of the
ROYAL ASTRONOMICAL SOCIETY

MNRAS 534, 1753-1762 (2024)
Advance Access publication 2024 September 18

https://doi.org/10.1093/mnras/stae2162

Periodicity search in the timing of the 25 millisecond pulsars from the
second data release of the European Pulsar Timing Array

Tuliana C. Nitu “,'* Michael J. Keith “,'* David J. Champion ’,?> Ismaél Cognard *,>*
Gregory Desvignes *,> Lucas Guillemot ,** Yanjun Guo,> Huanchen Hu *',? Jiwoong Jang
Jedrzej Jawor > Ramesh Karuppusamy “,> Evan F. Keane ', Michael Kramer,? Kristen Lackeos ',
Kuo Liu “,>® Robert A. Main,? Delphine Perrodin *,” Nataliya K. Porayko,> Golam M. Shaifullah *7-%°

and Gilles Theureau “3*1°

I Department of Physics and Astronomy, Jodrell Bank Centre for Astrophysics, The University of Manchester, Manchester M13 9PL, UK
2Max-Planck-Institut fiir Radioastronomie, Auf dem Hiigel 69, D-53121 Bonn, Germany

3 Laboratoire de Physique et Chimie de I’Environnement et de I’Espace LPC2E UMR7328, Université d’Orléans, CNRS, F-45071 Orléans, France
4Observatoire Radioastronomique de Nangay, Observatoire de Paris, Université PSL, CNRS, Université d’Orléans, F-18330 Nangay, France
3School of Physics, Trinity College Dublin, College Green, Dublin 2, D02 PN40, Ireland

Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030, China

TINAF — Osservatorio Astronomico di Cagliari, via della Scienza 5, 1-09047 Selargius (CA), Italy

8Dipartimento di Fisica ‘G. Occhialini’, Universitd degli Studi di Milano-Bicocca, Piazza della Scienza 3, I-20126 Milano, Italy

INFN, Sezione di Milano-Bicocca, Piazza della Scienza 3, I-20126 Milano, Italy

107 aboratoire Univers et Théories, Observatoire de Paris, Université PSL, Université de Paris Cité, CNRS, F-92190 Meudon, France

2

Accepted 2024 September 12. Received 2024 August 18; in original form 2024 March 27

ABSTRACT

In this work, we investigated the presence of strictly periodic, as well as quasi-periodic signals, in the timing of the 25 millisecond
pulsars (MSPs) from the European Pulsar Timing Array Second Data Release data set. This is especially interesting in the context
of the recent hints of a gravitational wave background in these data, and the necessary further study of red noise timing processes,
which are known to behave quasi-periodically in some normal pulsars. We used Bayesian timing models developed through the
RUN_ENTERPRISE pipeline: a strict periodicity was modelled as the influence of a planetary companion on the pulsar, while a
quasi-periodicity was represented as a Fourier-domain Gaussian process. We found that neither model would clearly improve
the timing models of the 25 MSPs in this data set. This implies that noise and parameter estimates are unlikely to be biased by
the presence of a (quasi-)periodicity in the timing data. Nevertheless, the results for PSRs J1744—1134 and J1012+4-5307 suggest
that the standard noise models for these pulsars may not be sufficient. We also measure upper limits for the projected masses of
planetary companions around each of the 25 pulsars. The data of PSR J1909—3744 yielded the best mass limits, such that we
constrained the 95 percentile to ~2 x 10~* Mg, (roughly the mass of the dwarf planet Ceres) for orbital periods between 5 d and
17 yr. These are the best pulsar planet-mass limits to date.

Key words: methods: data analysis —planets and satellites: detection —pulsars: general.

gives the timing residual, often referred to simply as the residual. If

1 INTRODUCTION the model is complete, the residuals should be characterized by white

Pulsar timing relies on unambiguously counting every rotation of
a pulsar. The observed periodic pulsar emission is considered to
be representative of its rotation, which is also assumed to be stable
within the time-scale of each observing epoch (e.g. Liuetal. 2012). In
practice, pulsar timing involves using a physical model of the pulsar
and of the propagating medium to predict the rotational phase at each
measured time of arrival (ToA hereafter), and comparing this to the
observed phase at some carefully defined fiducial point in the pulsar’s
rotation. The difference between the observed and the modelled phase
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noise with zero mean. However, excess noise is observed in many
pulsar residuals in the form of long-term, time-correlated variations
(Cordes & Downs 1985; Hobbs, Lyne & Kramer 2010; Parthasarathy
etal. 2019), indicating that there may be additional stochastic effects
that need to be included in the timing model. These can be achromatic
(independent of observing frequency) spin red noise, which has
been found to sometimes look quasi-periodic (QP) in slow pulsars,
and shows correlations with the observed pulse shapes in the radio
emission (Lyne et al. 2010). Moreover, stochastic variations in the
interstellar medium may cause chromatic red noise in the timing
residuals.

Nevertheless, the high stability of pulses, particularly from the
recycled millisecond pulsars (MSPs; e.g. Backer et al. 1982; Verbiest
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et al. 2009), makes pulsar timing an invaluable tool for studying
a range of astrophysical and cosmological phenomena, such as
the structure of the interstellar medium or the solar wind, nuclear
matter in exotic conditions, tests of General Relativity (e.g. Manch-
ester 2017), and searches for dark matter and gravitational waves
(GWs) from the early Universe (e.g. EPTA Collaboration 2024).
Pulsar Timing Arrays (PTAs) represent a network of precisely and
frequently timed pulsars, distributed across the Galaxy, with the
purpose of detecting GWs in correlated pulsar timing signals. PTAs
are expected to be sensitive to space-time distortions caused by
GWs of nanohertz frequencies (Sazhin 1978; Detweiler 1979). In
this frequency range, the main contribution is believed to come
from a stochastic GW background (GWB) created by the incoherent
superposition of signals from in-spiralling supermassive black hole
binaries (SMBHBs; Rajagopal & Romani 1995). In addition, contin-
uous GWs from strong individual SMBHB sources may also be seen
in this regime (Estabrook & Wahlquist 1975), as well as other, more
exotic theoretically predicted GW sources such as cosmic strings or
arelic GWB (Kibble 1976; Grishchuk 2005). Several collaborations
have been developed with the specific purpose of detecting these
GWs, including the European Pulsar Timing Array (EPTA; Janssen
et al. 2008; Kramer & Champion 2013), the Parkes Pulsar Timing
Array (PPTA; Hobbs et al. 2010; Manchester et al. 2013), the
North American Nanohertz Observatory for Gravitational Waves
(NANOGrav; Demorest et al. 2013; NANOGrav Collaboration
2015), the Indian Pulsar Timing Array (InPTA; Joshi et al. 2018), the
Chinese Pulsar Timing Array (CPTA; Lee 2016), and the MeerTime
Pulsar Timing Array (Spiewak et al. 2022). These groups also work
together as part of the International Pulsar Timing Array (IPTA;
Hobbs et al. 2010; Manchester et al. 2013; Verbiest et al. 2016).

