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Abstract

Braess’ paradox is a classical result in the theory of congestion games. It motivates theoretically

why adding a resource (e.g., an arc) to a network may sometimes worsen, rather than improve, the

overall network performance. Differently from previous literature, which studies Braess’ paradox in a

non-cooperative game-theoretic setting, in this work a framework is proposed to investigate its occurrence

by exploiting cooperative games with transferable utility (TU games) on networks. In this way, instead

of focusing on the marginal contribution to the network utility provided by the insertion of an arc when

a single initial scenario is considered, the arc average marginal utility with respect to various initial

scenarios, i.e., its Shapley value in a suitably-defined TU game, is evaluated. It is shown that, for choices

of the utility function of the TU game modeling congestion, there are cases for which the Shapley value

associated with an arc is negative, meaning that its average marginal contribution to the network utility

is negative.

Keywords: transportation networks, TU games, Braess’ paradox, traffic assignment, user equilibrium,

system optimum.
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1 Introduction

Braess’ paradox [7, 8]1 highlights why adding one resource to a network may in some cases worsen, rather than

improve, the overall network performance (similarly, its removal may improve such performance). Among

others, mathematical studies about Braess’ paradox, which is a classical result in the theory of congestion

games [25], regarded issues such as establishing necessary and sufficient conditions for its occurrence [43], in-

vestigating its probability of occurrence in random networks [47], determining its dependence on demand [28],

and establishing upper bounds on the loss in performance due to the insertion of a link [39]. For any positive

integer n, a special graph with n vertices (known as n-th Braess’ graph [38]) exists, for which one can prove

that the phenomenon (stated in the form of a performance increase after link removal) occurs.

Although originally (and still typically) investigated in the context of transportation networks, Braess’

paradox is relevant also in several other contexts (see the recent review [30]), such as in telecommunications

networks and Internet [31, 39], mechanical and electrical networks [12], metabolic networks [27], and sports

analytics (in the latter, the paradox corresponds to an increase in team performance after removing one of

its players [41]). The occurrence of the phenomenon in real transportation networks was observed several

times (especially after link removal) and announced in the press. Well-known cases were reported, e.g., in

New York and Seoul [30]. A heuristic methodology to detect, in real road networks, connections that are

associated with the occurrence of Braess’ paradox was presented in [3].

The paradox is typically studied through non-cooperative game theory, via the two so-called Wardrop’s

principles [48], later coined in [15], respectively, as user optimality and system optimality. An even earlier

qualitative formulation of such principles was given by Pigou in [37, p. 194]. According to the historical

account on Braess’ paradox reported in [29], the first rigorous mathematical formulation of the conditions

described by Wardrop’s principles was provided in [6], more than one decade before the formulation of

Braess’ paradox. The first algorithms for the computation of the traffic pattern in a general network,

according to each of the two principles proposed by Wardrop, were provided in [15], quite simultaneously

with the formulation of Braess’ paradox. The paradox is related to the concept of price of anarchy [18]: the

players (e.g., the users of a road network), being driven by the pursuit of maximizing their own individual

interests, tend to reduce social welfare. Sometimes, as an undesired consequence, they even fail to maximize

such interests, when compared to the case in which they behave in a more collaborative way. When several

resources are added at the same time to a network, however, such a non-cooperative approach, which does not

take into account every potential interaction among the resources in all the possible contingent situations,

has a limitation. It does not allow one to quantify the average marginal contribution (be it positive or

negative) of each resource to the overall network performance. This suggests to investigate the phenomenon

in a cooperative setting.

This work aims to study the occurrence of Braess’ paradox exploiting an approach based on cooperative

games with transferable utility (TU games) on graphs. For transportation networks such games were defined

in [22]. The players can be either network nodes or arcs. In the approach proposed in this paper, the

characteristic function of the game is defined in terms of an appropriate congestion measure over subgraphs

associated with subsets of arcs (the case of nodes instead of arcs can be considered, too, with no substantial

change). The measure is computed by solving an instance of the classical user equilibrium problem. Then,

the Shapley value (a well-known cooperative game-theoretic power index [1, 2]) of an arc (or node) is used as

a measure of its importance. It was shown in [21, 22, 24] that a Shapley value-based measure of importance

has several advantages with respect to other classical such measures (e.g., degree, closeness, betweenness,

and eigenvalue centrality, as measures of node importance), since the latter are not typically able to take into

account simultaneously several features of the network under study (instead, for the Shapley value-based

measure, such features are embedded in the characteristic function of the TU game). Moreover, instead of

focusing only on a specific coalitional scenario (e.g., by evaluating the importance of a resource with regards

to the whole network), the Shapley value-based approach determines an average with respect to several

coalitional scenarios (e.g., by considering also different cases for which distinct subsets of resources are not

functioning, hence they are removed from the network).

1The work [7] was originally published in German. Its English translation is available in [8].
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The contribution of this work is threefold:

1. Differently from previous literature on Braess’ paradox, instead of focusing on the marginal contribution

to the network utility provided by the insertion of an arc (or node) when a single initial scenario is

considered, its average marginal utility with respect to various initial scenarios (i.e., its Shapley value

in a suitable TU game) is evaluated;

2. In contrast to [22, 24], the goal consists in identifying situations in which the Shapley value of an

arc/node is negative, hence its insertion into the network has a negative average marginal value. This

indicates a corresponding degradation of the average network performance, therefore the unsuitability

of such an inclusion;

3. Using as a test bed Braess’ original example [7], the one in which the paradox was first discovered, the

appearance of a negative Shapley value (as a cooperative version of Braess’ paradox) is shown for the

arc of the network associated with Braess’ paradox (i.e., the one whose inclusion in the network causes

a degradation of network performance).

The paper is organized as follows. Section 2 provides a background on cooperative games with trans-

ferable utility (TU games) and transportation network cooperative games. Section 3 defines the two utility

functions that are adopted in the work, based, respectively, on the user equilibrium and the system optimum.

Section 4 reports extensive numerical results showing the occurrence, in transportation network TU games,

of a negative Shapley value as a cooperative version of Braess’ paradox. Section 5 contains some conclusions

and pointers to extensions.

2 Preliminaries

2.1 Cooperative games with transferable utility

A cooperative game with transferable utility, TU game for short, is a pair (N, v) defined as follows: N is the

set of players, which is called the grand coalition; each subset S ⊆ N is a (sub)coalition. The real-valued

mapping v : 2N → R (where 2N is the power set of N , i.e., the set of all its subsets), such that v(∅) = 0,

is called utility function (also called characteristic function). It assigns to each coalition S the value v(S),

which represents the utility that can be achieved jointly by the players in S, without any contribution from

the players in N \ S. The quantity v(N) is the utility of the grand coalition and, for each player i, v({i}) is

the utility of the player i without entering any coalition with more than one player.

In TU games, the utilities can be transferred from one player to another one without any loss (e.g., by

means of a common “currency”, which is valued equally by all the players). TU games can be studied by

using suitable solution concepts. Each of them is a criterion for dividing the total utility v(N) of the game

among individual players. Examples of solution concepts are the core, the nucleolus, and the power indices,

such as the Banzhaf power index and the Shapley value (see, e.g., [36]). Each power index corresponds to

a way of allocating the total utility in a “fair way” among the players. The larger the amount of utility

allocated to a player by a power index, the greater the importance of the player in the grand coalition. In

this work, we use the Shapley value, defined as

Sh(i) =
∑
S⊆N

(|S| − 1)!(|N | − |S|)!
|N |! [v(S)− v(S \ {i})], ∀ i ∈ N, (1)

where v(S)− v(S \ {i}) is the marginal contribution2 of player i when one moves from the coalition S \ {i}
to S. Hence, the Shapley value Sh(i) represents the average marginal contribution of each player across

2In this work, the marginal contribution of each player i is defined as v(S) − v(S \ {i}), i.e., with respect to a coalition S

from which that player is removed (if initially present, otherwise the two coalitions S and S \{i} are identical); equivalently, one

could have defined it as v(S ∪ {i})− v(S), i.e., with respect to a coalition S to which it is added (if initially absent, otherwise

the two coalitions S ∪ {i} and S are identical).
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all possible coalitions, when players, starting from the empty coalition (i.e., the one with no players), enter

the grand coalition randomly (in such a way that all orders are equally likely). Such an interpretation of

the Shapley value allows to apply this concept as a measure of player’s importance even in contexts where

the players of the game cannot be modeled as rational decision makers. This is the case, e.g., of features in

supervised machine learning problems [13] and genes in microarray games [26].

