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By using Monge–Ampère geometry, we study the
singular structure of a class of nonlinear Monge–
Ampère equations in three dimensions, arising in
geophysical fluid dynamics. We extend seminal earlier
work on Monge–Ampère geometry by examining the
role of an induced metric on Lagrangian submanifolds
of the cotangent bundle. In particular, we show that
the signature of the metric serves as a classification
of the Monge–Ampère equation, while singularities
and elliptic–hyperbolic transitions are revealed by
degeneracies of the metric. The theory is illustrated
by application to an example solution of the
semigeostrophic equations.

1. Introduction
Atmospheric fronts are a salient feature of mid-latitude
weather systems. From the viewpoint of mathematical
modelling, fronts are understood as material interfaces,
advected by the fluid flow, across which the physical
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features undergo a jump discontinuity. One of the most successful approaches to mathematical
modelling of weather fronts is Hoskins’ semigeostrophic (SG) equations [1–3]. In [4], Chynoweth
& Sewell recognized the presence of a Legendre duality structure between four different sets
of variables in SG theory akin to the classical quartet of dual potentials in thermodynamics.
In the same article, Chynoweth & Sewell showed how singularities of the Legendre mapping
could be used to model flows containing a weather front. Their approach is reminiscent of the
studies of shock waves in stationary gas flows, where it is known under the name of hodograph
transformation (e.g. Chapter 12 of [5]).

SG flows are completely described by a single function called the geopotential. Moreover,
they conserve a form of Ertel’s potential vorticity, which in turn is related to the geopotential
by a Monge–Ampère type equation. By denoting the geopotential by P(x, y, z, t) and the potential
vorticity by qg(x, y, z, t), we may write this relation as follows:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂2P
∂x2

∂2P
∂x∂y

∂2P
∂x∂z

∂2P
∂y∂x

∂2P
∂y2

∂2P
∂y∂z

∂2P
∂z∂x

∂2P
∂z∂y

∂2P
∂z2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= Cqg(x, y, z, t), (1.1)

where C is a constant depending on the physical parameters of the model (e.g. [6]). Time
dependence is implicit in (1.1) as no time derivatives are involved. Therefore, (1.1) represents
a kinematic constraint between the geopotential and the potential vorticity and can be studied by
considering the time as a fixed parameter. This approach was also used in [4], where the authors
provide several examples of couples (P, qg) satisfying (the two-dimensional version of) (1.1) and
capable of modelling atmospheric fronts frozen in time. Both the kinematic and the dynamic view
are taken in [7].

The kinematic approach to singularities can be studied using the geometrical framework of
Monge–Ampère equations (MAEs) pioneered by Lychagin and his school (e.g. [8]). Delahaies
& Roulstone [9] have explored the implications of Monge–Ampère geometry for the shallow
water version of the SG equations, while Roulstone et al. [10] and Banos et al. [11] have
conducted similar studies for the inviscid Navier–Stokes (Euler) equations. This article follows
this line of research and investigates the relevance of Monge–Ampère geometry to the study of
singularities of the incompressible three-dimensional SG equations. One of the main advantages
of the geometric approach to MAEs is a clear and intuitive understanding of the notion of a
generalized solution. While a classical solution is a function P(x, y, z, t), a generalized solution is a
Lagrangian submanifold L in the cotangent bundle T∗

R
3 (the phase space) of the physical space

R
3. One thinks of the manifold L as the multi-valued graph of the gradient of the geopotential,

understood as a map ∇P : R
3 → R

3, in T∗
R

3 � R
3 × R

3. To recover physical information, a
generalized solution L must be projected onto the physical space, and singularities can arise in the
process. This geometrical perspective on solutions and their singularities was first introduced by
Vinogradov & Kupershmidt in their work on Hamilton–Jacobi theory (§8 of [12]). Kossowski [13]
has independently proposed the same formalism for studying singularities of symplectic MAEs
in two independent variables. A similar viewpoint is adopted by Ishikawa & Machida [14,15] for
classifying generic singularities of Hessian type MAEs in two and three independent variables.
We refer to [16] for further examples of application of this formalism to more general nonlinear
partial differential equations (PDEs).

In this work, we present an alternative approach to singularities based on the pseudo-
Riemannian geometry. For classifying symplectic MAEs in three independent variables, Lychagin
& Rubtsov [17] introduced a metric tensor gω on T∗

R
3 (formula (3.1)) and showed that its

signature distinguishes the various classes—elliptic, hyperbolic and parabolic (see also [18]). For
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the particular case of equation (1.1), this metric has signature (3,3) and gives T∗
R

3 the structure of
a pseudo-Riemannian manifold.

Every generalized solution L ⊂ T∗
R

3 inherits a metric structure from the ambient space
associated with the pull-back metric hω := gω|L, and this constitutes the main focus of the
present work. We study the properties of singular solutions to (1.1) through pseudo-Riemannian
geometry of Lagrangian submanifolds. Our main goal is to provide an understanding of the
pull-back Lychagin–Rubtsov metric hω from the viewpoint of the PDE theory. We claim that the
hω metric plays the same role for MAEs as the coefficient matrix does for linear second-order
PDEs. This means that it can be used to define the symbol type of the underlying MAE, and, in
hyperbolic regime, to construct the characteristic surfaces. In our general setting, the MAEs under
consideration may be of mixed type. We show that hω is Riemannian on elliptic branches of L
and Lorentzian on hyperbolic ones. Moreover, we prove that elliptic–hyperbolic transitions and
kinematic singularities coincide for equation (1.1), implying that hω degenerates on the singular
locus of L. In this sense, we claim that the pull-back metric is a diagnostic tool for studying
singularities.

In §2, we give some background on SG equations and Monge–Ampère geometry. We state and
prove our results about the pull-back of the Lychagin–Rubtsov metric and the symbol type of the
MAE in §3. Finally, we present an explicit example of a solution to the SG equations, illustrating
the aforementioned results, in §4.

