulted in 2816 combina-
tions of SOM hyperparameters and data preprocessing methods.
Three replicate SOMS (with random weight initialization) were
trained for each combination, resulting in a total of 8448 models.

All SOM models were constructed using the Kohonen and
CP-ANN Toolbox for MATLAB, with GPU support.2,3 A Dell
Precision 3650 Tower workstation was used for all calculations,
with an Intel Xeon W-1390P processor, 128 GB RAM, and an
NVIDIA Quadro RTX 5000 GPU. With this system and toolbox,
the SOM training time was ∼0.1–2 s per epoch (∼50–1000 s for the
500 epoch models), depending on the SOM size and dataset. We
note that the computation time was specific to the implementation
itself, such that other SOM implementations (e.g., in Python) may
exhibit slower or faster training times with the same settings.

E. SOM performance evaluation

We used three label-based performance metrics to quantify
SOM performance: homogeneity (as part of the V-measure30 metric);
the Jaccard similarity index;31 and the class scatter index.32 We also
employed one label-free metric, topographic error,33 to compute
SOM topology preservation.34 For brevity, we only give a high-level
overview of these metrics, although we provide a more thorough
mathematical description of the V-measure score in the SI.37

FIG. 1. Schematic showing the specifics of the grid-search used to evaluate the performance of the SOM for ToF-SIMS imaging data. Acquired hyperspectral ToF-SIMS
data are first unfolded, passed through one of the several preprocessing pipelines, and then used to train a new SOM. Various hyperparameter combinations are used for
different SOMs, as shown. Finally, each SOM model is evaluated using several external performance metrics, which are then used to construct a multiple linear regression
model to evaluate the influence of each variable on SOM performance.
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V-measure is an entropy-based measure of the overall perfor-
mance of clustering algorithms. It is defined as the weighted har-
monic mean of the homogeneity and completeness scores. The
completeness score is a measure of how effectively the clustering
has assigned a class (in this case, the polymer type) to a single
cluster (in this case, a neuron on the SOM). Inversely, the homoge-
neity score measures how effectively the clustering has assigned a
cluster to a single class. Therefore, the V-measure score attempts to
balance these two scores by using their harmonic mean. As will be
discussed in Sec. III, the homogeneity score is more important than
the completeness score for the SOM. This is because it is not neces-
sarily undesirable for the SOM to assign multiple neurons to the
same class, given its self-organizing and topology-preserving
nature. As such, we only consider this score in our evaluations.
Furthermore, to be consistent with other metrics used in our evalu-
ation for which a smaller score is better, we convert the homogene-
ity, h, to what we call heterogeneity, given simply as 1� h. In this
form, a heterogeneity of zero is considered ideal.

The Jaccard similarity index,31 J(A, B), which we have used
previously to evaluate SOM performance on the same microarray
dataset,6 is a straightforward measure of how well two given classes,
A and B, are distinguished. Specifically, the index is defined as

J(A, B) ¼ jA> Bj
jA< Bj : (8)

Note that the Jaccard index only measures similarity between
pairs of classes. Hence, to evaluate the overall performance of the
SOM for the entire set of classes, we calculated the mean Jaccard
index for every pair of classes.

The class scatter index (CSI) was proposed specifically for the
SOM32 and measures the mean number of clusters assigned to each
class. For a given class c, neighboring neurons are considered part
of the same cluster if they are associated with one or more samples
(pixels) in class c. The CSI equates fewer clusters with better SOM
performance, based on topology preservation.

Finally, we also calculated the topographic error,33 TE, for
each SOM. This is a label-free metric designed to measure SOM
topology preservation. Mathematically, TE is given by

TE ¼ 1
n

Xn
i¼1

t(xi, W), (9)

t(x, W) ¼ 0 if μ1(x, W) and μ2(x, W) are neighbors
1 otherwise

,

�

where xi is the ith pixel spectrum (after scaling), W is the weights
matrix of the SOM, and μ1(x, W) and μ2(x, W) return the closest
and second closest (based on Euclidean distance) neurons to x,
respectively.

