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Introduction
Equational division of chromosomes to the daughter cells in  
mitosis is essential for cell viability. Kinetochores, which are pro-
tein assemblies built on the centromeric region of chromosomes, 
are crucial for this process (for reviews see Cheeseman and  
Desai, 2008; Santaguida and Musacchio, 2009). In mammals, 
100 different proteins populate mitotic kinetochores. A subset 
of these is required to form end-on, load-bearing attachments 
between chromosomes and spindle microtubules that are ulti-
mately responsible for sister chromatid separation at anaphase. 
Kinetochores also regulate a feedback control mechanism, named 
the spindle assembly checkpoint, which synchronizes cell cycle 
progression with the progression of chromosome attachment to  
the spindle. Furthermore, kinetochores are responsible for the 

correction of improper kinetochore–microtubule attachments. 
They achieve this by preventing premature stabilization of in
correct attachments, followed by their clearance (for review see 
Santaguida and Musacchio, 2009).

The core structural components of kinetochores, as well as 
those responsible for the spindle checkpoint and error correction, 
are conserved from yeast to humans (for review see Santaguida 
and Musacchio, 2009), suggesting that the building plan of kineto
chores is largely conserved in evolution. However, kinetochores 
in different organisms display dramatic variations in complexity. 
The simplest kinetochores are found in Saccharomyces cerevi-
siae (Westermann et al., 2007). In this organism, centromeres 
consist of 150 bp of DNA organized in a specialized centromeric 
nucleosome containing the histone H3 variant CENP-A (Cse4 in 
S. cerevisiae). These simple centromeres, known as point centro-
meres, assemble kinetochores that bind a single microtubule.  
In higher eukaryotes, centromeres usually take the form of regional 

Kinetochores are nucleoprotein assemblies responsi­
ble for the attachment of chromosomes to spindle 
microtubules during mitosis. The KMN network,  

a crucial constituent of the outer kinetochore, creates an 
interface that connects microtubules to centromeric chro­
matin. The NDC80, MIS12, and KNL1 complexes form the  
core of the KMN network. We recently reported the struc­
tural organization of the human NDC80 complex. In this 
study, we extend our analysis to the human MIS12 com­
plex and show that it has an elongated structure with a long 

axis of 22 nm. Through biochemical analysis, cross- 
linking–based methods, and negative-stain electron mi­
croscopy, we investigated the reciprocal organization of  
the subunits of the MIS12 complex and their contacts with 
the rest of the KMN network. A highlight of our findings  
is the identification of the NSL1 subunit as a scaffold  
supporting interactions of the MIS12 complex with the 
NDC80 and KNL1 complexes. Our analysis has important 
implications for understanding kinetochore organization in 
different organisms.
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subunit of the KNL1C, is required for kinetochore recruitment  
of checkpoint components such as BUB1 and possibly BUBR1  
and interacts stably with ZWINT (Table S1; Desai et al., 2003; 
Nekrasov et al., 2003; Kiyomitsu et al., 2007; Pagliuca et al., 
2009; Schittenhelm et al., 2009).

The KMN network is essential for forming load-bearing, 
end-on attachments (e.g., Desai et al., 2003; McCleland et al., 2003; 
DeLuca et al., 2005, 2006; Cheeseman et al., 2006; Vorozhko  
et al., 2008). Each microtubule-binding site may contain from six 
to eight KMN complexes (Joglekar et al., 2006, 2008; Johnston  
et al., 2010). We only have a rudimentary understanding of how 
these complexes are deposited at kinetochores. Although NDC80C 
and KNL1 are absent from interphase kinetochores, MIS12C re-
sides there (Obuse et al., 2004; Hemmerich et al., 2008). CENP-C, 
which partially copurifies with KMN network subunits in prote
omic analyses and is required for kinetochore recruitment of 
MIS12C subunits, may be involved in recruiting MIS12C to inter-
phase kinetochores (e.g., Desai et al., 2003; Westermann et al., 
2003; Cheeseman et al., 2004; Liu et al., 2006; Okada et al., 2006; 
Kwon et al., 2007; Milks et al., 2009). Although MIS12 cycles on 
interphase kinetochores with a relatively rapid half-time (7 s), it 
becomes stably associated with kinetochores in mitotic prophase 
(Hemmerich et al., 2008), together with NDC80C and KNL1C 
(Obuse et al., 2004; Hemmerich et al., 2008). Exactly how these 
proteins become recruited to kinetochores is currently unclear.

The mutual arrangement of kinetochore subunits is being 
actively investigated though super-resolution light microscopy 
approaches (Schittenhelm et al., 2007; Joglekar et al., 2009; Liu 
et al., 2009; Maresca and Salmon, 2009; Uchida et al., 2009; 
Wan et al., 2009; Ribeiro et al., 2010). Supported by this infor-
mation, and by an increasingly complete census of kinetochore 
subunits and their interactions, we started an effort of biochemi-
cal reconstitution of human kinetochores, aiming to unravel their  
structure and overall organization. In this study, we report the 
results of our efforts on the human KMN network.

Results
Reconstitution of MIS12C
In preliminary experiments, we reconstituted NNF1–MIS12 and 
NSL1–DSN1 subcomplexes (unpublished data), in agreement 
with a previous analysis of binary interactions of MIS12C sub-
units by the yeast two-hybrid method (Kiyomitsu et al., 2007). 
These initial attempts toward reconstituting MIS12C suggest the 
existence of tight and discrete binary intersubunit interfaces 
within the MIS12C. However, the resulting recombinant sub-
complexes were only moderately soluble and stable. To reconsti-
tute the entire human MIS12C, we resorted to coexpression in 
Escherichia coli from the pST39 vector (Tan et al., 2005). Affin-
ity purification from bacterial lysates through a hexahistidine tag 
on the DSN1 subunit, and additional chromatographic steps, led 
to the purification of an apparently monodisperse sample (un-
published data). The NSL1 subunit underwent slow spontaneous 
proteolysis during purification and subsequent storage. By lim-
ited proteolysis, we determined that the C-terminal region of  
NSL1 is unstable (in the absence of binding partners; the tail  
becomes stabilized in the presence of KNL1, as shown in the  

centromeres: they extend over very large segments of DNA, up to 
several million base pairs, and display no univocal relationship 
between DNA sequence and kinetochore assembly. Kinetochores 
formed on regional centromeres usually bind multiple micro
tubules, from 3 in Schizosaccharomyces pombe to 15–30 in 
humans (for review see Santaguida and Musacchio, 2009).

Kinetochores on regional centromeres appear as trilaminar 
plates, with electron-opaque inner and outer plates and a translu-
cent middle layer. The inner plate rests on compact centromeric 
heterochromatin containing specialized CENP-A and H3 nucleo-
somes. Both types of nucleosomes are required for kinetochore 
assembly, but their reciprocal organization is unclear (Hori et al., 
2008). The constitutive centromere-associated network (CCAN; 
also known as NAC/CAD) is a set of 14–15 proteins originally 
identified for their physical proximity to CENP-A (Foltz et al., 
2006; Okada et al., 2006; Amano et al., 2009; Carroll et al., 2009). 
However, certain CCAN components, including CENP-T and 
CENP-W, bind preferentially on H3 nucleosomes (Hori et al., 
2008). CENP-C, a conserved kinetochore protein, also associates 
with H3 and CENP-A nucleosomes, possibly creating a link be-
tween them (Ando et al., 2002; Talbert et al., 2004; Cohen et al., 
2008; Erhardt et al., 2008; Hori et al., 2008; Milks et al., 2009; 
Trazzi et al., 2009; Carroll et al., 2010).

The outer kinetochore contains components required for 
end-on microtubule attachment. The NDC80 complex (abbrevi-
ated as NDC80C, where C, for complex, is used to distinguish the 
complex from one of its subunits, the NDC80 subunit) and the 
Dam1 complex are crucial for kinetochore–microtubule attach-
ment (for review see Cheeseman and Desai, 2008). The Dam1 
complex, which has only been identified in yeasts, may act as a 
processivity factor at the kinetochore–microtubule interface, pos-
sibly but not exclusively through the formation of a ring around 
microtubules (Miranda et al., 2005; Westermann et al., 2005; 
Gestaut et al., 2008; Lampert et al., 2010; Tien et al., 2010).

The four-subunit NDC80C is conserved in evolution 
(Wigge and Kilmartin, 2001; see Fig. 1 A for a schematic repre-
sentation of its subunits; Table S1 shows the nomenclature of 
subunits in different species). It has the shape of a 57-nm-long 
dumbbell, and it connects to the kinetochore through the terminal 
globular regions of the SPC24 and SPC25 subunits (Ciferri et al., 
2005, 2008; Wei et al., 2005, 2006, 2007; Cheeseman et al., 2006; 
DeLuca et al., 2006; Wang et al., 2008; Wilson-Kubalek et al., 
2008). At the opposite end, a tight arrangement of two calponin 
homology domains in the NDC80 and NUF2 subunits creates an 
interface for microtubules that is further regulated by a disordered 
tail in NDC80 (DeLuca et al., 2006; Wei et al., 2007; Ciferri  
et al., 2008).