2. Background and methods
In this review section, we recall some basics about the SG system and the geometry of MAEs.

(a) Semigeostrophic equations
Hoskins’ SG equations [3] are an approximation to the Euler system of fluid dynamics intended
to model large-scale motion of the atmosphere. They are usually written as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Dug

Dt
− fv + ∂φ

∂x
= 0,

Dvg

Dt
+ fu + ∂φ

∂y
= 0,

gθ

θ0
= ∂φ

∂z
, (momentum)

∂u
∂x

+ ∂v

∂y
+ ∂w

∂z
= 0, (mass)

Dθ

Dt
= 0, (energy)

(2.1)

where
D
Dt

= ∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
(2.2)

is the material time derivative, and {x, y, z} form a Cartesian coordinate system with y directed
pole-ward and z directed vertically. The unknowns are the fluid velocity field (u, v, w), the
geopotential φ and the potential temperature θ (see [4] for a detailed definition of these variables).
The positive constants f ≈ 10−4 Hz and g ≈ 10 m s−2 account for the effects of Earth’s rotation and
gravity, while θ0 is a reference value for θ . Further, there are two main approximations at work in
(2.1). Firstly, hydrostatic balance is assumed, which results in neglecting the vertical acceleration
term in the momentum balance. Secondly, the fluid flow is supposed to be close to geostrophic
equilibrium (see [3], §3): this is accounted for in (2.1) through Hoskins’ ‘geostrophic momentum
approximation’, which replaces the fluid velocity in the horizontal acceleration terms with its
geostrophic part,

ug := −1
f

∂φ

∂y
and vg := 1

f
∂φ

∂x
. (2.3)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

02
 M

ar
ch

 2
02

3 



4

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A479:20220682

..........................................................

System (2.1) implies an important conservation property, namely, the conservation of Ertel’s
potential vorticity along fluid trajectories,

Dqg

Dt
= 0. (2.4)

This quantity represents the projection of the absolute geostrophic vorticity,

ζg =
(

−∂vg

∂z
+ 1

f
∂(ug, vg)
∂(y, z)

,
∂ug

∂z
+ 1

f
∂(ug, vg)
∂(z, x)

, f + ∂vg

∂x
− ∂ug

∂y
+ 1

f
∂(ug, vg)
∂(x, y)

)
, (2.5)

along the gradient of the potential temperature,

qg := ζg · ∇θ . (2.6)

Notice that equations (2.6) and (2.3) and the hydrostatic balance condition (2.1) provide a direct
link between the potential vorticity and the geopotential, which comes in the form of a MAE. This
statement is made more clear by introducing the modified geopotential:

P := φ

f 2 + x2

2
+ y2

2
, (2.7)

which allows one to write equation (2.6) as follows:

qg = f 3θ0

g
det Hess(P), (2.8)

where det Hess(P) denotes the determinant of the Hessian matrix of P with respect to the spatial
variables. In this work, we are exclusively interested in kinematic aspects of system (2.1) as
encoded in the Monge–Ampère equation (2.8).

The mathematical structure of the SG equations appears even more clearly on introducing
dimensionless variables. Following [19], we write the SG system in a dimensionless form as
follows:

ε
Dug

Dt
− v + ∂φ

∂x
= 0, ε

Dvg

Dt
+ u + ∂φ

∂y
= 0

Dθ

Dt
= 0

and
∂u
∂x

+ ∂v

∂y
+ ∂w

∂z
= 0, ug = −∂φ

∂y
, vg = ∂φ

∂x
, θ = ∂φ

∂z
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.9)

The dimensionless parameter ε is the Rossby number, ε = U/fL, which involves the typical
horizontal length and velocity scales and represents the ratio between inertial and Coriolis forces.
The value of ε is typically ≈ 0.1 in SG flows. A consistent dimensionless expression for the
modified geopotential is

P = x2

2
+ y2

2
+ εφ, (2.10)

and the dimensionless version of (2.8) reads accordingly

det Hess(P) = εqg. (2.11)

Shutts & Cullen [6] used equation (2.11) to study stability of SG flows with respect to small
displacement of fluid parcels. They found that a necessary condition for parcel stability is the
(spatial) convexity of the geopotential P, which implies strict positivity of the potential vorticity.
Although we place no a priori hypothesis on the convexity of P, we shall always assume qg > 0
henceforth.

Much of the current interest in the SG equations is motivated by a change of variable due
to Hoskins [3], known as the ‘geostrophic momentum transformation’, which has drastically
improved the general comprehension of SG flows. As later recognized by Chynoweth & Sewell
[4], this change of variable may be interpreted as a Legendre type transformation, and we
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adopt their perspective for describing it. We start by introducing the (dimensionless) horizontal
components of the absolute momentum,

M = x + εvg = x + ε
∂φ

∂x
and N = y − εug = y + ε

∂φ

∂y
, (2.12)

which stand in a special relation with the geopotential,

∂P
∂x

= M and
∂P
∂y

= N. (2.13)

Moreover, the hydrostatic balance condition is written in terms of P as follows:

∂P
∂z

= ε
∂φ

∂z
= εθ . (2.14)

Equations (2.13) and (2.14) are the starting point for [4], where a quartet of Legendre
transformations of P is identified. In fact, these relations open the way to the geometrization of the
kinematic equation (2.11). For the remainder of this section, we will frame the work of Chynoweth
and Sewell within the geometrical theory of MAEs (e.g. [8]). For convenience of exposition, we
will use the notation,

(X, Y, Z) := (M, N, εθ ) = ∇P. (2.15)

(b) Monge–Ampère structure and Legendre duality
In this work, we only deal with symplectic MAEs in three independent variables. Here, the
word symplectic means that an equation’s coefficients can only depend on the independent
variables and the gradient of the dependent variable but not on the value itself of the dependent
variable. This is true for equation (2.11) if we understand the potential vorticity qg as a function
of space (and possibly time). As the name suggests, symplectic MAEs are associated with the
symplectic geometry of a manifold, the phase space, representing the cotangent bundle to the
space of independent variables. In the particular case of equation (2.11), the associated symplectic
manifold is T∗

R
3, which we endow with coordinates (x, y, z, X, Y, Z) and the canonical symplectic

form:
Ω = dX ∧ dx + dY ∧ dy + dZ ∧ dz. (2.16)

A function P : R
3 → R induces a section of the cotangent bundle through its differential, dP : R

3 →
T∗

R
3. Note that the image of dP in T∗

R
3 � R

3 × R
3 coincides with the graph of the gradient ∇P :

R
3 → R

3. For any given 3-form ω on T∗
R

3, we can define a map 	ω : C∞(R3) → Ω3(R3) taking
functions to 3-forms on R

3, which we call the Monge–Ampère operator associated with ω. It
associates a function with the restriction of ω to its graph,

	ω(P) := (dP)∗ω, (2.17)

where the superscript ∗ denotes the pull-back. The correspondence between Monge–Ampère
operators and 3-forms is not 1-to-1 (several forms produce the same operator), but it can be made
so by taking a suitable quotient of the space of 3-forms on T∗

R
3. Not every 3-form produces

a non-zero Monge–Ampère operator and those which do are called effective. This induces an
equivalence relation on the space of 3-forms on T∗

R
3—two forms are equivalent if they differ

by a non-effective form. Thus, an equivalence class of 3-forms gives rise to one and the same
Monge–Ampère operator. We will exclusively deal with effective forms and shall make no explicit
distinction between an effective form and the class it represents. In the symplectic case, effective
3-forms can be characterized as those ω ∈ Ω3(T∗

