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A B S T R A C T 

In this work, we investigated the presence of strictly periodic, as well as quasi-periodic signals, in the timing of the 25 millisecond 

pulsars (MSPs) from the European Pulsar Timing Array Second Data Release data set. This is especially interesting in the context 
of the recent hints of a gravitational wave background in these data, and the necessary further study of red noise timing processes, 
which are known to behave quasi-periodically in some normal pulsars. We used Bayesian timing models developed through the 
RUN ENTERPRISE pipeline: a strict periodicity was modelled as the influence of a planetary companion on the pulsar, while a 
quasi-periodicity was represented as a Fourier-domain Gaussian process. We found that neither model would clearly impro v e 
the timing models of the 25 MSPs in this data set. This implies that noise and parameter estimates are unlikely to be biased by 

the presence of a (quasi-)periodicity in the timing data. Nevertheless, the results for PSRs J1744 −1134 and J1012 + 5307 suggest 
that the standard noise models for these pulsars may not be sufficient. We also measure upper limits for the projected masses of 
planetary companions around each of the 25 pulsars. The data of PSR J1909 −3744 yielded the best mass limits, such that we 
constrained the 95 percentile to ∼2 × 10 

−4 M ⊕ (roughly the mass of the dwarf planet Ceres) for orbital periods between 5 d and 

17 yr. These are the best pulsar planet-mass limits to date. 

Key words: methods: data analysis – planets and satellites: detection – pulsars: general. 
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 I N T RO D U C T I O N  

ulsar timing relies on unambiguously counting every rotation of 
 pulsar. The observed periodic pulsar emission is considered to 
e representative of its rotation, which is also assumed to be stable
ithin the time-scale of each observing epoch (e.g. Liu et al. 2012 ). In
ractice, pulsar timing involves using a physical model of the pulsar
nd of the propagating medium to predict the rotational phase at each
easured time of arri v al (ToA hereafter), and comparing this to the

bserved phase at some carefully defined fiducial point in the pulsar’s
otation. The difference between the observed and the modelled phase 
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ives the timing residual , often referred to simply as the residual . If
he model is complete, the residuals should be characterized by white
oise with zero mean. Ho we v er, e xcess noise is observed in many
ulsar residuals in the form of long-term, time-correlated variations 
Cordes & Downs 1985 ; Hobbs, Lyne & Kramer 2010 ; Parthasarathy
t al. 2019 ), indicating that there may be additional stochastic effects
hat need to be included in the timing model. These can be achromatic
independent of observing frequency) spin red noise, which has 
een found to sometimes look quasi-periodic (QP) in slow pulsars, 
nd shows correlations with the observed pulse shapes in the radio
mission (Lyne et al. 2010 ). Moreo v er, stochastic variations in the
nterstellar medium may cause chromatic red noise in the timing 
esiduals. 

Nevertheless, the high stability of pulses, particularly from the 
ecycled millisecond pulsars (MSPs; e.g. Backer et al. 1982 ; Verbiest
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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1 The so-called diamond planets are ultra-low mass carbon white dwarfs, 
believed to be the remains of a disrupted stellar companion (e.g. Bailes, 
Lyne & Shemar 1991 ). 
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t al. 2009 ), makes pulsar timing an invaluable tool for studying
 range of astrophysical and cosmological phenomena, such as
he structure of the interstellar medium or the solar wind, nuclear

atter in exotic conditions, tests of General Relativity (e.g. Manch-
ster 2017 ), and searches for dark matter and gravitational waves
GWs) from the early Universe (e.g. EPTA Collaboration 2024 ).
ulsar Timing Arrays (PTAs) represent a network of precisely and
requently timed pulsars, distributed across the Galaxy, with the
urpose of detecting GWs in correlated pulsar timing signals. PTAs
re expected to be sensitive to space-time distortions caused by
Ws of nanohertz frequencies (Sazhin 1978 ; Detweiler 1979 ). In

his frequency range, the main contribution is believed to come
rom a stochastic GW background (GWB) created by the incoherent
uperposition of signals from in-spiralling supermassive black hole
inaries (SMBHBs; Rajagopal & Romani 1995 ). In addition, contin-
ous GWs from strong individual SMBHB sources may also be seen
n this regime (Estabrook & Wahlquist 1975 ), as well as other, more
xotic theoretically predicted GW sources such as cosmic strings or
 relic GWB (Kibble 1976 ; Grishchuk 2005 ). Several collaborations
ave been developed with the specific purpose of detecting these
Ws, including the European Pulsar Timing Array (EPTA; Janssen

t al. 2008 ; Kramer & Champion 2013 ), the Parkes Pulsar Timing
rray (PPTA; Hobbs et al. 2010 ; Manchester et al. 2013 ), the
orth American Nanohertz Observatory for Gra vitational Wa ves

NANOGrav; Demorest et al. 2013 ; NANOGrav Collaboration
015 ), the Indian Pulsar Timing Array (InPTA; Joshi et al. 2018 ), the
hinese Pulsar Timing Array (CPTA; Lee 2016 ), and the MeerTime
ulsar Timing Array (Spiewak et al. 2022 ). These groups also work

ogether as part of the International Pulsar Timing Array (IPTA;
obbs et al. 2010 ; Manchester et al. 2013 ; Verbiest et al. 2016 ). 
Recently, results on the latest search for a GWB signature were

ublished concurrently by the EPTA + InPTA (EPTA Collaboration
023c ), PPTA (Reardon et al. 2023 ), NANOGrav (Agazie et al.
023 ), and CPTA (Xu et al. 2023 ). These reported an emerging
vidence of a stochastic GWB in their data sets, ranged between
 σ and 5 σ in significance, depending on the PTA. A comparison
nd initial effort to combine these analyses can be found in The
nternational Pulsar Timing Array Collaboration ( 2024 ). Ho we ver,
hese analyses do not yet meet the requirements for a clear GWB
etection. Furthermore, there are still effects in the data of all PTAs
hat are not yet fully understood, such as how to best model red noise
ariations in the timing residuals (e.g. EPTA Collaboration 2023b ). 

