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ABSTRACT Distributed energy generation systems, key for producing electricity near usage points, are
essential to meet the global electricity demand, leveraging diverse sources like renewables, traditional fuels,
and industrial waste heat. Despite their high reliability, these systems are not immune to faults and failures.
Such incidents can result in considerable downtime and reduced efficiency, underlining the need for effective
fault detection and diagnosis techniques. Implementing these strategies is crucial not just for mitigating
damage and preventing potential disasters, but also to maintain optimal performance levels. This paper
introduces a novel methodology based on Bayesian graphical modeling for unsupervised fault diagnosis,
focusing on organic Rankine cycle case study. It employs structural learning to discern unknown intervention
points within a directed acyclic graph that models the power plant’s operations. By analyzing real-world
data, the study demonstrates the effectiveness of this approach, pinpointing a subset of variables that could
be implicated in specific faults.

INDEX TERMS Clustering methods, distributed power generation, fault diagnosis, graphical models,
machine learning, statistics.

I. INTRODUCTION
In the evolving landscape of energy production, Organic
Rankine Cycle (ORC) power plants have emerged as a
significant player, particularly in the realm of renewable and
waste heat energy utilization [1]. ORC systems operate by
converting thermal energy into mechanical and subsequently
electrical energy, using organic fluids with lower boiling
points than water. This enables them to efficiently harness
energy from low-to-medium temperature heat sources, such
as geothermal reservoirs, biomass combustion, and industrial
waste heat. The adaptability and environmental friendliness
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of ORC systems make them increasingly relevant in today’s
pursuit of sustainable and decentralized energy solutions [2].
Nonetheless, despite their impressive reliability, it remains
essential to address faults within ORC systems [3]. Even
with high availability rates (higher than 98%), the occurrence
of faults can still lead to reduced efficiency and increased
operational costs. Effective fault management strategies,
including fault detection, diagnosis, and control, are thus
indispensable to maintain the integrity and efficiency of ORC
power [4], [5]. These strategies ensure that ORC systems
can continue to operate at their optimal capacity, providing
a consistent and sustainable energy supply.

Specifically, fault detection refers to the process of
identifying the occurrence of a fault within the system [6].
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FIGURE 1. Diagram of the proposed fault diagnosis process. The process begins with dataset collection and preprocessing. Subsequent clustering
analysis validates and confirms the suspected fault periods as identified by expert engineers. These periods then inform the Bayesian graphical
modeling for unsupervised fault diagnosis. Finally, expert knowledge of the fault type is applied to validate the findings from the Bayesian model.

This is often achieved through monitoring system parameters
and detecting deviations from normal operation. The ability
to detect a fault promptly can prevent further damage and
maintain operational continuity [7]. Fault diagnosis goes a
step further by determining the nature and cause of the
detected fault [8], [9]. It involves pinpointing the exact
location or component within the system where the fault
has occurred. This step is essential for targeted repairs
and maintenance, preventing the unnecessary replacement
of unaffected parts, and minimizing downtime [10]. Finally,
fault-tolerant control becomes imperative in managing plants
under faulty conditions. This approach ensures that the
plant continues to operate safely and reliably, even when
some components are malfunctioning, thereby enhancing
the resilience of the system against faults [11]. While
fault-tolerant control is an integral part of fault management,
this paper primarily focuses on fault diagnosis and isolation,
which are critical for accurately identifying and localizing
faults within ORC systems, thereby facilitating effective and
efficient interventions.

As the landscape of Organic Rankine Cycle (ORC)
technologies continues to advance and broaden in appli-
cation, the need for sophisticated fault diagnosis strategies
becomes essential to ensure the long-term efficiency and
sustainability of these crucial energy resources. In this
context, the field of data-driven fault diagnosis is emerging as
a pivotal area of research, offering significant advantages over
traditional model-based approaches. Data-drivenmethods are
particularly adept at handling complex, nonlinear systems
where model-based approaches might fall short due to the
dynamic nature and uncertainty inherent in ORC systems.

Data-driven fault diagnosis, in general, has been gaining
traction across various industrial domains [12], [13], [14],
[15]. These techniques leverage the power of data to uncover
underlying patterns and anomalies that signal faults. Machine
learning (ML) techniques, for instance, have shown consider-
able promise in fault diagnosis. Approaches such as logistic
regression, decision trees, and support vector machines have
been widely applied to detect and diagnose faults in diverse
industrial settings [16]. These MLmodels excel at processing
large datasets, identifying complex patterns indicative of
system abnormalities. Deep learning (DL), an extension
of ML, has also been explored for fault diagnosis with

encouraging outcomes [17], [18]. DL’s ability to process
vast amounts of data and its proficiency in feature extraction
make it a powerful tool for fault detection and diagnosis.
However, both ML and DL are often constrained by their
need for extensive training data and their general lack of
explainability. This lack of transparency can be a significant
hindrance, especially in critical applications where under-
standing the decision-making process is as important as the
diagnosis itself. In contrast, Bayesian networks have emerged
as a promising alternative, adept at managing uncertainty
and incomplete data. The comprehensive survey by [19]
highlights the application of Bayesian networks in fault
diagnosis, underscoring their suitability for systems where
not all parameters are constantly observable or predictable.
Bayesian networks offer a structured approach, integrating
probabilistic knowledge and expert input, making them
highly relevant for fault diagnosis in complex systems.