R
3), which satisfy ω ∧ Ω = 0. It is easy to verify

that the effective 3-form on T∗
R

3 associated with equation (2.11) is

ω = dX ∧ dY ∧ dZ − εqg dx ∧ dy ∧ dz. (2.18)

The equation 	ω = 0 is called the MAE associated with ω, and we denote it by Eω. The MAE
corresponding to (2.18) is, in Cartesian coordinates, (2.11), as can be immediately verified by
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direct calculation. The next step in the definition of this geometrical framework is the notion of
a solution. A generalized solution to Eω is a smooth Lagrangian submanifold1 L ∈ T∗

R
3 such that

ω|L = 0. A classical solution is one that is globally represented as the graph of a function, meaning
that L is the range of the differential dP for some twice differentiable function P(x, y, z). Note that
in this latter case, the condition ω|L = 0 reads

	ω(P) = 0. (2.19)

Generalized solutions are precisely those which can be locally (but not globally) represented as
the graph of a function near generic points. Stated differently, the mapping πL := π |L, where

π : T∗
R

3 → R
3, (x, y, z, X, Y, Z) �→ (x, y, z), (2.20)

represents the canonical bundle projection, is a diffeomorphism between L and R
3 as long as L is

the graph of a classical solution. Otherwise, we must distinguish between regular points, where
dπL has maximal rank, and singular points, where it has not. In this latter case, the diffeomorphism
property is local and only holds near regular points.

Although generalized solutions cannot be globally represented as the graph of a function,
they admit an alternative local representation in terms of a single function near any point (either
regular or singular). Note that Ω = dα, where α := X dx + Y dy + Z dz is the tautological 1-form
on T∗

R
3. If L is a Lagrangian submanifold, then α|L is closed, and so there exists a function f on L

such that, locally,
α|L = df . (2.21)

We call f a generating function for the Lagrangian submanifold L. Once a coordinate set on L is
selected, (2.21) reduces to an algebraic system of equations whose zero set in T∗

R
3 identifies the

submanifold L. In the neighbourhood of any given point, coordinates on L can always be chosen
as a suitable 3-subset of the cotangent coordinates. Overall, there are 23 = 8 possible choices to
pick a 3-subset from {x, y, z, X, Y, Z} and, therefore, as many classes of generating functions. The
Legendre dual potentials of Chynoweth & Sewell [4],

R(X, Y, Z), S(X, Y, z), T(x, y, Z), (2.22)

provide some physically relevant examples of generating functions. We explicitly work out the
description of a Lagrangian submanifold L in terms of S. Setting

f (X, Y, z) = Xx + Yy − S(X, Y, z) (2.23)

in equation (2.21) gives,

Z dz = x dX + y dY − ∂S
∂X

dX − ∂S
∂Y

dY − ∂S
∂z

dz, (2.24)

which in turn implies

x = ∂S
∂X

(X, Y, z), y = ∂S
∂Y

(X, Y, z), Z = −∂S
∂z

(X, Y, z). (2.25)

The combined zero set of equations (2.25) in T∗
R

3 identifies the Lagrangian submanifold L
generated by S. Similarly, the choices

f (X, Y, Z) = Xx + Yy + Zz − R(X, Y, Z) (2.26)

and
f (x, y, Z) = Zz + T(x, y, Z) (2.27)

lead to a local description of as many classes of Lagrangian submanifolds as the zero set of,
respectively,

x = ∂R
∂X

(X, Y, Z), y = ∂R
∂N

(X, Y, Z), z = ∂R
∂Z

(X, Y, Z) (2.28)

1A Lagrangian submanifold L in a symplectic manifold (M2n, Ω) is an isotropic submanifold (Ω|L = 0) of the maximum
possible dimension (dim(L) = n).
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and

z = − ∂T
∂Z

(x, y, Z), X = ∂T
∂x

(x, y, Z), Y = ∂T
∂y

(x, y, Z). (2.29)

Remark 2.1. In [4], the term ‘dual space’ is used to refer to the Cartesian space of coordinates
(X, Y, z), (x, y, Z) or (X, Y, Z). The geometrical setting brings out the true nature of the dual space
as the local coordinate representation of a Lagrangian submanifold.

The condition that L is a solution to the MAE results in a condition on the generating function
itself which again takes the form of a MAE. For the Chynoweth–Sewell potentials (2.22), this
condition, respectively, reads

det Hess(R) = 1
εqg

, (2.30)

εqg

⎡
⎣ ∂2S

∂X2
∂2S
∂Y2 −

(
∂2S

∂X∂Y

)2
⎤
⎦+ ∂2S

∂z2 = 0 (2.31)

and
∂2T
∂x2

∂2T
∂y2 −

(
∂2T
∂x∂y

)2

+ εqg
∂2T
∂Z2 = 0. (2.32)

We close this section by noting that R(X, Y, Z) plays a distinguished role among the Chynoweth–
Sewell potentials. Indeed, if (x, y, z) are entirely replaced by (X, Y, Z) in the role of independent
variables, the whole SG system (2.1) reduces to just two equations (e.g. [20]) and comprises the
MAE (2.30) and a transport equation for the potential vorticity,

εqg det Hess(R) = 1,

∂qg

∂t
= ∂(qg, Ψ )

∂(X, Y)

and Ψ := X2

2
+ Y2

2
− R.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.33)

System (2.33) provides a clear distinction between the model’s kinematics, encoded in the MAE,
and its dynamics, represented by the transport of vorticity.

3. Pseudo-Riemannian geometry and classification of nonlinear PDEs
To classify2 symplectic three-dimensional Monge–Ampère operators, Lychagin & Rubtsov [17]
introduced a symplectic invariant attached to any given effective 3-form on T∗

R
3. It may be

defined through the relation (see [11])

gω(ξ1, ξ2)
Ω3

3!
= ιξ1ω ∧ ιξ2ω ∧ Ω , (3.1)

which holds for each pair of vector fields ξ1, ξ2 on T∗
R

3. Note that gω is a symmetric bilinear form
on the phase space T∗

R
3. Moreover, as shown in [18], gω happens to be non-degenerate for certain

classes of Monge–Ampère operators. When this holds, gω defines a Riemannian (or pseudo-
Riemannian) metric on the phase space T∗

R
3, which we call the Lychagin–Rubtsov metric. For

ω and Ω given by (2.18) and (2.16), (3.1) yields

gω = 2εqg( dx dX + dy dY + dz dZ). (3.2)

Thus, as long as the MAE (2.11) is concerned, gω is a pseudo-Riemannian metric with signature
(3, 3) over the phase space T∗

