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A B S T R A C T

Monitoring systems are increasingly being deployed throughout the
cloud continuum, a distributed and heterogeneous environment with
varying software and hardware stacks designed to be simultaneously
accessible in a multi-tenant fashion. Its fog and edge computing layers
exhibit lower network latency and greater responsiveness compared
to the upper cloud layer. However, they have lower reliability due to
the prevalence of wireless connectivity, and fewer computational capa-
bilities due to limited device resources.
Managing monitoring systems in the cloud continuum poses several
challenges for automation and energy consumption. In this context,
this thesis addresses two main challenges: (i) automating the moni-
toring system configurations in response to dynamic needs and tech-
nological constraints, and (ii) efficiently utilizing available resources,
which is particularly relevant in the context of fog and edge environ-
ments. Regarding the first challenge, this thesis presents two main con-
tributions: (i) a Monitoring-as-a-Service (MaaS) framework that can
fully govern the life-cycle of the probes, including error-handling, and
(ii) the definition, analysis, and qualitative and quantitative evalua-
tion of 11 possible probe deployment patterns. Regarding the second
challenge, this thesis presents two additional contributions. Firstly, it
presents a self-adaptive peer-to-peer monitoring system for fog envi-
ronments that can abstract monitored indicators to logical states and
activate countermeasures in turn. Secondly, it proposes an energy-
aware approach to guide developers in implementing self-adaptive
applications for edge environments. Such applications are capable of
switching operation modes in response to changes in the environment,
ultimately balancing energy consumption with application-level objec-
tives, such as monitoring accuracy.
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I N T R O D U C T I O N

Monitoring is a critical activity in several �elds, such as environmen-
tal sciences [126], information and communication technology (ICT) [ 4],
healthcare [158], and engineering [ 174]. A monitoring systemgathers,
transmits, and archives data by using probes to sense a target, whether
it is natural (e.g., water), physical (e.g., industrial machinery), or vir-
tual (e.g., applications). This data can help understand the target be-
havior and potentially provide meaningful insights through both on-
line (e.g., real-time anomaly detection [ 254]) or of�ine (e.g., root-cause
analysis [129]) analyses.

Nowadays, monitoring systems are being deployed more frequently
along the cloud continuum. This is a seamless“continuum” of comput-
ing services that are available from traditional clouds running in data
centers located in the core network, as well as from heterogeneous de-
vicessuch as access points, routers, gateways, and cloudlets located in
the metro and access networks [176, 263].

Figure 0.1: A graphical overview of the thesis context, research challenges
(RCs), research questions (RQs), and main contributions.

The cloud continuum integrates the Cloud with the IoT through
the fog computingand edge computinglayers, as shown in the top part
of Figure 0.1. Fog computing is a computing model that distributes
computation, communication, control, and storage closer to the IoT
at the edge of the network by using a hierarchical architecture [ 62,

1



2 introduction

263]. Edge computing also provides computational and storage facili-
ties, but it is located at the very edge of the network, typically within
one or two hops, with a distributed and localized architecture [ 258,
263]. Compared to cloud computing, both fog and edge computing
exhibit lower network latency and greater responsiveness [ 43, 62, 263].
However, the number of devices in these layers is large, often reaching
millions, and their computational capabilities are limited compared
to those of cloud data centers. The cloud continuum results in a dis-
tributed and heterogeneous environment with varying software and
hardware stacks. It is accessible in a multi-tenant fashion, meaning
that resources are shared among tenants. Additionally, it includes fog
and edge computing layers, which may be unreliable due to prevalent
wireless connections and less powerful due to limited resources on the
devices [263].

This thesis focuses on two challenges that impact monitoring sys-
tems operating in the cloud continuum. The challenges, research ques-
tions, and main contributions are summarized in Figure 0.1.

The �rst research challenge (RC1) concerns with the adaptation of
monitoring systems to evolving requirements. For a monitoring system
that operates in the cloud continuum, it is essential to support its au-
tomated evolution to accommodate changes in operators' needs due
to unpredictable events such as anomalies, failures, and requests for
new indicators to be collected [ 96, 215, 229]. For example, according to
data from a survey involving 63 data centers conducted in 2016[150],
the average cost of downtime per data center increased by 38% from
$500,000 in 2010to $740,357[214]. This remarks how enhancing moni-
toring systems with faster adaptation and automation capabilities can
help predict anomalies and anticipate failures, ultimately impacting
revenues and operational costs. Furthermore, since the cloud contin-
uum is a heterogeneous environment used by multiple tenants, a mon-
itoring system should abstract from underlying technologies and re-
lieve operators from the con�guration burden [ 1, 4].

In this challenge, the thesis delves into two research questions (RQs).
RQ1: How can a monitoring system be adapted to evolving opera-
tors' needs? RQ1 analyzes how a monitoring system can assist cloud
operators and adapt its functionalities according to the their evolving
needs while minimizing the number of operational changes. This the-
sis proposes aMonitoring-as-a-Service (MaaS) frameworkthat can fully
manage the life-cycle of probes, including error-handling, by starting
from declarative input. The contribution has been published in the
IEEE Transactions on Services Computing journal paper titled “Auto-
mated Probe Life-Cycle Management for Monitoring-as-a-
Service” [242].
RQ2: How can a monitoring system operate probes in heterogeneous
and multi-tenant environments? RQ2 studies possible probe deploy-
ment patterns by identifying and characterizing the components that
can be used to deploy probes. This thesis provides the de�nition, anal-



introduction 3

ysis, and qualitative and quantitative evaluation of11 possible probe deploy-
ment patterns. The contribution has been published in the IEEE Transac-
tions on Services Computing journal paper titled “Monitoring Probe
Deployment Patterns for Cloud-Native Applications: De�nition and
Empirical Assessment” [ 244].

The second research challenge (RC2) addressed in this thesis con-
cerns with the adaptation of monitoring systems to the available resources,
which is particularly relevant in the context of fog and edge environ-
ments. A monitoring system operating in these environments must
ef�ciently use available resources to handle an increasing number of
running devices, applications, and collected indicators, which produce
a signi�cant amount of data for storage and analysis [ 1, 228]. Addi-
tionally, it is crucial for a monitoring system to function effectively in
unpredictable and possibly resource-limited conditions. This involves
ensuring the system's capabilities while making ef�cient use of avail-
able resources, which may be limited at the network's edge [ 216].

Regarding this second research challenge, this thesis investigates
two additional research questions.
RQ3: How can a monitoring system adapt its behavior to ef�ciently
operate in fog environments? RQ3 studies how a monitoring system
can ef�ciently operate in fog environments by adapting its behavior to
changes in the monitored targets. This thesis proposes a self-adaptive
P2P monitoring systemthat utilizes a hierarchical P2P architectureand
incorporates adaptive behaviors based on the MAPE-K feedback loop.
This contribution was presented at the 17th Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS) and
published in its proceedings with the title “Towards Self-Adaptive
Peer-to-Peer Monitoring for Fog Environments” [ 65].
RQ4: How can a monitoring system adapt its behavior to ef�ciently
operate in edge environments? RQ4 studies how a monitoring system
can operate in resource-constrained edge environments guaranteeing
its capabilities while wisely using available resources. This thesis pro-
poses anenergy-aware approachthat can guide developers to implement
an (AI-based) self-adaptive monitoring applicationable of switching its op-
eration modes in response to changes in the environment, �nally bal-
ancing energy consumption with the application-level objectives. This con-
tribution was presented at the 38th International Conference on Auto-
mated Software Engineering (ASE) and published in its proceedings
with the title “An Energy-Aware Approach to Design Self-Adaptive
AI-based Applications on the Edge” [ 240].

The thesis is structured as follows. Chapter 1 presents the cloud con-
tinuum, its characteristics, and highlights the main challenges that af-
fect the monitoring activities. Chapter 2 deeply analyzes the two RCs
of monitoring in the cloud continuum, the identi�ed research gaps,
and the main thesis contributions to the four RQs. The thesis is then
divided into two parts corresponding to the two research challenges of
interest. Part I presents contributions about adapting monitoring sys-
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tems to evolving requirements. In particular, Chapter 3 explores RQ1
and presents a monitoring framework for automated life-cycle man-
agement of probes, while Chapter 4 investigates RQ2 and describes
the de�nition and assessment of probe deployment patterns. Part II
presents contributions about adapting monitoring systems to the avail-
able resources. Speci�cally, Chapter 5 studies RQ3 and presents a self-
adaptive monitoring approach for fog environments, while Chapter 6
investigates RQ4 and proposes an approach to design of energy-aware
and self-adaptive monitoring applications for edge environments. Fi-
nally, Chapter 7 presents concluding remarks and future work.



1
T H E C L O U D C O N T I N U U M

The rise of cloud computing is considered one of the factors that
contributed to the development and spread of Internet-of-Things (IoT)
applications [ 201]. These applications usually collect data from IoT de-
vices (e.g., sensors, home appliances, smartphones), and rely on cloud
resources for storage, data processing, and decision making [201, 263].

As reported in a recent analysis by IoT Analytics, the number of
devices connected to the network should reach 16.7 billion by the end
of 2023, while it is expected to be more than 29 billion by 2027 [49].
This large number of devices produces a massive amount of data, that
might reach 80 billion zettabytes by 2025according to a forecast con-
ducted by the International Data Corporation in 2021 [117]. Moving
this large amount of data from remote devices to cloud data centers
can be inef�cient, or in same cases, it might be even infeasible be-
cause of bandwidth limitations [ 263]. Despite an IoT-to-Cloud commu-
nication model can support non-latency sensitive applications, such
communication model is unfeasible for (near) real-time scenarios with
demanding response time constraints (i.e., milliseconds or microsec-
onds), such as, patient monitoring, drone �eets, cognitive assistance,
or autonomous driving [ 263].

Recently, researchers and practitioners started considering the po-
tential bene�ts of locating computing resources closer to end devices,
where data is generated [36, 41, 43, 62, 263]. By interconnecting large-
scale cloud data centers in the core network, with servers and network
devices distributed across the metro and access networks [263], it is
possible to provide seamless access to acontinuum of cloud resources,
namely, the cloud continuum, to support the needs of such application
scenarios [36, 176].

Many computing paradigms have been proposed in the last decade
to �ll the gap between the Cloud and the IoT devices [ 263], thus
realizing the continuum. In particular, fog computing [ 43] and edge
computing [ 216] emerged among many others (e.g., edge clouds [57],
cloudlet [ 208], multi-access edge computing [203]), but multiple de�ni-
tions of what the constituting tiers and the role of the cloud continuum
are can be found in current literature.

This chapter is organized as follows. Section 1.1 presents the de�ni-
tion of cloud continuum and its recent evolution. Section 1.2 provides
background information about cloud computing and its main limita-
tions. Section 1.3 describes the fog computing characteristics and the
main differences with the Cloud. Section 1.4 presents the edge com-
puting and the main differences with the Fog. Finally, Section 1.5 in-

5
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troduces the main challenges that affect monitoring activities in the
cloud continuum environment.

1.1 introduction to cloud continuum

The de�nition of cloud continuum in current literature is not unique
and has evolved in the last years [176]. In a recent mapping study,
Moreschini et al. [176] consider 36 studies that propose de�nitions to
cloud continuum dated from 2016to 2022. The authors identify three
main groups of de�nitions.

Studies in the �rst group de�ne the cloud continuum as an extension
of the resourcesand focus on their distribution related to the concept of
fog and edge computing, that is, they consider it as “an aggregation
of heterogeneous resources from the Edge to the Cloud” [176]. Stud-
ies in the second group de�ne the cloud continuum as an extension of
computational capabilitiesand focus on processing particularly, that is,
they consider it as a “set of processing units located between the IoT
and the Cloud” [ 176]. The third group is composed by the remaining
studies not belonging to any of the two previous groups. They mainly
focus on the different digital services executed across multiple physi-
cal infrastructures, without particular focus neither on the distribution
of the resources nor on the computational capabilities [ 176].

The two earliest de�nitions of cloud continuum have been both pre-
sented in 2016. Chiang and Zhang [ 62] de�ne the cloud continuum
referring to computational aspects explicitly, highlighting where and
how the computation is performed. On the other hand, Gupta et al.
[113] de�ne the cloud continuum as “a continuum of resources from
the network edge, through the core network, to the data centers”. It is
worth noting the study by Gupta et al. [113] belongs to gray literature.
However, it is referred to as the �rst de�nition of cloud continuum
by many other peer-reviewed studies, and “it represents an important
milestone for the de�nition of cloud continuum that has evolved over
time with the addition/removal of other keyword” according to the
authors of the mapping study [ 176].

In more recent studies, Dustdar et al. [81] de�ne the cloud contin-
uum as a system simultaneously operated across the cloud, fog, and
edge computing tiers; while Spillner et al.[223] highlight it is a “novel
abstraction layer to express a continuous range of capacities”.

There is no complete agreement in current literature about how ex-
tensive the Cloud is, and so, about which other computing tiers (i.e.,
Fog, Edge, and IoT) are part of the cloud continuum. For instance,
Kassir et al. [139] consider the terms “cloud-to-thing(s) continuum”
and “Fog-to-Cloud continuum” synonyms. Similarly, both Mehran et
al. [165] and Nezami et al. [180] use the terms “Cloud-fog continuum”
and “fog continuum” to indicate the continuum extends the Cloud to-
wards the fog computing. Kahvazadeh et al. [136] use the term “IoT
continuum”, but in the end they describe the same connection between



1.2 cloud computing 7

cloud and edge computing. On the other hand, Xhafa and Krause [ 260]
de�ne the cloud continuum as an ecosystem comprising digital ser-
vices operated across Fog, Edge, and IoT.

In studies belonging to the second group, that is, those focusing
on the processing capabilities, the de�nition of cloud continuum con-
sider connecting any computational-enabled entities (e.g., data centers
and fog/edge/IoT nodes). For instance, Beckman et al. [39] de�ne the
cloud continuum as “a collective of components with various capa-
bilities and numbers in aggregate”. Meanwhile, Balouek-Thomert et
al. [35] de�ne it as “a digital infrastructure jointly used by complex
application work�ows” without mentioning any speci�c nodes being
connected by the cloud continuum.

By unifying the two main groups of de�nitions (i.e., extension of
processing and extension of resources), Moreschiniet al.[176] propose
a new comprehensive de�nition of the cloud continuum as the out-
come of their mapping study:

Cloud continuum (De�nition 1.1). Cloud continuum is an extension of
the traditional Cloud towards multiple entities (e.g., Edge, Fog, IoT)
that provide analysis, processing, storage, and data generation capabil-
ities [176].

In this thesis, the cloud continuum serves as an extension of both
processing and resources, as de�ned by Moreschini et al. [176] in Def-
inition 1.1. Speci�cally, the Cloud, the Fog, and the Edge are consid-
ered as entities that realize the continuum of resources and processing,
while the IoT is viewed as the motivation for implementing the cloud
continuum, and not part of the constituting tiers.

1.2 cloud computing

Cloud computing became the main computing paradigm in the last
decade, accelerating digital transformation and creating new business
opportunities in many sectors (e.g., agriculture, healthcare, manufac-
turing, information and communication technology) [ 163, 226].

Cloud computing (De�nition 1.2). Cloud computing enables on-
demand and ubiquitous access to (virtually) in�nite shared resources
(e.g., storage, servers, networks, and services) via the network. They
are provided by pools of con�gurable and virtualized computing re-
sources operated in data centers, that can be dynamically recon�g-
ured with minimal effort to accommodate variable and scalable work-
loads [166].

The U.S. National Institute of Standards and Technology (NIST) de-
�nes the cloud model as consisting of �ve key characteristics [ 166].
Such characteristics contribute to the appealing attributes of cloud
computing, such as on-demand provisioning, elasticity, ubiquitous ac-
cessibility, reduced initial investments, and accelerated
time-to-market [ 41].
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i) On-demand self-service, that is, a consumer can automatically pro-
vision computing resources (e.g., servers and storage) as needed
without requiring any human interaction with the service
providers;

ii) Broad network access, that is, cloud resources are available over
the network and accessed via heterogeneous clients (e.g., mobile
devices, laptops, and workstations) using standard mechanisms;

iii) Resource pooling, that is, provider's resources are pooled to offer
services to multiple consumers in a multi-tenant fashion. Both
physical and virtual resources are dynamically (re)allocated ac-
cording to the current demand, and the customers are usually
unaware of the precise location of the resources provided, de-
spite they might be able to specify the location (e.g., data center);

iv) Rapid elasticity, that is, cloud resources can be elastically (and in
some cases automatically) (un)provisioned to quickly adapt to
the current workload demands. From the consumer's perspec-
tive, resources appear in�nite and can be consumed at any time;

v) Measured service, that is, cloud-based systems leverage metering
to control and optimize the resource usage. Usage metrics are
visible to both the provider and consumer for monitoring pur-
poses and to enable a pay-per-use cost model.

Cloud resources can be consumed according to three main service
models: Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), and
Software-as-a-Service (SaaS)[166]. Consumers can use a variety of these
services depending on their needs [263].

Infrastructure-as-a-Service (De�nition 1.3). IaaS provides consumers
with the capability to provision IT infrastructure for compute, storage,
and network resources. Consumers have control over the provisioned
infrastructure resources in terms of con�gurations (e.g., CPU/RAM ca-
pacity for compute services), operating systems, storage, and they are
able to deploy and run arbitrary software. However, consumers do not
manage or control the underlying cloud infrastructure [ 166, 263].

Platform-as-a-Service (De�nition 1.4). PaaS enables consumers to fo-
cus on software development, fully supporting the software life-cycle,
often using middleware for software management and con�guration.
Consumers do not manage or control the underlying infrastructure
(e.g., network, servers, operating systems, or storage). However, they
have control over the deployed applications and possibly con�guration
settings for the hosting environment. In addition, PaaS providers often
include tools for database management and application scaling [ 166,
263].
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Software-as-a-Service (De�nition 1.5). SaaS allows consumers to use
provider's applications that run on a cloud infrastructure. The ap-
plications can be accessed from a variety of client devices (e.g., web
browsers or a program interface). Consumers have no control of the
underlying cloud infrastructure (e.g., network, servers, operating sys-
tems, or storage) or even individual application capabilities. However,
it is usually possible for consumers to access a limited user-speci�c
application con�guration settings [ 166].

The NIST de�nes also four types of cloud deployments: private
cloud, community cloud, public cloud, and hybrid cloud [ 166].

Private cloud (De�nition 1.6). Private clouds provide infrastructure to a
single entity exclusively and offer a high degree of privacy and con�g-
urability. They are a good choice for organizations that need infrastruc-
ture for their applications. A private cloud may be owned, managed,
and operated by an organization, a third party, or a combination of the
two, and may be located on or off premises [ 166, 263].

Community cloud (De�nition 1.7). Community clouds are used by spe-
ci�c community of users, and the cloud infrastructure is usually shared
by multiple organizations that have the same concerns, for example,
the same mission or compliance. A community cloud results in de-
centralized ownership of the cloud by multiple organizations within
the community, a third party, or some combination of them, without
relying on a large cloud provider for the infrastructure [ 166, 263].

Public cloud (De�nition 1.8). Public clouds are the most common de-
ployment type of cloud computing. In a public cloud, the infrastruc-
ture is for open use by the general public and it exists on the premises
of a cloud provider [ 166, 263].

Hybrid cloud (De�nition 1.9). Hybrid clouds are a combination of
two or more different cloud deployment models (i.e., private, commu-
nity, or public). They enable consumers to have greater control over
the cloud infrastructure and streamline the capabilities of the differ-
ent deployment models through standardized or proprietary technolo-
gies [166, 263].

Despite cloud computing helps to create ubiquitous computing and
�exible access to resource pools, the time required to access cloud ser-
vices can be prohibitive for some applications with (ultra)low-latency
and high-bandwidth requirements [ 43, 263]. In addition, the increas-
ing number of connected devices and the rapid growth of data gener-
ated at the edge require cloud resources to be closer to where the data
is actually generated [263]. To address these needs, fog and edge com-
puting paradigms have been proposed by both industry and
academia [43, 216].
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1.3 fog computing

Fog computing (De�nition 1.10). Fog computing is a layered, decentral-
ized, and hierarchical computing paradigm that enables ubiquitous
access to computation, communication, control, and storage closer to
the edge of the network relying on heterogeneous nodes [ 43, 125, 258].
It supports the deployment of distributed, latency-aware applications
and services, and reduces data transfer costs, optimizing bandwidth
usage, and improving user experience [43, 62, 258, 263].

The fog computing infrastructure consists of nodes, either physi-
cal or virtual, located in the metro and access network between edge
devices and centralized cloud data centers in the core network [ 263].
Fog nodes are heterogeneous and enabled with virtualization capabil-
ities, and they include servers, routers, switches, and access points [41,
43, 62, 263]. Moreover, they are context-aware, and can be organized
in vertical clusters to support isolation, horizontal clusters to support
federation, or latency-based clusters according to their distance from
edge devices [125]. A wide array of industries could bene�t from utiliz-
ing the fog computing paradigm, for example, energy, manufacturing,
transportation, healthcare, and smart cities [ 263].

As with cloud computing, NIST de�nes the paradigm of fog com-
puting describing its six primary characteristics [ 125]:

i) Contextual location awareness and low latency, that is, the low-latency
capability is enabled due to contextual location and data ex-
change cost-awareness of nodes. Fog nodes, which are often po-
sitioned in closer proximity of end-devices, facilitate faster anal-
ysis and response to data generated by these devices compared
to centralized cloud data centers;

ii) Geographical distribution, that is, geo-distributed and identi�able
deployments are necessary for fog services and applications to
provide high-quality services in proximity to end-devices (e.g.,
streaming services to vehicles on the move through nodes lo-
cated along highways);

iii) Heterogeneity, that is, it enables the collection and processing of
heterogeneous data acquired through different communication
networks;

iv) Interoperability and federation, that is, fog components must in-
teroperate and running services must be federated to provide
seamless support for services necessitates collaboration among
various providers (e.g., real-time streaming);

v) Real-time interactions, that is, it fosters real-time interactions rather
than - or only - batch processing data-intensive applications and
services;
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vi) Scalability and agility of federated clusters, that is, it eases adaptive
functions at both cluster and cluster-of-clusters level (e.g., com-
puting elasticity, resource pooling, data-load management, and
network condition variation).

In addition, they de�ne two extra characteristics frequently linked
to fog computing [ 125]:

i) Predominance of wireless access, that is, it is highly compatible with
wireless IoT access networks to support the large number of
wireless sensors that requires distributed analytics and compute;

ii) Support for mobility, that is, it must support mobility techniques
to enable fog computing applications requiring direct communi-
cation with mobile devices.

Fog computing, like the conventional cloud computing model, im-
plements the architecture in several network topology layers [ 125, 263].
Therefore, fog computing supports traditional cloud computing ser-
vice models, that is, IaaS, PaaS, and SaaS, and enables private, com-
munity, public, and hybrid deployments [ 125].

Several differences exist between cloud and fog computing, particu-
larly in the hardware infrastructure scale [ 263]. Cloud computing gen-
erally utilizes extensive data centers, whereas fog computing employs
diverse and compact devices such as servers, routers, switches, gate-
ways, or access points [62, 125, 263]. As these devices require less space
for deployment in the �eld compared to the data centers used in cloud
computing, they can be positioned closer to users, resulting in faster
access times [263]. Moreover, cloud computing provides high avail-
ability of computing resources, albeit with comparably high power
consumption, while fog computing supplies moderate resource avail-
ability with lower power usage [ 128].

Fog computing services and applications can be accessed through
connected devices from the edge of the network (i.e., access and metro
networks) to the network core, while cloud computing can only be ac-
cessed through the network core itself [ 263]. Additionally, fog services
can operate autonomously with restricted or no Internet connectivity,
and then transmit critical updates to the cloud as soon as a connection
is again available. In contrast, cloud computing demands constant de-
vice connection while the cloud service is in use [ 263].

1.4 edge computing

The origin of edge computing is connected to the introduction of
content delivery networks (CDNs) to accelerate web performance back
in 1990 [207]. Since then, edge computing has evolved to encompass
not only caching but also computation and storage assistance for mo-
bile users and the IoT devices [207].
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Edge computing (De�nition 1.11). Edge computing provides computa-
tional and storage facilities at the very edge of the network, typically
within one or two hops [ 263]. It has a distributed and localized archi-
tecture consisting of heterogeneous resource-constrained devices with
limited capabilities [ 258, 263]. Edge computing enables computation
to occur at the edge of the network, processing downstream data in
support of cloud services and upstream data in support of IoT ser-
vices[216].

Edge computing allows for ef�cient access to network services with
high bandwidth and ultra-low latency, making it ideal for real-time ap-
plications like surveillance, virtual reality, and traf�c monitoring [ 141].
To support such requirements, it is characterized by:

i) Mobility support, that is, it decouples the location identity from
the host identity and implements a distributed directory system
(i.e., the Locator ID Separation Protocol (LISP)) to support mo-
bile users [141];

ii) Location and contextual awareness, that is, it enables consumers to
employ several technologies (e.g., cell phone infrastructure, GPS,
or wireless access points) to �nd the location of the devices and
access to the closest services to their physical location. Also, con-
text information of the mobile device can be used to take of�oad-
ing decisions [114], and it enables the providers to improve the
Quality-of-Experience (QoE) [ 141];

iii) Dense geographical distribution and proximity, that is, it brings cloud-
based services (i.e., computation and storage) on top of geo-
distributed heterogeneous devices (e.g., access points, routers,
base stations) at the edge of the network forming a very dense
environment [ 141, 216]. The availability of the computational re-
sources and services in the proximity of consumers allows lever-
aging the network context information for making of�oading de-
cisions and service usage decisions[114, 141];

iv) Low latency, that is, it reduces the latency in accessing the services
by making available services and applications in the proximity
of the end devices [141], enabling latency-sensitive application
scenarios (e.g., cognitive assistance [59]);

v) Heterogeneity, that is, it is characterized by the existence of het-
erogeneous elements at different levels, for instance, end devices
software and hardware technologies, service APIs and platforms,
and communication protocols [ 141].

It is worth noting that in current literature, the terms fog and edge
computing are often used interchangeably [ 216]. Additionally, some
sources consider the Fog to encompass the Edge as well [263]. The
OpenFog Consortium - now Industry IoT Consortium - tried to clarify
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and make a distinction in the “OpenFog Reference Architecture for
Fog Computing” white paper [ 258]. In particular, they describe the fog
computing as hierarchical and able to provide computing, networking,
storage, control, and acceleration anywhere from the Cloud to the IoT
devices. On the other hand, the edge computing tends to be limited
to computing and storage at the very edge of the network [ 263]. In
this thesis, fog and edge computing are treated as separate entities, as
motivated by the fog reference architecture white paper [ 258].

