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1 Introduction

Information recovery from Hawking radiation emitted by an evaporating black hole has
long presented a fascinating puzzle [1, 2]. Its clearest quantitative formulation is in terms
of the von Neumann entropy of the emitted radiation which is expected to follow the
Page curve [3, 4], and the information puzzle then translates into the challenge to produce
the Page curve from first principles. Recent progress in obtaining the Page curve for
black holes within semiclassical gravity [5–7] revolves around the appearance of new replica
wormhole saddle points for von Neumann entropies, responsible for turning around the Page
curve for Hawking radiation as expected from unitarity. The physics of the new saddles
is encapsulated within a generalized or fine grained entropy formula [8], anticipated from
holographic considerations [8–11]. The fine grained entropy restores the subtle correlations,
which were absent in Hawking’s original calculation, between the Hawking modes from an
old black hole and its early radiation. The underlying mechanism hinges on appending
to the semiclassical Hawking radiation R, island regions I extending behind the horizon
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and bounded by Quantum Extremal Surfaces (QES). In particular, the island is contained
within the entanglement wedge of the radiation R.1

This leads us to one of the central questions in this picture: how precisely are the
islands encoded in R and how do the islands implement the ‘accounting trick’ needed to
get entropies right? To understand this we need to know how the semiclassical island pre-
scription ties in with a microscopic description of the evaporating black hole. In this work,
we will employ a tractable microscopic description of evaporating black holes in a certain
limit, to identify how the nontrivial time evolution of entanglement in the microscopic
theory is precisely captured by an emergent island saddle prescription.

Such a microscopic framework is readily available in the useful, simplifying scenario
when restricting to the s-wave sector of the near horizon geometry of a near-extremal
charged black hole. The evaporating black hole can be described by an effective two
dimensional model [47] namely, Jackiw-Teitelboim (JT) gravity [48, 49] on AdS2 coupled
to radiation degrees of freedom propagating in AdS2 as well as an asymptotic Minkowski
bath region [6, 12, 13]. In this model the bath, represented by massless fields or a conformal
field theory (CFT) in 1+1 dimensional Minkowski spacetime, is nongravitating and glued
on to the regularized boundary of the AdS2 region with transparent boundary conditions.2

The microscopic description of the setup arises via the holographic dual viewpont,
as a CFT on the half-line coupled to quantum mechanical degrees of freedom on the
boundary [12, 13]. In an appropriate infrared limit, boundary conformal field theory
(BCFT) [55, 56] offers a powerful framework to examine this scenario and the emergence
of a Page curve therein [15, 57].

We consider BCFT prepared in a particularly simple nonequilibrium state, the so-
called Thermo-Field Double (TFD) state obtained as a purification of the thermal state.
The semiclassical dual description is in terms of the two-sided AdS2 eternal black hole in
the Hartle-Hawking state [58], coupled to (non-gravitating) radiation baths. The TFD
state, although in local thermodynamic equilibrium, is not in entanglement equilibrium.
In this work, we use the two complementary descriptions above to demonstrate:

1 In the high temperature limit, measures of entanglement in BCFT exhibit nontrivial
but universal3 time evolution across several distinctly identifiable temporal regimes.

2 The same behaviour emerges via a nontrivial competition between no-island and
island saddles in the semiclassical JT gravity description. Island saddles can be
‘ephemeral’ i.e. dominant for short intermediate times and disappear at late time.

1Various aspects of islands and their appearance in a variety of gravitating setups have been explored
in [12–46].

2The consistency of the islands picture and the Page curve has been questioned in [50–53] for long
range theories of gravity i.e. when the bath is gravitating. In the case where AdS gravity is coupled to
a non-gravitating bath the graviton is not massless [54] and the Page curve for the fine-grained entropy
is crisply defined. This does not however mean that this Page curve is irrelevant in asymptotically flat
space when gravity in the bath is dynamical [45]. In particular, it is the answer to questions involving
“not-so-fine-grained” entropies [46].

3By ‘universal’ here, we mean it applies to CFTs with an effective quasiparticle description as explained
in [59]. This includes free CFTs, rational CFTs and in general those where the high energy density of states
is dominated by conserved currents or holomorphic and antiholomorphic operators.
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Figure 1. BCFT channels for the von Neumann entropy at high temperature, of which the four in
blue (labelled numbers as in figure 7) actually compete for the configuration with AL = AR = [a, b]
and 3a < b (a = 3, b = 12 and β = 0.1 shown). The channels in grey are always subdominant.
The red portion of the curve, channels (3) and (4), corresponds to the island saddle of the black
hole in JT gravity. Temporal regimes (I)–(V) are used in the analysis. The exact result for the free
fermion theory lies on top of the black and red curve.

3 Distinct temporal regimes in entanglement evolution can each be associated to a
particular OPE limit of BCFT correlation functions. Disconnected channels in BCFT
get identified with corresponding bulk OPE channels (in JT gravity) which involve
quantum extremal surfaces that may lie inside, but can then dynamically exit and
plunge back inside the horizon during the evolution.

The situation we focus attention on is the case of two disjoint finite intervals AL and
AR, in the L and R copies respectively, of the Minkowski bath in the TFD state. The
time evolution of the von Neumann entropy is shown in figure 1 for the specific case where
AL and AR are taken to be identical. The von Neumann entropy first increases linearly as
modes enter (exit) the interval in one copy of the bath and their respective purifiers in the
TFD state simultaneously exit (enter) the interval in the second bath. The growth slows
and experiences a characteristic dip which is controlled by an evolving island saddle in
gravity, and distinct (partially) disconnected OPE channels in BCFT. The physics of the
dip is simple and follows from a general free quasiparticle picture [60, 61]. In BCFT, it is
due to modes reflecting off the boundary in either copy, entering AL ∪AR along with their
respective purifiers in the TFD copy. In the semiclassical gravity description, the dip in
entropy appears when modes from the bath enter AL ∪AR and their purifiers in the TFD
are simultaneously captured by the island behind the horizon. As illustrated in figure 18,
the way the entropy is accounted for appears to be different in the BCFT and semiclassical
gravity descriptions, but net effect is identical.

A quantitative match between gravity and BCFT occurs when characteristic length
and time scales ∼ L are taken to be large compared to both the black hole scrambling time
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scale, and the inverse temperature β. In terms of the JT gravity parameter k which must
be small in the semiclassical limit, we require

L� β

2π log 2π
βk
� β . (1.1)

The middle scale here is the scrambling time of the black hole. In this limit the black
hole behaves like a mirror and information recovery proceeds by reflection, exactly as in
the BCFT, and the boundary entropy sb = log gb [62] in the BCFT is identified with
the Bekenstein-Hawking entropy of the black hole. If we further impose the requirement
L � 1/k, the system matches the high temperature free fermion theory which has gb = 1
(vanishing boundary entropy). In this simple limit, we expect that the black hole interior
and quantum extremal surfaces can be reconstructed simply from BCFT data.

Even away from the strict BCFT limit above, the entanglement evolution in gravity
displays the same qualitative and quantitative physics. This indicates that BCFT rules
should also apply at high temperatures to the more realistic microscopic description with
fully dynamical boundary degrees of freedom (the SYK model) coupled to massless fields
(see e.g. [42]).

While this work was in preparation, the preprint [63] appeared which has some overlap
with the questions addressed in this paper. In particular, [63] studied the evolution of the
entanglement entropy in a holographic large-c BCFT. In this setup non-monotonicity or
“dips” in entanglement entropy are absent since holographic CFTs scramble maximally4 as
seen e.g. in [59, 64–67].

The paper is organized as follows. In section 2 we review basic aspects of the setup
of the TFD state and its gravitational analogue, and fix our notation and coordinate
systems. Section 3 contains the exact analysis of von Neumann entropies in free fermion
BCFT and its precise agreement with the general picture of competing OPE channels at
high temperatures. We turn to the JT gravity picture in section 4 and find the saddle
points of the generalized entropy function, and show the precise correspondence between
dominant BCFT channels and the pattern of bulk operator product channels involving
QES in each temporal regime. In section 5, we show that the high temperature time
evolution of entanglement entropies in the BCFT limit can be understood in a simple way
in a geometric optics approximation. We conclude with a detailed discussion of the general
implications of our findings in section 6.