III. RESULTS AND DISCUSSION

A. Generation of semi-synthetic ToF-SIMS data

This study of the effects of preprocessing and hyperparameter
selection on SOM model performance uses the CNNAE as part of

data preprocessing. While we focus on SOM and CNNAE algo-
rithms specifically, there is an interesting and general question
about the importance of preprocessing and hyperparameter selec-
tion, which is applicable to all unsupervised ML methods used to
analyze hyperspectral imaging data. One of the key challenges is
the lack of accurately labeled datasets, where each pixel is (reliably)
assigned to one of a discrete number of classes.

The microarray format provides one solution to this problem.
As each spot corresponds to a single polymer, it can, therefore, be
labeled reliably. The drawback of this approach is that the format
does not provide insight into how spatially aware algorithms (such
as the CNNAE) perform when pixels from different classes are
adjacent to one another and/or spectrally mixed to varying degrees.

While it is possible to prepare such materials experimentally,
there is, generally, a trade-off between the degree of interclass
mixing and the reliability of pixel labeling. That is, it becomes
increasingly difficult to reliably label each pixel in a ToF-SIMS
image as the complexity of the physical sample increases. To
address this problem, we developed a novel algorithm to mix
spectra from C discrete ToF-SIMS data cubes at the individual pixel
level. This algorithm [Eqs. (1)–(6) and Fig. S1]37 enables highly
complex data to be generated from real data (hence, the use of the
term semisynthetic) with reliable pixel labeling. Furthermore, the
algorithm parameters can be tweaked to increase or decrease spec-
tral mixing and/or spatial autocorrelation or to use nonlinear class
mixing.

For example, in Fig. S2,37 we present class membership maps in
M, generated using a range of values for T1 (number of pixels
assigned in phase 1) and σr (scale parameter). We also estimate the
spatial autocorrelation of each map using Moran’s I measure and the
spectral purity, SP, defined in Eq. (7). Clearly, the algorithm generates
a diverse range of semisynthetic datasets for an arbitrary number of
classes C. We anticipate that this approach will be of value to those
interested in exploring spatially aware ML algorithms with ToF-SIMS
(or other hyperspectral) data. Here, we used T1 ¼ 0:005n, where n is
the total number of pixels, and σr ¼ 0:5 (Fig. S2).37

B. Evaluating preprocessing and hyperparameter
importance

We used multiple linear regression (MLR) to quantify the rela-
tionships between preprocessing methods, hyperparameters, and
SOM performance using heterogeneity, Jaccard index, CSI, and
topographic error metrics. This MLR-based approach is commonly
used for design of experiments (DoE)35,36 but is equally applicable
to our study. MLR was performed using the Statistics and Machine
Learning Toolbox in MATLAB. For added interpretability, we broadly
classified the four metrics into two types: class-cluster similarity
(heterogeneity and Jaccard index) and topology preservation (CSI
and topographic error). For each metric, a smaller value (a more
negative coefficient) is considered better.

Recall that we trained SOM models with various training
epochs, ranging from 1 to 500. We did this to ensure convergence
of the models based on the commonly used quantization error
metric. From these results, we concluded that training for 500
epochs was generally sufficient for convergence. Nevertheless, we
opted to build MLR models at 10, 100, and 500 epochs separately
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for completeness and additional comparison, and we have included
all of these in the SI (as detailed later).37 We have also included a
range of example figures in the supplementary material showing
the progression of SOM training for each metric used, focusing on
a selection of the preprocessing methods and hyperparameters
studied (Figs. S3–S10).37 We provide these as additional points of
reference for the remainder of the discussion. However, they are
not critical as the central focus of this study is on the converged
SOMs.