Moreover, we recall here the definitions of some properties of TU games that will be investigated in the

rest of the paper, for two specific TU games proposed in the work (see, e.g., [10, 36] for additional discussions

about such properties). The game (N, v) is

• subadditive if v(S ∪ T ) ≤ v(S) + v(T ) holds for any pair of disjoint coalitions S, T ⊆ N ;

• superadditive if v(S ∪ T ) ≥ v(S) + v(T ) holds for any pair of disjoint coalitions S, T ⊆ N ;

• monotonic if v(S) ≤ v(T ) holds for any S, T ⊆ N such that S ⊂ T ;

• convex if v(S ∪ T ) + v(S ∩ T ) ≥ v(S) + v(T ) holds for any S, T ⊆ N ;

• cohesive if v(N) ≥
k∑

i=1

v(Si) holds for any partition {S1, . . . , Sk} of N .

Notice that any convex game is superadditive and any superadditive game is cohesive.

2.2 Transportation network cooperative games

Consider a directed graph G = (V,A), where V is the set of nodes, A ⊆ V × V is the set of arcs and W is

the set of Origin-Destination pairs. In our game theoretic approach, we consider the set N of players to be

a subset of (critical) arcs (i.e., arcs that are the focus of the analysis). The graph associated to a generic

coalition S ⊆ N is denoted by

G(S) := (V, S ∪ (A \N)), (2)

that is, it contains the arcs of coalition S and the arcs that are not players of the game (N, v). Nodes can

represent intersections, points of interest, transportation centroids, stops, stations, critical transportation

components, etc. Arcs can represent physical connections between pairs of nodes, i.e., roads, rails, parts of

routes or entire routes, etc. The utility function can be exploited to represent a wide range of transportation

attributes, such as connectivity, distance, travel time saving, assigned demand, etc. The transportation

network (TN) can also be redefined in such a way that its nodes represent the arcs of the original network,

i.e., the physical transportation segments (road, rail, etc.).

In [22], a transportation network cooperative game (TNc game) was defined by choosing the utility function

of a TU game on the basis of the TN topology and some network attributes. Then, the vector of the Shapley

values of the players, represented therein by the network nodes, was used to evaluate the node centrality.

Theoretical properties of the resulting centrality measure were investigated in [20, 22]. Unfortunately, the

utility functions defined in [22] are not suitable to model congestion, as they refer to situations in which the

cost associated with each arc is given exogenously. Here, instead, we are interested in taking congestion into

account and considering the arcs as players. At the cost of some computational burden, the utility of every

coalition can be defined in terms of the equilibrium flows of an associated traffic assignment problem [35].

Since in the next sections we will define TNc games where some players may have negative marginal

contributions, we will distinguish between the positive part of the Shapley value of player i, defined as

Sh+(i) :=
∑
S⊆N

(|S| − 1)! (|N | − |S|)!
|N |! max{0, v(S)− v(S \ {i})}, (3)

and the negative part of the Shapley value of i, defined as

Sh−(i) :=
∑
S⊆N

(|S| − 1)! (|N | − |S|)!
|N |! min{0, v(S)− v(S \ {i})}. (4)
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Hence, the Shapley value of each player i is equal to the sum of its positive and negative parts, i.e.,

Sh(i) = Sh+(i) + Sh−(i). (5)

3 Two TNc games based on equilibrium flows

We introduce the following notations and definitions for equilibrium flows. We denote by dw the demand on

an O/D pair w and by d the vector of the demands. A path is represented by p, whereas xp is the nonnegative

flow on the path p in G, and x is the vector of path flows. Similarly, xp(S) is the flow on the path p in G(S),

and x(S) is the vector of the path flows in G(S). We represent by fa the nonnegative flow on the arc a, and

by f the vector of arc flows. Pw denotes the set of acyclic paths joining the O/D pair w, whereas Pw(S) is

the set of paths joining the O/D pair w in G(S), and P (respectively, P (S)) is the set of all paths joining

the O/D pairs in G (respectively, G(S)). We denote by ca(f) the cost on the arc a associated with the flow

vector f . This cost can be represented, e.g., by travel time or “pollution” (see Sections 3.1 and 3.2 for more

details on this issue). ∆ is the incidence arc-path matrix, whose elements are defined as ∆a,p := 1 if arc a

belongs to path p and 0 otherwise. Finally, Cp(x) (respectively, Cp(x(S)) represents the user cost on path p

in G (respectively, G(S)), which is the sum of the costs on the arcs of such path, whereas C(x) (respectively,

C(x(S)) is the vector of the costs on the paths in G (respectively, G(S)). The vector of arc flows f and the

vector of path flows x are linked by the following relationship: fa =
∑

p∈P ∆a,pxp. A path flow x is feasible

if it satisfies the demands, i.e.,
∑

p∈Pw
xp = dw for any O/D pair w.

3.1 TNc game based on the user equilibrium

The work hypothesis that we make to define a utility function based on the user equilibrium is the following:

the drivers have perfect knowledge of the travel costs on the network and choose the best route according

to the so-called Wardrop’s first principle [48], i.e., “no driver can unilaterally reduce his/her travel cost by

shifting to another route” (see also Nash equilibrium [33]). This provides a deterministic user equilibrium.

We define F as the set of coalitions S ⊆ N such that for each O/D pair w ∈W there exists at least one

path in G(S) connecting w. For any coalition S ∈ F, a feasible path flow vector x̄(S) is called a Wardrop

equilibrium in the network G(S) if for every O/D pair w ∈W and every p ∈ Pw(S) one has

Cp(x̄(S))

{
= λw(S) if x̄p(S) > 0,

≥ λw(S) if x̄p(S) = 0,
(6)

where λw(S) is the “equilibrium disutility” for the O/D pair w. Finding a Wardrop equilibrium x̄(S) and

the corresponding disutility λ amounts to solving the following variational inequality [14, 42]:

〈C(x̄(S)), x(S)− x̄(S)〉 ≥ 0, for any feasible path flow x(S). (7)

The total cost (or total travel time) associated to the Wardrop equilibrium x̄(S) is defined as

TCue(S) =
∑
w∈W

∑
p∈Pw(S)

x̄p(S)Cp(x̄(S)). (8)

Definition 3.1. We define the utility function vue : 2N → R by considering two cases:

(a) If the empty coalition ∅ ∈ F (i.e., all coalitions belong to F), then

vue(S) := TCue(∅)− TCue(S), ∀ S ⊆ N. (9)

(b) If the empty coalition ∅ /∈ F (i.e., some coalitions belong to F and others do not), then

vue(S) :=


[

max
S′∈Fm

TCue(S′)

]
− TCue(S) if S ∈ F,

0 if S /∈ F,

∀ S ⊆ N, (10)
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where Fm ⊆ F is the subset of minimally connected coalitions, i.e., the ones for which the removal of

any player makes the resulting coalition not belong to F.

The interpretation of the utility function vue is the following. In case (a), the utility of S is the cost

saving with respect to the empty coalition. In case (b), when the whole demand is served, the utility of S is

the cost saving with respect to the maximum cost of a minimally connected coalition; otherwise (i.e., when

not the whole demand is served), it equals 0. Subtracting from the maximum cost the costs associated with

the coalitions is required in order to transform disutilities (costs) into utilities (savings).

We now analyze some basic properties of the TNc game (N, vue):

1. In general, the game (N, vue) is not monotonic as the following counterexample shows.

Example 3.2. Consider the TNc game (N, vue) on the network introduced by Braess in [7], in which

the paradox was first discovered (see Figure 1). Let V = {1, 2, 3, 4}, N = A = {q, r, s, t, u} and

W = {(1, 4)} with traffic demand d = 6. The arc cost functions (as functions of their respective arc

1 4

2

3

q

r

s

t

u

Figure 1: Braess network.

flows) are defined as follows:

cq(f) = 10fq,

cr(f) = fr + 50,

cs(f) = fs + 10,

ct(f) = ft + 50,

cu(f) = 10fu.