In this work, we study the individual-pulsar timing models of
he EPTA Second Data Release (DR2), as used in the GWB search
EPTA Collaboration 2023a , b , c ). To perform the analyses, we use the
ayesian toolkit RUN ENTERPRISE (Keith, Ni t ¸u & Liu 2022 ) based
n the pulsar timing frameworks ENTERPRISE (Ellis et al. 2019 ) and
EMPO2 (Edwards, Hobbs & Manchester 2006 ). Specifically, we
nvestigate the consequences on the timing of each of the 25 MSPs
f adding a strictly periodic, planet-like component, as well as a
ourier-domain QP component to the Bayesian model fitting. The

atter is particularly interesting since, as shown in Keith & Ni t ¸u
 2023 ) for slow pulsars, unmodelled QP behaviours present in pulsar
iming data can affect the robustness of some parameter and noise
stimates. 

Furthermore, the sensitivity of this data set provides excellent con-
traints on the masses of an y putativ e pulsar planetary companions.
lthough there have been several systematic searches in the timing
f pulsars (Thorsett & Phillips 1992 ; Kerr et al. 2015 ; Behrens et al.
020 ; Ni t ¸u et al. 2022 ), only six pulsars have been confirmed to host
lanetary-mass companions. The most famous, PSR B1257 + 12, has
hree low-mass companions, of 0 . 020(2), 4 . 3(2), and 3 . 9(2) M ⊕,
NRAS 534, 1753–1762 (2024) 
ith orbital periods of 25 . 262(3), 66 . 5419(1), and 98 . 2114(2) d,
espectively (Wolszczan & Frail 1992 ; Wolszczan 1994 ; Konacki &

olszczan 2003 ). PSR B1620–26 is in a triple system located in
he globular cluster M4, also containing a white dwarf and a ∼2 . 5
upiter-mass planet ( ∼800 M ⊕) of orbital period ∼36 500 d (Thorsett
t al. 1999 ). PSRs J1719 −1438 (Bailes et al. 2011 ), J0636 + 5128
Stovall et al. 2014 ), J1311 −3430 (Pletsch et al. 2012 ; Romani
t al. 2012 ), and J2322 −2650 (Spiewak et al. 2018 ) each have one
diamond planet’ 1 companion of mass between ∼1 –10 Jupiter-mass
 ∼300 –3200 M ⊕) and orbital period <1 d. The rarity of pulsar plan-
tary companions is likely a consequence of the extreme conditions
n which pulsars form. There is currently no clear mechanism(s) to
reating these systems – for an o v erview of proposed scenarios and
ormation paths, see for example Podsiadlowski ( 1993 ), Phillips &
horsett ( 1994 ) and the Introduction of Ni t ¸u et al. ( 2022 ). Recently,
i t ¸u et al. ( 2022 ) performed the largest scale search for pulsar
lanetary companions using the timing data sets of 800 pulsars
bserved at the Jodrell Bank Observatory (JBO). They estimated that
t most 0.5 per cent of all pulsars are expected to host Earth-mass
lanets, concluding that planets around pulsars must be extremely
are. Separately, Behrens et al. ( 2020 ) conducted a search on the
ANOGrav 11-yr data set, and found no evidence of planetary
ompanions around any of the 45 MSPs. They also estimated the
lanet-mass sensitivity of the NANOGrav data set, as a function of
rbital period. In this analysis, we follow the analysis method in
i t ¸u et al. ( 2022 ) to search for and assess the sensitivity of the EPTA
R2 data set to the influence of planetary companions. We then also
irectly compare our results with those of Behrens et al. ( 2020 ). 
This paper is structured as follows. In Section 2 , the properties

f the EPTA DR2 data set are summarized. Section 3 describes
he main properties of the timing model used throughout this work.
n Section 4 , we outline the planet-fitting method, and present and
iscuss the corresponding results. Section 5 presents the set-up and
iscusses the results of the QP fitting. In Section 6 , we summarize
ur conclusions. 

 DATA  SET  

he EPTA DR2 is one of the current state-of-the-art pulsar timing
ata sets, having been recently used in the search for a GWB
ignature (EPTA Collaboration 2023c ). It contains high-precision
ulsar timing data from 25 MSPs, collected o v er 25 yr, with five large
elescopes in Europe: the 100-m Effelsberg Telescope (in Germany),
odrell Bank Observatory’s 76-m Lo v ell Telescope (in the United
ingdom), Nan c ¸ay Radio Observatory’s large Radio Telescope

NRT; in France), the Astronomical Observatory of Cagliari’s 64-
 Sardinia Radio Telescope (SRT; in Italy), and the Westerbork
ynthesis Radio Telescope (WSRT; in the Netherlands). Once a
onth, these telescopes also functioned collectively, as the Large
uropean Array for Pulsars (LEAP), which is equi v alent to a 194-m
ixth interferometric telescope in the EPTA (Bassa et al. 2016 ). Most
f the observations part of the EPTA DR2 are at ‘ L -band’ frequencies
1 –2 GHz ) and abo v e, with bandwidths of up to 512 MHz . A limited
umber of observations are centred at lower frequencies of 350 MHz .
or a detailed description of the properties of the EPTA DR2 data
et, see Chen et al. ( 2021 ) and EPTA Collaboration ( 2023a ). 
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2 Note that whenever we talk about a planetary-companion ‘mass’ in this work, 
we mean the projected mass, as it is not possible to disentangle the inclination 
dependence in this type of analysis without additional information. 
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 C O R E  TIM ING  M O D E L  

hroughout this work, we use the RUN ENTERPRISE pipeline (Keith 
t al. 2022 ) on the timing data of each pulsar. In this Bayesian
ramework, all the components of the desired model are fit for
imultaneously. In the following sections, we discuss, separately, 
wo additional model components which have not been consid- 
red in the standard GWB analyses: a simple periodicity (planet) 
omponent (Section 4 ); and a QP Gaussian process component 
Section 5 ). In both cases, ho we ver, the analysis includes the same
ypical ‘core’ (base) timing model, which is summarized in this 
ection. 

