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ABSTRACT: Luminescent solar concentrators (LSCs) are all-
photonic, semitransparent solar devices with great potential in the
emerging fields of building-integrated photovoltaics and agrivol-
taics. Over the past decade, particularly with the advent of quantum
dot (QD) LSCs, tremendous progress has been made in terms of
photovoltaic efficiency and device size by increasing solar spectral
coverage and suppressing reabsorption losses. Despite these
advances in LSC design, the effects of environmental conditions
such as rain, dust, and dirt deposits, which are ubiquitous in both
urban and agricultural environments, on LSC performance have
been largely overlooked. Here, we address these issues by
systematically investigating the environmental effects on the solar harvesting and waveguiding capability of state-of-the-art QD-
LSCs, namely, the presence of airborne pollutants (dust), water droplets, and dried deposits. Our results show that dust is
unexpectedly insignificant for the waveguiding of the concentrated luminescence and only reduces the LSC efficiency through a
shadowing effect when deposited on the outer surface, while dust accumulation on the inner LSC side increases the output power
due to backscattering of transmitted sunlight. Water droplets, on the other hand, do not dim the incident sunlight, but are
detrimental to waveguiding by forming an optical interface with the LSC. Finally, dried deposits, which mimic the evaporation
residues of heavy rain or humidity, have the worst effect of all, combining shading and waveguide losses. These results are relevant
for the design of application-specific surface functionalization/protection strategies real LSC modules.
KEYWORDS: luminescent solar concentrators, quantum dots, environmental effect, building-integrated photovoltaics, optical waveguides

■ INTRODUCTION
In recent years, awareness of the adverse effects of climate
change, coupled with growing concerns about energy supply,
has led governments to increasingly promote the transition to
renewable energy technologies in a wide range of sectors, from
green mobility to sustainable architecture.1,2 In the latter area,
several countries have already adopted stringent requirements
for new buildings to be near-zero energy buildings (NZEBs),
requiring both the use of energy-efficient materials and the
incorporation of energy-generating technologies into the built
environment, which is the core of so-called building-integrated
photovoltaics (BIPV).3−6 Luminescent solar concentrators
(LSCs) are of particular interest for the integration of
semitransparent PV devices into the envelope of glass
buildings.7−11 Specifically, LSCs consist of plastic or glass
waveguides containing highly luminescent chromophores that
absorb a fraction of the incident solar radiation and emit lower-
energy photons that are concentrated by total internal
reflection at the waveguide edges, where small PV cells convert
them into electrical energy (Figure 1a).12 Crucially, unlike
other BIPV approaches, the fully photonic operating

mechanism of LSCs does not require electrodes to be placed
on the device surfaces. As a result, LSCs are arguably the only
technology capable of producing semitransparent PV glazing
that is both aesthetically pleasing and does not interfere with
the view from inside to outside.7,13−16 In addition, the light
weight and design versatility of LSCs in terms of color and
transparency make them particularly promising for applications
in so-called agrivoltaics for the realization of self-powered
greenhouses with increased mass production through crop-
specific spectral tuning of the transmitted sunlight by the LSC
cover.17−21

After a few decades of apparent waning interest, the advent
of colloidal semiconductor quantum dots (QDs) as reabsorp-
tion-free NIR LSC emitters nearly a decade ago has revived
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research in the field,22−31 leading to significant advances in
power efficiency and device size, both of which are essential for
real-world implementation.26,28,32−34 Important advances have
been made in the design of so-called Stokes-shift-engineered
QDs with large spectral separation between their absorption
and photoluminescence (PL) spectra and in the development
of industrial-scale fabrication protocols for QD-LSC wave-
guides.26,28,34−37 To date, the highest efficiencies have been
achieved with I−III−VI2 QDs such as CuInS2 and related
heterostructures (e.g., CuInS2/ZnS), which have a natural wide
Stokes shift and NIR PL,26,28,35,38−40 although important
advances have also been demonstrated with binary chalcoge-
nides41−44 and metal halides.45−48 Despite this progress in the
design of LSC waveguides, very little has been done toward a
real-world implementation of this technology, which necessar-
ily involves an assessment of the impact of environmental
factors on LSC performance,49−53 which ultimately determines
the relevance and type of encapsulation/protection required
for operation in a real-world context. A compelling example of
this is the effect of various types of dry or wet deposits on an
LSC waveguide, which in addition to reducing the amount of
solar light that can reach the waveguide and be converted into
useful guided PL�as it commonly occurs for direct charge
generation in conventional PV modules54�can also affect the
transport of light energy to the device edges by disrupting the
waveguiding by total internal reflection.
In this work, we aim to contribute to this endeavor by