2 Preliminaries

We consider BCFT on the half-line and take two copies CFTL and CFTR prepared in
the thermofield double state. The respective spatial coordinates x are positive, and we are
interested in spatial intervals of the type A = AL∪AR with AL = [a1, b1], AR = [a2, b2]. For
simplicity, the initial focus will be on the special case with symmetric intervals a1 = a2 ≡ a
and b1 = b2 ≡ b.

4We would like to thank the anonymous referee for drawing our attention to this important physical
point.
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Figure 2. The Penrose diagram showing the eternal black hole. The bath regions L and R are
half Minkowski spaces glued onto the central AdS space. There are two intervals AL and AR in
each bath as shown.

In the complementary gravity picture, the Hartle-Hawking state and its (forward) time
evolution is described by the two-sided black hole. The end-points of the intervals AL and
AR will be labelled 2L, 1L, 1R, 2R ordered along a Cauchy slice from left to right as shown
in figure 2. We define Kruskal-Szekeres (KS) coordinates w± that cover the whole of the
spacetime, as well as null coordinates x± which are Minkowski coordinates in the baths
and Schwarzschild coordinates in the AdS2 region, related by

w± = ±e±2πx±/β . (2.1)

The Schwarzschild time in the left region includes a sign change and an imaginary shift
relative to the coordinate on the right:

L : x± = −t± x+ iβ

2 , R : x± = t± x , (2.2)

where x ≥ 0 in both the left and right Minkowski baths.5 The imaginary shift is an
important feature of the BCFT set up where we identify the two copies of the CFT’s with
the bath regions of the spacetime.

The AdS2 black hole background (in JT gravity) in KS coordinates is described by the
extended metric,

ds2 = − 4dw+dw−

(1 + w+w−)2 , (2.3)

and the dilaton,

φ = φ0 + 2πφr
β

1− w+w−

1 + w+w−
. (2.4)

5It is natural that x > 0 on both sides as x is identified with the radial coordinate r of the higher-
dimensional black hole.
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tR = t

tL = −t+ iβ/2

Figure 3. The BCFT set up with two half-Minkowski spaces x ≥ 0. There is also an imaginary
shift which is naturally gives the TFD.

The L and R horizons are at w+ = 0 and w− = 0, whilst the AdS2 boundaries are at
w+w− = −1. The black hole has an entropy given by the dilaton value at the horizon since
the dilaton is the area of the higher-dimensional, near extremal black hole,

S
(β)
BH = φ(w− = 0)

4GN
= πc

6βk , where k ≡ GNc

3φr
. (2.5)

In the BCFT picture, each copy of the CFT is defined on a half-Minkowski space that
is isomorphic to the left or right bath region in the black hole geometry with Lorentzian
null coordinates x± as in (2.2): see figure 3. The imaginary shift on the left implements
the necessary analytic continuation to obtain correlators in the TFD state from Euclidean
thermal correlators (3.1).

3 Entropy channels in BCFT

In this section, we calculate the entropies of the disjoint union of intervals in a BCFT
prepared in the TFD state. Let us consider two copies, L and R, of the CFT in half-
Minkowski spaces x > 0 prepared in the TFD state, and whose time evolution can be
followed by appropriate analytic continuation of Euclidean thermal correlators,∣∣ΨTFD(t)〉 =

∑
n

e−2iEnte−βEn/2|En〉L ⊗ |En〉R . (3.1)

3.1 Semi-infinite intervals

As a warm up exercise, we first look at two semi-infinite spatial intervals AL = [a1,∞] and
AR = [a2,∞] in the free fermion theory. This situation was analysed from the perspective
of the two-sided black hole with semi-infinite intervals in [6, 13], from the holographic
(large-c) BCFT viewpoint in [15] and its explicit higher dimensional realizations [14].6 The
example illustrates how the exact result at high temperatures is determined essentially by
a competition between OPE channels.

6The authors of [15] considered the entanglement entropy of the bipartition of a large-c CFT on a strip
i.e. with two boundaries in the TFD state.
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Rényi entropies in CFT2 are computed by correlation functions of twist and anti-twist
operators, Tn and T n, which implement the replica trick in Euclidean signature [61]. For
the present case, we need insertions of these operators at the (finite) endpoints of AL and
AR. The correlators can then be analytically continued to Lorentzian signature, in which
case we can write the real-time n-th Rényi entropy as the correlator

S(n)(AL ∪AR) = 1
1− n log

〈
T n(x±1L)Tn(x±1R)

〉
BCFT , (3.2)

with the coordinates defined in (2.2). Evaluation of BCFT correlation functions is facili-
tated by the doubling trick which enables us to view them as correlators of a chiral CFT
on the complex plane or the thermal cylinder [57, 72]:

〈
T n(x±1L)Tn(x±1R)

〉
BCFT =

〈
Tn(x+

1L)T n(x−1L)T n(x+
1R)Tn(x−1R)

〉
. (3.3)

The notation here requires some clarification: the twist operators on the left have conformal
dimension ∆n = c(n − 1/n)/24, whereas those on the right are in the chiral theory with
half the conformal weight. Since four-point functions are not fixed by conformal invariance
alone, it is natural to focus on examples and/or physical regimes in which the results
become tractable and potentially universal. We first focus on the free fermion theory for
which exact results are known, and then argue that the high temperature features are
generic, at least for theories that admit a free quasiparticle description.

Free fermions: for free fermions, the general expression for the Rényi entropy of a
disjoint union of arbitrary number of intervals is known [68]. Viewing the free fermion
BCFT as a chiral fermion theory on the double copy gives us the following expression for
the 4-point function involving twist operator insertions (3.3):

S(n)(AL ∪AR) = c(n+ 1)
12n

(
log sinh π

β
(x+

1L − x
+
1R) sinh π

β
(x−1L − x

−
1R) + log η

)
,

where η =
sinh π

β (x+
1L − x

−
1L) sinh π

β (x+
1R − x

−
1R)

sinh π
β (x−1R − x

+
1L) sinh π

β (x−1L − x
+
1R)

.

(3.4)

Here, we have suppressed the additive logarithmic dependence on the UV cutoff. There is an
additional finite contribution to the Rényi entropy in BCFT originating from the boundary
degrees of freedom, namely the boundary entropy sb = log gb [62]. The free fermion system
has gb = 1, so the boundary entropy is vanishing. The von Neumann entropy is then
obtained by taking the limit n → 1. In the following, we will focus primarily on the von
Neumann entropy. Figure 4 shows that in the symmetric case, the complete expression
smoothly interpolates between early time linear growth and late time saturation, with the
cross-ratio η interpolating between 1 and 0. The transition between the regimes becomes
sharper with increasing temperature. The early time linear growth is governed by the
connected channel (cf. figure 5) with η = 1, reducing formally to the standard formula for
the single interval entropy.
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Figure 4. The exact behaviour of the von Neumann entropy for free fermion BCFT for semi-
infinite intervals with a1 = a2 = 3, β = 1 (blue), a1 = a2 = 3, β = 0.5 (red) and a1 = 1, a2 = 3,
β = 0.4 (black).

x+
1L x+

1R

x−1L x−1R

x+
1L x+

1R

x−1L x−1R

Figure 5. Schematic depiction of the two distinct channels of contraction for the twist-anti-
twist correlator in BCFT. The panel on the right yields the disconnected contribution given by the
product of the one-point function of twist fields on the half-plane (in the Euclidean picture). Solid
and hollow dots distinguish twist and anti-twist operator insertions.

The late time saturation (η = 0), on the other hand, is due entirely to the disconnected
channel which yields the product of the one-point functions of the twist and anti-twist fields
in BCFT,7 〈

T n(x±1L)Tn(x±1R)
〉

BCFT

∣∣∣
η→0

=
〈
T n(x±1L)

〉
BCFT

〈
Tn(x±1R)

〉
BCFT . (3.6)

The behaviour of the cross-ratios and the correlator closely follows the expectation for
large-c CFTs, where the two different regimes can be viewed as distinct saddle point ap-
proximations to conformal blocks at large-c [57, 73].8 A useful lesson from this simple ex-

7The one-point function for the twist field in the BCFT is given by the two-point correlator in the double
copy chiral CFT, 〈

Tn(x±)
〉

BCFT
= g

(1−n)
b ε∆n/

(
sinh 2πx

β

)∆n

, ∆n = c

24

(
n− 1

n

)
. (3.5)

8An argument for this follows from modular invariance which would suggest that high temperature
correlators should be determined by the vacuum conformal block, and the saddle point interpretation arises
as a consequence of the thermodynamic limit instead of large-c.
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ample is that the corrections to the two asymptotic behaviours at early and late times are
exponentially small in the thermodynamic limit. For the symmetric situation a1 = a2 ≡ a,
we get

η ≈


1− e−

4π
β

(a−t) − e−
4π
β

(a+t) − 2e−
4π
β
a
, t < a ,

e
− 4π
β

(t−a)
(
1− e−

4π
β

(t−a) − e−
4π
β

(a+t) − 2e−
4π
β
a
)
, t > a .