The core timing model used here follows the same principles as
n the individual pulsar analysis of the EPTA DR2 data set (EPTA
ollaboration 2023b ). The deterministic components of the pulsar 
odel (i.e. the effects of spin frequency and its deri v ati ves, pulsar

osition, known binary companions, etc.) are fit for simultaneously 
ith the noise components. The parameters describing the former 

re generally marginalized o v er for efficiency. The noise model 
onsists of a white noise component as well as between one and
hree Fourier-domain red noise terms. The white noise is modelled 
sing the EFAC and EQUAD parameters which scale and add in 
uadrature to the estimated measurement error (see e.g. Verbiest et al. 
016 for more details); these account for unmodelled instrumental 
rrors and intrinsic pulse jitter in the arri v al times (Liu et al. 2012 ;
arthasarathy et al. 2021 ). The EPTA DR2 data set is composed of
rimarily narrow-band observations and does not use the ECORR 

arameter (van Haasteren & Vallisneri 2014 ). The choice of red 
oise model makes use of the model selection process in EPTA 

ollaboration ( 2023b ). The red noise components are chosen from
 combination of: (i) an achromatic red noise term, (ii) a chromatic
ispersion Measure (DM) term inducing a timing delay with an f −2 

obs 

ependence on the observing frequency f obs , and (iii) a chromatic 
cattering variation (SV) term, with an f −4 

obs dependence. These are 
ll implemented following the method in Lentati et al. ( 2014 ) and
sing power-law priors for the corresponding power spectral density 
PSD), i.e. 

 ( f ) = 

A 

2 

K 

(
f 

1 yr −1 

)−γ

, (1) 

here f is the Fourier frequency, A and γ are the power-law 

mplitude and slope (inde x), respectiv ely, and K is a scale factor for
ach process. In total there are six hyperparameters: the slopes for
ach process, γred , γDM 

, γSV ; and the corresponding log-amplitudes, 
og 10 A red , log 10 A DM 

, log 10 A SV . For the achromatic and SV processes, 
 = 12 π2 , and for the DM process K = k 2 DM 

, with the DM constant
 DM 

= 2 . 41 × 10 −4 cm 

−3 pc MHz 2 s −1 . For more details see EPTA
ollaboration ( 2023b ). The Fourier basis has equally spaced fre-
uencies f n = n/T span , with n ∈ { 1 , 2 , . . . , N c } , T span the total time
pan of the data, and N c the number of Fourier components. In this
tudy, we set N c for each of the achromatic, DM, and scattering red
oise to the ‘optimal’ values for this data set as found by EPTA
ollaboration ( 2023b ). 

 FITTING  F O R  A  PLANET  INFLUENCE  

.1 Set-up 

e use the Bayesian planet fitting model implemented in 
UN ENTERPRISE , which is introduced and described in Ni t ¸u et al.
 2022 ). In short, this is parametrized by the (fitted) orbital parameters:
rojected mass 2 of the planet, m sin i (where m is the planetary mass
nd i is the inclination of the orbit), orbital period, P b , eccentricity,
, argument of periapsis, ω, and the phase φ of the planet on the
rbit with respect to the periastron crossing, defined at a reference
ime t ref = 55000 MJD . These parameters all contribute to the Rømer
elay, which quantifies the planetary influence on the pulsar signal 
or a ToA t . This can be expressed as (e.g. Blandford & Teukolsky
976 ) 

 R ( t) = C P 

2 / 3 
b m sin i [( cos E( t) − e) sin ω + sin E( t) 

√ 

1 − e 2 cos ω] , 

(2) 

here C is a constant of proportionality. We set the mass of each
ulsar to be fixed at a characteristic value of M PSR =1 . 4 M � (e.g.
attimer 2012 ), and to be much larger than the mass of the planet,
uch that C � 23 . 4 d −2 / 3 M 

−1 
⊕ μs with the Rømer delay generally

xpressed in microseconds, P b in days, and m in Earth masses (M ⊕).
he eccentric anomaly E( t) in equation ( 2 ) is related to the true
 A T ( t)) and mean ( M ( t)) anomalies by 

cos E( t) = 

e + cos A T ( t) 

1 + e cos A T ( t) 
(3) 

nd 

 ( t) ≡ 2 π

P b 
( t − t 0 ) = E( t) − e sin E( t) , (4) 

here t 0 is the time of closest periastron approach. To find an
quation for E( t) that is only a function of t and the fitted orbital
arameters (in this case e and φ), we start from the definition of φ,
.e. A T ( t ref ) = 2 πφ. It follows that E( t ref ) can be obtained from φ, e,
nd equation ( 3 ) at t ≡ t ref . Further, from equation ( 4 ) at t ≡ t ref , we
an compute 

