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Scalar charge of black holes in Einstein-Maxwell-dilaton theory
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We show that the monopole scalar charge of black holes in Einstein–Maxwell–dilaton theory is
proportional to the electric potential at the event horizon, with a proportionality factor given by
(minus) the scalar coupling constant. We also show that the scalar charge, in the weak electric
charge limit, does not depend on the black hole spin. This result can be very useful to circumvent
spin degeneracy issues when testing the theory against gravitational waves observations.

I. Introduction

Compact binaries serve as ideal laboratories where to
test general relativity (GR) and its modifications [1, 2],
due to the emission of gravitational waves (GW) and,
possibly, of waves from other degrees of freedom (e.g.
scalar waves in scalar-tensor theories). In this respect,
we can divide modified theories into (i) those which mod-
ify the propagation of the associated waves but not the
structure of the compact objects of interest; and (ii) those
which modify also the structure of the compact objects.
In the latter case, one says that the compact objects ac-
quire nonstandard “hair”, a nomenclature originated from
the “no-hair” theorems for black holes (BHs) [2, 3] and
which, for simplicity, we extend to all compact objects.

Among the possible hair, the presence of a monopole
scalar charge is particularly relevant, since it triggers the
emission of dipole scalar radiation. This radiative chan-
nel severely alters the energy loss balance of the binary,
thus allowing in principle to extract efficient constraints
from binary observations [1, 2, 4–6]. The knowledge of
the scalar monopole charge (henceforth simply “scalar
charge”) is therefore an important piece of information
in the GR testing efforts.

Recently, [7] showed that, in theories where the scalar
charge is linearly coupled to a quadratic-curvature topo-
logical invariant or to a gauge topological invariant, it is
possible to predict the scalar charge of stationary BHs
without the explicit knowledge of the solution; in par-
ticular, the charge is proportional to the surface gravity
of the horizon or to the magnetic potential at the hori-
zon respectively. Using a similar argument, we show that
the scalar charge can be predicted also when the scalar
is coupled exponentially to the kinetic term of a gauge
field: in this case, it is proportional to the electric poten-
tial energy at the horizon.

An exponential coupling of such a kind is characteristic
of Einstein–Maxwell–dilaton theory (EMD) [8]. EMD is
specified by the action

S =

∫

d4x

√−g
16π

[

R− 2gab∇aΦ∇bΦ− e−2ηΦFabF
ab
]

(1)
where Φ is a real scalar field (the dilaton) and Fab =
∂aAb−∂bAa is the Maxwell tensor of the real electromag-
netic (EM) field Aa. EMD can be viewed as an exten-

sion of the ordinary Einstein-Maxwell theory, recovered
in the limit of vanishing scalar coupling η = 0. The con-
sideration of EMD has several motivations: when η = 1
it emerges in a low energy limit of string theory [8, 9],

while the case η =
√
3 corresponds to the compactifica-

tion of the five-dimensional Kaluza-Klein theory [9, 10].
Moreover it constitutes an example of a theory where all
the three bosonic degrees of freedom (scalar, vector and
tensor) can be dynamical. Recently the physics of single
and binary black holes in EMD has received new atten-
tion, mainly due to the perspective of observational tests
offered by the emerging field of GW astronomy [11–15],
see also [16]. Moreover, Ref.[17] considered EMD with
the addition of an axion field as an example of modified
black hole, in relation to the theory-testing prospects of
the Event Horizon Telescope.

A direct computation of the scalar charge in EMD BHs
is partially hindered by the fact that explicit stationary
solutions are known only in the static and in the slowly
rotating configurations [8, 9], with the exception of the

single case η =
√
3, for which fully rotating solutions

were derived in [10]. (Notably, [18] proved an uniqueness
theorem for stationary EMD BHs under the condition
0 ≤ η2 ≤ 3.) Our result holds in complete generality
and therefore encompasses also the cases in which the
knowledge of the solution is still lacking.

The derivation of the scalar charge is based on a re-
duction of the equations of motion (EOM) to an ex-
act rank-3 differential form. In [19], in the context of
Einstein–dilaton–Gauss-Bonnet theory with a linear dila-
ton coupling, a similar EOM reduction was used to show
that horizonless compact objects cannot support a scalar
charge. We will argue that the same conclusion cannot
be necessarily drawn for EMD theory.