(3.7)

The high temperature thermodynamic limit erases short range correlations and gives a
universal classical result for interval entropies, but unitarity as required by Page’s theorem
makes its appearance via competition between two channels.

In the high temperature regime, where free fermion and large-c limits appear to coincide
in this example, the entropy formulas can be written in terms of the thermodynamic entropy
of the left/right moving radiation in an interval of null coordinate [x±1 , x

±
2 ]; that is

Srad(x±1 , x
±
2 ) ≡ πc

6β |x
±
1 − x

±
2 | . (3.8)

The evolution of the high temperature entropy for the interval AL ∪ AR can written in
terms of the thermodynamic entropy (3.8) evaluated on the difference of null coordinates:

S(AL ∪AR) = min
(
Srad(x+

1L , x
+
1R) + Srad(x−1L , x

−
1R) ,

Srad(x+
1L , x

−
1L) + Srad(x+

1R , x
−
1R) + 2 log gb

)
,

(3.9)

where we have allowed for a non-zero boundary entropy gb and implemented the rule that
every one-point function understood as a contraction between a point and its image is
accompanied by the additive constant log gb. This yields the time evolution of the entropy
in the high temperature limit,

S(AL ∪AR) = πc

6β min
(
|2t− (a2 − a1)|+ |2t+ (a2 − a1)| ,

2(a1 + a2) + 12β
πc

log gb
)
.

(3.10)

The expression reproduces the free fermion curve in figure 4 with gb = 1. The two channels
exchange at the crossover time or the Page time,

tPage = a1 + a2
2 + 3β

πc
log gb . (3.11)

3.2 Two finite intervals

Now let us consider the two finite intervals, one in each CFT, not including the boundary as
described in section 2. To calculate the entropies in the TFD state we need the correlator
of four twist and anti-twist operators on the semi-infinite thermal cylinder, appropriately
continued to Lorentzian signature:

C(4) = 〈Tn(x±1L)T n(x±2L)T n(x±1R)Tn(x±2R)〉BCFT . (3.12)

– 9 –
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Figure 6. Exact result for free fermion entropy of the disjoint union of two intervals, one in each
copy of the thermofield double state. The plot displayed is for AL = [2, 12.5] and AR = [3.5, 15.3]
and for β = 0.25 (blue) and β = 0.5 (black). The dip in the entropy is clearly displayed.

The doubling trick turns this into an 8-point chiral correlator on the infinite thermal
cylinder,

C(4) = 〈Tn(x+
1L)T n(x−1L)T n(x+

2L)Tn(x−2L)T n(x+
1R)Tn(x−1R)Tn(x+

2R)T n(x−2R)〉 . (3.13)

There are several distinct OPE channels corresponding to pairs of twist-anti-twist operators
potentially coming together.

Free fermions: the BCFT correlator for the Rényi entropy can be obtained using the
result of [68] (see also [71]) after incorporating the doubling trick. The von Neumann
entropy then follows in the n → 1 limit. The result is usefully written in terms of the
mutual information

S(AL ∪AR) = S(AL) + S(AR)− I(AL, AR) . (3.14)

Each interval has an entropy

S(AL) = c

6 log
shπβ (x+

2L − x
+
1L)shπβ (x−2L − x

−
1L)shπβ (x+

1L − x
−
1L)shπβ (x+

2L − x
−
2L)

shπβ (x−2L − x
+
1L)shπβ (x−1L − x

+
2L)

, (3.15)

with a similar expression for S(AR). The mutual information, which encodes the cross-
correlations between AL and AR is

I(AL, AR) =− c

6 log
{
shπβ (x+

1L − x
+
1R)shπβ (x+

2L − x
+
2R)shπβ (x−1L − x

−
1R)shπβ (x−2L − x

−
2R)

shπβ (x+
1L − x

+
2R)shπβ (x+

2L − x
+
1R)shπβ (x−1L − x

−
2R)shπβ (x−2L − x

−
1R)

×
shπβ (x+

1L − x
−
2R)shπβ (x+

2L − x
−
1R)shπβ (x+

1R − x
−
2L)shπβ (x+

2R − x
−
1L)

shπβ (x+
1L − x

−
1R)shπβ (x+

2L − x
−
2R)shπβ (x+

1R − x
−
1L)shπβ (x+

2R − x
−
2L)

}
. (3.16)

Note that the imaginary shift (2.2) turns sinh → cosh in the mutual information. The
entropy is plotted in figure 6 for some indicative values.
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(2) x+
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x+
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x−
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x−
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x+
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x+
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(4) x+
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x+
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x+
2R

x−
2L

x−
2R

Figure 7. Examples of competing channels for the two-interval Rényi entropy in the TFD
state. The last two figures illustrate partially disconnected channels that are associated with island
contributions in the black hole case.

3.3 Large-c OPE channels

The high temperature evolution of S(AL∪AR) for free fermions follows a curve that becomes
more and more of a piecewise linear function of time as β decreases: see figure 6. This
behaviour is generic at high temperatures and can be understood as a competition between
different OPE channels of the twist field correlators. Some of the channels/singularities that
we encounter here are not expected to appear in non-rational CFTs or in holographic large-c
BCFTs [59]. There are multiple channels for factorization of the Rényi entropy correlators.
These can be classified according to the distinct ways in which four twist operators can
pair up with four anti-twist operators. This gives us 4! = 24 possible channels. Of these,
most tend to have high entropy and so be unfavourable and only a small number of the
channels can actually compete as shown in figures 7 and 9.

Two symmetric intervals: for example, when the two intervals AL and AR are taken
to be identical copies of each other, a1 = a2 = a and b1 = b2 = b, the four relevant channels
are illustrated in figure 7.

The high temperature entropy is then given by

S(AL ∪AR) = 2πc
3β min

(
b− a , 2t , t+ a+ 3β

πc
log gb ,

1
2(b− a) +

∣∣∣∣t− 1
2(a+ b)

∣∣∣∣+ 3β
πc

log gb
)
.

(3.17)

In general, there is a dependence on the value of the boundary entropy log gb, and this
should be set to zero for the free fermion theory.

When the interval length is large, or more precisely b > 3a, we can identify five distinct
regimes (I)–(V) in the evolution of the entropy, as displayed in figure 1. The early time
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linear growth region (I) is controlled by the connected channel (2) shown in figure 7, until
there is a transition to the channel (3) with a lower slope at

t2→3 = a + 3β
πc

log gb . (3.18)

In regime (II), dominated by channel (3), there is a partial factorization of the twist
operator correlation function. A second transition between two distinct channels (3) and (4)
occurs at

t3→4 = b− a
2 . (3.19)

This brings us to region (III) described by the channel (4), which is particularly interesting
as the entropies of entanglement now experience a dip at

tdip = a+ b

2 . (3.20)

This is a non-trivial feature that we will explain in detail in sections 5 and 6. At this
juncture we note that a decrease in the entropy indicates a partial purification of certain
modes in AR by partner modes in AL. At the minimum, in the free fermion theory (gb = 1),
the entropy is equal to one half of the saturation value at large t which is just the entropy
of a single interval:

S(AL ∪AR)
∣∣
t=tdip

= S(AL) = S(AR) . (3.21)

Later, in section 6, we will discuss why this happens. For t > tdip, the entropy in channel
(4) continues to grow until it saturates at the thermal value after a final, third exchange
of channels at

t4→1 = b− 3β
πc

log gb , (3.22)

following which the entropies of the intervals AL and AR saturate at their thermal values.
The competition between channels precisely reproduces the high temperature result in the
free fermion theory with gb = 1.