 0 = t ref − P b 

2 π
[ E( t ref ) − e sin E( t ref ) ] . (5) 

inally, E( t) can consequently be estimated for any t by solving the
on-linear expression in equation ( 4 ). 
The Bayesian priors of the five orbital parameters determining 

he planet influence ( m sin i, P b , e, ω, and φ) are set-up as follows.
niform priors are used for ω ∈ [0 , 2 π ) and φ∈ [0 , 1). Log-uniform
riors are used to explore the parameter space for e ∈ [0 , 0 . 9], and
he projected mass m sin i ∈ [10 −5 , 10 −1 ] M ⊕. Note that we search
or lower planetary masses than in the Ni t ¸u et al. ( 2022 ) analysis
ince we expect the EPTA DR2 data set to be more sensitive to
uch influences than the Jodrell Bank Observatory data set by 
tself. We split the parameter space of P b into 11 period bins, to
horoughly explore the large prior range; the bounds of these are
 5 . 0 , 10 . 1 , 21 . 3 , 42 . 5 , 85 , 170 , 340 , 390 , 780 , 1560 , 3120 , 6240 } d. 
0 of these bins are log-uniformly spaced, while one narrower bin
340–390 d) is considered around P b = 1 yr to account for the loss
f sensitivity due to also fitting for the pulsar position and parallax
which have a 1-yr periodicity) in the same analysis. 

The EPTA DR2 timing data for each of the 25 MSPs are initially
rocessed through the pipeline RUN ENTERPRISE , including the ‘core’ 
nd planet model, using the PYTHON Markov chain Monte Carlo 
MCMC) sampler EMCEE (F oreman-Macke y et al. 2013 , 2019 ).
rom the posteriors, planetary-mass limits are then estimated at the 
5 per cent threshold for each period bin in each pulsar. Potential
lanet candidates are selected based on a 3 σ ‘flag’ in the linear mass
MNRAS 534, 1753–1762 (2024) 
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M

Table 1. A summary of the main properties of the periodicity analysis on the four MSPs showing 3 σ detections in the planet-mass posterior. The second 
column shows the natural-logarithm Bayes factor (evidence) in fa v our of including the planet model to the ‘core’ timing model. The mean and standard 
de viation v alues are gi ven for the planetary projected mass, m sin i, and orbital period, P b . The uncertainties are given in standard parenthetical notation, i.e. 
representing one standard deviation in the last digit. The inverse of the maximum-likelihood fundamental frequency of the QP analysis ( f qp ) is given for 
comparison (‘maxL’); the standard deviation (‘stdev’) of the 1 /f qp posterior is also included, but should only be used to give an idea of the spread of values; 
see also Fig. 7 for the shape of these posteriors. The total time of the observations, T span , is included for a comparison with the quoted periodicities. Finally, 
the choice of noise models (achromatic ‘Red’ noise, ‘DM’ Noise, and scattering variation ‘SV’) used in the analysis of each pulsar is shown, as determined 
by EPTA Collaboration ( 2023b ). 

PSR ln B m sin i (10 −4 M ⊕) P b (d) 1 /f qp (d) T span Noise models 
EMCEE | DYNESTY EMCEE | DYNESTY maxL stdev [d] Red DM SV 

J0751 + 1807 3.1(8) 1.5(6) | 1.6(6) 2490(230) | 2460(210) 1940 630 8835 � � � 

J1012 + 5307 0.5(9) 1.6(7) | 1.0(9) 760(30) | 730(130) 770 560 8648 � � � 

J1744 −1134 0.4(8) 0.6(2) | 0.4(3) 1550(70) | 1480(200) 1460 500 8770 � � � 

J1918 −0642 1.7(7) 1.5(1.4) | 2.4(1.3) 3000(570) | 2940(330) 720 480 7199 � � � 

Figure 1. The timing residuals, without removing the possible planet 
influence, of the four MSPs that showed a 3 σ flag in the planet fitting (black 
data points), and the corresponding maximum-likelihood Rømer delay (green 
continuous curve), for comparison. Note that for PSR J1744 −1134 only, the 
green curve also includes the lowest two F ourier-frequenc y components of 
the achromatic red noise to aid the direct comparison. See text for more details 
on how these residuals have been computed. 
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osterior, i.e. when the mean of the distribution is more than three
imes the standard deviation. For more details on these processes, see
i t ¸u et al. ( 2022 ). Moreo v er, for each of these ‘flagged’ pulsars, a

urther nested-sampling run is performed, using the PYTHON sampler
YNESTY (Speagle 2020 ). This nested sampling method yields the
ayesian evidence in fa v our of including the planet model, as well
s providing a consistency check for the parameter values obtained
NRAS 534, 1753–1762 (2024) 
rom the MCMC run. Further investigations are then made into
he credibility of the potential planet detection, by inspecting the
esiduals, and the PSD plots in this context. 

.2 Results and discussion 

.2.1 The 3 σ fla g g ed MSPs 

or 4 of the 25 MSPs in this study, the planet-mass posterior
istribution in one period bin has the property that the mean is
ore than three standard deviations away from zero. We call these

he ‘flagged’ MSPs, or those showing ‘3 σ detections’. Three of
hese MSPs are known to be in stellar binary systems, with orbital
eriods: 0.26 d for PSR J0751 + 1807, 0.60 d for PSR J1012 + 5307,
nd 10.91 d for PSR J1918 −0642. The former two are below the
inimum orbital period that we search for in this analysis (5 d)

nd are therefore unlikely to affect this substantially. The latter may
educe the sensitivity of the lowest period bins we use. The fourth
flagged’ MSP, PSR J1744 −1134, is a solitary pulsar. 

Table 1 shows the projected mass and orbital period of the potential
lanet companion for each pulsar, as estimated from the posteriors
f the separate MCMC ( EMCEE ) and nested sampling ( DYNESTY )
uns, respectively. The eccentricity is not quoted as the posterior
istributions generally reco v er the prior for all pulsars. The estimated
og-Bayes evidence in fa v our of including a planet influence in the
iming model for each pulsar is also shown in Table 1 . As all log-
ayes factors are within four standard deviations of 0, these values

uggest that there is no support for the planet model from the Bayes
actors. 

