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1 Introduction

The AdS/CFT correspondence [1], which is a duality between four-dimensional N = 4
super Yang-Mills (SYM) theory with gauge group SU(N) and type IIB string theory on
the background AdS5 × S5, is the best understood example of a concrete realization of the
holographic principle, promising an understanding of how space, time and gravity emerge
from a more fundamental quantum theory. However, observing this emergence is difficult
as it requires a non-perturbative understanding of N = 4 SYM, especially for quantities
that are not protected by supersymmetry. Exceptions include the planar limit N →∞ for
which a powerful integrability symmetry appears [2]. For capturing finite-N effects, being
non-perturbative in 1/N , progress has in large part focussed on quantities protected by
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supersymmetry, for instance giant gravitons [3] and the supersymmetric black hole [4–7]
using index techniques.

In [8] a different approach to the non-perturbative, finite-N , regime of N = 4 SYM
is proposed: the Spin Matrix theory (SMT) limit of the AdS/CFT correspondence. This
can be seen as a non-relativistic limit, both on the gauge and the string sides of the
correspondence [8–17]. In turn, it can also be seen as a near-BPS limit [8, 13–18] and a
regime that approaches a zero-temperature critical point [8, 19, 20]. From such a limit
arises Spin Matrix theory, which is a quantum-mechanical model that selects a particular
corner of the AdS/CFT correspondence for which the duality is more tractable [8]. Indeed,
a common reasoning in theoretical physics is that the study of limits of a certain system,
such that some simplifications occur and analytic results are achievable, can be useful to
understand the fundamental structure of a model and can be used a posteriori to learn
information about the general case.

The Spin Matrix theories arise from SMT limits of N = 4 SYM, though they can also
be defined in their own right without any reference to a parent theory. One way to view an
SMT limit is that it approaches a BPS bound of N = 4 SYM. More precisely, in the latter
context one defines N = 4 SYM in the state-picture on R× S3 and considers BPS bounds
of the form

E ≥ J , J ≡ a1S1 + a2S2 + b1Q1 + b2Q2 + b3Q3 , (1.1)

where E is the energy, ai and bi are constant chemical potentials, Si are the Cartan
generators of rotations and Qi the Cartan generators of SU(4) R-symmetry. The restriction
to a SMT is obtained by performing the decoupling limit

λ→ 0 , 1
λ

(E − J) finite , N finite , (1.2)

where λ = g2N is the ’t Hooft coupling. We stress that the general idea behind these
decoupling limits is that they reduce the full N = 4 SYM theory to subsectors, where
only tree-level and one-loop orders of the dilatation operator contribute in the partition
function [18]. Furthermore, only some of the modes of the original theory remain dynamical,
while the others become infinitely heavy and effectively decouple from the Hamiltonian
describing the near-BPS interactions.

In the present work we will consider the decoupling limit (1.2) with a1 = a2 = b1 = b2 =
b3 = 1, which reduces N = 4 SYM to an SMT with PSU(1,2|3) symmetry. The motivations
to study PSU(1,2|3) SMT are several. Firstly, PSU(1,2|3) symmetry is the largest possible
spin group that can arise from near-BPS limits of the form (1.2) and comprises as subsectors
all the other allowed SMTs from N = 4 SYM, as classified in [18]. The construction and
symmetries of the effective Hamiltonian of various SMTs were studied in [13–16].

Secondly, in [21] non-protected finite-N effects of D-branes where matched using a
strong-coupling limit of SU(2) SMT. This demonstrates SMT as a tool to obtain finite-N
effects. To approach black holes, one needs to use the PSU(1,2|3) SMT, as this is the only
subsector that can capture BPS and near-BPS information about the SUSY macroscopic
black hole in AdS5 × S5 and its non-extremal generalizations [22–24]. That one can study
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finite-N physics is due to N being fixed in the above limit (1.2).1 Note that several works [30–
32] have explored how to obtain the BPS limit of the SUSY black hole in AdS5 × S5 by
studying the one-loop dilatation operator of N = 4 SYM, which is in direct correspondence
with the Hamiltonian of PSU(1,2|3) SMT. Here we propose that in addition, one should
also be able to capture near-BPS information about the near-extremal black hole.

On general grounds, any SMT limit of the form (1.2) maps the relativistic quantum
field theory (QFT) N = 4 SYM into a quantum mechanical theory with non-relativistic
traits, such as the emergence of a global U(1) symmetry interpreted as the conservation
of mass or particle number. As a consequence, after the limit the anti-particles of the
original QFT have decoupled.2 In this context, it would be highly interesting if one could
find a field theory realization for the PSU(1,2|3) sector, similarly to cases that includes
SU(1,1) symmetry in [13, 14]. The effective Hamiltonian describing their interactions in the
near-BPS limit presents summation over positive modes only, instead of a full Fourier-like
expansion. Moreover, as already mentioned, their holographic duals are string theories with
target space characterized by a Newton-Cartan geometry, and Galilean conformal algebra
on the worldsheet. Recent developments on this field can be found in [10–12, 17, 33–49].

Interacting Hamiltonian of Spin Matrix theories. SMTs can be defined starting
from a Hilbert space with ladder operators transforming in the representation Rs of a
semi-simple Lie (super)-group Gs and the adjoint representation of SU(N). The Hilbert
space is composed by all the possible harmonic oscillator states, created from the vacuum,
which are singlets under the Rs representation. The interactions are described by a quartic
Hamiltonian, built with two creation and two annihilation operators, invariant under all
the generators of the spin group Gs.

There exists several techniques to compute the effective Hamiltonian in a certain
near-BPS regime identified by the limit (1.2):

1. One computes the loop corrections to the dilatation operator of N = 4 SYM, and
then zoom in towards the unitarity bound of interest. This method was extensively
applied in [2, 50–59]. One can extract an effective Hamiltonian in SMT language3 by
looking at the action of the dilatation operator on spin chains and translating the
results between different representations. We will not pursue this approach in the
present paper, but we will discuss its relation with the other methods below.

2. One performs an expansion in Kaluza-Klein modes along the three-sphere of N = 4
SYM defined on R × S3. This gives a classical Hamiltonian which is then directly

1One can think of SMT as a generalization of a spin chain theory since SMT for N =∞ reduces to a
spin chain theory. Furthermore, perturbative 1/N corrections to N =∞ can be interpreted as describing
the dynamics of joining and splitting of spin chains in a gas of spin chains of various lengths [25]. Other
aspects of perturbative and non-perturbative effects in 1/N , including the generalization of integrability,
were further explored in the literature, see for example [26–29].

2In contrast, a relativistic QFT defined on R× S3 admits anti-particles and therefore its particle number
is not conserved.

3By an effective Hamiltonian in SMT language, we mean that it is a quartic expression containing two
creation and two annihilation operators, built using the fields which survive in the near-BPS limit (1.2).

– 3 –



J
H
E
P
0
4
(
2
0
2
3
)
0
7
5

promoted to a quantum-mechanical expression by requiring that no change of orderings
is needed. This approach was considered in [13–16] and will be applied in section 5
for the PSU(1,2|3) sector. We will refer to this procedure as spherical expansion.

3. When the near-BPS limit preserves part of the original supersymmetry of the full
symmetry group PSU(2,2|4), it is possible to define a cubic supercharge Q whose
anticommutator closes into the interacting Hamiltonian of the sector:

{Q,Q†}D = Hint , (1.3)

where the subscript D denotes the Dirac bracket. This method is based on the
observation that in the PSU(1,1|2) subsector there exists an enhanced psu(1,1)2

subalgebra that can be used to represent the fermionic generators [57, 58], and was
applied in the context of SMT in [16]. We will use this technique as the starting point
to derive the effective Hamiltonian of the PSU(1,2|3) sector in section 3.

4. One can build all the possible blocks (quadratic in the fields) that comprise an
irreducible representation of the spin group Gs characterizing the near-BPS limit (1.2).
We then build the most general Hamiltonian quartic in the fields by combining the
blocks determined in this way. We applied successfully this technique in [15]; in the
case of PSU(1,2|3) sector, we will discuss this symmetry structure in section 4.

We discuss the advantages and disadvantages of the previous methods. First of all, it
can be shown that they are all equivalent, in that the quantum interacting Hamiltonian
obtained applying any of them is the same. This is particularly non-trivial by observing
that the techniques 1 and 2 consist in reversing the order of two limits: the near-BPS
decoupling implemented using the prescription (1.2), and the quantization procedure (which
can be formally interpreted as performing the limit ~→ 0). In this regard, we have shown
for several spin groups Gs that these procedures commute, i.e., the diagram in figure 1 is
commutative [13–16]. While we will not show it explicitly, these results provide non-trivial
expectations that this phenomenon will happen in the present PSU(1,2|3) sector, too.
The main advantage of the procedures 1 and 2 is that they are conceptually straightforward,
since they provide a way to extract the Hamiltonian for any given sector by applying a
precise algorithm. The disadvantage is that they are technically complicated, and therefore
it becomes really involved to perform the explicit computations when the spin group Gs
is big. The strategy 4 is elegant because it identifies a class of fundamental blocks that
are irreducible representations of the algebra and can be used to build all the interactions.
On the other hand, in sectors containing F-terms in the Hamiltonian, the identification
of the fundamental blocks becomes rather difficult, as was observed for the PSU(1,1|2)
subsector [16]. Since the PSU(1,2|3) sector will also include this kind of interactions, we
face the same difficulty here.

Nonetheless, we will be able to find the symmetry structure with the help of the method
3. Its disadvantage is that the procedure cannot be applied in the absence of supersymmetry
and it also fails in all the sectors without the singlet fermionic letter denoted as4 |χn,k〉.

4See section 2 for the notation of the letters in the PSU(1,2|3) theory.
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Figure 1. Commutative diagram describing the relation between the methods 1 and 2 to go from
the starting point, classical N = 4 SYM (top left), to the final result, an effective quantum SMT
Hamiltonian (bottom down). According to method 1, we move right-down by computing one-loop
corrections to the dilatation operator and then restricting to a near-BPS limit (1.2). Following
method 2, we move down-right by performing the sphere expansion procedure and then giving a
recipe to quantize the theory.

However, since this letter and its descendants are part of the field content of the PSU(1,2|3)
sector, we will be able to perform the computation. This method is simpler than the others
because it only requires to identify a cubic fermionic generator invariant under all the
residual symmetries in the near-BPS limit, instead of working directly at the level of the
quartic Hamiltonian. Once the cubic supercharge Q is fixed, the recipe (1.3) provides a
straightforward way to obtain the interactions. Another advantage is that supersymmetry
invariance guarantees that the Hamiltonian computed in this way is positive-definite.

The paper is organized as follows. We introduce the field content of the theory and the
generators of the PSU(1,2|3) algebra in section 2. The main technique that we will adopt in
the present work is based on the cubic supercharge method, that we will present in section 3.
The interacting Hamiltonian naturally organizes into a positive-definite expression built out
of quadratic blocks in the fields. This allows for a symmetry analysis of the result in section 4.
In section 5, we use the spherical expansion procedure as a consistency check and as an
input to uniquely fix the interacting Hamiltonian. We conclude in section 6. Appendices
are reserved for additional technical details: the invariance of the cubic supercharge under
the PSU(1,2|3) generators in appendix A, and the notation for the spherical expansion in
appendix B.

2 Preliminaries

In this section, we will introduce the letters of PSU(1, 2|3) Spin Matrix theory. Our
conventions follow [18].

The N = 4 SYM theory contains six scalars Φa, 16 complex fermions χ and χ̄, one
gauge field A and four derivative letters di , d̄i with i = 1, 2. The decoupling condition for the
fields of the PSU(1, 2|3) subsector of N = 4 SYM follows directly from the BPS condition:

E0 = Q1 + Q2 + Q3 + S1 + S2 , (2.1)

where E0 is the bare energy. There are five fermions χ1,2, χ̄3,5,7, three scalars Φ1,2,3, one
gauge component of A and two derivative letters d1,2 satisfying this condition. Among these
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letters, the chiral fermions χ1,2 are subject to the Dirac equation [60]

d1χ2 − d2χ1 = 0 . (2.2)

We can then introduce an ancestor fermion χ such that χ1,2 are the descendants of the χ
field, defined as

χi = diχ , i = 1, 2 . (2.3)

For notational convenience, we denote the anti-chiral fermions χ̄3,5,7 as

ζ1 = χ̄3, ζ2 = χ̄5, ζ3 = χ̄7 . (2.4)

The oscillator representation for the u(2, 2|4) algebra of N = 4 SYM is built by introducing
two sets of bosonic oscillators aα, α̇ with α, α̇ ∈ {1, 2} and one set of fermionic operators ca
with a ∈ {1, 2, 3, 4} whose commutation relations read

[aα,a†β ] = δαβ , [bα̇,b†β̇ ] = δα̇β̇ , {ca, c†b} = δab . (2.5)

The restriction to the PSU(1,2|3) group is achieved by setting b2b†2 = 0 and c4c†4 = 1. The
oscillator realization of the SU(1, 2) generators is given by [61]

L0 = 1
2(1 + a†1a1 + b†1b1), L+ = a†1b†1, L− = a1b1 ,

L̃0 = 1
2(1 + a†2a2 + b†1b1), L̃+ = a†2b†1, L̃− = a2b1 ,

J+ = a†1a2, J− = a†2a1 .

(2.6)

and the supercharges are

Qa = a1c†a, Q̃a = a2c†a, Sa = b1ca, a = 1, 2, 3 , (2.7)

plus their hermitian conjugates. Finally, the SU(3) R-symmetry generators are

R0 = 1
2(c†3c3 − c†2c2) , R+ = c†3c2 , R− = c†2c3

R̃0 = 1
2(c†2c2 − c†1c1) , R̃+ = c†2c1 , R̃− = c†1c2

T+ = c†3c1 , T− = c†1c3 .

(2.8)

Thus the letters satisfying the decoupling condition are

|χn,k〉 = 1√
n!k!(n+ k − 1)!