For small interval lengths, precisely b < 3a, and small log gb we get a different scenario
as shown in figure 8 in which the appearance of the dip is arguably more striking. In this
scenario, channel (3) remains subdominant at all times. Instead we have a direct transition
from the initial growth phase to thermal equilibrium at

t2→1 = b− a
2 . (3.23)

But the equilibrium is disturbed by an exchange of channels from (1) to (4) at

t1→4 = a+ 3β
πc

log gb . (3.24)

The reason for this is the presence of the CFT boundary: modes reflected off the R bound-
ary and their purifiers in CFTL enter AL ∪ AR. The ensuing dip is symmetric, turning
around at tdip = 1

2(a+ b) and again reaching equilibrium at t4→1.
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(I) (V) (III) (IV) (V)

0 ab−a
2

a+b
2 b

t

S
(A

L
∪
A
R

)

(1)

(2)

(4)

Figure 8. Evolution of entropy for two small intervals 3a > b with a = 7 and b = 8 shown.
The numbers (1), etc., refer to the channels that contribute. The system appears to equilibrate,
however, there is a later dip in the entropy corresponding to the island saddle in the BH case.

Generic two-interval case: when the intervals AL and AR are chosen generically, we
find that additional channels (figure 9) come into play alongside those depicted in figure 7.
The effect of these additional contributions is shown in figure 10, where the crossover
between channels (3) and (4) is flattened by the appearance of channel (5), and the min-
imum point of the dip in channel (4) also appears flattened out. By varying the interval
lengths and positions of the endpoints one can see various subsets of connected (no-island)
and disconnected (island) channels becoming dominant during different intermediate time
regimes, while early time growth and late time saturation are always determined by the
connected (no-island) OPE channels (2) and (1) respectively.

In the next section, we will examine how the different BCFT channels (of the free
fermion theory) manifest themselves in the effective gravitational description of the free
CFT coupled in the black hole background.

4 Entropy saddles in JT gravity

The entropy of subsets A of Hawking radiation in the bath region, as measured by asymp-
totic observers at I +, receive contributions from semiclassical replica wormhole saddle
points of the gravitational path integral [5, 6]. These yield QES, points in 1 + 1 dimen-
sions, the boundaries of additional intervals I, the islands,9 with positions determined by
extremizing the generalized entropy functional for the von Neumann entropy of A,

Sgen(A) = ext
I

{∑
∂I

Area(∂I)
4GN

+ SCFT(I ∪A)
}
. (4.1)

In JT gravity the area term is the value of the dilaton evaluated at the QES.
9Strictly speaking the island is the domain of dependence of any Cauchy surface that joins a pair of QES.
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(5) x+
1L

x+
1R

x−
1L

x−
1R

x+
2L

x+
2R

x−
2L

x−
2R

(6) x+
1L

x+
1R

x−
1L

x−
1R

x+
2L

x+
2R

x−
2L

x−
2R

(7) x+
1L

x+
1R

x−
1L

x−
1R

x+
2L

x+
2R

x−
2L

x−
2R

(8) x+
1L

x+
1R

x−
1L

x−
1R

x+
2L

x+
2R

x−
2L

x−
2R

Figure 9. Some additional channels contributing to the generic two-interval Rényi entropies in
the TFD state.

(I) (II) (IIA) (III)
(IIIA)

(IV) (V)

t

0

S
(A

L
∪
A
R

)

(1)

(5)

(2)

(3)
(4)

a1+a2
2

b1−a2
2

b2−a1
2

a2+b1
2

a1+b2
2

b1+b2
2

Figure 10. Plot of the entropy in the high temperature limit with non-symmetric intervals
AL = [2, 12.5] and AR = [3.5, 15.3]. As in previous plots, channels are shown in blue and labelled
with a number (1), etc. The red portion corresponds to the island saddle for the black hole.

We expect that the holographic equivalent of the generalized entropy is the BCFT
entanglement entropy. Non-trivial islands correspond to disconnected contributions to
BCFT correlators. We expect the number of QES to be determined by the number of
twist operators contracted with their BCFT images in the relevant BCFT correlator. The
area term in Sgen corresponds to the boundary entropy in the BCFT language. It encodes
contributions that are not captured by the no-island or Hawking, saddle S∅(A), which is
the naive entropy of the CFT degrees of freedom in the bath. In the BCFT picture, this
is given by the fully connected OPE channels for twist field correlators.
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4.1 Semi-infinite intervals

The case with semi-infinite intervals was considered in [6]. The entropy grows linearly
initially corresponding to the no-island, or Hawking saddle. At the Page time, the entropy
saturates as an island saddle takes over. At very late times, there are a pair of QES outside
the horizon. Interestingly, careful examination reveals that the QES begin life inside the
horizon and migrate out at an intermediate time scale. For two symmetric semi-infinite
intervals, stretching from x = a to ∞ in the L and R baths, the KS coordinates of the
endpoints in the bath are w∓1L = w±1R = ±e2π(±t+a)/β . Then the locations of the QES
(always staying close to the horizon) are given by,

w−1Q = − s

w+
1L
, w+

1Q = − s

w−1L
− 1
s
w−1R

(
w+

1L

)2
, w±2Q = w∓1Q (4.2)

where we have defined s = βk/2π � 1. Hence the QES exit their respective horizons at

texit = 2a+ β

2π ln 2π
βk

, (4.3)

where the second term in the expression is the scrambling time, which we will take to be
small in the discussion below. For large enough intervals this is bigger than the Page time,

tPage = a+ 3β
πc
S

(β)
BH (4.4)

after which the entropy saturates. At high temperature the entropy is precisely as in (3.10)
but with log gb replaced by the Bekenstein-Hawking entropy S(β)

BH.

4.2 No-island (Hawking) saddle

We first discuss the Hawking saddle for the von Neumann entropy of AL ∪ AR where for
simplicity the intervals are chosen symmetrically in the left and right baths a1 = a2 ≡ a

and b1 = b2 ≡ b. As in section 3, we begin by examining large intervals i.e. those with
b > 3a. For these, motivated by the BCFT analysis summarized in figure 1, we separately
analyse each temporal regime,

(I) = {0 < t < a} , (II) =
{
a < t < 1

2(b− a)
}
,

(III) =
{

1
2(b− a) < t < 1

2(a+ b)
}
, (IV) =

{
1
2(a+ b) < t < b

}
,

(V) = {b < t} .

(4.5)

We will need to exploit the high temperature limit in order find the QES for the island
saddle.

For the no-island saddle, there are four points in the bath, namely the endpoints of
AL and AR whose lightcone coordinates x± determine the ordering of the magnitudes of
their respective KS coordinates w± (2.1) key to the analysis. The ordering of the points
has two regimes: firstly, (I)∪(II), i.e. t < 1

2(b− a),

x+
1L < x+

1R < x+
2L < x+

2R , x−2L < x−2R < x−1L < x−1R . (4.6)
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In the above, and in the following, we ignore the imaginary shifts in some of the coordi-
nates (2.2). The second regime (III)∪(IV)∪(V), t > 1

2(b− a) has,

x+
1L < x+

2L < x+
1R < x+

2R , x−2L < x−1L < x−2R < x−1R . (4.7)

It is now simple to write down the entropy of the no-island saddle in the free fermion
CFT [68] in both regimes:

S∅(AL ∪AR) = − c6
∑
µ<ν

(−1)µ−ν log[−(w+
µ − w+

ν )(w−µ − w−ν )]− c

12
∑
µ

log |w+
µw
−
µ | , (4.8)

where we label points by their ordering along the Cauchy slice, so {2L, 1L, 1R, 2R} →
{1, 2, 3, 4}. The expression above is the usual CFT result in the thermal state. The final
sum in the above accounts for the conformal factors of the endpoints. To evaluate the
entropy at high temperatures (β small) it is useful to notice that if x±µ > x±ν , then

log(w+
µ − w+

ν ) ≈ logw+
µ ≈

2π
β
x+
µ , log(w−ν − w−µ ) ≈ logw−ν ≈ −

2π
β
x−ν , (4.9)

up to subleading constant pieces. Using these rules, we find that in regime (I)∪(II), with
the ordering in (4.6),

S∅(AL ∪AR) = πc

3β
(

(t+ b) + (t+ a)
left

+ (t+ b) + (t+ a)
right

)
− πc

3β (2a+ 2b)

conf. factor

= 4πct
3β . (4.10)

Note that the left-moving and right-moving contributions of all saddles we discuss are
equal because of our symmetric choice of AL and AR. In regime (III)∪(IV)∪(V), with the
ordering in (4.7),

S∅(AL ∪AR) = 2πc
3β
(
(t+ b) + (−t+ b)

)
− πc

3β (2a+ 2b) = 2πc(b− a)
3β . (4.11)

As expected, the results (4.10) and (4.11) are equal when t = 1
2(b−a) the boundary between

regimes (II) and (III). The no-island saddle corresponds to the BCFT OPE channels (2)
and (1), as shown in figure 1.