investigating the impact on LSC performance of probably the
most common environmental factors that could occur in urban
or agricultural contexts, namely, dust accumulation, wetting by
water droplets, or the presence of continuous wet layers on the
external or internal surfaces of the panels, as well as the
influence of dried residues left after evaporation of water, as
could occur after rainfall on buildings or irrigation in
greenhouses. The quantitative performance evaluation indi-
cated that the accumulation of dust on the LSC outer surface
reduces the LSC efficiency by a shadowing effect that lowers
the intensity of sunlight entering the panel (similar to what

commonly happens to conventional PV modules) but does not
detriment the waveguiding behavior, leading to no losses of
propagating luminescence. On the other hand, the continuous
optical interface between the surface of a polyacrylate LSC and
water droplets was found to be very detrimental to light
propagation. Finally, the accumulation of dried residues
combined the detrimental effects of dust and liquid deposits,
causing both shadowing of the LSC and reduced waveguiding.
These results provide some clear guidelines for rationalizing
the future treatments on LSC surfaced designed to preserve
their performances.

■ RESULTS AND DISCUSSION
Large-area poly(methyl methacrylate) (PMMA) LSC wave-
guides (20 × 20 cm2, thickness = 7.5 mm, 70% transmittance
between 400 and 900 nm) containing CuInS2/ZnS QDs (0.1
wt %) were fabricated by industrial cell casting of methyl
methacrylate monomers using Lauroyl peroxide as thermal
radical initiator (500 ppm).38 The QDs were prepared
according to the synthetic protocol described in the Methods
section of Supporting Information, and their size was tuned to
provide maximum spectral coverage while matching the
transparency window of the LSC, which is determined by
the absorption onset of the QDs (short wavelength limit) and
the first C−H absorption overtone of the PMMA at ∼915 nm
(long wavelength limit). The absorption and PL spectra of the
LSC are shown in Figure 1b together with the AM 1.5 solar
spectrum; the PL quantum yield of the QDs in the waveguide
was ΦPL = 65%.
The suppression of self-absorption by the QDs and the high

optical quality of the PMMA waveguide led to an essentially
complete absence of reabsorption and scattering losses, as
confirmed by the inset of Figure 1b and the relative output
power values vs fraction of illuminated device area reported in
Figure 1c. In particular, the experimental data, corroborated by
Monte Carlo ray-tracing simulations, showed that the fractions
of the QD-LSC participated to the total output power almost
identically to that expected from an ideal absorption- and

Figure 1. (a) Sketch of a QD-LSC composed of a polymer slab coupled to PV cells and its application in an urban context or in agriculture as
energy-producing greenhouse panels. (b) Optical absorption (black dashed line) and PL (red shaded line) spectra of CuInS2/ZnS QDs in PMMA
LSC. Solar irradiance in AM 1.5 conditions (grey line). (c) Relative optical power output measured from the LSC edge as a function of device area
illuminated by a calibrated solar simulator (red circles). The Monte Carlo simulation for an ideal LSC is shown as a dashed curve. (d) Schematic
representation of the loss mechanisms studied in this work.
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scattering-free LSC�where the contributions by illuminated
portions at different distance from the perimeter PV cells are
due to geometrical factors�in good agreement with previous
reports on similar LSCs based on CuInS2 QDs28 (details of the
simulation procedure are reported in the Methods section in
the Supporting Information).
Having verified the quality of our testbed QD-LSC device,