Several works in the literature have extensively addressed
the topic of fault management in power plants. While
model-based techniques remain foundational, exemplified
by [20], who proposed a model-based approach for fault
detection and isolation in an industrial gas turbine, recent
years have seen a surge in the adoption of data-driven
methodologies. The authors in [21] provide an insight-
ful survey of these advances in the field. In particular,
a comprehensive framework for fault diagnosis in nuclear
power plants using multi-source sensor nodes based on
a Bayesian network has been presented in [22], while
a step further has been taken by the authors in [23],
who have introduced an online fault diagnosis method for
industrial processes, utilizing a Bayesian network-based
probabilistic ensemble learning strategy. This approach is
particularly notable for its capacity to handle dynamic and
complex industrial environments. Further contributions in
this domain include the work proposed by [24] and [25],
which conduct fault detection and diagnosis of a gas turbine
by relying on ensemble-based approaches and advanced
neural network architectures. Finally, [26] provides valuable
insights into intelligent fault diagnosis based on deep learning
in rotating machinery, a field widely used in pumps, wind
turbine generator systems, gas turbine engines, and power
plants. These studies collectively underscore the evolving
landscape of fault management in power plants, where
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data-driven methodologies, particularly those leveraging
Bayesian networks and machine learning techniques, are
paving the way for more sophisticated and effective fault
diagnosis systems.

In the area of data-driven fault management for ORC
systems, the study conducted in [27] stands out as a notable
exception in a field where research is still emerging. This
work exploits the use of a thermodynamic ORC model to
generate synthetic datasets related to different types of faults.
These simulated faults provide the necessary data to train
various supervised learning algorithms, aiming to effectively
detect and diagnose faults within the ORC system. Although
the proposed approach has demonstrated reasonably strong
performance on experimental data, the need for an accurate
model of the ORC plant and the knowledge a-priori of
the type of faults represent significant limitations to its
applicability in real world scenarios.

To address existing limitations, this paper introduces an
innovative approach to usupervised fault diagnosis in power
generation systems through Bayesian graphical modeling.
The core of the proposed methodology involves construct-
ing a graphical model that accurately depicts the regular
operational state of the plant, by relying on a dataset of
collected measurements and specific annotations from expert
engineers denoting the period of a fault occurrence. Based on
a Bayesian graphical modeling framework, the methodology
allows to quantify the fault-probability for any given node,
by modeling such fault-events as exogenous interventions
affecting the network structure representing the system at
various (unknown) points. Such probabilities are instrumental
in pinpointing critical variables that might have influenced
the plant’s operational changes during the fault.

The presented approach has been validated using
real-world data from an operational Organic Rankine Cycle
(ORC) plant. While the dataset incorporates annotations
marking periods of faults, it is crucial to highlight that the
learning phase of the algorithm did not utilize any specific
information about the nature of these faults, thereby rendering
the process essentially unsupervised. To complement this,
a clustering-based approach is introduced to validate the fault
period annotations provided by expert engineers, showcasing
its potential for automated fault detection. The specific
fault-type information was reserved for the validation stage,
in which experienced engineers equipped with detailed
knowledge of the plant’s operations have assessed the output
of the fault diagnosis algorithm, thus confirming the practical
efficacy and reliability of the proposed methodology in a
real-world industrial context. This approach underscores the
synergy between data-driven analytical techniques and expert
human validation, enhancing the robustness and applicability
of fault diagnosis in ORC systems. A schematic description
of the proposed pipeline is provided in Figure 1.

Summarizing, this paper aims to address the existing
gaps and challenges in the field, offering a more robust,
interpretable, and effective methodology for fault diagnosis
in ORC systems.

FIGURE 2. Schematic representation of an organic Rankine cycle plant.
The numbers indicate the four primary stages of the cycle: evaporation
(1 - 2), expansion (2 - 3), condensation (3 - 4) and pumping (4 - 1).

To provide clarity on the structure and flow of this paper,
the following outline summarizes each section and its focus.
In Section II a detailed description of the ORC plant is
provided together with an exploratory data analysis. The pro-
posed Bayesian methodology for fault diagnosis is presented
in Section III, with a focus on the application of Bayesian
graphical models. The results obtained by validating the
proposed technique on real world data are described in
Section IV. Finally, Section V concludes the paper.

II. ORC PLANT AND EXPLORATORY DATA ANALYSIS
This section delves into the ORC plant, serving as the
foundation for the study. Firstly, a detailed description of the
ORC plant is provided in II-A to establish a comprehensive
understanding of its operational characteristics and dynamics.
This foundational knowledge is essential for contextualizing
the data analysis and the findings that follow. Secondly,
an exploratory data analysis is conducted in II-B on the
dataset collected from the plant. Such initial analysis is
crucial not only for understanding the dataset through
explanatory visualizations but also for validating the expert
engineers’ suspicions about the presence of a fault within a
specific period, suspected of causing significant performance
degradation.

A. ORC PLANT
An ORC plant operates on a principle similar to a traditional
Rankine cycle, but it uses an organic fluidwith a lower boiling
point than water as the working fluid. This characteristic
enables ORC systems to efficiently convert low-grade heat
sources into electricity, making them particularly well-suited
for sustainable energy generation, including waste heat
recovery and renewable energy applications. The use of
organic fluids with favorable thermodynamic properties
allows these systems to exploit heat sources unattainable
by conventional steam cycles. Additionally, ORC plants
typically require less maintenance and can operate at lower
temperatures, enhancing their appeal in various industrial and
renewable energy contexts.
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The ORC process, exemplified in Figure 2, comprises four
primary stages:

• Evaporation (1 - 2): the cycle begins with the organic
working fluid in a liquid state. It is heated by an external
source, which could be industrial waste heat, geothermal
energy, biomass, or solar heat. As the fluid absorbs this
heat (generally indicated as Qin), it vaporizes or turns
into a high-pressure gas;

• Expansion (2 - 3): the high-pressure vapor then enters a
turbine, where it expands and rotates the turbine blades.
This mechanical work is converted into electric power
(Wt ) by a generator coupled to the turbine. As the vapor
expands, its temperature and pressure drop;

• Condensation (3 - 4): after leaving the turbine, the
low-pressure vapor passes through a condenser. Here,
it releases its residual heat (Qout ) to the surroundings,
often through a cooling water system or air cooling. This
process turns the vapor back into a liquid;

• Pumping (4 - 1): finally, the liquid is pumped back to
the evaporator, increasing its pressure and preparing it
to absorb heat once again, thus completing the cycle.
The work required for the pumping process is indicated
with Wp.