4.3 Island saddle

Now we turn to saddles with islands. In JT gravity the area term in the generalized entropy
in (4.1) is given by the value of the dilaton at the putative quantum extremal surface. We
saw in the BCFT analysis that disconnected channels contributing to the entropies arose
from one point functions for two out of the four twist operator insertions. This corresponds
to an island saddle in JT gravity, arising from two QES, which is, of course, the minimal
number. There are now six points along the Cauchy slice {2L, 1L, 1Q, 2Q, 1R, 2R} labelled
by µ = 1, 2, . . . , 6 from left to right, with the µ = 3, 4 labelling the QES. The generalized
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entropy is explicitly

Sgen(AL ∪AR) = πc

6βk
∑

µ=1Q,2Q

1− w+
µw
−
µ

1 + w+
µw
−
µ

dilaton/area

− c6
∑
µ<ν

(−1)µ−ν log[−(w+
µ − w+

ν )(w−µ − w−ν )]

− c

12
∑

µ=2L,1L,1R,2R
log |w+

µw
−
µ |

conf. fact. bath

− c

6
∑

µ=1Q,2Q
log(1 + w+

µw
−
µ )

conf. fact. AdS

,

(4.12)

where the last two sums account for conformal factors from the metric in KS coordinates.
The CFT contribution to the entanglement entropy now includes the island interval I
between the two QES.

In general, solving the saddle point equations would be a numerical exercise. However,
two key simplifications emerge at high temperature limit. Firstly, the QES remain close
to the black hole horizon in the semi-classical limit (cf e.g. [69]). Therefore, assuming that
|w+
σ w
−
σ | � 1 for σ = 1Q, 2Q, the saddle point equations are

w∓σ = −s
∑
µ( 6=σ)

(−1)σ−µ

w±σ − w±µ
. (4.13)

As previously, we have s = βk/2π � 1. For simplicity, we will also assume that β| log s|,
which is the scrambling time of the black hole, is a subleading scale compared with the
size of the intervals.

The second key simplification of the high temperature limit yields a picture mirroring
the channels of the BCFT calculation in section 3 in that the solution can be broken up
into the temporal regimes (4.5) and specifically (II), (III) and (IV). In a given regime, the
solutions are dominated by only one term on the right-hand side of (4.13). Subleading terms
affect whether the QES, whilst remaining close to the horizon, are inside or outside of it.

From the analysis of semi-infinite intervals above, we recall the appearance of the time
scale texit = 2a (assuming small scrambling times) at which the QES exit the horizon.
Whilst there is no discernible signature of this scale in the evolution of the entropy, it
proves to be useful to simplify the discussion by achieving a clean separation of time scales.

Regime (IIa). We will first consider intervals that satisfy the condition 2a < (b− a)/2,
so that texit lies in the temporal regime (II). Then regime (II) can be split into two sub-
regimes:

IIa : a < t ≤ 2a , IIb : 2a < t <
1
2(b− a) . (4.14)

The early time period (IIa) is in fact captured by QES locations given by (4.2) in the
problem with semi-infinite intervals. In this regime, keeping only the dominant terms, the
saddle point equations are (assuming |w−1Q | � 1, |w+

1Qw
−
1Q | � 1)

w−1Q ≈
s

w+
1Q − w

+
1L
,

1
s
w+

1Q ≈ −
1
w−1L

+ 1
w−1Q

− 1
w−1Q − w

−
1R
, (4.15)
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with corresponding conditions for the second QES. In the symmetric situation w±1Q = w∓2Q .
These conditions yield the locations (4.2). Explicitly,

w+
1Q = −se−2π(t+a)/β + 1

s
e−6π(t−a)/β , w−1Q = se2π(t−a)/β . (4.16)

In each of the remaining temporal regimes, the solutions are dominated by only one
term on the right-hand side of (4.13) say µ = µ(σ):

w∓σ ≈
s

w±σ − w±µ(σ)
. (4.17)

In the above, we have assumed that (−1)σ−µ(σ) = −1 which is true for all the examples.
The terms that have been neglected are either subleading or cancel out in pairs.

The simpler equations (4.17) are quadratic with only one of the solutions physically
consistent, i.e. has |w+

σ w
−
σ | � 1 and the QES being points on a Cauchy slice containing

the points in the baths:

w±σ =
w±µ(σ)

2

(
1−

√√√√1 + 4s
w+
µ(σ)w

−
µ(σ)

)
. (4.18)

In the high temperature limit, this has a crossover between two distinct regimes. Firstly,
when x+

µ(σ) > x−µ(σ), in which case the solution becomes

w±σ ≈ −
s

w∓µ(σ)
. (4.19)

According to (4.19), in this regime, a QES corresponds to the following pattern of coordi-
nates:

· · · < x+
σ < x+

µ(σ) < · · ·

= =

· · · < x−µ(σ) < x−σ < · · ·
(4.20)

For these solutions it follows from (4.19) that the allowed values for ±x±σ are from the set
{−t− b,−t− a, t− b, t− a}.

The solution (4.18) then has a crossover to the regime where x+
µ(σ) < x−µ(σ) for which

w±σ ≈

√√√√sw±µ(σ)

w∓µ(σ)
. (4.21)

In this case, the pattern is

· · · < x+
µ(σ) < x+

σ < · · ·

· · · < x−σ < x−µ(σ) < · · ·

1
2(x+

µ(σ) + x−µ(σ))

=
=

(4.22)
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2L
1L

1Q 2Q

1R 2RI

ARAL

Figure 11. The island saddle in regime (II) has an island with QES that can move from inside to
outside the horizon (when 2a < 1

2 (b− a)) as shown in red and blue. If 2a > 1
2 (b− a), they remain

inside the horizon. The labelling of points along a Cauchy slice are shown and only the upper half
of the Penrose diagram in figure 2 is shown.

Again, we assume large intervals b > 3a and use the analysis above to piece together the
island saddle.

Regime (IIb). In regime (IIb) which matches smoothly with (IIa), we find that the
island saddle is of type (4.19) with

w±1Q = − s

w∓1L
= ∓se2π(∓t−a)/β , w±2Q = − s

w∓1R
= ±se2π(±t−a)/β , (4.23)

which are outside the horizon on the left and right (since w+
3 , w

−
4 < 0), respectively, as

shown in figure 11. The orderings of the x± coordinates are

x+
1Q < x+

1L < x+
2Q < x+

1R < x+
2L < x+

2R , x−2L < x−2R < x−1L < x−1Q < x−1R < x−2Q , (4.24)

where the QES coordinates are shown in red and blue. One may check that the conditions
are satisfied for this to be a solution of the saddle point equations. In particular,

|w+
1Qw

−
1Q | = |w

+
2Qw

−
2Q | = s2e−4πa/β � 1 (4.25)

and the QES come in the pattern (4.20).
The entropy is given in (4.12) making the approximation |w+

σ w
−
σ | � 1 for µ = 1Q, 2Q,

so that the dilaton or area term becomes a constant and the conformal factor term in the
AdS region — the last sum — can be neglected. We find

SI(AL ∪AR) = πc

3βk + 2πc
3β
(
(t+ b) + (t+ a) + (−t+ a)

)
− πc

3β (2a+ 2b)

= 2πc
3β
( 1
2k + t+ a

)
.

(4.26)

The constant term, proportional to 1/k, is twice the Bekenstein-Hawking entropy of the
black hole. Comparing with the BCFT result (3.17), this is exactly the contribution from
the OPE channel (3) which dominates in region (II). Note that the entropy in sub-regimes
(IIa) and (IIb) are given by the same expression up to exponentially small corrections. We
can, in fact make an identification between the boundary entropy and black hole entropy,
even though JT gravity does not describe the BCFT limit in the holographic dual,

log gb ←→ S
(β)
BH = πc

6βk . (4.27)
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2L
1L

1Q 2Q 1R 2RI

ARAL

Figure 12. The island saddle in regime (III)∪(IV) has an island with QES behind the horizon as
shown in red and blue.