R
3. The Lychagin–Rubtsov metric induces a pseudo-metric on every

2Two effective 3-forms ω1 and ω2 on T∗
R

3 are locally equivalent if there is a local symplectomorphism of the phase space
pulling ω2 back to ω1.
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submanifold of T∗
R

3, and, in particular, on solutions of the MAE. Let

ι : L → T∗
R

3, (3.3)

be a generalized solution to (2.11), that is, a Lagrangian submanifold such that ι∗ω = 0. Then, L
inherits the (pseudo)-Riemannian structure of ambient space as provided by the pull-back metric

hω := ι∗gω. (3.4)

Remark 3.1. The Lychagin–Rubtsov metric (3.2) is pseudo-Riemannian (non-degenerate) as
long as qg �= 0. This is always true in the present work as we assume qg > 0. However, nothing
can be said a priori about the pull-back metric (3.4), which depends on the solution L and the
position on L. In the general case, hω can be either Riemannian, pseudo-Riemannian and even
degenerate. We call hω degenerate at a point e ∈ L if there exists a tangent vector ξ1 ∈ TeL such that
hω(ξ1, ξ2) = 0 for any ξ2 ∈ TeL.

We are now able to describe one of the main results of this article: the characterization of MAEs
in terms of the geometry of L. We show that there is a correspondence between the signature of
(3.4) and the symbol type (elliptic/parabolic/hyperbolic) of the MAE (2.11). This is made precise
in proposition 3.7 and leads to a natural characterization of the equation type in terms of hω

(definition 3.8). We start with classical solutions, amenable for treatment through linearization.
Next, we consider generalized solutions with the aid of generating functions. Then we draw these
ideas together in §3c, stating the relationship between elliptic–hyperbolic transitions, projection
singularities and the pull-back of the Lychagin–Rubtsov metric. The section ends with an account
of characteristic surfaces in terms of the pull-back metric.

(a) Classical solutions
We begin by recalling a classical definition from the theory of PDEs (e.g. [21]):

Definition 3.2 (Type of a linear equation). A second-order linear PDE with principal part

n∑
i,j=1

aij(x)
∂2u

∂xi∂xj
, (3.5)

is called elliptic if the eigenvalues of the symmetric matrix A = [aij] have the same sign, hyperbolic
if one eigenvalue has the opposite sign from the others and parabolic if there is at least one zero
eigenvalue.

The notion of an equation type has been generalized to nonlinear equations by Harvey &
Lawson [22] as follows (see also §2 of [23] for a geometrical perspective).

Definition 3.3. The type of a nonlinear equation at a given solution is the type of its
linearization about the solution.

We are thus led to consider the linearization of equation (2.11) about a fixed solution. Let P + δP
be a perturbation of some exact solution P to (2.11). Introducing this ansatz into equation (2.11)
and using the Jacobi formula for determinants leads, to the first order in δP, to the linear equation
satisfied by the perturbation field,

Tr [adj(Hess(P))Hess(δP)] = 0. (3.6)

Here, the coefficient matrix is
A = adj(Hess(P)), (3.7)

where ‘adj’ denotes the adjugate matrix.
The assumption that qg > 0 implies that (3.6) is elliptic if P is (spatially) convex and hyperbolic

if P is saddle shaped. Definition 3.3 allows us to bring this information to the nonlinear equation
(2.11) as it stands. Also note that equation (2.11) is nowhere parabolic as long as classical solutions
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are considered. In fact, equation (2.11) itself prevents the eigenvalues of Hess(P) (and thus those
of A) from vanishing. We are now in a position to prove the following:

Proposition 3.4. Let P be a classical solution to (2.11) and let L ⊂ T∗
R

3 denote the graph of dP. Then,
the pull-back Lychagin–Rubtsov metric on L,

hω := (dP)∗gω, (3.8)

has matrix representation

hω = 2adj(A) = 2εqgHess(P), (3.9)

where A is the linearization matrix (3.7). Moreover, hω has signature (3, 0) if equation (2.11) is elliptic at
the solution P and signature (1, 2) if (2.11) is hyperbolic at P.

Proof. By direct calculation. Recalling that,

dP : (x, y, z) �→
(

x, y, z,
∂P
∂x

,
∂P
∂y

,
∂P
∂z

)
, (3.10)

equation (3.8) implies

hω = (dP)∗gω = 2εqg
∂2P

∂xi∂xj
dxi dxj, (3.11)

where we have set (x1, x2, x3) ≡ (x, y, z), and summation on repeated indices is implied. Therefore,
hω has matrix representation

hω = 2εqgHess(P). (3.12)

On the other hand, equation (3.7) plus the algebraic identity

adj(adj(M)) = det(M)n−2M, (3.13)

holding for any square matrix M ∈ R
n×n with n > 2, gives

adj(A) = adj(adj(Hess(P))) = det(Hess(P))Hess(P) = εqgHess(P), (3.14)

and thus, equation (3.9) follows. As for the second part, we observe that the determinant,

det(hω) = 8 det(A)2 = 8 det Hess(P)4 = 8(εqg)4, (3.15)

is always positive, so the eigenvalues of (3.9) can only be (i) all positive or (ii) one positive and
two negative. According to (3.9), (i) occurs when P is convex and case (ii) occurs when P is saddle
shaped. Therefore, cases (i) and (ii) correspond to (2.11) being respectively elliptic or hyperbolic.

�

Remark 3.5. The first equality in (3.9) turns out to be a general property of symplectic three-
dimensional MAEs. In particular, it applies to the dual equations (2.30), (2.31) and (2.32).

Definition 3.3 is no longer directly applicable when generalized solutions are allowed, as the
whole linearization process is ill defined. However, equation (3.9) suggests a characterization of
ellipticity of equation (2.11) based on hω, which applies to generalized solutions too. Indeed, the
equation type at a generalized solution is directly traceable to the signature of hω in a definite way.
In the remainder of this section, we will prove the consistency of this characterization by relying
on the local description of generalized solutions in terms of generating functions.

(b) Generalized solutions
We recall that any generating function f of a generalized solution L satisfies a MAE which arises
from expressing the condition ω|L = 0 in local coordinates on L. Moreover, as f is a classical
solution to this equation, there are no obstructions to linearization. Thus, we can give the
following
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Definition 3.6. Let L be a generalized solution to (2.11) locally generated by a generating
function f . We say that (2.11) is elliptic, parabolic or hyperbolic at some point e ∈ L if f satisfies
a MAE of the same type at the point.