Finally, the net work output of the cycle, representing the
total useful electric power produced, is calculated as:

Wnet = Wt −Wp (1)

while the thermal efficiency of the ORC cycle is given by:

η =
Wnet

Qin
(2)

thus providing a measure of its effectiveness in converting
heat to electricity.

In order to further enhance the cycle efficiency, especially
in systems where thermal resource optimization is critical,
a variant of the ORC scheme with a regenerator is often
considered. Such additional component, which incorporates
a split system heat exchanger, is adeptly integrated into the
cycle to recover a portion of the thermal energy from the
vapor post-turbine and pre-condenser. The recovered heat
is then utilized to preheat the working fluid, enhancing the
overall thermal efficiency of the system. The regenerator’s
function can be described by the following steps within the
ORC process:

• Regeneration: after the vapor exits the turbine, it passes
through the regenerator where it donates a portion of
its residual heat to the split system heat exchanger.
The working fluid, now preheated by the regenerator,
requires significantly less heat from the external source
to reach the necessary evaporation conditions;

• Enhanced evaporation (which substitutes the evapora-
tion phase): the preheated fluid enters the evaporator,
where it becomes fully vaporized. Due to the preliminary
heating from the regenerator, the amount of heat
required from the external source is reduced, thereby
improving the system’s efficiency.

The integration of a regenerator into the ORC cycle allows
for a more efficient use of thermal energy by recycling it
within the system, seamlessly complementing the existing
stages of the cycle. While the net work output of the cycle
remains constant, the effective heat input is diminished due to
the regenerator’s preheating effect. This leads to an improved
thermal efficiency according to (2), marking a more effective
conversion of heat into electricity. The regenerator thus plays
a pivotal role in enhancing the performance of the ORC cycle
by optimizing the utilization of heat sources and reducing
reliance on external heat inputs.

B. EXPLORATORY DATA ANALYSIS
This study utilizes a dataset comprised of real-world mea-
surements, recorded every minute from 48 different sensors
strategically placed throughout an operational ORC plant
equipped with a regenerator. This extensive dataset spans a
nearly five-year period, from December 2016 to April 2021,
providing a comprehensive overview of the plant’s oper-
ational dynamics. The available measurements encompass
the generated electric power as well as temperatures, flow
rates, and pressures at various points within the plant, thereby
indirectly providing data on enthalpies, heat exchanges
and plant efficiencies. All such variables are measured on
continuous scales. Additionally, annotations from expert
engineers suggest the presence of a fault, presumably a fluid
leakage from the split, during a specific period (from August
2019 to April 2021).

It is pertinent to note that the dataset employed in this
research is subject to a non-disclosure agreement, which
precludes the open sharing of the data. Despite this limitation,
we have endeavored to describe our analytical process in
detail to ensure that the methodology can be understood and
applied in other contexts where data access is not restricted.
This approach aims to balance the need for confidentiality
with the commitment to contribute valuable insights to the
field.

The primary objective of the preliminary data analysis,
as discussed in the following, is to verify the suspicion of
expert engineers regarding the presence of a fault in the ORC
plant. To achieve this, a cluster-based approach is employed,
focusing on isolating low-performing samples to detect any
degradation in power generation. A crucial step in this
process is data preprocessing, which ensures the integrity and
accuracy of the analysis. As a secondary but valuable aspect,
the data preprocessing also yields useful visualizations. These
visualizations not only aid in understanding the dataset but
also complement the cluster-based approach in identifying
and substantiating the suspected fault.

1) DATA PREPROCESSING
Variables included in the analyzed dataset were selected
according to their relevance for fault diagnosis and did not
contain missing values.

Outliers were rigorously identified using a criterion
based on the interquartile range, focusing on data points
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FIGURE 3. Exploratory data analysis of ORC Plant Operation. The set of plots provides a detailed overview of the ORC plant’s performance, including
daily generated power, pressure post-evaporation, and temperatures of both hot and cold sources, offering insights into the operational dynamics of
the plant.

lying outside the 95% confidence interval. This method
determined that approximately 5% of the data were outliers,
primarily resulting from measurement discrepancies and
transient operational disturbances not indicative of the plant’s
normal operational states. These outliers were carefully
reviewed and subsequently excluded to ensure the analysis’s
integrity.

Inactive periods, marked by zero generated power, were
predominantly due to operational downtimes and routine
maintenance activities at the plant. Such occurrences are
expected over the course of long-term data collection
spanning a nearly five-year period. These inactive periods
were also excluded from the analysis as they do not
yield meaningful insights into the study’s objectives. Then,
considering the relatively slow dynamics characteristic of
an ORC power plant, the minute-based data have been
transformed into a daily basis. This is achieved by calculating
the daily average values for each variable in the dataset.
Such a transformation helps in capturing the broader trends
and patterns, smoothing out short-term fluctuations that are
less relevant for the plant’s overall operational analysis.
A graphical representation of a selection of these restructured

variables is illustrated in Figure 3, providing a visual insight
into the daily operational trends of the plant.