The paper is organized as follows. In Sec.II we in-
troduce the formalism of EMD theory. In Sec.III we
derive the relation between the scalar charge and the
electric potential at the event horizon. Sec.IV discusses
explicit examples and provides an approximate analyti-
cal expression for the scalar charge in the weak charge
limit. Further details are provided in the Appendices.
We adapt our notation to the mostly plus metric conven-
tion (− +++) and work in units c = G = 1.
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II. Einstein-Maxwell-dilaton theory

The EOM derived from the EMD action (1) are

S ≡ ∇a∇aΦ +
η

2
e−2ηΦFabF

ab = 0 , (2a)

Ja ≡ ∇b

(

e−2ηΦF b
a

)

= 0 , (2b)

Eab ≡ Gab − TΦ
ab − TF

ab = 0 . (2c)

Here Gab is the Einstein tensor, while the dilaton and
EM stress energy tensors are respectively

TΦ
ab = 2∇aΦ∇bΦ− (∇Φ)2gab , (3a)

TF
ab = e−2ηΦ

(

2FacF
c

b − 1

2
F 2gab

)

, (3b)

where we used the shorthand notations (∇Φ)2 =
gab∇aΦ∇bΦ and F 2 = FabF

ab.
For the purposes of this paper it is more convenient to

express the Lagrangian and the EOM in the language of
differential forms. The Lagrangian reads

L = Lg + LΦA , (4a)

8πGLΦA = ⋆dΦ ∧ dΦ− e−2ηΦF ∧ ⋆F , (4b)

where F = dA, LΦA is the dilaton-EM Lagrangian, while
Lg is the Einstein-Hilbert Lagrangian, whose differential
form we don’t need explicitely in the following. Varying
LΦA w.r.t. Φ and A we obtain the matter EOM

Φ : d ⋆ dΦ + η e−2ηΦF ∧ ⋆F = 0 , (5a)

A : d
[

e−2ηΦ ⋆ F
]

= 0 . (5b)

Using (5b), the dilaton equation (5a) becomes

d
[

⋆dΦ+ η e−2ηΦA ∧ ⋆F
]

= 0. (6)

Now, contracting (6) with a generic fixed vector field ξa

and applying Cartan’s formlua £ξ = diξ + iξd
1 on the

differential form in the square brackets of (6), we obtain

d
[

iξ ⋆ dΦ + η e−2ηΦiξA ∧ ⋆F − η e−2ηΦA ∧ iξ ⋆ F
]

−£ξ

[

⋆dΦ+ η e−2ηΦA ∧ ⋆F
]

= 0. (7)

This will be the key equation in the next section.

III. The value of the dilaton charge

Let us consider a stationary asymptotically flat nonex-
tremal BH solution of EMD. Then, from standard rigidity
arguments (as reviewed e.g. in [20]) the spacetime admits

1Hereafter the symbol iξ denotes the interior product of the
vector field ξa with a differential form.

a timelike Killing field ta, associated to time transla-
tions, and a spacelike Killing field ψa, associated with
the rotational symmetry of the spacetime around the
spinning axis of the BH. Then the BH horizon is a null
hypersurface generated by a particular linear combina-
tion χa = ta + ΩHψ

a, where ΩH = const. is the angu-
lar velocity of the BH horizon. Moreover, since the BH
is nonextremal, it admits a bifurcation surface B where
χa = 0. We assume that the matter fields respect the
same symmetries of the spacetime, i.e. £tA = £tΦ = 0
and similarly for ψa; then (7) for ξa ≡ χa simplifies to

d
[

iχ ⋆ dΦ + η e−2ηΦiχA ∧ ⋆F − η e−2ηΦA ∧ iχ ⋆ F
]

= 0.
(8)

We want to integrate (8) between the BH bifurcation
surface B and spatial infinity. In order to do this, let us
specify boundary conditions for the falloff of the matter
fields at infinity. By asymptotic flatness, the dilaton field
will asymptote as

Φ = Φ∞ +
Φ1

r
+O

(

1

r

)

(9)

where Φ∞ is a constant and Φ1 is related to the dilaton
charge QS by

QS =

∫

∞

Φ1

r2
ǫ2 (10)

with ǫ2 the area element at infinity. We choose the EM
gauge such that the vector field scales as

Aa dx
a =

Āa

r
dxa +O

(

1

r

)

. (11)

Then the electric potential is given by VE = iχA|B (notice
that, despite χa|B = 0, VE can be finite if A diverges on
B). It can be easily proven that £χA = 0 implies that VE
is constant over the event horizon and that the projection
of iχ ⋆ F on B vanishes (see Appendix A).

