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Abstract

In this paper, we study human-AI collaboration protocols, a design-oriented
construct aimed at establishing and evaluating how humans and AI can collab-
orate in cognitive tasks. We applied this construct in two user studies involving
12 specialist radiologists (the knee MRI study) and 44 ECG readers of varying
expertise (the ECG study), who evaluated 240 and 20 cases, respectively, in
different collaboration configurations. We confirm the utility of AI support but
find that XAI can be associated with a “white-box paradox”, producing a null or
detrimental effect. We also find that the order of presentation matters: AI-first
protocols are associated with higher diagnostic accuracy than human-first pro-
tocols, and with higher accuracy than both humans and AI alone. Our findings
identify the best conditions for AI to augment human diagnostic skills, rather
than trigger dysfunctional responses and cognitive biases that can undermine
decision effectiveness.

Keywords: Human-AI collaboration protocols; Artificial Intelligence;
Explainable AI; cognitive biases; automation bias

1. Introduction

In a recent editorial, Elmor and colleagues [25] noted that “there are complex
interactions between a computer algorithm output and the interpreting physi-
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cian... the extent to which physicians may be influenced by the many types and
timings of computer cues remains unknown”.

Despite increasing research into the application of AI systems in health-
care [62, 70], the potential impact of AI on clinical decision making is still
poorly understood [29], and particularly so for systems featuring complex in-
teraction between clinicians and AI, such as those endowed with eXplainable
AI (XAI) [18, 38]. Several studies [10, 33, 39, 42, 44, 64] have demonstrated
the benefits that AI systems offer, but others raised concerns about the emer-
gence of biases, such as automation bias [46, 44], algorithmic aversion [11, 20]
or deskilling [36, 63], which can lead to an increase in clinical errors.

As noted above and as highlighted in recent experimental studies [29], not
only the quality of decision support, but also the way information is presented
to the clinicians, and how the clinicians interact with the decision support,
can have a significant impact on clinical decision-making [61, 16, 32]. When
evaluating the impact of AI-based decision support systems in clinical practice,
AI-based medical solutions should thus not only be tested as stand-alone apps,
but also in real-world scenarios with real people to evaluate how human agents
perceive AI-generated recommendations and explanations [21, 64].

In practice, several features of the interaction between clinicians and their
computational decision aids could have a potential influence on trust, adoption,
and clinical accuracy, and should therefore be precisely stipulated [6]. These
include: the information exchanged between users and machines, including how
the advice is conveyed; the order in which users and machines exchange such in-
formation, including whether users are required to produce a temporary decision
output before obtaining advice from the machine [7]; whether or not explana-
tions should be given and what kind (such as feature rankings, pixel attribution
maps, textual justifications); what kind of support can be given (e.g., sensitive
rather than specific [12], or calibrated rather than uncalibrated [67]); the doctors
who are the intended users should be identified, along with the configurations
that are associated with significant effects.

Various studies have recently aimed to evaluate more complex interactions
between human and AI agents in the clinical setting. The study of Gaube et
al. [29] involved 265 doctors with different levels of task expertise who were
asked to assess chest radiology images for the presence of abnormalities, with
the support of either an AI or a second human agent. The diagnostic accuracy
was found to be similar in the two cases, even though the clinicians trusted more
the support of a colleague rather than that of the AI. Tschandl et al. [64] asked
302 clinicians to analyze dermoscopic photographs of benign and malignant skin
alterations, both with and without the use of AI. They compared three protocols,
in which the AI support was presented in different formats: the confidence scores
associated with all pertinent diagnoses; the confidence score of a malignant
alteration; or a selection of similar pictures along with the respective diagnoses.
The authors found that collaboration with AI improved the examiners’ diagnosis
accuracy only in the first case, and significantly so.

Thus, we draw on the above mentioned studies and introduce the concept of
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an human - artificial intelligence collaboration protocol (HAI-CP)1. We define
an HAI-CP as “the instance of a process schema that stipulates the use of AI
tools by competent practitioners to perform a certain task or do a certain job”.

The expression “use of AI” is actually more complex than it looks, as it
stands for any configuration of learning and interaction parameters that can be
combined together to create a single protocol. These parameters regard at least
5 dimensions (acronymized as AFOOT):

• Affordance, that is what the AI system affords in terms of functionalities
and task automation (e.g., case retrieval, case comparison, case classifica-
tion, decision justification);

• Fit, that is how the AI system fits into the existing work practice, e.g., in
terms of order of presentation and or degree of automation;

• Optimization, that is what the AI system is optimized for in the learning
phase (e.g., accuracy, calibration, utility, complex/simple cases);

• Output, that is what the AI system produces as content, e.g., single
classes, confidence scores, list of categories, textual or visual explanations);

• Target, that is who is the intended target user in terms of profiling data
as e.g., expertise, experience, job title, role).

Adopting the concept of HAI-CP helps considering all of these dimensions
(and possibly others) to make each and every AI intervention tailored for a
specific work setting or, even, situation (e.g., if a situation of emergency is
detected or the user is recognized as associated with a specific role or experience,
the most suitable protocol could be adopted). In particular, we use this concept
in two explorative user studies in which we focus on the effects of AI and XAI
support on diagnostic decision making, and of other process options that have
yet to be examined in the specialized literature. We assess solutions differing by
two dimensions, namely Fit and Output: 1) the effect of AI support presentation
order to examine whether to show the AI’s recommendation before any human
assessment or only after the human provided their initial assessment can make
a difference; 2) the effect of presenting an explanation enriching the AI’s advice.
The first comparison is motivated by the relevant body of work about priming
and framing effects in decision making [48, 59]; while the second comparison is

1A collaboration protocol is a specific version of the more general concept of interaction
protocol. Although adopting the term collaboration is not a neutral choice (no terminological
choice really is), we also believe that it is opportune to adopt a term that specifically concerns
“work settings, that is, [work practice] under conditions of severe constraints” [57]. In so
doing, we recognize that the concept of interaction is necessarily broader and capable to
include any informal, entertainment or ludic settings, and, more generally, information and
knowledge retrieval activities that are not necessarily associated with a formal task or with
tasks mutually associated with other tasks in the context of more complex and articulated
processes.
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motivated by the conjecture that AI support should be tailored to the users’
expertise or expectations [5, 49].