2) CLUSTER ANALYSIS FOR FAULT DETECTION
Building on the data preprocessing described earlier, this
section focuses on the application of cluster analysis for
fault detection in the ORC plant. The primary aim is
to validate the hypothesis proposed by expert engineers
regarding the occurrence of a fault during the summer of
2019, specifically indicated by a notable decrease in the
plant’s efficiency. However, this task is challenging due
to several factors. Firstly, direct measurement of the heat
input, a crucial variable for assessing efficiency, is not
available. Nonetheless, indirect information about the heat
input is presumed to be encapsulated within other measured
variables. Secondly, the natural variability in both the heat
input and generated power, influenced by seasonal variations
and external environmental conditions, adds complexity to
the detection process. Additionally, the plant’s efficiency
is a dynamic and nonlinear metric, intricately influenced
by various state variables of the plant. This necessitates a
more nuanced and data-driven approach, such as the cluster
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FIGURE 4. Monthly distribution of days falling in the first quartile of
generated power. This histogram displays the count of days per month
within the first quartile of power generation, highlighting the period of
suspected fault occurrence between August 2019 and April 2021 in the
ORC plant.

analysis employed here, to discern patterns and anomalies
that may indicate the suspected fault.

The analysis specifically aims to determine if there is
a decline in generated power under stable environmental
conditions. To this end, a clustering approach is utilized to
categorize the operational data of the ORC plant. The chosen
methodology for achieving this is the K-means clustering
algorithm, a well-established technique in data science for
partitioning data into distinct groups based on similarity. The
process begins by selecting a subset of variables to be used
in the clustering, which is able to hold indirect information
about heat input and environmental conditions, as indicated
by the expert engineers. Specifically, variables related to the
temperatures of both hot and cold sources and the mass flow
have been considered. This phase is pivotal in distinguishing
the different operational states of the plant under varied
environmental scenarios.

Upon selection, these variables are normalized to ensure a
consistent scale across the dataset. The K-means algorithm
is then applied, segmenting the operational data of the ORC
plant into clusters. For the accurate identification of the
optimal number of clusters in the K-means analysis, both the
elbow method and silhouette analysis are employed. These
methods were instrumental in determining the most suitable
clustering partition, leading to the identification of 7 distinct
clusters. The silhouette score for this chosen configuration
was found to be 0.41, and while this figure may not be
exceptionally high, it is indicative of a reasonable structure
within the dataset. This is particularly significant considering
the operational data’s complexity and the specific context
of our case study. Furthermore, the model’s inertia, which
reflects the total within-cluster sum of square, was calculated
to be 2055. This value further supports the efficacy of our
clustering approach in distinguishing distinct operational
states of the plant under varied environmental conditions.

After segmenting the data according to the established
clusters, significant emphasis was placed on analyzing
data points within the higher quartile of generated power.
This specific focus allows for the isolation of periods of
lower performance, which are potential indicators of the
plant’s malfunctioning. The outcomes of this scrutiny are
presented in Figure 4, which shows the monthly distribution
of days categorized in this higher performance bracket.
A notable pattern emerged, revealing a dense concentration of
high-performing data points before July 2019. This period is
indicative of the plant’s regular functioning. In stark contrast,
the timeframe from August 2019 to April 2021 is marked
by an almost complete absence of high-performing samples.
This significant drop in the upper quartile performance aligns
precisely with the period suspected by the engineers for a
fault occurrence. The scarcity of high-efficiency data points
during this latter period substantiates the hypothesis of a
fault, corroborating the engineers’ suspicion and indicating
a deviation from the plant’s normal operational efficiency.

The clustering-based approach delineated here not only
serves the specific context of the ORC plant but also holds
broader applicability for automatic fault detection across
various domains. Particularly, this method is well-suited for
scenarios where faults manifest as performance degradation,
indicated by a decrease in a specific variable’s value.
Crucially, this approach thrives when a set of independent
variables can be readily identified, typically by expert
engineers, as being primarily responsible for the output.
These variables essentially capture the operational condi-
tions, making the methodology versatile and adaptable to
different systems where similar patterns of fault-induced
performance changes are observed.

The exploratory data analysis and the clustering-based
detection presented in this paper have effectively validated
the expert engineers’ suspicions regarding a potential fault
in the ORC plant. The forthcoming section introduces a
novel methodology for diagnosing the primary causes of the
detected fault, grounded in Bayesian structural learning and
graphical modeling. This method transcends the limitations
of traditional physics-based modeling, which, despite its
precision, is often computationally intensive and excessively
case-specific. In contrast, graphical modeling provides a
more flexible and scalable framework, adeptly capturing the
plant’s complex dynamics with efficiency and facilitating
easy application to other plants. Consequently, the ensuing
section is devoted to deploying this innovative approach, with
the objective of diagnosing the primary causes of the detected
faults and fostering a more comprehensive understanding and
adaptable solutions for fault diagnosis in ORC plants.

III. BAYESIAN STRUCTURE LEARNING FOR FAULT
DIAGNOSIS
We consider a collection of random quantities X = (Xj)j∈V ,
V = {1, . . . , q}, corresponding to observable features
of an ORC system, e.g. input/output source temperature,
pressure, or generated power.We assume that the multivariate
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FIGURE 5. An instance of DAG D and post-intervention DAG DI

corresponding to the intervention target I = {2, 4}.

distribution ofX can be represented through a directed acyclic
graph (DAG for short) D = (V ,E), where E is a set of
directed edges of the form i → j. DAG D encodes a set
of structural dependencies between variables which can be
representative of the functioning of a physical mechanism.
Under D, the joint distribution of X factorizes as

p(x |D) =

∏
j∈V

p(xj | xpa(j)) (3)

where pa(j) are the parents of node j in the DAG, namely
all nodes i for which i → j. Equation (3) is known as the
observational (or pre-interventional) distribution of X and
describes the regular functioning of the system as determined
by the ‘‘law of nature’’ [28]. In this paper, it is assumed
that a fault modifies a certain set of structural dependencies
embedded in D, as the result of an external intervention
affecting some nodes within the graphical representation of
the plant. The rationale behind this assumption is rooted in
the typical behavior of faults within such complex systems.
Specifically, a fault tends to disrupt connections between
different components of the plant, consequently altering
the causal effect relationships that define the operational
dynamics. Specifically, an intervention on target nodes I ⊆ V
destroys the original dependence of each j ∈ I from its
parents and replaces its observational density p(xj | xpa(j)) with
p̃(xj). In formula:

p(x |D, I ) =

∏
j/∈I

p(xj | xpa(j))
∏
j∈I

p̃(xj). (4)