NDC80C is part of a conserved arrangement of interacting 
subcomplexes, now generally referred to as the KMN network 
(De Wulf et al., 2003; Desai et al., 2003; Nekrasov et al., 2003; 
Pinsky et al., 2003; Westermann et al., 2003; Cheeseman et al., 
2004, 2006; Obuse et al., 2004; Emanuele et al., 2005; Kops  
et al., 2005; Liu et al., 2005; Kline et al., 2006; Przewloka et al., 
2007; Welburn et al., 2010). Besides NDC80C, the KMN net-
work contains the four-subunit MIS12 complex (MIS12C; also 
known as the MIND complex or Mtw1 complex; Table S1) and 
the two-subunit KNL1 complex (KNL1C; Fig. 1 A). KNL1, a 
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Figure 1.  Reconstitution and structural analysis of human MIS12C. (A) Schematic representation of the components of the MIS12C, NDC80C, and 
KNL1C. Coiled-coil (CC) predictions calculated with program COILS (Lupas et al., 1991) are shown exclusively for subunits with partial or complete coiled-
coil content. Alternate names in humans are indicated. Hs, Homo sapiens. (B) Size-exclusion chromatography run of recombinant MIS12CNSL1-258 with 
corresponding SDS-PAGE separation stained with Coomassie brilliant blue. The molecular mass of the recombinant complex is 120 kD, but the protein 
elutes earlier than expected for a globular protein of equivalent molecular mass, suggesting that it is an oligomer or that it is elongated. The dashed gray 
line and numbers indicate elution markers in the size-exclusion chromatography experiments and their molecular masses (in kilodaltons), respectively.  
a.u., arbitrary unit. (C) Negative-stain EM was performed on the recombinant MIS12CNSL1-258. The maximum length of the complex varies between 21 and 23 nm  
depending on the curvature. The maximum thickness of the rodlike structures is 3 nm. (D) The class averages represent the characteristic views of the 
MIS12C and reveal a varying amount of curvature. Bars: (C) 10 nm; (D) 5 nm.
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protected against proteolysis in the complex of MIS12C with  
KNL12106–2316, further implicating the NSL1 C-terminal tail in this 
interaction. Collectively, these results suggest that the C-terminal 
region of NSL1 (whose sequence is displayed in Fig. 2 D) is  
necessary for high-affinity binding to KNL1.

KNL12106–2316 and a construct encompassing the C-terminal 
tail of NSL1 (NSL1227–281) coeluted in a complex from a size-
exclusion chromatography column (Fig. 2 E). By isothermal 
titration calorimetry (ITC), we determined that these species 
bind each other with a Kd of 63 nM. Nevertheless, the 
KNL12106–2316–NSL1227–281 complex does not fully recapitulate the 
interaction of KNL12106–2316 with MIS12C, as we have evidence 
that the overall binding affinity of KNL12106–2316 for MIS12C is 
significantly higher (although the instability of the C-terminal 
tail of NSL1 in the absence of binding partners prevented us from 
measuring it directly). For instance, the KNL12106–2316–NSL1227–281 
complex dissociates when loaded onto a strong anion-exchange 
column, probably because of the strongly electrostatic character 
of the interaction (NSL1227–281 has an isoelectric point [pI] of 
10.5, whereas KNL12106–2316 has a pI of 4.5). Conversely, the 
KNL12106–2316–MIS12C complex resists this treatment (unpub-
lished data). As our cross-linking analysis suggests that the  
C-terminal region of NSL1 makes several contacts with the 
DSN1 subunit (Fig. 2 C), additional binding contacts from DSL1 
to KNL1 may increase the overall binding affinity.

Direct binding of MIS12C to NDC80C
Next, we asked whether MIS12C interacts directly with NDC80C 
or whether this interaction requires KNL1. We purified a homo-
geneous form of the four-subunit NDC80C (whose organization is  
schematically presented in Fig. 3 A) after coexpression of its sub
units in insect cells (Fig. 3 C). We then mixed MIS12CNSL1-258 with  
NDC80C in approximately stoichiometric amounts and separated 
the resulting species by size-exclusion chromatography (Fig. 3 C). 
We observed the formation of a high–molecular weight com-
plex containing all eight subunits, indicating that MIS12CNSL1-258  
and NDC80C enter a tight binary complex in the absence of KNL1. 
A more extensive C-terminal deletion of NSL1 (MIS12CNSL1-227) 
was also compatible with the interaction with NDC80C (Fig. 3 D). 
Thus, the KNL1-binding region of NSL1 is not required for high-
affinity binding of MIS12C to NDC80C.

In agreement with previous analyses showing that the  
kinetochore-binding domain of NDC80C resides in the SPC24–
SPC25 subcomplex (see Introduction), the dimeric constructs  
SPC2457–197–SPC2570–224 and SPC24104–197–SPC2599–224 also bound  
MIS12C tightly (Fig. 3 E and Fig. S1 A). By ITC, we found similar  

next section). Therefore, we created new versions of recombinant  
MIS12C containing C-terminally deleted NSL1. An MIS12C 
containing a proteolytically stable segment of NSL1 consisting 
of residues 1–258 (NSL1258), which we refer to as MIS12CNSL1-258, 
was stable (Fig. 1 B).

Hydrodynamic analysis by sedimentation velocity analyti-
cal ultracentrifugation (AUC) indicated that MIS12CNSL1-258 forms 
an elongated structure in which each subunit is represented once 
(Table I). The elongated shape of MIS12C also explains preco-
cious elution of the MIS12CNSL1-258 complex in size-exclusion 
chromatography, which separates based on the samples’ Stokes 
radius (Fig. 1 B).

Negative-stain EM returned nicely contrasted images of re-
combinant MIS12CNSL1-258, revealing an elongated, 21–23-nm rod 
with a diameter of 3 nm (Fig. 1 C). Subsequent calculation of 
class averages by alignment and classification identified four dis-
tinct consecutive elements of density (Fig. 1 D), possibly organized 
in variations of a slightly arched arrangement. In some views, the 
last element of density, at one end of the rod, displayed two distinct 
appendices emanating from a central globular structure.

Direct binding of MIS12C to KNL1
The C-terminal region of KNL1 has been recently implicated in 
binding to MIS12C and in kinetochore recruitment of KNL1 
(Kiyomitsu et al., 2007). To test whether the C-terminal region 
of KNL1 binds MIS12C directly, we coexpressed full-length 
MIS12C with residues 2106–2316 of KNL1 (KNL12106–2316). 
This resulted in the purification of a tight and apparently stoi-
chiometric five-subunit complex (Fig. 2 A). Thus, KNL12106–2316 
is sufficient for high-affinity binding to MIS12C.

To identify sites of intersubunit contacts, we submitted the 
five-subunit MIS12C–KNL12106–2316 complex to a previously de-
scribed cross-linking method (Fig. 2 B; Maiolica et al., 2007).  
In brief, the method exploits the ability of the isotope-labeled BS2G 
(bis[sulfosuccinimidyl]glutarate) to cross-link the primary amine 
of lysines (K) within a distance compatible with the length of the 
cross-linker (7.7 Å). Besides several intrasubunit cross-links, we 
also identified several intersubunit cross-links, including con-
tacts between MIS12 and DSN1, MIS12 and NSL1, and between 
DSN1 or KLN12106–2316 and the C-terminal tail of NSL1 (Fig. 2 C 
and Table S2). Specifically, cross-links between K268 or K275 
in the C-terminal region of NSL1 and K2221 in KNL12106–2316 
implicate the proteolytically sensitive C-terminal region of NSL1 
in the interaction with KNL1 (Fig. 2 C). This possibility is also 
consistent with the inability of MIS12CNSL1-258 to bind KNL1 
(see Fig. 7 C and not depicted). Moreover, the NSL1 subunit was 