we proceeded to investigate the effect of different types of
deposit in order to reproduce real operating conditions. In
these experiments, we focused on the two processes that most
determine the performance of LSCs, sunlight harvesting, and
light propagation. As shown schematically in Figure 1d, the
presence of light-absorbing or scattering deposits on the LSC
surface could act as a shading agent, partially reducing the
illuminated device area, similar to what commonly occurs in
conventional PV modules. In addition, if the LSC surface and
accumulated deposits (with similar or higher refractive index)
form an optical interface, the waveguiding capability of the
device could be dramatically degraded by large local photon
escape cone losses (Figure 1d, right). To address these effects
independently, we designed two different experimental
configurations shown in Figure 2a. The first configuration,
called waveguiding mode, targeted the light-guiding perform-
ance of an LSC and consisted of illuminating the terminal part
of an LSC, which was kept clean, with a calibrated solar
simulator, while the majority of the device surface was covered
with increasing amounts of deposits (dust, water, residues) and
kept in darkness by a shadow mask.
This allowed us to keep the power absorbed by the LSC

constant while monitoring the effect of the deposits on the
propagation of the generated PL. In the second configuration,
referred to as the illumination mode (Figure 2b), the clean part
of the same LSC was kept in the dark by moving the shadow
mask and the part with the deposits was directly illuminated by
the simulated sunlight. This latter experiment provided
information on both propagation and illumination effects,

which were decoupled by the comparative analysis of the two
experimental modes. In both cases, the output power was
measured from one LSC edge only, whereas Si PV cells were
coupled to all four sides as in real LSC devices. We first
reproduced the effect of sand/dust accumulation by pro-
gressively covering the outer surface of the LSC waveguide
with increasing amounts of dust powder. Surface coverage was
quantified by measuring the intensity of the light transmitted
through the LSC at five independent points (Figure 2b, from
100 to 50% corresponding to up to 6 mg/cm2) and was found
to correlate linearly with the mass amount of deposited
material, suggesting that in the mass range analyzed and with
the covering method adopted, the artificial dust powder
created an essentially single layer on progressively larger
fractions of the LSC panel. By operating in waveguiding mode
with powder samples of two different grain sizes (<100 μm,
refer to as fine dust, and >200 μm, coarse dust), we observed
that the relative power collected from the LSC edge was nearly
independent of the surface coverage (Figure 2c), indicating
that the accumulation of dust had essentially no effect on light
propagation, probably due to the low optical coupling at the
LSC/dust interface, which could not outcouple guided
photons. Considering the relatively large amounts of artificial
dust used in the experiment (up to 6 mg/cm2), this behavior
was positive for the LSCs, as it suggested that the device
operation tolerated significant levels of dust contamination. On
the other hand, the presence of dust was critical for the solar
harvesting capability of the LSC (as expected given the
decrease of as much as 50% in transmitted light shown in
Figure 2b), leading to a progressive decrease in relative power
output (up to 35%) with increasing surface coverage (Figure
2d, triangles). Note that the decrease in relative power output
was less than the decrease in transmittance (35 vs 50%). This
could be explained by two facts: (i) the simulated sunlight
incident perpendicularly on the LSC surface was partially
scattered by the dust grains, resulting in longer propagation

Figure 2. (a) Schemes of the experimental configurations used. (b) Optical transmittance as a function of the amount of coarse (black symbols)
and fine (gray symbols) dust grains deposited on the LSC surface. The same color scheme is applied across the figure. (c) Relative power output
extracted from one edge of LSC (20 × 20 cm2) measured in waveguiding mode as a function of the surface coverage. Inset: photographs of the
tested LSC with increasing surface coverage. (d) Relative power output extracted from an LSC as a function of the surface coverage measured in
illumination mode with dust on the outer (triangles) or on the inner (circles) LSC face. The error bars are the standard deviation calculated over
eight repetitive measurements. In plot (d), the error bars are within the size of the data points.
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paths inside the LSC panel, artificially increasing its
absorbance, and/or (ii) the surface dust acted as a back
reflector for the transmitted solar light (note that the LSC had
an absorbance of ∼30% between 400 and 900 nm), in both
cases artificially increasing the relative power output. The
second scenario was confirmed by performing the waveguide
mode experiment with the dust deposited on the inner surface
of the LSC (on the opposite side of the solar simulator), which
showed 12−15% greater relative power output as the surface
coverage increased (Figure 2d, circles). In this case, the dust
clearly acted as a back scatterer for photons transmitted
through the device, artificially increasing the solar irradiance. It
is worth noting that such increased relative power output was
not due to scattering of transmitted sunlight directly onto the
perimeter PV cells, as light generated outside the LSC
waveguide (as in the case of light scattered by the dust
deposit) would not be guided by total internal reflection and
would therefore only propagate 6−7 mm (due to geometrical
factors) inside the LSC before exiting the waveguide.
We then reproduced the effect of raindrops or condensed