(11)

There are three paths connecting the O/D pair: p1 = (q, t), p2 = (r, u), p3 = (q, s, u). Hence, the path

cost functions are as follows:

C1(x) = 11x1 + 10x3 + 50,

C2(x) = 11x2 + 10x3 + 50,

C3(x) = 10x1 + 10x2 + 21x3 + 10,

(12)

where x = (x1, x2, x3) denotes the path flow vector.

Since the empty coalition ∅ /∈ F (see Definition 3.1b), we need to analyze the set Fm of minimally

connected coalitions, i.e., Fm = {{q, t}, {r, u}, {q, s, u}}, to compute the utility of any coalition. The

total costs of minimally connected coalitions are as follows:

S1 = {q, t} x̄(S1) = (6, 0, 0) TCue(S1) = 6 · 116 = 696,

S2 = {r, u} x̄(S2) = (0, 6, 0) TCue(S2) = 6 · 116 = 696,

S3 = {q, s, u} x̄(S3) = (0, 0, 6) TCue(S3) = 6 · 136 = 816,

hence max
S′∈Fm

TCue(S′) = 816. Let now consider the coalitions S = {q, r, t, u}, T = {q, r, s, t, u} and

compute their utilities (see (10)):

S = {q, r, t, u} x̄(S) = (3, 3, 0) TCue(S) = 498 vue(S) = 816− 498 = 318,

T = {q, r, s, t, u} x̄(T ) = (2, 2, 2) TCue(T ) = 552 vue(T ) = 816− 552 = 264.
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Since S ⊂ T and vue(S) > vue(T ), the game (N, vue) is not monotonic.

2. In general, the game (N, vue) is not cohesive. In fact, if we consider Example 3.2 with the partition

{S1, S2} of N , where S1 = {q, r, t, u} and S2 = {s}, then

vue(N) = 264 < 318 = vue(S1) + vue(S2).

3. In general, the game (N, vue) is not subadditive. In fact, if we consider Example 3.2 with the disjoint

coalitions S = {q} and T = {t}, then vue(S) = vue(T ) = 0 and

vue(S ∪ T ) = 120 > 0 = vue(S) + vue(T ).

4. In general, the game (N, vue) is not superadditive, because it is not cohesive.

5. In general, the game (N, vue) is not convex, because it is not superadditive.

3.2 TNc game based on the system optimum

To introduce a utility function based on the system optimum, we make the following hypothesis: the drivers

behave according to the so-called Wardrop’s second principle [48], i.e., “drivers cooperate with one another

in order to minimize the total system travel time”. We can think of this as a situation in which congestion

is minimized by instructing the drivers about which routes to use, and supposing that they follow the

suggestion. Although this is not realistic from the point of view of the behavior of drivers, it may be useful

in transportation network planning to design networks that try to achieve a “social optimum” (e.g., minimum

pollution, or cost).

For any coalition S ∈ F, the optimum flow in the above sense amounts to solving the following nonlinear

programming problem [35, Section 2.4]:

min
∑

a∈S∪(A\N)

fa ca(f)

∑
p∈Pw(S)

xp(S) = dw ∀ w ∈W,

fa =
∑

p∈P (S)

∆a,pxp(S) ∀ a ∈ S ∪ (A \N),

x(S) ≥ 0.

(13)

Let us denote by x̂(S) the system optimum path flow, i.e., the optimal solution of the above nonlinear

program, and by f̂(S) the corresponding system optimum arc flow, which can be expressed in terms of the

matrix ∆ as f̂(S) = ∆x̂(S).

The total cost (or total travel time) associated to the system optimum x̂(S) is defined as

TCso(S) =
∑
w∈W

∑
p∈Pw(S)

x̂p(S)Cp(x̂(S)). (14)

Definition 3.3. We define the utility function vso : 2N → R by considering two cases:

(a) If the empty coalition ∅ ∈ F (i.e., all coalitions belong to F), then

vso(S) := TCso(∅)− TCso(S), ∀ S ⊆ N. (15)

(b) If the empty coalition ∅ /∈ F (i.e., some coalitions belong to F and others do not), then

vso(S) :=


[

max
S′∈Fm

TCso(S′)

]
− TCso(S) if S ∈ F,

0 if S /∈ F,

∀ S ⊆ N. (16)
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We now analyze some basic properties of the TNc game (N, vso):

1. The game (N, vso) is monotonic, as the following proof shows.

Proof. Consider any two coalitions S, T ⊆ N , such that S ⊆ T , and distinguish among the following

three cases:

a) If S, T /∈ F, then vso(S) = vso(T ) = 0;

b) If S, T ∈ F, then TCso(S) ≥ TCso(T ), hence vso(S) ≤ vso(T );

c) If S /∈ F and T ∈ F, then there exists a minimally connected coalition U ⊆ T . Hence, we have

vso(T ) =

[
max
S′∈Fm

TCso(S′)

]
− TCso(T ) ≥ TCso(U)− TCso(T ) ≥ 0 = vso(S), (17)

where the first equality follows from (16) and the last inequality follows from the inclusion U ⊆
T .

Since the game (N, vso) is monotonic, Braess’ paradox and negative Shapley values of arcs cannot

occur.

2. In general, the game (N, vso) is not cohesive, as the following counterexample shows.

Example 3.4. Consider the TNc game (N, vso) on the network described in Example 3.2 with the

same arc and path cost functions, while the traffic demand d = 10.

The total costs of minimally connected coalitions are as follows:

S1 = {q, t} x̂(S1) = (10, 0, 0) TCso(S1) = 1600,

S2 = {r, u} x̂(S2) = (0, 10, 0) TCso(S2) = 1600,

S3 = {q, s, u} x̂(S3) = (0, 0, 10) TCso(S3) = 2200,

hence max
S′∈Fm

TCso(S′) = 2200. If we consider the partition {S1, S2} of N , where S1 = {q, s, t} and

S2 = {r, u}, then we have:

x̂(S1) = (10, 0, 0) TCso(S1) = 1600 vso(S1) = 600,

x̂(S2) = (0, 10, 0) TCso(S2) = 1600 vso(S2) = 600;

x̂(N) = (5, 5, 0) TCso(N) = 1050 vso(N) = 1150.

Since

vso(N) = 1150 < 1200 = vso(S1) + vso(S2),

the game (N, vso) is not cohesive.

3. In general, the game (N, vso) is not subadditive. In fact, if we consider Example 3.4 with the disjoint

coalitions S = {q} and T = {t}, then vso(S) = vso(T ) = 0 and

vso(S ∪ T ) = 600 > 0 = vso(S) + vso(T ).

4. In general, the game (N, vso) is not superadditive, because it is not cohesive.

5. In general, the game (N, vso) is not convex, because it is not superadditive.
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4 Numerical results

In this section, we report some numerical results about the two proposed TNc games on the Braess’ original

network shown in Figure 1, where V = {1, 2, 3, 4}, A = {q, r, s, t, u}, W = {(1, 4)}, and the arc and path

cost functions are defined as in (11)–(12). We analyze the two TNc games based on the user equilibrium

and the system optimum, where the set N of players coincides with the set A of arcs. For any value of the

traffic demand d ≥ 0, we compute in closed form the user equilibrium and the system optimum, the utility

of each coalition, the marginal contribution of each arc to each coalition, and the Shapley value of each

arc. In particular, we show that in the TNc game (N, vue) the marginal contribution of arc s to the grand

coalition is negative when d ∈ (80/31, 80/9) (i.e., Braess’ paradox occurs in that interval of demand), while

the Shapley value of arc s (i.e., its average marginal contribution to all coalitions) is negative in a subinterval

of (80/31, 80/9), specifically for d ∈ (400/133, 1624/197) (see Section 4.1 and in particular Figure 3 for a

comparison of the two cases).