Table I.  Sedimentation velocity AUC

Construct Predicted  
molecular mass

Observed  
molecular mass

Stoichiometry Sedimentation  
coefficient

Frictional  
coefficient (f/f0)

kD kD S
MIS12CNSL1-258 116.9 115.1 1:1:1:1 4.08 2.079
MIS12CNSL1-258 + SPC2457–197–SPC2570–224 151.3 160 1:1:1:1:1:1 4.65 2.26
MIS12CNSL1-258 + HP1 161.3 158 1:1:1:1:2 4.84 2.17
SPC2457–197–SPC2570–224 34.4 36 1:1 2.46 1.59
HP1 44.4 45.7 Homodimer 2.69 1.7
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Figure 2.  The C-terminal domain of KNL1 interacts directly with MIS12C. (A) Size-exclusion chromatography analysis demonstrates that MIS12C  
and KNL12106–2316 form a stoichiometric complex. (B) Cross-linking analysis. In lanes 1–3, 5 nmol, 11 nmol, or 22 nmol BS2G was added, respectively. 
(C) Summary of identified intersubunit cross-links. The full list of cross-links is listed in Table S2. (D) Multiple sequence alignment of the C-terminal regions of 
NSL1 from different species. The two red dots indicate residues that were mutated into glutamic acid (E) in the NSL1EE mutant. (E) Size-exclusion chroma-
tography analysis on the interaction of KNL12106–2316 with a construct encompassing residues 227–281 of the NSL1 subunit of the MIS12C. Elution profile 
of KNL12106–2316 (top), NSL1227–281 (middle), and of a stoichiometric combination of KNL12106–2316 and NSL1227–281 (bottom). (A and E) Dashed gray lines 
and numbers indicate elution markers in the size-exclusion chromatography experiments and their molecular masses (in kilodaltons), respectively. (F) ITC 
on the KNL12106–2316–NSL1227–281 interaction reveals a Kd of 130 nM and a stoichiometry of 1:1.
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HP1 is recruited to centromeric heterochromatin in an Suv39h-
dependent manner (Peters et al., 2001) and may have a role  
in the recruitment of MIS12 to the centromere during inter-
phase (Obuse et al., 2004). To test whether HP1 binds MIS12C  
directly, we performed a size-exclusion chromatography analy-
sis on stoichiometric combinations of these proteins and found 
that HP1- coeluted with MIS12C (Fig. 4 A).

HP1- forms homodimers. Each HP1 subunit consists of 
a chromodomain, which binds to methylated lysine 9 of histone 
H3, and of a chromoshadow domain, which is responsible for 
dimerization and for the interactions with binding partners con-
taining motifs conforming to the PXVXL consensus, where X 
is any amino acid (for review see Lomberk et al., 2006). In their  
dimeric configuration, the chromoshadow domain forms a shared 
groove that hosts a single PXVXL motif in either of two equivalent  

binding constants for the interaction of MIS12C with NDC80C 
or the SPC2457–197–SPC2570–224 subcomplex, both ranging near 
10 nM (Fig. 3 B). As determined by AUC, the MIS12C–
SPC2457–197–SPC2570–224 complex contains one copy of each sub-
unit (Table I). Recombinant MIS12C did not cosediment with 
taxol-stabilized microtubules, nor did it increase the affinity of 
NDC80C for microtubules (Fig. S1 B).

HP1- binds NSL1
HP1 (heterochromatin protein 1), a crucial component of cen-
tromeric heterochromatin (for reviews see Pidoux and Allshire, 
2005; Lomberk et al., 2006), has been identified as a binding 
partner of the KMN network in humans and flies and may par-
ticipate in directing MIS12C to the centromere in interphase 
(Obuse et al., 2004; Przewloka et al., 2007; Kiyomitsu et al., 2010). 

Figure 3.  Interaction of MIS12C with NDC80C. (A) Schematic representation of the NDC80C. (B) Binding curves were measured by ITC by titrating 
NDC80C (left) or SPC2457–197–SPC2570–224 (right) in a cell containing MIS12CNSL1-258. (C) Size-exclusion chromatography elution profiles and SDS-PAGE 
analysis of recombinant NDC80C expressed in, and purified from, insect cells (top), MIS12CNSL1-258 (middle), and their stoichiometric combination (bottom). 
(D) Elution profiles and SDS-PAGE analysis of NDC80C (top), MIS12CNSL1-227 (middle), and their stoichiometric combination (bottom). The MIS12CNSL1-227 
construct binds NDC80C. (E) As in C, but with the kinetochore-binding portion of NDC80C, the SPC2457–197–SPC2570–224 construct. (C–E) Dashed gray 
lines and numbers indicate elution markers in the size-exclusion chromatography experiments and their molecular masses (in kilodaltons), respectively.
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most if not all HP1- was displaced from MIS12CNSL1-258, and 
SPC2457–197–SPC2570–224 concomitantly shifted into the fast-
eluting MIS12CNSL1-258-containing peak (Fig. 4 B, middle gel). 
Thus, HP1- and NDC80C are competitive binders of MIS12C, 
suggesting that their binding sites on MIS12C partly coincide. 
To corroborate this idea, we combined SPC2457–197–SPC2570–224 
with MIS12CNSL1-258EE. No complex formed, which is in agree-
ment with the idea that HP1- and NDC80 share their binding 
site on MIS12 and that the NSL1 subunit is decisively impli-
cated in this interaction (Fig. 4 B, bottom gel).

By ITC, we determined that MIS12CNSL1-258 binds HP1- 
with a Kd of 72 nM (Fig. 4 C), a sevenfold lower binding affinity 
relative to that measured for the interaction with NDC80C  
or SPC2457–197–SPC2570–224 (Fig. 3 B). This may explain why 
SPC2457–197–SPC2570–224 effectively competes the binding of 
HP1- to MIS12C. We next asked whether the NSL1 segment 
containing the PVIHL motif was sufficient for HP1- or 
NDC80C binding. To this end, we generated fluorescein-labeled 
synthetic peptides encompassing residues 205–217 or 202–219 
of NSL1 (fluorescein-NSL1205–217 or fluorescein-NSL1202–219). 

orientations (Brasher et al., 2000). It has been noted that resi-
dues 209–213 of NSL1 contain a PVIHL motif that largely con-
forms to the PXVXL consensus (residues 209–213, Fig. 2 D; 
Kiyomitsu et al., 2010). To confirm the role of this motif in 
HP1- binding, we mutated it into PVEHE within the frame-
work of the MIS12CNSL1-258 complex (MIS12CNSL1-258EE).  
In agreement with the hypothesis that the PVIHL motif of NSL1 
is important for HP1- binding, MIS12CNSL1-258EE was unable  
to bind HP1- (Fig. 4 B, top gel). This result provides a direct 
biochemical confirmation of the recently described interaction 
of HP1 with NSL1 (Kiyomitsu et al., 2010). By AUC, we found 
that HP1 binds to the MIS12CNSL1-258 complex as a dimer, which 
is as expected for an interaction mediated by the chromoshadow 
domain of HP1 (Table I).

HP1 and NDC80 bind  
MIS12C competitively
Binding of HP1- to MIS12C was compatible with the pres-
ence of the KNL12106–2316 segment (unpublished data). However, 
when HP1- and SPC2457–197–SPC2570–224 were combined, 

Figure 4.  Interaction of MIS12C with HP1. (A) Size-exclusion chromatography elution profiles and SDS-PAGE analysis of MIS12CNSL1-258 (top), HP1- 
(middle), and their stoichiometric combination (bottom). (B) The MIS12CNSL1-258EE mutant does not bind HP1- (top). SPC2457–197–SPC2570–224 is also un-
able to bind MIS12CNSL1-258EE, indicating that the binding sites for HP1- and SPC2457–197–SPC2570–224 overlap, at least in part (middle). When HP1- and  
SPC2457–197–SPC2570–224 were combined in stoichiometric amounts with MIS12CNSL1-258, HP1- did not coelute with MIS12CNSL1-258, whereas SPC2457–197– 
SPC2570–224 was incorporated in a complex with MIS12CNSL1-258, suggesting that SPC2457–197–SPC2570–224 binds MIS12CNSL1-258 with higher affinity 
(bottom). (A and B) Dashed gray lines and numbers indicate elution markers in the size-exclusion chromatography experiments and their molecular masses 
(in kilodaltons), respectively. (C) ITC binding curve for the interaction of MIS12CNSL1-258 with HP1-. (D) Elution profile from a size-exclusion chromatography 
Superdex 75 PC 3.2/30 column of a fluorescein-labeled synthetic peptide encompassing residues 205–217 of NSL1 (fluorescein-NSL1205–217). The red 
trace reports absorbance (Abs) at 525 nm. Panels D through H were run under the same experimental conditions. (E) Elution profile of the chromoshadow 
domain of HP1-. (F) Elution profile of a mixture of the chromoshadow domain of HP1- and fluorescein-NSL1205–217 demonstrating a shift in the elution 
profile of the fluorescein-NSL1205–217 peptide. (G) Elution profile of SPC2457–197–SPC2570–224. (H) The SPC2457–197–SPC2570–224 construct does not coelute 
with the fluorescein-NSL1205–217 peptide, suggesting that this region of NSL1 is insufficient for high-affinity binding to NDC80C. (I) Summary of interactions 
presented in the figure. The position of the second binding site for SPC24–SPC24, indicated by a black curved segment, is actually on MIS12C, but not 
necessarily on the NSL1 subunit as shown. CD, chromodomain; CSD, chromoshadow domain.
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We also expressed a truncated form of NSL1 (NSL1258). 
Like NSL1EE, this mutant also localized normally to kinetochores. 
Upon expression of NSL1258, the kinetochore levels of KNL1 
were substantially reduced (Fig. 5, C and D), as expected based 
on our in vitro analysis. Overall, this analysis confirms that the 
C-terminal tail of NSL1 is a crucial determinant of kinetochore 
localization of KNL1 and NDC80.