We remark that the symbol type of a differential equation is invariant under a change of
variables [21], and this ensures the consistency of definition 3.6. We are thus in a position to prove
the

Proposition 3.7. Let ι : L �→ T∗
R

3 be a generalized solution to (2.11). Then, the pull-back metric hω =
ι∗gω has signature (3, 0) on elliptic branches of L, (1, 2) on hyperbolic branches and degenerates along
parabolic branches.

Proof. This proposition is proved by direct inspection of the linearized MAE satisfied by the
generating function f . We explicitly carry out the calculations for the case of f = Zz + T (the
remaining cases are addressed similarly and lead to the same conclusions). Thus, let L be some
generalized solution locally described by T(x, y, Z) according to (2.29). Introducing a perturbation
T + δT of an exact solution T to (2.32) leads to a linear equation satisfied by the perturbation field,

∂2T
∂x2

∂2δT
∂y2 + ∂2T

∂y2
∂2δT
∂x2 − 2

∂2T
∂x∂y

∂2δT
∂x∂y

+ εqg
∂2δT
∂Z2 = 0. (3.16)

Its 3 × 3 coefficient matrix is

A =
(

adj(H) 0
0 εqg

)
and H :=

⎛
⎜⎜⎜⎝

∂2T
∂x2

∂2T
∂x∂y

∂2T
∂x∂y

∂2T
∂y2

⎞
⎟⎟⎟⎠ . (3.17)

On the other hand, the Lychagin–Rubtsov metric hω = gω|L has the local coordinate expression

hω = 2εqg

(
∂2T
∂x2 dx2 + 2

∂2T
∂x∂y

dx dy + ∂2T
∂y2 dy2 − ∂2T

∂Z2 dZ2

)
(3.18)

and may be written in the matrix form as follows:

hω = 2

(
εqgH 0

0 det(H)

)
, (3.19)

where we have used (2.32). We note in passing that

hω = 2adj(A). (3.20)

We see from (3.17) that equation (2.32) is elliptic as long as H is positive definite, which, in light
of (3.19), corresponds to hω having signature (3, 0). Parabolic and hyperbolic cases correspond
to det(H) = 0 and det(H) < 0, respectively. Therefore, it follows from equation (3.19) that hω is
degenerate on parabolic branches and of type (1, 2) on hyperbolic ones. �

The significance of proposition 3.7 is that hω encodes all the essential information about the
equation type and may be used to give an invariant definition of the symbol type based on its
signature. This may be summarized as follows:

Definition 3.8. Let L be a generalized solution to (2.11) with Lychagin–Rubtsov metric hω. We
say that (2.11) is elliptic or hyperbolic at a point e ∈ L if (hω)e is, respectively, of type (3, 0) or (1, 2).
We say that (2.11) is parabolic at e ∈ L if (hω)e is degenerate.

(c) Singularities
In this section, we show that elliptic–hyperbolic transitions in (2.11) can only occur along through
some singularity. This result is closely related to the assumption of strictly positive potential
vorticity, which, according to (2.11), prevents the eigenvalues of Hess(P) from changing sign as
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long as classical solutions are considered. As a result, the pull-back of the Lychagin–Rubtsov
metric degenerates on singularities.

We recall that points on L are called regular if the tangent map dπL is surjective, and singular
otherwise. We denote by ΣL the set of singular points on L.

Proposition 3.9. Let L be a generalized solution to (2.11). Then the set of parabolic points on L coincides
with the singular locus ΣL.

Proof. Once again, we rely on a local description in coordinates and generating functions to
prove our result. Let a solution L be locally generated by a function f = Zz + T, that is

L =
{

(x, y, z, X, Y, Z) ∈ T∗
R

3 : X = ∂T
∂x

, Y = ∂T
∂y

, z = − ∂T
∂Z

}
. (3.21)

In local coordinates {x, y, Z} on L, the projection mapping reads

πL(x, y, Z) =
(

x, y, − ∂T
∂Z

)
, (3.22)

and so it is singular on points satisfying

det( dπL) = − ∂2T
∂Z2 = (εqg)−1

(
∂2T
∂x2

∂2T
∂y2 −

(
∂2T
∂x∂y

)2 )
= 0. (3.23)

On the other hand, we know from the proof of proposition 3.7 that parabolic points on L satisfy the
same equation. To complete the proof, one should examine in turn each of the remaining classes
of generating functions. However, calculations are almost identical to those we have already
exhibited, and we omit them for conciseness. �

Propositions 3.7 and 3.9 are combined to

Corollary 3.10. Given a generalized solution L to (2.11), the induced Lychagin–Rubtsov metric on L
degenerates along the singular locus ΣL.

Thus, every regular branch of a multi-valued solution L ⊂ T∗
R

3 is of a single type (elliptic or
hyperbolic), and transitions are only possible in passing from one branch to another.

Remark 3.11. Chynoweth & Sewell’s approach to singularities is by the Legendre transform
(see equations (12) of [4]). Once a solution to (2.30), (2.31) or (2.32) is known, the (possibly multi-
valued) geopotential is recovered by the inverse Legendre transform,

P = Xx + Yy + Zz − R, x = ∂R
∂X

, y = ∂R
∂Y

, z = ∂R
∂Z

, (3.24)

P = Xx + Yy − S, x = ∂S
∂X

, y = ∂S
∂Y

(3.25)

and P = Zz + T, z = − ∂T
∂Z

. (3.26)

Singularities are then identified according to their effects on the graph of the multi-valued P.
Chynoweth and Sewell’s viewpoint is reconciled with the geometric viewpoint as follows. We
denote by J1(R3) � T∗

R
3 × R the bundle of 1-jets over the physical space R

3(x, y, z), and we endow
it with coordinates

(x, y, z, u, X, Y, Z). (3.27)

In this extended space, a generalized solution is understood as a Legendrian submanifold3 ι̂ : L →
J1

R
3 such that ι̂∗ω = 0 (here, ω is understood as a 3-form on J1

R
3). Then, the projection π̂L = π̂ ◦ ι̂

3A Legendrian submanifold of a contact manifold (M2n+1, C) is a n-dimensional integral manifold of the contact distribution
C. If M = J1

R
3, C is canonically described as the kernel of the Cartan 1-form Θ = du − Xdx − Ydy − Zdz (e.g. [8]).

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

02
 M

ar
ch

 2
02

3 



12

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A479:20220682

..........................................................

of L to the base space J0
R

3 of the jet bundle, where

π̂ : J1
R

3 → J0
R

3, (x, y, z, u, X, Y, Z) �→ (x, y, z, u), (3.28)

results in the graph of the (possibly) multi-valued geopotential P, parametrized by the local
coordinates on L by equations (3.24), (3.25) or (3.26). The following commutative diagram
summarizes the situation.