4.1 TNc game based on the user equilibrium

In order to find the utility of each coalition S, we need to distinguish among the four following cases for the

traffic demand: d ∈ [0, 40/11], d ∈ [40/11, 4], d ∈ [4, 80/9] and d ≥ 80/9.

Tables 1–4 in the Appendix report, for each coalition S ∈ F, the corresponding user equilibrium x̄(S), the

total cost TCue(S), the utility vue(S), and the marginal contribution of each arc belonging to S. Minimally

connected coalitions in Fm, their maximum total cost and the negative marginal contributions of arc s

are reported in frames. Tables 1–4 do not show coalitions S /∈ F, because their utility and the marginal

contribution of their arcs are zero. Table 1 shows that, when d ∈ (0, 40/11], arc s gives a positive marginal

contribution to coalitions {q, r, s, u}, {q, s, t, u} and {q, s, u}, since it allows satisfying the demand through

path (q, s, u) having a positive utility (of course, for d = 0 one obtains always a zero utility). On the

other hand, its marginal contribution to the grand coalition N is reported in a frame because it is positive

if d ∈ (0, 80/31), while it is negative if d ∈ (80/31, 40/11], since the total cost corresponding to the user

equilibrium (0, 0, d) of the grand coalition N is larger than the total cost corresponding to the user equilibrium

(d/2, d/2, 0) of the coalition N \{s}. Table 2 shows that, when d ∈ [40/11, 4], arc s gives a negative marginal

contribution to the grand coalition, while on the same interval it gives a positive marginal contribution to

coalitions {q, r, s, u}, {q, s, t, u}, and on the interval [40/11, 4) it provides a positive marginal contribution to

the coalition {q, s, u}. Table 3 shows that, when d ∈ [4, 80/9), arc s gives a negative marginal contribution

to the grand coalition, while it gives a positive marginal contribution to coalitions {q, r, s, u} and {q, s, t, u},
whereas the utility of the coalition {q, s, u} is zero, as well as the marginal contribution of arc s to that

coalition. Table 4 shows that, when d ≥ 80/9, arc s gives a zero marginal contribution to the grand coalition

and to the coalition {q, s, u}, while it gives a positive marginal contribution to coalitions {q, r, s, u} and

{q, s, t, u}.
It follows from Tables 1–4 that the Shapley values of the arcs are given by the following explicit formulas:

Sh(q) = Sh(u) =



d(1600− 367d)/120 if d ∈ [0, 40/11],

d(261d− 604)/156 if d ∈ [40/11, 4],

d(703d− 2372)/156 if d ∈ [4, 80/9],

d(233d− 580)/60 if d ≥ 80/9,

(18)
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Sh(r) = Sh(t) =



11d2/40 if d ∈ [0, 40/11],

11d(47d− 152)/208 if d ∈ [40/11, 4],

3d(311d− 1112)/208 if d ∈ [4, 80/9],

3d(103d− 280)/80 if d ≥ 80/9,

(19)

Sh(s) =



d(400− 133d)/30 if d ∈ [0, 40/11],

d(93d− 1208)/312 if d ∈ [40/11, 4],

d(197d− 1624)/312 if d ∈ [4, 80/9],

d(d+ 40)/120 if d ≥ 80/9.

(20)

We note that, due to the symmetry of the arc cost functions, arcs q and u have the same Shapley value for

any demand. The same fact holds for arcs r and t.

Figure 2 shows the Shapley value of each arc as a function of the traffic demand. Specifically, the Shapley

value of arc s is positive for d ∈ (0, 400/133), negative for d ∈ (400/133, 1624/197), with a minimum equal

to −82418/7683 ' −10.73 achieved at d = 812/197 ' 4.12, and positive for d > 1624/197. The Shapley

values of the other arcs are positive for any d > 0.
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Figure 2: TNc game based on the user equilibrium: Shapley values of the arcs as functions of the traffic

demand.

Figure 3 compares the marginal contribution of arc s to the grand coalition and the Shapley value (i.e.,

the average marginal contribution) of arc s. Notice that, as anticipated at the beginning of Section 4, Braess’

paradox occurs (i.e., the marginal contribution of s to the grand coalition is negative) when d ∈ (80/31, 80/9),

while the Shapley value of s is negative in the subinterval d ∈ (400/133, 1624/197) ⊂ (80/31, 80/9). This

difference is due to the fact that arc s gives a positive marginal contribution to coalitions {q, r, s, u}, {q, s, t, u}
and a positive (or, in some cases, zero) marginal contribution to the coalition {q, s, u}.

Figures 4 and 5 give a graphical representation on the network of the absolute and normalized Shapley

values of arcs, respectively. Six different values of the demand (d = 1, 3, 4, 6, 8 and 10) have been chosen. For
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Figure 3: TNc game based on the user equilibrium: Shapley value of arc s and its marginal contribution to

the grand coalition.

each of such values, each arc in the network is colored in green if its Shapley value is positive and in red if its

Shapley value is negative. In Figure 4, the thickness of each arc i is proportional to its absolute Shapley value

|Sh(i)|, while in Figure 5 it is proportional to its normalized Shapley value |Sh(i)|/∑j∈N |Sh(j)|. Figures 2

and 4 clearly show that, when d ∈ [4, 10], the importance of arcs different from s grows significantly from

about 10 to about 300, while the importance of arc s varies in the smaller range [−10.7, 4.2]. On the other

hand, Figures 2, 4 and 5 highlight that, for any d > 0, arcs q and u are more important than arcs r and t,

and in Figures 4 and 5 this gap is more evident for d ∈ {1, 3}. Moreover, in Figures 4 and 5, the importance

of arc s is comparable to that of the other arcs for d ∈ {1, 3}, while for d ∈ {4, 6, 8, 10} arc s is much less

important than the other arcs. Notice that Braess’ paradox occurs for d ∈ (80/31, 80/9) ' (2.58, 8.89), hence

for d = 3 the marginal contribution of s to the grand coalition is negative, but its Shapley value is positive

(about 0.1).

As for the positive and negative parts of Shapley values (see (3)-(4)), we remark that, for any d > 0,

Sh(i) = Sh+(i) > 0 and Sh−(i) = 0 hold for any arc i 6= s, while for arc s we have

Sh+(s) =



d(400− 133d)

30
if d ∈

[
0,

80

31

]
,

4d(4− d)

3
if d ∈

[
80

31
,

40

11

]
,

d(200− 39d)

120
if d ∈

[
40

11
, 4

]
,

d(d+ 40)

120
if d ∈

[
4,

80

9

]
,

d(d+ 40)

120
if d ≥ 80/9,

Sh−(s) =



0 if d ∈
[
0,

80

31

]
,

d(80− 31d)

10
if d ∈

[
80

31
,

40

11

]
,

9d(9d− 80)

130
if d ∈

[
40

11
, 4

]
,

9d(9d− 80)

130
if d ∈

[
4,

80

9

]
,

0 if d ≥ 80/9.

(21)

Figure 6 shows the positive and negative parts of the Shapley value of arc s as functions of the traffic demand.
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Figure 4: TNc game based on the user equilibrium: graphical representation of the Shapley values of the

arcs for six values of the traffic demand. Each arc i is colored in green if Sh(i) > 0 and in red if Sh(i) < 0.

The thickness of arc i is proportional to |Sh(i)|. The Shapley value Sh(i) is indicated on each arc i. Braess’

paradox occurs for d ∈ {3, 4, 6, 8}. Notice that for d = 3 the marginal contribution of s to the grand coalition

is negative, but its Shapley value is positive.
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Figure 5: TNc game based on the user equilibrium: graphical representation of the Shapley values of the

arcs for six values of the traffic demand. Each arc i is colored in green if Sh(i) > 0 and in red if Sh(i) < 0.

For each network, the thickness of arc i is proportional to the ratio |Sh(i)|/∑j∈N |Sh(j)|. The Shapley

value Sh(i) is indicated on each arc i. Braess’ paradox occurs for d ∈ {3, 4, 6, 8}. Notice that for d = 3 the

marginal contribution of s to the grand coalition is negative, but its Shapley value is positive.
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Figure 6: TNc game based on the user equilibrium: positive and negative parts of the Shapley value of arc

s as functions of the traffic demand.