Our main aim is then to present the results of an explorative analysis by
which we compare two second-opinion classes of HAI-CPs, the AI-first and the
human-first configurations: we refer, in the title, to the AI systems involved in
these configurations as rams and hounds, respectively (as a suggestive animal
metaphor). These configurations have previously been studied in the literature
concerned with the detection and study of cognitive biases in decision making
arising due to interaction with AI support systems, especially in crowdsourcing
scenarios [9, 32], as well as in studies investigating the cognitive effect of ex-
planations in XAI [7, 66] . Compared with these previous study, and differing
from a crowdsourcing setting, our study focuses on subject-matter experts (i.e.,
medical doctors), who also have familiarity with computerized support systems
(e.g., in computer aided diagnosis). Furthermore, compared with previous stud-
ies, our study is the first to decouple the provisioning of AI classification and
its explanation, in order to evaluate the separate impact of these forms of sup-
port. The above mentioned configurations and protocols will be evaluated in
two diagnostic settings. These are, respectively, knee lesion MRI interpretation
and ECG reading (see Figures 1 and 2, respectively, in which each activity se-
quence, or scenario, depicts a protocol represent in Business Process Modeling
Notation (BPMN)). We assess any differences in overall effectiveness in the dif-
ferent HAI-CPs, which can then inform adoption policies of AI-based decision
support systems in real practice, and thus an evidence-based design of this class
of support [2].

Figure 1: A BPMN diagram representing the H-AI collaboration protocols of the MRI reading
study (each sequence is a protocol). HD1 denotes the first human decision and FHD the final
human decision that closes the protocols, which is the one written in the final report. Four
HAI-CPs can be instantiated from the BPMN diagram: AI-FHD, AI-XAI-FHD, HD1-AI-
FHD, HD1-AI-XAI-FHD (all of which may involve either a Novice or an Expert reader).
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Figure 2: A BPMN diagram representing the H-AI collaboration protocols of the ECG reading
study (each sequence is a protocol). HD1 denotes the first human decision , HD2 the second
human decision and FHD the final human decision that closes the protocols, which is the
one written in the final report. Eight HAI-CPs can be instantiated from the BPMN diagram:
HD1-AI-FHD, HD1-AI-HD2-XAI-FHD, AI-FHD, AI-HD1-XAI-FHD (all of which may involve
either a Novice or an Expert reader).

2. Methods

2.1. Experimental Design and Data Collection
2.1.1. Knee MRI study

In the MRI reading study, we involved 12 board-certified radiologists, from
hospitals and healthcare centers throughout Italy, with different levels of exper-
tise (8 with higher expertise, or subspecialists, and 4 with lower expertise, or
specialists). The radiologists were asked to report their best diagnoses about 240
knee Magnetic Resonance Imaging (RMI) exams, which we previously extracted
from the MRNet dataset2, with the support of an AI system. In particular, for
each of the 240 cases, the radiologists were invited to assess whether the case
presented a ligament or knee abnormality, or neither. They received advice from
a simulated AI system whose average accuracy on the cases was 80%.

The study was structured as a factorial design with two factors: presenta-
tion order (human-first vs AI-first) and availability of explanations (yes vs no).
Both factors were within-subject. Comparisons based on raters’ expertise were
between-subjects. More in detail, for each case, the radiologists were asked to
provide their diagnoses on the selected cases, and received the AI recommenda-
tions according to two different collaboration protocols: for one half of the cases
(120 out of 240), the AI provided its diagnosis before the case was interpreted
by the radiologist (AI-first protocols) on the same page as the radiologist could
provide their diagnosis. For the other half, the radiologists had to first pro-
pose a tentative diagnosis, which was recorded, and only then they were shown
the diagnostic advice proposed by the AI system. They could then either con-
firm their initial diagnosis or change it in light of the machine’s advice (that is

2https://stanfordmlgroup.github.io/competitions/mrnet/
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human-first protocols). In addition, for each protocol, in half of the cases (i.e.,
60 from each protocol) the diagnosis provided by the AI systems was accom-
panied by XAI decisional support in the form of an activation map (generated
through the GradCAM method [58]). This highlighted the regions of the MRI
that were considered to be most relevant by the AI system. The other half of
the cases (i.e., 60 from each protocol) had no XAI support. The complete list of
HAI-CPs for the knee MRI study is reported in the top half of Table 3. We also
collected the initial diagnoses of each respondent in the human-first group (see
HD1 in Table 3), which were used to evaluate their basal, unsupported accuracy
compared to the MRNet ground truth.

The experiment was conducted using an online multi-page questionnaire,
implemented on the LimeSurvey3 platform (version 3.23). The respondents
were shown the 240 cases in random order. For each case, the questionnaire
showed three views of the MRI (i.e., images on the axial, sagittal and coronals
planes), and the items indicating whether the imaging presented any clinically-
detectable abnormalities.