(d) Characteristic variety
The strong connection between hω and the symbol type of (2.11) suggests a link with the
characteristic surfaces as well. In this section, we explore the geometry of the light cone of hω

and use it to introduce a suitable notion of characteristic surfaces in hyperbolic and parabolic
regime.

A central role in this subject is played by vectors of null length, which, borrowing terminology
from relativity theory, are called light-like. The set of light-like vectors based at a point is called
the light cone or the characteristic variety. This notion is made precise by the following definition,
which builds on the work of Kossowski [13] on two-dimensional MAEs.

Definition 3.12. Let gω be given by (3.2) and let e ∈ T∗
R

3. The cotangent characteristic variety
(or simply characteristic variety) CVe ⊂ Te(T∗

R
3) is the cone

CVe := {ξ ∈ Te(T∗
R

3) : gω(ξ , ξ ) = 0}. (3.29)

Let L ⊂ T∗
R

3 be some generalized solution to the (2.11) and let e ∈ L. We denote the pull-back of
the characteristic variety to L as follows:

CVL
e := {ξ ∈ TeL : hω(ξ , ξ ) = 0}, (3.30)

where hω = gω|L is the pull-back metric on L.

It easily follows from definition 3.8 that the characteristic variety CVL
e is a full-fledged cone if e

is an hyperbolic point, a degenerate cone if e is a parabolic point and the zero vector, {0} ⊂ TeL, if
e is an elliptic point. The characteristic variety is the basic ingredient to build the characteristic
surfaces within a generalized solution L. We understand a characteristic surface C ⊂ L as the
enveloping surface of characteristic varieties CVL

e as e varies across C, as the following definition
clarifies.

Definition 3.13. A surface C ⊂ L is called characteristic if at any point e ∈ C, the tangent space
TeC comprises one (and only one) light-like direction.

We remark that definition 3.13 closely parallels the notion of characteristics in general
relativity, where they are identified with light-like surfaces [24]. Definition 3.13 may be considered
as a straightforward generalization to nonlinear PDEs of the classical notion of characteristics for
linear PDEs (see appendix A). To motivate this statement, fix coordinates {q1, q2, q3} on L and
consider the surface

C = {(q1, q2, q3) ∈ L : F(q1, q2, q3) = 0}. (3.31)

Further, consider the following vector based at points on C,

dF� = hij ∂F
∂qi

∂

∂qj
, (3.32)

where summation on repeated indices is implied and hij denotes the components of the inverse
metric h−1

ω . It is straightforward to check the equivalence of the following statements: (i) dF� is a
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tangent vector to C, (ii) dF� is a light-like vector and (iii) F satisfies

h−1
ω (dF, dF) = 0. (3.33)

Equation (3.33) is the analogue of the eikonal equation (A 3) in the linear setting, where the matrix
coefficient is replaced by the inverse of hω. We shall further elaborate on this analogy next. Note
that equation (3.33) is only well defined away from parabolic points, where hω is not invertible
and has only non-trivial solutions on hyperbolic branches of L. Any hyperbolic branch is regular
by virtue of proposition 3.9, so it may be described as the graph of a function, e.g. P∗(x, y, z), to the
extent a classical solution is (we may take {x, y, z} as local coordinates on hyperbolic branches).
Therefore, the linearization of (2.11) about a hyperbolic branch of L is well defined, and, building
on equation (3.9), we may write

h−1
ω = 1

2 det(A)
A, (3.34)

where A = adj(Hess(P∗)) is the coefficient matrix of the linearized equation (2.11) about P∗. Since
det(A) �= 0 on hyperbolic points, we may get rid of this term in equation (3.33), and write

∇F · A∇F =
3∑

i,j=1

aij(x, y, z)
∂F
∂xi

∂F

∂xj
= 0, (3.35)

where (x1, x2, x3) = (x, y, z). The analogy with (A 3) should now be apparent.
Equation (3.33) is a nonlinear PDE of the first order and, as (A 3), is solved by the classical

methods of wave optics (e.g. Appendix 4 of [25]). Namely, the solution surface is understood as
foliated by light-like curves (i.e. the light rays of wave optics) which satisfy a set of Hamilton’s
canonical equations of motion. We briefly recall the main steps of the solution procedure
for completeness of exposition [21,25]. Consider the cotangent bundle T∗L with coordinates
{q1, q2, q3, p1, p2, p3} and symplectic structure

Ω = dpi ∧ dqi. (3.36)

Equation (3.33) is thus interpreted as the zero level set of the Hamiltonian function H : T∗L → R,

H(p, q) = h(q)ijpipj, (3.37)

under the identification pi = ∂F/∂qi. Characteristic curves of (3.33) are defined by [25] as the
integral curves of the Hamiltonian vector field ξH,

− dH= ιξHΩ , (3.38)

and satisfy the Hamilton’s canonical equations:

q̇i = ∂H
∂pi

= 2(hω)ijpj and ṗi = −∂H
∂qi

= −∂(hω)jk

∂qi
pjpk. (3.39)

Initial conditions are not free, but are subject to the condition

H(p(0), q(0)) = 0. (3.40)

Integral curves of (3.39) are called bicharacteristics [16]. Once projected to L along the cotangent
bundle, π̄ : T∗L → L, bicharacteristics foliate the characteristic surfaces C ⊂ L. The following
commutative diagram summarizes the relations introduced so far.
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Remark 3.14. Light rays are equivalently described by the Lagrangian

L= hij(q)q̇iq̇j, (3.41)

related to the Hamiltonian (3.37) by the classical Legendre transform. The equivalent of (3.40)
reads

L(q(0), q̇(0)) = 0. (3.42)

The Euler–Lagrange equations associated with (3.41) plus condition (3.42) precisely yield the
light-like geodesics of hω. Therefore, characteristic surfaces C are foliated by light-like geodesics
of hω, and this offers an alternative approach to computing them.

In the next section, we provide an example of a generalized solution to the SG equations and
show the interaction of characteristics, elliptic–hyperbolic transition and singularities.

4. Exact solutions
Not many exact solutions to the full SG system (2.9) are known [26,27], and even fewer are the
generalized ones. A common assumption often encountered in the literature is that of uniform
potential vorticity, which helps finding particular solutions and possesses physical relevance.
Under this assumption, equation (2.11) decouples from system (2.9) and is interpreted as a MAE
for the unknown geopotential. The choice εqg = 1 brings (2.11) to the form

det Hess(P) = 1, (4.1)

widely studied in the literature. A two-parameter family of classical solutions to (4.1) is
introduced in [18] and generalized in [28]. Once a particular solution to (4.1) is selected, one is
able to build a full solution to (2.9), as we show in §4.