1.5 monitoring challenges in the cloud continuum

The cloud continuum environment connects cloud data centers in
the core network with fog and edge nodes in the metro and access
network, resulting in a highly distributed and heterogeneous environ-
ment with varying software and hardware stacks [ 176]. The resources
are accessible in a multi-tenant fashion, meaning that they are shared
among tenants who jointly use them to deliver their services. Further-
more, the fog and edge computing tiers are less reliable and less pow-
erful than the upper cloud tier due to prevalent wireless connections
and limited resources available on the nodes providing computational
capabilities [263].

These characteristics pose a challenge to the continuum monitoring
systems on several dimensions. In particular, this thesis focuses two
challenges.

The �rst challenge arises from the dynamic, heterogeneous, and un-
predictable nature of the continuum environment. For example, un-
foreseeable circumstances affecting the monitored targets, such as ser-
vice failures, or changing business requirements, may necessitate the
collection of new indicators and modi�cations to the deployment lo-
cation of monitoring components. This requires monitoring systems
to adapt to changing operating requirements. The impact of this chal-
lenge is felt across all tiers of the continuum, starting from the cloud
tier. Monitoring systems must handle various technological stacks,
automate their con�guration process, and strike a balance between
technology constraints, and operators' needs in multi-tenant environ-
ments.

The second challenge pertains to the ef�cient utilization of compu-
tational resources in monitoring systems. Especially when monitoring
activities are executed on top of fog and edge devices, the volume
of collected data can be very large due to the number of devices
involved. This can reach millions in the Fog and the Edge, and bil-
lions if we consider monitoring data coming from devices in the IoT
tier [ 49]. Furthermore, when computations are performed at the net-
work's edge, devices may be resource-constrained and powered by
unreliable sources such as batteries present in the gateways deployed
in remote rural areas for wildlife monitoring. Therefore, monitoring
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systems must use available resources wisely and consider adapting
the monitoring con�guration.

The next chapter provides a deep analysis these two challenges by
identifying the research gaps that resulted in the four research ques-
tions studied in this thesis.



2
M O N I T O R I N G I N T H E C L O U D C O N T I N U U M

Monitoring is a crucial activity in various �elds, including environ-
mental sciences, ICT, healthcare, and engineering. The data collected
through monitoring activities can help understand the behavior of an
observed target and provide meaningful insights through data anal-
ysis. According to the Oxford dictionary, the term “monitoring” is
de�ned as follows.

Monitoring (De�nition 2.1). To observe, supervise, or keep under re-
view; to keep under observation; to measure or test at intervals, espe-
cially for the purpose of regulation or control [ 77].

Monitoring activities are carried out by monitoring systems. For ex-
ample, continuous emissions monitoring systems (CEMS) are used to
monitor gas streams from combustion in industrial processes [ 126].
The data collected from CEMS is used to provide information for com-
bustion control and to comply with air emission standards imposed
by regulatory agencies [126]. Similarly, in the context of air pollution
monitoring, data collected by sensors can be used to indicate air qual-
ity through colorful LEDs installed on IoT devices deployed in public
areas, increasing public awareness about air quality [103]. In the ICT
industry, monitoring computing and networking resources is crucial
to meet Quality-of-Service (QoS) requirements, avoid Service Level
Agreement (SLA) violations, and optimize capacity and resource plan-
ning, among other functionalities [ 4].

This chapter presents background information on monitoring sys-
tems and de�nes their basic components and functionalities. Addi-
tionally, it analyzes in depth the two RCs investigated in this thesis by
identifying research gaps that resulted in four RQs. Finally, for each
RQ, it brie�y describes the main contributions.

2.1 anatomy of a monitoring system

As monitoring systems are implemented in various domains and
approached differently, literature offers several de�nitions. This thesis
considers active monitoring systems, that is, monitoring systems which
rely on observations collected by probes, in contrast to passive mon-
itoring systems which rely on the passive observation and analysis
of existing targets, such as network �ows [ 47], logs [58], or execution
traces [29]. This thesis de�nes a monitoring system with a comprehen-
sive yet general description that includes all key elements of such a
system.

15
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Monitoring System (De�nition 2.2). A monitoring system is any soft-
ware system operating in the cloud continuum that is designed to ob-
serve and measure any indicator of a physical or virtual target.

Target (De�nition 2.3). A target is any resource either physical or virtual
that can be monitored.

Indicator (De�nition 2.4). An indicator (i.e., a metric) is an observable
target behavior for which raw measurements can be collected [ 85, 133,
146].

Probe (De�nition 2.5). A probe is a component located close enough to
a target responsible for collecting one or multiple indicators [ 238, 248],
such as sampling the CPU consumption of a service or recording the
temperature in a room from a sensor.

Active monitoring systems can be classi�ed into two groups: those
that deploy probes inside the targets to collect indicators directly from
the target's environment and send the data to an external collector,
and those that rely on external probes to retrieve indicators from in-
terfaces exposed by the targets without adding any software to them.
Although monitoring systems that rely on external probes have low
maintenance costs and less risk of interference, monitoring systems
that deploy probes within the targets can provide deeper and more
specialized measurements than the protocols used in the �rst case (e.g.,
SNMP [54]). This is because they can access and have visibility of the
same environment.

Figure 2.1: Generic architecture of a monitoring system.

A monitoring system provides three main functionality: (i) observ-
ing, (ii) processing, and (iii) exposing [ 1]. Generally, such functionali-
ties are realized by mean of four key components: probes, data chan-
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nels, ingestion services, and consuming services. Figure 2.1 graphi-
cally illustrates these components.

The probesare opportunistically placed to ef�ciently observe and
collect indicators from the targets. Depending on the type of probes,
the collected data can be shipped according to different patterns, for
instance probes could push or pull data according to different poli-
cies [4, 248].

The ingestion servicescan be both data repositories used to store in-
dicator values for of�ine analysis, and data streams used to immedi-
ately consume incoming data for online analysis. The communication
between the probes and the ingestion services can be mediated bydata
channelsthat are responsible for processing and transferring the data.
In some cases, the data channels could be as simple as direct commu-
nication between the probes and the ingestion services. In some other
cases, the data channels are pipelines devoted to data pre-processing
and distribution, according to non-trivial strategies.

The consuming servicesare used to access and utilize the monitoring
data provided by the ingestion services. When the collected data is
used to support advanced analysis services, multiple systems may an-
alyze the collected indicator values (e.g., alerting or management and
planning systems).

2.2 adapting monitoring to evolving requirements

Monitoring systems operating in the cloud continuum face several
challenges posed by the characteristics of such environments, and the
needs of both applications and operators. The �rst research challenge
(RC1) investigated in this thesis concerns with the adaptation of moni-
toring systems to evolving requirements.

For a monitoring system operating in the cloud continuum, sup-
porting its automated evolution is crucial to accommodate changes in
operators' needs (e.g., the request of collecting new indicators) or to
react to run-time unpredictable events such as anomalies and failures.
Additionally, the cloud continuum is a very heterogeneous environ-
ment utilized in a multi-tenant fashion [ 176], thus a monitoring system
should abstract from underlying technologies and alleviate operators
from the con�guration burden of adapting the system to emerging
requirements [1, 4].

In summary, the monitoring systems should facilitate their auto-
mated evolution while adhering to requirements from a diverse and
multi-tenant environment. The following section examines the exist-
ing literature, identi�es research gaps, and brie�y outlines this thesis's
contribution to the related research questions.
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2.2.1 Support to Automated Evolution

A monitoring system must continuously observe the monitored re-
sources to timely react to anomalous behaviors, generating alerts, and
activating countermeasures [55, 149, 200, 215, 253]. Several cloud solu-
tions are systematically enriched with monitoring capabilities, either
natively offered by the platforms (e.g., Kubernetes [ 27]), or provided
by external tools (e.g., Elastic Stack [31] and Prometheus [26]).

These monitoring systems are mainly designed to collect a stable set
of indicators over time, being challenged by scenarios that require rapidly
modifying the set of collected indicators. In contrast, there are many well-
known causes of sudden changes to the set of collected indicators. The
goals of the operatorschange with the technical and business objectives
of the organization, consequently causing changes in the set of the in-
dicators that must be collected. The software usage patternsthat emerge
from the �eld continuously evolve, often determining the need of ad-
justing the monitored indicators accordingly. The collected indicators
must be adapted to changes in the workload, which must be carefully
observed to timely reveal any symptom of stress on the services. More-
over, service updatesnormally require putting in place ad-hoc monitor-
ing capabilities that target the updated services to measure their reli-
ability and timely detect misbehaviors. Sometimes, the observation of
failuresgenerates the need of continuously observing the services that
fail often, to prevent new failures and localize the causes of problems;
and dynamically deployed scenarios(e.g., to timely react to disasters and
emergencies) require quickly deploying new functional services and
the corresponding monitoring components.

Relevantly, all these factors are dynamic and cannot be entirely antic-
ipated. Changing the set of collected indicators often requires chang-
ing the set of probes running in the �eld. However, con�guring and
deploying new probes, as well as undeploying the existing probes,
are non-trivial and time-consuming activities. For instance, a tech com-
pany running many cloud services needs to collect indicators at dif-
ferent granularity levels, taking into account both business and tech-
nical needs [215]. The needs of managers shall follow business goals
and market evolution, while the needs of technicians shall follow QoS
goals and software evolution. These needs evolve independently, and
simultaneous changes in both business and technology may generate
a rapidly increasing number of requests for the operators responsible
of con�guring the monitoring system. Operators may struggle adapt-
ing their monitoring systems at some point, especially when a large
number of targets (e.g., devices, platforms, and services) has to be
monitored. The �rst research question (RQ 1) studies the adaptation of
monitoring systems.



2.2 adapting monitoring to evolving requirements 19

Research Question 1 (RQ1)

How can a monitoring system be adapted to evolving opera-
tors' needs?

This RQ analyzes how a monitoring system can assist cloud opera-
tors and adapt its functionalities according to the their evolving needs
while minimizing the number of operational changes.

To address dynamicity and evolution of monitoring systems, re-
searchers and practitioners focused on increasing the level of automation
of probe management. Figure 2.2 shows the increasing levels of automa-
tion that have been introduced in monitoring systems.

Figure 2.2: Automation levels introduced in monitoring systems.

Simple manually con�gurablemonitoring systems (Figure 2.2 (a)), such
as Elastic Stack [31] and Prometheus [26], require con�guring and de-
ploying probes manually, that is, the life-cycle of every component of
the monitoring system must be handled manually by operators. Al-
though useful, these monitoring systems are expensive to use in pres-
ence of frequent changes to the set of collected indicators, and badly
adapt to dynamic scenarios.

Some probe deployment tasks could be implemented using general
purpose deployment systems(Figure 2.2 (b)), such as Ansible [124] and
Puppet [123]. However, these systems are not designed to speci�cally
serve monitoring systems, and de�ning and controlling the deploy-
ment strategies would still be entirely on the shoulder of the operators.
As discussed next in this thesis, general purpose deployment systems
can be indeed used as basic building blocks of more sophisticated de-
ployment solutions.

A simple form of automation present in some systems consists of
the support to autoscaling(Figure 2.2 (c)), that is, probes automatically
adapt to a changing number of replica of a monitored target [ 238]. This
is a useful feature, although limited to a speci�c scenario, missing to
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cope with the many changes that must be actuated as a consequence
of changes on the set of collected indicators and monitored targets.

To obtain a suf�cient level of �exibility to address the aforemen-
tioned characteristics, Monitoring-as-a-Service(MaaS) solutions have
been studied [4, 87, 192, 238] (Figure 2.2 (d)-(f)). In fact, MaaS frame-
works provide operators with the capability to �exibly decide the set
of indicators to be collected, alleviating them from the burden of con-
�guring and handling the life-cycle of the probes. In principle, an oper-
ator using a MaaS framework can simply specify the set of indicators
that must be collected, while the operational aspects are automated by
the framework.

Unfortunately, in many cases, automation is limited to the activation
of manually pre-deployed probes[238] (Figure 2.2 (d)), that is, probes that
have been already installed and con�gured manually. Adding probes
to collect new indicators and removing existing probes must still be
done manually by operators.

A higher degree of automation is provided by some speci�c plat-
forms (Figure 2.2 (e)) that natively offer monitoring capabilities (e.g.,
Monasca [192]). These solutions are effective but signi�cantly limit
both the range of platforms and indicators that can be used. So far,
there is no general MaaS solution that can be used to collect virtually any
indicator on any platform. Note that a MaaS system that fully handles
the life-cycle of probes is the only solution that can entirely free opera-
tors from the burden of handling probe deployment. In fact, they would be
able to control the monitoring system by simply specifying the set of
indicators to be collected.

Contribution

To address the aforementioned gap in MaaS solutions, this the-
sis proposes aMaaS framework(Figure 2.2 (f)) that exploits both
a catalog of probes annotated with metadata and access to the
API of the environment running the monitored resources, to de-
liver full MaaS capabilities including error-handling. The empirical
results show the effectivenessof the framework with both contain-
ers and VMs, the ef�ciency of error-handling, and the scalabilityfor
an increasing number of operators' requests. This contribution
is presented in Chapter 3.

2.2.2 Support to Multi-Tenancy and Heterogeneity

To deal with the multi-tenancy and the diverse number of technolo-
gies that characterize the cloud continuum environments, a monitor-
ing system must also consider how to distribute the probes in order to
respect and optimize both technological and operators' requirements.
In fact, multiple probes serving different operators in a multi-tenant
environment can be deployed within a same VM to save computa-
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tional resources, at the expense of a reduced degree of privacy and
security. On the other hand, one probe per container or VM can be
deployed to preserve privacy, at the expense of more computational
resources allocated to the monitoring system.

The �exibility of monitoring systems and probe technologies allows
for diverse probe deployment patterns, which consist of probe deployment
architectures targeting speci�c environments (e.g., a container-based
environment) and satisfying speci�c constraints (e.g., probes must be
shared among multiple operators). The choice of a probe deployment
pattern has implications on the effectiveness and ef�ciency of the re-
sulting monitoring system.

The many possible probe deployment patterns have not been ana-
lyzed and assessed systematically so far, and the engineers who design
their monitoring systems are called to take decisions whose implica-
tions might be relatively well-known. The existing literature discusses
the characteristics of monitoring systems, without investigating the
many possible probe deployment patterns and their impact [ 4, 13, 87].

The second research question refers to monitoring systems and probe
deployments.

Research Question 2 (RQ2)

How can a monitoring system operate probes in heteroge-
neous and multi-tenant environments?

This RQ studies possible probe deployment patterns by identifying and
characterizing the components that can be used to deploy probes.

In software engineering, patterns are used to document knowledge
about how to solve recurring problems [ 209]. With the rise of the
cloud computing paradigm, the community has begun working on
cloud computing patterns [ 88, 143, 221]. Although their development
is still in the early stages, several online catalogs have been published,
providing both speci�c [ 16, 169] and agnostic [88] solutions. Speci�c
cloud patterns refer to particular cloud providers, are customized for
a target environment, and provide solutions optimized for it. In con-
trast, agnostic patterns are more generic solutions that are not tied to a
particular technology, are �exible, and can be applied to different plat-
forms. Agnostic pattern de�nition is a valuable means of improving
portability and interoperability between different cloud environments
[76]. However, none of these work speci�cally address the issue of
probe deployment.

Burns and Oppenheimer [ 50] propose design patterns for distributed
systems based on containers. Despite their work does not address the
issue of probe deployment, some of their patters can be used for mon-
itoring purposes (i.e., adapter single-node, multi-container patterns).

Albuquerque et al. [9] present proactive monitoring design patterns
for cloud-native applications, basing their de�nitions on existing lit-



22 monitoring in the cloud continuum

erature and tools. In particular, they present three patterns that can
generate events according to the event-based monitoring paradigm,
that is, Liveness Endpoint, Readiness Endpoint, and Synthetic Testing.
However, they do not focus on the placement of monitoring probes
and the possibility to share monitoring resources among users, and
they do not provide any empirical assessment about pattern scalabil-
ity as well.

Contribution

To address the research gap mentioned and answer RQ2, this
thesis provides the de�nition, analysis, and qualitative and quantita-
tive evaluation of11 possible probe deployment patterns. The results
demonstrate the trade-offs between patternsthat require more
resources to ensure good separation between users in multi-
tenant environments and patterns that make better use of re-
sources while reducing the degree of separation. The results
have been cross-validated by addressing three realistic monitor-
ing scenarios.Best practiceshave been distilled from the �ndings
to guide engineers in implementing and con�guring their mon-
itoring systems. This contribution is presented in Chapter 4.

2.3 adapting monitoring to available resources

The second research challenge (RC2) investigated by this thesis con-
cerns with the adaptation of monitoring systems to the available resources,
that is particularly relevant in the context of fog and edge environ-
ments. A monitoring system operating in these environments must
ef�ciently use available resources to handle an increasing number of
running devices, applications, and collected indicators, which produce
a signi�cant amount of data for storage and analysis [ 1, 228]. Addition-
ally, it is crucial for a monitoring system to function effectively in un-
predictable and possibly resource-limited conditions. This entails en-
suring its capabilities while utilizing available resources wisely, which
may be scarce at the edge of the network [216].

In summary, monitoring systems in fog and edge computing envi-
ronments must ef�ciently utilize available resources by adapting their
con�guration and balancing their capabilities in resource-limited con-
ditions. The following section discusses current literature, identi�es re-
search gaps, and brie�y describes this thesis's contribution to related
research questions.

2.3.1 Ef�ciently Use Resources in the Fog

In the last decade, a large number of cloud monitoring solutions,
both commercial and academic, have been proposed [31, 37, 51, 182,
191, 215, 238, 241, 245]. However, they are seriously challenged by sev-
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eral characteristics of the Fog, such as its massively distributed infras-
tructure characterized by frequent changes to the topology, and the
presence of resource-constrained devices [228, 263].

Taherizadeh et al. [228] investigated the requirements that must be
satis�ed by monitoring systems specialized for adaptive applications
orchestrated upon the cloud continuum. The survey reveals that none
of the solutions available for the Cloud can satisfy all the require-
ments, identifying decentralization and resource optimization via self-
adaptation as two of the main open challenges. Similar conclusions
have been reported by Abderrahim et al. [1] who explicitly identify
the adaptability of the granularity of the reported measures as one of
the key properties for monitoring systems that operate in the Fog.

Peer-to-Peer (P2P) architectureshave been investigated as viable ap-
proaches to effectively address monitoring in the Fog [ 1, 91, 108, 263].
P2P systems are “self-organizing systems of equal, autonomous enti-
ties (peers) which aim for the shared usage of distributed resources in
a networked environment avoiding central services" [ 186]. Therefore,
they represent a legitimate option to address the dynamism of the Fog
without imposing strong constraints on the stability of the operating
environment.

Unfortunately, although these monitoring systems show some de-
gree of adaptivity thanks to the features provided by P 2P architectures
(e.g., they can tolerate node disconnections and broken communica-
tion links), they lack adaptation mechanisms that take into account the
monitored indicators [ 1, 91, 108]. In fact, the collected indicators reveal
important information about the monitored resources and their envi-
ronment, and can be exploited to increase the awareness and adapt-
ability of the monitoring system itself. For example, a monitoring com-
ponent running in a device exhausting its battery may stop monitor-
ing the non-essential indicators. Similarly, the trend of a monitored
indicator can be used to optimize the sampling rate to avoid wasting
resources (e.g., increasing/decreasing the sampling rate based on the
degree of stability of the indicator). Based on these considerations, the
following third research question is formulated.

Research Question 3 (RQ3)

How can a monitoring system adapt its behavior to ef�ciently
operate in fog environments?

This RQ studies how a monitoring system can ef�ciently operate in fog
environments by adapting its behavior to cope with a growing number
of running devices, applications, and collected indicators that produce
a large amount of data to store and analyze.

Monitoring approaches speci�cally designed for the fog environ-
ment have been recently investigated [46, 91, 109, 222]. In particular,
FMonE [46] is a monitoring system that relies on a container orchestra-
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tion system to build monitoring pipelines, addressing the distinctive
features of a fog infrastructure. It provides users with the �exibility to
de�ne their monitoring pipelines and operate them across the active
regions.

PyMon [ 109] is a lightweight prototypical monitoring system avail-
able for relevant Docker-enabled architectures such as ARM, AARCH 64
and x86_64, and particularly suitable for single board computers (SBC).
It extends the host-based monitoring tool Monit with capabilities to in-
spect running Docker containers.

Souza et al. [222] proposed a monitoring system that extends the
CLABS model [12] and it is capable of monitoring targets by deploying
services along the cloud continuum.

Unfortunately, none of these solutions implement adaptive policies
to adapt the behavior of the monitoring system to the collected data.
Furthermore, they are not based on a P2P architecture, so that, they
struggle to cope with some of the fog distinctive traits such as heavily
distributed infrastructures, rapid changes in the topology, and com-
munication links failures.

FogMon [91] is a fog-oriented monitoring system that collects and
aggregates data about resource consumption, network conditions, and
IoT devices directly connected to fog nodes. It exploits a two-tier
(Leader-Follower) P2P architecture and gossip protocols to reduce the
network overhead. Also, it adapts the number of Leader nodes in the
P2P overlay and the underlying Followers topology based on current
network conditions. However, it does not provide any self-adaptive
behaviors to govern the internal functioning of the monitoring system.
For instance, FogMon cannot be used to dynamically change the set
of the collected indicators or the sampling rate.

Among the works that are not speci�cally designed for monitoring
in fog environments, it is worth mentioning some that still relate to
it. In particular, ADMin [ 239] is an IoT-speci�c monitoring framework
designed to reduce the energy consumption of the devices and the
volume of data sent over the network. This is achieved essentially by
adapting the rate at which devices disseminate monitoring streams
based on run-time knowledge (e.g., stream evolution, variability, sea-
sonality).

Also, Tangari et al. [230] propose a self-adaptive and decentralized
system for resource monitoring in the scope of Software De�ned Net-
works (SDN). It enables indicators collection through a self-tuning and
adaptive monitoring technique that adjusts its settings based on traf�c
dynamics to balance operation costs with monitoring accuracy while
reducing network overhead. However, the proposed system lacks gen-
erality since the adaptation capabilities are limited to some predeter-
mined aspects, and it is not designed to support the capability to run
multiple and diverse adaptation rules.

SkyEye [108] is a monitoring solution operating on structured P 2P
overlay networks. It provides continuous monitoring for a wide range
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of indicators for all peers in the network. It is characterized by a tree
structure, which enables peer partitions in a hierarchical fashion. The
aggregated monitoring information received by the upper layers of the
tree describe the information of the peers in the corresponding sub-
trees. Messages are used to disseminate the global monitoring data
retrieved from the top levels and maintain the tree topology. Neverthe-
less, it is not explicitly designed for the Fog, and it completely lacks
monitoring adaptivity (e.g., changing the set of collected indicators).

Contribution

To address the research gap mentioned and answer RQ3, this
thesis proposes aself-adaptive P2P monitoring systemthat utilizes
a hierarchical P2P architectureand incorporates adaptive behav-
iors based on the MAPE-K feedback loop[140]. The system can ab-
stract monitored indicators and activate countermeasures based
on their status. Countermeasures are de�ned using a lightweight
rule-based systemembedded in the peers. The empirical evalua-
tion compares the accuracy and effectiveness of the adaptive
version of the monitoring system with the non-adaptive ver-
sion. The results show that adaptive behaviors can increase the
accuracy of collected data and save network and power con-
sumption, but at the cost of higher memory consumption. This
contribution is presented in Chapter 5.

2.3.2 Ef�ciently Use Resources in the Edge

The Edge is the last tier of the cloud continuum, and it is particularly
characterized by resource-constrained devices that cannot inde�nitely
supply a constant amount of power, such as, battery-powered devices
and computing devices powered by renewable energy sources (e.g.,
photovoltaic panels or wind turbines) [ 52, 84, 190].

AI-based monitoring systems are particularly resource-intensive ap-
plications that are increasingly deployed along the cloud continuum
and especially on the Edge, thus, carefully using energy is a key re-
quirement to feasibly run AI services within these environments. For
example, critical monitoring services for smart cities (e.g., pedestrian
detection and traf�c analysis [ 66, 160, 178]), environmental monitor-
ing applications (e.g., wild�re detection [ 15, 156], and wildlife mon-
itoring [ 80, 210]), all require fast data processing and high accuracy,
with cost-effective energy consumption.

These scenarios require consuming a large volume of data generated
from Internet-of-Things (IoT) sensors in various forms (e.g., time series
values, video streams, images) with resource-greedy machine learning
models (e.g., exploiting TPUs or GPUs) [95, 132, 197]. In contrast, the
feasibility of scenarios that involve battery-powered devices [ 3, 22]
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depends on the capability of reducing energy consumption to extend
the battery life.

For these reasons, reducing energy consumption is a high-priority
objective and a key technical challenge to wisely use the available re-
sources [132]. The issue is exacerbated by the signi�cant amount of
energy consumed by ICT services and the increasing energy costs [90,
119, 152, 187], but also by initiatives like the European Green Deal [ 67]
that accounts for “prioritizing energy ef�ciency” in its key principles.
Based on these observations and critical aspects, the fourth research
question for this thesis is formulated.

Research Question 4 (RQ4)

How can a monitoring system adapt its behavior to ef�ciently
operate in edge environments?

This RQ studies how a monitoring system can operate in resource-
constrained edge environments guaranteeing its capabilities while
wisely using available resources.

Researchers have investigated several approaches to design systems
with a controllable and programmable trade-off among quality, ef�-
ciency, and energy consumption. Energy-awareness and ef�ciency re-
search mainly targets low-level tasks such as scheduling and provi-
sioning [ 14, 18, 98, 179, 219], routing [ 206], data storage and process-
ing [ 246], and machine learning models optimization [ 45]. Although
valuable, only optimizing the low-level tasks may result in hardly-
predictable performance of the applications. Thus, it becomes chal-
lenging or even impossible to balance competing application-level ob-
jectives (e.g., accuracy, energy consumption, and ef�ciency) working
only on low-level features.

Other approaches targeted code optimizations [ 204], analysis of soft-
ware energy consumption [ 83, 237], and architectural tactics to contain
energy utilization [ 63] and costs [251]. Analyzing energy consumption
retrospectively to take corrective actions (e.g., code or architectural
refactoring) can be expensive and dif�cult to control in the long term.

In the context of IoT architectures and edge oriented systems, self-
adaptation and optimization technologies have been used to address
a range of aspects. For instance, adaptation capabilities have been en-
gineered to achieve auto-scaling and task of�oading [ 10], introducing
�exibility in the computation at the cost of some jitter in the quality
of service and, often, not optimized energy consumption shifts among
the nodes [132].

Multiple approaches have been de�ned to modify the behavior of
the components at the edge. The most common examples of self-
adaptive edge components are those related to adaptive sampling.
Adaptive sampling refers to the idea of dynamically modifying the
sampling rate of sensors and software probes as well as the inference
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rate of the components that process such data, according to the con-
text [99, 168, 264]. Collecting and transmitting less data can save en-
ergy and computational resources [127].