We refer to Equation (4) as the post-intervention distribution
and I as the intervention target. Notice that in (4) all local
distributions of nodes j /∈ I are the same as in (3), meaning
that the system is stable after intervention, save for those
components that are instead affected by the intervention. The
effect of such an intervention can be represented through a
post-intervention DAG,DI , obtained fromD by removing all
edges i → j, for each j ∈ I ; see also Figure 5 for an example.
DI reflects the structure of the altered (as the effect of a fault)
plant system. In what follows, both D and I are regarded as
unknown and we provide a methodology for joint inference
on the mechanism underlying the plant system and the nodes
that are involved in the fault, D and I respectively.

A. MODEL FORMULATION
Consider a dataset comprising n observations from X
collected under two regimes, namely a pre- and a post-
intervention setting, which correspond to the regular (R)

and faulty (F) conditions of the system respectively. Let
X = (XR,XF )⊤ and XR

A the sub-matrix of XR with columns
indexed A ⊆ V ; similarly for XF

A . Assuming independence
across observations, the likelihood function can be written
under a parametric model for X as

p(X | θ, θ̃ ,D, I ) =

∏
j∈V

p(XR
j |XR

pa(j), θj)

·

∏
j/∈I

p(XF
j |XF

pa(j), θj)
∏
j∈I

p(XF
j | θ̃j),

where θ = (θj)j∈V , θ̃ = (θ̃j)j∈I are parameters indexing
observational and interventional distributions respectively.

Our objective is to develop a methodology for learning
the pair (D, I ), namely the underlying DAG model and the
intervention targets. To this end, we require a score of the
form p(X |D, I ), known as model evidence in the Bayesian
framework, which can be evaluated for a set of candidate
values of (D, I ). The quantity p(X |D, I ) can be derived in
closed-form expression under a Bayesian model formulation
based on the assumption of joint normal distribution for X .
Finally, a sampling strategy implementing such score within
an acceptance-rejection algorithm will return a collection of
plausible values for (D, I ) from which statistical inference
can be carried out. We provide details in the next section.

B. BAYESIAN INFERENCE
We assume each conditional distribution p(·) in (3) and (4)
being normal and specifically

p(xj | xpa(j), θj) = φ(xj |β⊤
j xpa(j), σ

2
j ), j ∈ V ,

p̃(xj |ψ2
j ) = φ(xj | 0, ψ2

j ), j ∈ I , (5)

where φ(x |µ, σ 2) denotes the probability density function
of N (µ, σ 2). Moreover, θj = (βj, σ 2

j ) is the parameter
(regression coefficients and conditional variance) indexing
the observational distribution of variable Xj given Xpa(j),
while θ̃j = ψ2

j the parameter (conditional variance)
indexing the post-intervention distribution of Xj. To complete
our Bayesian model formulation we need to assign prior
distributions to θ and θ̃ , i.e. p(θ, θ̃ |D, I ). One can assume,
under prior parameter independence,

p(θ, θ̃ |D, I ) =

∏
j∈V

p(θj)
∏
j∈I

p(ψ2
j ). (6)

The authors in [29] show that Normal-Inverse-Gamma priors
on θj = (βj, σ 2

j ) and Inverse-Gamma priors on ψ2
j provides

a closed-form expression for the model evidence in favor of
(D, I ), that is the integrated likelihood

p(X |D, I ) =

∫
p(X | θ, θ̃ ,D, I ) p(θ, θ̃ |D, I ) d(θ, θ̃ ). (7)

The latter, when coupled with a prior on (D, I ), provides
a formula to compute via Bayes theorem the posterior
probability of (D, I ) for any candidate value of (D, I ), that
is:

p(D, I |X) ∝ p(X |D, I ) p(D, I ). (8)
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Algorithm 1MCMC Sampler for DAG and Targets

Input: Datasets X(R),X(F), number of MCMC iterations S,
prior hyperparameters w ∈ (0, 1), a ∈ (0,∞), b ∈ (0,∞).
Output: S draws from the posterior of DAG and targets.
Initialize DAG and targets as D0 (empty DAG) and I0 = ∅;
Set D = D0 and I = I0.
1: for s = 1, . . . , S do
2: Propose a candidate DAG D̃ by locally modifying D

and update D = D̃ based on a MH acceptance ratio;
3: Propose a candidate target Ĩ by adding/removing

randomly a node in I , and update I = Ĩ based on a
MH acceptance ratio;

4: Set Ds = D and Is = I .
5: end for

We refer the reader to [29] for technical details on the
computation of p(X |D, I ). A prior on D, p(D), is assigned
through a collection of Bernoulli random variables, Ber(w),
w ∈ (0, 1), indicating the absence/presence of a link between
any two nodes. Similarly, prior on intervention target p(I ) is
assigned through q independent Ber(η) priors each describing
the occurrence of a fault at node/variable j = 1, . . . , q.
In addition, a Beta(a, b) prior is assigned to η. The resulting
hierarchical prior was shown to provide results that are less
sensitive to subjective prior specification, as for instance
obtained under a fixed η value. Finally, one can set p(D, I ) =

p(D)p(I ). In general, values of w and a, b can be assigned
based on prior/expert knowledge relative to the structure of
the system and the occurrence of faults at various points of
the plant; alternatively, as a default objective choice one can
set w = 0.5, a = b = 1. We refer to Section IV for details
regarding our specific choices.