(a†1)n(a†2)k(b†1)n+k−1c†4 |0〉 (2.9)∣∣∣Φ1
n,k

〉
= 1√

n!k!(n+ k)!
(a†1b†1)n(a†2b†1)kc†3c†4 |0〉 (2.10)∣∣∣Φ2

n,k

〉
= 1√

n!k!(n+ k)!
(a†1b†1)n(a†2b†1)kc†2c†4 |0〉 (2.11)∣∣∣Φ3

n,k

〉
= 1√

n!k!(n+ k)!
(a†1b†1)n(a†2b†1)kc†1c†4 |0〉 (2.12)
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χ

Φ1 Φ2 Φ3

ζ1 ζ2 ζ3

A

Figure 2. The actions by the supercharges S†a in eq. (2.7) are shown explicitly by colored arrows.
The blue, green and red arrows refer to the generators S†1,2,3, respectively. The Sa operations are
represented by inverse arrows. We can think of the diagram as a cube with 8 nodes and 12 edges.
Each edge represents an N = 1 supermultiplet while each surface represents an N = 2 supermultiplet.

∣∣∣ζ1
n,k

〉
= 1√

n!k!(n+ k + 1)!
(a†1b†1)n(a†2b†1)kb†1c†1c†2c†4 |0〉 (2.13)∣∣∣ζ2

n,k

〉
= 1√

n!k!(n+ k + 1)!
(a†1b†1)n(a†2b†1)kb†1c†1c†3c†4 |0〉 (2.14)∣∣∣ζ3

n,k

〉
= 1√

n!k!(n+ k + 1)!
(a†1b†1)n(a†2b†1)kb†1c†2c†3c†4 |0〉 (2.15)

|An,k〉 = 1√
n!k!(n+ k + 2)!

(a†1b†1)n(a†2b†1)k(b†1)2c†1c†2c†3c†4 |0〉 . (2.16)

As an example of the actions of the supercharges, we have shown the action of Sa and S†a in
figure 2. We will use VI to label the letters, where I = 0, 1, 2, 3 correspond to {χ,Φa, ζa, A},
respectively. We can write the SU(1, 2) symmetry generators in terms of letters of the
PSU(1, 2|3) sector as

L+ = ∑3
I=1

∑∞
n,k=0

√
(n+ 1)(n+ k + I) tr

[(
V †I
)
n+1,k

(
VI
)
n,k

]
,

L0 = ∑3
I=1

∑∞
n,k=0

(
n+ k+I

2

)
tr
[(
V †I
)
n,k

(
VI
)
n,k

]
,

L− = ∑3
I=1

∑∞
n,k=0

√
n(n+ k + I − 1) tr

[(
V †I
)
n−1,k

(
VI
)
n,k

]
,

L̃+ = ∑3
I=1

∑∞
n,k=0

√
(k + 1)(n+ k + I) tr

[(
V †I
)
n,k+1

(
VI
)
n,k

]
,

L̃0 = ∑3
I=1

∑∞
n,k=0

(
k + n+I

2

)
tr
[(
V †I
)
n,k

(
VI
)
n,k

]
,

L̃− = ∑3
I=1

∑∞
n,k=0

√
k(n+ k + I − 1) tr

[(
V †I
)
n,k−1

(
VI
)
n,k

]
,

J+ = ∑3
I=1

∑∞
n,k=0

√
k(n+ 1) tr

[(
V †I
)
n+1,k−1

(
VI
)
n,k

]
,

J− = ∑3
I=1

∑∞
n,k=0

√
n(k + 1) tr

[(
V †I
)
n−1,k+1

(
VI
)
n,k

]
.

(2.17)
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The representation theory of SU(1, 2) was worked out in [61] and reviewed in [15]. Here we
only emphasize the crucial properties needed for this work:

• While the representations of the SU(1, 1) algebra are labelled by a quantum number
j which parametrizes the quadratic Casimir as C2 = −j(j + 1), similarly the represen-
tations of the SU(1, 2) algebra are labelled by two quantum numbers (p, q), which are
related to the quadratic and cubic Casimirs as

C2 = p+ q + 1
3(p2 + pq + q2) ,

C3 = 1
27(p− q)(p+ 2q + 3)(q + 2p+ 3) .

(2.18)

• In this paper, the representation relevant to us is the integer series with (p, q) =
(0, I − 3) for I = 0, 1, 2, 3. The algebra action (2.17) on the letters transforming in
these representations are

(L+)D(V †I )n,k =
√

(n+ 1)(n+ k + I)(V †I )n+1,k ,

(L̃+)D(V †I )n,k =
√

(k + 1)(n+ k + I)(V †I )n,k+1 ,

(L0)D(V †I )n,k =
(
n+ k+I

2

)
(V †I )n,k ,

(L̃0)D(V †I )n,k =
(
k + n+I

2

)
(V †I )n,k ,

(L−)D(V †I )n,k =
√
n(n+ k + I − 1)(V †I )n−1,k ,

(L̃−)D(V †I )n,k =
√
k(n+ k + I − 1)(V †I )n,k−1 ,

(J+)D(V †I )n,k =
√
k(n+ 1)(V †I )n+1,k−1 ,

(J−)D(V †I )n,k =
√
n(k + 1)(V †I )n−1,k+1 .

(2.19)

We can therefore check that the letters VI transforms in the (p, q) = (0, I−3) representations
of SU(1, 2).

The remaining generators of the PSU(1,2|3) can also be written in the previous
representation. The supercharges read

Q4−a =
∞∑
n=1

∞∑
k=0

√
n tr

(
(Φ†a)n−1,k χn,k + εabc(ζ†b )n−1,k(Φc)n,k +A†n−1,k(ζa)n,k

)
Q̃4−a =

∞∑
n=0

∞∑
k=1

√
k tr

(
(Φ†a)n,k−1χn,k + εabc(ζ†b )n,k−1(Φc)n,k +A†n,k−1(ζa)n,k

)
S4−a =

∞∑
n,k=0

tr
(√

n+ k χ†n,k(Φa)n,k −
√
n+ k + 1 εabc(Φ†b)n,k(ζc)n,k

+
√
n+ k + 2 (ζ†a)n,kAn,k

)
.

(2.20)

The SU(3) R-symmetry generators in terms of letters are:

R0 =
∞∑

n,k=0
tr
(1

2(Φ†1)n,k(Φ1)n,k−
1
2(Φ†2)n,k(Φ2)n,k + 1

2(ζ†2)n,k(ζ2)n,k−
1
2(ζ†1)n,k(ζ1)n,k

)

R+ =
∞∑

n,k=0
tr
(

(Φ†1)n,k(Φ2)n,k−(ζ†2)n,k(ζ1)n,k

)
, R−=

∞∑
n,k=0

tr
(

(Φ†2)n,k(Φ1)n,k−(ζ†1)n,k(ζ2)n,k

)
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R̃0 =
∞∑

n,k=0
tr
(1

2(Φ†2)n,k(Φ2)n,k−
1
2(Φ†3)n,k(Φ3)n,k−

1
2(ζ†2)n,k(ζ2)n,k + 1

2(ζ†3)n,k(ζ3)n,k

)

R̃+ =
∞∑

n,k=0
tr
(

(Φ†2)n,k(Φ3)n,k−(ζ†3)n,k(ζ2)n,k

)
, R̃−=

∞∑
n,k=0

tr
(

(Φ†3)n,k(Φ2)n,k−(ζ†2)n,k(ζ3)n,k

)
T+ =

∞∑
n,k=0

tr
(

(Φ†1)n,k(Φ3)n,k−(ζ†3)n,k(ζ1)n,k

)
, T−=

∞∑
n,k=0

tr
(

(Φ†3)n,k(Φ1)n,k−(ζ†1)n,k(ζ3)n,k

)
.

(2.21)

The fields are defined in such a way that their Dirac brackets have a standard normali-
zation [15]

{(χn,k)ij ,(χ†n′,k′)ml}D = {(χ†n,k)
i
j ,(χn′,k′)ml}D = δn,n′δk,k′δilδ

m
j , (2.22)

{((Φa)n,k)ij ,((Φ†b)n′,k′)ml}D =−{((Φ†a)n,k)ij ,((Φb)n′,k′)ml}D = δa,bδn,n′δk,k′δilδ
m
j , (2.23)

{((ζa)n,k)ij ,((ζ†b )n′,k′)ml}D = {((ζ†a)n,k)ij ,((ζb)n′,k′)ml}D = δa,bδn,n′δk,k′δilδ
m
j , (2.24)

{(An,k)ij ,(A†n′,k′)ml}D =−{(A†n,k)
i
j ,(An′,k′)ml}D = δn,n′δk,k′δilδ

m
j , (2.25)

where we explicitly indicated the index structure under the SU(N) colour group, too.

3 Hamiltonian from cubic supercharge

In this section we compute the SMT Hamiltonian of the PSU(1,2|3) sector using the cubic
supercharge method (labelled by 3 in section 1). It consists of constructing the most generic
cubic fermionic generator Q invariant under the full PSU(1,2|3) symmetry group, as we
will do in section 3.1. Afterwards, the cubic supercharge is used to derive the interactions
by using the identity (1.3). One of the main features of the effective theories derived in
the near-BPS limit is that they are expected to be positive definite, as a consequence of
describing the reaction of a physical system in departing from the point in parameter space
where the BPS bound (1.1) is saturated. More specifically, one can interpret the effective
Hamiltonian as a distance in the linear space of the representation identified by a set of
fundamental blocks [15]. In this regard, the method applied here is particularly convenient
because a Hamiltonian built using the identity (1.3) is automatically positive-definite, as a
consequence of supersymmetry invariance. We will show in section 3.2 that it is possible to
identify a block structure by inspection of the interacting Hamiltonian, thus providing a
more direct way to show the positivity of the spectrum.

3.1 Construction of the cubic supercharge

In order to build a cubic fermionic generator Q invariant under the full PSU(1,2|3) spin
group, we decompose it as a linear combination of terms

Q =
∑
A

αATA , (3.1)

where αA are real coefficients. We require that
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• Each term TA is a singlet under the adjoint representation of the colour group SU(N)
and contains two raising and one lowering operators.5

• Each term TA is invariant under the bosonic spin subgroup SU(1, 2)× SU(3), i.e., it
commutes with all the bosonic generators. This will classify all the structures allowed
to enter the linear combination (3.1).

• The full linear combination (3.1) is invariant under all the fermionic generators of the
PSU(1,2|3) group. This part of the procedure fixes the relative coefficients among the
structures TA.

We begin by addressing the correct structure with respect to the SU(N) adjoint
representation. This requires to contract all the colour indices and to collect two of the
fields into an (anti-)commutator structure. We point out the general property6

tr(A[B,C}) = tr([A,B}C) , (3.2)

where A, B and C can be either c-valued or Grassmann-valued fields in the adjoint
representation of SU(N), and where [·, ·} represents a commutator or an anti-commutator
depending on the parity of the generators. Due to the identity (3.2), it is not restrictive to
only consider cubic combinations of fields of the form written in the right-hand side.

Invariance under the bosonic generators. We begin by focusing on the generators
of the SU(1, 2) bosonic subgroup, which is responsible for assigning the integer numbers
(n, k) to any field in the theory. Given three fields V , Ṽ and V̂ , any cubic generator
containing two creation operators and one annihilation operator can be a singlet in the
adjoint representation of SU(N) and under the SU(1, 2) spin subgroup only if it takes
the form

tr
(
[V †n,k, Ṽ

†
n′,k′}V̂n+n′,k+k′

)
. (3.3)

Indeed, the invariance under the L0 generator implies that the summation of labels (n, k)
involving the annihilation fields needs to match the summation of labels of the hermitian
conjugate fields, which represent instead creation operators. This statement simply corre-
sponds in the language of spherical expansion (that will be analyzed in section 5) to the
conservation of momenta.

In the following steps, the index I corresponding to the labelling of letters introduced
in section 2, and we will make use of eq. (2.19). Assuming that the field V transforms in
the representation labelled by I = i and that Ṽ transforms instead with I = j, we further
need to impose that V̂ transforms with I = i+ j to obtain a cubic combination commuting
with the generator L0. More precisely, this restricts the form of the generic TA term in

5This is required in order to obtain an interacting Hamiltonian with two raising and two lowering
operators via the application of eq. (1.3).

6In the remaining part of the paper, we will denote the Lie parenthesis in two different ways. We will use
{·, ·}D for the Dirac brackets involving fields with any statistics, while we will use the notation [·, ·} without
subscript to refer to the matrix (anti)commutators of the SU(N) colour group.
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eq. (3.1) to be

TA =
∞∑

n,k,n′,k′=0
P

(i,j)
n,k,n′,k′ tr

(
[V †n,kṼ

†
n′,k′}V̂n+n′,k+k′

)
, (3.4)

with

P
(i,j)
n,k,n′,k′ =

√
(k + n+ i− 1)!(k′ + n′ + j − 1)!(n+ n′)!(k + k′)!

(k + k′ + n+ n′ + i+ j − 1)!n!k!n′!k′! . (3.5)

These coefficients account for the symmetry properties of the generators under the SU(1, 2)
subgroup; from the point of view of the spherical expansion procedure, they can be related
to Clebsch-Gordan coefficients defined on the three-sphere:

C
1
2 (n+n′+k+k′), 1

2 (k+k′−n−n′)
1
2 (n′+k′), 1

2 (k′−n′); 1
2 (n+k), 1

2 (k−n) =
√

(n+ k)!(n′ + k′)!(n+ n′)!(k + k′)!
(n+ n′ + k + k′)!n!k!n′!k′!

=
√
n+ kP

(0,1)
n,k;n′,k′

(3.6)

The PSU(1,2|3) invariance secretely encodes information about the geometric structure of
the underlying theory. At this point, one can check by direct computation that the object
defined in eq. (3.4) is invariant under all the generators of the SU(1, 2) subgroup. Indeed,
we obtain

{L+, TA}D = {L−, TA}D = {J+, TA}D = 0 . (3.7)

Since the expression for TA is symmetric in the indices (n, k), this easily implies that the
following identities are also true:

{L̃+, TA}D = {L̃−, TA}D = {J−, TA}D = 0 . (3.8)

Further details on the SU(1, 2) invariance of TA are given in appendix A.1.