Similarly, adaptive �ltering focuses on reducing the number of sam-
ples transmitted. For example, if a sensor value is considered similar
to a previously collected value or evolves in a predicable way, a moni-
toring node can avoid the transmission of such information to save the
transmission cost. Since �ltering usually results in sub-optimal perfor-
mance, the �lters must adapt at run-time to guarantee a consistent
behavior [99].

Adaptive compression has been also extensively exploited at the
edge. Adaptive compression solutions aim at reducing the data traf�c
in the network by reducing the size of the data packets with minimal
loss, for instance using strategies that consider the importance of the
processed data [159]. Different compression algorithms may also be
used dynamically based on the shape of the data, enabling higher
compression without inducing signi�cant losses in the accuracy of the
data [60].

Self-adaptive behaviors to improve energy consumption have been
also studied at the architectural level [ 132]. For instance, a number
of approaches have been proposed to target speci�c aspects of energy-
awareness such as memory handling [131], networking [ 34],
storage [246], and scheduling and provisioning [ 18]. Furthermore, the
ever growing interest in machine-learning based solutions lead to spe-
ci�c optimized models for the edge [ 45]. These solutions can address
speci�c dimensions but lack both the state-based adaptation capabili-
ties, and the de�nition of a practical empirical procedure to determine
the concrete con�gurations that must be used by the self-adaptive ap-
plications. Conversely, Da Silva et al. [218] proposed a framework for
the automatic generation of application processes. Such processes rep-
resent the goals and capabilities of the application in the form of ap-
plication work�ows. This level of adaptation is not usually suitable
for edge applications, since the run-time generation of the application
processes requires extensive computational capabilities and introduces
signi�cant computational overhead [ 53], which may not be available
at edge.

Mobile applications is another domain of self-adaptation where en-
ergy consumption is pivotal [ 111]. While adaptation mechanisms de-
signed for mobile applications are not directly comparable to applica-
tions running on the Edge, they share some key aspects, such as the
presence of a resource-constrained and battery-powered devices. For
instance, Ardito et al. [20, 21] proposed an architectural paradigm in
which the operating system or the middleware is able to offer energy-
related information to running applications. This enables the imple-
mentation of energy-aware self-adaptation strategies based on energy
levels, but it assumes run-time information about the available energy,
that it may be not always available.
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Contribution

To address RQ4 and the aforementioned limitations, this thesis
proposes an energy-aware approachthat can guide developers to
implement an (AI-based) self-adaptive applicationable of switch-
ing its operation modes in response to changes in the environ-
ment, �nally balancing energy consumption with the application-
level objectives. The con�guration of the operation modes are
determined empirically, based on a meta-heuristic search proce-
durethat can identify useful con�gurations by sampling a small
portion of the con�guration space. Experimental results show
how the proposed approach can outperform non-adaptive base-
line con�gurations, behaving as optimally as con�gurations se-
lected with a nearly exhaustive exploration of the con�guration
space. The approach has been studied in the context of a Smart
Traf�c Monitoring (STM) scenario, in particular for a pedestrian
detection task. This contribution is presented in Chapter 6.
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3
A U T O M AT I N G P R O B E L I F E - C Y C L E F O R C H A N G I N G
N E E D S

This chapter presents a Monitoring-as-a-Service (MaaS) framework
that fully automates the life-cycle of probes, including error-handling.
The proposed framework enables operators to easily automate probe
deployments required by changing needs, as discussed in Section2.2.1.
Moreover, it is designed to integrate with different monitoring tech-
nologies (i.e., probes and ingestion services) and cloud platforms (e.g.,
IaaS, PaaS, or SaaS solutions) without binding the operators to a sin-
gle technical solution. The empirical evaluation examines the frame-
work's capabilities and scalability using both VMs provided by a IaaS
solution and a container-based platform. The contribution presented
in this chapter has been published in the IEEE Transactions on Ser-
vices Computing journal paper titled “Automated Probe Life-Cycle
Management for Monitoring-as-a-Service” [ 242].

The chapter is organized as follows. Section 3.1 presents a run-
ning example used throughout the chapter to exemplify the proposed
framework. Section 3.2 introduces the domain concepts. Section 3.3
presents the architecture of the MaaS framework, its main components
and their algorithms. Section 3.4 describes the error-handling capabil-
ities. Section 3.5 describes the technology-agnostic design and how is
it possible to use the framework with different monitoring technolo-
gies. Section3.6 presents the empirical evaluation. Finally, Section 3.7
concludes the chapter with closing remarks.

3.1 running example

This section introduces a running example to illustrate and exem-
plify how the proposed MaaS framework works. The example con-
sists of a PostgreSQL instance [110] target -PSQL running as part
of a larger cloud system. Such an instance is of interest for two op-
erators: operator op-A and operator op-B. Operator op-A is mostly
interested in infrastructure indicators and is collecting network con-
sumption data related to target -PSQL. Operator op-B is interested
in both infrastructure and application indicators, and is collecting 3
indicators: network consumption data, CPU consumption data, and
database metrics. This initial con�guration is referred as init -conf .

In this context, operator op-A may notice anomalous data in the
network traf�c and decide to collect information about two additional
indicators: CPU consumption and user session data. The con�guration
where operator op-A is also collecting these two additional indicators
is referred as 2-more -indicators -conf .

31



32 automating probe life -cycle for changing needs

Finally, operator op-B may loose interest for the PostgreSQL service,
for instance because the services maintained by operator op-B may
stop using PostgreSQL. In such a case, operatorop-B stops collecting
any indicator from target -PSQL. This �nal con�guration is referred
as op-B-left -conf .

The rest of the chapter refers to these sample scenarios and con-
�gurations to explain how the set of probes necessary to collect the
indicators required by operators op-A and op-B can be adjusted auto-
matically and transparently to the operators.

3.2 domain concepts

The proposed MaaS framework exploits a few relevant domain con-
cepts to organize the responsibilities of the components. In the follow-
ing, domain concepts are introduced, both informally and rigorously,
and then the framework architecture is discussed.

In the running example, the target is a PostgreSQL instance that can
be identi�ed with the label target -PSQL in both a Kubernetes cluster
(as deployment name) and Microsoft Azure Compute Services (as VM
name).

Probe Artifact (De�nition 3.1). A probe artifact represents a deployable
artifact that can be used to collect indicators from targets in different
environments. Probe artifacts (N.B., hereinafter in the chapter referred
as probe for simplicity) are annotated with metadata that describe how
they can be deployed and con�gured. More rigorously, a probe p is a
tuple p = ( I ,meta ,artifact ), where I = fi 1 , : : : i n gis a set of indicators
that can be collected with the probe, metais a set of key-value pairs
that represent the metadata associated with the probe, and artifact is a
reference to the artifacts that implement the actual software probe.

The notation pI , pmeta and partifact refers to the individual com-
ponents of a probe p.

Monitoring Claim (De�nition 3.2). A monitoring claim speci�es the
indicators that an operator may want to collect for a speci�c target.
More rigorously, a monitoring claim mcis a tuple mc= ( I , op, t ) where
I = fi i , : : : i k g is the set of indicators to be collected from the target t
for the operator op. The claim is intended as a complete speci�cation
for the speci�ed target, thus if the operator is already monitoring an
indicator i for a given target t and the newly submitted claim does not
include the indicator, the monitoring system will stop collecting i from
t .

For example, operator op-A shall submit a monitoring claim
(fnetwork _consumption , cpu_consumption ,user _session_data g,
op-A, target -PSQL) to start collecting CPU consumption and user
session data, in addition to network consumption. Similarly, operator
op-B shall submit a monitoring claim (fg,op-B,target -PSQL) to stop
collecting data.
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Monitoring Request (De�nition 3.3). A monitoring request is a collec-
tion of monitoring claims submitted with a single request by an oper-
ator. More rigorously, a monitoring request mr submitted by operator
op is a setmr = fmc1 , : : : mcm gwhere mci = ( I i , op, t i ).

For example, operator op-A shall submit a monitoring request con-
sisting of two monitoring claims [(fnetwork _consumption g,
op-A, target -PSQL), (fcpu_consumption g,op-A, target -MARIADB )]
to start collecting network consumption from the PostgreSQL instance
and CPU consumption from a MariaDB instance.

Monitoring Unit (De�nition 3.4). A monitoring unit is an execution
unit (e.g., a virtual machine or a container) that runs one or more
probes. When needed, the monitoring framework dynamically creates
and destroys monitoring units to collect the indicators speci�ed by the
operators in their monitoring claims. A monitoring unit is also char-
acterized by a hosting platform, which represents the environment
where the unit is executed, and a con�guration, which captures how
the probes in the monitoring unit are con�gured. More rigorously, a
monitoring unit mu is a tuple mu = ( host ,mus ,C), where host iden-
ti�es the platform that provides the unit, mus indicates the strategy
used to con�gure the unit (i.e., single probe or multi-probe), and C
is the con�guration of the unit, which consists of zero or more probe
con�gurations, depending on the number of probes installed.

Probe Con�guration (De�nition 3.5). A probe con�guration c 2 C is a
tuple c = ( p, I , op), where p is a probe, I � pI represents the set of
indicators that p is con�gured to collect, and op is the operator who
asked for the probe con�guration c.

The notation mu P refers to the set of probes in the current con�gu-
ration of mu , that is, mu P = fpj9(p, �, �) 2 Cg1. Finally, given a probe
con�guration (p, I , op), The notation I (p) refers to the indicators that
p is con�gured to monitor, that is, I (p) = I .

The MaaS framework implements two strategiesto con�gure the
monitoring units: the multi-probe monitoring unit and the single-probe
monitoring unit. The multi-probe monitoring unit strategyuses one mon-
itoring unit (e.g., a virtual machine) per monitored target (e.g., an in-
stance of PostgreSQL), hosting in the unit all the probes that share
a same target (e.g., every probe that collects indicators about Post-
greSQL). This strategy is well suited for virtual machines, which are
heavyweight units that typically run multiple processes. The single-
probe monitoring unit strategyuses one monitoring unit (e.g., a con-
tainer) per deployed probe (e.g., a Metricbeat probe for CPU consump-
tion). This strategy is well suited for containers, which are lightweight
units that preferably run a single process.

For instance, the initial con�guration of the running example, where
virtual machines running on Microsoft Azure are used, implies the

1 The symbol � means any value is allowed in a tuple.
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existence of a single monitoring unit mu = ( azure,multi-probe,C), run-
ning the probe pnet , which serves both operators op-A and op-B, and
the probes pcpu , pdb , which both serve operator op-B. Consequently,
C consists of the following four probe con�gurations:

1. (pnet , network _consumption ,op-A),

2. (pnet , network _consumption ,op-B),

3. (pcpu , cpu_consumption ,op-B),

4. (pdb , db_metrics , op-B).

Note that the monitoring units are created to have the right visibil-
ity of the target to be monitored. In fact, a virtual machine monitoring
unit can be either the same virtual machine running the monitored
service or a separated virtual machine with probes that query an in-
terface exposed by the monitored service (e.g., using SNMP [54]). On
the other hand, a container monitoring unit can be created as a side-
car of the container running the target service [ 50], to have extensive
visibility of the monitored service, or as a standalone container run-
ning in the same node of the target. In the next chapter, a broader
set of strategies to con�gure monitoring units (i.e., probe deployment
patterns) are presented.

3.3 solution architecture

Figure 3.1: Architecture of the MaaS framework.

Figure 3.1 shows the proposed monitoring framework, which consists
of four main stateless services and three repositories. The four services
are (i) an API Service, which offers a gateway to access and update state
information about the monitoring system, (ii) a Monitoring Claim Con-
troller, which is responsible for handling the life-cycle of every moni-
toring claim, (iii) a Monitoring Unit Controller, which is responsible for
handling the life-cycle of every monitoring unit, and (iv) a Cloud Bridge,
which exploits a plug-in based architecture to interact with different
cloud providers and platforms, actuating the operations decided by
the other services. The three repositories consist of (i) a repository of
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monitoring claimssubmitted by operators, (ii) a repository with the cre-
ated monitoring units and their con�gurations, and (iii) a probe catalog
with all probes and deployable artifacts.

The automated life-cycle managementof the probes is provided by the
two controllers that collaborate to manage the set of monitoring units,
and the deployed probes, based on the requests produced by the op-
erators that only include the information about the indicators to be
collected. The stateless nature of the controllers guaranteesscalability,
as long as suf�cient resources are provided to the monitoring system.
The controllers also track the status of the monitoring units to handle
and recover from errors. Finally, the framework is built with a plug-in
based architecture that allows multiple cloud platformsto be integrated,
as long as they provide a management API. The rest of this section
rigorously describes how the components, and the controllers in par-
ticular, behave.

3.3.1 Repositories

probe catalog The Probe Catalogis a repository PC = fp1 , : : : pn g
where pi is a probe. I assume the Probe Catalog is organized in such a
way there is a unique artifact that can be used in a given context, that
is, given an index i and the execution constraints (e.g., the host envi-
ronment that executes the probe, the time series database that must
be used to store the data, etc.), there is a unique probep, that can be
used to collect i in the target environment. The execution constraints
that can be used to identify the probe are not detailed here, but these
are represented in the metadata associated with the available artifacts
(e.g., Listing 3.1) and matched for equality (or inclusion in case of lists)
by the framework to select the probes.

Listing 3.1: A metadata excerpt from an HTTP health check probe entry in
the Probe Catalog.

{

"id": "5fb6337a4102891e3677b476",

"artifactId": "http _healthcheck _probe",

"supportedIndicators": [

"HEALTHCHECK"

],

"supportedDataOutputs": [

"ELASTICSEARCH"

],

"supportedMUStrategies": [

"SINGLE _PROBE",

"MULTI _PROBE"

]

}

Complex matching procedures can be also implemented in the cata-
log if needed, such as the possibility to have multiple probes suitable
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for a same context, and a decision procedure that can choose among
them. De�ning algorithms to choose among multiple probe artifacts is
however out of the scope of the presented contribution and the frame-
work simply requires the operator to populate the Probe Catalog with
one usable artifact per execution context that must be addressed with
the framework.

To illustrate the matching procedure, consider the case of op-A ask-
ing to collect user session data from PostgreSQL. Let us assume the
system considered in the running example runs on Kubernetes and
that Elasticsearch is used as time-series database. In this context, the
monitoring system will check the Probe Catalog looking for a probe
whose metadata specify the capability to (a) collect user session data
from PostgreSQL, (b) to run within containers, and (c) to store data in
Elasticsearch. The monitoring system is con�gured with information
about the environment (e.g., how to access Elasticsearch and Kuber-
netes APIs) to be able to con�gure the probes once deployed. If a
matching entry is found, the corresponding artifacts are selected, and
then deployed in a container, as illustrated later in this section. Other-
wise, the request is aborted and the Probe Catalog has to be extended
to support new probes, as described in Section 3.5.

monitoring claim repository The Monitoring Claim Repository
stores the monitoring claims and tracks their statuses while they are
created, processed, and updated. Since operators can update their
claims about a given target, the repository can at most include one
monitoring claim for a given operator-target pair. For example, an
operator may submit a �rst monitoring claim to collect network con-
sumption for a running instance of PostgreSQL (corresponding to the
init -conf in the running example), and later update the monitoring
claim asking to collect two more indicators, CPU consumption and
user session data, still from PostgreSQL (corresponding to the 2-more -
indicators -conf in the running example).

monitoring unit repository The Monitoring Unit Repository
tracks the status of the monitoring units and their con�gurations. In
particular, the Monitoring Unit Repository stores both the current con-
�guration of a monitoring unit, which re�ects the status of the soft-
ware monitoring unit, and the desired con�gurationof a monitoring unit,
which re�ects the con�guration that must be reached based on the re-
ceived requests, supporting the controllers in the process of adapting
the con�gurations.

To conveniently work with the con�gurations required by opera-
tors, I de�ne the operator jop which discards every entry related to op
from a con�guration. More formally, given a con�guration C, I de�ne
Cjop = fci | ci 2 C and ci = ( pi , I i , opi ) with opi 6= op}.

A Monitoring Units Repository MUR stores tuples (t ,mu ,dc) that
associate a targett with a monitoring unit mu running probes that
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collect data from t , to its desired con�guration dc. Given a monitor-
ing unit mu = ( host ,mus ,C), the notation conf c (mu ) refers to its
current con�guration, that is, conf c (mu ) = C. I instead use the nota-
tion conf d (mu ) to refer to the desired con�guration of a monitoring
unit mu, that is, conf d (mu ) = dc. The level of alignment between
conf c (mu ) and conf d (mu ) indicates how much the actual monitor-
ing unit (i.e., the unit running in the cloud) matches the monitoring
claims submitted by operators. If confc (mu ) = confd (mu ), the current
and desired monitoring con�gurations are the same, thus the moni-
toring unit mu is up to date and perfectly aligned with the existing
monitoring claims. Otherwise if confc (mu ) 6= confd (mu ), the monitor-
ing unit mu needs to be modi�ed to reach the desired con�guration.

If MUR is handled according to the multi-probe monitoring unit
strategy, given a target t , there is at most one mu such that (t ,mu , �) 2
MUR (i.e., one monitoring unit running multiple probes per target). If
MUR is handled according to the single-probe monitoring unit strat-
egy, given a target t and a probe p, there is at most one (t ,mu ,C) 2
MUR, with (p, �, �) 2 C, but there might exist multiple monitoring units
running different probes associated with a same target.

3.3.2 API Service

The API Service provides two APIs: a public API for external clients
and a private API for internal use only.

The public API is used by operators to submit monitoring requests,
receive information about the status of their requests, extract the list
of the current available Targets, and upload new probes to the Probes
Catalog.

The private API is used by the Monitoring Claim Controller and
Monitoring Unit Controller to handle (i.e., to read and update) the sta-
tus information about both the monitoring claims and the monitoring
units, as described in Sections3.3.3 and 3.3.4.

Note that the API Service is the only service that can directly ac-
cess the three repositories. The presence of a single entry-point for ac-
cessing the persistent data drastically reduces the risk of (potentially)
introducing data inconsistencies. To avoid introducing a single-point
of failure in the architecture, I designed the API Service as a stateless
service that can be instantiated in multiple replicas.

The API Service is accessed through synchronous API calls, to guar-
antee that requests are processed as quickly as possible, but status
updates are delivered through a message bus, since serving a request
is not always an immediate operation.

3.3.3 Monitoring Claim Controller

The main responsibility of the Monitoring Claim Controller is to
manage the life-cycle of the submitted monitoring claims by assign-
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Algorithm 1 Monitoring Claim Controller

Require: a monitoring claim mc= ( I , op, t ) to be processed
Require: mus, the monitoring unit strategy
Ensure: desired con�gurations are updated according to mc

1: P  APIService.getProbeCon�gs(I , t )
2: if P = ? then return
3: end if

4: if mus=multi-probe then
5: UpdateConfUnit( P, op, t , mus)
6: else if mus=single-probe then
7: for pconf 2 P do
8: UpdateConfUnit( fpconf g, op, t , mus)
9: end for

10: end if

11: procedure Update Conf Unit (Set of probe con�gurations P, operator op,
target t , monitoring unit strategy mus)

12: unit  APIService.getMonitoringUnit( t , mus , P)
13: if unit = ? then
14: unit  APIService.createEmpyMonitoringUnit( t )
15: end if
16: APIService.updateDesiredConf(unit, conf d (unit )jop [ P)
17: end procedure

ing the desired con�gurations, derived from the received claims, with
the monitoring units. In particular, every time a monitoring request
is received by the API Service, the API Service stores the monitoring
claims included in the request in the dedicated repository and sends a
status update message to the Monitoring Claim Controller, which will
incrementally process them.

Since controllers are stateless, the capability to process monitoring
claims in parallel can be increased arbitrarily, based on the available
resources, by instantiating multiple Monitoring Claim Controllers.

Algorithm 1 shows in details the operations performed by the mon-
itoring claim controller every time a monitoring claim is processed.
When a monitoring claim mc= ( I , op, t ) of an operator opis processed,
the controller �rst identi�es the set of probes necessary to collect the
indicators speci�ed in the request and their con�guration (line 1). This
set is computed by the API service based on the probe metadata.

The monitoring units are recon�gured differently depending on the
monitoring strategy. If the multi-probe monitoring unit strategy is used,
the Update Conf Unit procedure is invoked to associate a single mon-
itoring unit with a desired con�guration that includes all the probes
(line 5). If the single-probe monitoring unit strategy is used, the individ-
ual probes con�gurations are extracted and then used to update the
con�guration of different monitoring units (lines 7-8).
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The way a set of probe con�gurations are associated with a mon-
itoring unit is de�ned in the U pdate Conf Unit procedure. To iden-
tify the monitoring unit that must be updated, the controller queries,
through the API Service, the monitoring units repository for an exist-
ing monitoring unit (line 12). If the multi-probe monitoring unit strategy
is used, units can conveniently run multiple probes for a same target.
In this case, the service looks for any monitoring unit created to ob-
serve t , that is, it looks for an entry unit = ( t ,multi-probe, �), where t
is the target reported in the monitoring claim. If the single-probe mon-
itoring unit strategy is used, P can only include a single probe, and
the API service looks for a monitoring unit that is already using the
selected probe to monitor the target t , that is, it looks for an entry
unit = ( t , single-probe, (p, �, �)) .

In both cases, if the unit does not exist, a new unit with an empty
desired con�guration is created for the target t (line 14). Finally, the
existing entry (i.e., the existing desired con�guration) is updated by
replacing the probes associated with operator op with the new ones
speci�ed in P (if the existing con�guration is empty, P is simply used).

Let us consider the running example, with operator op-A asking to
collect two more indicators (CPU consumption and user session data)
from PostgreSQL, if we assume the monitoring framework is con�g-
ured to use the single-probe monitoring strategy, the submitted mon-
itoring claim would be processed as follows. The access to the probe
metadata would reveal the availability of two different probes that
can be con�gured to collect the two indicators: pcpu , which can moni-
tor CPU consumption using a Metricbeat probe, and psession , which
can use a custom probe to collect data about user sessions. That is,
P={(pcpu , cpu_consumption , op-A), (psession , user _session_data ,
op-A)} at line 1. Since mus=single-probe, the Update Conf Unit pro-
cedure is invoked twice, once for each probe.

The �rst invocation with probe pcpu leads to the identi�cation of a
running unit that is already collecting cpu_consumption from Post-
greSQL for op-B (line 12). The current con�guration of the retrieved
unit is { pcpu , cpu_consumption , op-B)}. The framework �nally up-
dates the desired con�guration of the unit by replacing the probe con-
�gurations of operator op-A (none in this case) with the input con�g-
uration ( pcpu , cpu_consumption , op-A ), �nally obtaining the desired
con�guration {( pcpu , cpu_consumption , op-B),
(pcpu , cpu_consumption , op-A)}.

The second invocation with probe psession returns no unit that is
already running that probe. Thus, a new unit is created (line 14), and
the desired con�guration {( psession , user _session_data , op-A)} is as-
sociated with the unit.

The time complexity of Algorithm 1 is linear with respect to the
number of selected indicators (I ) and the number of matched probes
(P), that is, O(jI j + jPj).
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3.3.4 Monitoring Unit Controller

Algorithm 2 Monitoring Unit Controller

Require: a monitoring unit mu
Require: its current con�guration confc (mu ) = f(p, I , op)g
Require: its desired con�guration confd (mu ) = f(p0, I 0, op0)g
Ensure: the unit is updated according to the desired con�guration is gener-

ated
1: if confd (mu ) = ? then dismiss mu
2: end if
3: Padd  fp 2 confd (mu )P n confc (mu )Pg
4: Pupdate  fp 2 confd (mu )P \ confc (mu )P s.t. I 0(p) 6= I (p)g
5: Pdrop  fp 2 confc (mu )P n confd (mu )Pg
6: if Padd [ Pupdate [ Pdrop 6= ? then
7: res Bridge.doChanges(mu , Padd ,Pupdate ,Pdrop )
8: else
9: res ?

10: end if
11: UpdateCon�guration( mu , res) . If no error, confc (mu ) is updated with

confd (mu )

The main responsibility of the Monitoring Unit Controller is to man-
age the life-cycle of the monitoring units according to the desired con-
�gurations generated by the Monitoring Claim Controller. In partic-
ular, the Monitoring Unit Controller runs a control-loop that contin-
uously checks the Monitoring Units for changes to be actuated, as a
consequence of a misalignment between the current and the desired
con�gurations. Multiple monitoring unit controllers can be active at
the same time, but two monitoring unit controllers cannot act simul-
taneously on a same monitoring unit, to prevent any potentially erro-
neous concurrent change that would introduce inconsistencies in the
process.

The operations performed by a Monitoring Unit Controller are shown
in Algorithm 2. It �rst checks if the desired con�guration is empty, in
such a case the entire monitoring unit is dismissed (line 1). This is
an important step to avoid running phantom monitoring units with
no running probes. It then computes the diff between the current and
desired con�guration, identifying the probes to be added (line 3), the
probes to be recon�gured to collect a different set of indicators (line 4),
and the probes to be dropped (line 5). If any of these sets is non empty,
the Cloud Bridge receives the probe con�gurations corresponding to
the changes that must be actuated (line 7). Passing all the changes to
be actuated at once enables the Cloud Bridge to potentially optimize
how these changes are actuated.

The Cloud Bridge returns a result that speci�es the errors experi-
enced during the update process, if any. This information is used to
update the current and desired con�guration. In case no error is expe-
rienced, the desired con�guration simply replaces the current con�g-
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uration (line 11). Otherwise, the update process takes the errors into
consideration. Error handling is described in Section 3.4.

Let us consider the case of the two desired con�gurations generated
by operator op-A when asking to collect two more indicators (CPU
consumption and user session data) from PostgreSQL with the single-
probe monitoring unit strategy, as discussed at the end of Section 3.3.3.
The desired con�guration related to the already deployed probe pcpu

results in no changes to be operated (Padd [ Pupdate [ Pdrop = ? ),
since the existing probe will be simply shared between the two opera-
tors (this is achieved by only updating the con�gurations in U pdate -
Configuration without touching the running probes). While, the de-
sired con�guration related to the new probe psession to be deployed
results in a probe to be added (Padd 6= ? ).

The time complexity of Algorithm 2 is linear with respect to the
number of probes to add ( jPaddj), update (jPupdatej), and drop ( jPdropj)
while con�guring a monitoring unit. That is, if pchanges= jPaddj +
jPupdatej + jPdropj, the complexity of Algorithm 2 is O(pchanges).

3.3.5 Cloud Bridge

The main responsibility of the Cloud Bridge is to actuate plans on
cloud systems using their management APIs. The Cloud Bridge also
provides information about the targets and the deployment status of
the probe artifacts.

In particular, the Cloud Bridge exploits a plug-in based architecture
that can be extended to support additional cloud systems. A plug-
in for a target environment (e.g., Kubernetes) is used to map each
change requested by controllers into a concrete command for the spe-
ci�c management API (e.g., the Kubernetes API) or the speci�c con-
�guration management tool used to interact with the platform (e.g.,
Ansible [ 124]). This approach encapsulates the technological details
inside the plug-in, keeping the whole control-plane framework agnos-
tic from technology. Once all the changes have been actuated, the list
of probes resulting in an erroneous state is sent back to the controller.