We note that the masses shown in Table 1 are roughly two orders
f magnitude below even the smallest known pulsar planet, i.e. the
 . 02 - M ⊕ companion of PSR B1257 + 12 (Wolszczan & Frail 1992 ;
olszczan 1994 ; Konacki & Wolszczan 2003 ). On the other hand,

he orbital periods are two orders of magnitude above those of the
lanets of PSR B1257 + 12 ( <100 d), such that the inferred pulsar–
lanet distances would be similarly larger in these systems. This is
omewhat expected, as our data set is highly sensitive to these kinds
f behaviours. Interestingly, the 800 - M ⊕ planet in the triple-system
1620–26 has an orbital period roughly an order of magnitude abo v e

hose of our ‘flagged’ pulsars, three of which are also known to be
n binary systems (Thorsett et al. 1999 ). 

To further understand these potential planet detections and their
ause, we look at how the fitted planet influence compares to the
esiduals of each of the four pulsars (Fig. 1 ), as well as the shape of
he PSD of the achromatic red noise modelled in these residuals in
he absence of the planet fitting (Fig. 2 ). 
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Figure 2. The estimated PSD as a function of Fourier frequency (black 
continuous line); the best-fitting power-law red noise (diagonal red dotted 
line), or white noise level (horizontal blue dot–dashed line) is shown, as well 
as the orbital period detected (vertical green line), all for each of the four 
‘flagged’ MSPs. The grey dashed vertical line represents the 1/yr frequency. 
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The choice of noise models used for each of the four MSPs
s summarized in Table 1 , as per the modelling selected in EPTA
ollaboration ( 2023b ). Correspondingly, the residuals are computed 
y subtracting from the observed ToAs the modelled DM time 
eries and the best deterministic timing model, except for the planet 
nfluence. This is enough to show the left-o v er planet influence. Note
hat the modelled noise that is remo v ed is the best-fitting model to
he data in the simultaneous Bayesian fit which included the planet 
nfluence. Thus the resulting residuals should only contain white 
oise, any achromatic red noise, and the planet influence, according 
o the best timing model; these residuals can therefore be compared to
he analytical Rømer delay as computed from the best-fitting orbital 
arameters. Note that for PSR J1744 −1134 – the only one of the
our to have significant achromatic red noise – we compare the 
esiduals obtained as abo v e with the analytical Rømer delay to which
e also add the lowest two F ourier-frequenc y achromatic red noise

omponents. These comparisons are shown in Fig. 1 . 
In these plots, perhaps the most noticeable property is that the 

ossible planet influence is generally of small amplitude, similar in 
alue to the white noise level, and therefore largely indistinguishable 
rom it. This is not unexpected following the mass and orbital period
alues quoted in Table 1 , as a companion of mass ∼10 −4 M ⊕ orbiting
ith a period of order 1 yr induces a maximum variation of order
 . 1 μs in the pulsar ToAs (estimated from the Rømer delay as
n equation 2 ). For the two pulsars of highest Bayesian evidence
J0751 + 1807 and J1918 −0642) the detected periodicity is large
ompared to the total time span of the data, such that less than four
ull periodicities are seen in the analysed data set. It is therefore not
lear whether this observed variation will continue to behave as a
imple periodicity, or will take the form of a red noise like process
n a longer data set. 

It is also interesting to investigate the shape of the fitted achromatic
ed noise in the absence of the planet fitting model, particularly in the
ourier domain. We expect any noticeable periodicity in the residuals 

o show as a peak in the corresponding PSD of these residuals,
hich may also bias a simple power-law fit. To estimate these PSD

hapes from the residuals, we employ the widely used ‘Cholesky 
ethod’ as described in Coles et al. ( 2011 ), and also adopted in

HOLSPECTRA . In short, this is based on estimating the covariance 
atrix of the residuals assuming the power-law form of the PSD

as in equation 1 ), then using the Cholesky decomposition on this
ovariance matrix to determine the transformation that ‘whitens’ the 
esiduals. Thus the fitting problem becomes a simple ordinary least- 
quares on uncorrelated data, and the PSD can be straightforwardly 
stimated from the best-fitting parameters. The appropriate residuals 
re obtained by subtracting the best-fitting deterministic timing 
odel, as well as any fitted DM and SV noise, from the pulsar

ignal; note that this is now in the case of a model not including a
lanet influence. These PSD estimates are seen in Fig. 2 , together
ith the best power-law model (or lack there-of), and the maximum-

ikelihood P b from the planet-fitting runs. 
Similarly to the findings from the residual plots of these pulsars,

n y tentativ e peak in the PSD at the ‘detection’ orbital period cannot
e unambiguously distinguished from a stochastic variation around 
he power-law prior. While for PSRs J0751 + 1807 and J1918 −0642
he best noise model as per EPTA Collaboration ( 2023b ) did not
nclude an achromatic term, the estimated PSD appears to have some
xcess power at very low Fourier frequencies compared to a flat
‘white’) power. For both of these pulsars, comparing the DM-only 
odel to a combination of DM and achromatic noise fa v ours the

ombined model, but with an insignificant Bayes factor of ln B ∼ 1 . 
he planet-like periodicities found for these two pulsars are similar 

o the time span of their data, and the evidence for the planetary
odel is similar to that for an achromatic power-law noise model.
herefore, we argue that the simplest conclusion is that these pulsars
ave a low level of achromatic noise that was not included in the base
odel, which can equally well be modelled by a single low-frequency 

inusoid or a power-law process. If we repeat the analysis with the
ddition of an achromatic power-law model, there is no evidence in
a v our of a planetary companion. Given the prevalence of power-law
ed noise in pulsars, and the scarcity of planetary companions, it
eems most plausible that this is simply unmodelled red noise. 