Given the generic ansatz (3.4), we move on to classify all the possible set of fields that can
enter such expression. Thus we further impose the invariance under the SU(3) R-symmetry.
In particular, this implies that the total eigenvalue of the Cartan generators should vanish,
i.e., we require R0 = R̃0 = 0. We systematically approach the classification of terms in the
following way:

• First, we fix the value i = 0 of the representation under which the field V transforms.

• Given the constraint i+j ≤ 3 for the field V̂ , we consider all the possible values for the
representation j of Ṽ . For each case, we construct the SU(3) invariant combination.

• We repeat the procedure by increasing the integer i by one unit, until the maximal
value i = 3.

Working in this way, one can show that all the possible terms are given by

T1 = 1
2

∞∑
n,k,n′,k′=0

P
(0,0)
n,k,n′,k′ tr

(
χ†n,k{χ

†
n′,k′ , χn+n′,k+k′}

)
, (3.9)

T2 =
∞∑

n,k,n′,k′=0
P

(0,1)
n,k,n′,k′δ

ab tr
(
χ†n,k[(Φ

†
a),n′,k′ , (Φb),n+n′,k+k′ ]

)
, (3.10)
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T3 =
∞∑

n,k,n′,k′=0
P

(0,2)
n,k,n′,k′δ

ab tr
(
χ†n,k{(ζ

†
a),n′,k′ , (ζb)n+n′,k+k′}

)
, (3.11)

T4 =
∞∑

n,k,n′,k′=0
P

(0,3)
n,k,n′,k′ tr

(
χ†n,k[A

†
n′,k′ , An+n′,k+k′ ]

)
. (3.12)

T5 = 1
2

∞∑
n,k,n′,k′=0

P
(1,1)
n,k,n′,k′ε

abc tr
(
[(Φ†a)n,k, (Φ

†
b)n′,k′ ]ζc,n+n′,k+k′

)
, (3.13)

T6 =
∞∑

n,k,n′,k′=0
P

(1,2)
n,k,n′,k′δ

ab tr
(
[(Φ†a)n,k, (ζb)

†
n′,k′ ]An+n′,k+k′

)
. (3.14)

One can be easily convinced that these are the correct objects. When i = 0, the other
raising operator Ṽ can be any field with j = 0, 1, 2, 3, thus leaving the opportunity to define
the four cubic generators (3.9)–(3.12). The Cartan generators R0, R̃0 have vanishing charge
only if the fields are chosen to be Ṽ = V̂ . The invariance under the other generators of
SU(3) R-symmetry is achieved by building singlet structures. While this is trivial for terms
involving the fermion χ and the gauge field A, instead the invariants involving the triplet
scalars or fermions are built using the Kronecker delta.

In the case where the field V transforms in the representation with i = 1, there are
three possibilities for the field Ṽ , given by j = 0, 1, 2. The first case corresponds to the
cubic generator T2 defined in eq. (3.10), while the new possibilities are (3.13) and (3.14).
Notice that the invariance under SU(3) is achieved by using the two invariant objects at our
disposal, i.e., the Levi-Civita symbol and the Kronecker delta. When the field V transforms
in the representation i = 2,, we have the two possibilities with Ṽ transforming with j = 0, 1.
However, these cases corresponds to the generators (3.11) and (3.14), respectively. Similarly,
when i = 3 we can only choose j = 0, which is the case studied in eq. (3.12). Thus we
conclude that there are six independent cubic structures in the fields which are separately
invariant under the maximal bosonic subgroup SU(1, 2)× SU(3).

Invariance under the fermionic generators. According to the discussion on the
invariance under the bosonic subgroup, we found that the most general cubic generator with
the appropriate index structure is given by the linear combination (3.1) with A = 1, . . . , 6.
Therefore, we reduced the ambiguity in the result to the determination of the real coefficients
in the linear combination. This will be uniquely fixed by requiring the invariance under all
the fermionic generators of the PSU(1,2|3) spin group.

We consider the action of the supercharge Q†4−a on the terms (3.9)–(3.14). We find

{Q†4−a,T1}D = 1
2

∞∑
n,k,n′,k′=0

√
n+n′+1P (0,0)

n,k;n′+1,k′ tr
(
(Φa)n+n′,k+k′{χ†n,k,χ

†
n′+1,k′}

)
,

{Q†4−a,T2}D =
∞∑

n,k,n′,k′=0

√
n′+1P (0,1)

n,k;n′k′ tr
(
χ†n′+1,k′ [(Φa)n+n′,k+k′ ,χ†n,k]

)

+
∞∑

n,k,n′,k′=0

√
n+n′+1P (0,1)

n,k;n′+1,k′ ε
abc tr

(
(ζc)n+n′,k+k′ [χ†n,k,(Φ

†
b)n′+1,k′ ]

)
,
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{Q†4−a,T3}D =−
∞∑

n,k,n′,k′=0

√
n′+1P (0,2)

n,k;n′k′ ε
abc tr

(
(Φ†b)n′+1,k′{(ζc)n+n′,k+k′ ,χ†n,k}

)

+
∞∑

n,k,n′,k′=0

√
n+n′+1P (0,2)

n,k;n′+1,k′ tr
(
An+n′,k+k′{(ζ†a)n′+1,k′ ,χ†n,k}

)
,

{Q†4−a,T4}D =
∞∑

n,k,n′,k′=0

√
n′+1P (0,3)

n,k;n′k′ tr
(
(ζ†a)n′+1,k′ [An+n′,k+k′ ,χ†n,k]

)
,

{Q†4−a,T5}D =
∞∑

n,k,n′,k′=0

√
nP

(1,1)
n−1,k;n′+1,k′ ε

abc tr
(
χ†n,k[(Φ

†
b)n′+1,k′ ,(ζc)n+n′,k+k′ ]

)

+ 1
2

∞∑
n,k,n′,k′=0

√
n+n′+1P (1,1)

n,k;n′+1,k′ ε
abc tr

(
An+n′,k+k′ [(Φ†b)n,k,(Φ

†
c)n′+1,k′ ]

)
,

{Q†4−a,T6}D =
∞∑

n,k,n′,k′=0

√
nP

(1,2)
n′+1,k′;n−1,k tr

(
χ†n,k[(ζ

†
a)n′+1,k′ ,An+n′,k+k′ ]

)

+
∞∑

n,k,n′,k′=0

√
n′+1P (1,2)

n,k;n′k′ ε
abc tr

(
(Φ†c)n′+1,k′ [An+n′,k+k′ ,(Φ†c)n,k]

)
.

(3.15)

One can check that the following linear combination

Q ≡ T1 + T2 + T3 + T4 + T5 − T6 (3.16)

is invariant under the considered supercharge, i.e., it satisfies the condition

{Q†4−a,Q}D = 0 . (3.17)

In order to show this result, we need to use the properties (A.1) or the antisymmetry of
the summations. As a representative example, we show the vanishing of the following
combination entering the Dirac brackets of the cubic generators (3.9) and (3.10):

{Q†4−a,T1}D+{Q†4−a,T2}D =

=
∞∑

n,k,n′,k′=0
P

(0,0)
n,k;n′+1,k′

(1
2
√
n+n′+1− n′+1√

n+n′+1

)
tr
(
(Φa)n+n′,k+k′{χ†n,k,χ

†
n′+1,k′}

)
=

=
∞∑

n,k,n′,k′=0
P

(0,0)
n+1,k;n′+1,k′

n−n′

2
√
n+n′+2

tr
(
(Φa)n+n′+1,k+k′{χ†n+1,k,χ

†
n′+1,k′}

)
= 0 .

(3.18)
In going from the first to the second line we used the cyclicity properties of the trace and
the identities (A.1), while in moving from the second to the third line we performed the
summation and we shifted the label n→ n+ 1. The last step is a consequence of the fact
that we have a summation over (n, n′) of an odd expression in these indices.

We show in appendix A.2 that the linear combination (3.16) is also invariant under the
action of the supercharges Q4−a, namely

{Q4−a,Q}D = 0 . (3.19)
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The identities (3.17) and (3.19) are sufficient to prove the invariance under all the fermionic
generators. The proof proceeds by applying the graded Jacobi identity. Indeed, we consider

{L+, {Q4−a,Q}D}D + {Q4−a, {Q, L+}D}D − {Q, {L+, Q4−a}D}D = 0 . (3.20)

Since we have proven before that the cubic generator Q is invariant under all the bosonic
symmetries and under the action of Q4−a, we have

{Q4−a,Q}D = {Q, L+}D = 0 . (3.21)

Now we use the commutation relation {Q4−a, L+}D = S†4−a to conclude that

{S†4−a,Q}D = 0 . (3.22)

We apply a similar trick by considering the graded Jacobi identity

{J+, {Q4−a,Q}D}D + {Q4−a, {Q, J+}D}D − {Q, {J+, Q4−a}D}D = 0 , (3.23)

plus the commutation relation {Q4−a, J+}D = Q̃4−a. This allows to conclude that

{Q̃4−a,Q}D = 0 . (3.24)

One can work in the same way by starting from the result {Q†4−a,Q}D = 0, to derive that

{Q̃†4−a,Q}D = {S4−a,Q}D = 0 . (3.25)

This shows that the linear combination (3.16) is invariant under all the fermionic generators
of PSU(1, 2|3) group.

Reduction to subsectors. The invariance under supersymmetry uniquely fixed the
relative coefficients in the linear combination (3.16). A consistency check of this result
comes from the reduction of the general expression to the PSU(1,1|2) subsector, where the
method described in this section was originally applied [16, 57, 58]. The restriction to this
case can be achieved by setting some of the fields to zero

Φ3 = 0 , A = 0 , ζ1 = ζ2 = 0 . (3.26)

Furthermore, we set k = 0, specifying the dictionary

(Φ1)n = (Φ1)n,0 , (Φ2)n = (Φ2)n,0 , (ψ1)n = −(ζ3)n,0 , (ψ2)n = χn+1,0 , (3.27)

where the fields on the left-hand side refer to the notation used in [16], while the fields on the
right-hand side refer to the notation used in this work. In this way, the cubic supercharge
Q reduce to

Q = T1 + T2 + T3 + T5 , (3.28)
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with the cubic generators being

T1 = 1
2

∞∑
n,n′=0

√
n+ n′ + 2

(n+ 1)(n′ + 1) tr
(
(ψ†2)n{(ψ†2)n′ , (ψ2)n+n′+1}

)
, (3.29)

T2 =
∞∑

n,n′=0

1√
n+ 1

δab tr
(
(ψ†2)n[(Φ†a)n′ , (Φb)n+n′+1]

)
, (3.30)

T3 =
∞∑

n,n′=0

√
n′ + 1

(n+ n′ + 2)(n+ 1) tr
(
(ψ†2)n{(ψ†1)n′ , (ψ1)n+n′+1}

)
, (3.31)

T5 = −
∞∑

n,n′=0

1√
n+ n′ + 1

tr
(
[(Φ†1)n, (Φ†2)n′ ](ψ1)n+n′

)
, (3.32)

while T4 = T6 = 0 since there is no dynamical gauge field in this subsector. With
this, the cubic supercharge Q is exactly the one introduced in reference [16] for the
PSU(1,1|2) subsector.

One can perform a further reduction to the SU(1,1|1) subsector by setting

Φ2 = 0 ψ1 = 0 , (3.33)

and renaming Φ1 = Φ and ψ2 = ψ. Then the supercharge is now reduced to Q = T1 + T2,
which matches exactly that of the SU(1, 1|1) case in [16].

En passant, we notice that it is not possible to define the cubic supercharge (3.16) in
the SU(1,2|2) subsector, even if part of the supersymmetry of N = 4 SYM is preserved.
The reason is that the expressions (3.9)–(3.14) always contain at least one singlet fermion
χ. Since this field is only non-vanishing in the SU(1,1|1) and PSU(1,1|2) subsectors, we
conclude that the previous construction does not work in the other cases. It will instead be
possible to recover SU(1,2|2) as a special case by setting the appropriate fields to zero at
the level of the interacting Hamiltonian.

3.2 Derivation of the interacting Hamiltonian

Starting from the cubic supercharge (3.16), we compute the interacting Hamiltonian by
using the identity

{Q,Q†}D = Hint . (3.34)

It is a tedious but straightforward exercise to find all the terms arising from this Dirac
bracket. Remarkably, one can show that the interacting Hamiltonian can be organized in
the compact form

Hint = HD +HF ,

HD =
∞∑

n,k=0
tr

(B†0)n,k(B0)n,k +
3∑

a=1

∑
I=1,2

(Ba†I )n,k(BaI )n,k + (B†3)n,k(B3)n,k

 ,
HF =

∞∑
n,k=0

tr

(F†0)n,k(F0)n,k +
3∑

a=1

∑
I=1,2

(Fa†I )n,k(FaI )n,k + (F†3)n,k(F3)n,k

 ,
(3.35)
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where we introduce the following set of B blocks:

(B0)n,k =
∞∑

n′,k′=0

(
P

(0,0)
n,k;n′,k′{χ†n′,k′ ,χn+n′,k+k′}+

3∑
a=1

P
(0,1)
n,k;n′,k′ [(Φ†a)n′,k′ ,(Φa)n+n′,k+k′ ]

+
3∑

a=1
P

(0,2)
n,k;n′,k′{(ζ†a)n′,k′ ,(ζa)n+n′,k+k′}+P (0,3)

n,k;n′,k′ [A†n′,k′ ,An+n′,k+k′ ]
)
, (3.36)

(Ba1)n,k≡
∞∑

n′,k′=0

(
P

(1,1)
n,k:n′,k′ε

abc[(ζb)n+n′,k+k′ ,(Φ†c)n′,k′ ]

−P (1,2)
n,k;n′,k′ [(ζ†a)n′,k′ ,An+n′,k+k′ ]+P (1,0)

n,k;n′,k′ [(Φa)n+n′,k+k′ ,χ†n′,k′ ]
)
, (3.37)

(Ba2)n,k≡
∞∑

n′,k′=0

(
P

(2,1)
n,k;n′,k′ [(Φ†a)n′,k′ ,An+n′,k+k′ ]+P (2,0)

n,k;n′,k′{(ζa)n+n′,k+k′ ,χ†n′,k′}
)
, (3.38)

(B3)n,k≡
∞∑

n′,k′=0
P

(3,0)
n,k;n′,k′ [An+n′,k+k′ ,χ†n′,k′ ] . (3.39)

We define the Fn,k blocks as

(F0)n,k≡
1
2

n∑
n′=0

k∑
k′=0

P
(0,0)
n′,k′;n−n′,k−k′{χn−n′,k−k′ ,χn′,k′} , (3.40)

(Fa1 )n,k≡
n∑

n′=0

k∑
k′=0

P
(0,1)
n′,k′,n−n′,k−k′ [(Φa)n−n′,k−k′ ,χn′,k′ ] , (3.41)

(Fa2 )n,k≡
1
2

n∑
n′=0

k∑
k′=0

P
(1,1)
n′,k′,n−n′,k−k′ε

abc[(Φc)n′,k′ ,(Φb)n−n′,k−k′ ]

+P (0,2)
n′,k′,n−n′,k−k′{(ζa)n−n′,k−k′ ,χn′,k′} , (3.42)

(F3)n,k≡
n∑

n′=0

k∑
k′=0

P
(1,2)
n′,k′,n−n′,k−k′ [(ζa)n−n′,k−k′ ,(Φa)n′,k′ ]−P (0,3)

n′,k′;n−n′k−k′ [An−n′,k−k′ ,χn′,k′ ] .