We view the black hole entropy as a temperature dependent boundary entropy, and the free
fermion BCFT limit wherein log gb = 0 is like an infrared limit in which typical length and
time scales are taken to be much larger than 1/k (in conjunction with the high temperature
thermodynamic limit).

Within the island saddle in regime (II) we can identify how the bulk OPE channel which
dominates the entropy matches the OPE channel in the BCFT description. In this regime,
the motion and the precise location of the exiting QES does not affect the leading behaviour
of the entropy which is determined by the bulk OPE channel w±1L → w±1Q , w

±
1R → w±2Q and

w±2L → w±2R :

SI(AL ∪AR) = 2SBH + c

6
(
log σ1L,1Q + log σ2Q,1R + log σ2L,2R

)
(4.28)

− c

12
∑

µ=1L,R,2L,R
log |w+

µw
−
µ | ,

yielding the result (4.26), where σµ,ν = −(w+
µ − w+

ν )(w−µ − w−ν ). The result tells us that
contractions of twist and anti-twist operator insertions at a bulk interval endpoint and the
QES, act to reproduce contractions between points and images in the BCFT picture. This
yields the disconnected portion of the BCFT OPE channel (3) (see figure 7), and reveals
how the correspondence between BCFT image points and QES surfaces should work.

Regime (III). Now we transition into regime (III) for which the island saddle is of
type (4.19) with QES at

w−1Q = − s

w+
1L

= se2π(t−a)/β , w+
1Q = − s

w−2R
= se2π(t−b)/β ,

w−2Q = − s

w+
2L

= se2π(t−b)/β , w+
2Q = − s

w−1R
= se2π(t−a)/β ,

(4.29)

which are inside the horizon as shown in figure 12. So as t increases from (II) to (III) the
QES move from outside to inside the horizon if 2a < 1

2(b − a), or simply continue to stay
inside if 2a > 1

2(b − a). Later we will show how this happens precisely. The orderings of
the x± coordinates in this regime are,

x+
1Q < x+

1L < x+
2Q < x+

2L < x+
1R < x+

2R , x−2L < x−1L < x−2R < x−1Q < x−1R < x−2Q (4.30)
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and

|w+
1Qw

−
1Q | = |w

+
2Qw

−
2Q | = s2e2π(2t−a−b)/β � 1 , (4.31)

since t < 1
2(a + b) in (III). In addition, the other consistency conditions are satisfied and

the QES come in the pattern (4.20).
The entropy in regime (III) is

SI(AL ∪AR) = πc

3βk + 2πc
3β
(
(t+ b) + (−t+ b) + (−t+ a)

)
− πc

3β (2a+ 2b)

= 2πc
3β

( 1
2k − t+ b

)
,

(4.32)

matching with the BCFT result (3.17). The agreement here is important, as it confirms the
existence of the dip in the entropies. In this regime, the BCFT channel (4) dominates the
entropy. The channel is characterized by contraction of a pair of twist-anti-twist operators
in CFTR, with BCFT images in CFTL (figure 7). In fact, twist insertions at the near
endpoint x = a in one CFT are contracted with images at the far endpoint x = b in the other
CFT. As remarked earlier, these are lightcone singularities with a natural interpretation
in free CFTs or those with a quasiparticle interpretation. In the bulk CFT, the dominant
terms in regime (III) arise from the contractions w+

1L → w+
1Q , w

−
1Q → w−2R , w

+
2L → w+

2Q ,
w−2Q → w−1R , w

−
2L → w−1L , w

+
1R → w+

2R :

SI(AL ∪AR) = 2SBH + c

6 log
∣∣∣(w+

1L − w
+
1Q)(w−1Q − w

−
2R)(w+

2L − w
+
2Q)(w−2Q − w

−
1R)
∣∣∣+

c

6 log
∣∣∣(w−2L − w−1L)(w+

1R − w
+
2R)
∣∣∣− c

12
∑

µ=1L,R,2L,R
log |w+

µw
−
µ | . (4.33)

Note now that the effect of the singularity ∼ log sinh π
β (x+

2L − x
−
1R) in the BCFT channel

(4) is reproduced by the successive bulk contractions ∼ log(w+
2L −w

+
2Q)(w−2Q −w

−
1R) via an

intermediate QES. Evaluating this (in the high temperature limit) gives us the result for
regime (III) as before, but importantly it explicitly demonstrates the role played by the
QES in reproducing BCFT channel (4).

Regime (IV). Finally the island saddle of (III) transitions into (IV) as a solution of
type (4.21),

w±1Q =
√
se∓π(b−a)/β , w±2Q =

√
se±π(b−a)/β , (4.34)

which remain inside the horizon. In this case the coordinates satisfy the consistency con-
ditions for the approximations as long as s is small,

|w+
1Qw

−
1Q | = |w

+
2Qw

−
2Q | = s� 1 . (4.35)

The ordering of the x± coordinates is

x+
1L < x+

1Q < x+
2L < x+

2Q < x+
1R < x+

2R , x−2L , < x−1L < x−1Q < x−2R < x−2Q < x−1R (4.36)
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and the QES come in the pattern (4.22). The entropy is

SI(AL ∪AR) = πc

3βk + 2πc
3β

(
(t+ b) + 1

2(b− a) + 1
2(a− b)

)
− πc

6β (4a+ 4b)

= 2πc
3β

( 1
2k + t− a

)
,

(4.37)

matching the rising portion of the BCFT channel (4) contribution, following the dip in
regime (III). As in the case of the BCFT, both the fall and rise are governed by the same
bulk channel (4.33). The actual magnitudes of the coordinates of the QES do not contribute
at leading order to the final result for the high temperature entropy, but how big they are
relative to coordinates of other points determines whether we are in regime (III) or (IV).

The final entropy is obtained by taking the minimum of the island and no-island
saddles. This gives the result shown in figure 1 plotted in the case where the black hole
entropy constant is small. The no-island saddle is shown as the black line and the island
saddle as the red line.

The regimes (IIa) and (IIb) show no qualitative difference insofar as the entropy evo-
lution is concerned. When 2a > (b − a)/2, the two sub-regimes merge into one and the
QES stays inside the horizon at all times. Thus regime (IIb) is eliminated in this case while
the analysis of regimes (III) and (IV) remains largely unchanged, except for the transient
position of the QES in regime (III) which receives a correction term whilst remaining inside
the horizon.

What our approximation to the saddle point equations in (4.17) obscures is that the
island saddles that dominate the entropy in the regimes (II), (III) and (IV) are in fact
smoothly related across the boundaries in a way that becomes sharper as the temperature
increases. We can do better by working with a refinement of the approximation (4.17) which
includes all the relevant terms for describing the island saddle across (II), (III) and (IV):

w−1Q = s

w+
1Q − w

+
1L
, w+

1Q = s

w−1Q
− s

w−1Q − w
−
1R

+ s

w−1Q − w
−
2R
− s

w−1L
,

w+
2Q = s

w−2Q − w
−
1R
, w−2Q = s

w+
2Q
− s

w+
2Q − w

+
1L

+ s

w+
2Q − w

+
2L
− s

w+
1R

.
(4.38)

In the last terms, we have used the fact that |w−1Q | � |w
−
1L |, |w

+
2Q | � |w

+
1R |, |w

+
1Q | � |w

−
1Q |,

and |w−2Q | � |w
+
2Q | respectively. Remarkably, each pair of equations when combined results

in just a quadratic equation for w+
1Q and w−2Q:

1
w−1Q − w

−
2R
− 1
w−1Q − w

−
1R
−
(

1
w−1L

+ 1
s
w+

1L

)
= 0 ,

1
w+

2Q − w
+
2L
− 1
w+

2Q − w
+
1L
−
(

1
w+

1R
+ 1
s
w−1R

)
= 0 , (4.39)

Solutions to these quadratic equations smoothly interpolate the asymptotic solutions
in regimes (II), (III) and (IV). Taking the right QES, for small β we can write the solution
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2a bbb−a
2

a+b
2

b−a
2

a+b
2

tt

w−
2Q

0

0

(II)(II) (III) (III)(IV) (IV)

horizon

horizon
inside

inside

outside

Figure 13. The w−
2Q

coordinate of the right QES determined numerically with some large but
finite temperature. When 2a < 1

2 (b− a) (left panel), the QES starts off inside the horizon, exits at
t = 2a at the onset of regime (II) and plunges back in at t = 1

2 (b − a) to remain inside in regime
(III), before saturating to the constant in region (IV). The situation when 2a > 1

2 (b − a) (right
panel) shows the corresponding motion of the QES behind the horizon at all times.

for the w− coordinate (after neglecting terms that are consistently small),

w−2Q = 2s
(√

4s2e2π(b−3a)/β + 4se2π(b−a)/β + e4π(b−t)/β − 2e2π(b+a−2t)/β (4.40)

−e2π(a−t)/β − e2π(b−t)/β
)−1
− e−2π(t−a)/β .