C. ALGORITHM AND COMPUTATIONAL DETAILS
ABayesian approach to structure learning and target selection
requires the computation of the posterior distribution (8) over
the space of DAGs and intervention targets (D, I ). However,
a full enumeration of all DAG structures is infeasible even
when the number of nodes (variables in the system) is
moderate. Approximate inference based on Markov Chain
Monte Carlo (MCMC) strategies is typically implemented;
see for instance [30].

The sampling scheme that we consider is based on
a Metropolis Hastings (MH) acceptance-rejection method
which iteratively updates DAG D and intervention targets I
based on the value attained by the model evidence p(X |D, I )
and the prior p(D, I ); see also [29, Supplementary material].
A high-level illustration of our sampler is provided in
Algorithm 1.

Output of the algorithm is then a collection of DAGs{
Ds}

S
s=1 and targets {Is}Ss=1 approximately sampled from the

posterior (8), where S is the number of finally kept MCMC
iterations.

From such MCMC output, we can provide estimates of the
underlying DAG structure and targets, or even measures of
uncertainty around such quantities. Features of interest are
typically the posterior probabilities of edge inclusion, which
can be estimated as

p̂(i → j |X) =
1
S

S∑
t=1

1
{
i → j ∈ Ds

}
. (9)

Each probability quantifies the strength of a direct depen-
dence between nodes i and j, that we expect to reflect the
mechanism underlying the regular functioning of the plant
system. In addition, by fixing a threshold for edge inclusion
k∗

∈ [0, 1] to the probabilities above, we can recover a
graph estimate by including all those edges i → j for which
p̂(i → j |X) ≥ k∗. See also Section IV for illustrations.
More interestingly to our purposes, from the same output

we can provide insights regarding the occurrence of a fault at
some point (node) of the system. In particular, for any node
j ∈ V we can recover an estimate of the posterior probability
of intervention as

p̂(j ∈ I |X) =
1
S

S∑
s=1

1 { j ∈ Is} . (10)

Each of these terms quantifies the probability of a departure
from the regular functioning of the system, represented by
the DAG structure D, relative to node j. Accordingly, higher
values of p̂(j ∈ I |X) suggest stronger evidence of a mal-
functioning occurred at the plant-component corresponding
to node-variable Xj which can be thus considered as the
responsible of the fault.

IV. RESULTS
In this section, the focus is on the application of the
methodology described in Section III to the ORC plant’s data.

Initially, data preprocessing and feature selection,
as detailed in IV-A, are addressed. Results from the
implementation of themethodology for structure learning and
target identification are presented in IV-B

The resulting graph describes the conditional indepen-
dencies among nodes and the probabilities of interventions
affecting the system. It forms a critical component in the
process of fault diagnosis, allowing for the probabilistic
identification of nodes potentially impacted by external
factors during the period of malfunction. The probabilities
of intervention targets are then analyzed and discussed
in IV-C. This discussion is instrumental to understand the
operational implications of these findings. It offers valuable
insights, particularly for engineers and operational personnel,
by pinpointing areas within the plant that warrant closer
investigation in the event of faults. Finally, details on the
implementation of the proposed methodology are described
in IV-D.

Thus, the results section provides a comprehensive
overview, from the initial stages of data handling and feature
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FIGURE 6. Correlation between variables for the distinct operational phases — ‘Regular’ and ‘Fault’ — of the ORC plant. It visually represents the
inter-variable relationships, aiding in the understanding of variable dynamics under different operational conditions.

selection to the in-depth analysis of the learned graph and its
significance in fault diagnosis.

A. DATA PROCESSING AND FEATURES SELECTION
In this subsection, the processes of data preparation and
feature selection are elucidated, forming the groundwork
for subsequent analytical phases. The data preparation stage
was informed by insights from the company, revealing two
distinct operational phases of the ORC plant: a smooth
operational period preceding August 2019, and a subsequent
phase characterized by malfunction, including fluid leakage
and overheating, lasting from August 2019 to April 2021.
To capture this dichotomy, a binary ‘Fault’ indicator variable
was introduced, designated as 0 for periods of regular
operation and 1 for the malfunction periods. Recognizing
these two phases as separate experimental conditions, the
study aims to discern structural differences in the plant’s
operation potentially resulting from unknown interventions.
This differentiation is crucial for accurate fault diagnosis
and understanding the plant’s performance under varying
conditions.

Given the dataset’s complexity, particularly the significant
inter-variable correlations, a strategic approach was neces-
sary to address potential challenges in the graph learning
phase, such as redundancy. To mitigate this, a variable
selection process based on pairwise correlations was imple-
mented. During the regular operational period, a maximum
absolute correlation threshold of 0.75 was set. Variables with
pair correlations exceeding this threshold were selectively
excluded, with preference given to retaining those exhibiting
a lower average correlation among pairs. This methodical
selection resulted in a more streamlined dataset, where
each variable adheres to the maximum absolute correlation
threshold criterion in the regular phase. Consequently, the
final selection comprised 16 variables, effectively reducing
complexity while retaining critical information. The variables

TABLE 1. Specific variables used in the study, detailing their operational
relevance within the ORC system.

selected for analysis can be classified into distinct groups
based on their measurement types and functions within the
ORC plant:

• Pressure measurements: p and 1p;
• Organic fluid control valve in the split system: α1;
• Operational position indicators: α2 and α3;
• Temperature measurements: T1, T2, T3, T4, T5 and T6;
• Vibration measurements: ξ1 and ξ2;

Each group of variables plays a pivotal role in the compre-
hensive analysis of the plant’s operational dynamics and is
instrumental in identifying the key factors contributing to its
performance and efficiency. Detailed descriptions of these
variables are available in Table 1.
The outcome of this selection process is visually depicted

in Figure 6. The correlation map illustrates the interre-
lationships among the chosen features within the dataset,
distinctly categorized into the ‘Regular’ and ‘Fault’ oper-
ational regimes. This graphical representation serves as
a foundational reference for understanding the variables’
interactions and their relevance in different operational states
of the plant.
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TABLE 2. Hyperparameters for the MCMC algorithm discussed in III-C.