Recently, results on the latest search for a GWB signature were
published concurrently by the EPTA + InPTA (EPTA Collaboration
2023c), PPTA (Reardon et al. 2023), NANOGrav (Agazie et al.
2023), and CPTA (Xu et al. 2023). These reported an emerging
evidence of a stochastic GWB in their data sets, ranged between
20 and 50 in significance, depending on the PTA. A comparison
and initial effort to combine these analyses can be found in The
International Pulsar Timing Array Collaboration (2024). However,
these analyses do not yet meet the requirements for a clear GWB
detection. Furthermore, there are still effects in the data of all PTAs
that are not yet fully understood, such as how to best model red noise
variations in the timing residuals (e.g. EPTA Collaboration 2023b).

In this work, we study the individual-pulsar timing models of
the EPTA Second Data Release (DR2), as used in the GWB search
(EPTA Collaboration 2023a,b,c). To perform the analyses, we use the
Bayesian toolkit RUN_ENTERPRISE (Keith, Nifu & Liu 2022) based
on the pulsar timing frameworks ENTERPRISE (Ellis et al. 2019) and
TEMPO2 (Edwards, Hobbs & Manchester 2006). Specifically, we
investigate the consequences on the timing of each of the 25 MSPs
of adding a strictly periodic, planet-like component, as well as a
Fourier-domain QP component to the Bayesian model fitting. The
latter is particularly interesting since, as shown in Keith & Nifu
(2023) for slow pulsars, unmodelled QP behaviours present in pulsar
timing data can affect the robustness of some parameter and noise
estimates.

Furthermore, the sensitivity of this data set provides excellent con-
straints on the masses of any putative pulsar planetary companions.
Although there have been several systematic searches in the timing
of pulsars (Thorsett & Phillips 1992; Kerr et al. 2015; Behrens et al.
2020; Nitu et al. 2022), only six pulsars have been confirmed to host
planetary-mass companions. The most famous, PSR B12574-12, has
three low-mass companions, of 0.020(2), 4.3(2), and 3.9(2) Mg,

MNRAS 534, 1753-1762 (2024)

with orbital periods of 25.262(3), 66.5419(1), and 98.2114(2)d,
respectively (Wolszczan & Frail 1992; Wolszczan 1994; Konacki &
Wolszczan 2003). PSR B1620-26 is in a triple system located in
the globular cluster M4, also containing a white dwarf and a ~2.5
Jupiter-mass planet (~800 Mg) of orbital period ~36 500 d (Thorsett
et al. 1999). PSRs J1719—1438 (Bailes et al. 2011), J0636+5128
(Stovall et al. 2014), J1311—3430 (Pletsch et al. 2012; Romani
et al. 2012), and J2322—-2650 (Spiewak et al. 2018) each have one
‘diamond planet’! companion of mass between ~1-10 Jupiter-mass
(~300-3200 Mg) and orbital period < 1 d. The rarity of pulsar plan-
etary companions is likely a consequence of the extreme conditions
in which pulsars form. There is currently no clear mechanism(s) to
creating these systems — for an overview of proposed scenarios and
formation paths, see for example Podsiadlowski (1993), Phillips &
Thorsett (1994) and the Introduction of Nitu et al. (2022). Recently,
Nitu et al. (2022) performed the largest scale search for pulsar
planetary companions using the timing data sets of 800 pulsars
observed at the Jodrell Bank Observatory (JBO). They estimated that
at most 0.5 percent of all pulsars are expected to host Earth-mass
planets, concluding that planets around pulsars must be extremely
rare. Separately, Behrens et al. (2020) conducted a search on the
NANOGrav 11-yr data set, and found no evidence of planetary
companions around any of the 45 MSPs. They also estimated the
planet-mass sensitivity of the NANOGrav data set, as a function of
orbital period. In this analysis, we follow the analysis method in
Nitu et al. (2022) to search for and assess the sensitivity of the EPTA
DR?2 data set to the influence of planetary companions. We then also
directly compare our results with those of Behrens et al. (2020).

This paper is structured as follows. In Section 2, the properties
of the EPTA DR2 data set are summarized. Section 3 describes
the main properties of the timing model used throughout this work.
In Section 4, we outline the planet-fitting method, and present and
discuss the corresponding results. Section 5 presents the set-up and
discusses the results of the QP fitting. In Section 6, we summarize
our conclusions.

2 DATA SET

The EPTA DR?2 is one of the current state-of-the-art pulsar timing
data sets, having been recently used in the search for a GWB
signature (EPTA Collaboration 2023c). It contains high-precision
pulsar timing data from 25 MSPs, collected over 25 yr, with five large
telescopes in Europe: the 100-m Effelsberg Telescope (in Germany),
Jodrell Bank Observatory’s 76-m Lovell Telescope (in the United
Kingdom), Nangay Radio Observatory’s large Radio Telescope
(NRT; in France), the Astronomical Observatory of Cagliari’s 64-
m Sardinia Radio Telescope (SRT; in Italy), and the Westerbork
Synthesis Radio Telescope (WSRT; in the Netherlands). Once a
month, these telescopes also functioned collectively, as the Large
European Array for Pulsars (LEAP), which is equivalent to a 194-m
sixth interferometric telescope in the EPTA (Bassa et al. 2016). Most
of the observations part of the EPTA DR2 are at ‘L-band’ frequencies
(1-2 GHz) and above, with bandwidths of up to 512 MHz. A limited
number of observations are centred at lower frequencies of 350 MHz.
For a detailed description of the properties of the EPTA DR2 data
set, see Chen et al. (2021) and EPTA Collaboration (2023a).

The so-called diamond planets are ultra-low mass carbon white dwarfs,
believed to be the remains of a disrupted stellar companion (e.g. Bailes,
Lyne & Shemar 1991).
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3 CORE TIMING MODEL

Throughout this work, we use the RUN_ENTERPRISE pipeline (Keith
et al. 2022) on the timing data of each pulsar. In this Bayesian
framework, all the components of the desired model are fit for
simultaneously. In the following sections, we discuss, separately,
two additional model components which have not been consid-
ered in the standard GWB analyses: a simple periodicity (planet)
component (Section 4); and a QP Gaussian process component
(Section 5). In both cases, however, the analysis includes the same
typical ‘core’ (base) timing model, which is summarized in this
section.

The core timing model used here follows the same principles as
in the individual pulsar analysis of the EPTA DR2 data set (EPTA
Collaboration 2023b). The deterministic components of the pulsar
model (i.e. the effects of spin frequency and its derivatives, pulsar
position, known binary companions, etc.) are fit for simultaneously
with the noise components. The parameters describing the former
are generally marginalized over for efficiency. The noise model
consists of a white noise component as well as between one and
three Fourier-domain red noise terms. The white noise is modelled
using the EFAC and EQUAD parameters which scale and add in
quadrature to the estimated measurement error (see e.g. Verbiest et al.
2016 for more details); these account for unmodelled instrumental
errors and intrinsic pulse jitter in the arrival times (Liu et al. 2012;
Parthasarathy et al. 2021). The EPTA DR2 data set is composed of
primarily narrow-band observations and does not use the ECORR
parameter (van Haasteren & Vallisneri 2014). The choice of red
noise model makes use of the model selection process in EPTA
Collaboration (2023b). The red noise components are chosen from
a combination of: (i) an achromatic red noise term, (ii) a chromatic
Dispersion Measure (DM) term inducing a timing delay with an _fogf
dependence on the observing frequency fons, and (iil) a chromatic
scattering variation (SV) term, with an f,;¢ dependence. These are
all implemented following the method in Lentati et al. (2014) and
using power-law priors for the corresponding power spectral density
(PSD), i.e.