(3.43)
The B blocks originate the D-terms HD in eq. (3.35), while the F blocks generate the
contribution HF to the interacting Hamiltonian composed of F-terms. The total Hamil-
tonian (3.35) comprises all the contributions of the PSU(1,2|3) sector. This is the largest
possible spin group admitting a near-BPS limit of the form (1.2) and contains all the other
admissable cases as subsectors. At the level of the cubic supercharge (3.16) there is the
obstacle that we can only restrict to subsectors containing the singlet fermion χ, since it
is essential to build all the structures (3.4). Instead this problem does not occur when
considering the full Hamiltonian: we can therefore recover all the results derived in the
references [13–16] by setting the corresponding fields to zero.

We comment more explicitly the classes of terms entering the result:
• Charge density. The charge density

Qn,k = 1√
n+ k

(B0)n,k (3.44)

corresponds to the block (3.36). It is a natural extension of the charge densities
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derived in [13–16] for all the other subsectors of PSU(1,2|3).7 Terms of this kind arise
when contracting two singlet fermions among the structures (3.9)–(3.12).

• Generalization of SU(1,2|2) blocks. We define

(Ba1)n,k ≡ (Fa −Ka +Ha)n,k , (Ba2)n,k ≡ (Wa +Ma)n,k , (3.45)

where each structure refers to a corresponding term in the blocks introduced in
eqs. (3.37) and (3.38). The objects Fa,Ka,Wa generalize the homonymous blocks
appearing in the Hamiltonian (3.100) of the SU(1,2|2) subsector presented in ref-
erence [15]. This part of the interactions arises from contractions involving the
blocks (3.13) and (3.14) only.

• Generalization of PSU(1,1|2) F-terms. The F-blocks in eq. (3.40)–(3.43) are
a generalization of all the interactions (besides the charge density term) entering
the PSU(1,1|2) subsector, see the Hamiltonian (3.56) in reference [16]. Here we
observe one of the advantages of the cubic supercharge method: the organization
of the structure (3.16) naturally separates D-terms and F-terms, while the spherical
expansion procedure applied in [16] gave a structure which highlighted the symmetry
between the fermionic fields therein called as ψ1, ψ2. By applying the dictionary in
eqs. (3.27) and (3.27), one can check that the full Hamiltonian (3.35) indeed reduces
to the one of the PSU(1,1|2) subsector.

• New D-terms. There are new D-term structures, entering eqs. (3.37)–(3.39), that
arise from the brackets involving the cubic generators in eqs. (3.9)–(3.12). They come
from contractions where a singlet fermion (and its hermitian conjugate) survive.

• New F-terms. Finally, we have one additional F-term which involves the gauge field.
It is the last contribution of the block F3 in eq. (3.43).

According to the identity (3.34), the Hamiltonian was obtained as the anticommutator
of a complex supercharge and its hermitian conjugate. Standard manipulations involving
supersymmetry show that the spectrum of such a theory is positive definite [62]. The
interactions written as in eq. (3.35) confirm this argument: they appear in a form which
manifestly shows the positivity of each term, since they are written as a product of a block
times its hermitian conjugate. We will see in section 4 that these blocks provide a convenient
way to show the symmetry structure of the result.

4 Symmetry structure of the Hamiltonian

4.1 Symmetry structure of D-terms and F-terms

In this section, we discuss the symmetry structure of the Hamiltonian (3.35). As expected,
the analysis in the following will show that the Hamiltonian is manifestly invariant under

7In order to compare with the references [13–16], we point out that therein we used the notation Qn,k

for the charge densities, referring to lower-case q to denote the separate contributions from each field.
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the PSU(1, 2|3) symmetry. However, as we shall see, this is also the case for the separate
D-term and F-term parts of the Hamiltonian.

Let us focus on the bosonic part of the symmetry group first, whose action on the
letters was summarized in eq. (2.19). We collect the blocks in the following way

WI = {BI ,FI}, I = 0, 1, 2, 3 (4.1)

where the SU(3) indices a for I = 1, 2 are not displayed explicitly. Then the crucial
observation is that BI and FI making up the Hamiltonian (3.35) exactly transform in
the (p, q) = (0, I − 3) representations of the SU(1, 2) algebra for I = 0, 1, 2, 3, i.e., the
equations (2.19) are also satisfied by the blocks WI . This is the generalization of the
example already shown in [15], which was the SU(1, 2|2) subsector written in terms of
N = 2 vector multiplets, where the letters transform in I = 1, 2, 3 representations, while
the BI blocks transform in I = 0, 1, 2 representations.

In conclusion, the blocks BI and FI transform as irreducible representations of both
SU(1, 2) as well as SU(3). When combining this into HD and HF using (3.35), this
shows that HD and HF are both invariant under the SU(1, 2)× SU(3) bosonic symmetry
transformations.

Next, let us move on to the supersymmetry. We find the Hamiltonian HD and HF

are separately invariant under the action of all supercharges Qa, Q̃a and Sa. There are
some basic patterns followed by the action of supercharges. First of all, due to the SU(3)R
symmetry of Qa supercharges (2.21), for different a = 1, 2, 3, the supercharges are relating
different blocks Wa

I as N = 1 chiral multiplets or N = 1 vector multiplets. On the other
hand, we notice from the letter representation (2.20) that the supercharges Qa act on the
descendants generated by d1 letters, while Q̃a act on the descendants generated by d2. This
can be seen from the fact that their actions shift the levels of n or k by 1, which counts
the descendant levels of d1, d2, respectively. The Sa supercharges act on both directions
simultaneously. In total, the difference between the three classes of supercharges are majorly
reflected at the level of descendants, which are also closely related to the three different
components of momenta saturated Clebsch-Gordan coefficients.8 We will also discuss this
point in appendix A. Without loss of generality, let’s consider the action by Q†1 as an
example. The definition of this supercharge can be found in eq. (2.20). We can then check
that the blocks transform as supermultiplets under the actions of supercharges.

{Q†1, (B0)n,k}D =
√
n+ 1(B3

1)n,k, {Q†1, (B
†
0)n,k}D = 0

{Q†1, (B1
1)n,k}D =

√
n(B2

2)n−1,k, {Q†1, (B
1†
1 )n,k}D = 0

{Q†1, (B2
1)n,k}D = −

√
n(B1

2)n−1,k, {Q†1, (B
2†
1 )n,k}D = 0

{Q†1, (B3
1)n,k}D = 0, {Q†1, (B

3†
1 )n,k}D = −

√
n+ 1(B†0)n+1,k (4.2)

{Q†1, (B1
2)n,k}D = 0, {Q†1, (B

1†
2 )n,k}D = −

√
n+ 1(B2†

1 )n+1,k

{Q†1, (B2
2)n,k}D = 0, {Q†1, (B

2†
2 )n,k}D =

√
n+ 1(B1†

1 )n+1,k

{Q†1, (B3
2)n,k}D =

√
n(B3)n−1,k, {Q†1, (B

3†
2 )n,k}D = 0

{Q†1, (B3)n,k}D = 0, {Q†1, (B
†
3)n,k}D = −

√
n+ 1(B3†

2 )n+1,k

8The CG coefficients in eq. (3.6) present three different combinations of momenta satisfying a precise
saturation. These labels correspond to the action of the three classes of supercharges.

– 18 –



J
H
E
P
0
4
(
2
0
2
3
)
0
7
5

B0

B1
1 B2

1 B3
1

B3
2 B2

2 B1
2

B3

Figure 3. Action by supercharges on the blocks B. The blue lines represent the transformation Q†1,
while the green lines are the transformation of supercharge S2. The actions on the F blocks follow
in the same way.

We also compute

{Q†1, (F0)n,k}D =
√
n(F3

1 )n−1,k, {Q†1, (F
†
0)n,k}D = 0

{Q†1, (F1
1 )n,k}D =

√
n(F2

2 )n−1,k, {Q†1, (F
1†
1 )n,k}D = 0

{Q†1, (F2
1 )n,k}D = −

√
n(F1

2 )n−1,k, {Q†1, (F
2†
1 )n,k}D = 0

{Q†1, (F3
1 )n,k}D = 0, {Q†1, (F

3†
1 )n,k}D = −

√
n+ 1(F†0)n+1,k

{Q†1, (F1
2 )n,k}D = 0, {Q†1, (F

1†
2 )n,k}D = −

√
n+ 1(F2†

1 )n+1,k

{Q†1, (F2
2 )n,k}D = 0, {Q†1, (F

2†
2 )n,k}D =

√
n+ 1(F1†

1 )n+1,k

{Q†1, (F3
2 )n,k}D = −

√
n(F3)n−1,k, {Q†1, (F

3†
2 )n,k}D = 0

{Q†1, (F3)n,k}D = 0, {Q†1, (F
†
3)n,k}D =

√
n+ 1(F3†

2 )n+1,k

(4.3)

Then in total
{Q†1, HD}D = {Q†1, HF }D = 0 (4.4)

The action of the supercharges for the blocks BI is graphically shown in figure 3. Using
that HD and HF are separately invariant under SU(1, 2)× SU(3), one can argue using the
Jacobi-identity, that it follows from invariance under Q†1 that they are separately invariant
under all the supercharges Q†a, Q̃†a and S†a. Since HD and HF also are hermitian, it follows
they are also separately invariant under all the supercharges Qa, Q̃a and Sa.

Therefore, any Hamiltonian of the form HD + ΛHF is invariant under the PSU(1, 2|3)
global symmetry action, i.e., there is a free coefficient Λ that does not spoil the invariance.
The Hamiltonian HD + HF obtained from the decoupling limit of N = 4 SYM might
indicate an the existence of a further enhanced symmetry that fixes Λ = 1, as we will
discuss below.

– 19 –



J
H
E
P
0
4
(
2
0
2
3
)
0
7
5

Furthermore, it is important to remark that the fact that both the B and F blocks
transforms well under the full PSU(1, 2|3) algebra, can be used to cast HD and HF in (3.35)
separately as norms in the representation space of PSU(1, 2|3) as in the construction of [15].
This shows the origin of our findings in [15] for the SU(1, 1|1) and SU(1, 2|2) Spin Matrix
theories, here with the remarkable extension to the full PSU(1, 2|3) symmetry, and to both
the D-terms and F-terms separately.

Both the B and F blocks can be organized into three N = 1 chiral multiplets and
N = 1 vector multiplets. Thus the invariance of the Hamiltonian is manifest, since both
terms are made by an N = 3 vector multiplet. For a discussion of field theories with N = 3
supersymmetry, see for example [63]. The CPT invariance of lagrangian theories implies the
N = 3 theories get enhanced to N = 4 supersymmetric gauge theories [64]. The situation in
the current case could be more subtle. First of all, the field theory description of PSU(1, 2|3)
is less clear. The global symmetry SU(1, 2) is neither the conformal group nor includes
the Lorentz symmetry. Secondly, the programme of formulating the local field description
of SMT was initiated in [14], where we found that the field theory description of SU(1, 1)
subsector is both semi-local and ghost-like.9 This behaviour could be potentially related
to the chiral algebra [65] of 4d SCFT. Its generalization to SU(1, 2) subsectors could be
more non-trivial. Besides, due to the non-relativistic nature of Spin matrix theory, there
are no anti-particle excitations in the theory. Due to many novel features of the field theory
describing the Spin matrix theory, whether the N = 3 supersymmetry gets enhanced to
N = 4 supersymmetry in the current model should be analysed more systematically. We
will leave this issue as topic for a future work.

The explicit formula of the PSU(1, 2|3) Hamiltonian (3.35) enables us to improve our
understanding of other subsectors. As remarked in section 3.2, we can now resolve the
puzzles raised in the PSU(1, 1|2) subsector [16]. From the spin chain point of view [56],
it is not manifest that the Hamiltonian is positive definite. However, once we take the
decoupling limit of the PSU(1, 2|3) Hamiltonian to acquire the PSU(1, 1|2) subsector, the
corresponding Hamiltonian is made by a D-term N = 2 hypermultiplet and an F-term
N = 2 hypermultiplet. Both the manifest invariance under PSU(1, 1|2) global symmetry
and the positive definiteness are ensured by the latter formulation. This also explains why
the SU(2) automorphism between fermions in PSU(1, 1|2) subsector is “emergent” [57], as
there is no automorphism in PSU(1, 2|3) sector which can act on fermion singlet χ and
fermion triplet ζa.