The final step in data preparation involves standardizing
each feature, normalizing them to a mean of 0 and a
standard deviation of 1. This normalization is imperative for
maintaining a consistent scale across all variables, thereby
ensuring comparability and minimizing biases that may arise
from differing magnitudes of data values.

B. RESULTS OF THE STRUCTURAL LEARNING PROCESS
The structural learning process, as outlined in III-C, was
applied to the dataset object of the presented case study.
Key to this process was the configuration of the Markov
Chain Monte Carlo (MCMC) algorithm, which was executed
in Python. The parameters used for the MCMC algorithm,
which are crucial for its performance and outcomes, were
carefully selected based on the dataset characteristics and the
objectives of the analysis. The specific parameters set for the
MCMC algorithm are summarized in Table 2.
In particular a substantial number of iterations, set

at 1,000,000, was selected based on empirical evidence
suggesting its adequacy in facilitating the convergence of
the algorithm. The hyperparameters for the Beta prior
were specifically chosen to reflect the probability of target
inclusion in the model. The parameter a was set as the
inverse of the number of features in the dataset (16 in this
case), providing a balanced approach to feature inclusion.
Similarly, b was set to 0.1, offering a reasonable level of
specificity for the model. Furthermore, the prior probability
of edge inclusion, denoted by w, was set to 0.1. This value
was selected to maintain a conservative yet flexible approach
to determining relationships between nodes in the graph.
It reflects a moderate level of stringency in establishing
connections, ensuring that the model is neither too sparse nor
overly complex.

The outcomes of the MCMC analysis, as delineated below,
are instrumental in unveiling the intrinsic structure and
interconnections within the dataset. These results shed light
on the conditional dependencies and potential points of inter-
vention (or faults) in the ORC plant system. As previously
mentioned, the DAG derived from our model encapsulates
the regular operational regime of the system. Conversely,
intervention targets are identified as nodes impacted by
unknown interventions, indicative of system malfunctions.

A primary focus of the MCMC results lies in the posterior
probabilities of edge inclusion. The edge inclusion matrix
presents the likelihood of a directed link between each pair
of nodes in the learned graph during the regular regime,
as shown in Figure 7.

FIGURE 7. Heatmap of the posterior probabilities for each potential
directed link in the ORC plant’s learned graph, providing insights into the
strength and likelihood of connections between different nodes in the
system.

TABLE 3. Posterior probabilities for each variable within the ‘Fault’ data
subset, representing the likelihood of interventions during the
malfunctioning period as identified by the MCMC analysis. In blue
variables with intervention probability higher than 0.5.

Additionally, the MCMC output yields posterior probabili-
ties of intervention targets. These probabilities correspond to
the ‘Fault’ data subset – the period labeled as defective by the
company engineers. Essentially, they represent the likelihood
of interventions on specific nodes during the malfunctioning
period of the plant system. Such probabilities are provided in
Table 3 for each of the considered variables.

By applying a threshold k∗
= 0.5 for edge inclusion,

a point estimate of the posterior over DAGs is obtained. This
is reported in Figure 8, where each node is colored according
to the corresponding estimated posterior probability of
intervention. Similarly, in order to identify which nodes
are likely to be affected by faults one could consider a
threshold for the posterior probability of intervention, such
as 0.5. As an alternative, an Expected False Discovery
Rate (EFDR) [31]) could be adopted for the purpose of
optimal selection of such threshold, both for graph and target
estimations.
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FIGURE 8. Estimated graph structure of the ORC plant system, derived by
applying a threshold of k∗ = 0.5 to the posterior probabilities of edge
inclusion, which means that only edges with probabilities equal to or
exceeding 0.5 are included in the graph. Each node is colored according
to its estimated posterior probability of fault.

C. DISCUSSION OF POSSIBLE FAULTS
In this subsection, we delve into the interpretation and
discussion of the results obtained from the MCMC analysis,
particularly focusing on the posterior probabilities of inter-
ventions in various nodes of the ORC plant system. The
interventions, as suggested by these probabilities, may be
indicative of potential faults in the corresponding parts of the
plant.

Expert engineers have pinpointed the split system heat
exchanger in the ORC circuit, which recovers heat from
a biomass boiler, as a critical component for optimizing
the plant’s thermal efficiency. In this context, the split
system functions as a secondary heat exchanger, designed to
recuperate residual heat from the boiler’s exhaust gases. This
recovered heat is then transferred to the ORC through the
split system exchanger. The term split system originates from
the fluid flow configuration in the ORC, where a portion of
the working organic fluid is directed towards the regenerator,
while another segment is diverted towards the split system
exchanger. This setup allows for effective transfer of the
recovered heat to the organic fluid, thereby enhancing the
overall efficiency of the ORC-boiler system.

Among the variables selected in the previous section, the
ones related to the split system are α1, α2 and T5. The
high probabilities in Table 3 associated with these variables
strongly suggest a malfunction in the split system, aligning
with the engineers’ suspicion of a fault related to this
component. Specifically, α1, α2, with a probability of 0.99,
and T5, showing a probability of 0.81,indicated a significant
change in the operational behavior of the split system.

Note that the variables 1p and α3, although not directly
linked to the split system, exhibit considerable probabilities
of intervention (0.99 and 0.89, respectively), suggesting their
roles in the plant’s response to the malfunction. In contrast,

the other variables object of the analysis show low (i.e. less
than 0.5) to negligible probabilities, indicating their lesser
involvement or impact during the fault period.