P(f)—i2< / )ﬂ ey
T K \yr! ’

where f is the Fourier frequency, A and y are the power-law
amplitude and slope (index), respectively, and K is a scale factor for
each process. In total there are six hyperparameters: the slopes for
each process, Yieds ¥bMs Ysv; and the corresponding log-amplitudes,
log g Ared, 108,y Apm, log, Asy. For the achromatic and SV processes,
K = 1272, and for the DM process K = k2,;, with the DM constant
kpm = 2.41 x 10‘4cm_3pc MHz2s~!. For more details see EPTA
Collaboration (2023b). The Fourier basis has equally spaced fre-
quencies f, = n/Tpan, with ne€{1,2, ..., N.}, Typa, the total time
span of the data, and N, the number of Fourier components. In this
study, we set N, for each of the achromatic, DM, and scattering red
noise to the ‘optimal’ values for this data set as found by EPTA
Collaboration (2023b).

4 FITTING FOR A PLANET INFLUENCE

4.1 Set-up

We use the Bayesian planet fitting model implemented in
RUN_ENTERPRISE, which is introduced and described in Nitu et al.
(2022). In short, this is parametrized by the (fitted) orbital parameters:
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projected mass? of the planet, m sini (where m is the planetary mass
and 7 is the inclination of the orbit), orbital period, Py, eccentricity,
e, argument of periapsis, w, and the phase ¢ of the planet on the
orbit with respect to the periastron crossing, defined at a reference
time t.f = 55000 MJD. These parameters all contribute to the Rgmer
delay, which quantifies the planetary influence on the pulsar signal
for a ToA ¢. This can be expressed as (e.g. Blandford & Teukolsky
1976)

2/3

AR(t) =C P,”" msini [(cos E(t) — e)sinw + sin E(r)\/ 1 — e? cos w],

@)

where C is a constant of proportionality. We set the mass of each
pulsar to be fixed at a characteristic value of Mpsg =1.4Mg (e.g.
Lattimer 2012), and to be much larger than the mass of the planet,
such that C >~ 23.4 d_2/3Mé‘p,s with the Rgmer delay generally
expressed in microseconds, P, in days, and m in Earth masses (Mg).
The eccentric anomaly E(¢) in equation (2) is related to the true
(Ar(2)) and mean (M(¢)) anomalies by

_ e+cos Ar()
cos E(D) = 1+ ecos Ar(t) )
and
M) = %T (t —ty) = E(t) — esin E(1), )
b

where 1, is the time of closest periastron approach. To find an
equation for E(¢) that is only a function of ¢ and the fitted orbital
parameters (in this case e and ¢), we start from the definition of ¢,
ie. Ar(ter) = 2. It follows that E(f¢) can be obtained from ¢, e,
and equation (3) at t = f,.¢. Further, from equation (4) at t = t,r, We
can compute

Py .
fo = lref — 7[E(tref) —esin E(tref)]- (5)
2

Finally, E(t) can consequently be estimated for any ¢ by solving the
non-linear expression in equation (4).

The Bayesian priors of the five orbital parameters determining
the planet influence (m sini, Py, e, , and ¢) are set-up as follows.
Uniform priors are used for w € [0, 27) and ¢ €[0, 1). Log-uniform
priors are used to explore the parameter space for e € [0, 0.9], and
the projected mass m sini €[1073, 107']Mg. Note that we search
for lower planetary masses than in the Nitu et al. (2022) analysis
since we expect the EPTA DR2 data set to be more sensitive to
such influences than the Jodrell Bank Observatory data set by
itself. We split the parameter space of P, into 11 period bins, to
thoroughly explore the large prior range; the bounds of these are
{5.0, 10.1, 21.3, 42.5, 85, 170, 340, 390, 780, 1560, 3120, 6240} d.
10 of these bins are log-uniformly spaced, while one narrower bin
(340-3904d) is considered around P, = 1 yr to account for the loss
of sensitivity due to also fitting for the pulsar position and parallax
(which have a 1-yr periodicity) in the same analysis.

The EPTA DR2 timing data for each of the 25 MSPs are initially
processed through the pipeline RUN_ENTERPRISE, including the ‘core’
and planet model, using the PYTHON Markov chain Monte Carlo
(MCMC) sampler EMCEE (Foreman-Mackey et al. 2013, 2019).
From the posteriors, planetary-mass limits are then estimated at the
95 per cent threshold for each period bin in each pulsar. Potential
planet candidates are selected based on a 30 “flag’ in the linear mass

2Note that whenever we talk about a planetary-companion ‘mass’ in this work,
we mean the projected mass, as it is not possible to disentangle the inclination
dependence in this type of analysis without additional information.

MNRAS 534, 1753-1762 (2024)
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Table 1. A summary of the main properties of the periodicity analysis on the four MSPs showing 3¢ detections in the planet-mass posterior. The second
column shows the natural-logarithm Bayes factor (evidence) in favour of including the planet model to the ‘core’ timing model. The mean and standard
deviation values are given for the planetary projected mass, m sini, and orbital period, P,. The uncertainties are given in standard parenthetical notation, i.e.
representing one standard deviation in the last digit. The inverse of the maximum-likelihood fundamental frequency of the QP analysis (fqp) is given for
comparison (‘maxL’); the standard deviation (‘stdev’) of the 1/ fq, posterior is also included, but should only be used to give an idea of the spread of values;
see also Fig. 7 for the shape of these posteriors. The total time of the observations, Tpan, is included for a comparison with the quoted periodicities. Finally,
the choice of noise models (achromatic ‘Red’ noise, ‘DM’ Noise, and scattering variation ‘SV’) used in the analysis of each pulsar is shown, as determined

by EPTA Collaboration (2023b).

