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Evolutionary algorithm for the estimation of
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Abstract: The expectation-maximization (EM) algorithm is the most common
iterative method employed for maximum likelihood estimation of discrete latent
variable models. A common drawback of this estimation method, along with its
variant named variational EM (VEM), is that it may be trapped into one of the
multiple local maxima of the log-likelihood function. We propose a version of the
algorithm based on the evolutionary approach, which allows us to explore the
parameter space accurately. The proposal is validated through a Monte Carlo
simulation study aimed at comparing its performance with the EM and VEM al-
gorithms by estimating latent class, hidden Markov, and stochastic block models.
Results show a significant increase in the chance of reaching a global maximum
for the proposed evolutionary EM. The efficacy of the proposal is also validated
by applications using longitudinal data on countries’ energy production and in-
teractions between karate club members.

Keywords: Expectation-maximization algorithm; Global optimization; Local
maxima; Maximum likelihood estimation.

1 Introduction

Discrete latent variable (DLV) models have attracted much attention in
statistical literature since they are formulated according to latent variables
having a discrete distribution left unspecified. Among others, they ensure
a high degree of flexibility in modelling complex dependence data struc-
tures (Bartolucci et al., 2022). Maximum likelihood estimation of DLV
models is usually performed through the expectation-maximization (EM)
algorithm (Dempster et al., 1977). When the latter approach is computa-
tionally unfeasible, a variational modification, namely the variational EM

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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(VEM) algorithm (Jordan et al., 1999), represents a popular alternative.
A well-known drawback of both estimation methods is related to the mul-
timodality of the likelihood function, resulting in a potential convergence
of the algorithm to a local maximum. We propose an extension of the EM
algorithm named evolutionary EM (EEM), defined according to the evolu-
tionary algorithm (EA) approach (Ashlock, 2004). At each step of the EEM
algorithm, multiple sets of parameters are evaluated according to a qual-
ity measure, while evolutionary operators, such as crossover and mutation,
ensure an accurate parameter space exploration.

2 Discrete latent variable framework

The key idea of DLV models is to associate observed responses to latent
variables according to a joint probability model. Denoting by Y and U the
sets of observed responses and latent variables, respectively, a DLV model
is characterized by the conditional distribution of the responses given the
latent variables, and by the distribution of the latent variables.
The EM algorithm maximizes the observed-data log-likelihood function
ℓ(θ), expressed in terms of model parameters θ, relying on the complete-
data log-likelihood function ℓ∗(θ). Once the model parameters have been
initialized, the algorithm alternates two steps until convergence: (i) an ex-
pectation step, where the conditional expected value of ℓ∗(θ) is computed
given the value of the parameters at the previous step and the observed
data, and (ii) a maximization step, where the model parameters are up-
dated by maximizing the expected value of ℓ∗(θ).
The VEM algorithm defines instead a lower bound J (θ) for the observed-
data log-likelihood function, to be maximized instead of ℓ(θ). To explore
the parameter space, the choice of multiple sets of starting values for the
model parameters is crucial. The maximum is then taken as the solution
corresponding to the largest likelihood value at convergence. Drawbacks
of this strategy are the high computational time and the fact that the
convergence may be to one of local maxima different from the global one.

3 Evolutionary expectation-maximization algorithm

Following the EA approach, the proposed EEM algorithm is inspired by
the Darwinian theory of evolution principles. According to Pernkopf and
Bouchaffra (2005), it takes into account an initial “population” P0 of NP
potential solutions for the optimization problem at issue. Each element of
P0 is a different candidate array of posterior probabilities. The following
steps are then alternated until convergence:

1. P1 ← Update(P0): population P0 is updated by performing a small
number of cycles of the standard EM algorithm with random initial-
ization on each individual, resulting in a new population P1.
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2. P2 ← Crossover(P1): pairs of individuals from population P1 are
randomly selected and recombined by swapping corresponding blocks
of their arrays. We obtain the NO offspring of the new population P2.