We first constructed models without interaction terms. MLR
regression coefficients extracted from these models for both data-
sets are summarized in Tables S1 and S2,37 along with the adjusted
R2 values for each model. While there were many statistically signif-
icant coefficients in these models, it is generally important to con-
sider whether interactions between variables were present, which
would render these coefficients uninterpretable. Hence, we con-
structed similar models allowing for all first-order interactions. We
used stepwise subset selection (with combined forward and back-
ward steps) based on adjusted R2 to identify the subset of variables
to use for each model. We only report results for the 500 epoch
model here, while the complete set of results is provided in the SI
(Tables S3 and S4).37

The standardized regression coefficients from the 500 epoch
models for the polymer microarray and nylon datasets, along with
their adjusted R2 values, are presented in Tables I and II, respec-
tively. Variables not included in the models are presented as NA in
the tables. The large increase in adjusted R2 values (compared with
models without interactions) provides strong evidence for the pres-
ence of interaction effects in both datasets. Before looking more
closely at these interactions, on a higher level, it is important to
note that the presence of substantial interactions is critically impor-
tant, as it indicates that the choice of preprocessing methods and
hyperparameter selection is not independent.

More specifically, Tables I and II identify several interesting
trends. Notably, preprocessing interactions were generally much
stronger than both hyperparameter and preprocessing-
hyperparameter interactions. This indicates that, at least for these
data and SOM models, decisions about preprocessing were most
important and highly complex. Figures 2 and 3 further visualize
these variables and their influence on each metric for the microar-
ray and nylon datasets, respectively. These figures show each metric
(rows; A–D) as a function of the SOM size, for each scaling
method (columns). Overlaid in each plot are results for raw data
(black circles), data normalized to TIC (red squares), encoded data
(green diamonds), and data normalized to TIC and then encoded
(blue stars). Figures 2 and 3 clearly demonstrate interactions
between these variables (discussed in more detail later), explaining
why the MLR models with interaction terms yield higher adjusted
R2 values. Collectively, Tables I and II and Figs. 2 and 3 together
provide a wealth of information about how key variables (SOM
size, scaling method, TIC normalization, and encoding) influence
SOM performance across all four metrics, both individually and
through their interactions. With these as a reference, we now
proceed with a systematic breakdown and evaluation of key
findings.

SOM size, on its own, tended to have a similar effect across
both datasets (Figs. 2 and 3). Namely, increasing SOM size TA
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improved performance according to the heterogeneity and Jaccard
index metrics (class-cluster similarity) but worsened performance
according to the TE and CSI metrics (topology preservation). This
suggests that larger SOMs did a better job of differentiating classes;
however, they tended to be less topologically correct. An exception
to this trend is evident in the TE metric for the microarray dataset
(Fig. 2), which initially decreased when the SOM size was increased
from 10 × 10 to 20 × 20 neurons (even though CSI increased). At
larger sizes, both CSI and TE increased. Given that there were 70
classes in this dataset, this could suggest that the 10 × 10 SOM (100
neurons) was not sufficiently large to correctly model topology,
such that an increase in the SOM size led to better topology preser-
vation. This is in contrast to the nylon dataset, with only seven
classes, for which both TE and CSI almost exclusively monotoni-
cally increased in relation to the SOM size. These results suggest
that the optimal SOM size depends on the number of distinct
classes in the data. While this is not typically known for unsuper-
vised analyses, it is, nevertheless, important to consider.