PSR InB msini 107 Mg) Py(d) 1/ fqp(d) Tspan Noise models
EMCEE | DYNESTY EMCEE | DYNESTY maxL stdev [d] Red DM SV
JO7514+1807 3.1(8) 1.5(6) | 1.6(6) 2490(230) | 2460(210) 1940 630 8835 X v X
J1012+5307 0.5(9) 1.6(7) | 1.0(9) 760(30) | 730(130) 770 560 8648 v v X
J1744—1134 0.4(8) 0.6(2) | 0.4(3) 1550(70) | 1480(200) 1460 500 8770 v v X
J1918—-0642 1.7(7) 1.5(1.4) | 2.4(1.3) 3000(570) | 2940(330) 720 480 7199 X v X
o7 f+1807 from the MCMC run. Further investigations are then made into
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Figure 1. The timing residuals, without removing the possible planet
influence, of the four MSPs that showed a 3o flag in the planet fitting (black
data points), and the corresponding maximum-likelihood Rgmer delay (green
continuous curve), for comparison. Note that for PSR J1744—1134 only, the
green curve also includes the lowest two Fourier-frequency components of
the achromatic red noise to aid the direct comparison. See text for more details
on how these residuals have been computed.

posterior, i.e. when the mean of the distribution is more than three
times the standard deviation. For more details on these processes, see
Nitu et al. (2022). Moreover, for each of these ‘flagged’ pulsars, a
further nested-sampling run is performed, using the PYTHON sampler
DYNESTY (Speagle 2020). This nested sampling method yields the
Bayesian evidence in favour of including the planet model, as well
as providing a consistency check for the parameter values obtained

MNRAS 534, 1753-1762 (2024)

the credibility of the potential planet detection, by inspecting the
residuals, and the PSD plots in this context.

4.2 Results and discussion

4.2.1 The 3o flagged MSPs

For 4 of the 25 MSPs in this study, the planet-mass posterior
distribution in one period bin has the property that the mean is
more than three standard deviations away from zero. We call these
the ‘flagged’ MSPs, or those showing ‘30 detections’. Three of
these MSPs are known to be in stellar binary systems, with orbital
periods: 0.26 d for PSR J0751+41807, 0.60d for PSR J1012+45307,
and 10.91d for PSR J1918—0642. The former two are below the
minimum orbital period that we search for in this analysis (5d)
and are therefore unlikely to affect this substantially. The latter may
reduce the sensitivity of the lowest period bins we use. The fourth
‘flagged” MSP, PSR J1744—1134, is a solitary pulsar.

Table 1 shows the projected mass and orbital period of the potential
planet companion for each pulsar, as estimated from the posteriors
of the separate MCMC (EMCEE) and nested sampling (DYNESTY)
runs, respectively. The eccentricity is not quoted as the posterior
distributions generally recover the prior for all pulsars. The estimated
log-Bayes evidence in favour of including a planet influence in the
timing model for each pulsar is also shown in Table 1. As all log-
Bayes factors are within four standard deviations of 0, these values
suggest that there is no support for the planet model from the Bayes
factors.

‘We note that the masses shown in Table 1 are roughly two orders
of magnitude below even the smallest known pulsar planet, i.e. the
0.02-Mg companion of PSR B1257+12 (Wolszczan & Frail 1992;
Wolszczan 1994; Konacki & Wolszczan 2003). On the other hand,
the orbital periods are two orders of magnitude above those of the
planets of PSR B1257+412 (< 100d), such that the inferred pulsar—
planet distances would be similarly larger in these systems. This is
somewhat expected, as our data set is highly sensitive to these kinds
of behaviours. Interestingly, the 800-Mg planet in the triple-system
B1620-26 has an orbital period roughly an order of magnitude above
those of our ‘flagged’ pulsars, three of which are also known to be
in binary systems (Thorsett et al. 1999).

To further understand these potential planet detections and their
cause, we look at how the fitted planet influence compares to the
residuals of each of the four pulsars (Fig. 1), as well as the shape of
the PSD of the achromatic red noise modelled in these residuals in
the absence of the planet fitting (Fig. 2).
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Figure 2. The estimated PSD as a function of Fourier frequency (black
continuous line); the best-fitting power-law red noise (diagonal red dotted
line), or white noise level (horizontal blue dot—dashed line) is shown, as well
as the orbital period detected (vertical green line), all for each of the four
‘flagged” MSPs. The grey dashed vertical line represents the 1/yr frequency.

The choice of noise models used for each of the four MSPs
is summarized in Table 1, as per the modelling selected in EPTA
Collaboration (2023b). Correspondingly, the residuals are computed
by subtracting from the observed ToAs the modelled DM time
series and the best deterministic timing model, except for the planet
influence. This is enough to show the left-over planet influence. Note
that the modelled noise that is removed is the best-fitting model to
the data in the simultaneous Bayesian fit which included the planet
influence. Thus the resulting residuals should only contain white
noise, any achromatic red noise, and the planet influence, according
to the best timing model; these residuals can therefore be compared to
the analytical Rgmer delay as computed from the best-fitting orbital
parameters. Note that for PSR J1744—1134 — the only one of the
four to have significant achromatic red noise — we compare the
residuals obtained as above with the analytical Rgmer delay to which
we also add the lowest two Fourier-frequency achromatic red noise
components. These comparisons are shown in Fig. 1.

In these plots, perhaps the most noticeable property is that the
possible planet influence is generally of small amplitude, similar in
value to the white noise level, and therefore largely indistinguishable
from it. This is not unexpected following the mass and orbital period
values quoted in Table 1, as a companion of mass ~ 10~* Mg, orbiting
with a period of order 1yr induces a maximum variation of order
0.1 pus in the pulsar ToAs (estimated from the Rgmer delay as
in equation 2). For the two pulsars of highest Bayesian evidence
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(JO751+1807 and J1918—-0642) the detected periodicity is large
compared to the total time span of the data, such that less than four
full periodicities are seen in the analysed data set. It is therefore not
clear whether this observed variation will continue to behave as a
simple periodicity, or will take the form of a red noise like process
in a longer data set.

Itis also interesting to investigate the shape of the fitted achromatic
red noise in the absence of the planet fitting model, particularly in the
Fourier domain. We expect any noticeable periodicity in the residuals
to show as a peak in the corresponding PSD of these residuals,
which may also bias a simple power-law fit. To estimate these PSD
shapes from the residuals, we employ the widely used ‘Cholesky
method’ as described in Coles et al. (2011), and also adopted in
CHOLSPECTRA. In short, this is based on estimating the covariance
matrix of the residuals assuming the power-law form of the PSD
(as in equation 1), then using the Cholesky decomposition on this
covariance matrix to determine the transformation that ‘whitens’ the
residuals. Thus the fitting problem becomes a simple ordinary least-
squares on uncorrelated data, and the PSD can be straightforwardly
estimated from the best-fitting parameters. The appropriate residuals
are obtained by subtracting the best-fitting deterministic timing
model, as well as any fitted DM and SV noise, from the pulsar
signal; note that this is now in the case of a model not including a
planet influence. These PSD estimates are seen in Fig. 2, together
with the best power-law model (or lack there-of), and the maximum-
likelihood P, from the planet-fitting runs.