In summary, the analysis of intervention probabilities pro-
vides critical insights into the plant’s operational dynamics
during the fault period, specifically pinpointing the split
system as the focal area of concern. This information is
invaluable for engineers and plant operators, guiding them
towards targeted investigations and remedial actions for the
faults identified in the ORC plant system.

D. IMPLEMENTATION DETAILS
To ensure the transparency and reproducibility of our
research, we provide detailed information about the com-
putational tools, libraries employed in our simulations, and
data analysis, as well as the specifics of the computing
environment used for these tasks. Our study utilized Python
version 3.10.13, selected for its widespread acceptancewithin
the scientific community and the comprehensive support it
offers through a diverse ecosystem of libraries tailored for
machine learning and data processing applications. The key
Python packages that were instrumental in our simulations
include:

• NumPy (1.24.3): essential for its powerful numerical
computing capabilities, enabling efficient handling and
processing of large datasets;

• Scikit-learn (1.3.0): employed for implementing the
K-means clustering algorithm among other machine
learning utilities;

• Pandas (2.1.0): crucial for the efficient management,
manipulation, and analysis of our datasets;

• SciPy (1.11.2): used for optimization and statisti-
cal tasks, including operations such as cholesky,
cho_solve, and gammaln, integral to our analyses;

while those employed for visualization are:

• Matplotlib (3.7.3) and Seaborn (0.12.2): utilized for the
generation of various plots and figures, facilitating the
visual interpretation of our findings;

• NetworkX (3.2.1): applied for plotting and analyzing
the structure of the graphs associated with our Bayesian
models.

Furthermore, to maintain consistency within our compu-
tational framework and to fully leverage the capabilities
offered by Python’s ecosystem, we adapted and implemented
the MCMC algorithm, as presented in [29]. This algorithm
played a crucial role in our methodology for learning
the structure of the causal networks and assessing the
probabilities of interventions within the distributed energy
systems under examination.

This study’s simulations were executed on a personal
computing system equipped with Windows 11, powered by
an Intel i7-1260P CPU, and supplemented with 32 GB of
memory. This hardware configuration provided the necessary
computational power and efficiency to perform the extensive
simulations and data analyses required by our research.
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Code implementing the proposed methodology is publicly
available in our GitHub Repository, which in view of the
mentioned non-disclosure agreement includes a synthetic
dataset for illustration.

V. CONCLUSION
In this paper, a novel Bayesian graphical modeling approach
for fault diagnosis in Organic Rankine Cycle (ORC) power
generation systems was introduced and explored. Utilizing
real-world operational data from an ORC plant, the method-
ology centers around constructing a graphical model that
depicts the plant’s regular functioning and estimating the
probabilities of interventions at each node during the fault
period. This approach successfully identified key variables
that potentially contributed to operational changes during the
fault, highlighting its effectiveness in fault isolation.

A significant aspect of this study is the reduced depen-
dency on human annotations for both fault detection and
diagnosis, which are here conducted through unsupervised
techniques. The research demonstrated that automated
clustering-based approaches could independently identify
fault periods. These identified periods serve as critical inputs
in a Bayesian learning framework for causal networks,
thereby illuminating potential faulty nodes within the plant’s
systems.

Furthermore, the practical validation of the findings,
conducted with experienced plant engineers, ensured that the
proposed model was well-aligned with real-world plant oper-
ations and conditions. While a comparison with supervised
learning benchmarks would enrich algorithm validation, it’s
important to note that supervised methods, though powerful
in data-rich environments with extensive labeling, face
significant challenges in the context of fault management in
distributed energy systems like ORC plants. The difficulty
lies in acquiring a detailed, labeled fault dataset broad enough
to encompass all possible fault states, compounded by the
high demands of expert knowledge and time for data labeling.
Additionally, the inherent nature of fault data as a minority
class leads to highly unbalanced datasets, posing further
challenges to supervised learning approaches.

Our unsupervised learning model, designed to operate
independently of labeled data, emerges as particularly
beneficial under these constraints. It seeks to detect pat-
terns and anomalies within operational data indicative of
faults, relying on the dataset’s inherent structure rather
than extensive labeled examples. Crucially, the Bayesian
nature of our approach allows the integration of external
knowledge, such as expert engineers’ insights into specific
faults, as priors in the model’s parameters. This capability to
meld data-driven analysis with expert intuition significantly
enhances the model’s versatility and applicability, offering
a bridge between purely algorithmic methods and those
enriched by human expertise.

In summary, the approach presented in this paper
contributes substantially to the field of data-driven fault
diagnosis. By integrating Bayesian graphical modeling with

actual plant data, it enhances the accuracy, interpretability,
and efficiency of diagnosing faults in complex energy
systems like ORC plants. This advancement is particularly
relevant given the evolving landscape of fault management in
power generation systems.

Looking ahead, potential areas for further research include
refining the model to handle real-time data streams, thereby
enhancing its predictive capabilities and responsiveness.
Further exploration into the integration of this methodology
with other machine learning and deep learning techniques
could also yield a more comprehensive and robust framework
for fault management. Additionally, the development of a
unified framework that leverages graphical modeling for
both fault detection and diagnosis represents a promising
avenue for future research. This unified approach aims to
streamline the fault management process, ensuring a cohesive
and efficient strategy that harnesses the strengths of graphical
modeling in addressing the complex challenges inherent in
ORC systems.

Our model assumes that multivariate data are i.i.d. within
each (fault and regular) regime. However, data collected
from dynamical systems typically exhibit time dependencies
between variables other than contemporaneous ones. One
possible extension of our framework for fault detection could
be based on a graphical Vector Auto Regressive (VAR)
model; see for instance [32] for a Bayesian methodology.
The latter would consider a regression structure among
variables measured at different lags, as well as a dependence
structure, represented by a directed network, modelling
contemporaneous dependencies.
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