3.4 error handling capabil it ies

The presented framework implements error handling procedures to
recover from deployment errors, namely, errors that might be expe-
rienced at deployment time while creating, updating and removing
either probes or monitoring units. The framework does not target the
run-time errors that might be experienced after a successful deploy-
ment. These procedures are extremely important for the dependability
of the monitoring framework, whose behavior may otherwise diverge
from the desired behavior. I distinguish two classes of errors that can
be detected and handled:
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Soft Errors (De�nition 3.6). Soft errors indicate problems in the opera-
tions performed while preparingfor the creation, update and deletion
of a unit, such as retrieving probes and preparing their con�guration.
All these operations are performed beforemodifying any existing mon-
itoring unit. Since those are problems that do not compromise the de-
pendability of the running units, they are considered soft errors that
have negligible consequences on the running monitoring system.

Hard Errors (De�nition 3.7). Hard errors indicate problems in the op-
erations performed while changing a running monitoring unit, such as
adding, recon�guring or removing probes. Since these problems may
compromise the dependability of the running monitoring system, they
are considered hard errors that timely require corrective actions to be
managed.

Errors are detected by the Cloud Bridge while interacting with plat-
form management APIs and while running commands of con�gura-
tion systems. Soft errors are produced during the execution of the
preparatory steps, differently from hard errors that are generated while
changing the actual monitoring units. For this reason, depending on
if and when an error is detected, a probe to be deployed can be in one
of the following states:

Failed Probe (De�nition 3.8). A probe is failed when a soft error has
been detected by the Cloud Bridge while preparing the probe.

Broken Probe (De�nition 3.9). A probe is broken when a hard error has
been detected by the Cloud Bridge while deploying/undeploying the
probe.

Stable Probe (De�nition 3.10). A probe is stable when no error is de-
tected.

The errors detected for each probe con�guration that is processed
by the Cloud Bridge are reported in the results returned to the Moni-
toring Unit Controller (line 7 of Algorithm 2).

Consequently, a monitoring unit can be in any of the following
states, depending on the states of its probes:

Stable Unit (De�nition 3.11). A monitoring unit is stable when no error
is detected for the probes in the monitoring unit.

Unsound Unit (De�nition 3.12). A monitoring unit is unsound when
there is at least a failed probe and no broken probe in the monitoring
unit. This state indicates a failure in the attempt to align the desired
and current con�gurations of the monitoring unit, but no actual prob-
lem is affecting the running unit.

Dirty Unit (De�nition 3.13). A monitoring unit is dirty when there is
at least a broken probe in the monitoring unit. This state indicates that
the software running in the unit might be compromised.
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Algorithm 3 UpdateCon�guration

Require: a monitoring unit mu to be updated
Require: res = ( Pconf soft ,Pconf hard ), where Pconf soft and Pconf hard

are the set of probe con�gurations that resulted in soft or hard errors
Require: RetryTable � MUnits � ProbeConfigs � N , which is a table that

counts how many times a given probe con�guration has been retried in
a monitoring unit

Require: BlackList � MUnits � ProbeConfigs , which is a table that tracks
the probe con�gurations that cause errors and should not be retried again

Ensure: mu is updated and any error is reported
1: for pc 2 Pconf soft do
2: RetryTable.IncRetry(mu, pc)
3: end for
4: for pc 2 Pconf hard do
5: BlackList.add(mu, pc)
6: end for
7: if Pconf hard 6= ? then . Dirty unit
8: Bridge.cleanUnit(mu)
9: conf c (mu )  ?

10: else
11: conf c (mu )  conf d (mu ) n (Pconf soft [ Pconf hard ) . conf d (mu ) is

unchanged, so probe con�gs causing soft errors are retried, while probe con�gs
with too many retries and probe con�gs in blacklist are automatically ignored

12: end if

Errors are mostly handled in the context of the U pdate Configu -
ration procedure whose pseudocode is shown in Algorithm 3. The
Update Configuration procedure is invoked by the Monitoring Unit
Controller to �nalize the update of a monitoring unit (line 11 in Algo-
rithm 2).

In addition to referring to a monitoring unit mu and the set of probe
con�gurations that resulted in soft ( Pconf soft ) and hard (Pconf soft )
errors, the procedure maintains two data structures. The RetryTable
is a table that stores for every monitoring unit the number of consecu-
tive soft failures generated by each probe con�guration. The BlackList
data structure stores for each monitoring unit the list of probe con�g-
urations that generated hard failures. The idea is that soft failures are
not harmful for the monitoring unit, and thus the failed changes can
be safely retried. Instead, hard failures introduce dependability prob-
lems, and thus the failed changes should not be retried. Operators
can reset these tables to allow again certain operations (e.g., after a
compatibility problem in a probe has been �xed).

In practice, the error handling routine �rst increases the number of
retries for the probe con�gurations that caused soft failures (line 2)
and adds to the blacklist the probe con�gurations that caused hard er-
rors (line 5). When the number of retries exceeds an operator-de�ned
threshold, the con�guration is blacklisted.

If at least a hard error has been detected, the unit is dirty and thus
the bridge is asked to clean it. This operation depends on the target
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environment and the implementation of the plug-in used in the Cloud
Bridge. For instance, in the implementation for containers, the bridge
destroys the existing container and creates a new monitoring unit to
replace it. The current con�guration of the newly created monitoring
unit is consequently set to the empty con�guration.

If no hard error is detected, the current con�guration is updated by
adding all the con�gurations that generated no errors. In all the cases,
the desired con�guration stays unchanged.

This process may lead to three main distinct situations:

• the current and desired con�gurations are aligned: no changes will
be performed on the monitoring unit in the future, unless a new
request is submitted by an operator;

• the current and desired con�guration differs only for some blacklisted
con�gurations: in this case again there is nothing to be done.
Note that although for simplicity I have not used the blacklist
when computing the set of probes to be added, recon�gured,
and deleted, in reality the Monitoring Unit Controller discards
the con�gurations that appear in the BlackList data structure
when computing them (Algorithm 2, lines 3- 5)

• there are con�gurations that must be retried: in such a case the de-
sired and current con�gurations do not match, and the monitor-
ing unit controller will process them again in the next iteration
of its control-loop, retrying the failed probe con�gurations.

The time complexity of the Algorithm 3 is linear with respect to
the number of probe changes and number of errors occurred while
con�guring the monitoring unit. In particular, if errorsis the number of
probe con�gurations that resulted in soft or hard errors. The resulting
time complexity is O(pchanges+ errors).

3.5 technology agnostic design

The proposed monitoring framework is designed to transparently
integrate heterogeneous monitoring technologies, releasing a technol-
ogy agnostic control-planethat can be exploited to obtain MaaS capa-
bilities using the preferred probe technologies and target platforms.
To witness this capability, this section exempli�es the integration of
probes of different types and the capability to support multiple cloud
platforms.

Listing 3.2: A metadata excerpt from the Apache Kafka exporter probe entry
in the Probe Catalog.

{

"id": "5fb6337a4102891e3677b475",

"artifactId": "kafka _exporter",



3.5 technology agnostic design 45

"supportedIndicators": [

"KAFKA_BROKERS", "..."

],

"supportedDataOutputs": [

"PROMETHEUS"

],

"supportedMUStrategies": [

"SINGLE _PROBE",

"MULTI _PROBE"

]

}

Listing 3.3: A sample JSON representation of a Target retrieved from Mi-
crosoft Azure.

{

"targetPlatform": "azure",

"targetPlatformId": "postgres-1",

"envType": "INACCESSIBLE _VM",

"metadata": {

"resourceGroup": "resource-group-vm-1",

"ipAddress": "52.92.34.124",

"privateIpAddress": "10.0.0.2",

"..."

}

}

3.5.1 Incorporating New Probes

To demonstrate the �exibility of the monitoring framework I de-
scribe how two largely different probes can be supported: a health-
check probe, which queries the health status endpoint of services ex-
ploiting the HTTP protocol, and a Prometheus exporter for Apache
Kafka [92], which monitors Kafka brokers resources (topics, partitions,
etc.) and exposes the collected indicators as Prometheus metrics.

Adding a new probe can be done in two steps. First, the probe ar-
tifacts have to be manipulated in such a way they can be used by the
Cloud Bridge. Second, the probe is added to the catalog by passing
the probe metadata, which include information about where the probe
can be deployed (the probe might be compatible with certain monitor-
ing unit strategies but not with others), the supported data outputs
(i.e., the database where the collected values can be stored), and the
supported indicators, to the API Service. Listing 3.2 and Listing 3.1
show an excerpt of the metadata associated with the Apache Kafka
Prometheus exporter and the health-check probe, respectively. Note
that the con�guration of the monitoring framework (e.g., the knowl-
edge of both the available time-series database and the type of the
target platform), jointly with the requests produced by the operators,
allows the framework to select and deploy the right probes. In fact,
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artifact ids are mapped to the concrete software artifacts and scripts
that are executed for probe deployment.

Adding new probes (i.e., new artifacts and corresponding metadata)
to the catalog may require a different amount of time depending on
the knowledge of the involved technologies. It is however a quite con-
venient operation for people who know the monitoring framework.
For instance, I needed 1.5 hours to develop and setup a health-check
probe that can be deployed on virtual machines, and 30 minutes to
add a Kafka exporter that can be deployed on Kubernetes.

3.5.2 Supporting New Target Cloud Platforms

Supporting multiple target cloud platforms is another capability of
the framework. A platform can be supported only if it provides a man-
agement API that can be used by the Cloud Bridge to manage the
monitoring units and discover targets. Developers who want to create
a new Cloud Bridge plug-in have to implement the base interface in or-
der to run execution plans and provide information about the targets
to the framework. Listing 3.3 shows an example of target information
that can be retrieved by the API via the Cloud Bridge component. Plug-
ins are also associated with metadata (e.g., the supported monitoring
unit strategies) that can help the framework in taking some decisions.

The prototype implementation already includes two plug-in imple-
mentations that can transparently actuate the same plans on radically
different platforms: Kubernetes, a container-based platform, and Mi-
crosoft Azure Compute, a virtual-machine-based platform.

3.6 empirical evaluation

This section quantitatively evaluates the ef�ciency of the proposed
MaaS framework with respect to both probe deployments and error-
handling routines. Further, it studies the scalability for an increas-
ing number of requests. I discuss the sub-research questions (Sec-
tion 3.6.1), the implemented prototype (Section 3.6.2), the results of
the experiments to answer the sub-research questions (Section3.6.3,
Section 3.6.4, and Section 3.6.5), and the threats to validity of the eval-
uation (Section 3.6.6).

3.6.1 Research Questions

This work responds to RQ 1 and is assessed with the following three
sub-research questions that capture the two representative capabili-
ties of the proposed framework (i.e., probe deployment and error han-
dling), and study how the it scales with an increasing number of re-
quests and operators.
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1. RQ1.1 - Framework Ef�ciency : How ef�ciently are probes
deployed? This research question validates the framework capa-
bility of deploying probes starting from a declarative input and
investigates how ef�ciently (i.e., in terms of time) it is in ful�lling
an operator monitoring request. This is investigated for both cloud
systems based on containers and virtual machines giving evidence
of the technology-agnostic capabilities of the framework. Results
are studied in comparison to a solution working with pre-deployed
probes that can be activated/deactivated (Figure 2.2, cases (d) and
(e)). To this end, I selected JCatascopia [238], which is consistent
with the MaaS case shown in Figure 2.2 (d), and it is usable with
no restrictions being an open-source research prototype.

2. RQ1.2 - Error Handling : How ef�ciently are errors handled? This
research question validates the framework capability of detecting
and recovering from errors and investigates the time required by
the framework to execute the error handling routine.

3. RQ1.3 - Scalability : How does the framework scale for an in-
creasing number of requests? This research question validates the
framework capability of optimizing the control-plane during the
evolution of the monitoring system. It studies scalability with re-
spect to the number of requests produced by operators.

All RQs were addressed with cloud systems based on both virtual
machines and containers. In the following, I describe the prototype
used to run experiments, the design of the study, and the results for
each research question.

3.6.2 Prototype

I implemented the MaaS framework described in this chapter in a
publicly available prototype hosted at https://gitlab.com/learnERC/

varys .
The services are implemented as Java standalone applications. The

repositories are implemented as MongoDB [ 122] collections. The JSON
format is used both for communication and to persist information,
except for the Cloud Bridge which exposes a gRPC API that uses
Protocol Buffers. The status update messages are delivered through
Redis Streams [68]. The monitoring system can be deployed both on
container-based and VM-based technologies, depending on the host-
ing environment.

I designed a probe catalog reusing probes from Metricbeat [ 33], a
popular monitoring solution part of ElasticStack [ 31]. The prototype
uses Elasticsearch [32], as ingestion service to store the values ex-
tracted by the probes. I implemented plug-ins for the Cloud Bridge
to support both Kubernetes and Microsoft Azure as target cloud plat-
forms.
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The Microsoft Azure plug-in supports either creating VM-based
monitoring units on-the-�y within the con�gured Azure resource
group, or accessing the same VM running the target to deploy the
probes internally. In the experiments, I annotated the target service as
an accessible VM, and made it reachable to the Cloud Bridge via SSH
in order to (un)deploy the probes directly within the VM running the
target service.

With respect to container monitoring units, the Kubernetes plug-in
deploys container monitoring units in the same platform of the target
and con�gures the probes accordingly. Purposely, it does not imple-
ment the container sidecar pattern [ 50] because it would trigger the
redeployment of the target service, due to how Pods work in Kuber-
netes, every time probes are (un)deployed, potentially causing service
or monitoring interruptions unless a robust rolling update strategy is
in place.

3.6.3 RQ1.1: Framework Ef�ciency

The monitoring framework can work in parallel on any number of
monitored targets, if enough instances of the monitoring unit con-
troller service are created. If there are more targets to modify than
controller instances, some modi�cations will be performed sequen-
tially. For instance, if 4 monitoring units must be modi�ed and only
3 controller instances are available, one unit will be modi�ed sequen-
tially after another one. I will thus study how ef�ciently a monitoring
unit can be managed by a single controller instance, the performance
over multiple simultaneously evolving units can be straightforwardly
deduced given the number of controllers available.

Two cases are considered for the experiments: PostgreSQL9.5 run-
ning in a container in an on-premise installation of Kubernetes and
PostgreSQL9.5 running in a virtual machine on Microsoft Azure (Stan-
dard B2s �avor, 2 vCPU, 4 GB of RAM, OS Debian 10). The on-premise
Kubernetes installation is run by a Minikube VM with 4 vCPU and 8
GB of RAM executed on a MacBook Pro 2017(3.1 GHz Quad-Core In-
tel Core i7, 16 GB of RAM). The two cases show how the same frame-
work can be transparently used to address heterogeneous scenarios
where the involved technologies are signi�cantly different. I collect
time �gures considering the case of a request that requires the simul-
taneous deployment of three probes to collect the following three indi-
cators from PostgreSQL: CPU consumption (using the CPU metricset
of the Metricbeat probe), memory consumption (using the memory
metricset of the Metricbeat probe), and database metrics (using the
database metricset of the Metricbeat probe).

To study the ef�ciency of each step, I measure the time taken by
the �rst controller to process the claim, by the second controller to
compute the execution plan, and by the Cloud Bridge to actuate the
plan. To have a baseline measurement, I also consider the case of a
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static framework, that is, a framework that does not support dynamic
probe deployment, requiring operators to deploy and con�gure probes
in-advance, which can be later activated and de-activated. This frame-
work is far less �exiblethan the framework presented in this chapter,
but faster since it does not deploy probes dynamically. To this end,
I both use the framework with pre-deployed probes and the JCatas-
copia [238] state of the art monitoring solution, which allows us to
collect further measurements from a third party system. I do not have
measurements for JCatascopia applied to containers since it only sup-
ports virtual machines. Every experiment is repeated 10 times to col-
lect stable measurements.

(a) Virtual Machines running on Microsoft Azure.

(b) Containers running on a local Kubernetes cluster.

Figure 3.2: Probe deployment time �gures.



50 automating probe life -cycle for changing needs

results of rq1 .1 Figure 3.2 shows the collected time �gures with
a semi-logarithmic scale considering both virtual machines (Figure 3.2a)
and containers (Figure 3.2b). The individual steps of the probe de-
ployment process are captured by the Monitoring Claim Processing,
Monitoring Unit Processing and Probes Deployment boxes. While To-
tal represents the total time elapsed between the submission of the
request and the time the deployed probes start collecting the required
indicators.

Not surprisingly Probes Deployment is the most expensive step of
the process for both virtual machines and containers. In the case of
virtual machines it takes nearly 50 seconds, while the other steps can
be completed an order of magnitude faster. In case of containers the
difference is remarkably smaller, due to their computational ef�ciency
and their ability to cache artifacts. In fact, probes deployment can be
performed in at most 1 second with containers, while the remaining
steps take less than0.25 seconds.

Overall, the entire probe deployment process of the three probes
(indicated with Total in Figure 3.2) could be completed in slightly less
than a minute using virtual machines and less than 1.5s using contain-
ers, which is a nearly two orders of magnitude difference.

The box Probe Activation Only shows the time required to activate
pre-deployed probes using the framework. In the case of virtual ma-
chines, exploiting dynamic probe deployment might be quite expen-
sive compared to manually pre-deploying probes, since it increases the
runtime cost by an order of magnitude. However, pre-deploying many
probes can be expensive, can generate large and dif�cult to manage
virtual machines, and is ef�cient only when the indicators that might
be collected can be predicted. The comparison to JCatascopia shows
that the presented framework is ef�cient, also when just used to pro-
cess requests and activate pre-deployed probes. In fact, JCatascopia
required several seconds to activate the probes, while the proposed
framework could activate probes in less than a second. The difference
between dynamic probe deployment and pre-deployed probes for con-
tainers is indeed less signi�cant, both in relative and especially abso-
lute terms.

answer to rq1 .1 In the case of VMs, the cost of �exibly deploying
probes is signi�cantly higher than working with pre-deployed probes.
Thus, the trade-off between �exibility and ef�ciency should be care-
fully considered by operators to decide the monitoring solution that
should be adopted. Instead, in the case of containers, the cost of �exi-
bly deploying probes is signi�cantly amortized by the ef�ciency of the
cloud technology.



3.6 empirical evaluation 51

3.6.4 RQ1.2: Error Handling

To study the capability of the framework to react to errors, I de-
signed a variant of the experiment performed for RQ 1.1 where I de-
ploy a malfunctioning probe. I obtained such a probe by implement-
ing a wrong con�guration of the Metricbeat probe for PostgreSQL that
makes the probe deployment to fail.

In the case of virtual machines, I study the creation of a new moni-
toring unit with two probes: one working probe and a malfunctioning
probe. The malfunctioning probe artifact contains an Ansible role with
a wrong command that leads to a hard deployment error when the
Cloud Bridge executes it. Since I use the multi-probe monitoring unit
strategy with virtual machines, error detection must autonomously
detect the problem with the monitoring unit with two probes and au-
tomatically create a monitoring unit with the working probe only. The
VM used as monitoring unit is created with a Standard B 1s �avor ( 1
vCPU, 1 GB of RAM, OS Debian 10).

In the case of containers, I study the creation of a new monitoring
unit with the malfunctioning probe only. The malfunctioning probe
artifact contains a bugged Kubernetes manifest �le that tries to deploy
the probe within a non-existent Kubernetes namespace. This leads to
a hard deployment error when the Cloud Bridge executes it. Since I
use the single-probe monitoring unit strategy with containers, error
detection should simply drop the malfunctioning monitoring unit (in
this case I do not consider the deployment of two probes because the
deployment strategy would simply create two different monitoring
units handled independently).

To capture how error detection works, I measure the time neces-
sary to the framework to attempt the deployment and detectthat a mon-
itoring unit is not working (namely Error Detection), the time neces-
sary to processthe error and take the decision to clean the monitoring
unit (namely Error Processing), and �nally the time necessary to actu-
ate the cleaning plan (namely Error Cleaning). Error detection is per-
formed by the Cloud Bridge while actuating changes (see the call in
Algorithm 2, line 7), error processing consists of the operations shown
in Algorithm 3, and error cleaning is again performed by the Cloud
Bridge when cleaning a unit (see the call in Algorithm 3 line 8). I re-
peated measurements10 times to collect stable time �gures.

results of rq1 .2 Figure 3.3 shows the collected time �gures with
a semi-logarithmic scale considering both virtual machines (Figure 3.3a)
and containers (Figure 3.3b).

In both environments, error detection and error cleaning are more
expensive than error processing. In fact, error detection requires per-
forming the deployment, at least partially, and similarly error clean-
ing requires disposing monitoring units and creating new stable units,
when possible.
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(a) Virtual machines running on Microsoft Azure.

(b) Containers running on a local Kubernetes cluster.

Figure 3.3: Error handling time �gures.

Similarly to probe deployment, error handling is signi�cantly more
ef�cient with containers than virtual machines. For instance, error de-
tection requires around 21 seconds with virtual machines while it can
be completed in less than 0.25 seconds with containers. Similarly, er-
ror cleaning requires around 13 seconds with virtual machines, while
it can be completed in about 0.15 seconds with containers, but it is
important to remark that the cleaning phase with containers does not
require recreating a monitoring unit that is instead only disposed. The
entire error handling process can be completed in around 35 seconds
with virtual machines and less than a second with containers.
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answer to rq1 .2 Results show how the proposed MaaS solution
that �exibly allocates and destroys resources, although usable with
both VMs and containers, are naturally more suitable for containers
where errors can be recovered in seconds.

3.6.5 RQ1.3: Scalability

As discussed, the framework can update multiple monitoring units
in parallel as long as a suf�cient number of controller instances are
created. I thus focus the scalability study on measuring how the cost
of collecting additional indicators grows with an increasing number of
requests when single instances of the controllers are available. In par-
ticular, I consider two cases: processing requests that require deploying
new probesand processing requests that require recon�guring the mon-
itoring system without deploying new probes. The former case cor-
responds to operators asking for new indicators to be collected. The
latter case corresponds to operators asking for indicators already col-
lected by other operators that the framework handles in an optimized
way sharing the existing probes among operators without touching
the monitoring units, but only changing the set of con�gurations asso-
ciated with a unit.

I measure how the total deployment time grows while increasing
either the number of new indicatorsor the number of existing indica-
tors for new operatorsfrom 1 to 30. I submit all requests at once and I
measure the total time necessary to ful�ll the request. I repeated every
experiment 5 times on both virtual machines and containers for a total
of 160samples collected about scalability.

results of rq1 .3 Figure 3.4 shows the results. Again, the remark-
able difference between virtual machines and containers is con�rmed.
The scalability experiment gives additional evidence of how the lin-
ear growth of the total time for virtual machines is far more steep
than containers. The difference is dramatic when considering the de-
ployment of 30 probes, which requires around 10 minutes, in contrast
with containers that can complete this operations in seconds.

The results show that sharing probes between multiple operators
can signi�cantly improve the ef�ciency of the monitoring system. This
is particularly important for virtual machines where the probe deploy-
ment cost can be cut thanks to probes sharing.

answer to rq1 .3 Overall, results show that dynamic probe de-
ployment can be feasible with both virtual machines and containers.
However, the former environment can ef�ciently deal with probes only
if changes are sporadic and the number of parallel requests received is
limited. On the contrary, the container technology is de�nitely ready
to support dynamic probe deployment, even in rapidly evolving con-
texts, based on the proposed framework.
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Figure 3.4: Time to ful�lling monitoring requests for a increasing number of
indicators (dot markers) and operators (triangle markers), with
both VMs running in Microsoft Azure (red lines) and on contain-
ers running in a local Kubernetes cluster (light blue lines).

3.6.6 Threats to Validity

The threats to the validity of the results mainly concern with the
relationship between the technical setup of the experiment and the
collected time �gures. In fact, ef�ciency is affected by both the avail-
able computational resources and the choice of the probes, For ex-
ample, the indicator type, and so its probe artifact implementation,
used in the experiment performed to study RQ 1.3 can affect the col-
lected values. However, while changing the available computational
resources and the deployed probes are likely to affect absolute �gures,
the trends and gaps between the different frameworks and cloud plat-
forms are clear, despite these factors. In fact, plots for virtual machines
and containers are similar, although values are on different scales. Fur-
ther, the scalability trends clearly identify a single case (collecting in-
creasingly more indicators on virtual machines) that scales remarkably
worst than the others.

In the evaluation, I also selected a speci�c target service to be mon-
itored (i.e., PostgreSQL) and I also used a speci�c malfunctioning
probe (Metricbeat for PostgreSQL). Both these choices do not likely
affect the results. In fact, the cost of handling a monitoring unit does
not depend on the monitoring target, and similarly the error handling
policy is the same for every type of error and malfunctioning probe.
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Finally, the collected time �gures might be affected by noise. To
mitigate this issue I repeated experiments between 5 and 10 times. Al-
though the statistical signi�cance and effect size of the collected data
have not been computed, the reported box plots show a low variance
for the collected values, suggesting that measures are stable and mean-
ingful, and can be used to derive valid conclusions.

3.7 discussion

The proposed framework is capable of fully automating the deploy-
ment and undeployment of arbitrary probes starting from declarative
inputs (i.e., the list of indicators to be collected) entered by the opera-
tors, thus supporting automated evolution of the monitoring system to
adapt to changing requirements. Moreover, it embeds routines to han-
dle deployment errors, because error handling capabilities received
little attention so far, with approaches mostly focusing on error-free
deployment scenarios or relying on the direct intervention of opera-
tors, despite the importance of error handling for long-running sys-
tems, such as a monitoring system. Lastly, the presented framework
can be integrated with existing technologies (e.g., probe technology,
ingestion engines, and target environments) without the need of us-
ing ad-hoc solutions. Results show that the framework can be feasibly
used with cloud systems based on both virtual machines and con-
tainers, although it is signi�cantly more ef�cient with containers. In
the latter case, the proposed framework can complete the probe de-
ployment process in 0.5-1.5 seconds, while activating the pre-deployed
probes requires slightly less than 0.5s, suggesting that dynamic probe
deployment might be often preferable for containers, while working
with pre-deployed probes might be helpful for VMs. Regarding the
error-handling capability studied by RQ 1.2, the entire procedure can
be completed in around 35 seconds with VMs and less than a second
with containers. Finally, the results about the framework's scalability
investigated by RQ1.3 give additional evidence of how sharing probes
between operators can signi�cantly improve the monitoring system
ef�ciency. This is crucial for virtual machines where the probe deploy-
ment cost can be reduced by sharing probes. In fact, the difference is
particularly relevant when considering the deployment of 30 probes,
which requires around 10minutes, in contrast with containers that can
complete this operations in few seconds.