To summarize, given the discussed properties and mass limits 
btained, there is no evidence of planetary companions in this data
et, and the planet-like periodicities found in this analysis are likely
n artefact of the choice of noise models. Ho we ver, the relati vely large
chromatic red noise power on time-scales close to the dataspan is
orth investigating further in future work. Interestingly, the PSRs 

1012 + 5307 and J1744 −1134 highlighted in this analysis are also
haracterized as having some level of complex behaviours in the 
ecent noise analysis of the EPTA DR2 data set (EPTA Collaboration
023b ). Indeed, we notice in the PSD shapes of these pulsars that
here is additional complexity with respect to a single power-law 

odel. EPTA Collaboration ( 2023b ) propose that these effects may
e due to, for example, a non-stationarity of the stochastic red noise,
r perhaps some unknown instrumental effects. They also suggest 
hat the observed noise properties in these pulsars should be further
MNRAS 534, 1753–1762 (2024) 
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M

Figure 3. The 95 per cent planet-mass limits for each orbital period bin, as 
estimated from the planet fitting results for the four ‘flagged’ MSPs (black 
step line). The properties in the top right are the spin-period of the pulsar and 
its deri v ati ve, as well as the orbital period of the known binary companion. 
The black squares represent the maximum-likelihood values in each period 
bin, while the stars represent 3 σ detections. The additional runs at particular 
period bins were informed by the initial results, and are shown in horizontal 
grey lines for PSRs J1012 + 5307 and J1744 −1134. The vertical green dashed 
lines show the fundamental periodicity and harmonics of the known stellar 
companions of the respective pulsars. The pink line shows the sensitivity 
from the NANOGrav 11-yr data set, as estimated by Behrens et al. ( 2020 ). In 
PSR J1744 −1134, the blue line represents the mass limits as estimated only 
from the JBO data, as given in Ni t ¸u et al. ( 2022 ). 
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Figure 4. The 95 per cent planet-mass limits for each orbital period bin, as 
estimated from the planet fitting results for the most-sensitive MSPs in this 
data set, PSR J1909 −3744. The pink continuous line shows the sensitivity 
from the NANOGrav 11-yr data set, as estimated by Behrens et al. ( 2020 ). 

a  

a  

m  

a  

P  

a  

d
 

t  

d  

E  

t  

P  

m  

i
 

t  

t
f  

v  

(  

o  

r  

o  

T  

s  

R  

c  

o
 

p  

p  

o  

i  

i  

a  

i  

w

5
G

5

I  

‘  

t  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/534/3/1753/7760390 by guest on 31 D
ecem

ber 2024
tudied with a different data set such as the upcoming IPTA data
ombination, in an attempt to fully understand their behaviours. 

.2.2 Companion mass limits 

t is also interesting to consider the planet-mass upper limits that can
e inferred from the planet search, as we expect this data set to be
ighly sensitive to such influences. For each of the 11 period bins that
e perform our analysis on, we can estimate the 95 per cent upper

imit on the projected mass, simply from the posterior distribution of
he mass. Note that the sampling gives the log-mass posterior, which
s then converted to the linear-mass posterior for this estimate. 

Fig. 3 shows the estimated 95 per cent mass limits for the four
flagged’ MSPs, while Fig. 4 shows the mass limits of the most
ensitive pulsar in this data set, PSR J1909 −3744. Fig. 5 shows the
esults for the other 20 MSPs. Overall, the mass limits shown here
NRAS 534, 1753–1762 (2024) 
re remarkably low. For example, any possible planet companion
round any of the 25 MSPs is highly unlikely to have a projected
ass higher than 10 −3 M ⊕, for orbital periods between roughly 20 d

nd 17 yr. This is excluding the small area of parameter space where
 b ≈ 1 yr , where sensitivity is lost due to fitting for the proper motion
nd distance to the pulsar; we further ignore this in the following
iscussion. 
PSR J1744 −1134 – which is a solitary MSP – was also part of

he planet search on JBO data in Ni t ¸u et al. ( 2022 ). We can therefore
irectly compare the sensitivity of the JBO data by itself and the
PTA DR2, and this is shown in Fig. 3 for this pulsar; note that

he JBO data are included in the EPTA DR2. As can be seen, for
SR J1744 −1134 the EPTA timing data are more than an order of
agnitude more sensitive to a planet influence than the JBO data by

tself, while showing similar trends with different orbital periods. 
The best mass limits found in our analysis are those estimated from

he data of PSR J1909 −3744 (shown in Fig. 4 ), which constrain
he 95 percentile of a planet mass to be lower than 2 × 10 −4 M ⊕
or all orbital periods investigated (5 d and 17 yr). For context, this
alue is approximately equal to the mass of the dwarf planet Ceres
1 . 6 × 10 −4 M ⊕; Park et al. 2019 ), and roughly a tenth of the mass
f Pluto (2 . 2 × 10 −3 M ⊕; Stern et al. 2015 ). Furthermore, this is
oughly an order of magnitude better than previously published state-
f-the-art sensitivity limits, also plotted in Fig. 3 for comparison.
his sensitivity curve was derived by Behrens et al. ( 2020 ) using
imulations, for a ‘typical’ MSP in the NANOGrav 11-yr data set.
oughly half of the 25 MSPs show mass limits better than those
omputed by Behrens et al. ( 2020 ), while the rest are still within one
rder of magnitude of these. 
We note that, although we have not specifically searched for a

opulation of ‘diamond’ planets – since they would be at orbital
eriods of <1 d (Spiewak et al. 2018 ), and this is not robust with our
bservational cadence – this can still be ruled out in our data set. This
s because, as the residuals have noise of about 10 μs, any planet-like
nfluence corresponding to an orbital period <1 d would be obvious
bo v e the noise for a projected mass >0 . 4 M ⊕. A diamond-planet
s expected to be above a Jupiter-mass (i.e. roughly 300 M ⊕), which
ould therefore make it immediately obvious in these residuals. 