We are ready to integrate (8). Using Gauss’ theorem,
the integration reduces to two surface contributions re-
spectively at infinity and at B. The contribution at in-
finity gives

∫

∞

(

iχ ⋆ dΦ+ η e−2ηΦiχA ∧ ⋆F − η e−2ηΦA ∧ iχ ⋆ F
)

=

∫

∞

iχ ⋆ dΦ = 4πQS . (12)

In the first step we used the asymptotic falloff (11) to
cancel the terms involving the EM field, while in the sec-
ond step we used the fact that ψa is tangential to the
integration surface. The contribution at the bifurcation
surface reads

∫

B

(

iχ ⋆ dΦ+ η e−2ηΦiχA ∧ ⋆F − η e−2ηΦA ∧ ⋆iχF
)

= η

∫

B

e−2ηΦiχA ∧ ⋆F = −4πηQEVE (13)
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where we used χ|B = 0, iχ ⋆ F |B = 0 and the definition
of the electric charge

QE = − 1

4π

∫

B

e−2ηΦ ⋆ F . (14)

Therefore, putting the two contributions together, we ar-
rive at the main result of this paper2

QS = −ηWE (15)

where WE = QEVE is the electric potential energy of the
EM field. �

Let us emphasize that, if we assume the existence of a
bifurcation surface, the result does not depend explicitely
on the Einstein EOM (see Appendix A); therefore the re-
striction that Lg in (4) is the Einstein-Hilbert Lagrangian
can also be relaxed.

Notice that QS does not depend on the value Φ∞ of
the dilaton field at spatial infinity. It is then clear from
(15) that the scalar charge is a secondary hair,3 as it
could have been guessed from the fact that no Gauss law
is associated to the dilaton field. However, as observed
in [23, 24], it enters the dynamical first law by sourcing
variations of the asymptotic value Φ∞ if the latter is
allowed to vary,

δM =
κ

8π
δAH +ΩHδJ + VEδQE −QSδΦ∞ . (16)

Horizonless compact objects. If the BH is replaced by
an horizonless compact object, e.g. a neutron star, one
might be tempted to integrate (8) over a compact hyper-
surface with a single boundary at spatial infinity, thus
showing that the scalar charge of the object is necessar-
ily zero. However, this reasoning would be fallacious.
Indeed, for an electrically charged BH in EMD to origi-
nate from a collapse, the collapsing material must already
support the electric charge within its degrees of freedom.
Therefore LΦA must be supplied by an interaction La-
grangian between ordinary matter and the vector field
Aa, even if Aa is not the photon field of the standard

model. In a nonvacuum spacetime such a coupling will
induce an additional electric current term in the EOM
(5b). In turn, this will generate a volume contribution to
the integral (12), thus spoiling the above reasoning.

IV. Explicit examples

In this section we provide explicit examples of the iden-
tity (15). We will refer to the analytic BH solutions al-
ready existing in the literature [8–10, 25, 26]. Static and

2The same result, but restricted to the static case, has been
recently obtained in [21, Eq.(4.19)].

3Following [22], we call “secondary hair” those which are not
independent, but depend on the other global charges, in this case
the mass and the electric charge.

slowly rotating BH solutions are known for all the values
of the dilaton coupling η [8, 9, 25], while fully rotating

solutions are known explicitely only for η =
√
3 (and triv-

ially also for η = 0, in which the BH is described by the
well known Kerr-Newman solution) [9, 10, 26]. The value
of the scalar charge for a single rotating BH in EMD was
estimated numerically in [12], finding that the charge de-
creases as the spin increases; however, we anticipate that
our analytic formulae (15) and (24) disagree with such
a conclusion in the limit of weakly charged BHs, a limit
which is consistent with the approximations of [12].