Notice that arc s does not give any negative marginal contribution if d ∈ [0, 80/31]; it gives both positive

and negative marginal contributions if d ∈ (80/31, 80/9), while it gives only positive marginal contributions

if d ≥ 80/9. In particular, there exist demand values such that the following three cases are verified:

1. Sh+(s) > 0 = Sh−(s), e.g., for d = 1 we have Sh+(s) ' 8.9 and Sh−(s) = 0;

2. Sh+(s) > |Sh−(s)| > 0, e.g., for d = 2.6 we have Sh+(s) ' 4.9 and Sh−(s) ' −0.2;

3. |Sh−(s)| > Sh+(s) > 0, e.g., for d = 4 we have Sh+(s) ' 1.5 and Sh−(s) ' −12.2.

4.2 TNc game based on the system optimum

In order to analyze the system optimum, we need to distinguish among the four following cases: d ∈ [0, 20/11],

d ∈ [20/11, 4], d ∈ [4, 40/9] and d ≥ 40/9. Tables 5–8 in the Appendix report, for each coalition S ∈ F,

the corresponding system optimum x̂(S), the total cost TCso(S), the utility vso(S), and the marginal

contribution of each arc belonging to S. Tables 5–8 do not show coalitions S /∈ F because their utility and

the marginal contribution of their arcs are zero. Since the game (N, vso) is monotonic3 (see Section 3.2),

arc s does not give any negative marginal contribution. Moreover, for d ∈ (0, 4), it gives positive marginal

contributions to the grand coalition and to coalitions {q, r, s, u}, {q, s, t, u} and {q, s, u}, for d ∈ [4, 40/9), it

gives positive marginal contribution to the grand coalition and to {q, r, s, u}, {q, s, t, u}, while for d ≥ 40/9,

it gives positive marginal contribution only to {q, r, s, u} and {q, s, t, u}.
3The investigation of the monotonicity property made in Sections 3.1 and 3.2, and the numerical results reported in Section

4.1 for the TNc game based on the user equilibrium, show clearly that the absence of such a property is a necessary (but not

sufficient) condition for the occurrence of a negative Shapley value.

13



It follows from Tables 5–8 that the Shapley values of the arcs are given by the following explicit formulas:

Sh(q) = Sh(u) =



d(1600− 367d)

120
if d ∈

[
0,

20

11

]
,

87

52
d2 − 151

39
d+

610

39
if d ∈

[
20

11
, 4

]
,

703

156
d2 − 593

39
d+

610

39
if d ∈

[
4,

40

9

]
,

233

60
d2 − 29

3
d+

10

3
if d ≥ 40

9
,

(22)

Sh(r) = Sh(t) =



11

40
d2 if d ∈

[
0,

20

11

]
,

19(11d− 20)2

1040
+

11

40
d2 if d ∈

[
20

11
, 4

]
,

933

208
d2 − 417

26
d+

95

13
if d ∈

[
4,

40

9

]
,

309

80
d2 − 21

2
d− 5 if d ≥ 40

9
,

(23)

Sh(s) =



d(400− 133d)

30
if d ∈

[
0,

20

11

]
,

31

104
d2 − 151

39
d+

610

39
if d ∈

[
20

11
, 4

]
,

(d+ 20)2

120
+

(9d− 40)2

130
if d ∈

[
4,

40

9

]
,

(d+ 20)2

120
if d ≥ 40

9
.

(24)

Figure 7 shows the Shapley value of each arc as a function of the traffic demand. Similarly to the TNc

game based on the user equilibrium, for any d > 0, the Shapley value of arcs q and u is greater than that of

arcs r and t, while, the TNc game based on the user equilibrium, for any d > 0, the Shapley value of arc s

is always positive.

Figures 8 and 9 give a graphical representation on the network of the absolute and normalized Shapley

values of the arcs, respectively for six different values of the demand. Since all the Shapley values are

positive, arcs are colored in green. In Figure 8, the thickness of each arc i is proportional to its Shapley

value Sh(i), while in Figure 9 it is proportional to its normalized Shapley value Sh(i)/
∑

j∈N Sh(j). Figures 7

and 8 clearly show that the importance of arcs different from s is increasing with respect to the demand.

Figures 7, 8 and 9 highlight that, for any d > 0, arcs q and u are more important than arcs r and t, and in

Figures 8 and 9 this fact is more evident for small values of d. Moreover, it easily follows from Figure 7 that

the relative importance of arc s is decreasing with respect to the demand.

4.3 Summing up: The role of arc s in the two TNc games

Figure 10 compares the Shapley value of arc s in the two TNc games with utility functions vue and vso,

respectively. For any d > 0, the Shapley value of s in (N, vso) is positive (i.e., the cooperative version of

Braess’ paradox does not occur), while the one in (N, vue) is positive for d ∈ (0, 400/133)∪ (1624/197,+∞)

and negative (i.e., the cooperative version of Braess’ paradox occurs) for d ∈ (400/133, 1624/197). In

particular, the Shapley value of arc s is the same in both games when d ∈ [0, 20/11], since in this case the
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Figure 7: TNc game based on the system optimum: Shapley values of the arcs as functions of the traffic

demand.
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Figure 8: TNc game based on the system optimum: graphical representation of the Shapley values of the

arcs for six values of the traffic demand. Each arc is colored in green since its Shapley value (indicated on

the arc) is positive. The thickness of each arc i is proportional to Sh(i).
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Figure 9: TNc game based on the system optimum: graphical representation of the Shapley values of the

arcs for six values of the traffic demand. Each arc is colored green since its Shapley value (indicated on the

arc) is positive. For each network, the thickness of arc i is proportional to the ratio Sh(i)/
∑
j∈N

Sh(j).
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Figure 10: Shapley value of arc s in the TNc games based on the user equilibrium and the system optimum.
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user equilibrium coincides with the system optimum for each coalition, while for any d > 20/11 the Shapley

value of arc s in (N, vso) is larger than the one obtained in (N, vue).

The reason for this gap is shown in Table 9 in the Appendix, where the marginal contributions of arc s to

coalitions {q, r, s, t, u}, {q, r, s, t}, {q, s, t, u} and {q, s, u} are reported for the two utility functions vue and

vso. The other coalitions are omitted because, for them, the marginal contributions of s are equal to zero.

When d ∈ [0, 20/11], the marginal contributions of s to any coalition are equal for vue and vso, while for

d > 20/11 there exists at least a coalition such that its marginal contributions in the two games are different.

In particular, the marginal contributions of s to the grand coalition are different for d ∈ (20/11, 80/9); for

the coalitions {q, r, s, t} and {q, s, t, u} the marginal contributions of s are different for d > 20/11, while the

marginal contributions of s to coalition {q, s, u} are always equal. Moreover, Table 9 clearly shows that the

classical version of Braess’ paradox (i.e., the marginal contribution of s to the grand coalition is negative)

occurs for d ∈ (80/31, 80/9).

Finally, we recall that relationships between the user equilibrium and the system optimum, together with

situations in which one can prove that they coincide, are reported, e.g., in [40, Section 3.5]. Typically, the

two solutions become increasingly dissimilar as the demand (then, the congestion level) increases.

5 Conclusions and extensions

We proposed a framework to investigate Braess’ paradox from a cooperative game-theoretical point of view.

This is done by considering the arc average marginal utility with respect to various initial scenarios, i.e.,

its Shapley value in a transferable-utility game defined on networks. The utility function is defined in such

a way as to model congestion. More specifically, it is defined in terms of either user equilibrium or system

optimum.

The results of the numerical analysis performed on the Braess’ original example show the appearance of a

cooperative version of Braess’ paradox for a certain range of values of the demand, when the utility function

based on the user equilibrium is adopted to model the TNc game. Instead, no such possibility arises when

the utility function based on the system optimum is used.

Among possible extensions of the analysis, we mention the following. The first is of computational nature.

Although in some particular cases one can compute the Shapley values in polynomial time (see, e.g., [1, 44,

45]), in general its calculation involves an effort that grows exponentially with the number of players [19, 32].