Aside from the SOM size, normalization to TIC and data
encoding using the CNNAE led to significantly different outcomes,
depending mostly on both the dataset and the scaling method
used. With regard to TIC normalization, this is not unexpected,
since the efficacy depends entirely on the system being studied and
on the aims of the analysis. For example, for the microarray
dataset, Table I and Fig. 2 show that both normalization and
encoding generally improve performance across all metrics, indicat-
ing improved class-cluster similarity and topology preservation.
Furthermore, Table I highlights a negative and significant interac-
tion between these variables (for all metrics other than TE), indi-
cating that the benefit of encoding was increased through
normalization (and vice versa). In contrast, Table II and Fig. 3
show that, for the nylon dataset, normalization and encoding tend
to reduce performance, according to the class-cluster similarity
metrics. However, depending on the scaling method used, encod-
ing sometimes led to improved performance according to the
topology preservation metrics, most notably TE. It is important to
note that we only considered encoding to 100 features. It is likely
that modifying this as a hyperparameter of the CNNAE model
would change these outcomes; however, given that this study was
focused on SOM hyperparameters, this was outside the scope of
this study. Nevertheless, it is an important and ongoing area of
study.

Generally, across both datasets, there were clearly strong inter-
actions between the scaling method and encoding (Figs. 2 and 3,
and Tables I and II). For the microarray dataset, the interaction
between standardization and encoding was the strongest—stand-
ardization in the absence of encoding led to worse performance
across all four metrics used, whereas encoding mitigated this effect.
Similar outcomes were observed for Poisson scaling and encoding.
It is important to emphasize that this appeared to be mostly due to
the poor performance of these scaling methods without encoding,
rather than their interaction producing superior performance to
other scaling methods. For the nylon dataset, interactions between
encoding and Poisson scaling or standardization were mixed, with
mixed positive and negative interactions for class-cluster similarity
metrics, and mostly, negative interactions for topology metrics (as
mentioned earlier).TA

B
LE

II.
St
an
da
rd
iz
ed

re
gr
es
si
on

co
ef
fic
ie
nt
s
fro
m
M
LR

m
od
el
s
of
th
e
ny
lo
n
da
ta
se
t,
tra
in
ed

us
in
g
va
rio
us

pr
ep
ro
ce
ss
in
g
m
et
ho
ds

an
d
hy
pe
rp
ar
am

et
er
s,
as

we
ll
as

th
ei
r
in
te
ra
ct
io
ns
.B

ol
de
d
en
tri
es

ar
e

st
at
ist
ic
al
ly
si
gn
ifi
ca
nt
at
p
<
0.
05
.S

ta
rs

re
pr
es
en
ts
ig
ni
fic
an
ce

le
ve
ls
:*

p
<
0.
05
,*
*
p
<
0.
01
,*
**
p
<
0.
00
1.
In
te
rc
ep
ts
ar
e
sh
ad
ed

in
gr
ay
,w

he
re
as

co
ef
fic
ie
nt
s
ar
e
sh
ad
ed

fro
m
re
d,
th
ro
ug
h
w
hi
te
,t
o
gr
ee
n,

w
he
re
re
d
is
w
or
se
,w

hi
te
is
ne
ut
ra
l,
an
d
gr
ee
n
is
be
tte
rp

er
fo
rm
an
ce
.N

ot
e
th
at
co
lo
rin
g
is
re
la
tiv
e,
pe
rm

od
el
.