The expression (4.40) displays the three regimes (II)→(III)→(IV) with transitions at t =
1
2(b± a) as t increases. In particular, for the situation with 2a < 1

2(b− a), The QES moves
out of the horizon at t = 2a and as (II) crosses over to (III) at t = 1

2(b−a), the QES moves
smoothly from outside to inside the horizon as shown in figure 13. The left QES behaves
in a similar way.

4.4 Small intervals

When b < 3a there is a different pattern of saddles

(I) =
{

0 < t < 1
2(b− a)

}
, (V) =

{
1
2(b− a) < t < a

}
,

(III) =
{
a < t < 1

2(a+ b)
}
, (IV) =

{
1
2(a+ b) < t < b

}
,

(V) = {b < t} .

(4.41)

The labelling here matches the labelling of the saddles in the last section. So in this case,
the system reaches equilibrium early at t = 1

2(b−a) but then there is a dip later on. In this
case, the QES are always inside the horizon in the island saddle since regime (II) does not
occur. The entropy is shown in figure 8 and, again, matches the BCFT result perfectly.

4.5 Generic intervals

We now consider the case with two generic intervals. This brings additional regimes con-
trolled by different BCFT channels into play, as shown by the facet-like structure in fig-
ure 10. In particular, the crossover between regimes (II) and (III) gets replaced by a new
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regime dominated by the disconnected BCFT channel of type (5) shown in figure 9, or
of the same type with L and R exchanged. Based on our observations in the symmetric
case, we expect channel (5) to correspond to the generalized entropy in the presence of 2
QES dominated by the bulk channels: w+

1L → w+
1Q , w

−
1Q → w−2R , w

+
1R → w+

2Q , w
−
2Q → w−1R ,

w+
2L → w+

2R , w
−
2L → w−1L . A quick calculation confirms this as the correct interpretation,

assuming the QES are close to the horizon and their coordinates are relatively small.
The equations for the QES are still (4.38) and the solution for the right QES w−2Q

coordinate can be obtained analogously to (4.40) . It is then apparent that the left and right
QES behave independently. Taking the situation with the exit times texit,10 sufficiently
small, the left/right QES has three regimes with transitions at t = 1

2(b2±a1) and t = 1
2(b1±

a2), respectively. In particular, the QES plunges into the horizon at the lower transition
and since this is different for the left and right QES there will be configurations where one
QES is outside and the other is inside the horizon. For the example in figure 10, the right
QES plunges first at t = 1

2(b1−a2) = 4.5 as we expected above. This is the regime labelled
(IIA) where the entropy plateaus. The left QES then plunges at t = 1

2(b2 − a1) = 6.65 as
(IIA) transitions to (III) and the entropy starts to decrease into the dip. The dip itself
is also smoothed off in regime (IIIA), since the final transition occurs at different times,
t = 1

2(a2 + b1) = 8 for the right QES and t = 1
2(a1 + b2) = 8.65 for the left QES.

5 Geodesic approximation

At high temperature the entanglement structure of the state can be visualized in terms of
the positions of localized wave packets, since modes of characteristic energy β−1 can be
localized on distance scales ∼ β which is small as β → 0. A left-moving11 wave packet on
the left localized around a geodesic, or ray, at fixed x+ = λ is entangled with a localized
wave packet on the right with the reflected coordinates x+ = λ (and similarly for the
right-moving modes). In this limit, we can analyse the state and the entropy of AL ∪ AR
by a simple process of ray tracing.

5.1 BCFT

We start with the BCFT. Referring to figure 14, consider left-moving modes that pass
through AR at time t (there is a similar story for the right-moving modes). There are
two distinct set of modes: firstly modes in the interval x+ ∈ A(l)

R ≡ [a+ t, b+ t] that pass
through AR as left-moving modes. But there are left-moving modes in interval x+ ∈ Â(l)

R ≡
[max(t − b, 0),max(t − a, 0)] that reflect off the boundary and pass through AR as right-
moving modes. On the left, there are no reflected modes to consider and the left-moving
modes that pass through AL at time t are x+ ∈ A(l)

L ≡ [max(a − t, 0),max(b − t, 0)]. The
three subsets of modes are shown in figure 14.

10The left/right QES exit the horizon at texit = 1
2 (3a1,2 + a2,1) (see eq. (4.2)), provided these are small

compared with subsequent transition time scales below.
11We use the convention that a left-moving mode means with respect to our figure, so on CFTL with x

increasing and on CFTR with x decreasing, or in the black hole outgoing on the left and infalling on the
right.
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t

xx

A
(l)
R

ARAL

Â
(l)
R

A
(l)
L

Figure 14. The left-moving modes that pass through AL ∪ AR at time t are split into the three
subsets as indicated. Here, t is in the temporal interval (IV).

(I)

(II)

(III)

(IV)

(V)

t

x+
a b

Figure 15. For time t, the sets of modes A(l)
R bordered in black, the reflected modes Â(l)

R in red
and Ã(l)

L in green. At a given time the entropy of the modes is given by Srad for the blue areas that
correspond to A(l)

R 	 Ã
(l)
L .

The modes on the left are entangled with modes on the right under the reflection
x+ → −x+, which we define as

x+ ∈ Ã(l)
L = [max(a− t, 0),max(b− t, 0)] . (5.1)

The entropy of AL ∪AR is then

SBCFT(AL ∪AR) = Srad
(
Ã

(l)
L 	 (A(l)

R ∪ Â
(l)
R )
)

+ Srad
(
Ã

(r)
R 	 (A(r)

L ∪ Â
(r)
L )
)
, (5.2)

where we have added a similar contribution from the right-moving modes. The entropy of
a null interval of radiation is defined in (3.8). The symmetric product Ã(l)

L 	 (A(l)
R ∪ Â

(l)
R )

is illustrated in figure 15 from which the entropy can simply be read off.
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Ĩ
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)

A
(r

)
R

Ã
(r

)
L

I +
R

I
+
L

w
− =

0

Figure 16. The right-moved modes at I +
R that pass through AR and the purifiers from AL ∪ I

that are mapped onto I +
R via the involution about the horizon w− = 0 as shown.

5.2 Black hole and ‘islands in the stream’

In this section, we establish a similar geometrical approach to visualize the entanglement
structure of the state of the radiation leading to a simple way to calculate the entropy of a
saddle in the black hole. This visualization is a generalization of the ‘islands-in-the-stream’
formalism of [70].

Take the right-moving modes. Those that pass through AR are projected onto right
null infinity as A(r)

R ⊂ I +
R as shown in figure 16. In the large temperature limit, the entropy

of these modes, up to the usual UV divergence, is simply the thermodynamic entropy of
a gas of massless quanta in the interval defined by the Minkowski null coordinates of
the endpoints x− ∈ [t − b, t − a] (3.8). However, the interval AL ∪ I behind the right
horizon (w− = 0) collects right-moving purifiers of the modes at I +

R and so can cancel
the entropy of A(r)

R as well as adding in additional contributions. The purifiers are related
by the involution w− → −w−, which for an interval of right-moving modes we denote
A(r) → Ã(r), and using this we can map the right-moving modes that pass through AL ∪ I
onto right null infinity as Ã(r)

L ∪ Ĩ(r) ⊂ I +
R . Note that the involution preserves the values

of the coordinates x− and so it is simple to find the images of I and AL on I +
R , they are

simply the intervals of their x− coordinates.