Hence, to investigate the possibility of having negative Shapley values for large networks, methodologies for

approximate computation need to be adopted or developed (see, e.g., [2]), such as those based on Monte-

Carlo methods [9]. In [21], Monte-Carlo approximations of the Shapley values were obtained for a particular

class of transportation network cooperative games, which was developed to evaluate the relative importance

of public transport transfers. In the present context, the issue of approximate computation is even more

important since the evaluation of the utility of each coalition can be computationally demanding by itself,

requiring a variational inequality/optimization problem to be solved for each single evaluation. When closed

form solutions cannot be found, one has to resort to suitable algorithms; e.g., for both cases, the ones

reported in [4, 5, 17, 23, 34].

A second direction of improvement regards the analysis of the stochastic case, taking into account, e.g.,

the stochastic models of traffic assignment considered in [16].

A third direction consists in using the Shapley value-based approach considered in this work to provide

a game-theoretical measure of both positive and negative importance of a resource in a network. This would

be useful for network design purposes, and could be achieved by adopting a non-monotonic game formulation

whose characteristic function models congestion (e.g., the utility function based on the user equilibrium).

Finally, an envisaged development is the exploitation of the proposed approach for the study of network

resilience [11, 46], in particular for the assessment of the effects of failures of the links, taking into account

their failure probabilities.
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Appendix

In this appendix, several tables are included. They are related to the numerical results reported in Section 4.

Tables 1–4 report closed-form expressions of various quantities of interest for the TNc game based on the

user equilibrium, distinguishing, respectively, among the cases d ∈ [0, 40/11], d ∈ [40/11, 4], d ∈ [4, 80/9],

and d ≥ 80/9. Tables 5–8 provide analogous expressions for the TNc game based on the system optimum,

distinguishing, respectively, among the cases d ∈ [0, 20/11], d ∈ [20/11, 4], d ∈ [4, 40/9], and d ≥ 40/9.

Table 9 reports a comparison of the two games, focusing on arc s. See the captions of the tables and

Section 4 for further details and comments about them.
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Table 1: TNc game based on the user equilibrium, for d ∈ [0, 40/11]. User equilibrium, total cost, utility, and marginal contribution of arcs are reported, for

each coalition S ∈ F. The minimally connected coalitions in Fm, their maximum total cost and the negative marginal contributions of arc s are reported

in frames.

Coalition User equilibrium Total cost Utility Marginal contribution of arc

S x̄(S) TCue(S) vue(S) q r s t u

{q, r, s, t, u} (0, 0, d) d(21d+ 10) 10d(4− d) 10d(4− d) 0 d(80− 31d)/2 0 10d(4− d)

{q, r, s, t} (d, 0, 0) d(11d+ 50) 0 0 0 0 0 –

{q, r, s, u} (0, 0, d) d(21d+ 10) 10d(4− d) 10d(4− d) 0 10d(4− d) – 10d(4− d)

{q, r, t, u} (d/2, d/2, 0) d(11d/2 + 50) 11d2/2 11d2/2 11d2/2 – 11d2/2 11d2/2

{q, r, t} (d, 0, 0) d(11d+ 50) 0 0 0 – 0 –

{q, r, u} (0, d, 0) d(11d+ 50) 0 0 0 – – 0

{q, s, t, u} (0, 0, d) d(21d+ 10) 10d(4− d) 10d(4− d) – 10d(4− d) 0 10d(4− d)

{q, s, t} (d, 0, 0) d(11d+ 50) 0 0 – 0 0 –

{q, s, u} (0, 0, d) d(21d+ 10) 10d(4− d) 10d(4− d) – 10d(4− d) – 10d(4− d)

{q, t, u} (d, 0, 0) d(11d+ 50) 0 0 – – 0 0

{q, t} (d, 0, 0) d(11d+ 50) 0 0 – – 0 –

{r, s, t, u} (0, d, 0) d(11d+ 50) 0 – 0 0 0 0

{r, s, u} (0, d, 0) d(11d+ 50) 0 – 0 0 – 0

{r, t, u} (0, d, 0) d(11d+ 50) 0 – 0 – 0 0

{r, u} (0, d, 0) d(11d+ 50) 0 – 0 – – 0
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Table 2: TNc game based on the user equilibrium, for d ∈ [40/11, 4]. User equilibrium, total cost, utility, and marginal contribution of arcs are reported, for

each coalition S ∈ F. The minimally connected coalitions in Fm, their maximum total cost and the negative marginal contributions of arc s are reported

in frames.

Coalition User equilibrium Total cost Utility Marginal contribution of arc

S x̄(S) TCue(S) vue(S) q r s t u

{q, r, s, t, u}
(

11d− 40

13
,

11d− 40

13
,

80− 9d

13

)
d(31d + 1010)

13

8d(14d− 45)

13

8d(14d− 45)

13

121d(11d− 40)

156

9d(9d− 80)

26

121d(11d− 40)

156

8d(14d− 45)

13

{q, r, s, t} (d, 0, 0) d(11d + 50) 0 0 0 0 0 –

{q, r, s, u}
(

0,
11d− 40

12
,
d + 40

12

)
d(131d + 560)

12

d(d + 40)

12

d(d + 40)

12

11d(11d− 40)

12

d(d + 40)

12
–

d(d + 40)

12
{q, r, t, u} (d/2, d/2, 0) d(11d/2 + 50) 11d2/2 11d2/2 11d2/2 – 11d2/2 11d2/2

{q, r, t} (d, 0, 0) d(11d + 50) 0 0 0 – 0 –

{q, r, u} (0, d, 0) d(11d + 50) 0 0 0 – – 0

{q, s, t, u}
(

11d− 40

12
, 0,

d + 40

12

)
d(131d + 560)

12

d(d + 40)

12

d(d + 40)

12
–

d(d + 40)

12

11d(11d− 40)

12

d(d + 40)

12
{q, s, t} (d, 0, 0) d(11d + 50) 0 0 – 0 0 –

{q, s, u} (0, 0, d) d(21d + 10) 10d(4− d) 10d(4− d) – 10d(4− d) – 10d(4− d)

{q, t, u} (d, 0, 0) d(11d + 50) 0 0 – – 0 0

{q, t} (d, 0, 0) d(11d + 50) 0 0 – – 0 –

{r, s, t, u} (0, d, 0) d(11d + 50) 0 – 0 0 0 0

{r, s, u} (0, d, 0) d(11d + 50) 0 – 0 0 – 0

{r, t, u} (0, d, 0) d(11d + 50) 0 – 0 – 0 0

{r, u} (0, d, 0) d(11d + 50) 0 – 0 – – 0

20



Table 3: TNc game based on the user equilibrium, for d ∈ [4, 80/9]. User equilibrium, total cost, utility, and marginal contribution of arcs are reported, for

each coalition S ∈ F. The minimally connected coalitions in Fm, their maximum total cost and the negative marginal contributions of arc s are reported

in frames.

Coalition User equilibrium Total cost Utility Marginal contribution of arc

S x̄(S) TCue(S) vue(S) q r s t u

{q, r, s, t, u}
(

11d− 40

13
,

11d− 40

13
,

80− 9d

13

)
d(31d + 1010)

13

22d(11d− 40)

13

8d(14d− 45)

13

121d(11d− 40)

156

9d(9d− 80)

26

121d(11d− 40)

156

8d(14d− 45)

13

{q, r, s, t} (d, 0, 0) d(11d + 50) 10d(d− 4) 10d(d− 4) 0 0 10d(d− 4) 0

{q, r, s, u}
(

0,
11d− 40

12
,
d + 40

12

)
d(131d + 560)

12

11d(11d− 40)

12

d(d + 40)

12

11d(11d− 40)

12

d(d + 40)

12
0

11d(11d− 40)

12
{q, r, t, u} (d/2, d/2, 0) d((11d)/2 + 50) (d(31d− 80))/2 11d2/2 11d2/2 0 11d2/2 11d2/2

{q, r, t} (d, 0, 0) d(11d + 50) 10d(d− 4) 10d(d− 4) 0 0 10d(d− 4) 0

{q, r, u} (0, d, 0) d(11d + 50) 10d(d− 4) 0 10d(d− 4) 0 0 10d(d− 4)