T
yp
e

M
et
ri
c

A
dj

R
2

In
te
rc
ep
t

P
re
pr
oc
es
si
ng

H
yp
er
pa
ra
m
et
er
s

P
re
pr
oc
es
si
ng

in
te
ra
ct
io
ns

T
IC

no
rm

M
in
m
ax

Po
is
so
n

St
an
da
rd

E
nc
od

ed
T
or
oi
da
l

H
ex
ag
on

SO
M

si
ze

T
IC

no
rm

m
in
m
ax

T
IC

no
rm

Po
is
so
n

T
IC

no
rm

st
an
da
rd

T
IC

no
rm

en
co
de
d

M
in
m
ax

en
co
de
d

Po
is
so
n

en
co
de
d

St
an
da
rd

en
co
de
d

C
la
ss
-C

lu
st
er

si
m
ila
ri
ty

H
et
er
og
en
ei
ty

0.
82

0.
04
0*
**

0.
00
33

−
0.
02
8*
**

0.
00
71
*

0.
00
30

0.
06
0*
**

−
0.
00
21

N
A

−
0.
01
2*
**

0.
01
1*
**

−
0.
03

2*
**

0.
01

6*
**

−
0.
01

4*
**

0.
00
22

0.
03

1*
**

0.
00
0
38

Ja
cc
ar
d
in
de
x

0.
82

0.
26
**
*

N
A

−
0.
00
64

0.
01
7*

0.
08
5*
**

0.
08
7*
**

−
0.
00
62

*
N
A

−
0.
05
8*
**

N
A

N
A

N
A

N
A

0.
01

7*
*

0.
04

2*
**

−
0.
01

2*

T
op

ol
og
y

pr
es
er
va
ti
on

C
SI

0.
88

−
2.
6*
**

1.
3*

1.
4*

1.
1

1.
5*

3.
1*
**

0.
44

−
0.
41

7.
2*
**

0.
60

−
2.
4*
**

1.
1*

−
2.
0*
**

0.
37

−
0.
50

−
9.
2*
**

T
op

og
ra
ph

ic
er
ro
r

0.
90

0.
13
**
*

0.
03
6*
*

−
0.
17
**
*

−
0.
18

**
*
−
0.
07
5*
**

0.
35
**
*

0.
03
8*
*

0.
12

**
*

0.
17

**
*

−
0.
04
1*
**

0.
03

3*
*

0.
00
59

−
0.
03

6*
**

−
0.
17
**
*

−
0.
28

**
*

−
0.
33

**
*

H
yp
er
pa
ra
m
et
er

in
te
ra
ct
io
ns

P
re
pr
oc
es
si
ng
-h
yp
er
pa
ra
m
et
er

in
te
ra
ct
io
ns

T
yp
e

M
et
ri
c

T
or
oi
da
l

he
xa
go
n

T
or
oi
da
l

SO
M

si
ze

H
ex
ag
on

SO
M

si
ze

T
IC

no
rm

to
ro
id
al

T
IC

no
rm

he
xa
go
n

T
IC

no
rm

SO
M

si
ze

M
in
m
ax

to
ro
id
al

M
in
m
ax

he
xa
go
n

M
in
m
ax

SO
M

si
ze

Po
is
so
n

to
ro
id
al

Po
is
so
n

he
xa
go
n

Po
is
so
n

SO
M

si
ze

St
an
da
rd

to
ro
id
al

St
an
da
rd

he
xa
go
n

St
an
da
rd

SO
M

si
ze

E
nc
od

ed
to
ro
id
al

E
nc
od

ed
he
xa
go
n

E
nc
od

ed
SO

M
si
ze

C
la
ss
-C

lu
st
er

si
m
ila
ri
ty

H
et
er
og
en
ei
ty

N
A

N
A

N
A

N
A

N
A

0.
00
28

−
0.
00
11

N
A

0.
00
85
**
*

−
0.
00
16

N
A

−
0.
00
17

−
0.
00
47

N
A

0.
00

62
*

0.
00

37
*

N
A

−
0.
03

0*
**

Ja
cc
ar
d
in
de
x

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

−
0.
00
49

N
A

N
A

−
0.
02

0*
**

N
A

N
A

−
0.
03

4*
**

0.
00
73

N
A

−
0.
06

0*
**

T
op

ol
og
y

pr
es
er
va
ti
on

C
SI

1.
5*
**

−
1.
4*
**

N
A

−
0.
45

N
A

0.
59

−
0.
31

N
A

−
3.
1*
**

−
0.
78

N
A

1.
7*
**

−
1.
4*
*

N
A

8.
2*
**

1.
1*
**

0.
33

N
A

T
op

og
ra
ph

ic
er
ro
r

N
A

−
0.
03
7*
**

−
0.
02
0*

N
A

N
A

0.
01
4

−
0.
02
9*

0.
01
2

0.
26

**
*

−
0.
00
74

0.
02
1

0.
25

**
*

−
0.
00
62

0.
00
34

0.
26
**
*

0.
05

5*
**

0.
02

0*
−
0.
29
**
*

ARTICLE pubs.aip.org/avs/jva

J. Vac. Sci. Technol. A 41(6) Nov/Dec 2023; doi: 10.1116/6.0002788 41, 063204-7

© Author(s) 2023

 21 Septem
ber 2023 20:24:49

https://pubs.aip.org/avs/jva


FIG. 2. Example results from the grid-search of the preprocessing-hyperparameter space for the polymer microarray dataset. Plots show the heterogeneity score (a),
Jaccard index (b), topographic error (TE) (c), and class scatter index (CSI) (d) for a range of converged SOMs of different sizes, trained using data scaled using different
methods. In each case, square neurons with toroidal topology were used. Each plot compares the metrics as a function of the SOM size, using either raw data (black
circles), data normalized to total ion count (TIC) (red squares), data encoded to 100 features using the CNNAE (green diamonds), or data normalized and then encoded