Testing additional interactions within the 
KMN network
As a further step in the analysis of the KMN assembly, we asked 
whether the MIS12C–KNL12106–2316 complex interacted directly 
with NDC80C. Indeed, when mixed at equimolar concentrations, 
MIS12C–KNL12106–2316 and NDC80C became stoichiometrically 
engaged in a high–molecular weight complex (Fig. 6 A). By ITC, 
we measured a Kd of 4 nM for this interaction (Fig. 6 B), a value 
in range with those measured for the NDC80C–MIS12C inter
action in the absence of KNL1 (Fig. 3 B). Thus, KNL1, when  
bound to MIS12C, may not contribute significantly to the inter
action with NDC80C.

A possible problem arising from using ITC to measure the 
very tight interactions discussed in the previous paragraph is that 
relatively high concentrations of binding species are necessary, 
possibly leading to an underestimation of the binding affinity. Thus, 
although our ITC experiments clearly demonstrate that the inter
action of MIS12C and NDC80C is very high affinity, they may be 
unsuitable to distinguish an additional positive contribution from 
KNL1. Such a contribution may be predicted on the basis of a pre-
vious study of the Caenorhabditis elegans KMN network showing 
that KNL1 is required for the establishment of a tight interaction of 
NDC80C with MIS12C (Cheeseman et al., 2006).

To test a possible contribution of KNL1, we resorted to two 
additional experiments. First, we asked whether KNL12106–2316 and 
NDC80C were able to coelute from a size-exclusion chromatogra-
phy column. No shift was observed, suggesting that if an inter
action between NDC80C and KNL12106–2316 exists, it is low affinity 
(Fig. S1 C). Nevertheless, these species may be able to form a low-
affinity interaction, insufficient to allow the detection in a binary 
binding assay but sufficient to cause a dramatic increase of  
the overall binding affinity within the context of a positively co
operative binding mechanism in which multiple surfaces interact 
(Whitty, 2008). (The observation that the PVIHL motif of NSL1 is 
necessary but not sufficient for high-affinity binding of MIS12C 
and NDC80C is an excellent example for how a relatively small 
contribution to the binding energy can dramatically increase the 
overall binding affinity.) To expose such a contribution from 
KNL1, we asked whether the presence of KNL1 rescued lack of 
NDC80C binding by the MIS12CNSL1-258EE mutant. The rationale 
for this, illustrated in Fig. 6 C, is that if KNL1 contacts NDC80C  
directly, the binding energy provided by this additional inter
action, even if relatively small, may compensate for the decrease in  
binding affinity caused by mutations in the PVIHL motif of NSL1. 
Contradicting the hypothesis, the presence of KNL12106–2316 did  
not rescue the inability of NDC80C to bind MIS12CNSL1-258EE  
(Fig. 6 D). We conclude that if a connection between KNL1 and 
NDC80 exists in the human KMN, it must be of very modest 
strength, at least under the in vitro conditions of our experiments.

Using fluorescence anisotropy–based assays, we determined 
that these peptides bound the chromoshadow domain of HP1- 
with an affinity around 400–500 nM (Fig. S2 A), six- to seven-
fold lower than that measured by ITC for the MIS12CNSL1-258–
HP1- interaction. Overall, these observations indicate that the 
MIS12C–HP1- interaction is largely, although not exclusively, 
determined by the chromoshadow domain of HP1- and the 
NSL1205–217 segment.

In contrast, there was no binding of fluorescein-NSL1205–217  
or fluorescein-NSL1202–219 to SPC24104–197–SPC2599–224 (Fig. S2 B),  
suggesting that the binding site for NDC80C on MIS12C cannot 
be recapitulated by the isolated fluorescein-labeled NSL1205–217 
peptide. This conclusion was corroborated by size-exclusion chro-
matography coelution experiments. The fluorescein-NSL1205–217  
peptide, whose absorbance could be monitored at 525 nm, eluted as  
expected for its size from a size-exclusion chromatography col-
umn (Fig. 4 D). When combined with the HP1- chromoshadow 
domain (whose profile is shown in Fig. 4 E), part of fluorescein-
NSL1205–217 eluted with it, which is indicative of complex forma-
tion (Fig. 4 F). When the same experiment was performed with 
SPC2457–197–SPC2570–224 or SPC24104–197–SPC2599–224, no shift in 
the elution profile of fluorescein-NSL1205–217 was observed, sug-
gesting that the interaction is not strong enough for coelution from 
a size-exclusion chromatography column (Fig. 4, G and H; and 
Fig. S2, C and D). Because the SPC2457–197–SPC2570–224 or 
SPC24104–197–SPC2599–224 constructs bind tightly to MIS12C, we 
conclude that NSL1205–217 is necessary but not sufficient to bind 
SPC24–SPC25 and that other residues in MIS12C are required. 
Unfortunately, cross-linking analysis has been so far unable to 
identify such additional residues.

The C-terminal tail of NSL1 is required for 
kinetochore binding of NDC80 and KNL1
Collectively, our results point to the DSN1–NSL1 dimer as a  
crucial binding site for HP1, NDC80C, and KNL1C. Indeed, a 
recombinant DSN1–NSL1 dimer was sufficient to bind NDC80C 
or the C-terminal tail of KNL1 in vitro (Fig. 5 A). The NSL1  
C-terminal tail is crucially involved in the binding of NDC80C 
and KNL1, and NDC80C and HP1- are competitive binding part-
ners of NSL1. Recently, it has been proposed that the MIS12C–
HP1 interaction may be important for centromeric cohesion and 
for centromere recruitment of the chromosome–passenger com-
plex (Kiyomitsu et al., 2010). Our observation that HP1 and 
NDC80 bind to MIS12 competitively predicts that mutations in 
the HP1-binding site of NSL1 that prevent HP1 binding also pre-
vent NDC80 binding. To test this prediction in cells, we expressed 
the NSL1EE mutant in HeLa cells as a fusion to GFP. In agree-
ment with our in vitro observations, the GFP-NSL1EE mutant was 
unable to interact with endogenous NDC80, contrarily to wild-
type GFP-NSL1 (Fig. 5 B). However, the mutant localized nor-
mally to kinetochores (Fig. 5 C). As expected, its expression there 
largely reduced the amount of NDC80 at kinetochores (Fig. 5,  
C and D). Therefore, we suspect that the recently described mitotic 
phenotype caused by the expression of the NSL1EE mutant in 
HeLa cells (Kiyomitsu et al., 2010) may also reflect a defect in 
the localization of NDC80, rather than being exclusively a conse-
quence of the mislocalization of HP1.
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constructs was observed, suggesting that ZWINT does not bind 
directly to MIS12C or NDC80C (Fig. 7, A and B). We then 
tested whether ZWINT bound KNL12106–2316 in a size-exclusion 
chromatography coelution experiment. Once again, we did not 
observe binding between these species (Fig. S3 A). Therefore, 
we tested binding of ZWINT to a GST fusion of a larger KNL1 
segment (GST-KNL11904–2316), which also contains the predicted 
coiled-coil of KNL1 (Fig. 1 A and Fig. S4). MIS12C readily 
bound to this construct, whereas MIS12CNSL1-258 did not (Fig. 7 C, 
right, first and second lanes). Thus, the presence of the coiled-coil 
of KNL1 does not provide strong additional binding contacts to 

The binding site for ZWINT
It was found by the yeast two-hybrid method that ZWINT inter-
acts with the C-terminal region of KNL1 (Kiyomitsu et al., 
2007). In this position, ZWINT is believed to act as a receptor 
for the ROD–ZW10–ZWILCH (RZZ) complex, a kinetochore 
complex required for kinetochore recruitment of dynein and of 
the spindle checkpoint proteins MAD1 and MAD2 (for review 
see Musacchio and Salmon, 2007). We expressed and character-
ized a recombinant version of ZWINT and tested its ability to 
bind MIS12C and NDC80C in size-exclusion chromatography 
coelution experiments. No binding of ZWINT to any of these 