{q, s, t, u}
(

11d− 40

12
, 0,

d + 40

12

)
d(131d + 560)

12

11d(11d− 40)

12

11d(11d− 40)

12
0

d(d + 40)

12

11d(11d− 40)

12

d(d + 40)

12
{q, s, t} (d, 0, 0) d(11d + 50) 10d(d− 4) 10d(d− 4) 0 0 10d(d− 4) 0

{q, s, u} (0, 0, d) d(21d + 10) 0 0 0 0 0 0

{q, t, u} (d, 0, 0) d(11d + 50) 10d(d− 4) 10d(d− 4) 0 0 10d(d− 4) 0

{q, t} (d, 0, 0) d(11d + 50) 10d(d− 4) 10d(d− 4) 0 0 10d(d− 4) 0

{r, s, t, u} (0, d, 0) d(11d + 50) 10d(d− 4) 0 10d(d− 4) 0 0 10d(d− 4)

{r, s, u} (0, d, 0) d(11d + 50) 10d(d− 4) 0 10d(d− 4) 0 0 10d(d− 4)

{r, t, u} (0, d, 0) d(11d + 50) 10d(d− 4) 0 10d(d− 4) 0 0 10d(d− 4)

{r, u} (0, d, 0) d(11d + 50) 10d(d− 4) 0 10d(d− 4) 0 0 10d(d− 4)

21



Table 4: TNc game based on the user equilibrium, for d ≥ 80/9. User equilibrium, total cost, utility, and marginal contribution of arcs are reported, for

each coalition S ∈ F. The minimally connected coalitions in Fm and their maximum total cost are reported in frames.

Coalition User equilibrium Total cost Utility Marginal contribution of arc

S x̄(S) TCue(S) vue(S) q r s t u

{q, r, s, t, u} (d/2, d/2, 0) d(11d/2 + 50) d(31d− 80)/2 11d2/2 5d(13d− 8)/12 0 5d(13d− 8)/12 11d2/2

{q, r, s, t} (d, 0, 0) d(11d + 50) 10d(d− 4) 10d(d− 4) 0 0 10d(d− 4) 0

{q, r, s, u}
(

0,
11d− 40

12
,
d + 40

12

)
d(131d + 560)

12

11d(11d− 40)

12

d(d + 40)

12

11d(11d− 40)

12

d(d + 40)

12
0

11d(11d− 40)

12
{q, r, t, u} (d/2, d/2, 0) d((11d)/2 + 50) (d(31d− 80))/2 (11d2)/2 (11d2)/2 0 (11d2)/2 (11d2)/2

{q, r, t} (d, 0, 0) d(11d + 50) 10d(d− 4) 10d(d− 4) 0 0 10d(d− 4) 0

{q, r, u} (0, d, 0) d(11d + 50) 10d(d− 4) 0 10d(d− 4) 0 0 10d(d− 4)

{q, s, t, u}
(

11d− 40

12
, 0,

d + 40

12

)
d(131d + 560)

12

11d(11d− 40)

12

11d(11d− 40)

12
0

d(d + 40)

12

11d(11d− 40)

12

d(d + 40)

12
{q, s, t} (d, 0, 0) d(11d + 50) 10d(d− 4) 10d(d− 4) 0 0 10d(d− 4) 0

{q, s, u} (0, 0, d) d(21d + 10) 0 0 0 0 0 0

{q, t, u} (d, 0, 0) d(11d + 50) 10d(d− 4) 10d(d− 4) 0 0 10d(d− 4) 0

{q, t} (d, 0, 0) d(11d + 50) 10d(d− 4) 10d(d− 4) 0 0 10d(d− 4) 0

{r, s, t, u} (0, d, 0) d(11d + 50) 10d(d− 4) 0 10d(d− 4) 0 0 10d(d− 4)

{r, s, u} (0, d, 0) d(11d + 50) 10d(d− 4) 0 10d(d− 4) 0 0 10d(d− 4)

{r, t, u} (0, d, 0) d(11d + 50) 10d(d− 4) 0 10d(d− 4) 0 0 10d(d− 4)

{r, u} (0, d, 0) d(11d + 50) 10d(d− 4) 0 10d(d− 4) 0 0 10d(d− 4)

22



Table 5: TNc game based on the system optimum, for d ∈ [0, 20/11]. System optimum, total cost, utility and marginal contribution of arcs are reported,

for each coalition S ∈ F. The minimally connected coalitions in Fm and their maximum total cost are reported in frames.

Coalition System Optimum Total cost Utility Marginal contribution of arc

S x̂(S) TCso(S) vso(S) q r s t u

{q, r, s, t, u} (0, 0, d) d(21d+ 10) 10d(4− d) 10d(4− d) 0 d(80− 31d)/2 0 10d(4− d)

{q, r, s, t} (d, 0, 0) d(11d+ 50) 0 0 0 0 0 0

{q, r, s, u} (0, 0, d) d(21d+ 10) 10d(4− d) 10d(4− d) 0 10d(4− d) 0 10d(4− d)

{q, r, t, u} (d/2, d/2, 0) d(11d/2 + 50) 11d2/2 11d2/2 11d2/2 0 11d2/2 11d2/2

{q, r, t} (d, 0, 0) d(11d+ 50) 0 0 0 0 0 0

{q, r, u} (0, d, 0) d(11d+ 50) 0 0 0 0 0 0

{q, s, t, u} (0, 0, d) d(21d+ 10) 10d(4− d) 10d(4− d) 0 10d(4− d) 0 10d(4− d)

{q, s, t} (d, 0, 0) d(11d+ 50) 0 0 0 0 0 0

{q, s, u} (0, 0, d) d(21d+ 10) 10d(4− d) 10d(4− d) 0 10d(4− d) 0 10d(4− d)

{q, t, u} (d, 0, 0) d(11d+ 50) 0 0 0 0 0 0

{q, t} (d, 0, 0) d(11d+ 50) 0 0 0 0 0 0

{r, s, t, u} (0, d, 0) d(11d+ 50) 0 0 0 0 0 0

{r, s, u} (0, d, 0) d(11d+ 50) 0 0 0 0 0 0

{r, t, u} (0, d, 0) d(11d+ 50) 0 0 0 0 0 0

{r, u} (0, d, 0) d(11d+ 50) 0 0 0 0 0 0

23



Table 6: TNc game based on the system optimum, for d ∈ [20/11, 4]. System optimum, total cost, utility and marginal contribution of arcs are reported,

for each coalition S ∈ F. The minimally connected coalitions in Fm and their maximum total cost are reported in frames.

Coalition System Optimum Total cost Utility Marginal contribution of arc

S x̂(S) TCso(S) vso(S) q r s t u

{q, r, s, t, u}
(

11d− 20

13
,

11d− 20

13
,

40− 9d

13

)
31d2 + 1010d− 800

13

112d2 − 360d + 800

13

112d2 − 360d + 800

13

11(11d− 20)2

156

(9d− 40)2

26

11(11d− 20)2

156

112d2 − 360d + 800

13
{q, r, s, t, } (d, 0, 0) d(11d + 50) 0 0 0 0 0 0

{q, r, s, u}
(

0,
11d− 20

12
,
d + 20

12

)
131d2 + 560d− 400

12

(d + 20)2

12

(d + 20)2

12

(11d− 20)2

12

(d + 20)2

12
0

(d + 20)2

12
{q, r, t, u} (d/2, d/2, 0) d((11d)/2 + 50) (11d2)/2 (11d2)/2 (11d2)/2 0 (11d2)/2 (11d2)/2

{q, r, t} (d, 0, 0) d(11d + 50) 0 0 0 0 0 0

{q, r, u} (0, d, 0) d(11d + 50) 0 0 0 0 0 0

{q, s, t, u}
(

11d− 20

12
, 0,

d + 20

12

)
131d2 + 560d− 400

12

(d + 20)2

12

(d + 20)2

12
0

(d + 20)2

12

(11d− 20)2

12

(d + 20)2

12
{q, s, t} (d, 0, 0) d(11d + 50) 0 0 0 0 0 0

{q, s, u} (0, 0, d) d(21d + 10) 10d(4− d) 10d(4− d) 0 10d(4− d) 0 10d(4− d)

{q, t, u} (d, 0, 0) d(11d + 50) 0 0 0 0 0 0

{q, t} (d, 0, 0) d(11d + 50) 0 0 0 0 0 0

{r, s, t, u} (0, d, 0) d(11d + 50) 0 0 0 0 0 0

{r, s, u} (0, d, 0) d(11d + 50) 0 0 0 0 0 0

{r, t, u} (0, d, 0) d(11d + 50) 0 0 0 0 0 0

{r, u} (0, d, 0) d(11d + 50) 0 0 0 0 0 0

24



Table 7: TNc game based on the system optimum, for d ∈ [4, 40/9]. System optimum, total cost, utility and marginal contribution of arcs are reported,

for each coalition S ∈ F. The minimally connected coalitions in Fm and their maximum total cost are reported in frames.