2.1.2. ECG Study
The ECG reading study involved 44 cardiology residents and specialists (25

residents, 19 specialists), from the Medicine School of the University Hospi-
tal of Siena (Italy). They annotated 20 ECG cases, previously selected by a
cardiologist from a random set of cases extracted from the ECG Wave-Maven
repository4 based on their complexity characteristics. The study participants
had to provide their diagnoses, both supported and not supported by a simu-
lated AI system. The accuracy of the simulated AI was 70% (in terms of the
ECG Wave-Maven gold standard)5.

The study was structured as a factorial design with two factors: presentation
order (human-first vs AI-first) and availability of explanations (yes vs no). The
first factor was between-subjects, while the second factor was within-subject.
Comparisons based on raters’ expertise were between-subjects. More in detail,
the ECG readers were randomly divided in two different groups, which were
equivalent for expertise, to evaluate human-first and AI-first HAI-CPs. For
each ECG case, the readers in the human-first group, after being shown the
trace of the ECG together with a brief case description, had to first provide an
initial diagnosis (in free text format). These respondents were then shown the
diagnosis proposed by the AI. After being shown the AI support, the respondents
could revise their initial diagnosis before being shown the textual explanation
and having to provide their final diagnosis. By contrast, the readers in the
AI-first group were shown the AI-proposed diagnosis together with the ECG
trace and case description, and only afterwards they were asked to provide

3https://www.limesurvey.org/
4https://ecg.bidmc.harvard.edu/maven/mavenmain.asp
5This rate was considered appropriate because in a previous study [54] we observed a

slightly lower average accuracy in a similar population of readers.
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their own diagnosis. Finally, they were shown the textual explanations, and
asked whether they wanted to revise their initial diagnoses. To avoid negative
priming, the first five cases of the questionnaire shown to the ECG readers were
all associated with a correct diagnosis and a correct explanation from the AI
support. Although the participants had been told that the explanations were
automatically generated by the AI system, like the diagnostic advice, these had
been prepared by a cardiologist. 40% of the explanations were prepared to be
incorrect or not completely pertinent to the cases. The complete list of HAI-
CPS for the ECG study is reported in the bottom half of Table 3. We also
collected the initial diagnoses of each respondent in the human-first group (see
HD1 in Table 3), which were used to evaluate their basal, unsupported accuracy
compared to the ECG Wave-Maven ground truth.

The experiment was delivered using a web-based questionnaire set up through
the LimeSurvey platform (version 3.23), to which the readers had been individ-
ually invited by email.

2.2. Reliance patterns and Diagram
To analyze the effects of AI support on human decision-making, in Table 1

we define variables corresponding to AI-supported human judgment reliance
patterns6. The names of the reliance patterns are inspired by the framework
previously discussed in [41]. Intuitively, over-reliance refers to trusting the ma-
chine even when this is against one’s judgment; self-reliance is not trusting the
machine when this is against one’s judgment; under-reliance is trusting the ma-
chine so little as to change one’s mind if the machine agrees with one’s judgment.

Table 1: Definition of all possible decision and reliance patterns between human decision
makers and their AI. In the first three columns, 0 denotes an incorrect decision, and 1 a
correct decision. We associate the attitude towards the AI in each possible decision pattern
(in terms of trust [41]), which leads to either accepting or discarding the AI’advice, and the
main related cognitive biases.

Human judgment AI support Final decision Reliance pattern Biases and Effects
0 0 0 detrimental reliance automation complacency
0 0 1 beneficial under-reliance extreme algorithmic aversion
0 1 0 detrimental self-reliance conservatism bias
0 1 1 beneficial over-reliance algorithm appreciation
1 0 0 detrimental over-reliance automation bias
1 0 1 beneficial self-reliance algorithmic aversion
1 1 0 detrimental under-reliance extreme algorithmic aversion
1 1 1 beneficial reliance confirmation bias (on later cases)

Based on the above mentioned variables we define four metrics aimed at
evaluating the performance of HAI-CPs in terms of reliance patterns and related
biases, as shown in Table 2. RBT and RBMT are equivalent to the relative
positive self-reliance (RSR) and relative positive AI-reliance (RAIR), which are

6We acknowledge that, at the macro level, trust is a complex concept [60], associated with
the trustee’s reputation and the trustor’s risk propensity. reliance patterns refer to expressions
of trust at a micro level, that is, the attitude that leads the trustor to accept (or reject) the
trustee’s suggestion at the individual decision level.
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introduced and discussed in [55] as metrics of automation reliance, i.e., the
behavioral effect of trust.

Table 2: Metrics to evaluate the effects and impact of an AI decision support system on
decision making.

Abbr. Metric Formula
RBOD Relative Beneficial Over-distrust beneficial under-reliance / (beneficial under-reliance + detrimental reliance)
RBT Relative Beneficial Trust beneficial reliance / (beneficial reliance + detrimental under-reliance)
RBOT Relative Beneficial Over-trust beneficial over-reliance / (beneficial over-reliance + detrimental self-reliance)
RBD Relative Beneficial Distrust beneficial self-reliance/ (beneficial self-reliance + detrimental over-reliance)

The four metrics can be visualized in the Reliance Pattern Diagram. In
Figure 3 we report an empty Reliance Pattern Diagram, through which we
can evaluate different types of reliance patterns (according to Table 2) and
the corresponding biases facilitated by a HAI-CP. Code to generate the Re-
liance Pattern Diagram can be accessed on GitHub at https://github.com/
AndreaCampagner/qualiMLpy/blob/master/viz/trust_diagram.py, while a
web service to generate the Reliance Pattern Diagram from data is available at
https://mudilab.github.io/evaluate-human-ai-interaction/.