Figure 5.  Role of the NSL1 C-terminal tail. (A) The DSN1–NSL1 subcomplex is sufficient to bind KNL1 and NDC80C. GST-NSL1–DSN1 complex was 
purified by glutathione Sepharose affinity purification and used as an affinity bait for pull-down assays. Copurification of DSN1 with GST-tagged NSL1 
was assessed by immunoblotting. GST-NSL1–DSN1 specifically binds KNL12106–2316 (lane 4) and NDC80C (as judged by immunoblotting on the NDC80 
subunit; lane 5), and the binding is not mutually exclusive (lane 6). The levels of unspecific binding to GST are shown in lanes 1 and 2. (B) HeLa cells were 
transiently transfected with plasmids containing GFP alone, GFP-tagged NSL1, and GFP-tagged NSL1EE. After 48 h, cells were washed once and treated 
with 5 µM S-trityl-l-cysteine for 16 h. Mitotic cells were harvested by vigorous shake-off. Immunoprecipitates (IPs) with an anti-GFP antibody were examined 
by immunoblotting (IB) with the indicated antibodies. Only GFP-NSL1 was able to bind endogenous NDC80. The band indicated by the asterisk may 
represent a degradation product of the GFP fusion proteins. wt, wild type. (C) HeLa cells were transiently transfected with plasmids containing GFP alone, 
GFP-tagged NSL1, GFP-tagged NSL1EE, and GFP-tagged NSL1258. After 48 h, cells were washed once, treated with 3.3 µM nocodazole for 14 h, and 
analyzed by immunofluorescence. Bar, 5 µm. (D) The means of KNL1 or NDC80 kinetochore (KT) intensities normalized to CREST signal in cells transiently 
expressing GFP alone, GFP-tagged NSL1, GFP-tagged NSL1EE, and GFP-tagged NSL1258 from the experiment in C were calculated and plotted. Error bars 
represent the SEM. For each condition, at least four different cells were used in the quantification.
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MIS12CNSL1-258 to bind GST-KNL11904–2316 (Fig. 7 C, right, sev-
enth lane). No direct binding of NDC80 to GST-KNL11904–2316 
was observed (Fig. 7 C, right, fourth lane). However, the addition 
of MIS12C and ZWINT led to NDC80C binding, presumably 
through the mediation of MIS12C (Fig. 7 C, right, fifth lane).  
In agreement with this hypothesis, MIS12CNSL1-258 was unable  
to promote the retention of NDC80C even in the presence of 
ZWINT (Fig. 7 C, right, sixth lane). Additional binding assays, 
supporting the same conclusions, are shown in Fig. S3 (B–D). 
Collectively, these results suggest that ZWINT does not establish 

MIS12C, suggesting that the interaction of the KNL1 C-terminal  
domain with MIS12C is crucial for the KNL1–MIS12 inter
action even in the context of a larger KNL1 segment. In agreement  
with our findings, only the C-terminal region of KNL1 was found 
to interact with the MIS12C in a yeast three-hybrid experiment 
(Kiyomitsu et al., 2007). ZWINT also readily bound to GST-
KNL11904–2316, forming an apparently stoichiometric complex in 
the absence of other proteins (Fig. 7 C, right, third lane). In agree
ment with our observation that ZWINT and MIS12CNSL1-258 do 
not bind tightly, ZWINT was unable to rescue the inability of  

Figure 6.  Interaction of MIS12C with HP1. (A) Elution profile and SDS-PAGE analysis of a stoichiometric mixture of MIS12C–KNL12106–2316 and NDC80C. 
The elution position of individual complexes in indicated. (B) ITC analysis of the interaction of MIS12C–KNL12106–2316 with NDC80C. (C) SPC24–SPC25  
binds the C-terminal tail of NSL1 and an additional site on MIS12 (see legend to Fig. 4 I). If the PVIHL motif is mutated, SPC24–SPC25 does not bind.  
If SPC24–SPC24 bound KNL1 (the red arrow indicates this interaction is hypothetical), additional binding energy may be recovered, and SPC24–SPC25 
would be expected to bind even with a mutated PVIHL motif. (D) Addition of KNL12106–2316 to MIS12C does not rescue the lack of interaction of NDC80C 
to the PVIHL mutant, suggesting that SPC24–SPC25 and KNL12106–2316 do not interact. (A and D) Dashed gray lines and numbers indicate elution markers 
in the size-exclusion chromatography experiments and their molecular masses (in kilodaltons), respectively.
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organization within the MIS12C by decorating it with additional 
KMN subunits. Specifically, we attempted to visualize a complex 
of MIS12C with SPC2457–197–SPC2570–224, as the latter forms an 
extended structure expected to significantly alter the appearance 
of MIS12C in EM images (Wei et al., 2006; Ciferri et al., 2008). 
We used negative-stain EM, under conditions similar to those al-
ready used for the isolated MIS12C, to visualize the complex of 
MIS12C with SPC24–SPC25. As shown previously for MIS12C 

tight contacts with NDC80C or MIS12C and that its interaction 
with the KMN network complex is primarily mediated by the inter-
action with the C-terminal domain of KNL1.

Overall organization of the KMN network
EM analysis in Fig. 1 suggests the possibility that the four sub-
units of MIS12C are arranged sequentially along the MIS12C 
rod. We sought to extend our understanding of the subunit  

Figure 7.  Interactions of ZWINT. (A) Elution profile and SDS-PAGE analysis of NDC80 and recombinant ZWINT. No complex with NDC80C was 
observed. (B) As in A, but with MIS12C. (A and B) Dashed gray lines and numbers indicate elution markers in the size-exclusion chromatography experi-
ments and their molecular masses (in kilodaltons), respectively. (C, left) Only background binding to GST bound to glutathione Sepharose beads was 
observed. (right) A GST-KNL11904–2316 fusion protein was used as an affinity bait on glutathione Sepharose beads. This construct was then incubated 
with the indicated proteins. Asterisks mark two bands that copurify with GST-KNL11904–2316 on the glutathione Sepharose beads. Additional controls and 
input proteins are shown in Fig. S3.
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appears to emerge from one end of the MIS12C rod (Fig. 8). For 
technical reasons, we were unable to achieve EM images of the 
MIS12C–KNL1C of sufficient quality. MIS12C and NDC80C 
may add their lengths in series, at least partially, thus potentially 
creating a structure up to 80–90 nm in length. Future studies will 
have to address whether the structures created by the MIS12C, 
NDC80C, and KNL1C can be reconciled with the fibrous material 
revealed by recent electron tomography studies of the kinetochore 
(Dong et al., 2007; McIntosh et al., 2008). In an accompanying 
paper in this issue, Maskell et al. describe an analysis of the orga-
nization and interactions of the yeast Mtw1 complex, homologous 
to the MIS12C, that is largely consistent with ours.

The globular C-terminal region of KNL1, which mediates 
the interaction with MIS12C, is conserved in KNL1 sequences 
from vertebrates and invertebrates (Fig. S4). Notable exceptions 
are C. elegans and Drosophila melanogaster, whose sequences in 
this region are not recognizably related to those of other species  
(and are therefore not present in the alignment in Fig. S4).  
In contrast, the preceding coiled-coil is essentially ubiquitous in 
KNL1 (Fig. S4). In humans, this region of KNL1 binds to ZWINT 
(Fig. 7). In C. elegans, where the C-terminal globular region is 
missing, it may also bind NDC80C and MIS12C.

However, the sequence of NSL1 has considerably diverged 
in evolution (Meraldi et al., 2006). This protein has a conserved 
structural core, roughly corresponding to residues 1–205 of the 
human sequence (Fig. S5). The NSL1 C-terminal tail, which is re-
quired for the interaction of MIS12C with NDC80C and KNL1C, 
extends this conserved core and may not be present outside verte-
brates. The interaction of a basic NSL1 stretch (residues 257–281) 
in this tail with the C-terminal region of KNL1 may therefore be 
limited to vertebrates. Also, the PVIHL motif mediating the inter-
action of NSL1 with NDC80C does not appear to be conserved 

(Fig. 1), we observed good contrast and were able to calculate class 
averages from the raw images. After image alignment (Sander  
et al., 2003) and multivariate statistical analysis (van Heel and 
Frank, 1981), additional density corresponding to the SPC24–
SPC25 component was visible as an extension to the arched  
arrangement of density corresponding to the MIS12C rod (Fig. 8, 
indicated by arrowheads). These results strongly suggest that  
the NDC80C emanates from one end of the MIS12C and are  
consistent with the increase in the hydrodynamic radius of the 
MIS12C–SPC24–SPC25 complex relative to both individual 
complexes (Table I).