 FITTING  F O R  A  QUASI -PERI ODI C  

AUSSI AN  PROCESS  

.1 Set-up 

t is well established that QP timing noise is pre v alent in the
normal’ pulsar population (Hobbs et al. 2010 ), thought to be due
o multimodal switching of magnetospheric processes (Lyne et al.
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Figure 5. 95 per cent mass limits for the 20 not-‘flagged’ MSPs. See the caption of Fig. 3 for more details. 
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Table 2. Uniform prior bounds for the QP process model. N c is the 
number of Fourier coefficients in the achromatic power-law noise model. 

Parameter Lower Upper 

log 10 R qp −2 3.5 
1 /f qp T span / 4 1 . 2 T span /N c 

λ 0.01 10 
σ 10 −3 0.2 

Figure 6. The functional form of the total QP and power-law PSD of the 
residuals, as well as its two separate components, as given by equations ( 8 ) 
and ( 6 ). The parameters used are A pl = 3 . 9 × 10 −10 , γ = 4 . 3 , R qp = 501 . 2 , 
f qp = 0 . 39 yr −1 , σ = 0 . 047 , and λ = 0 . 7 . 
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010 ). While power-law models can perform well in such conditions,
trong QP noise can lead to errors in parameter estimation and
 v erestimation of the power-law noise model (Keith & Ni t ¸u 2023 ). If
iming noise in MSPs is go v erned by similar QP processes then there
s potential to better characterize the noise and consequently increase
ensitivity to GW signals at the lowest frequencies. Therefore, we
earch for a QP process in the timing data of each of the 25

SPs in the EPTA DR2 data set. The same ‘core’ timing model
s used, supplemented with the Fourier-domain Gaussian-process
P model described in Keith & Ni t ¸u ( 2023 ), and implemented in

UN ENTERPRISE , which is outlined in the following. 
The full timing model is fit simultaneously using a Bayesian
ethod and the MCMC sampler EMCEE , as before. The shape of the
P model used was moti v ated by the observed frequency-domain
ehaviours of slow pulsars (see e.g. Lyne et al. 2010 ). The QP
ffect is represented in Fourier-domain using the same infrastructure
s the power-law red noise models. The characteristic PSD of the
pin-frequency deri v ati ve of the pulsar, ν̇, is described by a sum of
 harm 

Gaussian-function terms. Each Gaussian function is centred at
armonically related frequencies f k = kf qp , with k ∈ { 1 , . . . , N harm 

} ,
here f qp ≡ f 1 is the fundamental frequency of the quasi-periodicity.
he Gaussian functions have increasing widths, characterized by a
tandard deviation σk = f k σ = kf qp σ , where σ is a dimensionless
fractional’ standard deviation, and is the same for all harmonically
elated terms. Furthermore, the amplitude of each Gaussian function
s also decreasing exponentially, by a factor of exp [ −( k − 1) /λ] ,
here in practice the value of λ quantifies the number of significant
armonics. 
Consequently, the PSD of the residuals for the QP process is

escribed as 

 qp ( f ) = 

⎧ ⎨ 

⎩ 

R qp P pl ( f qp ) q( f ) 

(
f 

f qp 

)−4 

, f ≥ f cut 

0 , f < f cut . 

(6) 

or a Fourier frequency f and a threshold 

 cut = 0 . 5 f qp 

(
1 −

√ 

1 − 16 σ 2 
)

(7) 

efined by the local minima of P qp ( f ) to a v oid an unwanted increase
t very low frequencies. Further, 

 pl ( f ) = 

A 

2 
red 

12 π2 

(
f 

1 yr −1 

)−γred 

yr 3 (8) 

s the power-law PSD for achromatic red noise (equi v alent to equation
 ), and the quantity 

( f ) = 

N harm ∑ 

k= 1 

1 

k 
exp 

[−( k − 1) 

λ

]
exp 

[−( f − kf qp ) 2 

2 k 2 f 2 qp σ
2 

]
(9) 

ncapsulates the QP-type variability. In practice, we set N harm 

= 10
or simplicity, since we expect fewer than 10 harmonics to contribute
ignificantly to the total signal in all cases. The f −4 dependence in
quation ( 6 ) is due to the transformation between the ν̇ and the
esiduals, as ν̇ ∝ −r̈ ∝ f 2 r . For more details on this choice of QP
odel, see Keith & Ni t ¸u ( 2023 ). The hyperparameters describing

his process are R qp , f qp , λ, and σ . We set uniform priors on the log
f the ratio, log 10 R qp , the central periodicity, 1 /f qp , and on λ and σ
s defined in Table 2 . The upper bound on 1 /f qp is chosen to prevent
t becoming degenerate with the power-law noise process, and the
ower bound is chosen to keep f qp within the bounds of the Fourier
asis. 
The QP model is designed to be used alongside the power-law red

oise model, as described in Section 3 , such that the full achromatic
NRAS 534, 1753–1762 (2024) 
ed noise is modelled according to a PSD of P qp + P pl . Fig. 6
llustrates the shape of the functional form of P qp and P pl for some
xample parameters. 