3. P3 ← Update(P2): population P2 is updated by performing a small
number of cycles of the standard EM algorithm with random initial-
ization on each individual, resulting in the new population P3.

4. P4 ← Selection(P1 ∪ P3): individuals from populations P1 and P3

are considered jointly, and the NP with the highest value of the log-
likelihood function are selected for the next generation P4.

5. P5 ← Mutation(P4): variation is introduced to each individual of
population P4 (apart from the best one): given a row of the corre-
sponding array of posterior probabilities, mutation operator swaps
the highest value with a random one.

Convergence of the EEM algorithm is measured focusing only on the best
solution of population P4 and analyzing both the relative difference of the
log-likelihood of two consecutive steps and that between the corresponding
parameter vectors.

4 Simulation studies

To evaluate the performance of the EEM algorithm, we rely on a Monte
Carlo simulation study considering latent class (LC), hidden Markov (HM-
cat and HMcont for categorical and continuous response variables, respec-
tively), and stochastic block (SB) models. This study is based on differ-
ent scenarios for each model, depending on several features: sample size
(n = 500, 1000), number of response variables (r = 6, 12), response cat-
egories (c = 3, 6), time occasions (T = 5, 10), and latent components
(k = 3, 6). Concerning the SB model we also distinguish two different
behaviors: one defined as assortative with high intra-group and low inter-
group connection probabilities and the other as disassortative with low
intra-group and high inter-group probabilities. For each scenario the corre-
sponding model is applied 100 times to 50 samples using the EM and EEM
algorithms. Both correctly specified and misspecified latent structures are
estimated in order to compare the performance of the algorithms through
the following criteria.

Global maximum achievement: considering the highest of the max-
imized log-likelihood values as the global maximum ℓ̂Max, we denote a
generic log-likelihood value at convergence as ℓ̂ and compute the percentage
of ℓ̂ such that (ℓ̂MAX − ℓ̂)/|ℓ̂MAX | < ε̃, where ε̃ is a suitable threshold. The
EEM algorithm performs better in each simulated scenario, significantly
increasing the chance to reach the global maximum. Some results of 2 of
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FIGURE 1. Percentages of global maxima reached using EM and EEM algo-
rithms for (i) a correctly specified LC model with n = 500, r = 6, c = 3, and
k = 6, and (ii) a misspecified HMcont model with n = 500, r = 12, T = 5, and
k = 3.

the 22 simulated scenarios are depicted in Figure 1. In particular, regard-
ing the estimation of models whose latent structure is correctly specified,
the frequency of convergence to the global mode is usually very close to
100%, highlighting that it generally tends to avoid convergence to a local
maximum of ℓ(θ). The results of the extensive simulation study highlight
that the proposal always outperforms the EM algorithm; the improvement
is especially evident with many latent components and under scenarios re-
lated to the SB model. Its performance is even more remarkable considering
models with misspecified latent structures. In this case, while the standard
EM algorithm sometimes proves unable to locate the global maximum, the
evolutionary approach is always able to correctly detect it, improving the
value itself of the global mode, in addition to the chance to reach it.

Average distance from the global maximum: using the EEM algo-
rithm, the distance between each maximum and the global one is quite
low for all the examined scenarios. The average distance obtained through
the EM algorithm is usually considerably higher. We mention for instance
one scenario of the LC model in which the average distance decreases from
4.7 · 10−7 using the EM algorithm to 2.5 · 10−18 using the EEM algorithm.
In scenarios related to the HMcat model the distance is still reduced by
half with the EEM algorithm, dropping, for example, from 1.2 · 10−3 to
6.8 · 10−4.