Discussion
We propose that the MIS12C rod is a concatenation of the NNF1, 
MIS12, DSN1, and NSL1 subunits, with NNF1 and NSL1 at the 
two opposite ends of the 22-nm rod (Fig. 9 A). MIS12 forms 
cross-links with NSL1 and DSN1, suggesting that it neighbors 
these proteins. Because MIS12 forms at least one cross-link with 
residues within the predicted globular region of DSN1 (K129MIS12 
with K167DSN1 or K248DSN1; Fig. 1 C), we suspect that it directly 
contacts DSN1. The NSL1 C-terminal tail probably meanders on 
a surface contributed by DSN1 and possibly by its neighboring 
MIS12 and NSL1 subunits (Fig. 9 B). Both SPC24–SPC25 and 
KNL1 are likely to form additional contacts with this surface: the 
C-terminal tail of NSL1 is necessary for both interactions, but we 
observed an increase in binding energy when the interactions 
were measured with the entire MIS12C rather than the isolated 
C-terminal tail of NSL1.

The model in Fig. 9 is consistent with previous yeast two- 
and three-hybrid analyses (Kiyomitsu et al., 2007, 2010). It is fur-
ther supported by our observation that the SPC24–SPC25 dimer 

Figure 8.  EM analysis of MIS12C–SPC24–SPC25. (A) Negative- 
stain EM was performed on the recombinant MIS12CNSL1-258– 
SPC2457–197–SPC2570–224 complex. (B) Class averages from 
negative-stain EM images shown in A. The arrowheads point 
to an element of density that is not present in the class aver-
ages of the MIS12CNSL1-258 complex shown in Fig. 1 D and  
that likely represents the SPC24–SPC25 complex. Bars:  
(A) 10 nm; (B) 5 nm.
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required for kinetochore recruitment of KNL1 in different or-
ganisms (Cheeseman et al., 2004, 2008). Conversely, mitotic 
kinetochore localization of MIS12 subunits is strongly affected 
upon depletion of KNL1 by RNAi (Cheeseman et al., 2004, 2008). 
Similarly, recruitment of the NDC80C is also severely affected 
by reductions in the levels of MIS12C subunits (Cheeseman  
et al., 2004; Kline et al., 2006; Liu et al., 2006).

Proteins within the CCAN subcomplex, including CENP-C, 
CENP-H, CENP-K, CENP-I, CENP-T/W, and CENP-X, have 
been implicated in kinetochore recruitment of KNL1 (Hori et al., 
2003; Mikami et al., 2005; Liu et al., 2006; Cheeseman et al., 
2008; Amano et al., 2009). Super-resolution light microscopy 
analyses suggest that CENP-C, CENP-I, and CENP-T/W are  
positioned near MIS12C, SPC24–SPC25, and the C-terminal  
region of KNL1 (Schittenhelm et al., 2007; Joglekar et al., 2009; 
Wan et al., 2009). The recently discussed two-hand model of 
outer kinetochore assembly (Fig. 9 D; Cheeseman et al., 2008) 
suggests that in vertebrates, CENP-C and CENP-H/I/K may be 
scaffolds that recruit different outer kinetochore proteins to cen-
tromeric chromatin. Specifically, CENP-C may be important for 
kinetochore recruitment of MIS12C (Cheeseman et al., 2004; 
Liu et al., 2006; Kwon et al., 2007; Milks et al., 2009), and the 
CENP-H/I/K complex may contribute to the recruitment of 
KNL1 but not MIS12C (Liu et al., 2006; Okada et al., 2006; 
Kwon et al., 2007; Cheeseman et al., 2008). Although KNL1 

outside vertebrates. However, in C. elegans, KNL1 and MIS12C 
bind in vitro in the absence of NDC80C (Cheeseman et al., 2006), 
like their human counterparts. As neither segment mediating the 
interaction of the human proteins is recognizably homologous to 
sequences of C. elegans, distinct binding determinants must be 
present in worms. In contrast, although human NDC80C and 
MIS12C interact with very high affinity in the absence of KNL1 
(this study), the C. elegans NDC80C and MIS12C do not bind 
tightly without KNL1 (Cheeseman et al., 2006). Thus, it appears 
that KNL1 contributes to creating a high-affinity binding site for 
NDC80C on the C. elegans KMN network, although this may not 
be the case within the human KMN.

In summary, some aspects of KMN network assembly may 
differ in evolution. A speculative comparative analysis of KMN 
assembly in three species is discussed in Fig. 9 C. If confirmed, 
this flexibility in the assembly plan of the KMN may indicate 
that MIS12C acts as a localization scaffold for the assembly of 
the KMN network but that the exact geometry of the arrange-
ment of intersubunit contacts may be less crucial for successful 
chromosome segregation.

Our data are consistent with super-resolution microscopy 
analyses placing the SPC24–SPC25 dimer near MIS12C and 
the C-terminal tail of KNL1/Spc105 (Schittenhelm et al., 2007, 
2009; Joglekar et al., 2009; Wan et al., 2009). In agreement with 
a direct interaction between MIS12C and KNL1, MIS12C is  

Figure 9.  Organization of the KMN network. (A) Sche
matic illustration of the organization of the human 
MIS12C complex. (B) Summary of interactions identi-
fied in this study. The black dots connected by a line 
represent cross-links. Yellow dots represent defined 
binding sites. Yellow stars represent undefined bind-
ing sites. The orange cylinder represents a predicted 
C-terminal helix in the MIS12 subunit. (C) Summary of 
interactions in KMN complexes in different species. 
Black arrows represent established interactions. Blue 
arrows represent established binding requirements 
that have not been mapped at the molecular level.  
Purple arrows represent putative interactions. In  
C. elegans, KBP-4 and KBP-3 (SPC24 and SPC25 homo-
logues, respectively) are 97- and 134-residue proteins 
lacking the globular domains of SPC24 and SPC25  
in other species. A globular domain at the C-terminal  
end of KNL1 is also missing in this organism (see  
alignment in Fig. S4). In S. cerevisiae, Mtw1 (MIS12 
homologue) does not have a PVIHL motif or a positively 
charged C-terminal domain, and the binding site for 
Spc24p–Spc24p and Spc105p (KNL1 homologue) is 
therefore unknown. The four-color scheme for MIS12C 
in C. elegans and S. cerevisiae conveys that the bind-
ing sites have not been mapped and could therefore 
be anywhere on these structures. (D) An extension of 
the two-hand model (Cheeseman et al., 2008) for  
kinetochore recruitment of the KMN network based  
on our experiments. MT, microtubule.
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ITPG at 18°C, and cells were incubated overnight. Cell pellets were resus-
pended in buffer A (20 mM Tris/HCl, pH 8.0, 300 mM NaCl, 10% [vol/vol]  
glycerol, and 2 mM 2-mercaptoethanol) supplemented with protease  
inhibitor cocktail (Protease Inhibitor Set III; EMD), lysed by sonication, and 
cleared by centrifugation at 45,000 g for 60 min. The cleared lysate was 
applied to Ni-NTA agarose beads (QIAGEN) preequilibrated in buffer  
A and incubated for 2 h. Beads were washed with 30 vol of buffer A con-
taining 10 mM imidazole, and the bound protein was eluted with buffer  
A supplemented with 250 mM imidazole. The eluate was dialyzed against 
ion-exchange buffer A (20 mM Tris/HCl, pH 8.0, 30 mM NaCl, 1 mM 
EDTA, and 1 mM DTT) and applied to a Resource Q (ResQ; GE Health-
care) column preequilibrated in the same buffer. Elution of bound protein 
was achieved by a linear gradient from 30 to 300 mM NaCl in 20 bed 
column volumes. Relevant fractions were concentrated in 10-kD molecular 
mass cut-off Vivaspin concentrators (Sartorius) and applied to a Superdex 
200 10/300 column (GE Healthcare) equilibrated in size-exclusion chro-
matography buffer (20 mM Tris/HCl, pH 8.0, 150 mM NaCl, 1 mM EDTA, 
and 1 mM DTT). Size-exclusion chromatography was performed under  
isocratic conditions at a flow rate of 0.4 ml/min, and the relevant fractions 
containing MIS12C complex were pooled, concentrated, flash-frozen in 
liquid N2, and stored at 80°C.

MIS12C–KNL12106–2316 was expressed in BL21(DE3)Rosetta cells con-
taining the pST39-MIS12C full-length and pET28a-GST-KNL12106–2316 frag-
ment plasmids. Cell growth and protein expression and the initial steps of 
purification were performed as for MIS12C. After elution from Ni-NTA aga-
rose beads with 250 mM imidazole, the eluate was dialyzed against GST-
binding buffer (20 mM Tris/HCl, pH 8, 300 mM NaCl, 10% [vol/vol] 
glycerol, 1 mM EDTA, and 1 mM DTT) and applied to glutathione Sepharose 4 
Fast Flow beads (GE Healthcare) preequilibrated in the GST-binding buffer 
for a further 3 h. Beads were washed in 30 vol of GST-binding buffer, and 
GST was cleaved by overnight incubation with PreScission protease (GE 
Healthcare) at 4°C. The eluate containing the MIS12C–KNL12106–2316 com-
plex was dialyzed against ion-exchange buffer A and applied to a ResQ 
column preequilibrated in the same buffer. After elution from the ResQ col-
umn, further purification by size-exclusion chromatography and subsequent 
storage were performed as described above for the isolated MIS12C.