Similarly to the findings from the residual plots of these pulsars,
any tentative peak in the PSD at the ‘detection’ orbital period cannot
be unambiguously distinguished from a stochastic variation around
the power-law prior. While for PSRs J075141807 and J1918—0642
the best noise model as per EPTA Collaboration (2023b) did not
include an achromatic term, the estimated PSD appears to have some
excess power at very low Fourier frequencies compared to a flat
(‘white’) power. For both of these pulsars, comparing the DM-only
model to a combination of DM and achromatic noise favours the
combined model, but with an insignificant Bayes factor of In B ~ 1.
The planet-like periodicities found for these two pulsars are similar
to the time span of their data, and the evidence for the planetary
model is similar to that for an achromatic power-law noise model.
Therefore, we argue that the simplest conclusion is that these pulsars
have a low level of achromatic noise that was not included in the base
model, which can equally well be modelled by a single low-frequency
sinusoid or a power-law process. If we repeat the analysis with the
addition of an achromatic power-law model, there is no evidence in
favour of a planetary companion. Given the prevalence of power-law
red noise in pulsars, and the scarcity of planetary companions, it
seems most plausible that this is simply unmodelled red noise.

To summarize, given the discussed properties and mass limits
obtained, there is no evidence of planetary companions in this data
set, and the planet-like periodicities found in this analysis are likely
an artefact of the choice of noise models. However, the relatively large
achromatic red noise power on time-scales close to the dataspan is
worth investigating further in future work. Interestingly, the PSRs
J10124-5307 and J1744—1134 highlighted in this analysis are also
characterized as having some level of complex behaviours in the
recent noise analysis of the EPTA DR2 data set (EPTA Collaboration
2023b). Indeed, we notice in the PSD shapes of these pulsars that
there is additional complexity with respect to a single power-law
model. EPTA Collaboration (2023b) propose that these effects may
be due to, for example, a non-stationarity of the stochastic red noise,
or perhaps some unknown instrumental effects. They also suggest
that the observed noise properties in these pulsars should be further
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Figure 3. The 95 per cent planet-mass limits for each orbital period bin, as
estimated from the planet fitting results for the four ‘flagged” MSPs (black
step line). The properties in the top right are the spin-period of the pulsar and
its derivative, as well as the orbital period of the known binary companion.
The black squares represent the maximum-likelihood values in each period
bin, while the stars represent 3o detections. The additional runs at particular
period bins were informed by the initial results, and are shown in horizontal
grey lines for PSRs J10124-5307 and J1744—1134. The vertical green dashed
lines show the fundamental periodicity and harmonics of the known stellar
companions of the respective pulsars. The pink line shows the sensitivity
from the NANOGrav 11-yr data set, as estimated by Behrens et al. (2020). In
PSR J1744—1134, the blue line represents the mass limits as estimated only
from the JBO data, as given in Nitu et al. (2022).

studied with a different data set such as the upcoming IPTA data
combination, in an attempt to fully understand their behaviours.

4.2.2 Companion mass limits

It is also interesting to consider the planet-mass upper limits that can
be inferred from the planet search, as we expect this data set to be
highly sensitive to such influences. For each of the 11 period bins that
we perform our analysis on, we can estimate the 95 per cent upper
limit on the projected mass, simply from the posterior distribution of
the mass. Note that the sampling gives the log-mass posterior, which
is then converted to the linear-mass posterior for this estimate.

Fig. 3 shows the estimated 95 percent mass limits for the four
‘flagged” MSPs, while Fig. 4 shows the mass limits of the most
sensitive pulsar in this data set, PSR J1909—3744. Fig. 5 shows the
results for the other 20 MSPs. Overall, the mass limits shown here
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Figure 4. The 95 per cent planet-mass limits for each orbital period bin, as
estimated from the planet fitting results for the most-sensitive MSPs in this
data set, PSR J1909—3744. The pink continuous line shows the sensitivity
from the NANOGrav 11-yr data set, as estimated by Behrens et al. (2020).

are remarkably low. For example, any possible planet companion
around any of the 25 MSPs is highly unlikely to have a projected
mass higher than 1073 My, for orbital periods between roughly 20d
and 17 yr. This is excluding the small area of parameter space where
P, =~ 1yr, where sensitivity is lost due to fitting for the proper motion
and distance to the pulsar; we further ignore this in the following
discussion.

PSR J1744—1134 — which is a solitary MSP — was also part of
the planet search on JBO data in Nitu et al. (2022). We can therefore
directly compare the sensitivity of the JBO data by itself and the
EPTA DR2, and this is shown in Fig. 3 for this pulsar; note that
the JBO data are included in the EPTA DR2. As can be seen, for
PSR J1744—1134 the EPTA timing data are more than an order of
magnitude more sensitive to a planet influence than the JBO data by
itself, while showing similar trends with different orbital periods.

The best mass limits found in our analysis are those estimated from
the data of PSR J1909—3744 (shown in Fig. 4), which constrain
the 95 percentile of a planet mass to be lower than 2 x 107* Mg
for all orbital periods investigated (5d and 17 yr). For context, this
value is approximately equal to the mass of the dwarf planet Ceres
(1.6 x 10™* Mg; Park et al. 2019), and roughly a tenth of the mass
of Pluto (2.2 x 1073 Mg; Stern et al. 2015). Furthermore, this is
roughly an order of magnitude better than previously published state-
of-the-art sensitivity limits, also plotted in Fig. 3 for comparison.
This sensitivity curve was derived by Behrens et al. (2020) using
simulations, for a ‘typical’ MSP in the NANOGrav 11-yr data set.
Roughly half of the 25 MSPs show mass limits better than those
computed by Behrens et al. (2020), while the rest are still within one
order of magnitude of these.

We note that, although we have not specifically searched for a
population of ‘diamond’ planets — since they would be at orbital
periods of < 1d (Spiewak et al. 2018), and this is not robust with our
observational cadence — this can still be ruled out in our data set. This
is because, as the residuals have noise of about 10 ps, any planet-like
influence corresponding to an orbital period < 1 d would be obvious
above the noise for a projected mass > 0.4 Mg. A diamond-planet
is expected to be above a Jupiter-mass (i.e. roughly 300 Mg ), which
would therefore make it immediately obvious in these residuals.

5 FITTING FOR A QUASI-PERIODIC
GAUSSIAN PROCESS

5.1 Set-up

It is well established that QP timing noise is prevalent in the
‘normal’ pulsar population (Hobbs et al. 2010), thought to be due
to multimodal switching of magnetospheric processes (Lyne et al.
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Figure 5. 95 per cent mass limits for the 20 not-‘flagged’ MSPs. See the caption of Fig. 3 for more details.
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2010). While power-law models can perform well in such conditions,
strong QP noise can lead to errors in parameter estimation and
overestimation of the power-law noise model (Keith & Nitu 2023). If
timing noise in MSPs is governed by similar QP processes then there
is potential to better characterize the noise and consequently increase
sensitivity to GW signals at the lowest frequencies. Therefore, we
search for a QP process in the timing data of each of the 25
MSPs in the EPTA DR2 data set. The same ‘core’ timing model
is used, supplemented with the Fourier-domain Gaussian-process
QP model described in Keith & Nifu (2023), and implemented in
RUN_ENTERPRISE, which is outlined in the following.