Figure 3: An empty Reliance Pattern Diagram. The diagram in the left panel depicts the
distrust-related patterns, which are the relative beneficial over-distrust (RBOD) against the
relative beneficial distrust (RBD). Low RBD values correspond to an increased risk of automa-
tion bias, while low RBOD values correspond to an increased risk of automation complacency.
The diagram in the right panel depicts the trust-related patterns, which are the relative benefi-
cial over-trust (RBOT) against the relative beneficial trust (RBT): low RBT values correspond
to an increased risk of (extreme) algorithmic aversion, while low RBOT values correspond to
an increased risk of conservatism bias.

2.3. Statistical Analysis
Based on the two previously described case studies, we were interested in

investigating the following hypotheses:
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1. Do the main factors under analysis (i.e., human-first vs AI-first proto-
col, provisioning of explanations, readers’ expertise) have any effect on
accuracy?

2. Do the individual HAI-CPs (i.e. the interactions between presentation
order and provisioning or not of explanations) under analysis have any
effect on accuracy?

3. Did the provisioning of AI support and/or explanations allow the readers
to improve their accuracy, in comparison with their unsupported accuracy,
or to surpass the accuracy of the AI support?

4. Were there any effects (in terms of increased risk of automation-related bi-
ases) of computer support on reliance patterns and behavioural correlates
of trust?

In both the knee MRI and ECG studies, the statistical analysis of the above
mentioned research questions was performed by means of a statistical hypothesis
testing approach. In all cases, the units of analysis were the per-rater accuracies.
We considered two levels of analysis: the main factors, aggregated level (i.e.,
human-first vs AI-first protocols, raters’ expertise, availability of explanations)
and the HAI-CPs, individual conditions level (i.e., the pairwise comparison of
all considered HAI-CPs, which in turn consist of all the pairwise interactions
between presentation order and availability of explanations). We decided to
focus on these two levels of analyses to investigate both the effects of the main
factors of variation in a HAI-CP as well as the effects of each specific HAI-CP.
We separately also considered the effect of readers’ expertise on the HAI-CPs.

In regard to the adopted statistical procedures, since data was not normally
distributed, we only considered non-parametric tests. We applied the Mann-
Whitney U test [47] for between-subjects comparisons, and Wilcoxon signed
rank test [68] for within-subject comparisons. In both bases, the tests were
selected as non-parametric alternatives to t-test procedures, since as mentioned
before the collected data was not normally distributed. In all cases, to control
the false discovery rate (i.e., Type 1 errors) due to multiple testing, p-values were
adjusted by means of the Benjamini-Hochberg procedure. The statistical signif-
icance of the findings was taken at the 95% confidence level (that is, α = .05).
In all cases, effect sizes were computed using the Rank Biserial Correlation [17]7.

3. Results

3.1. Knee MRI Study
The distribution of accuracy for the considered HAI-CP and the baseline

HD1, are reported in Table 3 and illustrated in Figure 4a.
We first considered the main factors of analysis (see Figure 4a). The dif-

ference in accuracy due to the presentation order (human-first vs AI-first) was

7Effect sizes were interpreted according to the following scale: RBC < .05: negligible; .05 ≤
RBC < .1: negligible-to-small; .1 ≤ RBC < .2: small; .2 ≤ RBC < .3: small-to-medium; .3 ≤
RBC < .5: medium; .5 ≤ RBC < .8: medium-to-large; RBC ≥ .8: large.
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Table 3: The results for each protocol and for the baseline HD1, from the MRI and ECG
studies. Accuracy is defined as the ratio between the number of correct diagnoses and the
total number of cases (with a 95% confidence interval).

Study Collaboration Protocol Description Accuracy

MRI

HD1 (Lower Expertise) No support 77% ± 3%
HD1 (Higher Expertise) No support 81% ± 3%
HD1-AI-FHD (Lower Expertise) AI support (Human-first) 84% ± 4%
HD1-AI-FHD (Higher Expertise) AI support (Human-first) 85% ± 3%
HD1-AI-XAI-FHD (Lower Expertise) AI+XAI support (Human-first) 73% ± 5%
HD1-AI-XAI-FHD (Higher Expertise) AI+XAI supoprt (Human-first) 80% ± 5%
AI-FHD (Lower Expertise) AI support (AI-first) 81% ± 3%
AI-FHD (Higher Expertise) AI support (AI-first) 85% ± 5%
AI-XAI-FHD (Lower Expertise) AI+XAI support (AI-first) 83% ± 3%
AI-XAI-FHD (Higher Expertise) AI+XAI support (AI-first) 86% ± 2%

ECG

HD1 (Novice) No support 45% ± 8%
HD1 (Expert) No support 66% ± 5%
HD1-AI-FHD (Novice) AI support (Human-first) 63% ± 5%
HD1-AI-FHD (Expert) AI support (Human-first) 68% ± 5%
HD1-AI-HD2-XAI-FHD (Novice) AI+XAI support (Human-first) 67% ± 5%
HD1-AI-HD2-XAI-FHD (Expert) AI+XAI support (Human-first) 69% ± 4%
AI-FHD (Novice) AI support (AI-first) 83% ± 3%
AI-FHD (Expert) AI support (AI-first) 82% ± 5%
AI-HD2-XAI-FHD (Novice) AI+XAI support (AI-first) 82% ± 3%
AI-HD2-XAI-FHD (Expert) AI+XAI support (AI-first) 82% ± 5%

significant and associated with a medium effect size (p-value: .033, RBC: .46).
On average, AI-first protocols reported an higher accuracy than human-first
ones. By contrast, the difference in accuracy due to the availability of explana-
tions was not significant but was nonetheless associated with a medium-to-large
effect size (p-value: .095, RBC: .62).