Static spherically symmetric BH solutions in EMD are
described by the line element [8, 9, 25]

ds2 = −F (r)dt2 + dr2

F (r)
+ r2G(r)

(

dθ2 + sin2 θdϕ2
)

,

(17a)

F (r) =

(

1− R+

r

)(

1− R−

r

)(1−η2)/(1+η2)

, (17b)

G(r) =

(

1− R−

r

)2η2/(1+η2)

. (17c)

Here R+ and R− are, respectively, the radii of the outer
and inner horizons

R+ =M
(

1 +
√

1− (1 − η2)σ2
)

, (18a)

R− =M

(

1 + η2

1− η2

)

(

1−
√

1− (1− η2)σ2
)

. (18b)

M is the mass and σ is the electric charge-to-mass ratio,
σ = QE/M . The scalar and the vector fields are given
by

Φ =
η

1 + η2
log

(

1− R−

r

)

, (19a)

Aa dx
a =

Mσ

r
dt . (19b)

Notice that the action is invariant under the
reparametrization

Aa → e−ηΦ0Aa Φ → Φ− Φ0 (20)

where Φ0 is a constant. For simplicity, we choose Φ0 such
that Φ → 0 at spatial infinity.

The generator of the BH horizon is the Killing field ta

and therefore the EM potential is simply VE = QE/R+.
If we expand (19a) in series of 1/r, we find that the lead-
ing term is

lim
r→∞

Φ = − η

1 + η2
R−

r
+O

(

1

r

)

. (21)

Therefore the scalar charge is

QS ≡ Φ1 = − η R−

1 + η2
= −

ηM
(

1−
√

1− (1 − η2)σ2
)

1− η2

= − ηM σ2

1 +
√

1− (1− η2)σ2
= −ηQ

2
E

R+
(22)
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in agreement with Eq. (15). Before going on, notice that
the first corrections to metric relative to Schwarzschild
appear at O(σ2). Therefore we define the weak charge
limit as the expansion of the fields at second order in the
electric charge. At this order QS = −ηQ2

E/2M .
The weak charge limit proves particularly useful when

we switch to rotating configurations, because it allows
to overcome the lack of explicit solutions. Indeed, if we
assume a weak charge QE , and since the static dilaton
charge is already quadratic in QE, we can neglect higher
order corrections coming from the fully rotating metric,
thereby reducing the problem to the usual Kerr metric.

More specifically, the argument goes as follows. The
electric potential energy in the rotating configuration will
have the form

WE =
Q2

E

2M
× f(M,a,QE, η) (23)

where f(M,a,QE, η) is a factor accounting for cor-
rections due to the nonvanishing spin a, such that
f(M, 0, QE, η) = 1. Since we are interested in the weak
charge limit, we can neglect the corrections due to QE;
however, since η is always accompained by factors ofQE ,4

we can also neglect the dependence on η. Therefore we
reduce to f(M,a) as given by the Kerr metric, i.e.

WE =
Q2

E R+

R2
+ + a2

=
Q2

E

2M
+O

(

Q2
E

)

. (24)

We have thus obtained the important result that, in the
weak charge limit, the dilaton charge does not depend
on the spin. As we anticipated, this conclusion contrasts
with Eq.(39) of [12], which was obtained in the particular
case η = 1. This discrepancy may be due to the prop-
agation of numerical approximation errors in the initial
conditions, see the first paragraph of Sec.IV.A in [12].

The nondependence on the spin in (24) gives a great
advantage in the context of theory testing. Indeed, GW
events so far constrained the BH spins only loosely, thus
jeopardizing the effectiveness of the tests based on the
emission of scalar dipole radiation [5]. The fact that (24)
is independent of the spin suggests that less degenerate
theoretical bounds can be obtained.

Curiously, the nondependence on the spin persists at
all orders in QE in the fully rotating Kaluza-Klein solu-
tion (see Appendix B). Given that this is the only non-
trivial value of the dilaton coupling for which fully rotat-
ing BHs are known, we do not find it enough to speculate
that QS is spin independent for all values of η.

V. Discussion

In this paper we have shown that the monopole scalar
hair of stationary BHs in Einstein–Maxwell–dilaton the-

4The reader can convince herself that it must be so because,
if the electric charge vanishes, all the terms in EOM containg η

vanish as well.

ory is related to the electric potential at the event hori-
zon. Although our procedure is similar to the one in
[7, 19], we cannot draw the additional conclusion that
horizonless compact objects cannot support a monopole
scalar charge. However, only in the case of BHs we are
able to express the scalar charge in a simple form in terms
of the mass and the electric charge, Eq. (15).

The main assumption behind our result is that all the
dynamical fields are Lie dragged along the Killing field
χa generating the event horizon: this allows the second
line of (7) to vanish. It might be possible that the re-
lation (15) still holds for nonstationary configurations,
finely tuned in such a way that the expression in square
brackets in the second line of (7) is still Lie dragged along
χa. We are not aware of a solution of the EMD EOM
with this property (see however [27] for a discussion of
nonstationary EMD BH solutions).