(blue stars). Error bars show a standard deviation of three replicates, and the y-axis scale is logarithmic.
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FIG. 3. Example results from the grid-search of the preprocessing-hyperparameter space for the nylon dataset. Plots show the heterogeneity score (a), Jaccard index (b),
topographic error (TE) (c), and class scatter index (CSI) (d) for a range of converged SOMs of different sizes, trained using data scaled using different methods. In each
case, square neurons with toroidal topology are used. Each plot compares the metrics as a function of the SOM size, using either raw data (black circles), data normalized
to total ion count (TIC) (red squares), data encoded to 100 features using the CNNAE (green diamonds), or data normalized and then encoded (blue stars). Error bars
show a standard deviation of three replicates, and the y-axis scale is logarithmic.
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Given that standardization and Poisson scaling both appeared
to reduce SOM performance, it is important to discuss these in
more detail. Both methods involve the division of ion images/fea-
tures by a statistical measure of that feature. For standardization,
this is the standard deviation, while for Poisson scaling, it is the
square root of the feature mean. If the data contain several features
with means close to zero (e.g., noise m/z bins in the nylon dataset),
then dividing by the square root of the mean leads to strong
upscaling of noise, indicating that this method may be unsuitable
for such data. Furthermore, Poisson scaling is based on the
assumption that noise in the data follows a Poisson distribution.
However, particularly if other preprocessing steps are applied prior
to Poisson scaling (for example, normalization to TIC), such an
assumption can be invalidated. We included such statistically
invalid preprocessing pipelines in the empirical grid-search only
for completeness. Finally, Poisson scaling is designed to account for
heteroscedastic noise related to Poisson statistics. Division of fea-
tures by the square root of their mean can transform the data into
a space in which the noise is more uniform. For methods that focus
on data variance, such as principal component analysis (PCA),
scaling has been demonstrated to be highly effective in improving
the interpretability of the PCA model.26,27 However, for the SOM,
it is less clear whether heteroskedastic noise is as much of an issue.
Combined with the adverse effects associated with low signal fea-
tures, this could explain why Poisson scaling did not perform well
for these datasets and SOM models. Our results emphasize the
importance of considering which preprocessing method is used;
Poisson scaling is effective for some ML methods and datasets, but
this should not be assumed in general.

Of all the scaling methods, min-max scaling appeared to give
the best performance across both datasets. It is important to
emphasize again, however, that particular outcomes from this
empirical investigation are specific to these data and to the SOM
itself. Like standardization and Poisson scaling, min-max scaling
has limitations, such as the potential to skew data distributions or
emphasize noise. Therefore, we advise that such limitations should
always be considered specifically for each dataset and statistical/
machine learning algorithm being applied.