moisture by spraying the surface of the same LSC with
increasing amounts of deionized water (Figure 3a). In this
case, the light transmission was unaffected by the deposited

water (expressed by the “wetting level” up to 10 μL/cm2,
Figure 3b), which is consistent with the low absorption of
water in the vis−NIR spectral region (Supporting Figure S),
and therefore the power output from the LSC was expected to
be little affected by shadowing effects. In contrast, the optical
interface between the liquid and the PMMA waveguide
resulted in severe waveguiding losses, as illustrated in Figure
3c, which shows a drop in relative output power of
approximately 35% at a wetting level of 2 μL/cm2. Above
this level, the output power saturated, probably due to the
agglomeration of water droplets into a continuous layer whose
dimensions grew by a negligible amount with further water
deposition, resulting in an essentially constant average effect.
Consistent with the strong perturbation of the waveguiding
behavior of the LSC and the negligible effect of the wetting
layer on the light transmittance, a very similar trend of relative
output power with wetting level was found for the illumination
mode experiments (Figure 3d).
Finally, we tested the effect of dried residues from heavy

water evaporation by depositing and evaporating a highly
concentrated aqueous solution of NaCl (200 g/L) on the LSC
panel. In this case, the overall effect was intermediate between
the dust and water situations described above: increasing the

Figure 3. (a) Photographs of an LSC with increasing wetting level. (b) Light transmittance (400−900 nm) as a function of the wetting level.
Relative power output extracted from one edge of the QD-LSC (20 × 20 cm2) as a function of wetting level measured (c) in waveguiding mode
and (d) in illumination mode. The error bars are the standard deviation calculated over eight repetitive measurements.

Figure 4. (a) Light transmittance as a function of the surface coverage. Relative power output extracted from one edge of the QD-LSC (20 × 20
cm2) as a function of the surface coverage measured (b) in “waveguiding mode” and (c) in “illumination mode”. Inset: photograph of the QD-LSC
with increasing surface coverage by dried residues. The error bars are the standard deviation calculated over eight repetitive measurements.
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amount of dried residue resulted in a gradual decrease in
device transmittance, consistent with the presence of light-
scattering NaCl domains on the device surface (Figure 4a),
similar to that observed with dust deposits. Crucially, and
consistent with the effect of water, the relative output power
dropped significantly at relatively low surface coverages,
consistent with the formation of an optical coupling between
the residues and the LSC panel, with an initial strong effect of
small droplets on light propagation followed by an average
effect of large wetting layers and associated residues. The
reduced waveguiding capability in the presence of dried
residues (up to 60% of the initial value) also had a dramatic
effect on the relative output power measured in illumination
mode. It should be emphasized that, as in the case of deionized
water, the loss in illumination mode was lower (∼45%) than in
waveguiding mode due to the shorter average distance traveled
by the photons in the latter configuration. Interestingly, when
we performed the illumination mode experiment with dried
residues on the inner surface of the LSC, we found significantly
lower losses, consistent with a backscattering effect of the
transmitted light that partially mitigated the loss due to
perturbed waveguiding.

■ CONCLUSIONS
In conclusion, we have studied the effects of different types of
environmental agents, representing real cases in both BIPV and
agrivoltaic use of LSCs, on the performance of state-of-the-art
QD-LSCs, specifically dust, water, and dried residues,
separately considering their effects on solar harvesting and
waveguiding behavior. We found that dust deposits have little
effect on the waveguiding performance but reduce the power
output essentially in proportion to their mass amount (when
directly proportional to the consequent surface coverage).
Dust deposits on the inner surface, on the other hand, increase
the power output by backscattering transmitted light into the
LSC. The most limiting factor for light propagation was found
to be the presence of wetting layers or dried residues forming
optical interfaces with the LSC matrix, the latter causing a
combination of the loss effects of dust and moisture. These
results provide important insights into the parasitic process
affecting the behavior of LSCs and suggest that specific surface
functionalization approaches could be implemented to favor
the integration of LSCs without bulky encapsulation, such as
the use of self-cleaning highly hydrophobic coatings.
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