The current framework implementation has three main limitations.
First, �ne-grained control of the probes con�gurations (e.g., changing
the sampling rate of the individual probes) is not supported. This lim-
itation can be potentially addressed by enriching monitoring claims
with information about probe con�gurations. Second, the support to
elasticity right now depends on the probe intelligence (e.g., it requires
the probes to embed a discovery mechanism as the one in the Met-
ricbeat Kubernetes module). It would be interesting to move this sup-
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port at the level of the monitoring framework, so that any probe can
be used to monitor elastic services. Third, error-handling is limited to
the deployment phase, and it is unable to detect and repair run-time
errors that occur during the regular execution of the monitoring sys-
tem. Indeed, error handling requires further research to cover the full
range of situations.
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PAT T E R N S F O R P R O B E D E P L O Y M E N T S

This chapter presents the de�nition, analysis, and both qualitative
and quantitative evaluation of 11 possible probe deployment patterns.
They are speci�ed by means of a feature model that captures several
key features and logical constraints relevant to probe deployment. The
proposed patterns help in understanding how to distribute the probes
in order to respect and optimize both technological and operators' re-
quirements, as discussed in Section2.2.2. Results show trade-offs be-
tween patterns that require more resources to ensure good separation
between users in multi-tenant environments, and those patterns that
use less resources, while reducing the degree of separation at a cost of
less privacy and risk of interference. In addition, I distilled a set of best
practices from the �ndings to guide engineers in implementing and
con�guring their monitoring systems. Finally, the results have been
cross-validated by addressing three realistic monitoring scenarios in-
volving different technologies, software architectures, and monitoring
requirements. The contribution presented in this chapter as been pub-
lished in the IEEE Transactions on Services Computing journal paper
titled “Monitoring Probe Deployment Patterns for Cloud-Native Ap-
plications: De�nition and Empirical Assessment” [ 244].

The chapter is structured as follows. Section 4.1 brie�y introduces
what probe deployment is and why it is a relevant problem for moni-
toring systems. Section4.2 presents and de�nes the probe deployment
patterns. Section 4.3 provides a qualitative evaluation of the patterns.
Section4.4 presents the empirical evaluation. Section 4.5 discusses the
best practices derived from the empirical �ndings. Section 4.6 demon-
strates the application of probe deployment patterns to three realistic
usage scenarios. Finally, Section4.7 concludes the chapter with closing
remarks.

4.1 probe deployment

Monitoring systems can deploy probes using various strategies that
take into account features such as technology, ef�ciency, and privacy.
The previous chapter illustrated how the proposed MaaS framework
uses two different strategies to deploy probes based on the technol-
ogy used to host the probe artifacts, namely VMs and containers. For
further illustration, let us consider a multi-tenant environment. In this
case, multiple probes can be deployed within the same virtual ma-
chine to save resources. However, this comes at the cost of reduced
privacy and security. Alternatively, a single probe can be deployed
per container or virtual machine to preserve privacy, but this requires

57
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more resources allocated to the monitoring system. Therefore, the ef-
fectiveness and ef�ciency of a monitoring system can be impacted by
the chosen probe deployment strategy.

Despite the many possible strategies, there has been no systematic
analysis and assessment. Engineers designing monitoring systems are
left to make their own decisions, which can have implications on the
monitoring ef�ciency and the �exibility of the monitoring system. The
next section introduces the concept of probe deployment patterns and
de�nes a set of key features for probe deployment that led to the de�-
nition of 11 patterns.

4.2 pattern definit ions

Probe deployment patterns capture how probes can be deployed to
monitor the targets. The possible deployment depends on several key
features that I discuss in this section and are represented with the
feature diagram shown in Figure 4.1.

A feature diagram is a graphical representation of a feature model
that de�nes features and their dependencies in a tree structure [ 137].
In this case the model characterizes the features relevant to probe de-
ployment patterns. The inner nodes represent abstract features (fea-
tures that are not implemented but only used to group features), while
the leaf nodes represent the concrete features (features that are imple-
mented). The parent-child relationship represents the feature decom-
position, from abstract to concrete features. While the default inter-
pretation of feature decomposition is the AND relationship, other de-
composition are possible, such as the alternative decomposition that
indicates that only one feature can be selected among the ones that
are available (see the legend in the �gure). Finally, features can be
optional or mandatory. All features are mandatory in the de�ned dia-
gram. A combination of features is a con�guration. A con�guration is
admissible if it satis�es its feature diagram.

A feature model may also include logical constraints that limit the
set of admissible con�gurations, that is, only the con�gurations that
satisfy the speci�ed constraints can being admitted by the model. The
model also includes several constraints that prevent that infeasible or
highly inef�cient con�gurations can be admitted by the model, thus
guaranteeing the reasonableness of the result.

I started from the papers that propose monitoring and probe de-
ployment approaches for multi-tenant and technology-heterogeneous
cloud environments [ 2, 50, 115, 173, 191, 235], the most used cloud
monitoring tools [ 25, 30, 151, 177, 195], and my personal experience,
to identify and distill a set of relevant features for probes deployment.

A feature model can be used to automatically generate the space of
all the admissible con�gurations. In fact, the con�gurations admitted
by the model obtained by the diagram in Figure 4.1 represent all the
probe deployment patterns that can be identi�ed by using the consid-
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Figure 4.1: Probe deployment patterns feature diagram.

ered features and constraints. The semantics of the considered features
are discussed below.

• Probe Holder : it represents the objects that hosts probe instances
(N.B., hereinafter referred as holder). It can be a separate Virtual Ma-
chine or container, or can overlap with the target execution environ-
ment. With respect to the monitoring unit concept (De�nition 3.4)
de�ned in Chapter 3, the probe holder is the solely hosting object
without any running probe.

– Holder Type: it represents the holder type [ 173].

* Target: the holder is the target of the monitoring activity,
that is, the holder hosts both the target and the monitoring
probes.

* External Unit : the holder is an external object which moni-
tors the target from the outside (e.g., a sidecar container [25,
30, 50, 151, 173, 177, 195]).

– Probe Multiplicity: it de�nes the number of probes that can be
executed within the unit [ 50].

* Single-probe: only one probe can be executed.

* Multi-probe : one or more probes can be executed.

– Holder Sharing: it de�nes if the holder can be shared among
multiple users [ 2, 115, 191, 235].

* Reserved Holder: the holder is reserved to a single user.

* Shared Holder: the holder can be shared among users.

• Probe Instance: it represents the running instance of a probe artifact
(De�nition 3.1) executed within the holder to collect data.

– Target Multiplicity : it de�nes the number of targets that a single
probe can monitor simultaneously [ 25, 30, 50, 151, 177, 195].
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* Single-target: a probe can monitor only one target.

* Multi-target : a probe can monitor multiple targets.

– Instance Sharing: it de�nes if a probe instance within a holder
can be shared among users [2, 115, 191, 235].

* Reserved Probe: the probe collects data for a single user.

* Shared Probe: the probe can collect data for multiple users.

• Execution Environment : it de�nes the supported execution envi-
ronment.

– Environment Type:

* System-oriented: monitoring is performed within a virtu-
alized entity aimed at offering a system-level environment.
This is usually the case with Virtual Machines and system-
level containerization technologies, such as LXC [70],
OpenVz [93], and Linux-VServer [ 71].

* Application-oriented : monitoring is performed within a
virtualized entity aimed at offering an application-level en-
vironment. This is the case of common containerization
technologies, such as Docker [121] or containerd [ 94].

The admissible con�gurations are bounded by constraints that cap-
ture bad/best practices and unfeasible combinations, as follows:

a) A shared holder that executes at most a single probe must allow for the
execution of shared probes(Shared Holder̂ Single-probe) Shared
Probe): If the holder must be shared but only one probe can be
executed within the holder, the only way to actually share re-
sources is to allow for probes that can be shared among multiple
users.

b) If the holder is reserved to a single user, also the probes running within
that holder must be serving that user(Reserved Holder) Reserved
Probe): Clearly, if the holder is reserved to a single user, it is
impossible to install probes serving multiple-users within that
holder.

c) Each system-oriented virtualization unit should possibly run multiple
probes(System-oriented) Multi-probe): Virtual machines are ex-
pensive units whose instantiation should be limited to prevent
excessive resource consumption, due to their non-negligible size
and signi�cant bootstrapping cost [ 157, 265]. For this reason, re-
serving a virtual machine to a single probe is strongly discour-
aged, and it should rather be used to run multiple probes.

d) Each Application-oriented virtualization unit should not run more than
one probe(Application-oriented) Single-probe): Following good de-
sign practices concerning isolation and separation of concerns [50],
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each container should run one process at most, and thus each
container should be dedicated to a distinct monitoring probe, so
that any interference is prevented.

e) A probe sharing the holder with the target should only monitor that tar-
get (Target) Single-target): When a probe is installed within the
same holder (e.g., a virtual machine) that runs the target of the
monitoring activity, the probe should not be con�gured to mon-
itor something else hosted outside the target, otherwise it may
interfere with the activity of the target. This follows the prac-
tice that, if needed, probes might be running within the same
holder of the target to circumvent observability issues. For in-
stance, collecting memory consumption either about a process
running inside a VM, or the VM itself, may not be possible via
external interfaces or at hypervisor level [ 73, 191], and in such
cases probes are speci�cally con�gured to extract data from that
target.

f) If probes are allowed to run within the same holder of the target, more
than one probe should be allowed to run(Target) Multi-probe): Lim-
iting the target to host a single probe would limit the monitor-
ing system to the collection of a single (set of) indicators, which
would not be acceptable in the majority of practical cases.

g) A probe sharing the holder with the target should be shared among
users(Target) Shared Probe): Using the holder space for both the
target and the probes may raise interference issues. For this rea-
son having multiple copies of functionally-equivalent probes to
serve multiple users is particularly inef�cient and risky, despite
ownership concerns. Thus, additional probes should be installed
only to collect data that are not collected by the already existing
probes, which have to be shared among users.

All these concepts and constraints are encoded in the feature dia-
gram in Figure 4.1, which has been implemented using
FeatureIDE [234], a tool for feature-oriented software development
based on Eclipse. All the admissible con�gurations from the model
are derived automatically, taking also into account the speci�ed con-
straints. The tool created 11 admissible con�gurations corresponding
to 11probe deployment patterns, which are by product correct, accord-
ing to the features and constraints represented in the feature model.
In this work, I focused on the key features that characterize a set of
monitoring probes. In the future, the model could be extended to in-
corporate additional features and constraints, which could be used to
re�ne the set of probe deployment patterns.

Figure 4.2 provides a graphical representation of the probe deploy-
ment patterns, and proposes names coherent with their structure. The
illustrations consistently refer to a case with two targets and two users,
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Legend (a) Reserved-T� P� (b) Reserved-T� P1

(c) Shared-T� P� (d) Shared-T� P1 (e) Partially-shared-T� P�

(f) Reserved-T1P� (g) Reserved-T1P1 (h) Shared-T1P�

(i) Shared-T1P1 (j) Partially-shared-T 1P� (k) Internal-T 1P�

Figure 4.2: Probe deployment patterns.

which is suf�cient to exemplify the differences among the various pat-
terns. The number of holders and probes varies according to the con-
�guration. I use colors to represent ownership (a probe holder or a
probe of the same color of a user indicates the ownership of the user,
while multicolored elements represent shared resources).

I adopt a same schema to illustrate each pattern. In particular, I
use the following �elds: name, which de�nes the name of the pattern;
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description, which provides a short description of the pattern, and tar-
get technology, which indicates the technical environment in which the
pattern is used.

A naming convention is de�ned to easily recall the details of a pat-
tern from its name. Speci�cally the name of each pattern is obtained
by concatenating three elements:

• The �rst element represents the level of sharing of the pattern, which
could be Reserved, Shared, or Partially Shared. Reservedis used for
holders reserved to individual users. Sharedis used for shared hold-
ers running shared probes. Finally, Partially Sharedis used for shared
holders that run reserved probes.

• The second element represents the type of executed probes. I use
T* for probes that can monitor multiple targets, while I use T1 for
probes that monitor a single target.

• The third element represents the probe multiplicity. I use P1 for
holders that run a single probe. While I use P* for holders that can
run multiple probes.

For example, the Partially-shared-T1P� pattern identi�es the case of a
shared holder that can run multiple probes con�gured to serve indi-
vidual users and collect data from individual targets.

Reserved-T� P� (Figure 4.2a) (De�nition 4.1). Reserved-T� P� pattern
uses a reserved holder for each user. A single holder hosts multiple
probes able to gather information from multiple targets. Note that in
this con�guration, to increase data separation, both the holder and the
probes are reserved to a single user, but a single probe can gather the
same indicator from multiple targets.
Target Technology:Since each holder can host multiple probes, this pat-
tern is usually applied to system-oriented virtualization technologies.

Reserved-T� P1 (Figure 4.2b) (De�nition 4.2). Reserved-T� P1 uses mul-
tiple reserved holders for each user, one for each probe deployed. Al-
though there is a one-to-one relationship between holders and probes,
probes are enabled to gather data from multiple targets.
Target Technology:This pattern is tailored for application-oriented virtu-
alization technologies (e.g., Docker containers) since each holder only
contains the process of a single probe. It is discouraged to exploit this
pattern with system-oriented virtualization technologies (e.g., VMs)
since the cumulative overhead caused by holders is likely unaffordable
for non-trivial settings.

Shared-T� P� (Figure 4.2c) (De�nition 4.3). Shared-T� P� uses a single
holder, shared among different users. The holder can contain multiple
probes, which are also shared among the users for collecting the same
indicators from multiple targets.
Target Technology:Due to the presence of multiple processes within the
same holder, this pattern is speci�c to system-oriented environments.
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Shared-T� P1 (Figure 4.2d (De�nition 4.4). ] Shared-T� P1 shares holders
among users and they contain a single probe that is able to acquire data
from multiple targets and for multiple users, if needed.
Target Technology:This pattern targets application-oriented environ-
ments because, while sharing probes among users and targets pro-
motes optimization and reuse, having a dedicated holder for each
probe can cause a signi�cant overhead for the monitoring solution if
using heavier virtualized units (e.g., VMs).

Partially-shared-T � P� (Figure 4.2e) (De�nition 4.5). Partially-shared-
T� P� uses a single holder, shared among users that contains multiple
probes able to acquire the indicators from multiple targets. In case the
same indicator is requested by multiple users, the probe is instanced
multiple times within the same holder, one for each user that requested
the indicator.
Target Technology:This pattern is speci�c to system-oriented environ-
ments as it creates a small number of holders with multiple processes
running in each one (i.e., multiple probes).

Reserved-T1P� (Figure 4.2f) (De�nition 4.6). Reserved-T1P� uses a re-
served holder for each user. Moreover each holder is allowed to con-
tain only probes that acquire data from a single target, however, if a
single user requires to collect multiple indicators from the same target,
multiple probes can be placed within the same holder.
Target Technology:Due to the fact that a holder may contain multiple
probes, this pattern is suited for system-oriented environments.

Reserved-T1P1 (Figure 4.2g) (De�nition 4.7). Reserved-T1P1 uses a re-
served holder for each user and contains a single probe. Every probe
is dedicated to the collection of indicators from a single target, which
means that if a single user requests the same indicator from a given
number of targets, an equal number of holders and probes will be de-
ployed to ful�ll such request.
Target Technology:This pattern is dedicated to application-oriented en-
vironments as it ful�lls the requirement of having a single process in
each holder.

Shared-T1P� (Figure 4.2h) (De�nition 4.8). Shared-T1P� uses a holder
for each target. Such holder may contain multiple probes that can ac-
quire indicators from a single target. Since there is only one holder for
a speci�ed target, multiple users interested in monitoring such target
share the holder. Moreover users also share the actual probes within
the holder.
Target Technology:Given the fact that each holder can contain multiple
probes, this pattern is tailored for system-oriented environments.
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Shared-T1P1 (Figure 4.2i) (De�nition 4.9). Shared-T1P1 uses multiple
holders for each target, where each holder contains only one probe
that acquires indicators from the target and shares the data among all
the users.
Target Technology:This pattern is designed to be applied to application-
oriented environments, mainly due to the high number of holders that
it can generate.

Partially-shared-T 1P� (Figure 4.2j) (De�nition 4.10). Partially-shared-
T1P� uses a single holder for each target, shared among users. How-
ever. the probes are not shared among users, implying that if two or
more users wish to monitor the same indicator, there will be an equal
number of instances of the same probe deployed, each one dedicated
to a single user.
Target Technology:Since this pattern involves a single holder for each tar-
get with a number of probes deployed within it, it is aimed at system-
oriented environments.

Internal-T 1P� (Figure 4.2k) (De�nition 4.11). Internal-T1P� is the only
case in which the holder matches with the execution unit that hosts
the target. The probes run within the same execution unit that runs
the target (e.g., within a VM). If the same indicators are collected by
multiple users for the same targets, the probes are necessarily shared,
mitigating the possibility of interfering with the target.
Target Technology:This pattern is speci�c to system-oriented environ-
ments since its nature implies multiple processes running in the target.

It is worth detailing further the Internal-T 1P� pattern which is the
only one where the holder matches with the target execution unit. In
this unique instance, probes can gain the highest observability as they
have the privileged viewpoint of collecting data from inside the same
execution unit hosting the target. Hence, probes may easily observe
indicators that would otherwise be hard or even impossible to collect.

The implementation of this pattern can be highly intrusive as the
probes and target share execution unit resources. Additionally, users
cannot operate reserved probes unless the monitoring system permits
single-user access. There could also be challenges in precisely gath-
ering indicators speci�c to the target. This is particularly true for
resource-related metrics such as memory and CPU usage, which could
be in�uenced by the inclusion of probes that also consume resources.

4.3 qualitative discussion

This section discusses the qualitative aspects related to the presented
patterns. I �rst discuss how the patterns can be implemented with
different technologies. I then discuss the trade-off between separa-
tion and resource consumption. I conclude by discussing interoper-
ability, portability, robustness, affordability and security of the pat-
terns. Table 4.1 summarizes how patterns can be classi�ed according
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to these seven dimensions. For ease of comparison, patterns have been
grouped into three groups: (i ) patterns that reserve both holders and
probes to individual users (column Patterns that privilege reservation);
(ii ) patterns that share both probes and holders among users (col-
umn Patterns that privilege sharing); and (iii ) patterns that share hold-
ers among users, but run probes reserved to individual users (column
Patterns that balance the two aspects).

4.3.1 Pattern Implementation

To show the practical applicability of the patterns, in this section I
provide guidance on how the identi�ed patterns can be implemented
with current real-world monitoring tools. Further guidance on apply-
ing patterns in real-world contexts is provided in Section 4.6, where
realistic usage scenarios are reported.

A common way to implement the patterns with reserved resources
(Reserved-T� P1, Reserved-T� P� , Reserved-T1P� , and Reserved-T1P1) with
platforms such as Prometheus or the Elastic Stack is to have multiple
instances of the framework, one for each user, and then deploy their
holders with agentlessPrometheus exporters [25] or Beats [30], such as
SNMP [54, 195] or HTTP based probes. This is also the case of tools
such as Zabbix [151] in its agentless con�guration, where it is expected
to handle multi-tenancy with the deployment of distinct components
for each tenant. The reserved aspect of both the probes and the hold-
ers can be implemented either deploying distinct instances of the full
monitoring system or employing a probe deployment framework that
can support multi-tenancy [ 2, 235]. These patterns are well supported
also by commercial tools, such as Nagios [177] and Dynatrace [82],
and in scienti�c articles, such as [ 115, 191].

The patterns with shared resources (Shared-T� P� , Shared-T1P1,
Partially-shared-T� P� , Shared-T� P1, Shared-T1P� , Partially-shared-T1P� )
are easy to implement with base technologies, such as Prometheus
and the Elastic Stack, as they exploit components that can be installed
in a single shared holder con�gured to permit multiple users to access
the data gathered from the deployed probes. These patterns are avail-
able also within commercial systems [ 82, 151, 177], and in scienti�c
articles, such as [51, 116, 167, 220, 227]

The Internal-T1P� pattern can be found in many agent-based solu-
tions [11, 164, 238]. It could also be obtained in Prometheus, by in-
stalling its exporters directly in the target VMs, and similarly with
Elastic Stack, by installing beats and custom probes directly within
the target VMs.

The study of approaches to switch from one pattern to another is
beyond the scope of this work. Nevertheless, designing monitoring
systems that can automatically change the deployment pattern accord-
ing to changes in monitoring needs would be valuable. In the context
of automated deployment of holders and probes, one feasible method
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involves the use of Monitoring-as-a-Service (MaaS) frameworks [ 192,
238]. For instance, the MaaS framework proposed in Chapter 3 that has
the ability to automatically govern the entire life-cycle of the probes
from declarative inputs, thus relieving operators of any con�guration
burden.

4.3.2 Analysis of Quality Aspects

Table 4.1: Characterization of the Patterns

Patterns that privilege isolation Patterns that privilege sharing
Patterns that balance

the two aspects

Patterns
Reserved-T� P� , Reserved-T� P1,

Reserved-T1P� , Reserved-T1P1

Internal-T 1P� , Shared-T� P� ,

Shared-T� P1, Shared-T1P� ,

Shared-T1P1

Partially-shared-T � P� ,

Partially-shared-T1P�

Resource

Consumption

number of probes and holders

growths with users
scalable growth with respect to users only number of probes growths

Separation no interference among users
probes shared between users who

have to agree on their con�guration

possible interference at the level

of the holder

Interoperability

& Portability
no impact no impact no impact

Robustness
dedicated holder increases

failure containment

shared probes can propagate

failures among users, internal probe

can propagate failures to target

shared holder can propagate

failures among users

Affordability
resource utilization requires

higher cost

sharing probes and holders

can reduce overall cost of resources

sharing holders reduces

resource cost

Security
reserved resources can mitigate

security risks

sharing probe and holder can

signi�cantly pose security risks

sharing holders can pose

security risks

separation versus resource consumption One of the as-
pects relevant to the choice of the pattern is the level of separation to
be achieved, in comparison to the possible resource consumption. Sep-
aration concerns with probes and holders acting for the purpose of a
single user or organization in a multi-tenant environment. Separation
is bene�cial to privacy, security and reliability.

Some patterns require a given level of sharing to be accepted by the
users in order to be used. Depending on this choice, the behavior of
the probes serving a user may impact the probes serving other users.
On the other hand, guaranteeing separation requires extra resources
to be allocated on the monitoring system.

Patterns that privilege reservation guarantee the maximum level of
separation, but resource consumption may growth quite quickly with
a growing number of users. On the other hand, patterns that favor
sharing probes may save resources but require sharing probe con�gu-
rations (e.g., sampling rate and accuracy) among users, and this could
be problematic in some use cases.

Some patterns share the holders among users while running probes
reserved to individual users (Table 4.1, column Patterns that balance the
two aspects). This guarantees that probes may impact one another only
through the holder, which is unlikely to happen, although possible
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(e.g., due to a malfunctioning probe). In terms of resources, although
the number of probes may still increase quickly, the number of holders
is guaranteed to stay small.

Resource consumption growth rate is quantitatively studied in de-
tail in Section 4.4.

interoperabil ity and portabil ity The proposed patterns are
cloud agnostic and thus are interoperable and portable across cloud
environments [ 76]. There might be however some practical aspects
that make certain patterns more suitable for an environment than an-
other. For instance, although the proposed patterns are conceptually
applicable to both containers and virtual machines, in practice I re-
stricted the application of some of them to certain technologies only,
so as not to go against well-known and widely accepted design prin-
ciples of those technologies.

Patterns are bene�cial to interoperability and portability also when
used to describe and model existing monitoring systems. In fact, they
ease the understanding of different implementations of probe deploy-
ment designs by introducing a set of reference designs. This facilitates
the understanding of the responsibilities of monitoring components,
which could be easily replaced with compliant ones having the same
or similar characteristics of the replaced component.

robustness Robustness is an important aspect of monitoring sys-
tems. Among the described patterns, the ones that use a holder that
is distinct from the holder of the target service provide higher robust-
ness (Reserved-T� P� , Reserved-T� P1, Reserved-T1P� , Reserved-T1P1).
In fact, the external holder provides failure containment by isolating
the monitoring modules into separate units. This allows the target's
functionalities to be safeguarded despite failures in the monitoring in-
frastructure. For example, the target can continue serving even if the
probe has failed.

In addition, these external units are deployed on dedicated VMs
and containers, allowing each piece of monitoring functionality to be
updated, con�gured and, when needed, rolled back, independently
from targets, and vice versa.

Shared holders may cause the propagation of failures from the probes
of a user to the probes of different users through the holders.

Finally, shared probes imply sharing failures between users (Shared-
T� P� , Shared-T� P1, Shared-T1P� , Shared-T1P1). Even worst, internal
probes may propagate failures to the target (Internal-T 1P� ).

affordabil ity Patterns that promote more ef�cient consumption
of cloud resources offer greater assurance of affordability. These are
the patterns that share resources among users, such as patterns that
share the holder and/or the probe instances. A further level of re-
source sharing is given by the pattern (Internal-T 1P� ) that shares the
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holder with the target holder, consequently saving also the cost of shar-
ing messages between the probes and the target, otherwise needed
with the other patterns.

security Security concerns may derive from the de�nition of the
patterns and their implementation. Different patterns introduce differ-
ent levels of resource sharing among users, which might be a source
of concerns. For example, if an attacker takes control of a holder, all
the probes running in the holder might be compromised. A compro-
mised probe may compromise the clients using the probe. In short,
shared and partially-shared probe deployment patterns expose users
to higher security risks compared to reserved patterns.

Pattern implementations may also be a source of security concerns.
For instance, resource pooling enables the use of the same pool of
resource by multiple users through multi-tenancy and virtualization
technologies. Although these technologies introduce rapid elasticity
and optimal resource management, they also introduce some risks into
the system. Multi-tenancy carries the risk of data visibility to other
users and tracking of operations. Similarly, the virtualized environ-
ment introduces its own set of risks and vulnerabilities that include
malicious cooperation between virtual components and the leakage of
these.

4.4 empirical evaluation

In this section, I quantitatively evaluate the cost-effectiveness of the
probe deployment patterns by measuring their cost in terms of CPU,
memory and network consumption, and their monthly operating costs.
I discuss the sub-research questions (Section4.4.1), the experimental
plan that was carried out and the experimental setup that I used to
perform the experiments (Section 4.4.2), the results of the experiments
that I executed to answer the sub-research questions (Section4.4.3 and
Section 4.4.4), and threats to validity of the evaluation (Section 4.4.5).

4.4.1 Research Questions

This work responds to RQ 2, and in addition to the qualitative dis-
cussion reported in Section 4.7, it is quantitatively assessed with the
investigation of the cost-effectiveness of the probe deployment pat-
terns. This concerns with the scalability of the pattern with the respect
to the amount of monitored data. Investigating the scalability of the
patterns is important to determine how well the patterns can �t situ-
ations asking for different amounts of data to be collected. I consider
multiple scalability dimensions, including probe overhead and cost.
Since the two main target environments, system-oriented (e.g., virtual
machines) and application-oriented (e.g., Docker containers) environ-
ments, are signi�cantly different in terms of elasticity and amount of
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resources consumed to create and run holders, and plots would be
on radically different scales, I generate two distinct sub-research ques-
tions for each target environment as follows.
RQ2.1 - System-oriented Patterns Scalability : How do patterns for
system-oriented environments scale with the amount of monitored
data?
RQ2.2 - Application-oriented Pattern Scalability : How do patterns
for application-oriented environments scale with the amount of mon-
itored data?