We then considered the individual conditions (i.e., the individual HAI-CPs).
First, we observe that there was no significant difference between lower exper-
tise and higher expertise readers for any of the considered protocols (HD1-AI-
FHD: .931, HD1-AI-XAI-FHD: .071, AI-FHD: .141, AI-XAI-FHD: .100) or the
baseline accuracies (HD1: .170). Nonetheless, the associated effect sizes were
all medium-to-large (HD1: .53, HD1-AI-XAI-FHD: .69, AI-FHD: .56, AI-XAI-
FHD: .59) except for the one associated with the HD1-AI-FHD HAI-CP (RBC:
.06). For this reason, and also due to low test power associated with compar-
isons based on expertise, we did not consider readers’ expertise in subsequent
analyses. The p-values and effect sizes for the pairwise comparisons among
HAI-CPs are reported in Figure 5. Due to low sample sizes, none of the pair-
wise comparisons was associated with a significant difference. Nonetheless, the
effect sizes for the comparison between the unsupported baseline and the AI-
first protocols, as well as that for the AI-supported human-first protocol (i.e.
HD1-AI-FHD), were medium-to-large or large. Similarly, the XAI-supported
human-first protocol (i.e. HD1-AI-XAI-FHD) reported lower performance than
all other considered HAI-CPs, and all such comparisons, though not significant,
were associated with a medium or large effect size. By contrast, all the other
differences were not statistically significant, and the associated effect sizes were
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(a) (b)

Figure 4: Distribution of the readers’ accuracy for the considered HAI-CPs in the knee MRI
study (left, 4a) and in the ECG study (right, 4b). Top: Violinplots of the accuracy distribu-
tions, with dashed lines denoting the median and quartiles of the distributions, while the solid
line denotes the accuracy of the AI. Bottom: Pointplot of the differences in accuracy between
the 2 levels of readers’ expertise (computed for each protocol p as the average accuracy for
protocol p for higher expertise readers, minus the average accuracy for protocol p for lower
experise readers), as well as for the comparison between human-first and AI-first and XAI
vs no XAI protocols; dots represented the average difference while bars represent the 95%
confidence interval of the difference.

negligible-to-small.
XAI support provisioning had a small positive effect for AI-first protocols.

Indeed, the XAI-supported AI-first protocol reported a higher accuracy, as de-
picted in Figure 6a. However, the difference was not significant (see Figure 5).
In contrast, XAI support had a negative effect for the human-first protocols, as
shown in Figure 6b.

As shown in Figures 4a and Appendix A.1, the AI support (see protocols
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Figure 5: Comparison of the accuracy of the HAI-CPs (with no stratification for type of
AI support), in the knee MRI study. P-values and adjusted p-values (in brackets) for the
comparisons are depicted below the diagonal, with p-values lower than .1 colored red: the
darker the hue, the lower the p-value. Effect sizes for the comparisons are depicted above the
diagonal, colored blue: the darker the hue, the higher the effect size.

HD1-AI-FHD and AI-FHD) had a beneficial effect compared to the baseline
HD1. Remarkably, the AI support had a significant beneficial effect also com-
pared with the performance of the AI alone (p-value: .001), see Figure 4a.

The results of the reliance patterns-based analysis are reported in Figure 7.
The XAI-supported human-first protocol (i.e. HD1-AI-XAI-FHD) reported sig-
nificantly lower relative beneficial distrust and relative beneficial over-distrust
(i.e., higher automation bias and automation complacency) than the human-first
protocol without explanation support (i.e. HD1-AI-FHD).

3.2. ECG Study
We collected a total of 1352 responses from the 44 ECG readers, of which 21

considered the human-first protocols and the remaining 23 the AI-first protocols.

12



(a) (b)

(c) (d)

Figure 6: Benefit diagrams for the HAIICPs in the knee MRI study (top, 6a and 6b) and
the ECG study (bottom, 6c and 6d), showing the benefit of providing XAI support versus
not providing it for both AI-first (left, 6a and 6c) and human-first protocols (right, 6b and
6d) . The dots represent the accuracies of the readers, and the brown lines the average
difference in accuracy between the two protocols, along with the corresponding 95% confidence
interval. The blue region denotes an improvement in error rates, while the red region denotes
a worsening.

The distribution of accuracy of the HAI-CPs and the baseline HD1, are reported
in Table 3, and illustrated in Figure 4b.

We first considered the main factors of analysis (see Figure 4b). The dif-
ference in accuracy due to the presentation order (human-first vs AI-first) was
statistically significant and was associated with a large effect size (p-value: <
.001, RBC: .90). AI-first protocols reported a significantly higher accuracy than
human-first ones. By contrast, the difference in accuracy due to the availability
of explanations was not significant and was associated with a medium-to-large
effect size (p-value: .081, RBC: .55).
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Figure 7: Reliance Pattern Diagram, showing the reliance patterns and potential effect of AI
and XAI support for hound protocols in the knee MRI study.