KNL12106–2316–NSL1227–281 expression was performed in BL21(DE3)pLysS 
cells containing pGEX-6P-2rbs-KNL12106–2316–NSL1227–281 vector. Cell pel-
lets (obtained as described above for other constructs) were resuspended 
in GST-binding buffer supplemented with protease inhibitor cocktail, lysed 
by sonication, and cleared by centrifugation at 45,000 g for 60 min. The 
cleared lysate was applied to glutathione Sepharose 4 Fast Flow beads 
preequilibrated in the GST-binding buffer and treated as described above 
for equivalent GST fusion construct. The eluate was dialyzed against ion-
exchange buffer A and applied to a ResQ column preequilibrated in the 
same buffer. The NSL1227–281 peptide was collected in flow-through frac-
tions, and the bound KNL12106–2316 protein was eluted by a linear gradient 
from 30 to 350 mM NaCl in 20 bed column volumes. The fractions con-
taining the target protein were concentrated in 3-kD (NSL1227–281) or 10-kD 
(KNL12106–2316) molecular mass cut-off Vivaspin concentrators and applied 
to a Superdex 75 10/300 column equilibrated in size-exclusion chroma-
tography buffer as described above.

For SPC2457–197–SPC2570–224, SPC24104–197–SPC2599–224, HP1-, 
and HP1110–191 (chromoshadow domain) expression, BL21(DE3)pLysS cells 
containing the relevant plasmids were grown in Luria-Bertani or Terrific broth 
at 37°C to an OD600 of 0.6–0.8. Protein expression was induced with  
0.3 mM ITPG at 20°C, and cells were incubated overnight. Cell pellets were  
resuspended in GST-binding buffer supplemented with protease inhibitor 
cocktail, lysed by sonication, and cleared by centrifugation. The cleared ly-
sate was applied to, and eluted from, glutathione Sepharose 4 Fast Flow 
beads as described above for equivalent GST constructs. The supernatants 
containing the proteins of interest were concentrated in Vivaspin concentrators 
and applied to a Superdex 75 10/300 column equilibrated in size-exclusion 
chromatography buffer. Size-exclusion chromatography and subsequent stor-
age were performed as described above for other constructs.

Hi5 insect cells infected with the pFL derivative driving NDC80C ex-
pression were harvested by centrifugation and lysed by sonication in buffer 
A supplemented with protease inhibitors. The lysate was cleared by centri
fugation at 45,000 g for 60 min. The cleared lysate was applied to Ni-NTA 
agarose beads preequilibrated in buffer A and incubated for 2 h. Beads 
were washed three times in buffer B (20 mM Tris/HCl, pH 8.0, 1 M NaCl, 
5% [vol/vol] glycerol, 20 mM imidazole, and 2 mM 2-mercaptoethanol), 
and the bound protein was eluted in buffer C (20 mM Tris/HCl, pH 8.0, 
300 mM NaCl, 5% [vol/vol] glycerol, 250 mM imidazole, and 2 mM  
2-mercaptoethanol). The eluate was supplemented with 1 mM EDTA, concen-
trated in 10-kD molecular mass cut-off Vivaspin concentrators, and applied 

may not bind NDC80C in humans (this study), the CENP-H/I/K 
complex may also directly contribute to NDC80C recruitment, 
which is in agreement with the reported interaction of NUF2 
with CENP-H (Mikami et al., 2005). In C. elegans, where the 
CCAN, with the exclusion of CENP-C, is probably missing, 
KNL1 may be recruited exclusively through the CENP-C–MIS12 
pathway (Cheeseman et al., 2004). Because KNL1 is required to 
stabilize the interaction of NDC80C with MIS12C in C. elegans, 
both MIS12C and KNL1 are absolutely required for kinetochore 
localization of NDC80C (Cheeseman et al., 2006).

How CENP-C and the CENP-H/K/I/L complex interact 
with centromeric chromatin is less clear. CENP-C may bridge 
H3- and CENP-A–containing nucleosomes in the centromere 
with its N- and C-terminal regions, respectively (Ando et al., 
2002; Talbert et al., 2004; Cohen et al., 2008; Hori et al., 2008;  
Milks et al., 2009; Trazzi et al., 2009; Carroll et al., 2010).  
In contrast, CENP-H/K/I may be recruited through the CENP-T/W 
complex and probably reside on a distinct H3-containing nucleo
some relative to that hosting CENP-C (Fig. 9 D; Hori et al., 
2008). However, at least in Xenopus laevis extracts, CENP-C 
has been recently implicated in kinetochore recruitment of 
CENP-K, possibly suggesting that the two hands are not com-
pletely independent (Milks et al., 2009). In summary, the net-
work of interactions in the kinetochore is unlikely to be linear, 
and species-specific variation may accompany an otherwise 
conserved building plan.

Materials and methods
Plasmids
Genes encoding MIS12C subunits were PCR amplified from a human cDNA 
library. Silent mutations were introduced to remove internal restriction sites. 
The genes were then subcloned into the pST39 polycistronic expression 
vector, according to the cloning strategy described previously (Tan et al., 
2005). Site-directed mutagenesis, performed with the QuikChange Mutagen-
esis kit (Agilent Technologies), was used to generate premature stop codons  
in the NSL1 gene, thus generating shorter MIS12C complex constructs  
(MIS12CNSL1-227 and MIS12CNSL1-258). Sequences encoding C-terminal KNL1 
fragments (1904–2316 and 2106–2316) were PCR amplified from a  
human cDNA library and cloned in the first cassette of pGEX-6P-2rbs, a di-
cistronic derivative of pGEX-6P vector generated in-house. For coexpression 
experiments with NSL1 fragments, sequences encoding KNL12106–2316 and 
NSL1227–281 were PCR amplified and subcloned in the first and second cas-
sette of pGEX-6P-2rbs, respectively. The sequence encoding KNL12106–2316 
was PCR amplified from the pGEX-6P-2rbs vector and subcloned in the 
pET28a vector and used subsequently for coexpression with MIS12C using 
a two-plasmid strategy (see next section). SPC2457–197–SPC2570–224 and 
SPC24104–197–SPC2599–224 constructs were created by subcloning in dicis-
tronic vector pGEX-6P-2rbs as described previously (Ciferri et al., 2005). 
HP1- and HP1110–191 (chromoshadow domain) were PCR amplified from 
the full-length HP1- gene (gift from B. Amati, European Institute of Oncol-
ogy, Milan, Italy) and subcloned into pGEX-6P-1 (GE Healthcare). cDNAs 
encoding full-length human NDC80, NUF2, SPC24, and SPC25 were PCR 
amplified and subcloned in the pFL (NDC80 and NUF2) and pUCDM 
(SPC24 and SPC25, the latter in frame with a C-terminal hexahistidine tag) 
vectors to support insect cell expression (Bieniossek et al., 2008). The vec-
tors were fused and processed as described previously (Bieniossek et al., 
2008). The resulting baculovirus was used for expression of NDC80C in 
Hi5 insect cells (Invitrogen). The sequence encoding human ZWINT was 
subcloned in pGEX-6P-1 for bacterial expression. All constructs were veri-
fied by sequencing.

Protein expression and purification
For expression of MIS12C (and its deletion mutants) BL21(DE3)pLysS cells 
containing the pST39 plasmid were grown in Terrific broth at 37°C to an 
OD600 of 0.8. Protein expression was induced by the addition of 0.1 mM 
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were used in the analysis. The data recorded from moving boundaries 
were analyzed using the software SEDFIT (Schuck, 2000) in terms of con-
tinuous distribution function of sedimentation coefficients (c(S)).

ITC
All samples were extensively dialyzed into fresh buffer (20 mM Tris/HCl, 
pH 8.0, 150 mM NaCl, 1 mM EDTA, and 1 mM DTT). ITC measurements 
were performed at 25°C on a VP-ITC MicroCalorimeter (MicroCal). In each 
titration, the protein in the cell (at a 4–5-µM concentration) was titrated with 
35 10-µl injections (at 240-s intervals) of protein ligand (at 10-fold higher 
molar concentration). The injections were continued beyond saturation lev-
els to allow for determination of heats of ligand dilution. Data were fitted by 
least-square procedures to a single-site binding model using ORIGIN 5.0 
software package (MicroCal).