RQ2.1 and RQ2.2 study how probe deployment patterns scale with
respect to an increasing number of users, indicators and targets for
system-oriented and application-oriented execution environments, re-
spectively.

4.4.2 Experimental Setup

To answer the two research questions, I studied the scalability of the
probe deployment patterns by performing 6 experimentseach one in-
vestigating a different scalability dimension with 5 experimental con�g-
urations. An experimental con�guration consists of a triplet: the num-
ber of users considered in the experiment, the number of monitored
targets, and the number of indicators requested per user. To measure
scalability, I considered how patterns consume the CPU (%), memory
(GiB/MiB), and network I/O (MiB) of both the holder and the target
holder. To this end, I could appreciate both how probes and holders
consume resources, but also how, and if, patterns may impact on the
target, also estimating the performance overhead and cost.

In each experiment, I vary at least one out of the three dimensions
that compose an experimental con�guration to study how the patterns
handle the growth of that dimension. Table 4.2 summarizes the exper-
iments I did. Column Experimentspeci�es the name of the experiment,
while Column Sequence of Exp. Con�gurationsreports the set of exper-
imental con�gurations investigated to study scalability. Note that the
sequence of con�gurations always have at least a growing dimension.
In all the cases, the growth rate corresponds to doubling a dimension
at each step. As shown in the experiments, the selected values are
suf�cient to appreciated the trend shown by each dimension.

In particular, the INCREASING_KPIS_1 and INCREASING_KPIS_2
experiments investigate the scalability of the patterns with respect to
an increasing number of requested indicatorsby a single user for a given
target and by two users for a same target, respectively. That is, I inves-
tigate the impact of an increasing number of indicators collected, both
for single and multiple users.

The INCREASING_TARGETS_1 and INCREASING_TARGETS_2 ex-
periments investigate the scalability of the patterns with respect to an
increasing number of targets, for a user interested in collecting a given
indicator, and two users interested in collecting a same indicator. That
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is, I investigate how a growing number of targets impact on the single
and multi-user scenarios.

The INCREASING_USERS_1 experiment investigates the scalability
of the patterns with respect to an increasing number users interested
in monitoring a single indicator for a given target. Finally, INCREAS-
ING_USERS_2 investigates the scalability of the patterns with respect
to an increasing number of users requesting an increasing number of
indicators for a same single target. That is, I study how a growing
number of users impact on the patterns, also considered in combina-
tion with an increasing number of indicators collected.

Overall, this set of experiments can provide a clear picture about
how patterns scale according to the different dimensions. All the ex-
periments are repeated for both patterns applicable to system-oriented
technologies (e.g., VMs) and patterns applicable to application-oriented
technologies (e.g., Docker containers).

Table 4.2: Experiments Con�gurations

Experiment Sequence of Exp. Con�gurations (Users - Targets - Indicators)

INCREASING_KPIS_1 (1-1-1), (1-1-2), (1-1-4), (1-1-8), (1-1-16)

INCREASING_KPIS_2 (2-1-1), (2-1-2), (2-1-4), (2-1-8), (2-1-16)

INCREASING_TARGETS_1 (1-1-1), (1-2-1), (1-4-1), (1-8-1), (1-16-1)

INCREASING_TARGETS_2 (2-1-1), (2-2-1), (2-4-1), (2-8-1), (2-16-1)

INCREASING_USERS_1 (1-1-1), (2-1-1), (4-1-1), (8-1-1), (16-1-1)

INCREASING_USERS_2 (1-1-1), (2-1-2), (4-1-4), (8-1-8), (16-1-16)

When collecting data, I run each experimental con�guration 3 times
for 10 minutes to collect stable results. Since I sample the resource-
related metrics (CPU, memory and network) every 10 seconds, each
of the experimental con�gurations results in 60 samples for a sam-
pled resource-related metric. Overall, the 3 repetitions sustained for
10 minutes generates 180samples per resource-metric for a given con-
�guration, that gives us good con�dence on the stability and signif-
icance of the results. Since I study 30 con�gurations, to support the
6 experiments shown in Table 4.2, and I repeat the experiments for
the 11 patterns, a total of 330 con�gurations is obatined. I avoid re-
peating the execution of 22 con�gurations because some pattern con-
�gurations produce the same experimental setting (e.g., same number
of deployed holders and probes). As a result, I collected 166,320 sam-
ples instead of the expected 178,200 samples (60 samples per metrics�
3 metrics� 3 repetitions� 330con�gurations= 178,200samples).

I ran the experiments on both virtual machines (VM) and containers.
To automate experiments, I implemented Ansible playbooks [ 124] that
interact with the Azure Compute Platform [ 170] and with a managed
Azure Kubernetes Cluster [ 171] to run VM-based and container-based
experiments, respectively.
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Virtual machine holders are created with the Azure Standard B 1s
�avor ( 1 vCPU, 1GiB of RAM, Ubuntu 18.04 LTS), while VM targets
are created with the Standard A 2 v2 �avor ( 2 vCPUs, 4GiB of RAM,
Ubuntu 18.04 LTS). The Kubernetes Cluster consists of a single node
pool with 3 workers (Standard B4ms �avor, 4 vCPU, 16GiB of RAM)
and run Kubernetes v 1.20.9. I deployed container holders and targets
by mean of single-replica Kubernetes Deployments [ 232].

I used NGINX [ 86], a well-known web server and reverse-proxy, as
the target application; and Metricbeat [ 33] as probing system. Met-
ricbeat helps in monitoring servers by collecting metrics from both the
system and the services running on them. It can ship the collected
metrics to Elasticsearch [32] and can be con�gured to collect tailored
metrics. I con�gured the Metricbeat NGINX module to probe the tar-
get, while I activated the System and Kubernetes modules to measure
the resource consumption in the case of VMs and containers, respec-
tively.

To collect CPU, memory and network metrics on virtual machines, I
run a dedicated Metricbeat instance on both the targets and holders. In
Kubernetes, I deployed Metricbeat to measure the targets and holders
resource consumption as a Kubernetes DaemonSet [231].

I used Metricbeat also to implement the monitoring probes that are
part of the monitoring patterns, either deployed within virtual ma-
chines or deployed as single-replica Kubernetes Deployments.

I compute the CPU and memory consumption of a pattern as the
sum of the resource consumption of each holder activated by the pat-
tern. The consumption of a holder is obtained as its medium resource
consumption along the experiment. The CPU and memory consump-
tion of targets is computed as the mean value of the collected samples.
For network I/O consumption, since it is a cumulative metric, I simply
compute the total consumption of each element per experiment as the
difference between the �rst and last data point.

To compute the actual cost of running probes, I referred to the
monthly cost of a Microsoft Azure Standard B 1s VM operated in the
West Europe zone (  8.18/month in July 2023), and to an Azure Con-
tainer Instance operated in the West Europe zone (  31.7762/month x
1vCPU +   3.4845/month x 1 GB of RAM in July 2023). I calculate the
cost range of system-oriented patterns by multiplying the monthly
expense of one VM by the number of holders generated by the pat-
tern. Meanwhile, the cost range of application-oriented patterns is de-
termined by multiplying the average CPU/RAM consumption values
collected during the experiments with the monthly CPU/RAM costs.
As for system-oriented patterns, also for application-oriented patterns
the expense of a single container instance is then multiplied by the
number of holders generated by the pattern.

The experimental material containing all the software artifacts (i.e.,
Ansible playbooks, execution scripts, con�gurations, data analysis) and
the collected dataset is publicly available at [ 243].
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4.4.3 RQ2.1: System-oriented Pattern Scalability

Figure 4.3 shows how the resource consumption growths for the var-
ious metrics, considering the system-oriented patterns implemented
with VM holders. I do not include the Internal-T 1P� pattern in the
plots related to memory consumption because no holder is added to
the system (the holder matches with the target holder). Thus the over-
head is limited to the resource consumption of the probe, which is
negligible compared to the resources already consumed by the tar-
get holder. I report a selection of plots that is suf�cient to illustrate
the results and the trends. The complete set of plots with resources
consumed by the holders and the targets for all the metrics and exper-
iments is available in Appendix A.

Figure 4.3: System-oriented probe holders patterns scalability.

results of rq2 .1 CPU and memory consumption are both negli-
gible for targets. In particular, it is less than 1% for CPU consumption
and less than 502 MiB for memory, independently of the dimension
that is increasing. This is a clear evidence that all the system-oriented
patterns are non-intrusive in terms of CPU and memory consumption
for the target, including the Internal-T 1P� pattern (which may inter-
fere in other ways due to the holder matching with the target holder).

CPU consumption is also negligible in the holders (less than 1%).
In fact, probes are lightweight artifacts that consume little resources
and even when their number increases, their impact on CPU is neg-
ligible. On the contrary, memory consumption is non-trivial in hold-
ers, for some patterns (up to 10 GiB). In fact, an increasing number
of targets makes single-target (T1) holders used by Reserved-T1P� ,
Shared-T1P� , Partially-shared-T1P� patterns subject to an exponential
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increase of memory consumption, as shown in Figure 4.3 (INCREAS-
ING_TARGETS_2). On the other hand, an increasing number of users
makes reserved holders used by Reserved-T1P� , Reserved-T� P� pat-
terns subject to an exponential memory consumption as shown in Fig-
ure 4.3 (INCREASING_USERS_2). This trend can be expected, since
all the �ve probes deployment patterns create new holders for an in-
creasing number of users or targets, resulting in new VMs creation,
that is, new allocated resources.

Network I/O consumption is negligible on targets: up to 6 MiB
transferred in 10 minutes for reserved patterns in the most expensive
experiment (INCREASING_USERS_2). The transferred data are due
to probes extracting data from the target. The limited traf�c generated
con�rms the suitability of all patterns in terms of their interference on
the target.

With respect to holders, network I/O consumption can be more
signi�cant. I observe in particular that both an increasing number of
users requesting different indicators (INCREASING_USERS_1 and IN-
CREASING_USERS_2 experiments) and an increasing number of tar-
gets (INCREASING_TARGETS_1 and INCREASING_TARGET_2 ex-
periments) resulted in an exponential network consumption trend, as
shown in Figure 4.3. In particular, single-target ( T1) holders (Shared-
T1P� and Reserved-T1P� patterns) and the Internal-T 1P� pattern are
sensitive to an increasing number of targets, while reserved holders
(Reserved-T1P� and Reserved-T� P� patterns) are sensitive to an in-
creasing number of users requesting different indicators.

Based on this evidence, depending on the expected scalability trend,
there are patterns that should be preferred or avoided. It is however
useful to remark that the overall resource network consumption that
has been observed has been limited, even for the most expensive sce-
narios (up to 60 MiB transferred in 10 minutes). This order of mag-
nitude is likely relatively signi�cant in a cloud environment, where
network resources are usually abundant, while it is indeed relevant
in resource-constrained environments, such as fog and edge environ-
ments.

I report in Table 4.3 and Table 4.4 how these differences may re�ect
in the monthly operation cost. All costs are in euros (   ) and each cost
interval is obtained by considering the minimum and the maximum
number of employed holders for a speci�c scalability experiment.

Cost �gures directly depend on the number of holders created, and
are generally low as long as holders are not dedicated to individual
service instances, which is a case that immediately generates unrea-
sonable operation costs. Many scalability dimensions do not impact
on the cost because VMs are quite large holders that can easily run
several probes and their cost is not affected by the number of run-
ning probes, until the number is so large that multiple VMs have to
be created. For this reason, it is dif�cult to estimate the cost of the
Internal-T 1P� pattern, since probes run within the VM that hosts the
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target service and they do not induce a measurable costs as long as a
larger VM has to be created due to the presence of the probes.

Table 4.3: System-oriented patterns probe holder monthly costs for ex-
periments INCREASING_KPIS_1, INCREASING_KPIS_2, and IN-
CREASING_TARGETS_1

Pattern
Experiment

INCREASING_KPIS_1 INCREASING_KPIS_2 INCREASING_TARGETS_1

Internal-T1P* � 0* � 0* � 0*

Reserved-T*P* [8.18, 8.18] [16.36, 16.36] [8.18, 8.18]

Reserved-T1P* [8.18, 8.18] [16.36, 16.36] [8.18, 130.88]

Partially-shared-T*P* [8.18, 8.18] [8.18, 8.18] [8.18, 8.18]

Partially-shared-T1P* [8.18, 8.18] [8.18, 8.18] [8.18, 130.88]

Shared-T*P* [8.18, 8.18] [8.18, 8.18] [8.18, 8.18]

Shared-T1P* [8.18, 8.18] [8.18, 8.18] [8.18, 130.88]

Table 4.4: System-oriented patterns probe holder monthly costs for experi-
ments INCREASING_TARGETS_2, INCREASING_USERS_1, and
INCREASING_USERS_2

Pattern
Experiment

INCREASING_TARGETS_2 INCREASING_USERS_1 INCREASING_USERS_2

Internal-T1P* � 0* � 0* � 0*

Reserved-T*P* [16.36, 16.36] [8.18, 130.88] [8.18, 130.88]

Reserved-T1P* [16.36, 271.76] [8.18, 130.88] [8.18, 130.88]

Partially-shared-T*P* [8.18, 8.18] [8.18, 8.18] [8.18, 8.18]

Partially-shared-T1P* [8.18, 130.88] [8.18, 8.18] [8.18, 8.18]

Shared-T*P* [8.18, 8.18] [8.18, 8.18] [8.18, 8.18]

Shared-T1P* [8.18, 130.88] [8.18, 8.18] [8.18, 8.18]

None of the patterns impacts on targets, thus their selection should
be entirely based on the resource consumption of holders.

Holders are not CPU eager, so the choice of the pattern can focus
on memoryand network consumption for environments where network con-
sumption should be carefully controlled, otherwise network consumption
can be overlooked due to limited absolute consumption.

The expected resource consumption should be considered in rela-
tion to the expected growing rate of the key dimensions. If the mon-
itoring system is employed in a multi-tenant environment where the
number of users requiring different indicators can easily increase, the
patterns with reserved holders are particularly impacted (Reserved-
T1P� and Reserved-T� P� deployment patterns). This may suggest that
reusing probes and holders among users is advised when direct ac-
cess to the target is not possible. The use of multi-target (T� ) probe de-
ployment patterns (i.e., Reserved-T� P� , Shared-T� P� , Partially-shared-
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T� P� ) is advised when many different targets or instances must be
monitored.

answer to rq2 .1 Since the overhead is mostly due to the holders,
reducing their number increase the ef�ciency, making Shared-T � P� ,
Partially-shared-T � P� , and Internal-T 1P� the more scalable patterns
for applications based on system-oriented virtualization, with Shared-
T1P� highly recommended in situations where the number of targets
remains low, while the number of interested users increases.

4.4.4 RQ2.2: Application-oriented Pattern Scalability

Figure 4.4: Application-oriented probe holders patterns scalability.

Figure 4.4 shows how the resource consumption growths for the
various metrics, depending on the application-oriented patterns. I re-
port a selection of plots that is suf�cient to illustrate the results and
the trends. The complete set of plots with resources consumed by the
holders and the targets for all the metrics and experiments is available
as Appendix A.

results of rq2 .2 Similarly to system-oriented patterns, also
application-oriented patterns do not impact on the target. In fact, CPU
and memory consumption of the target is below 0.01% and 5 MiB, re-
spectively. Again, it con�rms the suitability of the monitoring patterns
to collect data from targets without interfering with their resource con-
sumption.

CPU consumption is also negligible in holders despite patterns and
growing trends (below 0.01%), while memory consumption can be sig-
ni�cant. In fact, increasing the number of users who request for differ-
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ent indicators (Figure 4.4 INCREMENTING_USERS_2 experiment) re-
sults in an exponential memory consumption trend (up to more than
10 GiB for reserved holders (Reserved-T� P1 and Reserved-T1P1 pat-
terns). Note that these two reserved probe deployment patterns create
a holder hosting one probe only for each of the users requesting a new
indicator to be collected. For instance, the last con�guration triplet ( 16
Users - 1 Target - 16 Indicators) of the INCREMENTING_USERS_2 ex-
periment creates 256holders to satisfy the user needs. Thus, although
memory consumption may growth exponentially, the overall consump-
tion in relation to the number of created containers is still quite good.

Network I/O consumption is also negligible for targets, less than 1
MiB in all the experiments except for the INCREASING_USERS_2 ex-
periment where I observed up to 6 MiB of network I/O consumption
for the patterns using reserved holders (Reserved-T1P1 and Reserved-
T� P1 patterns).

With respect to holders, network I/O consumption can be still con-
sidered negligible (up to 17 MiB), but I observed that both an in-
creasing number of users requesting different indicators (INCREAS-
ING_USERS_2 experiment) and an increasing number of targets (IN-
CREASING_TARGETS_1 and INCREASING_TARGET_2 experiments)
resulted in an exponential network consumption trend as shown in
Figure 4.4. In particular, single-target ( T1) holders (Shared-T1P1 and
Reserved-T1P1 patterns) are sensitive to targets increment, while re-
served holders (Reserved-T1P1 and Reserved-T� P1 patterns) are sen-
sitive to an increasing number of users requesting different indicators.

Table 4.5 and Table 4.6 summarize the monthly cost of executing
application-oriented holders in the experiments. I can notice how de-
ploying probes within an application-based environment is cheaper
than in a system-oriented environment, due to the nature of the envi-
ronments and the billing strategies. The Internal-T 1P� VM-based pat-
tern is the only exception, but such a pattern introduces non-trivial
security and reliability issues, as discussed later. Interestingly, costs
based on containers is often negligible, reaching a cost that could be
appreciated on a monthly basis only for the most demanding con�gu-
rations.

Table 4.5: Application-oriented patterns probe holder monthly costs for ex-
periments INCREASING_KPIS_1, INCREASING_KPIS_2, and IN-
CREASING_TARGETS_1

Pattern
Experiment

INCREASING_KPIS_1 INCREASING_KPIS_2 INCREASING_TARGETS_1

Reserved-T*P1 [0.1752, 2,8401] [0.3519, 5.6497] [0.1752, 0.1939]

Reserved-T1P1 [0.1732, 2.8022] [0.3397, 5.7135] [0.1732, 3.1300]

Shared-T*P1 [0.1755, 2.8495] [0.1652, 2.7965] [0.1755, 0.1980]

Shared-T1P1 [0.1814, 2.8513] [0.1765, 2.8226] [0.1814, 3.1658]



78 patterns for probe deployments

Table 4.6: Application-oriented patterns probe holder monthly costs for ex-
periments INCREASING_TARGETS_2, INCREASING_USERS_1,
and INCREASING_USERS_2

Pattern
Experiment

INCREASING_TARGETS_2 INCREASING_USERS_1 INCREASING_USERS_2

Reserved-T*P1 [0.3519, 0.3910] [0.1752, 2.7764] [[0.1752, 43.9768]

Reserved-T1P1 [0.3397, 6.2549] [0.1732, 2.8346] [0.1732, 43.5852]

Shared-T*P1 [0.1652, 0.1970] [0.1750 0.1755] [0.1755, 2.8446]

Shared-T1P1 [0.1765, 3.1053] [0.1712, 0.1814] [0.1814, 2.8193]

Although on different scale values, experiments with container-based
applications resulted in trends similar to the ones obtained for VM-
based applications. In fact, resource consumption on targets is negligi-
ble and the holder consumption is signi�cantly mainly in relation to
memory consumption.

Similarly, increasing the number of indicators and increasing the
number of users are the least impactful drivers for container-based
holders. However, their combination (i.e., the increment of users re-
questing different indicators) particularly impact reserved holders em-
ployed by Reserved-T1P1 and Reserved-T� P1 probe deployment pat-
terns. This suggests that an optimization and reuse of probes and
holders among users is advised for application-oriented patterns too.
Single-target (T1) holders are mostly impacted by the increase of tar-
gets, thus, the use of multi-target (T� ) probe deployment patterns (i.e.,
Reserved-T� P1, Shared-T� P1) is advised when many different targets
or instances must be monitored.

answer to rq2 .2 Shared-T� P1 is the most scalable pattern in the
context of container-based applications, with Shared-T1P1 as a solid
alternative option when there are few targets to be monitored but a po-
tentially high number of users, and Reserved-T � P1 yet another option
when several targets must be monitored for a few users only.

4.4.5 Threats to Validity

The threats to the validity of the presented results mainly concern
the relationship between the setup of the experiment and the collected
resource consumption values. In fact, the consumption is affected by
both the available computational resources and the choice of the probe
technology and con�guration. However, while changing the available
computational resources and the deployed probes are likely to affect
absolute values, the trends and differences among the probe deploy-
ment patterns are clear, despite these factors.

In fact, plots for system-oriented and application-oriented probe de-
ployment patterns are similar although speci�c values are different.
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Nevertheless, the relationship between increasing speci�c variables
(e.g., the number of targets or the number of users) and the pattern
characteristics (e.g., single-target or reserved patterns) are clearly iden-
ti�ed by the resulting consumption trends.

In the evaluation, I also selected a speci�c target service to be mon-
itored (i.e., NGINX) and I used a speci�c probe technology (i.e., Met-
ricbeat module for NGINX). Moreover, I deployed the same probe
when experiments required to increment the number of requested in-
dicators, and a probe is con�gured to collect a single indicator. In a
real-world scenario probes may be con�gured to collect several indi-
cators, potentially lowering the resource consumption. While using a
single target application (i.e., NGINX) in the evaluation may raise con-
cerns about the generalization of the results, it is important to remark
that the monitored application was not a factor in the study. The mon-
itored application has no impact on the cost and effectiveness of the
deployment patterns. I thus intentionally used a single application in
the quantitative study to ensure that the evaluation is conducted under
controlled and similar conditions, minimizing the possibility to intro-
duce any confounding factor that could affect the results. To mitigate
this issue I report results about the experience with three real-world
applications of the patterns in Section 4.6.

Finally, the collected resource consumption values might be affected
by noise. To mitigate this issue I repeated the experiments for 3 times
for a total of 30 minutes of execution collecting 180 samples for each
resource-related metric in any of the experiment con�gurations. Al-
though the statistical signi�cance and effect size of the collected data
have not been calculated, I computed the mean and the standard de-
viation by all the data samples, thus, stabilizing the results to derive
more solid conclusions.

4.5 best practices

This section discusses a distilled list of best practices for probe de-
ployment derived from the empirical �ndings. Engineers can exploit
them when designing and con�guring their monitoring systems, de-
pending on the target environment and desired qualities.

BP-1: Share probe instances and holders for non-accessible targets
in multi-user environments . Results show that resource consumption
might grow quite quickly when the number of users and the num-
ber of monitored indicators increase (e.g., see experiments INCREAS-
ING_TARGETS_2 and INCREASING_USERS_2). Indeed, the case of
a large number of users asking for many indicators in multi-user en-
vironments must be handled carefully, regardless of the underlying
technology (e.g., system-oriented or application-oriented). This issue
is exacerbated by non-accessible targets (e.g., third-party applications
and inaccessible services for security concerns) that require the deploy-
ment of probes that sample the target from the outside. In such cases,
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the monitoring system should be con�gured to share as many re-
sources as possible. This implies sharing the deployed probes, and pos-
sibly also the holders (see patterns Shared-T� P� , Shared-T1P� , Shared-
T� P1 and Shared-T1P1). Sometime, when probes cannot be shared,
the patterns with partially-shared holders (see Partially-shared-T� P� ,
Partially-shared-T1P� patterns) offer a valuable trade-off. When pos-
sible, probe instances must be con�gured to collect multiple indica-
tors to lower the consumption (see trend results for the INCREAS-
ING_USERS_2 experiment in Figure 4.3).

BP-2: Use multi-target probe deployment in large-scale monitor-
ing environments . Single-target patterns show that probes may con-
sume signi�cant amount of resources with an increasing size of the
monitoring system (see for instance single-target patterns trends for
INCREASING_TARGETS_2 experiment in Figure 4.3 and Figure 4.4).
For this reason, large-scale deployments with tens or more targets
must adopt multi-target probe deployments. This is strongly advised
for system-oriented environments where resource allocation for re-
served holders can be resource eager (e.g., VMs), and thus also ex-
pensive. Suitable patterns for this case are:Shared-T� P� , Shared-T� P1,
Partially-shared-T� P� , Reserved-T� P� and Reserved-T� P1. Single-target
application-oriented holders ( Reserved-T1P1, Shared-T1P1 patterns) can
sometime still be used thanks to the lightness of application-oriented
containers.

BP-3: Privilege application-oriented holders to address
highly-dynamic indicator collection requirements . In the case of indi-
cators requirements that change often (e.g., many users with different
business goals), application-oriented holders can be life-savers. Their
advantage is twofold: �rst, their bootstrapping phase is way faster
than VMs, and thus frequent creation and destruction of holders can
be accomplished ef�ciently; second, even when probe instances (hold-
ers) cannot be shared to guarantee high con�gurability and isolation
to multiple tenants, their allocation is still affordable in terms of re-
sources and cost, when compared to system-oriented holders imple-
mented with VMs (see INCREASING_USERS_2 experiment results for
system-oriented holders shown in Figure 4.3 and in Appendix A for
further details). Again, probe instances should be con�gured to collect
multiple indicators at once to save resources.

BP-4: Prefer container-based holders for isolation requirements .
Dealing with third-party applications or strict security requirements
may require satisfy isolation despite ef�ciency, and to deploy probe in-
stances in dedicated holders. System-oriented holders can be resource-
greedy and expensive when implemented with VMs especially. In
fact, reserved patterns implemented with VM-based holders scale sig-
ni�cantly worse for an increasing number of targets, as results for
INCREASING_TARGETS experiments demonstrated. Thus container-
based holders should be preferred when possible (Reserved-T� P1,
Reserved-T1P1 patterns). In the cases where VMs must be employed
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(e.g., due to constraints on the technology stack), the best practice is to
use partially-shared holders (Partially-shared-T � P� , Partially-shared-
T1P� patterns) and implement isolation at probe instance level.

BP-5: When the target is accessible and resource consumption is a
concern, probes should be deployed within the same execution unit
of the target . An accessible target offers the opportunity of collecting
indicators ef�ciently, since there is not the burden of querying any
monitoring interface and sharing the holder with the target increases
observability. The low resource consumption has been con�rmed with
the experiments (see Figure 4.3 and the Appendix A for further de-
tails). The same cannot be usually achieved with application-oriented
execution environments (e.g., due to the single main container pro-
cess practice [40]). Due to the side-effects that probes may introduce
on targets, this choice is advice when resource consumption is a pri-
mary concern, compared to system reliability. Some speci�c technol-
ogy stacks may offer interesting compromises. For example, engineers
can exploit the concept of pod(i.e., Kubernetes Pod [233], Podman [69])
to obtain a setup similar to the Internal-T 1P� pattern. In fact, thanks
to pods, it is possible to execute multiple co-located containers that
share storage and network resources, circumventing observability is-
sues even though the execution unit is not the same.