Coalition System Optimum Total cost Utility Marginal contribution of arc

S x̂(S) TCso(S) vso(S) q r s t u

{q, r, s, t, u}
(

11d− 20

13
,

11d− 20

13
,

40− 9d

13

)
31d2 + 1010d− 800

13

2(11d− 20)2

13

112d2 − 360d + 800

13

11(11d− 20)2

156

(9d− 40)2

26

11(11d− 20)2

156

112d2 − 360d + 800

13
{q, r, s, t} (d, 0, 0) d(11d + 50) 10d(d− 4) 10d(d− 4) 0 0 10d(d− 4) 0

{q, r, s, u}
(

0,
11d− 20

12
,
d + 20

12

)
131d2 + 560d− 400

12

(11d− 20)2

12

(d + 20)2

12

(11d− 20)2

12

(d + 20)2

12
0

(11d− 20)2

12
{q, r, t, u} (d/2, d/2, 0) d((11d)/2 + 50) (d(31d− 80))/2 (11d2)/2 (11d2)/2 0 (11d2)/2 (11d2)/2

{q, r, t} (d, 0, 0) d(11d + 50) 10d(d− 4) 10d(d− 4) 0 0 10d(d− 4) 0

{q, r, u} (0, d, 0) d(11d + 50) 10d(d− 4) 0 10d(d− 4) 0 0 10d(d− 4)

{q, s, t, u}
(

11d− 20

12
, 0,

d + 20

12

)
131d2 + 560d− 400

12

(11d− 20)2

12

(11d− 20)2

12
0

(d + 20)2

12

(11d− 20)2

12

(d + 20)2

12
{q, s, t} (d, 0, 0) d(11d + 50) 10d(d− 4) 10d(d− 4) 0 0 10d(d− 4) 0

{q, s, u} (0, 0, d) d(21d + 10) 0 0 0 0 0 0

{q, t, u} (d, 0, 0) d(11d + 50) 10d(d− 4) 10d(d− 4) 0 0 10d(d− 4) 0

{q, t} (d, 0, 0) d(11d + 50) 10d(d− 4) 10d(d− 4) 0 0 10d(d− 4) 0

{r, s, t, u} (0, d, 0) d(11d + 50) 10d(d− 4) 0 10d(d− 4) 0 0 10d(d− 4)

{r, s, u} (0, d, 0) d(11d + 50) 10d(d− 4) 0 10d(d− 4) 0 0 10d(d− 4)

{r, t, u} (0, d, 0) d(11d + 50) 10d(d− 4) 0 10d(d− 4) 0 0 10d(d− 4)

{r, u} (0, d, 0) d(11d + 50) 10d(d− 4) 0 10d(d− 4) 0 0 10d(d− 4)

25



Table 8: TNc game based on the system optimum, for d ≥ 40/9. System optimum, total cost, utility and marginal contribution of arcs are reported, for

each coalition S ∈ F. The minimally connected coalitions in Fm and their maximum total cost are reported in frames.

Coalition System Optimum Total cost Utility Marginal contribution of arc

S x̂(S) TCso(S) vso(S) q r s t u

{q, r, s, t, u}
(
d

2
,
d

2
, 0

)
d(11d/2 + 50) d(31d− 80)/2 11d2/2

65d2 − 40d− 400

12
0

65d2 − 40d− 400

12
11d2/2

{q, r, s, t} (d, 0, 0) d(11d + 50) 10d(d− 4) 10d(d− 4) 0 0 10d(d− 4) 0

{q, r, s, u}
(

0,
11d− 20

12
,
d + 20

12

)
131d2 + 560d− 400

12

(11d− 20)2

12

(d + 20)2

12

(11d− 20)2

12

(d + 20)2

12
0

(11d− 20)2

12
{q, r, t, u} (d/2, d/2, 0) d(11d/2 + 50) d(31d− 80)/2 11d2/2 11d2/2 0 11d2/2 11d2/2

{q, r, t} (d, 0, 0) d(11d + 50) 10d(d− 4) 10d(d− 4) 0 0 10d(d− 4) 0

{q, r, u} (0, d, 0) d(11d + 50) 10d(d− 4) 0 10d(d− 4) 0 0 10d(d− 4)

{q, s, t, u}
(

11d− 20

12
, 0,

d + 20

12

)
131d2 + 560d− 400

12

(11d− 20)2

12

(11d− 20)2

12
0

(d + 20)2

12

(11d− 20)2

12

(d + 20)2

12
{q, s, t} (d, 0, 0) d(11d + 50) 10d(d− 4) 10d(d− 4) 0 0 10d(d− 4) 0

{q, s, u} (0, 0, d) d(21d + 10) 0 0 0 0 0 0

{q, t, u} (d, 0, 0) d(11d + 50) 10d(d− 4) 10d(d− 4) 0 0 10d(d− 4) 0

{q, t} (d, 0, 0) d(11d + 50) 10d(d− 4) 10d(d− 4) 0 0 10d(d− 4) 0

{r, s, t, u} (0, d, 0) d(11d + 50) 10d(d− 4) 0 10d(d− 4) 0 0 10d(d− 4)

{r, s, u} (0, d, 0) d(11d + 50) 10d(d− 4) 0 10d(d− 4) 0 0 10d(d− 4)

{r, t, u} (0, d, 0) d(11d + 50) 10d(d− 4) 0 10d(d− 4) 0 0 10d(d− 4)

{r, u} (0, d, 0) d(11d + 50) 10d(d− 4) 0 10d(d− 4) 0 0 10d(d− 4)

26



Table 9: Marginal contributions of arc s in the TNc games (N, vue) and (N, vso). The negative marginal contributions are reported in frames.

Demand {q, r, s, t, u} {q, r, s, t} {q, s, t, u} {q, s, u}
vue vso vue vso vue vso vue vso[

0,
20

11

]
d(80− 31d)

2

d(80− 31d)

2
10d(4− d) 10d(4− d) 10d(4− d) 10d(4− d) 10d(4− d) 10d(4− d)[

20

11
,

80

31

]
d(80− 31d)

2

(9d− 40)2

26
10d(4− d)

(d+ 20)2

12
10d(4− d)

(d+ 20)2

12
10d(4− d) 10d(4− d)

[
80

31
,

40

11

]
d(80− 31d)

2

(9d− 40)2

26
10d(4− d)

(d+ 20)2

12
10d(4− d)

(d+ 20)2

12
10d(4− d) 10d(4− d)

[
40

11
, 4

]
9d(9d− 80)

26

(9d− 40)2

26

d(d+ 40)

12

(d+ 20)2

12

d(d+ 40)

12

(d+ 20)2

12
10d(4− d) 10d(4− d)

[
4,

40

9

]
9d(9d− 80)

26

(9d− 40)2

26

d(d+ 40)

12

(d+ 20)2

12

d(d+ 40)

12

(d+ 20)2

12
0 0

[
40

9
,

80

9

]
9d(9d− 80)

26
0

d(d+ 40)

12

(d+ 20)2

12

d(d+ 40)

12

(d+ 20)2

12
0 0[

80

9
,+∞

)
0 0

d(d+ 40)

12

(d+ 20)2

12

d(d+ 40)

12

(d+ 20)2

12
0 0

27
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