Another important interaction occurred between encoding
and SOM size, which was strongly negative (and significant) across
both datasets and all metrics, except for the Jaccard index for the
microarray dataset. This must be interpreted carefully: these results
do not imply that larger SOMs combined with encoding produced
globally superior outcomes with regard to topology preservation.
Indeed, it is clear from Figs. 2 and 3 (and as per the earlier discus-
sion) that larger SOMs were associated with poorer topology pres-
ervation, regardless of whether data were encoded. Rather, these
results suggest that if a large SOM is desired (for some reason
other than topology preservation, e.g., if the data are expected to
contain many classes), then it may be preferable to also encode the
data to mitigate the loss of topology preservation. It is worth point-
ing out, however, that there also appear to be higher-order interac-
tions that occurred (Figs. 2 and 3), such as between the scaling
method, SOM size, and encoding. Such interactions precisely dem-
onstrate the complexity of identifying the optimal combination of
preprocessing methods and model hyperparameters, especially for
unsupervised analyses. Note that these results may apply to

dimensionality reduction in general, but we encoded the data using
the CNNAE only. Comparison against other feature extraction
methods is outside the scope of this study and is left for future
exploration.

Another noteworthy outcome is that the interaction between
toroidal topology and SOM size was exclusively negative and signif-
icant for the topographic error metric. Like the interaction between
encoding and SOM size, this does not indicate that this combina-
tion of hyperparameters achieves optimal topology preservation.
Rather, it suggests that, if using a larger SOM, using toroidal topol-
ogy aids in topology preservation. Furthermore, the same interac-
tion was also negative and significant with regard to CSI for the
nylon dataset (the interaction was not included for the microarray
dataset). Thus, the detrimental effect of increased SOM size on CSI
was again mitigated somewhat by using toroidal topology.

IV. CONCLUSIONS

We have demonstrated that preprocessing and hyperparameter
selection can have a significant impact on the performance of the
SOM applied to the analysis of ToF-SIMS images. We also showed
that semisynthetic ToF-SIMS data, generated from real ToF-SIMS
data, are useful for comparing the performance of ML algorithms,
particularly those that are spatially aware. While real datasets with
reliable ground truth labels are still considered the gold standard,
such datasets are much more difficult and time-consuming to
acquire. Therefore, semisynthetic data represent a valuable comple-
mentary source of labeled data that are much more readily
available.

The results from this study indicate the importance of care-
fully considering preprocessing and hyperparameters when apply-
ing the SOM. Unfortunately, for unsupervised algorithms such as
the SOM, ground truth information is typically not available,
making it much more difficult to choose the optimal combination
of preprocessing methods and hyperparameters. Therefore, we
summarize those trends that were general across both datasets
studied.

First, we note that increasing SOM size tended to improve the
so-called class-cluster similarity of the models, whereby they better
captured the underlying classes present in the data (especially
when many classes were present). However, increasing SOM size
also appeared to reduce topology preservation, such that there was
a trade-off between these two outcomes.

Second, we note that the use of toroidal topology and data
encoding (in this case, by a CNNAE) mitigated the loss of topology
preservation for larger SOMs. This is important, as it implies that,
if one wishes to use a large SOM, it is advisable to also use toroidal
topology and to reduce the dimensionality of the data through
encoding. Of course, the effect of encoding is likely to depend on
the dimensionality of the original data and the number of features
extracted, which must also be considered.

Third, we note that, in almost all cases, Poisson scaling and
standardization performed either no better than, or worse than, no
scaling. This suggests no clear benefit to these scaling methods. We
emphasize that this outcome was specific to the SOM and may be
specific to these datasets. Nevertheless, this does prompt further
research in this area focusing on other ML models and datasets.
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Finally, while these trends were consistent across both datasets
studied, it is important to emphasize that this does not necessarily
imply generality and that these trends may change for different
datasets. Nevertheless, this study offers a useful starting point for
extended research in this important area.

SUPPLEMENTARY MATERIAL

See the supplementary material for supplementary tables and
figures and a complete mathematical description of the V-measure
score.
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