4.6 usage scenarios

This section demonstrates the application of probe deployment pat-
terns to three realistic usage scenarios that involve different technolo-
gies, software architectures, and monitoring requirements. In particu-
lar, I provide (i) a scenario for a VM-based microservice application,
(ii) a scenario for a microservice application running on top of a Ku-
bernetes cluster, and (iii) a scenario for serverless backend functions
operated with the OpenFaaS platform.

I �rst describe the application architecture, the technology stack,
and the monitoring requirements for each scenario. Second, I dis-
cuss how patterns are selected based on monitoring requirements and
probe deployment best practices. I also describe how the selected pat-
terns would be impacted by an increase in the number of the collected
indicators, the number of target instances, and the number of users
interested in the collected data. Finally, I quantitatively evaluate the se-
lected probe deployment patterns by collecting the CPU (%), memory
(MiB), and network I/O (MiB) consumption for an increasing number
of target instances, mimicking real-life situations that are faced in op-
eration. I sample resource-related metrics every 10 seconds, repeating
the experiment 3 times for 10 minutes to collect stable results, obtain-
ing a total of about 180samples.

The experimental material containing both the code to reproduce
the experiment and the collected data is publicly available [ 243]. In
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the chapter, I report a selection of the plots, the complete set of plots
is available in Appendix A.

4.6.1 Monitoring a VM-based Microservice Application

scenario description A company operates an e-commerce ap-
plication composed of 11 microservices and a Redis database (e.g., On-
line Boutique [ 107]). For each service instance, the engineers spin up
a VM following the Service-as-a-VM deployment pattern [ 198]. The
payment, currency, and advertisement services are outsourced to an
external provider that does not allow direct access to the service plat-
form. Moreover, the company has a strong knowledge about Elastic
Stack [31], since this monitoring service is used in several other com-
pany products.

The outsourced services expose indicators using the Prometheus for-
mat (i.e., running the node exporter [ 194]), so the engineers need to
collect these indicators to obtain insights about the behavior of the out-
sourced service instances. In addition, they need to monitor the Redis
database and some infrastructure indicators (e.g., CPU and memory
consumption, �lesystem usage) for the VMs they are responsible for.

applying the probe deployment patterns This scenario can
be effectively addressed with two patterns: the Shared-T� P� pattern
and the Internal-T1P� pattern. The Shared-T� P� pattern can be used to
monitor inaccessible service instances, consistently with best practice
BP-2. While the Internal-T1P� pattern can be used to monitor the ser-
vices running on their own VMs according to best practice BP- 5. The
probes can be implemented as Metricbeat [33] probe instances and
can be con�gured to save data in the already available Elasticsearch
cluster, resulting in the following deployment:

• Shared-T� P� pattern: it consists of a VM hosting a Metricbeat probe
instance con�gured with the Prometheus module to collect the in-
dicators exposed by the node exporters of the three outsourced ser-
vices.

• Internal-T1P� pattern:

– for each VM running application services, it consists of a Met-
ricbeat instance con�gured with the system module to monitor
CPU load, memory, and �lesystem.

– for each of the Redis database replicas, it consists of a Met-
ricbeat instance con�gured with (i) the Redis module to collect
tailored Redis indicators; and (ii) the system module to moni-
tor CPU load, memory, and �lesystem.

scaling impact
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• Increasing Indicators: dealing with an increasing number of indi-
cators requires the recon�guration of the Metricbeat probe in-
stances, activating new modules, or deploying new probes in
the case the indicators to collect are not provided by any of the
already deployed modules. Considering that both the patterns
can hold multiple probes, no new holders have to be created to
accommodate additional probe instances.

• Increasing Targets: increasing the number of targets requires to:
(i) recon�gure the Metricbeat probe in the Shared-T� P� holder in
the case new instances of the outsourced services are deployed;
(ii) run a Metricbeat instance within any new VM they spin up
to scale the internal services or the Redis database.

• Increasing Users: increasing the number of users accessing the
monitoring system and interested in collected data do not re-
quire any new holders or probe instances because both the se-
lected patterns allow sharing of resources among users.

(a) (b)

(c)

Figure 4.5: Shared-T� P� pattern holder network I/O consumption and
Internal-T 1P� pattern network output consumption with respect
to an increasing number of payment service and recommendation
service replicas, respectively.

quantitative evaluation for increasing target instances
I exploit the implementation of this scenario to collect resource-related
metrics for an increasing number of target instances, measuring the
overhead introduced by the two implemented patterns. I increment
both the number of paymentand recommendationservice replicas up to
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16 to observe the impact on the Shared-T� P� and Internal-T 1P� pat-
terns. All the other services are deployed with a single replica. Please
note that in the case of the holder implementing the Shared-T � P� pat-
tern, it is simultaneously collecting indicators from a single replica of
the currency, a single replica of the advertisementservice, and all the
paymentservice replicas deployed during the experiment.

The collected data for the holder implementing the Shared-T � P� pat-
tern revealed CPU consumption is negligible (less than 1%), thus an
increasing number of targets does not impact on CPU. Memory con-
sumption was below 491.5 MiB in all the runs, and it is also not im-
pacted by an increasing number of targets. Not surprisingly network
I/O consumption is affected by an increasing number of targets (up
to 13.9/ 87.0 MiB) due to the network traf�c caused by the probes both
scraping the indicator values from the targets, and then pushing them
to the Elasticsearch instance for storage. Figure4.5a and Figure 4.5b
show the linear increment trend for an increasing number of payment
service replicas.

When the number of recommendationservice replicas is increased, no
holder is added to the system since the holder matches with the target
holder for the Internal-T 1P� pattern. Thus the overhead in terms of
CPU and memory consumption is limited to the resource consump-
tion of the probe, which is negligible compared to the resources al-
ready consumed by the target. Network output consumption is in-
stead affected by an increasing number of target instances due to
the cumulative amount of data transferred by the probes contained
in the target holders to the Elasticsearch instance (up to 18.2 MiB). Fig-
ure 4.5c shows the linear increment trend for an increasing number of
recommendationservice replicas.

The trends observed in this scenario are indeed consistent with
those obtained by the controlled evaluation reported in Section 4.4
for both the implemented patterns.

4.6.2 Monitoring a microservice application running on Kubernetes

scenario description A company operates the same applica-
tion described in the previous usage scenario on top of a Kubernetes
cluster. This time the company fully developed the application in-
house. The company has a dedicated team for managing database
infrastructure and several service development teams, with a strong
knowledge about both Prometheus [ 26] and the application services.

In this case, the service development teams want to monitor HTTP
and gRPC indicators for their application services, and some speci�c
indicators for the Redis database. However, the requirements for mon-
itoring Redis are different between the database ops team and the
service development teams (e.g., collected indicators and frequency).
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applying probe deployment patterns This scenario can be
well addressed with the Shared-T� P1 pattern, to monitor the applica-
tion services and gather indicators from multiple instances according
to best practice BP-2, and the Reserved-T� P1 pattern, to monitor the
Redis database replicas using a different holder to meet the con�ict-
ing requirements of the teams according to best practice BP-4. The
monitoring solution exploits an already available Prometheus cluster
as data storage, and Prometheus exporters [25] as probe instance tech-
nology, resulting in the following deployment:

• Shared-T� P1 pattern: a Kubernetes Pod hosting a Prometheus Black-
box exporter [193] instance to collect HTTP and gRPC indicators
from the application services.

• Reserved-T� P1 pattern: two Kubernetes Pods hosting the Prometheus
Redis exporter [100] instance con�gured to collect Redis indicators
from all the available replicas for the database ops team and the
service development teams, respectively.

scaling impact

• Increasing Indicators: increasing the number of indicators requires
the engineers to recon�gure the probe instances activating new mod-
ules (e.g., TCP-level module for the Blackbox exporter), or deploy-
ing new holders hosting the probe instances for indicators that are
not already collected by any of the deployed probes.

• Increasing Targets: No actions are required for new service instances
since both the exporters can be con�gured to collect indicators from
annotated targets (i.e., through Kubernetes annotations and
Prometheus service discovery con�guration).

• Increasing Users: increasing the number of users accessing the mon-
itoring system and interested in the collected data may require cre-
ating new holders and instances, as for the database ops and the
service development teams, because theReserved-T� P1 pattern priv-
ileges isolation.

quantitative evaluation for increasing target instances
I incremented the number of cart service replicas and Redis replicas
up to 16 to observe the impact on the Shared-T� P1 and Reserved-T� P1
patterns, respectively. All the other services are deployed with a single
replica.

I observed a negligible increase (less than1%) in CPU consumption.
Memory consumption does not exceed 340 MiB for any of the two
patterns, and it is not impacted by an increased number of targets.
Network input consumption is negligible for the Shared-T � P1 pattern
holder (i.e., less than 1 MiB), while on average network output con-
sumption is slightly higher in terms of absolute values, reaching up to
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(a) (b)

(c) (d)

Figure 4.6: Network I/O consumption of the Shared-T � P1 and Reserved-
T� P1 pattern holders with respect to an increasing number of cart
service and Redis replicas, respectively.

2.18MiB. Results are different in terms of absolute values for Reserved-
T� P1 pattern. In particular the network input consumption is higher
compared to the output (i.e., up to 9.3/ 3.4 MiB), a scenario explained
by the probe speci�c implementation. In fact, the Redis exporter has to
query the Redis database instances to obtain the indicator values, and
than it simply exposes the values as a web endpoint to Prometheus.
However, both the patterns scales linearly with an increasing number
of targets as shown in Figure 4.6.

Also in this usage scenario, it is possible to observe trends consis-
tent with the ones obtained in the controlled evaluation reported in
Section 4.4.

4.6.3 Monitoring serverless backend functions

scenario description A company serves a serverless-based socks
e-commerce application composed of 12 functions, 6 databases, and
a message queue (e.g., SockShop Serverless [101]) exploiting Open-
FaaS [183] and Kubernetes. The engineers adopt the FaaS model to
exploit auto-scaling policies and obtain a �exible number of function
replicas in response to the volatile workload that can affect their appli-
cation (e.g., peaks of purchases during Black Friday, intense browsing
and cart usage before Christmas, low demand in summer). They are
particularly interested in monitoring the backend functions in terms of
CPU and RAM usage in order to tweak auto-scaling policies and the
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cluster nodes size. Moreover, the company has a strong knowledge on
using Prometheus to monitor the Kubernetes cluster nodes and the
application services.

applying probe deployment patterns It is possible to ad-
dress this scenario by implementing the Shared-T� P1 pattern, to mon-
itor multiple targets (i.e., functions) together, enabling less effort and
resource usage in response to an increasing number of function repli-
cas according to best practice BP-2.

The monitoring solution exploits the Prometheus cluster provided
by OpenFaaS as data storage, and cAdvisor [102] as probe instance
technology. The resulting deployment consists of a Kubernetes Dae-
monSet (i.e., a Kubernetes Pod for each of the cluster nodes) host-
ing a cAdvisor instance to collect the needed function indicators at
container-level.

scaling impact

• Increasing Indicators: increasing the number of indicators requires
the recon�guration of the cAdvisor probe instances activating new
indicators, or deploying new holders and instances in the case the
indicators to collect are not provided by cAdvisor.

• Increasing Targets: increasing the number of targets does not require
any change since cAdvisor is able to automatically detect new tar-
gets (i.e., container functions running on the Kubernetes node).

• Increasing Users: increasing the number of users accessing the mon-
itoring system and interested in the collected data does not require
any new holders or probe instances since the selected pattern sup-
ports sharing of resources.

(a) (b)

Figure 4.7: Network I/O consumption of the Shared-T � P1 pattern holders
with respect to an increasing number of carts-get function repli-
cas.

quantitative evaluation for increasing target instances
I collect resource-related metrics for an increasing number of carts-get
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function instances (i.e., up to 16) to measure the overhead introduced
by Shared-T� P1 pattern. All the other functions are deployed with a
single replica.

Collected data revealed CPU consumption is negligible (less than
1%). Memory consumption does not exceed 320MiB, and it is not im-
pacted by an increasing number of targets. Network input consump-
tion is negligible ( i.e., less than 0.2 MiB), as shown in Figure 4.7a,
while on average network output consumption reaches 3.1 MiB. Net-
work output scales linearly with an increasing number of function
replicas, as shown in Figure 4.7b.

As for the previous scenarios, the observed trends for the Shared-
T� P1 pattern are consistent with the results obtained with the con-
trolled evaluation reported in Section 4.4.

4.7 discussion

The proposed patterns address the knowledge gap regarding how to
ef�ciently distribute the probes in order to respect and optimize both
technological and operators' requirements, dealing with the multi-
tenancy and the diverse number of technologies that characterize the
cloud continuum environments. The results obtained with the empiri-
cal evaluation show the targets have negligible resource consumption
(e.g., less than1% CPU usage), while the probe holder consumption
is mainly signi�cant in relation to memory consumption, reaching up
to 10 GiB in the performed experiments. The �ndings suggest that
reusing probes and holders among users can generally enhance ef-
�ciency and scalability when direct access to the monitored target
is not an option due to technical limitations. In particular, the use
of multi-target ( T� ) probe deployment patterns (i.e., Reserved-T� P� ,
Shared-T� P� , Partially-shared-T� P� , Reserved-T� P1, Shared-T� P1) is
advised when many different targets or target instances have to be
monitored. Overall, since the overhead is mostly due to the holders,
reducing their number increase the ef�ciency, making Shared-T � P� ,
Partially-shared-T � P� , and Internal-T 1P� the more scalable patterns
for applications based on system-oriented virtualization, with Shared-
T1P� highly recommended in situations where the number of targets
remains low, while the number of interested users increases. On the
other hand, the Shared-T� P1 pattern is the most scalable pattern in the
context of application-oriented virtualization, with Shared-T 1P1 as a
solid alternative option when there are few targets to be monitored but
a potentially high number of users, and Reserved-T � P1 yet another op-
tion when several targets must be monitored for a few users only. The
best practices distilled by the results may help engineers in designing
and con�guring their monitoring systems, and they generate a set of
reusable solutions that people can refer to. Finally, the showcase of the
application of certain patterns through three practical usage scenarios
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cross-validates the �ndings and give evidence of the concrete outcome
of the work.

The main limitation of this study concerns the relevant features and
constraints used to de�ne the presented patterns. Although they were
extracted from both white and gray literature, as well as my personal
experience with monitoring systems in cloud environments, a system-
atic protocol for reviewing and analyzing the literature references is
missing. This might have introduced both conscious and unconscious
biases in the pattern de�nitions.
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P E E R - T O - P E E R S E L F - A D A P T I V E M O N I T O R I N G I N
T H E F O G

This chapter presents a self-adaptive Peer-to-Peer (P2P) monitoring
system for the Fog that incorporates adaptive behaviors based on the
MAPE-K feedback loop [ 140]. The monitoring system abstracts moni-
tored indicators by using logical states that represent their trend over
time and, if necessary, activates countermeasures based on such indi-
cator trends. Countermeasures are de�ned by means of a lightweight
rule-based system that is directly embedded in the peers. The empiri-
cal evaluation compares the accuracy and effectiveness of the adaptive
version of the monitoring system with the non-adaptive version. The
results indicate that adaptive behaviors can increase the accuracy of
collected data and save both network and power consumption, but at
the cost of higher memory consumption. The contribution reported in
this chapter was presented at the 17th Symposium on Software Engi-
neering for Adaptive and Self-Managing Systems (SEAMS) and pub-
lished in its proceedings with the title “Towards Self-Adaptive Peer-
to-Peer Monitoring for Fog Environments” [ 65].

The chapter is organized as follows. Section 5.1 introduces the P2P
monitoring and provides background information. Section 5.2 presents
the proposed self-adaptive P2P monitoring system for fog environ-
ments by de�ning its internal functioning for each phase of the MAPE-
K feedback loop. Section 5.3 presents the empirical evaluation. Finally,
Section 5.4 concludes the chapter with closing remarks.

5.1 p2p monitoring

A P2P architecture consists of a network of autonomous
self-organizing entities (i.e., peers) that employ distributed resources
to accomplish a common task in a decentralized fashion, thus, without
relying on central services [172, 186, 225].

The P2P architecture provides the applications with the capability to
deal with some of the highly dynamic traits of fog computing, increas-
ing the tolerance to both network failures and nodes joining and leav-
ing the system [1, 64, 91]. Furthermore, it provides autonomy, scale,
and robustness, which are critical capabilities to operate in such an
environment [ 236]. Finally, P2P architectures make monitoring data
available across the network without relying on a single centralized
component, but rather on a set of peers constituting a self-organized
overlay network. This is particularly bene�cial when the connectivity
to the Cloud is limited, such as during disasters or severe network
outages [263].

93
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This work uses the two-tier hierarchical P 2P monitoring architec-
ture [91, 145, 262] proposed by Forti et al. [91] that is shown in Fig-
ure 5.1, with Followersat the lower tier and Leadersat the higher tier.

The bene�t of employing such an architecture in the Fog is twofold.
First, it implies different roles for peers running in different tiers, de-
pending on the available resources. Followers are designed to collect
data by running on the edge, within nodes and devices with limited
resources. Leaders are designed to consume more resources to store
the data received from the Followers while creating and operating the
P2P network. Followers are connected to a single Leader and work in
a classic client-server fashion [262]. These distinct roles can be used
to opportunistically exploit the available resources, including the pos-
sibility to adapt to changing conditions (e.g., bandwidth or resource
degradation) through dynamic peer promotion/demotion.

Second, it helps reducing the network overhead by limiting the
amount of data transferred between the peers. Actually, Followers can
forward data to their Leader only, leaving the thinner upper-tier with
the responsibility of building a global state of the monitored resources
by exchanging monitoring data among Leaders.

I refer to FogMon as reference implementation for this architec-
ture [91]. In FogMon, the Followers monitor their own deployment
node by probing hardware resources (i.e., CPU, memory, and hard
disk) and collecting end-to-end network QoS data (i.e., latency and
bandwidth). Data is collected and sent to Leader nodes at a �xed rate.
To limit network overhead, Followers send differential updates, that
is, they only send data whose average or variance differ more than a
sensitivity threshold (i.e., 10% by default) from the last value sent [ 91].
Leaders periodically aggregate monitoring data received from Follow-
ers, and share the aggregated data with the other Leaders through a
gossip protocol [ 130].

Figure 5.1: Hierarchical P2P monitoring architecture proposed by Forti et
al. [91].
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5.2 adaptivemon

This section describes how P2P monitoring can be enhanced with
self-adaptive capabilities to both make a better use of the available re-
sources and enable the capability to promptly react to run-time events.
I refer to the self-adaptive version of the P 2P monitoring solution
presented in this thesis as Adaptive Mon , in contrast with the non-
adaptive version that I refer to as Static Mon .

Figure 5.2: Monitor, Analyze, Plan, Execute, and Knowledge (MAPE-K) loop
as proposed by Kephart and Chess [140].

Self-Adaptive Application (De�nition 5.1). A self-adaptive application
(SAA) is an application capable of modifying itself or other connected
resources in response to a continuously changing operational environ-
ment [48, 205]. A SAA consists of a pair (AL,MR), where AL is the
adaptation logic, and MR represents the managed resources[147], which
are a group of resources, such as robotics, vehicles, and generic hard-
ware with software, that the SAA can control [ 147]. The adaptation
logic is composed by all those items responsible for monitoring the
environment (M), analyzing the data (A), planning (P), and executing
the adaptation (E).

This basic feedback framework proposed by Kephart and Chess [140]
is named MAPE loop, and it is often extended by a knowledge com-
ponent (K) responsible for managing content (e.g., monitoring val-
ues and adaptation policies). A daptive Mon enriches the capabilities
of the monitoring system by embedding the MAPE-K control frame-
work [ 140], shown in Figure 5.2, within each peer.

The monitor component of the MAPE-K loop collects data about a
managed resource through sensors. In this case, this is achieved by
the monitoring probes running within the peers. The analyzeand plan
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steps analyze the collected data and plan for the countermeasures to
be activated. Finally, the executestep exploits effectorsto run the se-
lected countermeasures. In this case, the countermeasures recon�gure
the monitoring systems according to the observations collected from
the managed resource. Theknowledgeabout the managed resource is
shared among all the components. Note that the MAPE-K loop runs
withing each peer, independently of the overall architecture, which
gives peers the capability to run self-adaptive behaviors regardless of
their role within the architecture.

In the following, I describe how the components of the MAPE-K
loop embedded in the peers are de�ned, and present two countermea-
sures that have been experienced in the prototype implementation,
namely (i) Change Rate, which adjusts the rate Followers sample and
forward data to their Leader, and (ii) Select Indicators, which dynami-
cally activates and deactivates the set of monitored indicators.

5.2.1 Knowledge

The knowledge exploited in A daptive Mon consists of the moni-
tored indicators, which represent the raw knowledge about the mon-
itored resource, and the associated logical states, which capture the
semantics of the values of an indicator. To this end, I introduce here
below a formal de�nition of what an indicator value, a time series,
and the logical states are.

Indicator Value (De�nition 5.2). Given a monitored indicator I and a
domain D of values for I , vI

t 2 D denotes the value of the indicator I
at time t .

Time Series (De�nition 5.3). A sequence of values for a same indica-
tor generates a time series, that is,vI

i , vI
i + 1 , : : : , vI

k is a time series for
indicator I .

Logical States (De�nition 5.4). Given a monitored indicator I and a �-
nite set of abstract statesS, SI

t � S represents a potentially empty set
of logical states associated with the indicator I at time t . The sequence
of states setsSI

i ,SI
i + 1 , : : : ,SI

k associated with an indicator also forms
a time series. For sake of notation, I is omitted when the indicator is
obvious from the context.

While time series of values simply re�ect the sequence of probed
samples, the corresponding time series of logical states captures the
state of an indicator at a speci�c time, revealing information about the
monitored resource. For instance, an indicator might be unstable, too
high, or within a normal range of values. These states can be derived
from the time series of raw values and used to �re countermeasures,
as explained below.

I de�ned a set of logical states useful for the presented countermea-
sures, but this set can be clearly extended depending on the coun-
termeasures to be implemented. Table 5.1 summarizes the rigorous
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Indicator State De�nition

Type

Categorical
stable st = stable () vt = vt - x 8x 2 [1, k]

unstable st = unstable () 9 x 2 [1, k] j vt 6= vt - x

Numerical

stable
st = stable () jStab t j > p � k ^ j vt - vt - 1 j 6 � max ,

Stab t = fjvx - vx - 1 j 6 � max gx 2 [1,k ]

unstable
st = unstable () jStab t j < p � k _ j vt - vt - 1 j > � max ,

Stab t = fjvx - vx - 1 j < � max gx 2 [1,k ]

too high
st = too high () jToo_High t j > p � k ^ vt 2 I too_high,

Too_High t = fvx 2 I too_highgx 2 [0,k ]

high
st = high () jHigh t j > p � k ^ vt 2 Ihigh,

High t = fvx 2 Ihighgx 2 [0,k ]

normal
st = normal () jNormal t j > p � k ^ vt 2 Inormal,

Normal t = fvx 2 Inormalgx 2 [0,k ]

low
st = low () jLow t j > p � k ^ vt 2 I low,

Low t = fvx 2 I lowgx 2 [0,k ]

too low
st = too low () jToo_Low t j > p � k ^ vt 2 I too_low,

Too_Low t = fvx 2 I too_lowgx 2 [0,k ]

Symbols De�nition

jj Cardinality of a set.

k Number of samples considered in the recent history of an indicator.

p 2 [0,1] Tolerance parameter that indicates the percentage ofk samples.

It must satisfy the constraint that characterizes the state de�nition.

� max Maximum delta allowed to consider an indicator as stable.

I too_high= [ too_high,+ 1 ) Interval of indicator values considered too high.

Ihigh = [ high, too_high) Interval of indicator values considered high.

Inormal = ( low,high) Interval of indicator values considered normal.

I low = ( too_low, low] Interval of indicator values considered low.

I too_low= (- 1 , too_low] Interval of indicator values considered too low.

Table 5.1: States de�nitions for categorical and numerical indicators.

de�nitions of the logical states, while they are discussed informally
below.

In case the domain of a metric is categorical, I de�ned two logical
states:stableand unstable. A categorical indicator is stable at a time t
if its value has been constant in the recent history of the execution,
otherwise it is unstable.

In case the domain of an indicator is numerical, I de�ned seven states:
stable, unstable, normal, high, low, too high, too low. A numerical indicator
is stable at a time t if its value is close to its value at time t - 1, and
the indicator had small variations in the recent history of the execu-
tion. Similarly, a numerical indicator is unstable at a time t if its value
differs signi�cantly from the value at time t - 1, and the indicator had
signi�cant variations in the recent history of the execution.
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The remaining �ve states detect values that steadily stay in a given
region of the domain. In particular, an indicator is too high or high if
its value is above given thresholds and the indicator has been mostly
above those thresholds in its recent execution history. Similarly, an in-
dicator is too low or low if its value is below given thresholds and
the indicator has been mostly below those thresholds in its recent ex-
ecution history. Finally, an indicator is normal if its value is in the
normal range, and the indicator has been mostly normal in its recent
history of the execution. The thresholds for the various levels are de-
�ned on a per-indicator basis since they depend on both the indicator
and the application domain. For instance, threshold values for mem-
ory and CPU consumption are clearly different, and threshold values
of memory consumption for a memory-intensive application and a
lightweight application are also different.

The set of the collected indicators, along with their raw values and
state values represent the knowledge available to Adaptive Mon .

5.2.2 Monitor

Monitoring is rather natural and inexpensive in A daptive Mon since
Followers collect data from a monitored resource by construction, and
thus the same data sent to Leaders is also available to the MAPE-K
loop. If needed, extra indicators can be collected for the only purpose
of controlling the adaptive behavior of the peers, even if not needed
by the applications accessing the data produced by the monitoring
system.

The monitoring behavior is controlled by a sampling rateparameter
that determines how frequently values vI

t are collected and forwarded
to Leader peers.

5.2.3 Analyze

The analysis mainly consists of a data processing routine that con-
verts the raw values collected for every indicator into its logical state
representation. In particular, the analysis process accesses the collected
values and applies the de�nitions reported in Table 5.1 to generate a
time series of logical states for every monitored indicator.

Figure 5.3 visually exempli�es the logical states that can be associ-
ated with a time series, according to the de�nitions in Table 5.1. The
logical states are represented as annotations on theX-axis. Note that
in the example, depending on the shape of the curve, a same point
may have 0, 1 or up to 2 logical states associated.
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t

vI

too low

too high

low

high

stable
high

unstable
too low normal

stable unstable

Figure 5.3: An example of the computed states with respect to the time series
values at different time instants.