.2 Results and discussion 

n short, our analysis concluded that none of the MSPs are well-
haracterized by our QP model. In all cases, the posterior distribu-
ions of the parameters λ and σ are almost identical to their respective
niform prior. A similar situation was seen for parameter R qp , which
uantifies the strength of the QP power compared to the power-
aw red noise power. While the prior for R qp was chosen to be
og-uniform, its posterior distribution generally reco v ers this prior,
ut with a decrease at large values; the only exception to this is
erhaps the case of PSRs J0751 + 1807 and J1744 −1134. This is not
nexpected, as it illustrates a (not very constraining) upper limit for
n y e xisting QP-type power; the posterior distributions suggest that
t is unlikely that R qp > 10 3 for any of the studied MSPs. 

The fourth hyperparameter, f qp , describes the fundamental fre-
uency of the QP process. For most MSPs in this analysis, the poste-
ior of f qp is also unconstraining. Ho we ver, for PSRs J0751 + 1807,
1012 + 5307, and J1744 −1134 there was some level of preference
or particular frequencies. These pulsars are included in the subset of
our MSPs that were ‘flagged’ in the planet search in Section 4.2.1 .

e therefore concentrate on the results of the QP fitting for the
reviously considered four MSPs. The most interesting, and most
onstrained properties of the QP model are the fundamental period
f the QP process (given by 1 /f qp ), and the power amplitude at this
 ourier frequenc y. According to equations ( 6 ) and ( 8 ), we can write

his amplitude at f qp as 

 qp = R qp 
A 

2 
red 

12 π2 

(
f qp 

1 yr −1 

)−γred 

, (10) 

hus, we straightforwardly derive the posterior of log 10 A qp from the
osteriors of log 10 R qp , log 10 A red , f qp , and γred . We note that although



Periodicity search in 25 MSPs from EPTA DR2 1761 

Figure 7. A subset of the corner-plots for the four pulsars highlighted in 
the periodicity search of Section 4 . The properties of the QP model fitted 
are summarized through the fundamental periodicity 1 /f qp and the power 
amplitude at this corresponding Fourier frequency. The contour levels are 
at the (0.5, 1, 1.5, 2) σ equi v alent, as used in the library CORNER.PY . The 
purple vertical lines correspond to the maximum-likelihood values of each 
parameter. 
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he prior on log 10 R qp is uniform, the ef fecti ve prior on the derived
arameter log 10 A qp is more complex. Fig. 7 shows the posteriors of
 /f qp and log 10 A qp and the relationship between them for the four
entioned pulsars. Of the four MSPs, PSR J1012 + 5307 shows the

learest peak in the 1 /f qp posterior. The corresponding posterior of
SR J0751 + 1807 shows a preference for the maximum of the prior,
hich is set to be a quarter of the total observing span. Further, the
P-period posterior of J1744 −1134 is wide, but nearly Gaussian- 

haped. On the other hand, the posterior of PSR J1918 −0642 does not
ignificantly differ from the prior. None of the amplitude posteriors 
f the four MSPs are strictly Gaussian shaped, although the results
or PSRs J1012 + 5307 and J1918 −0642 are reasonably close. For
SRs J0751 + 1807 and J1744 −1134, the posterior distributions 
ave a long tail at low amplitudes, with an abrupt cut-off near
 qp ∼ 10 −26 yr 3 . 
Furthermore, Table 1 shows a direct comparison between the 

eriod found in the planet fitting, and the inverse of the maximum-
ikelihood fundamental frequency of this QP fitting. The standard 
eviation estimated from the posterior of 1 /f qp is also included 
o give an idea of the width of the posterior distrib ution, b ut this
hould be considered in conjunction with the shape of the posterior,
hich is generally not exactly Gaussian (as shown in Fig. 7 ). From

he results in Table 1 , we can see that in all but PSR J1918 −0642
he maximum-likelihood QP fundamental periodicity is similar to 
he planetary orbital period. In the case of PSRs J0751 + 1807 and
1744 −1134, the large periodicity as a fraction of the total data
pan suggests that both the planet and the QP fitting are trying
o account for the large power observed at high time-scales. For
SRs J1012 + 5307, the periodicity of approximately 2 yr is found

n the QP fitting as well, although not well-described by this QP
odel. 
(

 C O N C L U S I O N S  

verall, we conclude that none of the timing models of the 25
SPs in the EPTA DR2 would clearly benefit from the addition of a
P/periodic process. In particular, the lack of a detectable Fourier- 
omain QP Gaussian process in these data means we do not expect
here to be a bias in parameters or noise estimates due to this kind of
ehaviour, as was found by Keith & Ni t ¸u ( 2023 ). 
Four pulsars are highlighted as showing potential periodic or QP 

rocesses in our analysis. Two (PSRs J0751 + 1807 and J1918 −0642)
re pulsars for which the original EPTA analysis selected against 
chromatic red noise, but we find it likely that the periodic signal we
easure is caused by unmodelled red noise. The other two (PSRs

1744 −1134 and J1012 + 5307) are among the pulsars suggested
o hav e ‘comple x’ behaviours in the EPTA noise analysis (EPTA
ollaboration 2023b ). Our analysis also hints that a pure power-law
rocess may not be suf ficient, ho we ver, neither the periodic nor the
P models we trialled seem to meaningfully impro v e the results.
hese pulsars will certainly continue to be studied in the near future
ith EPT A and IPT A analyses, as we attempt to better specify the
oise models for PTAs. 
Finally, the planet-fitting analysis on these 25 MSPs allowed us to

ut highly constraining limits on the masses of any planetary com-
anions orbiting these pulsars. The timing data of PSR J1909 −3744,
hich yielded the best mass limits, allowed us to constrain the 95
ercentile to approximately the mass of the dwarf planet Ceres 
 ∼2 × 10 −4 M ⊕) for orbital periods between 5 d and 17 yr. These
imits are more than an order of magnitude impro v ed compared to
he previous sensitivity curve estimated by Behrens et al. ( 2020 ) for
he NANOGrav 11-yr data, and are the best planet-mass limits from
ulsar timing to date. 
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