4.2 Uniqueness of the Hamiltonian

Now we argue that the Hamiltonian (3.35) derived using the cubic supercharge method (3.34)
is unique. The prescription given at the beginning of section 3.1 to build the fermionic
generator Q assumed that each term TA entering the linear combination (3.1) was indepen-
dently invariant under the full bosonic subgroup of PSU(1,2|3), while the fermionic part
of the spin group is used to restrict the coefficients αA. However, one may in principle

9By semi-local, we mean that the Dirac brackets satisfied by the fields are not Dirac delta functions, but
their Fourier representation where the summation is only performed over positive modes.
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choose a more general set of cubic terms in the fields such that their linear combination
(anti)commutes with the bosonic generators, while they separately do not.

A way to fix this ambiguity consists in comparing the result with other techniques. In
section 5.3 we will derive the purely bosonic part of the effective Hamiltonian using the
spherical expansion procedure (method 2 of the list presented in section 1). In particular,
we will show that the bosonic interactions derived with the spherical expansion precisely
match with the result (3.35). These terms involving the interactions between scalars and
the bosonic gauge fields, and we dub it as Hbos. This partial comparison is sufficient to
argue that the full Hamiltonian, including the fermionic terms, matches between the two
procedures. For the sake of argument, we assume that there exist two different Hamiltonians
with the same bosonic interactions Hbos, but different fermionic ones:

Hint,1 = Hbos +Hferm,1 , Hint,2 = Hbos +Hferm,2 . (4.5)

In these expressions, we denoted with Hbos the terms containing purely bosonic fundamental
fields, and with Hferm the remaining parts, which collect together the purely fermionic
interactions and the mixed terms having both bosons and fermions.10

The splitting (4.5) must be satisfied by any possible near-BPS Hamiltonian, since we
assume that the purely bosonic part is unambiguously fixed with the spherical expansion
method. We then find that by taking the difference between the two expressions, we produce
another interacting Hamiltonian that does not contain any bosonic part

Hint,new = Hferm,1 −Hferm,2 . (4.6)

A near-BPS effective Hamiltonian without purely bosonic terms cannot be invariant under
the full symmetry group PSU(1,2|3), in particular supersymmetry invariance would neces-
sarily be violated. This can be checked explicitly by applying the SUSY transformations
induced by the generators (2.20) to any expression without bosonic letters. Therefore,
we conclude that it was not possible to have two Hamiltonians with different fermionic
interactions, thus showing the uniqueness of the construction.

Notice that the previous argument does not make any requirement on the splitting of
the interacting Hamiltonian into D- and F-terms, that we observed in section 4.1 to be
separately invariant under the full PSU(1,2|3) symmetry group. Indeed, the purely bosonic
Hamiltonian Hbos will itself contain a D-term and an F-term, and the same will be true
for Hferm. However, this sub-structure can be ignored for the purposes of the previous
derivation, without affecting the final conclusion. Having shown that the Hamiltonian is
unique, this procedure also fixes unambiguously the free coefficient Λ mentioned below
eq. (4.4) to be 1.

10It should be noted that in lower-dimensional field theories, bosonization/fermionization dualities can
relate fields with different statistics, e.g., [66–68], which might also extend to 4d quantum field theory [69, 70].
Therefore, one may be worried that the distinction between bosonic and fermionic interactions is ambiguous.
However, fields in the SMT Hamiltonian surviving the near-BPS limits (1.2) arise from fundamental
fields defined in the original N = 4 SYM action, where bosons and fermions obey commutative and
anti-commutative Dirac brackets respectively, see eqs. (2.22)–(2.25).
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5 Hamiltonian from spherical expansion

In this section we apply the spherical expansion method (bullet 2 in section 1) to compute
the effective Hamiltonian of the PSU(1,2|3) SMT. This provides an alternative procedure
to derive the interactions (3.35), but has the advantage to completely fix the purely bosonic
part of the Hamiltonian, which is essential to prove the uniqueness of the result (see
discussion in section 4.2.

The outline of the section is the following. We begin by reviewing the general setting
to perform the spherical expansion in section 5.1. Then we derive the free part of the
Hamiltonian and the interactions in the purely bosonic sector in sections 5.2 and 5.3,
respectively. We finally compare to the results obtained using the cubic supercharge
technique in section 5.4.

5.1 General procedure

We set the conventions for the spherical expansion of the classical N = 4 SYM theory
defined on R× S3 by following the same notation as in references [13–16]. We summarize
them here, starting from the action

S=
∫
R×S3

√
−detgµν tr

{
− 1

4F
2
µν−|DµΦa|2−|Φa|2−iψ†aσ̄µDµψ

A+g
∑
A,B,a

CaABψ
A[Φa,ψ

B]

+g
∑
A,B,a

C̄aABψ†A[Φ†a,ψ
†
B]− g

2

2
∑
a,b

(
|[Φa,Φb]|2+|[Φa,Φ†b]|

2
)}

.

(5.1)

In this expression, g is the Yang-Mills coupling constant. The field content of the theory
is the following. There are three complex scalars Φa = φ2a−1 + iφ2a with a ∈ {1, 2, 3},
built from the real scalars transforming in the 6 representation of the R-symmetry group
SO(6) ' SU(4). We have four Weyl fermions ψA with A ∈ {1, 2, 3, 4} transforming in the
representation 4 of SU(4). Finally, the field strength is defined as

Fµν = ∂µAν − ∂νAµ + ig[Aµ, Aν ] , (5.2)

and the corresponding covariant derivatives Dµ read

DµΦa = ∂µΦa + ig[Aµ,Φa] , (5.3)
Dµψ

A = ∇µψA + ig[Aµ, ψA] , (5.4)

where ∇µ is the covariant derivative on the three-sphere, i.e. it contains the spin connection
contribution when acting on the fermions. The CaAB are Clebsch-Gordan coefficients coupling
two 4 representations and one 6 representation of the R-symmetry group SU(4). All the
fields in the action transform under the adjoint representation of the gauge group SU(N).
The action is canonically normalized on the R × S3 background with the radius of the
three-sphere set to unity.

The classical Hamiltonian is obtained by performing the Legendre transform of the
action (5.1). We then decompose the fields into spherical harmonics on the three-sphere [71],
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according to the conventions summarized in appendix B. In this expansion a crucial role
is played by the gauge field, since part of its degrees of freedom decouple on-shell in the
near-BPS limit (1.2), and they mediate an effective interaction at order g2 in the coupling
constant. The details of the decoupling of the gauge field and the corresponding Dirac
quantization are extensively reported in section 2.1 of [14], and similar discussions were
presented in [15, 16]. Here we briefly highlights the main steps of the procedure.

The unphysical degrees of freedom of the gauge field are captured by the temporal
and longitudinal components of the gauge field; they can be integrated out by using the
Coulomb gauge ∇iAi = 0. In order to keep track of the constraints, we consider a generic
quadratic action in the field strength with the inclusion of a source

SA =
∫
R×S3

√
−det gµν tr

(
−1

4F
2
µν −Aµjµ

)
. (5.5)

After expanding the fields into spherical harmonics, the constraints become algebraic and
we can express the result only in terms of the physical degrees of freedom, yielding the
unconstrained Hamiltonian

HA = tr
∑
J,m,m̃

 ∑
ρ=±1

(1
2 |Π

Jmm̃
(ρ) |

2 + 1
2ω

2
A,J |AJmm̃(ρ) |

2 +AJmm̃(ρ) j† Jmm̃(ρ)

)
+ 1

8J(J + 1) |j
Jmm̃
0 |2

 .
(5.6)

The currents entering this expression can be identified by looking at the N = 4 SYM action
reported in eq. (B.9). One can now restore the interactions (including the other matter
fields) to obtain the full Hamiltonian. In order to proceed, we follow these steps:

1. Determine the propagating modes in the near-BPS limit from the quadratic classical
Hamiltonian.

2. Derive the form of the currents that couple to the gauge fields by inspection of the
N = 4 SYM action in eq. (B.9).

3. Integrate out additional non-dynamical modes that give rise to effective interactions
in the near-BPS limit.

4. Derive the interacting Hamiltonian by taking the near-BPS limit in eq. (5.8) below.

From now on, we focus specifically on the near-BPS limit (1.2) with a1 = a2 = b1 = b2 =
b3 = 1, which characterizes the PSU(1,2|3) sector. The decoupling limit can be written as

g → 0 with H − J
g2 fixed , J ≡ S1 + S2 +

3∑
i=1

Qi , (5.7)

with N being fixed while sending g → 0. The interacting Hamiltonian describing the
residual degrees of freedom of the sector is defined as

Hint = lim
g→0

H − S1 − S2 −
∑3
i=1 Qi

g2N
. (5.8)
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Let us focus on the contributions to the Hamiltonian mediated by the non-dynamical modes
of the gauge field. There is no contribution from the R-charges because the gauge field
is neutral under such symmetry. Therefore at quadratic order in the fields, the near-BPS
limit involves the combination

H0 − S1 − S2 =
∑
J,M

∑
ρ=−1,1

1
2
(
|ΠJM

(ρ) − 2im̃A† JM(ρ) |
2 + (ω2

A,J − 4m̃2)|AJM(ρ) |
2
)
, (5.9)

which must vanish. This corresponds to the constraint

ΠJM
(ρ) − 2im̃A† JM(ρ) = 0 (5.10)

for all the non-dynamical modes of the gauge field, which means that we don’t have to
consider at the same time ρ = −1 and |m̃| = J + 1. After adding the sources written in
eq. (5.6) to the quadratic combination (5.9), we find that the consistency of the constraints
with the time evolution implies

{H,ΠJM
(ρ) − 2im̃A† JM(ρ) } = (ω2

A,J − 4m̃2)A† JM(ρ) + j† JM(ρ) = 0 , (5.11)

or equivalently

AJmm̃(ρ) = −
jJmm̃(ρ)

ω2
A,J − 4m̃2 . (5.12)

After using this additional constraint in eq. (5.9) plus sources, we find

H −S1−S2 = tr

 ∑
J,m,m̃

1
8J(J + 1) |j

Jmm̃
0 |2 −

∑
ρ=±1

∑
J,m,m̃

1
2(ω2

A,J − 4m̃2) |j
Jmm̃
(ρ) |

2

 . (5.13)

This expression will be used to compute all the gauge-mediated interactions, once the
currents jJM0 , jJM(ρ) are identified from the interacting Hamiltonian of N = 4 SYM.

5.2 Free Hamiltonian and reduction of the degrees of freedom

As a first step in the spherical expansion method, we identify the degrees of freedom
surviving the near-BPS limit by considering the combination H0 − J defined in eq. (5.7) at
quadratic order in the fields. A direct computation gives the following contributions for
scalars Φ, gauge fields A and fermions ψ:

(H0−J)Φ =
∑
J,M

3∑
a=1

tr
(∣∣∣(Πa)JM−i(2m̃+1)(Φ†a)JM

∣∣∣2+
(
ω2
J−(2m̃+1)2

)
(Φ†a)JM (Φa)JM

)
,

(H0−J)A = 1
2
∑
J,m,m̃

∑
ρ=−1,1

tr
(
|ΠJM

(ρ) −2im̃A†JM(ρ) |
2+(ω2

A,J−(2m̃)2)|AJM(ρ) |
2
)
,

(H0−J)ψ =
∑
JM

∑
κ=±1

tr
((

κωψJ +2m̃− 3
2

)
(ψ†1)JMκ(ψ1)JMκ

−
∑

A=2,3,4

(
κωψJ +2m̃+ 1

2

)
(ψ†A)JMκ(ψA)JMκ

)
.

(5.14)
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In the previous expressions, Πa represent the canonical momenta conjugate to the scalar
fields, while Π(ρ) is the momentum associated to the gauge field A(ρ). We present the
consequences of imposing the condition H0 − J = 0:

• Scalars. Given the definition ωJ = 2J + 1 and the constraint |m̃| ≤ J , we find that
all the three complex scalars with a ∈ {1, 2, 3} have a surviving mode subject to the
condition

(Πa)J,m,J + iωJ(Φ†a)J,m,J = O(g) . (5.15)

Furthermore, we remind that the restrictions on the angular momentum imply that
|m| ≤ J .

• Gauge fields. The dynamical gauge fields are the same of the SU(1, 2) subsector,
which was studied in [15]. From the quadratic expression (5.14) one deduces that
all the components of the gauge field are non-dynamical, except when ρ = −1 and
m̃ = ±(J + 1), with the constraints

ΠJm,±(J+1)
(ρ) ± iωA,JA† Jm,±(J+1)

(ρ) = 0 . (5.16)

The modes with positive and negative eigenvalue for m̃ are related by the reality
condition on the gauge field

AJ,m,−J−1
(ρ=−1) = (−1)J−mA† J,−m,J+1

(ρ=−1) , (5.17)

which allows to eliminate AJ,m,−J−1
(ρ=−1) from all the expressions. The surviving modes of

the gauge field satisfy the momentum constraint |m| ≤ J .

• Fermions. There are fermions of both chiralities κ surviving the near-BPS limit (5.7).
When κ = 1, there is a surviving fermion field with R-symmetry index A = 1 and
momenta |m| ≤ J + 1

2 together with fixed m̃ = −J . Therefore this particular field is

ψ1
J,m,−J,κ=1 . (5.18)

There are more solutions for fermions with the other chirality κ = −1, indeed we have
the choices A ∈ {2, 3, 4} for the SU(4) index. They satisfy |m| ≤ J and have fixed
m̃ = J + 1

2 . We will collectively denote them as

ψA=2,3,4
J,m,J+ 1

2 ,κ=−1 . (5.19)

All the fermions of N = 4 SYM survive, each of them with a particular value of the
momentum m̃.