The full timing model is fit simultaneously using a Bayesian
method and the MCMC sampler EMCEE, as before. The shape of the
QP model used was motivated by the observed frequency-domain
behaviours of slow pulsars (see e.g. Lyne et al. 2010). The QP
effect is represented in Fourier-domain using the same infrastructure
as the power-law red noise models. The characteristic PSD of the
spin-frequency derivative of the pulsar, v, is described by a sum of
Nharm Gaussian-function terms. Each Gaussian function is centred at
harmonically related frequencies fi = kfp, withk € {1, ..., Nham},
where fy, = fi is the fundamental frequency of the quasi-periodicity.
The Gaussian functions have increasing widths, characterized by a
standard deviation o} = f; 0 = kfypo, where o is a dimensionless
‘fractional’ standard deviation, and is the same for all harmonically
related terms. Furthermore, the amplitude of each Gaussian function
is also decreasing exponentially, by a factor of exp [—(k — 1)/A],
where in practice the value of A quantifies the number of significant
harmonics.

Consequently, the PSD of the residuals for the QP process is
described as

f —4
Pqp(f) — qu[})l(fqp)q(f) <7qp) s f > fcul (6)

0  f < fau

for a Fourier frequency f and a threshold

feu =05 fp (1= V1= 1602> )

defined by the local minima of Fy( f) to avoid an unwanted increase
at very low frequencies. Further,

A2 —Vred
Ra(f) = 1525 (1yfr ,,) yr ®)

is the power-law PSD for achromatic red noise (equivalent to equation
1), and the quantity

Ny —(k—1 —(f — kfy)?
q<f>=Zfexp[( qexp{ f fqp)} o

‘e k A 2K2 f2.0°2

encapsulates the QP-type variability. In practice, we set Nyym = 10
for simplicity, since we expect fewer than 10 harmonics to contribute
significantly to the total signal in all cases. The f~* dependence in
equation (6) is due to the transformation between the v and the
residuals, as v o« —i* o< f2r. For more details on this choice of QP
model, see Keith & Nitu (2023). The hyperparameters describing
this process are Ryp, fqp, A, and o. We set uniform priors on the log
of the ratio, log,,Ryp, the central periodicity, 1/ fip, and on A and o
as defined in Table 2. The upper bound on 1/ f, is chosen to prevent
it becoming degenerate with the power-law noise process, and the
lower bound is chosen to keep fyp within the bounds of the Fourier
basis.

The QP model is designed to be used alongside the power-law red
noise model, as described in Section 3, such that the full achromatic
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Table 2. Uniform prior bounds for the QP process model. N is the
number of Fourier coefficients in the achromatic power-law noise model.

Parameter Lower Upper
logo Rp -2 35
l/f‘lp Tspan/4 1~2Tspan/Nc
A 0.01 10

o 1073 02

107137

10—17,

10799

PSD (yr¥)

1021

10723,

f o

Figure 6. The functional form of the total QP and power-law PSD of the
residuals, as well as its two separate components, as given by equations (8)
and (6). The parameters used are Ap = 3.9 x 10710, y =43, Rpp =501.2,
fop=0.39yr™ !, 0 =0.047, and A = 0.7.

red noise is modelled according to a PSD of Py, + F,. Fig. 6
illustrates the shape of the functional form of Ry, and B, for some
example parameters.

5.2 Results and discussion

In short, our analysis concluded that none of the MSPs are well-
characterized by our QP model. In all cases, the posterior distribu-
tions of the parameters A and ¢ are almost identical to their respective
uniform prior. A similar situation was seen for parameter R,, which
quantifies the strength of the QP power compared to the power-
law red noise power. While the prior for Ry, was chosen to be
log-uniform, its posterior distribution generally recovers this prior,
but with a decrease at large values; the only exception to this is
perhaps the case of PSRs J0751+4-1807 and J1744—1134. This is not
unexpected, as it illustrates a (not very constraining) upper limit for
any existing QP-type power; the posterior distributions suggest that
it is unlikely that Ry, > 10° for any of the studied MSPs.

The fourth hyperparameter, fg,, describes the fundamental fre-
quency of the QP process. For most MSPs in this analysis, the poste-
rior of fq, is also unconstraining. However, for PSRs J075141807,
J1012+4-5307, and J1744—1134 there was some level of preference
for particular frequencies. These pulsars are included in the subset of
four MSPs that were ‘flagged’ in the planet search in Section 4.2.1.
We therefore concentrate on the results of the QP fitting for the
previously considered four MSPs. The most interesting, and most
constrained properties of the QP model are the fundamental period
of the QP process (given by 1/ fy,), and the power amplitude at this
Fourier frequency. According to equations (6) and (8), we can write
this amplitude at fy, as

A2 ~VYred
qu R red ( fqp > , (10)

ERSVIE Tyr!

Thus, we straightforwardly derive the posterior of log,,Agp, from the
posteriors of 1ogo Rqp, 1089 Ared, fop, and yiea- We note that although
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Figure 7. A subset of the corner-plots for the four pulsars highlighted in
the periodicity search of Section 4. The properties of the QP model fitted
are summarized through the fundamental periodicity 1/ fq, and the power
amplitude at this corresponding Fourier frequency. The contour levels are
at the (0.5, 1, 1.5, 2)o equivalent, as used in the library CORNER.PY. The
purple vertical lines correspond to the maximum-likelihood values of each
parameter.

the prior on log,yRyp is uniform, the effective prior on the derived
parameter log,, Ay, is more complex. Fig. 7 shows the posteriors of
1/ fop and log;yAgp and the relationship between them for the four
mentioned pulsars. Of the four MSPs, PSR J1012+5307 shows the
clearest peak in the 1/ f, posterior. The corresponding posterior of
PSR J0751+1807 shows a preference for the maximum of the prior,
which is set to be a quarter of the total observing span. Further, the
QP-period posterior of J1744—1134 is wide, but nearly Gaussian-
shaped. On the other hand, the posterior of PSR J1918—0642 does not
significantly differ from the prior. None of the amplitude posteriors
of the four MSPs are strictly Gaussian shaped, although the results
for PSRs J1012+4-5307 and J1918—0642 are reasonably close. For
PSRs JO751+1807 and J1744—1134, the posterior distributions
have a long tail at low amplitudes, with an abrupt cut-off near
Agp ~ 10726 yr3,

Furthermore, Table 1 shows a direct comparison between the
period found in the planet fitting, and the inverse of the maximum-
likelihood fundamental frequency of this QP fitting. The standard
deviation estimated from the posterior of 1/f, is also included
to give an idea of the width of the posterior distribution, but this
should be considered in conjunction with the shape of the posterior,
which is generally not exactly Gaussian (as shown in Fig. 7). From
the results in Table 1, we can see that in all but PSR J1918—-0642
the maximum-likelihood QP fundamental periodicity is similar to
the planetary orbital period. In the case of PSRs J0751+1807 and
J1744—1134, the large periodicity as a fraction of the total data
span suggests that both the planet and the QP fitting are trying
to account for the large power observed at high time-scales. For
PSRs J10124-5307, the periodicity of approximately 2 yr is found
in the QP fitting as well, although not well-described by this QP
model.
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6 CONCLUSIONS

Overall, we conclude that none of the timing models of the 25
MSPs in the EPTA DR2 would clearly benefit from the addition of a
QP/periodic process. In particular, the lack of a detectable Fourier-
domain QP Gaussian process in these data means we do not expect
there to be a bias in parameters or noise estimates due to this kind of
behaviour, as was found by Keith & Nifu (2023).