It must be stressed that, although the vector field in
EMD does not necessarily coincide with the photon field
of the standard model, the guiding principle of small de-
viations from GR suggests that the electric charge, if non-
vanishing, is small. We provided an operative meaning
of the “weak electric charge limit” and showed that the
scalar charge in this limit can be computed in a closed
form, even for fully rotating configurations. Moreover, in
this limit, the scalar charge does not depend on the spin.

These results are certainly useful to test EMD in the
inspiral phase of binary events [6], where the spin degen-
eracy is one of the main issues in deriving sensible con-
straints. A complementary analysis would be the study
of the ringdown oscillation modes, which is presently lim-
ited to the η = 1 case [16]. This will be the subject of a
work in preparation [15].
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Appendix A The Maxwell field at the event

horizon

We summarize the properties of the EM field on the
event horizon, following the same arguments presented
in [28], and in [29, 30] in the context of isolated hori-
zons. Since the horizon is generated by a Killing field
χa, its expansion and shear vanish identically. Then
the Raychauduri equation implies Rabχ

aχb = 0 at the
horizon. Using the gravitational EOM and the fact that
£χΦ = χa∇aΦ = 0, we find that the vector χaFab must
be null on the horizon. Since Fabχ

aχb = 0, this means
that the pullback of iχF on the horizon vanishes. The
same argument can be repeated for iχ ⋆ F , once one no-
tices that the Maxwell stress energy tensor can be rewrit-
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ten as

2FacF
c

b − 1

2
F 2gab = 2(⋆F )ac(⋆F )

c
b − 1

2
(⋆F )2gab (25)

where ⋆Fab = ǫabcdF
cd/2. Now,

0 = £χA = d(iχA) + iχF (26)

and therefore, using the fact that the pullback of iχF on
the horizon vanishes, we deduce that VE = iχA = const.
everywhere on the horizon.

The above arguments do not make reference to the
bifurcation surface B, but uses explicitely the Einstein
equations. Alternatively [31], if we assume that a bifur-
cation surface exists, then iχF = 0 = iχ ⋆ F on B, from
which it follows through (26) that VE = const. on B. Fi-
nally, using £χA = 0 =⇒ £χ(iχA) = 0, the constancy
of VE on the whole horizon is established.

Appendix B Rotating η =
√

3 black holes

Fully rotating EMD BHs are known for η =
√
3 [9, 10,

26]. The line element is (we follow the notation of [9])

ds2 = −1− Z

B
dt2 − 2a

Z sin2 θ

B
√
1− w2

dtdϕ+

[

B(r2 + a2) + a2 sin2 θ
Z

B

]

sin2 θdϕ2+B
Σ

∆
dr2+BΣdθ2

(27)

where

Σ = r2 + a2 cos2 θ , ∆ = r2 + a2 − 2mr , (28a)

Z =
2mr

Σ
, B =

(

1 +
w2 Z

1− w2

)1/2

. (28b)

The vector field and the dilaton field are given by, re-
spectively,

Aa dx
a =

wZ

2(1− w2)B2

[

dt− a
√

1− w2 sin2 θ dϕ
]

,

(29a)

Φ = −
√
3

2
lnB . (29b)

The mass M , the electric charge QE and the angular
momentum J are given by

M = m

(

1 +
w2

2(1− w2)

)

, (30a)

QE =
mw

1− w2
, (30b)

J =
ma√
1− w2

. (30c)

The timelike and rotational Killing fields are ta = (∂/∂t)a

and ψa = (∂/∂ϕ)a, while the Killing generator of the
horizon is χa = ta +ΩHψ

a, with

ΩH = − gtϕ
gϕϕ

∣

∣

∣

∣

θ=π/2

=
a
(

1− w2
)3/2

r2+ + a2
(31)

and r+ is the outermost solution of ∆ = 0. By expanding
(29b) in powers of 1/r we find that the scalar charge is

QS = −
√
3

2
QE w = −

√
3

2

(

√

M2 + 2Q2
E −M

)

= −
√
3
Q2

E

2M
+ O

(

Q2
E

)

. (32)

Expression (32) is independent of a, it coincides with (22)

for η =
√
3 and, using (31), the reader can easily verify

that it respects the relation (15).
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