We observe that the dynamical modes of the scalar and field strength in eqs. (5.16) and (5.17)
satisfy an identity relating the conjugate momentum with the hermitian conjugate of a field.
This aspect is a non-relativistic trait typical of theories with Bargmann symmetry, which
includes a U(1) central extension corresponding to the mass conservation.
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The identities (5.16) and (5.17) constraining the modes of the bosonic fields are also
responsible for the generation of non-trivial Dirac brackets, which read

{(Φa)J,m,J , (Φ†a)J ′,m′,J ′}D = i

2ωJ
δJ,J ′δm,m′ , (5.20)

{(Aρ=−1)J,m,J+1, (A†ρ=−1)J ′,m′,J ′+1}D = i

2ωA,J
δJ,J ′δm,m′ . (5.21)

In order to make the brackets canonically normalized, we redefine the dynamical bosonic
modes surviving the near-BPS limit (5.7) as

Φa
J,m ≡

√
2ωJΦa

J,m,J , AJm ≡
√

2ωA,JAJ,m,J+1
(ρ=1) . (5.22)

The fermions already have canonical Dirac brackets; we collect them using the follow-
ing notation

ψA=1,2,3,4
Jm = (χJm, ζa=1,2,3

Jm ) . (5.23)

More explicitly,

χJm ≡ ψ1
J,m,−J,κ=1 , ζa=1

Jm ≡ ψA=4
J,m,J+ 1

2 ,κ=−1 ,

ζa=2
Jm ≡ −ψA=3

J,m,J+ 1
2 ,κ=−1 , ζa=3

Jm ≡ ψA=2
J,m,J+ 1

2 ,κ=−1 .
(5.24)

The decomposition (5.23) clearly distinguishes between the fermions χ and ζa, which trans-
form under the global SU(3) residual R-symmetry either as a singlet or a triplet, respectively.

The fields (5.22) and (5.23) represent the full set of dynamical degrees of freedom
surviving the PSU(1,2|3) near-BPS limit. We identify them with the letters classified
in [18], where the general structure of all SMTs was considered. The matching can be easily
performed for scalars and gauge fields, giving the letters

AJ,m → |dn1dk2F̄+〉 , Φ1
J,m → |dn1dk2Z〉 , Φ2

J,m → |dn1dk2X〉 , Φ3
J,m → |dn1dk2W 〉 .

(5.25)
The matching for the fermions is less trivial. The SU(4) R-symmetry charges easily allow
to identify the fermionic modes in the triplet with the letters of N = 4 SYM surviving the
limit: they are

ζ1
J,m → |dn1dk2χ̄3〉 , ζ2

J,m → |dn1dk2χ̄5〉 , ζ3
J,m → |dn1dk2χ̄7〉 . (5.26)

The field χJm secretly encodes two letters: this can be seen explicitly when considering the
limit J = 0, which corresponds to the restriction to the SU(2|3) sector [16]. In such case,
the fermionic field has R-charges (1

2 ,
1
2 ,

1
2), but there are two possible eigenvalues for the

rotation operators, corresponding to m = ±1
2 . The two cases are

χJ=0,m= 1
2
→ |χ2〉 , χJ=0,m=− 1

2
→ |χ1〉 . (5.27)

From this observation, we understand that when the covariant derivatives are added, the
field χJm encodes information about two fermionic letters:

χJm → |dn1dk2χ1〉 , |dn1dk2χ2〉 . (5.28)
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These correspond to the non-trivial descendants related to the ancestor fermion mentioned
in eq. (2.3).

Now we come back to the evaluation of the effective Hamiltonian of the system. On
the constraint surface, we find

H0 =
∞∑
s=0

s
2∑

m=− s2

[ 3∑
a=1

(s+ 1) tr |Φa
s,m|2 +

(
s+ 3

2

)
|χs,m|2

+
3∑

a=1

(
s+ 3

2

)
|ζas,m|2 + (s+ 2) tr |As,m|2

]
.

(5.29)

5.3 Purely bosonic interactions

We apply the general procedure outlined in section 5.1 to compute the interacting Hamil-
tonian according to eq. (5.8). The landscape of possible interactions can be splitted into
three main categories:

• Terms mediated by the non-dynamical modes of the gauge field via the currents
contributing to eq. (5.13). It turns out that this class of terms nicely combines with
quartic interactions where all the modes are bosonic and dynamical.

• Cubic Yukawa terms.

• Terms mediated by non-dynamical scalars or fermions and containing at least one
dynamical gauge field.

• Quartic terms in the N = 4 SYM Hamiltonian containing only dynamical modes.

The calculations for the spherical expansion will involve the summation of Clebsch-Gordan co-
efficients on the three-sphere. In particular, the dynamical modes listed in eqs. (5.22), (5.23)
and (5.24) fix in several computations the corresponding momenta of the Clebsch-Gordan
coefficients. For this reason, we introduce the following compact notation

(J ,M) ≡ (J,m, J) , |m| ≤ J , (5.30)
(Ĵ ,M̂) ≡ (J,m, J + 1, ρ = −1) , |m| ≤ J , (5.31)

(J̄ ,M̄) ≡
(
J,m, J + 1

2 , κ = −1
)
, |m| ≤ J . (5.32)

These saturations correspond to scalars, gauge fields and fermions, respectively. We also
introduce the short-hand notations

∆J ≡ J2 − J1 = J3 − J4 , ∆m ≡ m2 −m1 = m3 −m4 , (5.33)

si ≡ 2Ji , l ≡ 2∆J , |mi| ≤
si
2 , |∆m| ≤ l

2 , (5.34)

which refer to an assignment of momenta that will often enter the results of the summation
over Clebsch-Gordan coefficients.

At this point, we are ready to start the systematic computation of the effective
Hamiltonian using the spherical expansion. The procedure was reported and explained
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in detail in section 2 of [14], section 3 of [15] and section 3 of [16] for several subsectors.
Many of the calculations for the general PSU(1,2|3) case are similar; the main difference is
that more terms are now involved and some generalizations to include them are needed.
Since the main changes are only technical, in the remaining part of the section we will
rather focus on a relevant subset of the possible interactions. More specifically, we will
only consider purely bosonic interactions because we argued in section 4.2 that they are
sufficient to uniquely fix the full effective Hamiltonian of the near-BPS limit. Then we will
proceed in section 5.4 with the comparison between the results of the spherical expansion
and of the cubic supercharge method, derived in eq. (3.35), showing that the purely bosonic
terms indeed match.

According to the distinction between terms listed in the set of bullets above, there are
four classes. However, it is clear that the cubic Yukawa terms only generate interactions by
integrating out an auxiliary field. Since the Yukawa term contains two fermions and one
scalar, it is clear that it will never contribute to purely bosonic interactions. Therefore, in
the following we will only deal with three classes of terms.

Terms mediated by non-dynamical gauge field. The terms mediated by the non-
dynamical modes of the gauge field all contribute via eq. (5.13). The main ingredient is
represented by the currents, whose full expressions read

j† Jmm̃0 =
∑
Jimi

3∑
a=1

g(ωJ1 + ωJ2)
2√ωJ1ωJ2

CJ2M2
J1M1;Jmm̃[(Φa)J1m1 , (Φ†a)J2m2 ]

+ g
∑
Jimi

F J̄1M̄1
J̄2M̄2;JM{χJ1m1 , χ

†
J2m2
}+ g

∑
Jimi

3∑
a=1
F J̄2M̄2
J̄1M̄1;JM{(ζ

†
a)J1m1 , (ζa)J2m2}

−
∑
Jimi

g

2
ωA,J1 + ωA,J2√
ωA,J1ωA,J2

DĴ2M̂2
JM ;Ĵ1M̂1

[AJ1m1 , A
†
J2m2

] ,

j† Jmm̃(ρ) = −2g
∑
Jimi

3∑
a=1

√
J1(J1 + 1)
ωJ1ωJ2

DJ2M2
J1M1;Jmm̃,ρ[(Φa)J1m1 , (Φ†a)J2m2 ]

+ g
∑
Ji,mi

GJ̄1M̄1
J̄2M̄2;JMρ

{χJ1m1 , χ
†
J2m2
}

− g
∑
Ji,mi

3∑
a=1
GJ̄2M̄2
J̄1M̄1;JM,−ρ{(ζ

†
a)J1m1 , (ζa)J2m2}

+ ig

2
∑
Jimi

ρωA,J − ωA,J1 − ωA,J2√
ωA,J1ωA,J2

EJMρ;Ĵ1M̂1
Ĵ2M̂2 [AJ1m1 , A

†
J2m2

] .

(5.35)

The currents were already simplified by applying the constraints (5.16) and (5.17) on the
dynamical bosonic modes, and we used the notation introduced in eqs. (5.30)–(5.32). Details
on the Clebsch-Gordan coefficients are collected in appendix B.1.

The terms mediated by non-dynamical gauge fields only contain double trace operators
under the residual SU(3) R-symmery. In order to find a closed form for the summation
over Clebsch-Gordan coefficients, we need to include here the contributions coming from
other quartic terms in the N = 4 SYM action:
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• The scalar quartic self-interaction. This is given by

g2

2 tr
(1

2 |[Φa,Φ†a]|2 + |[Φa,Φb]|2
)
. (5.36)

The contribution to the gauge current arises only from the singlet part; the other
term, giving a single trace operator, will be considered later.

• The mixed scalar/gauge quartic interaction, which reads

− g2 tr
(
[Φ†a, Ai][Ai,Φa]

)
, (5.37)

and after the expansion into spherical harmonics becomes

g2∑
JM

∑
Jimiρi

(−1)m−m̃+m4−m̃4CJMJ1M1;J4,−M4D
J,−M
J2M2ρ2;J3M3ρ3

× tr
(
[(Φ†a)J4M4 , AJ3M3ρ3 ][AJ2M2ρ2 , (Φa)J1M1 ]

)
.

(5.38)

Using the cyclicity properties of the trace, we extract a double trace contribution
from this interaction.

As already mentioned below eqs. (5.30)–(5.32), we will only focus on the purely bosonic
interactions. To this aim, it means that we can consistently set to zero the fermionic fields
inside the currents (5.35). The procedure to compute a charge density contribution in the
spherical expansion language was extensively applied and explained in sections 3.2 and 3.3
of [15]. Indeed, eq. (3.80) of such reference contains precisely a charge density expression
plus additional terms which vanish due to Gauss’ law.

The computation for the present case is completely analog; for the sake of simplicity,
here we only report the main result and we refer the reader to reference [15] for the full
derivation. The purely bosonic part of the interactions mediated by the non-dynamical
gauge field reads

1
2N

∞∑
l=1

l/2∑
∆m=−l/2

1
l

tr
(
Q†l,∆mQl,∆m

)
, (5.39)

where we define

Ql,∆m ≡
∞∑
s1=0

s1
2∑

m1=− s1
2

( 3∑
a=1

C
s1+l

2 ,m1+∆m
s1
2 ,m2; l2 ,∆m

[(Φ†a)s1m1 , (Φa)s1+l,m1+∆m]

+C
s1+l

2 ,m1+∆m
s1
2 ,m1; l2 ,∆m

√
(s1 + 1)(s1 + 2)

(s1 + l + 1)(s1 + l + 2)[A†s1m1 , As1+l,m1+∆m]
)
.

(5.40)

Here we used the conventions summarized in eqs. (5.33) and (5.34). The result written in
the form (5.39) already takes into account the application of Gauss’ law, which sets to zero
various terms proportional to the total SU(N) charge.
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Terms mediated by non-dynamical scalars. The next set of interactions arises from
the following cubic interaction of the N = 4 SYM Hamiltonian

− 4g
√
J1(J1 + 1)DJ2M2

J1M10,JMρ tr
(
AJM(ρ) [(Φa)J1M1 , (Φ†a)J2M2 ]

)
. (5.41)

While in the previous subsection we integrated out auxiliary modes of the gauge field, now
we use instead a non-dynamical scalar field to mediate an effective interaction. The result
will be a quartic expression containing two scalars and two vectors. This cases generalizes a
similar term discussed in the SU(1,2|2) subsector, see eqs. (3.95)-(3.99) of reference [15].
The result is

1
2N

∞∑
l=0

l/2∑
∆m=−l/2

tr
(
(W †a )l,∆m(Wa)l,∆m

)
, (5.42)

where we introduce the block

(Wa)l,∆m =
∞∑
s1=0

s1
2∑

m1=− s1
2

√
l + 1

(s1 + l + 1)(s1 + l + 2)C
s1+m1

2 ,m1+∆m1
s1
2 ,m1; l2 ,∆m

[A†s1m1 ,Φ
a
s1+l,m1+∆m] .

(5.43)
The notation for the momenta used to present these expressions refers to the definitions (5.33)
and (5.34).

Single trace quartic scalar interaction. We consider the single trace contribution
arising from the quartic scalar interaction (5.36). Expanding the fields into spherical
harmonics and using the property

(YJ1M1)∗(Ω)(YJ2M2)∗(Ω) =
∑

J1,M1,J2,M2

CJMJ1M1;J2M2(YJM )∗(Ω) , (5.44)

we reduce the number of spherical harmonics from four to three.11 At this point, one finds
by direct computation that the single trace scalar interaction becomes

1
4N

∑
JM,Ji

CJ,m,m̃J1M1;J2M2
CJ,m,m̃J3M3;J4M4√

ωJ1ωJ2ωJ3ωJ4
tr
(
[(Φa)J1m1 , (Φb)J2m2 ][(Φ†b)J3m3 , (Φ†a)J4m4 ]

)
. (5.45)

It is easy to find that the constraints on momenta and the triangle inequality

m̃ = J1 + J2 = J3 + J4 , Max{|J1 − J2|, |J4 − J3|} ≤ J ≤ J1 + J2 (5.46)

give the saturation condition

J = J1 + J2 = J3 + J4 . (5.47)

Thus the sum over intermediate momenta collapses and we obtain a contribution only from
this fixed value of J . We get

Hint = 1
4N

∞∑
si=0

si
2∑

mi=−
si
2

δs1+s2
s3+s4

s1 + s2 + 1 C
s1+s2,m1+m2
s1m1;s2m2 Cs3+s4,m3+m4

s3m3;s4m4

× tr
(
[(Φa)s1m1 , (Φb)s2m2 ][(Φ†b)s3m3 , (Φ†a)s4m4 ]

)
.