We then considered the individual conditions (i.e., the individual HAI-CPs).
First, we observe that there was no significant difference between novice and
expert readers for the considered protocols (HD1-AI-FHD, pvalue: .665; HD1-
AI-HD2-XAI-FHD, p-value: .965; AI-FHD, p-value: .490; AI-HD1-XAI-FHD,
p-value: .782), which were also associated with small or negligible-to-small effect
sizes (HD1-AI-FHD, RBC: .13; HD1-AI-HD2-XAI-FHD, RBC: .02; AI-FHD,
RBC: .18; AI-HD1-XAI-FHD, RBC: .08). By contrast, the unsupported ac-
curacy levels (HD1) were significantly different (p-value: .009) and associated
with a medium-to-large effect size (RBC: .74). For this reason, and also due to
low test power associated with comparisons based on expertise, we considered
raters’ expertise only for the unsupported HD1 baseline in subsequent analy-
ses. The p-values and effect sizes for the pairwise comparison among HAI-CPs
are reported in Figure 8. Novice readers, as well as expert ones (supported by
any protocol) reported a significantly higher accuracy than that reported by
the unsupported novice readers. By contrast, the expert readers were able to
significantly improve their baseline performance only when support by AI-first
protocols. These latter protocols, i.e. the two AI-first protocols, were signifi-
cantly better than all other protocols as well as better than the unsupported
readers, with no distinction for novice and expert ones. By contrast, the two
human-first protocols were not associated with a significantly higher accuracy
than that reported by the unsupported expert readers.

XAI support had a negligible effect for AI-first protocols, as depicted in
Figures 6c and 8. Similarly, XAI support had a small positive, but not signif-
icant, effect for human-first protocols, though in this case the effect size was
small-to-medium, see Figures 6d and 8.
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Figure 8: Comparison of the accuracy of the HAI-CPs (with no stratification for type of AI
support), in the ECG study. P-values and adjusted p-values (in brackets) for the comparisons
are depicted below the diagonal, with p-values lower than .1 colored red: the darker the hue,
the lower the p-value. Effect sizes for the comparisons are depicted above the diagonal, colored
blue: the darker the hue, the higher the effect size.

As shown in Figures 4b, 8 and Appendix A.2, the provisioning of AI support
had a significant beneficial effect compared to the baseline HD1. Remarkably,
the provisioning of AI support had a significant beneficial effect also compared
with the performance of the AI alone (p-value: < .001), and especially so for
AI-first protocols, see Figure 4b.

The results of the reliance patterns-based analysis are reported in Figure 9.
The XAI-support human-first protocol (i.e. HD1-AI-XAI-FHD) reported signif-
icantly lower relative beneficial distrust and higher relative beneficial over-trust
(i.e., higher automation bias and lower conservatism bias) than the human-first
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protocol without explanation support (i.e. HD1-AI-FHD HAI-CP).

Figure 9: Reliance Pattern Diagram, showing the reliance patterns and potential effect of AI
and XAI support for hound protocols in the ECG study.

4. Discussion

In this article, the concept of human-AI collaboration protocols (HAI-CP)
is proposed to design and evaluate different ways in which users and their AI
tools can interact to have their work done and to make better decisions.

The studies presented in this article are aimed at comparing the effectiveness
of HAI-CPs that differ in terms of specific options chosen for their originality
or relevance. First, we contribute to the emerging body of works (e.g., [8, 53])
which examine bias in AI and XAI support, and focus on the priming effect [11]
of AI advice. To this aim, we compared protocols differing in terms of whether
physicians must express a diagnostic judgment before being influenced (for bet-
ter or worse) by the machine’s advice, or not (human-first and AI-first protocols,
respectively). To our knowledge, our studies are the first ones that aim to con-
tribute on this issue in regard to clinical tasks in which the involved users were
subject-matter experts: indeed, even if other studies compared AI-first and
human-first protocols (as mentioned in the introduction), these latter studies
focused on crowdsourcing settings that only involved laypersons [9, 32]. We
also compared protocols that embed some form of XAI support (i.e., activation
maps or written explanations) with those that provide categorical support with-
out any explanation. Some other studies in the literature focus on this latter
issue [7]. For example, Alufaisan et al. [1] compared human decision accuracy
without AI, with an AI decision support but no XAI, and with both AI and
XAI support. They involved a cohort of 300 lay volunteers and found significant
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evidence that AI-based support improves user decision accuracy, but provide no
conclusive evidence that XAI has any meaningful impact on accuracy. Bansal
et al. [4] observed that, while AI support improves user’s accuracy, this was not
increased by explanations. In contrast, explanations increased the chance that
humans accept the AI’s recommendation, regardless of its correctness. Simi-
larly, Paleja et al. [50] studied human-AI teaming in the context of games and
evaluated the impact of XAI support on users with different levels of expertise.
The authors showed that while XAI had a positive impact on beginner-level
users, it had a largely negative effect on expert-level users. As mentioned in the
introduction, an interesting design aspect of our studies regards decoupling the
effect due to the AI advice and the effect due to the related explanation: to our
knowledge, this decoupling has never been considered before.

In regard to our results, we found a significant effect of AI support in improv-
ing human decisions, which was observed in both studies and for different HAI-
CPs and was particularly evident for the lower-expertise users (see Figures 4b
and Appendix A.2). These results are not particularly surprising, as they pro-
vide additional confirmation to the growing body of literature which focuses on
the benefits of AI support in clinical decision making [1, 29, 33, 39, 42, 64].
However, we observe two particularly significant points.

First, by focusing on human-first protocols in the ECG study, we note that
AI support helped the less-expert users align their diagnostic performance with
those of the experts [52], even though the basal performance of the two groups
was significantly different (see Figure 4b). This effect can be attributed to lower
algorithmic aversion (or higher trust) in physicians with less expertise compared
to the experts, which was also observed in previous studies [20, 29], and espe-
cially in [11] where novices expressed a lower ‘prejudice against the machine’
in their diagnostic choices. Indeed, the improvement due to AI support was
significantly lower for the expert readers and not strong enough to enable them
to surpass or even equal the performance of AI support alone (see Figure 4b).