Four pulsars are highlighted as showing potential periodic or QP
processes in our analysis. Two (PSRs J075141807 and J1918—0642)
are pulsars for which the original EPTA analysis selected against
achromatic red noise, but we find it likely that the periodic signal we
measure is caused by unmodelled red noise. The other two (PSRs
J1744—1134 and J1012+4-5307) are among the pulsars suggested
to have ‘complex’ behaviours in the EPTA noise analysis (EPTA
Collaboration 2023b). Our analysis also hints that a pure power-law
process may not be sufficient, however, neither the periodic nor the
QP models we trialled seem to meaningfully improve the results.
These pulsars will certainly continue to be studied in the near future
with EPTA and IPTA analyses, as we attempt to better specify the
noise models for PTAs.

Finally, the planet-fitting analysis on these 25 MSPs allowed us to
put highly constraining limits on the masses of any planetary com-
panions orbiting these pulsars. The timing data of PSR J1909—-3744,
which yielded the best mass limits, allowed us to constrain the 95
percentile to approximately the mass of the dwarf planet Ceres
(~2 x 10~*Mg) for orbital periods between 5d and 17 yr. These
limits are more than an order of magnitude improved compared to
the previous sensitivity curve estimated by Behrens et al. (2020) for
the NANOGrav 11-yr data, and are the best planet-mass limits from
pulsar timing to date.

ACKNOWLEDGEMENTS

ICN was supported by the STFC doctoral training grant
ST/T506291/1.

Part of the EPTA data used in this work is based on obser-
vations with the 100-m telescope of the Max-Planck-Institut fiir
Radioastronomie (MPIfR) at Effelsberg in Germany. Pulsar research
at the Jodrell Bank Centre for Astrophysics and the observations
using the Lovell Telescope are supported by a Consolidated Grant
(ST/T000414/1) from the UK’s Science and Technology Facilities
Council (STFC). The Nangay radio Observatory is operated by
the Paris Observatory, associated with the French Centre National
de la Recherche Scientifique (CNRS), and partially supported by
the Region Centre in France. We acknowledge financial support
from ‘Programme National de Cosmologie and Galaxies’ (PNCG),
and ‘Programme National Hautes Energies’ (PNHE) funded by
CNRS/INSU-IN2P3-INP, CEA, and CNES, France. We acknowl-
edge financial support from Agence Nationale de la Recherche
(ANR-18-CE31-0015), France. The Westerbork Synthesis Radio
Telescope is operated by the Netherlands Institute for Radio As-
tronomy (ASTRON) with support from the Netherlands Foundation
for Scientific Research (NWO). The Sardinia Radio Telescope (SRT)
is funded by the Department of University and Research (MIUR), the
Italian Space Agency (ASI), and the Autonomous Region of Sardinia
(RAS) and is operated as a National Facility by the National Institute
for Astrophysics (INAF).

DATA AVAILABILITY

The EPTA DR2 data underlying the work in this paper are available at
https://doi.org/10.5281/zenodo.8164424, as per EPTA Collaboration
(2023a).

MNRAS 534, 1753-1762 (2024)

202 Joquiaoaq Lg uo 1senb Aq 06£09LL/ES . L/E/YES/BI0NIE/SEIUW/WO0D"dNO"DIWaPED.)/:SA]Y WOl PAPEOJUMOC


https://doi.org/10.5281/zenodo.8164424

1762 I C. Nitu et al.

REFERENCES

Agazie G. et al., 2023, ApJ, 951, L8

Backer D. C., Kulkarni S. R., Heiles C., Davis M. M., Goss W. M., 1982,
Nature, 300, 615

Bailes M., Lyne A. G., Shemar S. L., 1991, Nature, 352, 311

Bailes M. et al., 2011, Science, 333, 1717

Bassa C. G. et al., 2016, MNRAS, 456, 2196

Behrens E. A. et al., 2020, ApJ, 893, L8

Blandford R., Teukolsky S. A., 1976, ApJ, 205, 580

Chen S. et al., 2021, MNRAS, 508, 4970

Coles W., Hobbs G., Champion D. J., Manchester R. N., Verbiest J. P. W.,
2011, MNRAS, 418, 561

Cordes J. M., Downs G. S., 1985, ApJS, 59, 343

Demorest P. B. et al., 2013, ApJ, 762, 94

Detweiler S., 1979, ApJ, 234, 1100

EPTA Collaboration, 2023a, A&A, 678, A48

EPTA Collaboration, 2023b, A& A, 678, A49

EPTA Collaboration, 2023¢c, A&A, 678, A50

EPTA Collaboration, 2024, A&A, 685, A94

Edwards R. T., Hobbs G. B., Manchester R. N., 2006, MNRAS, 372, 1549

Ellis J. A., Vallisneri M., Taylor S. R., Baker P. T., 2019, ENTERPRISE:
Enhanced Numerical Toolbox Enabling a Robust PulsaR Inference SuitE,
zenodo

Estabrook F. B., Wahlquist H. D., 1975, Gen. Relativ. Gravit., 6, 439

Foreman-Mackey D., Hogg D. W., Lang D., Goodman J., 2013, PASP, 125,
306

Foreman-Mackey D. et al., 2019, J. Open Source Softw., 4, 1864

Grishchuk L. P., 2005, Phys.-Usp., 48, 1235

Hobbs G., Lyne A. G., Kramer M., 2010, MNRAS, 402, 1027

Janssen G. H., Stappers B. W., Kramer M., Purver M., Jessner A., Cognard
I., 2008, in Bassa C., Wang Z., Cumming A., Kaspi V. M., eds, AIP Conf.
Ser. Vol. 983, 40 Years of Pulsars: Millisecond Pulsars, Magnetars and
More. Am. Inst. Phys., New York, p. 633

Joshi B. C. et al., 2018, JA&A, 39, 51

Keith M. J., Nitu L. C., 2023, MNRAS, 523, 4603

Keith M. J., Nitu L. C., Liu Y., 2022, run_enterprise, zenodo

Kerr M., Johnston S., Hobbs G., Shannon R. M., 2015, ApJ, 809, L11

Kibble T. W. B., 1976, J. Phys. A: Math. Gen., 9, 1387

Konacki M., Wolszczan A., 2003, ApJ, 591, L147

Kramer M., Champion D. J., 2013, Class. Quantum Gravity, 30, 224009

Lattimer J. M., 2012, Annu. Rev. Nucl. Part. Sci., 62, 485

Lee K. J., 2016, in Qain L., Li D., eds, ASP Conf. Ser. Vol. 502, Frontiers in
Radio Astronomy and FAST Early Sciences Symposium 2015. Astron.
Soc. Pac., San Francisco, p. 19

Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution License

Lentati L., Alexander P., Hobson M. P., Feroz F., van Haasteren R., Lee K.
J., Shannon R. M., 2014, MNRAS, 437, 3004

Liu K., Keane E. F,, Lee K. J., Kramer M., Cordes J. M., Purver M. B., 2012,
MNRAS, 420, 361

Lyne A., Hobbs G., Kramer M., Stairs 1., Stappers B., 2010, Science, 329,
408

Manchester R. N., 2017, J. Phys.: Conf. Ser., 932, 012002

Manchester R. N. et al., 2013, Publ. Astron. Soc. Aust., 30, 017

NANOGrav Collaboration, 2015, ApJ, 813, 65

Nitu I. C., Keith M. J., Stappers B. W., Lyne A. G., Mickaliger M. B., 2022,
MNRAS, 512, 2446

Park R. S. et al., 2019, Icarus, 319, 812

Parthasarathy A. et al., 2019, MNRAS, 489, 3810

Parthasarathy A. et al., 2021, MNRAS, 502, 407

Phillips J. A., Thorsett S. E., 1994, Ap&SS, 212,91

Pletsch H. J. et al., 2012, Science, 338, 1314

Podsiadlowski P., 1993, in Phillips J. A., Thorsett S. E., Kulkarni S. R., eds,
ASP Conf. Ser. Vol. 36, Planets Around Pulsars. Astron. Soc. Pac., San
Francisco, p. 149

Rajagopal M., Romani R. W., 1995, ApJ, 446, 543

Reardon D. J. et al., 2023, ApJ, 951, L6

Romani R. W., Filippenko A. V., Silverman J. M., Cenko S. B., Greiner J.,
Rau A., Elliott J., Pletsch H. J., 2012, ApJ, 760, L36

Sazhin M. V., 1978, SvA, 22, 36

Speagle J. S., 2020, MNRAS, 493, 3132

Spiewak R. et al., 2018, MNRAS, 475, 469

Spiewak R. et al., 2022, Publ. Astron. Soc. Aust., 39, €027

Stern S. A. et al., 2015, Science, 350, aad1815

Stovall K. et al., 2014, ApJ, 791, 67

The International Pulsar Timing Array Collaboration, 2024, ApJ, 966, 105

Thorsett S. E., Phillips J. A., 1992, ApJ, 387, L69

Thorsett S. E., Arzoumanian Z., Camilo F, Lyne A. G., 1999, ApJ, 523,
763

van Haasteren R., Vallisneri M., 2014, Phys. Rev. D, 90, 104012

Verbiest J. P. W. et al., 2009, MNRAS, 400, 951

Verbiest J. P. W. et al., 2016, MNRAS, 458, 1267

Wolszczan A., 1994, Science, 264, 538

Wolszczan A., Frail D. A., 1992, Nature, 355, 145

Xu H. et al., 2023, Res. Astron. Astrophys., 23, 075024

This paper has been typeset from a TeX/I&TEX file prepared by the author.

© 2024 The Author(s).

(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

MNRAS 534, 1753-1762 (2024)

20z Jequieoaq L Uo 1s8nB Aq 0BE09LL/ES L L/E/FES/PI0IE/SEIUW/WO0"dNO™dIUSPEOE//:SAJY WOI) POPEOJUMOQ


http://dx.doi.org/10.3847/2041-8213/acdac6
http://dx.doi.org/10.1038/300615a0
http://dx.doi.org/10.1038/352311a0
http://dx.doi.org/10.1126/science.1208890
http://dx.doi.org/10.1093/mnras/stv2755
http://dx.doi.org/10.3847/2041-8213/ab8121
http://dx.doi.org/10.1086/154315
http://dx.doi.org/10.1093/mnras/stab2833
http://dx.doi.org/10.1111/j.1365-2966.2011.19505.x
http://dx.doi.org/10.1086/191076
http://dx.doi.org/10.1088/0004-637X/762/2/94
http://dx.doi.org/10.1086/157593
http://dx.doi.org/10.1051/0004-6361/202346841
http://dx.doi.org/10.1051/0004-6361/202346842
http://dx.doi.org/10.1051/0004-6361/202346844
http://dx.doi.org/10.1051/0004-6361/202347433
http://dx.doi.org/10.1111/j.1365-2966.2006.10870.x
http://dx.doi.org/10.1007/BF00762449
http://dx.doi.org/10.1086/670067
http://dx.doi.org/10.21105/joss.01864
http://dx.doi.org/10.1070/PU2005v048n12ABEH005795
http://dx.doi.org/10.1111/j.1365-2966.2009.15938.x
http://dx.doi.org/10.1007/s12036-018-9549-y
http://dx.doi.org/10.1093/mnras/stad1713
http://dx.doi.org/10.5281/zenodo.6046212
http://dx.doi.org/10.1088/2041-8205/809/1/L11
http://dx.doi.org/10.1088/0305-4470/9/8/029
http://dx.doi.org/10.1086/377093
http://dx.doi.org/10.1088/0264-9381/30/22/224009
http://dx.doi.org/10.1146/annurev-nucl-102711-095018
http://dx.doi.org/10.1093/mnras/stt2122
http://dx.doi.org/10.1111/j.1365-2966.2011.20041.x
http://dx.doi.org/10.1126/science.1186683
http://dx.doi.org/10.1017/pasa.2012.017
http://dx.doi.org/10.1088/0004-637X/813/1/65
http://dx.doi.org/10.1093/mnras/stac593
http://dx.doi.org/10.1016/j.icarus.2018.10.024
http://dx.doi.org/10.1093/mnras/stz2383
http://dx.doi.org/10.1093/mnras/stab037
http://dx.doi.org/10.1007/BF00984513
http://dx.doi.org/10.1126/science.1229054
http://dx.doi.org/10.1086/175813
http://dx.doi.org/10.3847/2041-8213/acdd02
http://dx.doi.org/10.1088/2041-8205/760/2/L36
http://dx.doi.org/10.1093/mnras/staa278
http://dx.doi.org/10.1093/mnras/stx3157
http://dx.doi.org/10.1017/pasa.2022.19
http://dx.doi.org/10.1126/science.aad1815
http://dx.doi.org/10.1088/0004-637X/791/1/67
http://dx.doi.org/10.1086/186307
http://dx.doi.org/10.1086/307771
http://dx.doi.org/10.1103/PhysRevD.90.104012
http://dx.doi.org/10.1111/j.1365-2966.2009.15508.x
http://dx.doi.org/10.1093/mnras/stw347
http://dx.doi.org/10.1126/science.264.5158.538
http://dx.doi.org/10.1038/355145a0
http://dx.doi.org/10.1088/1674-4527/acdfa5
https://creativecommons.org/licenses/by/4.0/

	1 INTRODUCTION
	2 DATA SET
	3 CORE TIMING MODEL
	4 FITTING FOR A PLANET INFLUENCE
	5 FITTING FOR A QUASI-PERIODIC GAUSSIAN PROCESS
	6 CONCLUSIONS
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY
	REFERENCES