(5.48)

11We refer to appendix B.1 for more details on the spherical harmonics.
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5.4 Comparison with the cubic supercharge method

Summing the contributions (5.39), (5.42) and (5.48) from bosonic modes to the interacting
Hamiltonian, we finally obtain

Hint,bos = 1
2N

∞∑
l=1

l
2∑

∆m=− l
2

tr
(
Q†l,∆mQl,∆m

)
+
∞∑
l=0

l
2∑

∆m=− l
2

tr
(
(W †a )l,∆m(Wa)l,∆m

)

+ 1
4N

∞∑
si=0

si
2∑

mi=−
si
2

δs1+s2
s3+s4

s1 + s2 + 1 C
s1+s2,m1+m2
s1m1;s2m2 Cs3+s4,m3+m4

s3m3;s4m4

× tr
(
[(Φa)s1m1 , (Φb)s2m2 ][(Φ†b)s3m3 , (Φ†a)s4m4 ]

)
.

(5.49)

We compare this expression with the bosonic contributions included in the Hamiltonian (3.35)
obtained using the cubic supercharge method. The dictionary to match the momenta (Ji,mi)
used in the spherical expansion computation with the integer numbers (n, k) labelling the
SU(1, 2) representation is given by

n = ∆J −∆m, k = ∆J + ∆m, n′ = J1 −m1 , (5.50)
k′ = J1 +m1 , n+ n′ = J2 −m2 , k + k′ = J2 +m2 . (5.51)

Applying these relations, one can check that the blocks Qnk and (Wa)nk (defined in
eqs. (5.39) and (5.42) via the spherical expansion) coincide with the homonymous blocks in
eqs. (3.44) and (3.45) (defined via the cubic supercharge method), respectively.

Finally, one can also show that the scalar F-term obtained from the spherical expansion
technique coincides with the result from the cubic supercharge. To this aim, it is sufficient
to notice that

δn+n′

p+p′ δ
k+k′

q+q′ P
(1,2)
n,k;n′,k′P

(1,2)
p,q;p′,q′ =

δs1+s2
s3+s4

s1 + s2 + 1 C
s1+s2,m1+m2
s2m2;s1m1 Cs3+s4,m3+m4

s3m3;s4m4 . (5.52)

The two sides of the equality correspond to the non-trivial coefficients of the scalar F-term
as computed from the two methods. The left-hand side comes from the contribution of the
block defined in eq. (3.42), to the Hamiltonian (3.35). The right-hand side is the coefficient
of the last term in eq. (5.49). The apparent different structure of the fields under the
residual SU(3) R-symmetry also matches after using the property εeabεecd = δacδbd − δadδbc

of the Levi-Civita symbol, and the antisymmetry of the commutators.
This concludes the matching between the bosonic part of the spherical expansion and

of the cubic supercharge methods, thus providing a non-trivial check of the computations.
Furthermore, following the argument presented in section 4.2, this result is sufficient to
guarantee the uniqueness of the interacting Hamiltonian derived in eq. (3.35).

6 Discussion

In this paper, we constructed a supercharge which is cubic in terms of the letters in the
PSU(1, 2|3) sector of N = 4 SYM. This is the generalization of the cubic supercharge in
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the PSU(1, 1|2) subsector [57, 58]. We use the supercharge (3.16) to derive a manifestly
positive definite Hamiltonian invariant under the action of all the generators of PSU(1, 2|3):

Hint = HD +HF ,

HD =
∞∑

n,k=0
tr

(B†0)n,k(B0)n,k +
3∑

a=1

∑
I=1,2

(Ba†I )n,k(BaI )n,k + (B†3)n,k(B3)n,k

 ,
HF =

∞∑
n,k=0

tr

(F†0)n,k(F0)n,k +
3∑

a=1

∑
I=1,2

(Fa†I )n,k(FaI )n,k + (F†3)n,k(F3)n,k

 ,
(6.1)

This positive definite form (6.1) shows the Hamiltonian is composed by fundamental
blocks including both D-term blocks B, defined in eqs. (3.36)–(3.39), and F-term blocks F
introduced in eqs. (3.40)–(3.43). Each kind of block is transforming as a supermultiplet,
which can be considered as a manifestation of the supersymmetry invariance. Both the HD

and HF terms are invariant under supersymmetry separately, indicating an enhancement
of supersymmetry. This construction resolves our puzzles about Spin Matrix theory in
the PSU(1, 1|2) subsector [16], where one lacks the knowledge of how to reorganize the
Hamiltonian into a manifest positive definite form.

A powerful tool to investigate supersymmetric field theories consists in the construction
of superspace, which is an extension of the standard spacetime with Grassmann coordinates
to account for the graded structure of the super-algebra. The advantages of this method are
that all the standard field content of the system is encoded in the superfield, actions can be
written in a simpler way, and SUSY is manifest at each step. It is interesting to notice that
the construction of a cubic supercharge for PSU(1,2|3) SMT of this paper is related to a
cubic supercharge construction presented in [30, 72]. This can be seen by introducing the
fermionic superfield on the flat superspace C2|3 given by

Ψ(Z) =
∞∑

n,k=0
zn+z

k
−

√(n+ k − 1)!
n!k! χn,k + θa

√
(n+ k)!
n!k! (Φa)n,k

+2εabcθaθb

√
(n+ k + 1)!

n!k! (ζc)n,k + θ1θ2θ3

√
(n+ k + 2)!

n!k! An,k

 , (6.2)

where we have defined the collective coordinate

Z ≡ (zi, θa) ≡ (z+, z−, θ1, θ2, θ3) , (6.3)

with zi being auxiliary bosonic coordinates and θa being the Grassmann coordinates defining
the graded extension of spacetime. The connection to the cubic supercharge construction
of [30, 72] is now completed by noticing that the hermitian conjugate Q† of our cubic
generator (3.16) obeys

{Q†,Ψ(Z)}D = Ψ2(Z) . (6.4)

This is in correspondence with the behavior of the superfield and cubic supercharge intro-
duced in [30, 72]. It would be interesting to explore this connection further, as it points
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to yet another way to find the effective Hamiltonian derived in eq. (3.35). Moreover, the
supercharge and superfield construction of [30, 72] are closely related to the investigation of
1/16-BPS operators of N = 4 SYM theory, as the space of 1/16-BPS operators is isomorphic
to the cohomology of such a supercharge [31].

Superfields have been studied in the context of non-relativistic theories from a differ-
ent perspective, to describe quantum field theories with either Lifshitz or Schroedinger
invariance [73–75]. The superfield formalism was recently applied to study the renor-
malization structure of three-dimensional SUSY Galilean Electrodynamics, which is an
N = 2 supersymmetric gauge theory arising from the null reduction of N = 1 SYM in four
dimensions [76]. One may hope to perform the null reduction of the full N = 4 SYM theory
and compare with the SMT formalism. This comparison is not only heuristic, but could
be motivated by previous investigations which found a (semi)local formulation of SMTs
with SU(1, 1) symmetry subgroup as field theories living on a circle [14]. This included the
introduction of a superspace in the case of sectors with supersymmetry invariance. The
counting of degrees of freedom and thermodynamic arguments suggest that the SMTs with
SU(1, 2) subgroup could be effectively described as 2+1 dimensional field theories, thus
corresponding to the same number of dimensions of a null reduction of N = 4 SYM. A
more direct approach to find a (semi)local formulation of these SMTs could be based on
the results presented in [77].

The Spin Matrix theory is also closely related to the chiral algebra of N = 4 SYM, as
the decoupling condition of PSU(1, 1|2) subsector is identical to the Schur condition [65, 78].
The letters in the 2d chiral algebra descriptions are ghost-like fields and the central charge
of the 2d chiral algebra is negative, as required by unitarity of 4d field theory. A similar
phenomenon was also observed in the SU(1, 1|1) subsector of Spin Matrix theory [14], where
the letters can be considered as excitations above the decoupling limit. Similar situation
can also be observed in the PSU(1, 2|3) sector. The blocks W †I and the letter VI are all
transforming in the (p, q) = (0, I − 3) representations of SU(1, 2) algebra. However, there
is an essential difference: the letters in I = 0, 2 representations are fermions, while the
bosons transform in representations with I = 1, 3. This is completely opposite to the
quantum statistical nature of the blocks. Therefore, studying Spin Matrix theory provides
a generalization of chiral algebra theory and also novel insights to understand the nature of
chiral algebra, from a theory with larger global symmetry.

The next ambitious project after the construction of Spin Matrix theory is to understand
its gravity dual from various aspects. It can be analysed from dual string theory in torsional
Newton-Cartan geometry. Depending on the scaling dimension of the states, the dual
gravitational description can either be in terms of giant gravitons [21], a brane model [79]
or a black hole-like geometry [22–24]. Our work paves the way towards understanding the
physics of 1/16-BPS AdS black hole from the dual quantum mechanical theory. One of the
most amazing achievement in recent years was the understandings of black hole entropy
from the superconformal index computation [6, 7, 80, 81]. Our work provides an alternative
way of understanding the microscopic states dual to the black holes, which can be acquired
by solving the constraints

(BI)n,k |Ω〉 = (FI)n,k |Ω〉 = 0 (6.5)
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Such study could potentially reveal the feature of black hole-like states in the dual field
theory. This is also visited in the recent work [30]. An observation made in [6] via the
superconformal index computation is the possible existence of 1/8-BPS black hole (which is
called the PSU(1, 1|2) subsector in SMT) in the dual AdS gravity, although the analytic
gravitational solutions were never found. A common feature shared by PSU(1, 1|2) and
PSU(1, 2|3) subsector is the simultaneous presence of both D-term blocks and the F-term
blocks. It is unclear whether this fact is related to the black hole states but worthy to explore
in the future. More importantly, the SMT interactions break the exact BPS conditions,
which could potentially teach us the physics of near-BPS black holes [82].

Our works [14–16] including this paper, have already developed various methods in
constructing Hamiltonian of Spin Matrix theory [8], as the low energy effective theory of
N = 4 SYM. One could test whether these methodologies are useful in studying the low
energy limit of superconformal field theories in other dimensions. One example of interest
is the N = 6 superconformal Chern-Simons theory in D = 3 [83] (known as ABJM theory).
It was discussed in [84] that the effective field theory in the SU(2)×SU(2) subsector are
two decoupled Heisenberg spin chain models. Other larger subsectors are discussed in [85].
Constructing the corresponding Spin Matrix theory in these sector could provide more
examples of generalized solvable spin chain models.

Other interesting future applications of the PSU(1, 2|3) SMT include studying the
coherent state [86–88], the generalized magnetic Spin Matrix theory [89], computing the
SMT partition functions and studying the possible modular properties of 4d partition
functions [90–92].
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A Details on the PSU(1,2|3) invariance of the cubic generator

We provide additional details about the invariance of the cubic supercharge (3.16) under the
symmetry transformations of the spin group PSU(1,2|3). The supercharges Qa defined in
eq. (2.20) act on the levels n (which are the descendants of spatial direction d1), while the
supercharges of Q̃a act on the levels k (which are the descendants of spatial direction d2).
Similarly, the supercharges of Sa act on the levels n+ k. These three different classes are
precisely in relation with the three different momenta entering the saturated CG coefficients.
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We will list a few useful identities satisfied by P (i,j)
n,k;n′k′ which can be easily checked by direct

computation.

Relations related to Q† supercharges.

P
(i,j)
n,k;n′,k′ = P

(j,i)
n′,k′;n,k ,

√
n′P

(i,j+1)
n,k;n′−1,k′ +

√
nP

(i+1,j)
n−1,k;n′k′ =

√
n+ n′P

(i,j)
n,k;n′,k′

√
n+ n′ + 1P (i,j+1)

n,k;n′,k′ =
√
n′ + 1P (i,j)

n,k;n′+1,k′ ,

√
n′ + 1P (i+1,j)

n,k;n′+1,k′ =
√
n+ 1P (i,j+1)

n+1,k;n′,k′ ,
√
n+ n′ + 1P (i+1,j)

n,k;n′,k′ =
√
n+ 1P (i,j)

n+1,k;n′,k′

√
n− n′P (i,j)

n′,k′;n−n′,k−k′ =
√
nP

(i,j+1)
n′,k′;n−1−n′,k−k′

√
n′ + 1P (i,j)

n′+1,k′;n−1−n′,k−k′ =
√
nP

(i+1,j)
n′,k′;n−1−n′,k−k′

√
n′P

(i+1,j)
n′−1,k′;n+1−n′,k−k′ +

√
n− n′ + 1P (i,j+1)

n′,k′;n−n′,k−k′ =
√
n+ 1P (i,j)

n′,k′;n+1−n′,k−k′

(A.1)

Relations related to S supercharges.√
n′ + k′ + jP

(i,j)
n;k;n′,k′ =

√
n+ k + n′ + k′ + i+ jP

(i,j+1)
n,k;n′,k′√

n+ k + n′ + k′ + i+ jP
(i,j)
n;k;n′,k′ −

√
n′ + k′ + jP

(i,j+1)
n,k;n′,k′ =

√
n+ k + i P

(i+1,j)
n,k;n′,k′

(A.2)

A.1 Bosonic generators

We start by showing that the generic structure (3.4) with coefficients (3.5) is invariant
under the action of the generators of the SU(1, 2) subgroup. As mentioned in section 3.1,
the assignment of labels (n, k) and the representations I under which the fields transform
are already chosen in such a way to have a vanishing eigenvalue of the Cartan generators
L0, L̃0. Here we consider the action of the other non-diagonal generators, such as L+. We
find

{L+,TA}D =
∞∑

n,k,n′,k′=0
P

(i,j)
n,k,n′,k′

[√
(n+1)(n+k+i)tr

(
[V †n+1,k, Ṽ

†
n′,k′}V̂n+n′,k+k′

)
+
√

(n′+1)(n′+k′+j)tr
(
[V †n,k, Ṽ

†
n′+1,k′}V̂n+n′,k+k′

)
−
√

(n+n′)(n+n′+k+k′+i+j−1)tr
(
[V †n,k, Ṽ

†
n′,k′}V̂n+n′−1,k+k′

)]
=

=
∞∑

n,k,n′,k′=0

[√
n(n+k+i−1)P (i,j)

n−1,k,n′,k′ +
√
n′(n′+k′+j−1)P (i,j)

n,k,n′−1,k′

−
√

(n+n′)(n+n′+k+k′+i+j−1)P (i,j)
n,k,n′,k′

]
tr
(
[V †n,k, Ṽ

†
n′,k′}V̂n+n′−1,k+k′

)
=

= 0 . (A.3)

The terms in the first step correspond to the three possibilities to act with the L+ generator
on the cubic structure of fields in the structure (3.4). In the second step we shifted the
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labels of the first two terms as n→ n− 1 and n′ → n′ − 1, respectively, in order to collect
the same trace structure. Finally, the sum of the coefficients in the square parenthesis vanish
after using the properties (A.1). Using a similar procedure, one can explicitly check that
the action of the other generators L−, J+ on the structure (3.4) also vanishes. Furthermore,
since TA is symmetric in the indices (n, k), the same steps also show that the bosonic
generators L̃+, L̃−, J− commute with it.