(a) Construction of exact solutions
We build generalized solutions to (4.1) by solving (2.32), which, under the assumption εqg = 1,
takes the form

∂2T
∂x2

∂2T
∂y2 −

(
∂2T
∂x∂y

)2

+ ∂2T
∂Z2 = 0. (4.2)

Although time dependence is still possible for constant vorticity flows, we shall restrict to
stationary solutions, which nevertheless show some interesting features. We look for analytical
solutions to (4.2) in the form

T = T(0)(Z) + T(1)
α (Z)xα + 1

2
T(2)

αβ (Z)xαxβ + 1
3!

T(3)
αβγ (Z)xαxβxγ + . . . , (4.3)

where (x1, x2) = (x, y) and summation on repeated indices is implied. Several classes of finite
dimensional reductions of (4.3) are possible. Third-order truncation of the aforementioned series
provides a wide class of fully polynomial solutions whose coefficients satisfy

d2T(3)
αβγ

dZ2 = 0, (4.4)

d2T(2)
11

dZ2 + 2 det(T(3)
1αβ

) = 0,
d2T(2)

12
dZ2 + T(3)

111T(3)
222 − T(3)

112T(3)
122 = 0,

d2T(2)
22

dZ2 + 2 det(T(3)
2αβ

) = 0, (4.5)

d2T(1)
1

dZ2 + T(2)
22 T(3)

111 − 2T(2)
12 T(3)

112 + T(2)
11 T(3)

222 = 0,
d2T(1)

2
dZ2 + T(2)

22 T(3)
112 − 2T(2)

12 T(3)
122 + T(2)

11 T(3)
222 = 0 (4.6)

and
d2T(0)

dZ2 + det(T(2)
αβ ) = 0. (4.7)
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A straightforward inspection of equations (4.4)–(4.7) shows that the coefficient functions are
polynomials of a definite degree in Z. Specifically, T(3)

αβγ has degree 1, T(2)
αβ has degree 4, T(1)

α has

degree 7 and T(0) has degree 10. Retaining terms of the fourth order and higher in the expansion
(4.3) leads to a wider class of exact solutions, though they are generally not polynomial in the
vertical variable.

Polynomial solutions are particularly valuable for their ability to encode the local behaviour
of more complex solutions and, in particular, the singular structure. The simplest non-trivial
Lagrangian singularity is the fold (A2), and the germ of a Lagrangian submanifold with this
feature is canonically described by a generating function:

T∗(x, y, Z) = Z3

6
(4.8)

(see, e.g. [29] for a list of low-dimensional canonical forms of elementary catastrophes). We build
an example solution to (4.2) by deformation of (4.8) through the addition of a polynomial term.
One of the simplest choices is

T = y2

2
− x2Z

2
+ Z3

6
. (4.9)

(b) Lagrangian submanifold and projection
The generating function (4.9) determines a Lagrangian submanifold according to

L =
{

(x, y, z, X, Y, Z) ∈ T∗
R

3 : X = ∂T
∂x

= xZ, Y = ∂T
∂y

= y, z = − ∂T
∂Z

= x2

2
− Z2

2

}
. (4.10)

The restriction πL := π |L of the bundle projection (2.20) to L in local coordinates is

πL(x, y, Z) =
(

x, y, − ∂T
∂Z

)
=
(

x, y,
x2

2
− Z2

2

)
(4.11)

and shows that the fold singularity occurs across the plane

ΣL =
{

(x, y, Z) ∈ L : 0 = det( dπL) = − ∂2T
∂Z2 = −Z

}
. (4.12)

The projection of the singular locus to the physical space identifies the caustics,

πL(ΣL) =
{

(x, y, z) ∈ R
3 : z = x2

2

}
, (4.13)

and figure 1 provides a view of them. Due to the nature itself of the fold singularity, the caustics
bound the solution domain in the physical space. In other words, the solution is only defined in
the domain z ≤ x2/2 of R

3(x, y, z).

Remark 4.1. A different approach is used in [4], where the authors put the focus on the
singularities of the geopotential graph. The Chynoweth–Sewell relations (3.24)–(3.26) yield the
graph of the multi-valued geopotential P(x, y, z) as parametrized by Z,

P = y2

2
− Z3

3

and z = x2

2
− Z2

2
,

⎫⎪⎪⎬
⎪⎪⎭ (4.14)

and figure 2 shows a section of it for y = constant. The cusped edge is a distinctive feature of the
A2 singularity in the Legendrian context.
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Figure 1. (a) The singular locusΣL defined in (4.12) within the generalized solution L given by (4.10). (b) The causticsπL(ΣL)
defined in (4.13) showing the typical appearance of the A2 singularity.
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Figure 2. A slice through the graph of the multi-valued geopotential (4.14) for y = 0.

(c) Lychagin–Rubtsov metric
Next we examine the pseudo-Riemannian geometry of the solution. The Lychagin–Rubtsov
metric on L in local coordinates is

hω = 2(Txx dx2 + 2Txy dx dy + Tyy dy2 − TZZ dZ2)

= 2(−Z dx2 + dy2 − Z dZ2). (4.15)

This immediately implies, according to definition 3.8, that the problem is elliptic for Z < 0 and
hyperbolic for Z > 0. Characteristic surfaces in the hyperbolic region are determined by the light-
like geodesics of (4.15) (see remark 3.14). General geodesics satisfy

ẍ = − ẋŻ
Z

, ÿ = 0, Z̈ = ẋ2 − Ż2

2Z
. (4.16)
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The first two equations can be immediately integrated once and yield two of constants of the
motion,

ẋZ = C1 and ẏ = C2. (4.17)

By using (4.17) in the third of (4.16), the problem of finding general geodesics is reduced to the
single equation

2Z3Z̈ = C2
1 − Z2Ż2. (4.18)

A further simplification is available for light-like geodesics, which are subject to the additional
constraint

− Zẋ2 + ẏ2 − ZŻ2 = 0. (4.19)

Using (4.17) in (4.19) gives the separable equation:

C2
1 − C2

2Z + Z2Ż2 = 0, (4.20)

with implicit solution,

± s =
2
√

C2
2Z − C2

1(2C2
1 + C2

2Z)

3C4
2

−
2
√

C2
2Z0 − C2

1(2C2
1 + C2

2Z0)

3C4
2

. (4.21)

We shall remark at this point that (4.19) is compatible with the geodesics equations (4.16), as can be
verified by taking a derivative of (4.19) and using (4.16) to eliminate the second derivative terms.
Indeed, any solution of (4.20) is a geodesic curve. This can be checked by taking the derivative of
(4.20) with respect to the curve parameter to get

− C2
2 + 2ZŻ2 + 2Z2Z̈ = 0. (4.22)

Then, multiplication by Z and the use of (4.19) to eliminate C2 leads back to equation (4.18). Next,
we use the first constant of the motion in (4.17) to get x(s),

dx
dZ

= C1

Z
ds
dZ

= ± C1√
C2

2Z − C2
1

. (4.23)

Once integrated, equations (4.23) and (4.21) and the second of equation (4.17) allow us to write
the light-like geodesics as follows:

x ± 2ẋ0Z0

ẏ2
0

√
ẏ2

0Z − ẋ2
0Z2

0 = constant

and y ± 2

3ẏ3
0

(2ẋ2
0Z2

0 + ẏ2
0Z)

√
ẏ2

0Z − ẋ2
0Z2

0 = constant,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.24)

where we have used C1 = ẋ0Z0, C2 = ẏ0. To see how characteristics interact with the parabolic
boundary ΣL, we assume next that the geodesic starting point (x0, y0, Z0) belongs to ΣL, i.e. Z0 =
0. This results in

x = x0

and (y − y0)2 = 4
9

Z3.