Second, the performance improvement observed in both studies occurred
despite the relatively low accuracy of the AI support (70% accuracy in the
ECG study, 80% accuracy in the knee MRI study). In the knee MRI study,
AI-supported protocols had a diagnostic accuracy that was significantly higher
than the accuracy of both the unaided readers and AI support alone, irrespec-
tive of the order of presentation of its advice (i.e., human-first vs AI-first). A
similar effect was also highlighted in the ECG study for the AI-first protocols.
We believe this last result to be particularly remarkable in light of the recent
interest about the so-called complementarity effect in the human-AI interaction
literature. Complementarity refers to the alleged phenomenon by which human-
AI teams could achieve better accuracy than both humans and AI alone. While
this effect has been widely investigated [3, 35, 40, 71], few studies have found
convincing evidence for its existence. In this sense, we believe that our studies
represent an important first positive step in this direction since, as mentioned
previously, we highlighted a synergistic interaction between human readers and
AI in both of the considered user studies. Furthermore, our results, and espe-
cially so those for the MRI case study, also support previous findings reported
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in [10], according to which good hybrid-team performance can also be achieved
with relatively low-accuracy decision support, i.e., with systems exhibiting lower
accuracy than the average accuracy of the physicians. We conjecture this to be
due to humans’ tendency to improve their performance as a consequence of a
trigger to reflection when leveraging other interpretations, especially when they
consider themselves to be the only responsible for the decision. We discuss this
in more detail when we consider the AI-first vs human-first comparison.

By contrast, our findings about the effect of XAI support were more contro-
versial. While XAI support had a small positive effect on diagnostic accuracy
in the AI-first protocols and for expert readers, in the human-first protocols we
observed a small beneficial effect in the ECG study but a relevant detrimental
effect in the knee MRI study, and especially so for the less expert readers. A pos-
sible explanation for this finding stems from the effect previously investigated
in [56], indicating that explanations increase trust in AI and may then result
in an increase of over-reliance and automation bias. These controversial find-
ings are aligned with the previous work mentioned above [1, 4, 50] and confirm
arguments that, despite its intuitive appeal [15], explainability for patient-level
decision making is unlikely to maximise decision accuracy [30, 51]. Indeed, ex-
planations, by increasing the persuasiveness of AI support [22], may even have
negative consequences by inducing a false sense of confidence (confirmation bias,
fixation), trust misplacement or automation bias [23, 24, 26, 56]. As an example
of this issue, we note that, as emerged from the reliance patterns-based analysis
presented in Figure 7, while the radiologists involved in the MRI study under-
relied on the support independently of whether XAI support was available or
not, the availability of explanations increased the chance that the advice of the
AI was trusted by the clinicians. Furthermore, this increase in trust due to the
XAI support was observed irrespective of whether the AI advice was right or
wrong. Consequently, the XAI-supported protocol reported an increased risk of
automation bias and automation complacency than the protocol without XAI
support. A similar finding was observed also for the ECG study, as presented in
Figure 9: indeed, also in this latter case the availability of explanations signifi-
cantly increased the risk of automation bias. In this sense, the reliance patterns-
based analysis allows to highlight a potentially harmful effect of explanations in
terms of emergence of biases due to increased trust towards AI suggestions. We
believe that this effect should be further investigated to better understand the
value of explanations, as well as the best ways to provide explanatory support
to users. Indeed, even though our results suggest that explanations could not be
useful for improving accuracy, their effect on users’ confidence and trust should
be further investigated.

The most interesting and partly counter-intuitive finding that we derive
from our two studies is that the order of presentation of the AI support has
a significant effect on the diagnostic accuracy, as conjectured in previous re-
search [16, 32]. Remarkably, AI-first protocols were found to be significantly
more effective (that is more accurate) than the human-first ones. That is, by
recalling the metaphor presented in the title, using AI as a ram is better than
using it as a hound. This result was not expected, because some sort of framing
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effect (such as priming) from presenting the AI advice before an idea of the case
is obtained independent of it could be conjectured to be likely, as was also shown
in previous studies [9, 32]. The opposite effect was instead observed: allowing
the readers to initially see the AI advice helped them form a better understand-
ing of the cases, thus achieving a diagnostic accuracy that was not only higher
than the baseline human accuracy (that is, the accuracy of the unassisted HD1
protocol) but also higher than the AI alone. A similar effect was not generally
observed for human-first protocols: in both studies these latter protocols re-
ported higher accuracy than those of the human readers alone, but only in the
knee MRI study the AI supported protocol (with no XAI support) was more
accurate than the AI alone. We conjecture two possible explanations for this
effect. First, this could be traced back to some form of conservatism bias in
the physicians, which is activated in human-first protocols when the AI opposes
their initial assessment, or to some type of fixation [45] or automation compla-
cency, when the AI corroborates their initial interpretation (see also Figure 7)
. Both effects could then induce a stronger anchoring bias, and specifically a
form of belief perseverance [65], even when the AI is correct and differs from the
human interpretation. Similarly, a competitive response, or the need to exploit
the suggestion, could be activated when readers are initially given the case and
another interpretation (as in the AI-first protocols), which may contribute to
the better performance of what is perceived to be a team decision. Second, this
could be associated with the System 1-System 2 metaphor popularized by Kah-
neman [43]. Human-first protocols could be associated with a System 1 (i.e. gut
feelings-based [31]) response from the users, whereas the subsequent interaction
with the AI is not sufficient for the users to provide a better rationalization of
the cases at hand. On the other hand, we conjecture that AI-first protocols
could be associated with a sort of replacement effect by which the humans’ gut
feeling is replaced by the AI support which is implicitly interpreted as a sort
of a mediated System 1 response. This then allows the human users to pro-
vide a more rational (i.e. System 2-like) interpretation. Finally, concerning the
difference with the results obtained in previous studies: we notice, as we did pre-
viously, that our study differs from the previous ones in the specialist literature
in that our experiments involved subject-matter experts, i.e., clinicians, rather
than laypersons. In both of the considered settings (ECG reading and MRI in-
terpretation), clinicians have some familiarity with automated or computerized
support systems: for example, in MRI interpretation, computer-aided diagnos-
tic (CAD) systems have been in use since the early ’90s [69], and in ECG reading
the main vendors of ECG equipment also deliver simple CAD features even with
the most economic devices. We believe that this difference in decision support
familiarity, as well as re the expertise of the involved users for the considered
tasks, could explain the results that we observed, and motivate further research
in similar settings. In any case, we believe that the implementation of human-
first (hound) protocols should still be encouraged, at least at the beginning of a
digitization project, and regularly over small intervals of time, especially in light
of the results observed above and derive from the reliance patterns-based analy-
sis. The potential for any deskilling due to practices that rely on digital support
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[19, 28], as well as the possible emergence of automation-related biases, can then
be regularly assessed8, and our findings could then be replicated in real-world
conditions. The collection of the initial unsupported judgment also enables an
evaluation of the value of the information provided by the AI, in terms of the
ability to change human decisions and, for those decisions, to change outcomes
for the better [14]. If we assume that outcomes can be improved by simply iden-
tifying the correct diagnosis, the AI systems used in the MRI and ECG studies
induced a decision change in approximately 1 case out of 20 and 3 cases out
of 20, respectively, with the increased number of decision changes in the ECG
study mainly due to the novice readers. In both studies, a mistake occurred in
just under half of the cases due to these changes, which would likely be avoided
without the AI suggestion. This finding opposes Friedman’s “Fundamental The-
orem” of Informatics [27] (usually denoted as simply as ‘H + C > H’), which
is an usually unstated assumption that the use of any computational technol-
ogy (C) should leave humans (H) better off than not using it. Thus, although
AI-first protocols yield better results, human-first protocols, supported by an
analysis of reliance patterns, could enable long-term technovigilance [13] of the
effects of automation on human decision performance.