Accurate parameters estimation: dealing with correctly specified mod-
els, we also provide the root mean square error (RMSE) between the true
and estimated model parameters. Results show the RMSEs obtained with
the EEM algorithm are very close to zero under all the simulated scenarios;
on the contrary, values obtained with the EM algorithm are always larger,
approaching one in some cases. This shows that the evolutionary approach
entails a significantly greater accuracy. In particular, the improvement is
especially evident when the HMcont and SB models are estimated.
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5 Applications

The EEM algorithm is also evaluated to estimate LC, HMcat, HMcont,
and SB models with cross-sectional, longitudinal, and network data.
In the following, as a first application, we use longitudinal data measuring
the sources of electricity generation in 27 European Union countries (data
are available at the link https://ourworldindata.org/energy). A multivari-
ate time homogeneous HMcont model is considered for response variables
collected yearly from 2011 to 2020 and referred to the share of electricity
deriving from biofuel, coal, natural gas, hydroelectric, nuclear, oil, solar,
and wind. Logit and Box-Cox transformations are applied to all the vari-
ables. The model is estimated for a number of states ranging from 1 to
12 with both the EM and EEM 100 times. A model with 8 latent states
representing sub-populations of countries with similar energetic behaviour
is selected according to the Bayesian information criterion. The EEM al-
gorithm ensures convergence to the global maximum, corresponding to a
value of the log-likelihood function equal to −5, 452. The EM algorithm
never detects such a maximum, providing −5, 574 as the highest value for
the log-likelihood function at convergence. The estimation with the EEM
also provides a reasonable posterior dynamic classification of the countries
into groups, while EM does not. Table 1 reports the estimated conditional
means of the responses given the latent state. Groups are ordered from
the lowest to the highest average value of wind power. Countries in the
1st group are using mainly nuclear power, in the 2nd are predominantly
coal-dependent, in the 3rd heavily rely on oil, in the 4th they use a mix of
coal, oil and gas, along with the highest average of solar energy. Countries
in the 5th state are using mainly gas, in the 6th they use gas and a quota
of biofuel over all the other groups, in the 7th they excels in hydroelec-
tric power, and in the 8th they use mainly wind energy along with nuclear
power.
As a second application, we estimate the SB model with network data on
34 karate club members (data are available in the R package igraphdata).

TABLE 1. Estimated means of the HMcont model with k = 8 latent states for
the European Union countries electricity data.

Latent states

Source 1 2 3 4 5 6 7 8

Coal 5.58 41.91 4.52 38.52 14.86 0.00 20.57 15.10
Oil 3.62 2.85 51.80 10.77 6.62 3.97 3.55 3.04
Gas 5.34 12.24 7.20 24.53 57.43 44.52 21.06 19.87
Nuclear 50.21 19.96 0.00 0.00 1.42 0.00 13.20 31.94
Biofuel 7.68 4.55 4.77 0.53 3.17 12.35 2.92 9.65
Hydro 22.12 9.85 24.50 8.96 1.12 21.16 19.05 0.39
Solar 0.90 3.41 1.70 6.62 2.51 3.34 2.89 2.48
Wind 4.52 4.87 5.48 10.08 12.87 14.66 16.63 17.53
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FIGURE 2. Graph visualization with nodes colored by estimated partition for
the SB model with k = 6 latent blocks for the karate club data.

Relationships among members are measured by a 34×34 adjacency binary
matrix. Using the EEM algorithm, an SB model with k = 6 latent blocks is
selected according to the integrated classification likelihood criterion. The
EEM algorithm consistently converges to a log-likelihood function value
equal to −277.91; if the model is estimated with the EM algorithm its
highest value is −316.46. Figure 2 shows the network with nodes colored
by the estimated partition. The model correctly identifies positions taken
for president (A, in blue) or instructor (H, in violet). The faction led by the
president consists of a single additional latent block (in red), presenting a
high connection probability with its leader (equal to 0.75). The remaining
three latent blocks (depicted in pink, green, and yellow) constitute the
faction led by the instructor; each of these blocks has a high connection
probability with their leader (equal to 0.81, 1.00, and 1.00, respectively).
Connection probabilities between blocks of different factions are very low
(0.17 at most).
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