⎫⎪⎬
⎪⎭ (4.25)

Thus, characteristics intersecting the parabolic boundary form semicubical cusps at the
intersection point, as expected from the literature on the subject [5]. Figure 3 provides a view
of the characteristic surfaces near the singular locus.

(d) Full semigeostrophic solution
In the remainder of this section, we explicitly reconstruct the full SG solution from the knowledge
of the generating function (4.9). Thanks to the simple structure of the solution (4.9), we are able to
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Figure 3. Characteristic surfaces (grey) intersecting the boundary of the hyperbolic region, Z = 0. Intersection points are found
along parallel lines along the parabolic plane Z = 0 where the characteristics form semicubical cusps.

explicitly (piecewise) invert the relation (4.14) and write

εθ = Z = ±
√

x2 − 2z and P = y2

2
∓ 1

3
(x2 − 2z)3/2. (4.26)

Once the geopotential P is known, absolute momentum and potential temperature are obtained
by derivation as follows:

M = ∂P
∂x

= ∓x
√

x2 − 2z, N = ∂P
∂y

= y. (4.27)

Next, the geostrophic wind is found as follows:

ug = qg(y − N) = 0 and vg = qg(M − x) = qg(∓x
√

x2 − 2z − x), (4.28)

where we have used εqg = 1. The momentum balance equations plus the transport of potential
temperature yield a system of algebraic equations for the unknown components of the velocity
field,

Mxu + Myv + Mzw = ug,

Nxu + Nyv + Nzw = vg

and θxu + θyv + θzw = 0.

⎫⎪⎪⎬
⎪⎪⎭ (4.29)

Since N = y, it easily follows that v = vg. Moreover, My = θy = 0 and ug = 0, which imply that u =
w = 0. Indeed, the first and the last equations in (4.29) form a linear homogeneous system with
non-degenerate coefficient matrix as follows:

∂(M, θ )
∂(x, y)

= det Hess(P) = 1. (4.30)

In conclusion, the flow field corresponding to (4.9) is a purely geostrophic meridional wind,

u = 0, v = vg = qg(∓x
√

x2 − 2z − x), w = 0. (4.31)

To restore single-valuedness of the solution, Chynoweth and Sewell appealed to the convexity
principle of [6]. Namely, only convex branches of the multivalued graph of P are retained while
concave ones are discarded. Although the application of this principle requires some attention in
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Figure 4. Magnitude of the geostrophic wind (4.31) on a section normal to the flow. The fluid domain is bounded from above
by the caustics (4.13).

the general case, it is straightforward in this example. The admissible branch of P is found to be,

P = y2

2
+ 1

3
(x2 − 2z)3/2, (4.32)

which corresponds to the elliptic branch of the multi-valued solution, Z < 0. This corresponds to
the velocity field

u = 0, v = vg = qg(x
√

x2 − 2z − x), w = 0, (4.33)

and represents a geostrophic wind in the northern hemisphere directed poleward. Figure 4 shows
the wind magnitude on a section normal to the flow.

This example shares qualitative features with a larger class of exact solutions, i.e. two-
dimensional stationary flows. These flows are characterized by the independence of the
geopotential φ of one of the horizontal coordinates (in this case, y), which results in a vanishing
zonal component of the geostrophic wind. Under stationary conditions, flows in this class are
purely geostrophic (either zonal or meridional).

5. Conclusions and future directions
The Lychagin–Rubtsov metric has been much studied in the context of Monge–Ampère geometry,
but its pull-back to generalized solutions, realized as Lagrangian submanifolds, has hitherto been
unexplored. We have explored this feature from the point of view of PDE theory in the physically
and mathematically important example of the SG equations.

In particular, we have shown connections between the signature of the pull-back metric on
solutions, the symbol type of the MAE, and its role in describing the characteristic surfaces of
hyperbolic equations. We recognize the pull-back metric as a tool for studying singularities, which
complements and extends the earlier work of Kossowski [13], where a version of the Lychagin–
Rubtsov metric on T∗

R
2 was the primary object of interest.

Several questions are still open. We illuminated the meaning of the light-like geodesics in
hyperbolic regime, but the potential role of space-like and time-like geodesics, and the elliptic
regime in this context, remain to be explored.

Another intriguing question is the geometrical and physical meaning of the curvature of the
Lagrangian submanifolds, and its relationship with singularities. This aspect has been explored in
the work of Napper et al. on Navier–Stokes equations [30], and its implications for SG theory is a
matter for future research. We focused on the kinematic aspects of the SG equations, considering
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time as a fixed parameter, but the system dynamics is important. Considering time-dependent
solutions leads to a one-parameter family of metrics, i.e. a notional geometric flow, whose
properties are unknown. We might speculate a relation between such a geometric flow and the
onset of dynamic singularities.
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Appendix A. Characteristics of linear PDEs
We recall here some classical terminology from the theory of linear PDEs (e.g. [21]). Let a second-
order linear PDE in n independent variables x = (x1, . . . , xn) has a principal part

n∑
i,j=1

aij(x)
∂2u

∂xi∂xj
. (A 1)

The x-depending quadratic form

σ (x, ξ ) =
n∑

i,j=1

aij(x)ξiξj, ξ := (ξ1, . . . , ξn) (A 2)

is called the principal symbol of the equation. A vector ξ based at x is called characteristic if
σ (x, ξ ) = 0 and the set of characteristic vectors at x is called the Fresnel cone. An implicitly defined
hypersurface F(x1, . . . , xn) = 0 is called characteristic surface or simply characteristic if its normal
vector is characteristic. In other words, F satisfies the eikonal equation:

σ (x, ∇F) =
n∑

i,j=1

aij(x)
∂F
∂xi

∂F
∂xj

= 0. (A 3)
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