The remaining bosonic generators of the sector belong to the SU(3) R-symmetry group.
However, it is easy to observe that the specific structures (3.9)–(3.14) are singlets, since
they are built by using the invariant tensors δab, εabc of this group.

A.2 Fermionic generators

Now we focus on the invariance under the supercharges Q4−a. As explained in section 3.1,
this result combined with the invariance under the Q†4−a, derived in eq. (3.17), is sufficient
to show the invariance under all the other fermionic generators. Here we list the full set of
Dirac brackets with the terms defined in eqs. (3.9)–(3.14):

{Q4−a, T1}D =
∞∑

n,k,n′,k′=0
P

(1,0)
n,k,n′,k′

√
n+ n′ + 1 tr

(
(Φ†a)n,k{χ

†
n′,k′ , χn+n′+1,k+k′}

)
,

(A.4)

{Q4−a, T2}D =
∞∑

n,k,n′,k′=0
P

(1,1)
n,k,n′,k′

√
n+ n′ + 1 tr

(
(Φ†a)n,k[(Φ

†
b)n′,k′ , (Φb)n+n′+1,k+k′ ]

)

−
∞∑

n,k,n′,k′=0
P

(0,2)
n,k,n′,k′

√
n+ n′ + 1 εabc tr

(
χ†n,k[(ζ

†
b )n′,k′ , (Φc)n+n′+1,k+k′ ]

)

−
∞∑

n,k,n′,k′=0
P

(1,0)
n,k,n′,k′

√
n+ n′ + 1 tr

(
(Φ†a)n,k{χ

†
n′,k′ , χn+n′+1,k+k′}

)
,

(A.5)

{Q4−a, T3}D =
∞∑

n,k,n′,k′=0
P

(1,2)
n,k,n′,k′

√
n+ n′ + 1 tr

(
(Φ†a)n,k{(ζ

†
b )n′,k′ , (ζb)n+n′+1,k+k′}

)

−
∞∑

n,k,n′,k′=0
P

(0,3)
n,k,n′,k′

√
n+ n′ + 1 tr

(
χ†n,k[A

†
n′,k′ , (ζa)n+n′+1,k+k′ ]

)

+
∞∑

n,k,n′,k′=0
P

(0,2)
n,k,n′,k′

√
n+ n′ + 1εabc tr

(
χ†n,k[(ζ

†
b )n′,k′ , (Φc)n+n′+1,k+k′}

)
,

{Q4−a, T4}D =
∞∑

n,k,n′,k′=0
P

(1,3)
n,k,n′,k′

√
n+ n′ + 1 tr

(
(Φ†a)n,k[A

†
n′,k′ , An+n′+1,k+k′ ]

)

+
∞∑

n,k,n′,k′=0
P

(0,3)
n,k,n′,k′

√
n+ n′ + 1 tr

(
χ†n,k[A

†
n′,k′ , (ζa)n+n′+1,k+k′ ]

)
,
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{Q4−a, T5}D =
∞∑

n,k,n′,k′=0
P

(2,1)
n,k,n′,k′

√
n+ n′ + 1 tr

(
[(ζ†b )n,k, (Φ

†
a)n′,k′ ](ζb)n+n′+1,k+k′

)

−
∞∑

n,k,n′,k′=0
P

(2,1)
n,k,n′,k′

√
n+ n′ + 1 tr

(
[(ζ†b )n,k, (Φ

†
b)n′,k′ ](ζa)n+n′+1,k+k′

)

−
∞∑

n,k,n′,k′=0
P

(1,1)
n,k,n′,k′

√
n+ n′ + 1 tr

(
[(Φ†a)n,k, (Φ

†
b)n′,k′ ](Φb)n+n′+1,k+k′

)
,

{Q4−a, T6}D =
∞∑

n,k,n′,k′=0
P

(2,2)
n,k,n′,k′

√
n+ n′ + 1 εabc tr

(
{(ζ†b )n,k, (ζ

†
c )n′,k′}An+n′+1,k+k′

)

+
∞∑

n,k,n′,k′=0
P

(1,3)
n,k,n′,k′

√
n+ n′ + 1 tr

(
[(Φ†a)n,k, A

†
n′,k′ ]An+n′+1,k+k′

)

+
∞∑

n,k,n′,k′=0
P

(1,2)
n,k,n′,k′

√
n+ n′ + 1 tr

(
[(Φ†b)n,k, (ζ

†
b )n′,k′ ](ζa)n+n′+1,k+k′

)
.

(A.6)

Using the cyclicity of the trace and the properties (A.1), most of the terms directly cancel
when we build the linear combination (3.16). A non-trivial simplification comes from the
following expression, which vanishes by antisymmetry:

∞∑
n,k,n′,k′=0

P
(2,2)
n,k,n′,k′

√
n+ n′ + 1 εabc tr

(
{(ζ†b )n,k, (ζ

†
c )n′,k′}An+n′+1,k+k′

)
=

=
∞∑

n,k,n′,k′=0
P

(2,2)
n′,k′,n,k

√
n+ n′ + 1 εacb tr

(
{(ζ†b )n,k, (ζ

†
c )n′,k′}An+n′+1,k+k′

)
=

= −
∞∑

n,k,n′,k′=0
P

(2,2)
n,k,n′,k′

√
n+ n′ + 1 εabc tr

(
{(ζ†b )n,k, (ζ

†
c )n′,k′}An+n′+1,k+k′

)
= 0 .

(A.7)

In the first step, we used the symmetry of the anticommutator of fermions and we exchanged
the labels (n, k)↔ (n′, k′) and b↔ c. In the last step, we used the symmetry properties (A.1)
and the antisymmetry of the Levi-Civita symbol. Combining all the terms, we then find

{Q4−a,Q}D = 0 . (A.8)

B Conventions and details of the spherical expansion

In this appendix we collect the essential conventions used to apply the spherical expansion
procedure in section 5. We omit several details which are not necessary for the understanding
of the results derived in the present work. The interested reader can find several other
details in the following references:

• Appendix A of [14]: conventions on the expansion of all the fields into spherical
harmonics.

• Appendix B of [14]: technical details about the treatment of fermionic modes, com-
putation of the Cartan charges of the N = 4 SYM action, weights associated to
the fields.
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• Appendix A of [15]: crossing relations between the Clebsch-Gordan coefficients on the
three-sphere, general methods to perform the summations entering the computation
of the interacting Hamiltonian.

B.1 Definition of the Clebsch-Gordan coefficients

We start from the list of Clebsch-Gordan coefficients on S3. Their explicit expressions read

CJ1M1
J2M2;JM =

√
(2J+1)(2J2+1)

2J1+1 CJ1m1
J2m2;JmC

J1m̃1
J2m̃2;Jm̃ , (B.1)

DJ1M1
J2M2ρ2;JMρ = (−1)

ρ2+ρ
2 +1

√
3(2J2+1)(2J2+2ρ2

2+1)(2J+1)(2J+2ρ2+1)

×CJ1,m1
Q2,m2;Q,mC

J1,m̃1
Q̃2,m̃2;Q̃,m̃


Q2 Q̃2 1
Q Q̃ 1
J1 J1 0

 , (B.2)

EJ1M1ρ1;J2M2ρ2;JMρ =
√

6(2J1+1)(2J1+2ρ2
1+1)(2J2+1)(2J2+2ρ2

2+1)(2J+1)(2J+2ρ2+1)

×(−1)−
ρ1+ρ2+ρ+1

2


Q1 Q̃1 1
Q2 Q̃2 1
Q Q̃ 1


(
Q1 Q2 Q

m1 m2 m

)(
Q̃1 Q̃2 Q̃

m̃1 m̃2 m̃

)
, (B.3)

FJ1M1κ1
J2M2κ2;JM = (−1)Ũ1+U2+J+ 1

2

√
(2J+1)(2J2+1)(2J2+2)

×CU1,m1
U2,m2;J,mC

Ũ1,m̃1
Ũ2,m̃2;J,m̃

{
U1 Ũ1

1
2

Ũ2 U2 J

}
, (B.4)

GJ1M1κ1
J2M2κ2;JMρ = (−1)

ρ
2

√
6(2J2+1)(2J2+2)(2J+1)(2J+2ρ2+1)

×CU1,m1
U2,m2;Q,mC

Ũ1,m̃1
Ũ2,m̃2;Q̃,m̃


U1 Ũ1

1
2

U2 Ũ2
1
2

Q Q̃ 1

 , (B.5)

where we defined the quantities

U ≡ J+ κ+ 1
4 , Ũ ≡ J+ 1− κ

4 , Q ≡ J+ ρ(ρ+ 1)
2 , Q̃ ≡ J+ ρ(ρ− 1)

2 , (B.6)

with the labels running over κ = ±1/2 and ρ ∈ {−1, 0, 1}.

B.2 Interacting Hamiltonian of N = 4 SYM upon spherical expansion

We list the full interacting Hamiltonian of N = 4 SYM derived upon performing spherical
expansion, before restricting to any near-BPS limit. The computation was presented in
reference [71], but here we report the result using a notation consistent with our conventions
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for the fields. In order to obtain a more compact expression, we use the definition

(Za)JM ≡

 (Φ1)JM
(−1)m−m̃(Φ†2)J,−M
(−1)m−m̃(Φ†3)J,−M

 , (B.7)

(ΨA)J,M,κ=1 ≡ (ψ†A)J,−M,κ=1 , (ΨA)J,M,κ=−1 ≡ (ψA)J,M,κ=−1 . (B.8)

The origin for this choice resides in the comparison between the conventions adopted in [71]
and in appendix B of [14]. In this way, the interacting Hamiltonian reads:

Hint =
∑

Ji,Mi,κi,ρi

tr
{
igCJ2M2

J1M1;JM χJM ([(Z†a)J2M2 , (Π†a)J1M1 ] + [(Za)J1M1 , (Πa)J2M2 ])

− 4g
√
J1(J1 + 1)DJ2M2

J1M10;JMρA
JM
(ρ) [(Za)J1M1 , (Z†a)J2M2 ]

+ gFJ1M1κ1
J2M2κ2;JM χJM{(Ψ†A)J1M1κ1 , (ΨA)J2M2κ2}

+ gGJ1M1κ1
J2M2κ2;JMρA

JM
(ρ) {(Ψ

†
A)J1M1κ1 , (ΨA)J2M2κ2}

+ g2

2 C
J2M2
J1M1;JMC

J3M3
J4M4;JM [(Za)J1M1 , (Z†a)J2M2 ][(Zb)J3M3 , (Z

†
b )J4M4 ]

−
√

2ig(−1)−m1+m̃1+κ1
2 FJ1,−M1,κ1

J2M2κ2;JMΨ4
J2M2κ2 [(Za)JM , (Ψa)J1M1κ1 ]

+
√

2ig(−1)−m1+m̃1+κ1
2 FJ1,−M1,κ1

J2M2κ2;JM εabc(Ψa)J1M1κ1 [(Z†b )
JM , (Ψc)J2M2κ2 ]

+
√

2ig(−1)m2−m̃2+κ2
2 FJ1M1κ1

J2,−M2,κ2;JM (Ψ†4)J2M2κ2 [(Z†a)JM , (Ψ†a)J1M1κ1 ]

−
√

2ig(−1)m2−m̃2+κ2
2 FJ1M1κ1

J2,−M2,κ2;JM εabc(Ψ†a)J1M1κ1 [(Zb)JM , (Ψ†c)J2M2κ2 ]

+ igDJMJ1M1ρ1;J2M2ρ2 χJM [ΠJ1M1
(ρ1) , AJ2M2

(ρ2) ]

+ g2CJMJ2M2;J4,−M4DJM ;J1M1ρ1;J3M3ρ3 [AJ1M1
(ρ1) , (Za)J2M2 ][AJ3M3

(ρ3) , (Z†a)J4M4 ]

+ 2igρ1(J1 + 1)EJ1M1ρ1;J2M2ρ2;J3M3ρ3A
J1M1
(ρ1) [AJ2M2

(ρ2) , AJ3M3
(ρ3) ]

− g2

2 D
JM
J1M1ρ1;J3M3ρ3DJM ;J2M2ρ2;J4M4ρ4 [AJ1M1

(ρ1) , AJ2M2
(ρ2) ][AJ3M3

(ρ3) , AJ4M4
(ρ4) ]

− 2g
√
J1(J1 + 1)DJ2M2;J1M10;JMρ χJ1M1 [χJ2M2 , A

JM
(ρ) ]

+ g2

2 C
JM
J1M1;J3M3DJM ;J2M2ρ2;J4M4ρ4 [χJ1M1 , A

J2M2
(ρ2) ][χJ3M3 , A

J4M4
(ρ4) ]

+ g2CJMJ1M1;J2M2CJM ;J3M3;J4M4 [χJ1M1 , (Za)J2M2 ][χJ3M3 , (Z†a)J4M4 ]
}
.

(B.9)
We add few comments on the notation:

• The overall summation over the contracted indices involves momenta (J,M), labels
for fermions (κ) and gauge fields (ρ), and indices a,A of the various fields under SU(4)
R-symmetry.
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• The fermions summed in the Yukawa term run over a ∈ {1, 2, 3} and the corresponding
Levi-Civita symbol is defined in such a way that ε123 = 1.

• Πa are the canonical momenta associated to the scalar fields Φa, while Π(ρ) is the
symplectic partner of the gauge field A(ρ).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
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