There is a subtlety for the islands. If the QES is inside the horizon, i.e. has coordinate
w−σ = e−2πx−

σ /β , the involution w− → −w− maps it to −e−2πx−
σ /β and projects onto I +

R

as a point with null Minkowski coordinate x−σ . However, if the QES is outside the horizon,
i.e. has coordinate w−σ = −e−2πx−

σ /β then the interval [−w−σ , w−σ ] ⊂ I that straddles the
horizon purifies itself and therefore cancels out as far as the entropy is concerned and so
we can effectively replace the QES coordinate by e−2πx−

σ /β which is inside the horizon.

The net contribution from the right-moving modes corresponds to the thermodynamic
entropy of the gas on the interval of the symmetric difference A(r)

R 	 (Ã(r)
L ∪ Ĩ(r)). The

symmetric difference accounts for the purification of modes across the horizon and the
resulting nullification of the entropy. This statement is correct up to the fact that we have
to compensate for the conformal factors of the QES since these are not those of a thermal
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(I)

(IIa)
(IIb)

(III)

(IV)

(V)

t

x−

Ĩ(r)

A
(r)
R

Ã
(r)
L

−a−b

Figure 17. The 3 subsets A(r)
R (black), Ã(r)

L (green) and Ĩ(r) (red) on I +
R as a function of time.

Given that the latter two purify the former, the net contribution to the entropy at any given time
is given by A(r)

R 	 (Ã(r)
L ∪ Ĩ(r)) the blue area (plus the contribution from the QES). Example time

slices are shown in each time regime. In regime (III), the blue regions are shrinking due a collision
between Ã(r)

L and the island in the stream Ĩ(r) as t increases accounting for the dip in the entropy.

state due to the curved geometry of AdS. The final formula for the entropy is

SI(AL ∪AR) =
∑

σ=1Q,2Q
SQES(σ) + Srad

(
A

(r)
R 	 (Ã(r)

L ∪ Ĩ
(r))
)

+ Srad
(
A

(l)
L 	 (Ã(l)

R ∪ Ĩ
(l))
)
,

(5.3)

where the contributions from the QES include the compensator for the conformal factor:

SQES(σ) = πc

6βk + c

12 log |w+
σ w
−
σ | . (5.4)

We have applied the same logic to the left-moving modes projected onto I +
L .

The behaviour of the set A(r)
R 	(Ã(r)

L ∪Ĩ(r)) as a function of time is shown in figure 17. As
an example, consider the saddle in regime (III) where the entropy unexpectedly decreases.
In that case, the projections onto I +

R in terms of the coordinate x− are

A
(r)
R = [t− b, t− a] , Ã

(r)
L = [−t− b,−t− a] , Ĩ

(r)
R = [−t+ a,−t+ b] . (5.5)

Hence,12

A
(r)
R 	 (Ã(r)

L ∪ Ĩ
(r)) = [−t− b,−t− a] ∪ [t− b,−t+ a] ∪ [t− a,−t+ b] (5.6)

and so

Srad(A(r)
R 	 (Ã(r)

L ∪ Ĩ
(r))) = πc

6β
(
(b− a) + (b+ a− 2t) + (b+ a− 2t)

)
. (5.7)

12Note that the following intervals are just pairs of the x− in the ordered list in (4.30).
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The left-moving modes give an identical contribution. Note that the second and third
intervals decrease in size as t increases which is consistent with the decrease in the entropy.
However, there are also the QES contributions to consider

SQES(1Q) = SQES(2Q) = πc

6βk + πc

6β (2t− a− b) . (5.8)

Adding all the contributions gives the result (4.32).

6 Discussion

In BCFT, the boundary acts as a mirror that reflects incoming modes. For spatial intervals
of characteristic length L, the thermodynamic limit L/β � 1 uncovers behaviour that is
captured by competing OPE channels, and correlations on short scales ∼ O(β) are invisible.
The only effect of the boundary degrees of freedom is to contribute an additive boundary
entropy sb = log gb in the relevant OPE channels. The free fermion theory is particularly
simple given that log gb = 0. Despite the simplicity of this limit, the time evolution of
measures of entanglement can be nontrivial.

These generic features are reproduced by AdS2 black holes in the Hartle-Hawking state
with radiation baths, in the limit of large intervals such that the scrambling time scale can
be neglected L� β log (2π/kβ)� β. If we also take L� 1/k, we recover the free fermion
results with vanishing boundary entropy. In this limit, the black hole is particularly simple
and entanglement wedge reconstruction of its interior should be simple. Its entropy is much
smaller than the thermodynamic entropy of the intervals and the effects of scrambling being
negligible, the black hole behaves like a mirror. The reflected modes on either side of the
thermofield double play the role of the Hawking radiation, and the BCFT images on the
left and right play the role of the interior of the black hole.

It is remarkable to see the nontrivial dynamical entanglement structure being repro-
duced by plunging QES and the qualitative features continuing to apply away from the
strict BCFT limits. In this context, the dip, readily apparent in figures 1 and 8, in entangle-
ment entropy of the two disjoint intervals AL ∪AR deserves special mention (equivalently
a peak in the mutual information) particularly in the case with small intervals. In this
case information equilibrium appears at early times after a short period of linear growth
of the entropy, but a sudden brief dip appears at a much later time before equilibrium
sets in again. What is the physical reason for this dip? The explanation is that precisely
at this time the out-going modes, i.e. left-moving through AL and right-moving through
AR, are completely purified leaving only the contribution from the in-going modes, i.e. half
the number of modes. A picture of the relevant modes for both the BCFT and black hole
are shown in figure 18. In the BCFT, the purification can be seen immediately from the
geometry. In the black hole case, the QES are positioned in precisely the right place (to
leading order) to capture the relevant modes to purify the state.

A noteworthy outcome of the precise comparison between BCFT and gravity is the
identification of different disconnected BCFT channels (corresponding to singularities in
the Lorentzian correlator) with bulk channels in JT-gravity in the presence of QES inside
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t = 1
2 (a+ b)

t = 0
b a ba

AL AR

I

ARAL

Figure 18. The explanation for the dip in BCFT (top) and black hole (bottom). The coloured
outgoing modes are maximally entangled between left and right and so these modes do not con-
tribute to S(AL ∪ AR). It follows that the entropy is only one half of the thermodynamic entropy
of the two intervals. Note that in the BCFT case, the green (purple) modes on the right (left) side
start as left- (right-)moving modes at t = 0 that reflect off the boundary whereas in the black hole
there are four distinct sets of modes.

or outside the horizon. From the examples studied in this paper (and in the limit of large
intervals and small scrambling times), we infer that the QES serve to reproduce contractions
involving BCFT image points in either copy of the TFD state. It would be interesting to
perform a more exhaustive study of all possible singularity channels in the BCFT picture
(for our two interval problem there are 24 such channels) and the precise characterization of
their associated QES. It is interesting to note that the purification of modes and consequent
dip in entanglement entropy always involves QES behind the horizon. This is similar to the
nonequilibrium situation with evaporating black holes [69] where the QES remains inside
the horizon while the entropy relaxes after Page time and only pops out of the horizon at
parametrically late times when the system is approaching equilibrium.

An interesting aspect of our analysis of the island saddles in gravity is that the QES
evolve smoothly across the different regimes which we have identified, including when they
plunge into the horizon, the boundaries between the regimes becoming sharp only in the
limit of large intervals. In this sense, the JT gravity realization of island saddles appears
different to large-c holographic BCFTs wherein the distinct OPE channels are captured by
distinct RT surfaces or saddles. Also important here is that the JT gravity analysis in this
paper captures the physics of CFTs with a free quasiparticle description which is distinct
from large-c holographic BCFTs that are maximally scrambling and are not expected to
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exhibit entanglement dips. However, the JT gravity plus free fermion setup also allows
the exploration of the strong scrambling regime, where it is the black hole that does the
scrambling instead of the CFT bath. In particular, it would be interesting to relax the limit
of high temperatures and small scrambling times to understand both the deviations from
the BCFT picture and the effects of black hole scrambling on the entanglement evolution.

Finally, it is worth recalling that we have found in our analysis of both the semi-
infinite and finite intervals, a time scale associated to QES exiting the horizon. This
timescale (texit = 2a) is much larger than the entanglement equilibrium scale, and has
little or no effect on the entropy evolution itself. It would be interesting to learn what
physical significance, if any, can be attached to exiting QES and the associated timescale.
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