Despite the relevance of the reported results, our study has some limitations,
which stem from its exploratory nature. First, between-subjects comparisons
in regard to readers’ expertise (in both the MRI and ECG studies) were under-
powered, due to the limited number of involved users. Despite this limitation, we
believe that our results could provide some insight about the expected effect sizes
for such comparisons and could then inform the power analysis of future studies
pursuing statistical significance. Furthermore, even though the considered user
studies were realistic, they were conducted in a serious game settings and not
in a real-world scenario. Thus, future studies should evaluate our findings in
clinical practice, to avoid potential laboratory effects [34]. As a final limitation,
we note that even though one of the main aims of our work was to investigate
some dimensions related to trust (of a human expert towards an AI system), we
focused mainly on issues related to accuracy and explainability. Nonetheless,
other relevant dimensions could be related to trust and reliance patterns, such
as robustness [37]: indeed, robustness, reliability, replicability and contestability
[51] (even more so than explainability) could be seen as essential components
for trustworthiness and trust-building. Thus, we believe that future research
should be devoted at exploring the effects of AI robustness (or lack of thereof)
on human-AI interaction.

8Obtaining the exam readers’ perceptions about their confidence in their final decisions
and about the complexity of the case can inform comparisons of the confidence levels and
error rates.
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5. Conclusion

In summary, in this paper we compared various methods to include AI and
XAI aids into diagnostic decision making, which we refer to as human-AI collab-
oration protocols and proposed the adoption of this concept in future evaluations
of AI-based decision support systems. We investigated whether XAI support,
in terms of both visual aids and textual explanations, has a significant effect
on diagnostic accuracy. Our findings confirm the utility of AI support, however
we found that XAI aids can be associated with what has been referred to as
the “white-box paradox” [11], which has recently been observed in other set-
tings [8, 56], i.e., a null or detrimental effect. Furthermore, and most notably,
we compared protocols that differed in terms of when the machine’s advice is
given to human readers, i.e., either simultaneously with the case or after an
initial diagnosis was formally obtained, which we refer to as ram and hound
protocols, respectively. Even when the AI was less (or equally) accurate than
the average human reader, we found that the order of presentation matters: AI-
first protocols are associated with higher diagnostic accuracy than human-first
protocols (and higher than both human basal accuracy and AI accuracy). This
finding suggests the best conditions in which AI can actually augment human
diagnostic skills (ram protocols), rather than trigger dysfunctional responses
and cognitive biases (such as algorithmic aversion and conservatism bias) that
can undermine decision effectiveness (human-first protocols).
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Appendix A. Appendix: Additional Results and Figures

Figure Appendix A.1: Benefit diagrams for the hound protocols in the knee MRI study,
showing the effect of providing XAI support (protocol HD1-AI-XAI-FHD, on the left) and
AI support (protocol HD1-AI-FHD, on the right) versus providing no support (HD1). The
dots represent the accuracies of the radiologists, and the brown lines the average difference in
accuracy between the two protocols, along with the corresponding 95% confidence interval.
The blue region denotes an improvement in error rates while the red region denotes a worsening

Figure Appendix A.2: Benefit diagrams for the hound protocols in the ECG study, showing
the effect of providing XAI support (protocol HD1-AI-XAI-FHD, on the left) and AI support
(protocol HD1-AI-FHD, on the right) versus providing no support (HD1). The dots represent
the accuracies of the cardiologists, and the brown lines the average difference in accuracy
between the two protocols, along with the corresponding 95% confidence interval. The blue
region denotes an improvement in error rates while the red region denotes a worsening.
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