Cell culture and plasmids
HeLa cells were grown in DME (EuroClone) supplemented with 10% fetal 
bovine serum (HyClone) and 2 mM l-glutamine. Nocodazole and S-trityl- 
l-cysteine (Sigma-Aldrich) were used at 3.3 µM and 5 µM, respectively. HeLa 
cells were transfected with FuGENE 6 Transfection Agent (Roche). For GFP-
NSL1 cloning, GFP cDNA was cloned into pCDNA5-FRT/TO vector previ-
ously modified to carry an internal ribosomal entry site (IRES) sequence to 
have pCDNA5FRT/TOGFP-IRES vector. Human NSL1 cDNA was cloned 
into pCDNA5FRT/TOGFP-IRES vector to express all GFP-NSL1 constructs. 
Empty pCDNA5FRT/TOGFP-IRES was used for GFP expression as a control. 
All constructs were checked by DNA sequencing.

Immunoprecipitation and immunoblotting
For immunoprecipitation, mitotic cells were harvested by shake-off and 
lysed in lysis buffer (150 mM KCl, 75 mM Hepes, pH 7.5, 1.5 mM EGTA, 
1.5 mM MgCl2, 15% glycerol, 0.1% NP-40, and protease inhibitors 
[EMD]). Protein extracts were incubated with rabbit anti-GFP polyclonal  
antibody (produced at the Italian Foundation for Cancer Research Institute of 
Molecular Oncology–European Institute of Oncology [IFOM–IEO] campus 
antibody facility) cross-linked to protein–A beads (GE Healthcare) for 2 h at  
4°C. The following antibodies were used for immunoblotting: mouse anti
vinculin (working dilution 1:100,000; Sigma-Aldrich), rabbit anti–P-S10-H3  
(working dilution 1:1,000; Abcam), rabbit anti-GFP (working dilution 
1:5,000; produced at the IFOM–IEO campus antibody facility), mouse anti-
HEC1 (human NDC80; working dilution 1:1,000; clone 9G3.23; Gene-
Tex, Inc.), and rabbit anti-hMIS12 (working dilution 1:1,500; Abcam).

Immunofluorescence and quantification
Immunofluorescence microscopy was performed according to Santaguida 
et al. (2010). The following antibodies were used: anticentromeric anti-
body (working dilution 1:100; Antibodies Inc.) and mouse anti-HEC1  
(human NDC80; working dilution 1:1,000; clone 9G3.23; GeneTex, Inc.). 
Cy3- and Cy5-labeled secondary antibodies for immunofluorescence were 
purchased from Jackson ImmunoResearch Laboratories, Inc. and used at 
1:100 dilution. Cells were imaged using a confocal microscope (TCS SP2; 
Leica) equipped with a 63× NA 1.4 objective lens using the LCS 3D soft-
ware (Leica). Images shown in Fig. 5 C were acquired as z sections at 
0.25 µm and converted into maximal intensity projections using ImageJ 
(National Institutes of Health). Measurements of kinetochore intensities 
were performed using intensity projections of images with Imaris software 
(Bitplane AG). Kinetochore intensity was calculated by subtracting the 
mean background signal of the chromosome area of a cell and normalized 
for the CREST signal of the same kinetochore.

Cross-linking
The protein cross-linking method has been described in detail previously 
(Maiolica et al., 2007).

Online supplemental material
Fig. S1 shows additional properties of MIS12C–NDC80C–KNL1. Fig. S2 
shows that NDC80C does not bind tightly to the PVIHL motif of NSL1. Fig. S3 
shows additional characterization of the role of ZWINT. Fig. S4 shows 
multiple sequence alignment of the C-terminal region of KNL1. Fig. S5 
shows multiple sequence alignment of NSL1. Table S1 lists the nomen
clature of KMN subunits in different species. Table S2 shows a summary of 
cross-linking data analysis. Online supplemental material is available at 
http://www.jcb.org/cgi/content/full/jcb.201002070/DC1.

The AUC data were collected by the late J. Eccleston (National Institute for 
Medical Research, London, England, UK), and A. Petrovic would like to dedi-
cate this work to his memory.

to a Superose 6 10/300 column equilibrated in size-exclusion chromatog-
raphy buffer. Size-exclusion chromatography and subsequent storage were 
performed as described above.

Analytical size-exclusion chromatography
Analytical size-exclusion chromatography experiments were performed on 
calibrated Superdex 75 or Superdex 200 10/300 columns or on Superdex 
75 PC 3.2/30 columns. All samples were eluted under isocratic conditions 
at 4°C in size-exclusion chromatography buffer at a flow rate of 0.4 ml/min. 
Elution of proteins was monitored at 280 nm. To detect complex formation, 
proteins were mixed at the indicated concentrations (in 200 µl for runs in 
10/300 columns or 50 µl for runs in 75 PC 3.2/30 column), incubated for 
1–3 h on ice, and then subjected to chromatography. Fractions were col-
lected and analyzed by SDS-PAGE and Coomassie staining.

GST pull-down experiments
GST fusion proteins were expressed and purified as described in Protein 
expression and purification. Purified GST-KNL1 C-terminal fragments were 
incubated with their interacting partners at 4°C for 1 h in a total volume of 
50 µl. After incubation and extensive washing, the products remaining  
associated with the beads were separated by SDS-PAGE and detected by 
Coomassie staining or immunoblotting.

Fluorescence anisotropy
Fluorescence anisotropy measurements were performed with an Infinite 
F200 instrument (Tecan) at 20°C. Fixed concentrations (10 nM) of fluores-
cein-labeled NSL1 peptides (synthesized by Mimotopes) were mixed with 
increasing concentrations of the indicated SPC24–SPC25 or HP1 con-
structs in PBS buffer, and reaction mixtures were allowed to equilibrate 
overnight at 4°C. Fluorescein was excited with polarized light at 485 nm, 
and the emitted light was detected at 535 nm through both horizontal and 
vertical polarizers. The Kd was determined by fitting the fluorescence polar-
ization data to the equation Pobs = Pmax[C]/([C] + Kd), where Pobs is the ob-
served fluorescence polarization signal, Pmax is the saturation value of 
polarization (with all the peptide in complex with the protein), and [C] is 
the protein concentration.

Microtubule cosedimentation assay
Tubulin was purchased from Cytoskeleton, Inc., and microtubules were po-
lymerized according to the producer’s instructions. For microtubule-binding 
reactions, 2 µM of microtubules was diluted in general tubulin buffer (80 mM 
Pipes, pH 6.8, 1 mM MgCl2, 1 mM EGTA, and 50 µM paclitaxel) supple-
mented with 50 mM NaCl. 1 µM NDC80C, 1 µM BSA, and the indicated 
concentrations of MIS12CNSL1-258 were added to a final reaction volume of 
50 µl. Reactions were incubated at room temperature for 10 min, transferred 
onto 100 µl of cushion buffer (80 mM Pipes, pH 6.8, 1 mM MgCl2, 1 mM 
EGTA, 50 µM paclitaxel, and 50% glycerol), and ultracentrifuged for 10 min  
at 90,000 rpm in a TLA100 rotor (Beckman Coulter) at 25°C. Pellets and  
supernatants were analyzed by SDS-PAGE.

Negative-stain EM
MIS12 complexes were prepared for EM by the GraFix protocol (Kastner 
et al., 2008), which combines mild chemical stabilization and glycerol 
gradient centrifugation. The fractionated complexes were adsorbed to a 
thin film of carbon and then transferred to an electron microscopic grid 
covered with a perforated carbon film. The bound MIS12C or MIS12C–
SPC2457–197–SPC2570–224 and particles were stained with 2% uranyl for-
mate, blotted, and air dried. Images were recorded at a magnification of  
155,000 on a 4k × 4k charge-coupled device camera (TVIPS GmbH) using  
twofold pixel binning (1.8 Å/pixel) in an electron microscope (CM200 
FEG; Philips/FEI) operated at 160 kV acceleration voltage. 5,389 particle 
images (4,969 particles for the complex of MIS12C with SPC24–SPC25) 
were interactively selected and subjected to several rounds of alignment 
(Sander et al., 2003) and classification (van Heel and Frank, 1981) until 
stable class averages were obtained.

Sedimentation velocity AUC
Sedimentation velocity experiments were performed on an analytical ultra-
centrifuge (Optima XL-A; Beckman Coulter) using conventional charcoal-
filled epon double-sector quartz cells in an An-60 Ti rotor (Beckman 
Coulter). The rotor speed was 40,000 rpm, and the temperature was main-
tained at 20°C. Before centrifugation, samples were prepared by dialysis 
against the buffer blank solution (20 mM Tris/HCl, pH 8.0, 150 mM NaCl, 
1 mM EDTA, and 1 mM DTT). During experiments, radial absorbance 
scans ( = 280 nm) were collected at time intervals of 5 min, and 150 scans 
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