5.2.4 Plan

Adaptive Mon embeds the lightweight CLIPS expert system [ 199],
which is responsible for determining the countermeasures that have
to activate according to the accumulated knowledge based on a set of
adaptation rules.

An adaptation rule consists of two parts: an antecedent, that is a
set of conditions on the logical states of the indicators that must be
satis�ed to �re the rule, and a consequent, that is a countermeasure to
be executed.

Functions that can be used to evaluate the logical states of the indica-
tors are implemented by extending CLIPS, such as functions that can
check speci�c conditions on the last few samples of an indicator. These
functions can be used as part of the adaptation rules speci�ed using
the CLIPS Domain-Speci�c Language (DSL). For instance, Listing 5.1
shows an adaptation rule de�ned to �re the Change Ratecountermea-
sure when the CPU consumption has a stable trend. The symbol =>

separates the antecedent and the consequent of the rule.
It is worth noting that the example adaptation rule uses some of

the functions I de�ned in A daptive Mon . It checks if the CPU con-
sumption is in a stable state with the is _indicator _in _state func-
tion and it computes the new rate for such indicator by executing the
compute _indicator _rate function. The new rate value is in turn used,
along with other variables retrieved from the knowledge base, by the
change _rate function that implements the Change Ratecountermea-
sure.

During the plan phase, A daptive Mon uses the CLIPS expert system
to take adaptation decisions, that is, CLIPS evaluates the antecedents
of every rule and inserts the countermeasures activated by the conse-
quent of the �red rules in a priority-based queue. Also CLIPS handles
the activation of the rules by preventing their simultaneous execution.
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To demonstrate the self-adaptive capabilities of A daptive Mon , two
speci�c countermeasures are de�ned, namely, Select Indicatorsand
Change Rate.

The Select Indicatorscountermeasure can change the set of monitored
indicators, either activating or deactivating some of them. The Change
Ratecountermeasure changes the rate used to sample and send data
to Leaders based on the current trends of the indicators. The goal of
the countermeasure is to gradually increase (decrease) the rate while
the monitored indicator is less (more) stable. In particular, the coun-
termeasure updates the sampling rate of the indicator I within pre-
determined boundaries proportionally to the number of consecutive
samples with the same logical state out of the last k samples collected.

These countermeasures are exploited in the context of several adap-
tation rules. For instance, two rules that can enable/disable monitor-
ing for every indicator different from power consumption if the power
is above/below a given threshold are de�ned, to limit the chance a
battery-powered device is abruptly shut down. In addition, I de�ned
two rules to adapt the sampling and forwarding rate of CPU indicator
to its trend.

Listing 5.1: An example rule that uses the Change Ratecountermeasure writ-
ten with the CLIPS DSL. The symbol => separates the antecedent
and the consequent of the rule. The salience value represents
the rule priority. The bind operator assigns the result of a func-
tion call to a variable.

(defrule adapt _cpu _rate _when_stable (declare (salience 10))

(is _indicator _in _state (indicator cpu) (state stable))

(has _parameter (rate ?current _rate))

=>

(bind ?num _of _states (count _indicator _states _in "cpu" "stable"))

(change _rate "cpu" (compute _indicator _rate "stable" ?num _of _states ?

current _rate))

)

5.2.5 Execute

In this phase, Adaptive Mon merely executes countermeasures by
running their implementation according to their priority of activation.
The actual countermeasures I de�ned act on the con�guration of the
peers adapting their behavior to the evolution of the indicators. The
actuation interface is straightforward since a peer can directly access
the internal variables that govern its behavior.

5.3 empirical evaluation

In this section, I quantitatively evaluate the effectiveness (monitor-
ing accuracy) and the ef�ciency (resource consumption) of A daptive -
Mon . I discuss the sub-research questions (Section5.3.1), the imple-



5.3 empirical evaluation 101

mented prototype (Section 5.3.2), the experimental setup used to per-
form the experiments (Section 5.3.3), the results of the experiments
to answer the sub-research questions (Section5.3.4 and Section 5.3.5),
and the threats to validity of the evaluation (Section 5.3.6).

5.3.1 Research Questions

This work responds to RQ 3 and it is assessed with the following two
sub-research questions that investigate its effectiveness (i.e., the moni-
toring accuracy) and its ef�ciency (i.e., the resource consumption).
RQ3.1 - Monitoring Accuracy : Can AdaptiveMon improve the mon-
itoring accuracy of StaticMon? This research question investigates
whether the Change Ratepolicy of A daptive Mon can provide a better
monitoring accuracy than Static Mon , considering multiple represen-
tative trends of the monitored indicators.
RQ3.2 - Resource Consumption: Can AdaptiveMon save node
resources compared to StaticMon? This research question studies
whether the adaptive behavior of A daptive Mon reduces resource uti-
lization compared to Static Mon . The impact of the Change Rateand
Select Indicatorscountermeasures on resource consumption are assessed,
both individually and jointly.

5.3.2 Prototype

Adaptive Mon is implemented by extending the open-source C++
FogMon P2P monitoring tool [ 91] along multiple dimensions.

In particular, (i) the structure of the peer's local storage (based on
the SQLite1 database) has been extended to store the logical states
used to classify of the monitored indicators; (ii) the CLIPS rule-based
expert system [199] has been embedded to support the implementa-
tion of adaptation rules; (iii) the peers have been extended to incor-
porate adaptive behaviors; (iv) helper functions that can be used as
part of the adaptation rules to interact with the knowledge have been
added; and (v) the Select Indicatorsand Change Ratecountermeasures
have been implemented to dynamically change the set of the collected
indicators and the sampling rate parameters. A daptive Mon does not
extend the set of monitored indicators, since the indicators already col-
lected by FogMon to monitor the environment were already suf�cient
to control the activation of the proposed countermeasures.

The resulting prototype is publicly available with an open-source li-
cense athttps://github.com/veracoo/FogMon/tree/adaptive-fogmon .

1 https://www.sqlite.org
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5.3.3 Experimental Setup

All the experiments are executed on a Linux virtual machine (Intel
i7-9700CPU @3.00GHz x 4, 4 GB RAM, 13 GB SSD, Ubuntu 20.04 LTS
64-bit, Docker v 20.10.0). All the peers run inside dedicated Docker con-
tainers, deployed on the same host, and communicate over a bridged
network. The computational and network resources of the container
executing the Follower agent are limited to reproduce a scenario in-
volving resource-constrained and battery-powered devices. Reference
devices are single-board computers (SBC) and micro-controller units
(MCU) [ 79, 134, 211]; thus, container resources are upper-bounded at
5% of one CPU core,20 MB of RAM, and 1 Mbps of bandwidth.

I measure accuracy and resource consumption at the level of indi-
vidual peers to obtain results that do not depend on the number of co-
deployed peers. Thus, each experiment involves one Leader and one
Follower (of A daptive Mon or Static Mon , respectively). Cumulative
resource consumption for multiple nodes can be derived by scaling
the results proportionally.

5.3.4 RQ3.1 - Monitoring Accuracy

This RQ investigates the accuracy of the collected data for both
Adaptive Mon and Static Mon considering synthetic indicators fol-
lowing different representative trends. More in detail, a probe report-
ing readings from such indicators has been implemented. This allowed
us to test the correctness of Adaptive Mon 's adaptive behavior and
verify its effectiveness. I de�ned 5 scenarios (also referred to as time
series in the following) mimicking different key cases for an indicator
conventionally ranging between 0 and 1:

1. stableis a time series representing a regular and stable, almost con-
stant, trend. It is generated by alternating two close values ( 0.8 and
0.83), each of which remains stable for 14 seconds;

2. unstableis a time series that represents an irregular and erratic indi-
cator with �uctuating values in the range [0.5,0.85]; a real-life trace
on CPU utilization was used as a base.

3. stable-unstableis a time series that alternates phases of stability with
phases of instability, with each phase lasting for about 150seconds;

4. randomis a time series with chaotic and totally unpredictable val-
ues; it is generated by a sequence of random values uniformly dis-
tributed in the range [0,1];

5. spiky is a time series with mostly regular values interleaved with
rare spikes; it is generated by alternating stable values for 28 sec-
onds, unstable values for 12 seconds, and then a spike value for 4
seconds.
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Every time series has a duration of 10 minutes, except for the stable-
unstable time series that lasts 20 minutes since it is a combination of
the stable and unstable time series.

Static Mon and Adaptive Mon 's Follower peers are con�gured to
forward the average of the last 20 measurements to their respective
Leaders at each probing point. The Static Mon Follower probes a new
value from the monitored metric at a �xed interval: every 30 seconds.
Adaptive Mon exploits the Change Ratecountermeasure to adjust the
sampling rate to handle the variability of the monitored indicator. The
hypothesis to test is that this can lead to improved monitoring accu-
racy because the Leader should have access to a higher number of
samples when the monitored indicator is highly dynamic and fewer
samples in the presence of more stable indicators.

I investigate the capability of the monitoring system to reconstruct
the shape of the monitored indicators at the level of both the Follower,
which directly samples the indicator, and the Leader, which collects a
sequence of average values. TheRoot Mean Square Error(RMSE), which
measures the differences between the original and the reconstructed
indicator, is used as the primary quality metric. A smarter sampling
strategy should achieve a lesser error. To appreciate the activity of
the peers in relation to the monitored indicator, I also gauge the mes-
sages/secondratio, that is, the ratio of the messages sent by the Follower
to the Leader. Finally, for the spiky time series, I also computed the per-
centage of detected spikes, which measures the capability of a monitoring
technique to spot rare but signi�cant events.

results of rq3 .1 Table 5.2 summarizes the results obtained by
both A daptive Mon and Static Mon for the considered 5 scenarios.
The last two columns show the absolute (Abs) and relative (Rel) devi-
ations between the Adaptive Mon and Static Mon results for any of
the presented quality indicators. Green (Red, respectively) cells indi-
cate a better (worst) result obtained by A daptive Mon compared to the
Static Mon baseline. It is possible to observe that Adaptive Mon esti-
mates the observed indicator more accurately than Static Mon at both
levels of the Leader-Followers hierarchy in 4 out 5 scenarios (viz. stable,
unstable, stable-unstable, random). The reduction in the RMSE reached
33.6% at Follower level ( unstablescenario) and 82.7% at Leader level
(randomscenario). A higher accuracy, however, comes at the cost of a
higher number of messages exchanged in the 4 scenarios where the
monitored indicator is more erratic (nearly 5 times more than Stat -
ic Mon in the worst case), and fewer messages produced when the
indicator is stable (saving nearly one third of the messages).

Figures 5.4 and 5.5 exemplify the results of the comparison between
Adaptive Mon and Static Mon for the stable-unstablescenario. It is
possible to observe that the time series reconstructed by Adaptive -
Mon (solid orange line) is closer to the reference indicator (dotted
green line) than the Static Mon baseline (dashed blue line). It is also
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Scenario Quality Metric AdaptiveMon StaticMon Abs Rel

RMSE (Follower) 0.019 0.020 - 0.181 - 5.0 %

RMSE (Leader) 6.696 8.200 - 1.504 - 18.3 %Stable

Messages/second 0.027m/s 0.040m/s - 0.013 - 32.5 %

RMSE (Follower) 0.087 0.131 - 0.044 - 33.6 %

RMSE (Leader) 2.428 5.033 - 2.605 - 51.7 %Unstable

Messages/second 0.217m/s 0.037m/s + 0.180 + 486.5 %

RMSE (Follower) 0.108 0.122 - 0.014 - 11.5 %

RMSE (Leader) 5.269 6.546 - 1.277 - 19.5 %Stable-unstable

Messages/second 0.103m/s 0.035m/s + 0.068 + 194.3 %

RMSE (Follower) 0.235 0.321 - 0.086 - 26.8 %

RMSE (Leader) 1.899 10.683 - 8.784 - 82.7 %Random

Messages/second 0.217m/s 0.037m/s + 0.180 + 486.5 %

RMSE (Follower) 0.092 0.087 + 0.005 + 5.8 %

RMSE (Leader) 5.713 6.251 - 0.538 - 8.6 %

Messages/second 0.062m/s 0.037m/s + 0.025 + 67.6 %Spiky

Detected spikes 30 % 0 +30 % -

Table 5.2: Accuracy of A daptive Mon and Static Mon for the 5 scenarios.
Green (Red) cells indicate a better (worse) result obtained by Adap-
tive Mon compared to the Static Mon .

interesting to notice how the rapid change in the observed trend is not
immediately handled by A daptive Mon , which shows some delay in
sensing the drift and adjusting the sampling rate. In contrast, S tatic -
Mon always fails to follow the observed time series, con�rming the
importance of adaptivity in similar contexts.

Figure 5.4: Adaptive Mon and Static Mon Follower time series estimations
for the stable-unstablescenario.

The spiky scenario is the only one resulting in an increment of the
RMSE metric for the adaptive Follower ( + 5.8%). However, this incre-
ment is a consequence of the capability to (partially) follow the trend
of the indicator. In fact, the Static Mon con�guration could detect
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Figure 5.5: Adaptive Mon and Static Mon Leader time series estimations for
the stable-unstablescenario.

spikes only incidentally, while A daptive Mon could change its sam-
pling rate to increase the chance to capture them. Figure 5.6 illustrates
a representative execution of Static Mon and Adaptive Mon for the
spiky scenario, with some spikes successfully detected by Adaptive -
Mon only. Although successfully capturing some spikes, the recon-
structed time series generates a higher error compared to the �at time
series reconstructed by Static Mon . Indeed, this is a challenging sce-
nario for both approaches (rare short events are hard to detect by mon-
itoring techniques), and more work is required to design cost-effective
monitoring techniques that can accurately address spikes.

Figure 5.6: Adaptive Mon Follower time series estimation for the spiky sce-
nario. The vertical dotted grey lines indicate the sampling rate.

answer to rq3 .1 Adaptive Mon estimates the observed indica-
tor more accurately than Static Mon at both levels of the Leader-
Followers hierarchy in 4 out of 5 scenarios. The results show that
Adaptive Mon is capable of adjusting resource consumption as nec-
essary by sending more messages only when the monitored indicator
requires more precise sampling, and conserving bandwidth otherwise.
However, further investigation is required to design an effective mon-
itoring solution that can accurately detect spikes.
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5.3.5 RQ3.2 - Resource Consumption

This RQ investigates resource consumption considering the two
countermeasures currently implemented in A daptive Mon , both in
isolation and jointly. Again, S tatic Mon is used as the baseline for
the comparison.

For the experiments reported in this section, I de�ned a probe (at
the follower level only) that exploits the Docker Engine API 2 and Pow-
erTOP3 to collect the following quality metrics:

• CPU and memory consumption: the percentage of the host's CPU
and memory used.

• NET I/O (MB): the cumulative amount of data sent and received
over its network interface from the beginning of the experiment.

• PIDs: the number of processes or threads spawned by the peer.

• PW (mW): the estimated instantaneous power consumption.

The three Adaptive Mon con�gurations assessed in this RQ exploit
the two strategies de�ned in Section 5.2. Change Rateadjusts the sam-
pling and forwarding rates of all the collected indicators from 30 to
60 seconds based on the monitored values. Select Indicatorsdisables
the collection of all indicators except of power consumption if the
battery level drops below a threshold. Combined Countermeasuresuses
both strategies. I study the impact of these con�gurations, along with
the Static Mon baseline, on resource consumption: a total of four pos-
sible con�gurations are therefore considered. In each experiment, the
Follower peer is con�gured to collect the indicators from its node for
30 minutes and to apply the countermeasures at the beginning of the
execution, in such a way the impact of the countermeasures can be
accurately measured (in fact, more than 300 hundreds samples per
metric have been collected).

results of rq3 .2 Figure 5.7 shows a series of �ve box plots (one
for each quality metric) where each plot compares the four compared
con�gurations visually.

I checked the signi�cance of the differences between distributions
with the non-parametric Mann–Whitney U test [162], as it was possi-
ble to observe (via the Shapiro-Wilk test [ 213] ) that such differences
are not normally distributed. I speci�cally checked if the observed dif-
ferences between the baseline and any other con�guration are statis-
tically signi�cant and if Combined Countermeasuresis signi�cantly bet-
ter than the individual adaptations strategies ( Change Rateand Select
Indicators). I considered a signi�cance level � = 0.05, and I also com-
puted the effect size of the observed phenomenon using the Wendt's

2 https://docs.docker.com/engine/reference/commandline/stats/
3 https://github.com/fenrus 75/powertop
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(a) (b) (c)

(d) (e)

Figure 5.7: Static Mon compared with A daptive Mon countermeasures for
each of the collected quality metrics.

formula [ 256]. Table 5.3 shows the signi�cant cases only with their
corresponding effect size using the conventional categories small (less
than 0.3), medium(between 0.3 and 0.5), and large(greater than 0.5).

Only observe marginal differences in CPU consumption are observed.
In particular, differences between A daptive Mon and Static Mon are
not signi�cant, and Combined Countermeasuresintroduces signi�cant
but small differences compared to employing the other two adaptive
strategies individually.
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Quality Metric Comparison Effect Size

CPU consumption
Change Rate vs Combined Countermeasures small (0.197)

Select Indicators vs Combined Countermeasures small (0.260)

Memory consumption

Static Mon vs Select Indicators large (0.858)

Static Mon vs Change Rate large (0.993)

Static Mon vs Combined Countermeasures large (0.861)

Change Rate vs Combined Countermeasures large (0.990)

Select Indicators vs Combined Countermeasures small (0.279)

# spawned sub-processes

Static Mon vs Select Indicators large (0.980)

Static Mon vs Change Rate small (0.027)

Static Mon vs Combined Countermeasures large (0.963)

Change Rate vs Combined Countermeasures large (0.962)

Network Input

Static Mon vs Select Indicators medium (0.449)

Static Mon vs Change Rate small (0.101)

Static Mon vs Combined Countermeasures medium ( 0.483)

Change Rate vs Combined Countermeasures medium (0.431)

Select Indicators vs Combined Countermeasures small (0.145)

Network Output

Static Mon vs Select Indicators medium (0.473)

Static Mon vs Change Rate small (0.245)

Static Mon vs Combined Countermeasures large (0.521)

Change Rate vs Combined Countermeasures medium (0.460)

Select Indicators vs Combined Countermeasures small (0.203)

Battery power estimation Static Mon vs Combined Countermeasures medium ( 0.376)

Table 5.3: Statistically valid comparisons for all the quality metrics with their
associated effect size.

The memory consumption results show statistical signi�cance for
all cases with a large effect size for all comparisons, except for Select
Indicatorscompared to Combined Countermeasureswhere the effect size
is small. The impact of the adaptive strategies on the memory indi-
cator is antithetic: while it is possible to notice an increase in mem-
ory consumption of about 10% for Change Rate(compared to Static -
Mon ), memory overhead decreases to about3% when Select Indicators
or Combined Countermeasuresare used. These results can be easily ex-
plained considering that although the MAPE-K control loop increases
the amount of memory used by A daptive Mon when all probes are
active, while when these are disabled (freeing the associate resources)
the overall average memory usage decreases.

Since limiting the number of processes can be particularly impor-
tant when the underlying device platform is resource constrained I
measured the number of sub-processed spawned by all compared con-
�guration. In this regard, the number of spawned sub-processes show
signi�cant reduction with large effect size when Select Indicatorsand
Combined Countermeasuresare used.

Limiting bandwidth consumption is also extremely important in fog
environments. As a matter of fact, limiting I/O operations is crucial
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when the network bandwidth is limited and shared by multiple de-
vices and thus can be quickly saturated. Moreover, intensive commu-
nication implies high power consumption, a threat to energy ef�ciency
and batteries lifespan in portable devices. The results for network I/O
show statistically signi�cant reduction for all adaptive con�gurations
compared to Static Mon , with an effect size ranging from small to
medium. Note that results for Input (I) and Output (O) present a sim-
ilar behavior for the same con�guration.

More in detail, results show a small effect size for Change Ratever-
sus Static Mon comparison. Since I expected a stronger impact of rate
adaptation in this context, I analyzed the behavior of the probes, and
discovered that the bandwidth gauge exploits iPerf 4, which measures
the bandwidth by saturating it with packets. Such an invasive behav-
ior nulli�es the potential bene�ts of a dynamic sampling rate. There-
fore, to further investigate this dimension, I repeated the experiments
by disabling the bandwidth monitoring probe for both S tatic Mon
and Adaptive Mon . Results are presented in Figure 5.8. The impact
of Change Rateis now remarkable, with a reduction on transmitted
data ranging between 31% and 34%, with an even higher reduction
(between the 37% and the 49%) when both countermeasures are si-
multaneously active.

Figure 5.8: Static Mon compared with A daptive Mon countermeasures for
the network I/O metrics when the bandwidth is not measured by
the Follower.

Finally, the results on power consumption show meaningful differ-
ences only for Static Mon versus Combined Countermeasures, suggest-
ing that the individual countermeasures may introduce limited bene-
�ts. Still, their combination can signi�cantly improve battery lifetime
(with an estimated reduction in power usage of about 36%).

4 https://iperf.fr/
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answer to rq3 .2 Adaptive Mon can help reduce network I/O
and device battery usage without affecting CPU utilization. This is
achieved by allocating extra memory to store the necessary data for
running the adaptive mechanisms. Such result is cost-effective in fog
environments, because the impact of limited extra memory is miti-
gated by the availability of memory, even on resource-constrained de-
vices deployed in the Fog.

5.3.6 Threats to Validity

The presented study is affected by both internal and external threats
to validity. The main internal threats to validity concern with the de-
sign of the scenarios used to study RQ3.1. I proposed �ve scenarios to
mimic different trends. Although indicators collected in real scenarios
may behave differently than the ones I investigated, the results ob-
tained with the stereotyped trends are still informative, at least locally
(e.g., it is possible to refer to the results reported in the thesis for an
indicator that becomes unstable or too high).

The de�nition of the logical states for an indicator depends on sev-
eral parameters, which are application-dependent. In this thesis, I
studied how A daptive Mon can be used to obtain self-adaptive capa-
bilities relevant to monitoring, focusing on the assessment of simple
countermeasures that do not strongly depend on the domain. Assess-
ing A daptive Mon in the context of dedicated application scenarios is
part of future work and is out of the scope of this thesis.

The generality of the results obtained about ef�ciency (RQ 3.2) might
depend on the speci�c implementation used and the size of the experi-
ment. I used an independent implementation for S tatic Mon (i.e., Fog-
Mon) to minimize any implementation bias, and the adaptive behavior
is added to this implementation. To further reduce any implementa-
tion threat, the solution is publicly released. In principle, additional
experiments may lead to different results. However, I obtained quite
clear evidence and I checked the statistical signi�cance of the results
to mitigate the risk of overgeneralizing.

5.4 discussion

The self-adaptive monitoring system proposed in this thesis can ab-
stract monitored indicators and activate countermeasures based on
their logical states. Empirical results demonstrate that adaptive be-
haviors can enhance monitoring accuracy while optimizing resource
utilization, compared to non-adaptive solutions. A daptive Mon can
help reduce network I/O and device battery usage without affect-
ing CPU utilization. This can be achieved by allocating extra mem-
ory to store the necessary data. This result can be bene�cial in the
Fog since monitoring systems are called to reduce network overhead
without impacting on power consumption, especially when devices
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are battery-powered. Even resource-constrained devices at the edge
of the network are typically well-equipped with memory, which mit-
igates the impact of the monitoring system's limited extra memory
consumption. In particular, the reduction in the RMSE reached 33.6%
at Follower level in the unstablescenario and 82.7% at Leader level in
the randomscenario. A higher accuracy, however, comes at the cost of
a higher number of messages exchanged in the4 scenarios where the
monitored indicator is more erratic (nearly 5 times more than Static -
Mon in the worst case), and fewer messages produced when the indi-
cator is stable (saving nearly one third of the messages). With respect
to the resource consumption, the results for network I/O show statis-
tically signi�cant reduction for all adaptive con�gurations compared
to Static Mon , while the combination of both the countermeasures
can improve battery lifetime with an estimated reduction of the power
usage of about 36%.

The presented work has three main limitations. First, de�ning the
adaptive rules and their parameters is a manual activity, subject to
the application knowledge of the operators managing the monitoring
system. Additionally, it is possible that multiple instances of the moni-
toring system require different rules and con�gurations, necessitating
a non-negligible con�guration effort. To potentially mitigate this limi-
tation, MaaS solutions can be adopted to automate the con�guration
process. Secondly, while the obtained results have been statistically
checked and threats to validity have been discussed, Adaptive Mon
has not been evaluated on a realistic scale involving a fog infrastruc-
ture test-bed. A more exhaustive experimental campaign can demon-
strate the contribution of work on a larger scale. Third, each peer is
autonomous at both the Follower and Leader tiers. Therefore, aggre-
gated information obtained by Leaders may differ if some peers stop
collecting certain indicators or change their sampling and forwarding
rates. It would be worthwhile to investigate the impact of this archi-
tectural choice or to distribute the MAPE-K components differently,
with Leaders responsible for governing the adaptive behavior of their
Followers.





6
E N E R G Y- AWA R E S E L F - A D A P T I V E M O N I T O R I N G I N
T H E E D G E

This chapter presents an energy-aware approach to design and im-
plement self-adaptive applications for edge environments. Speci�cally,
this work focuses on AI-based monitoring systems, which are increas-
ingly deployed in the Edge. These systems represent a real-world and
challenging scenario that requires the delivery of effective and sustain-
able AI edge services. The proposed approach can guide developers
in implementing applications that can switch operation modes in re-
sponse to environmental changes, balancing energy consumption with
application-level objectives. The empirical evaluation shows how the
approach can outperform non-adaptive baseline con�gurations, per-
forming as optimally as con�gurations selected with a nearly exhaus-
tive exploration of the con�guration space. The contribution reported
in this chapter was presented at the 38th International Conference
on Automated Software Engineering (ASE) and published in its pro-
ceedings with the title “An Energy-Aware Approach to Design Self-
Adaptive AI-based Applications on the Edge” [ 240].

The chapter is structured as follows. Section 6.1 presents a Smart
Traf�c Monitoring (STM) motivational scenario. Section 6.2 describes
the proposed approach, with speci�c reference to the motivational sce-
nario. Section 6.3 presents the empirical evaluation. Finally, Section 6.4
concludes the chapter with closing remarks.

6.1 motivational scenario

According to the latest report released by Governors Highway Safety
Association (GHSA), “nearly 3.500pedestrians died in the United States
in the �rst six months of 2022(+5% from the same period in 2021)” [ 23].
“In three years, pedestrian deaths raised about 18%, that is, nine times
faster than U.S. population growth” [ 175]. Similarly, the European
Transport Safety Council (ETSC) reported “ 20.600 road deaths in the
EU last year, with vulnerable road users (pedestrians, cyclists, and
users of powered two-wheelers) representing just under 70% of total
fatalities within urban areas” [ 72, 212]. Addressing this critical issue
of preventing accidents not only depends on social education [ 56] but
also requires developing Smart Traf�c Monitoring (STM) systems that
enable digital monitoring of urban traf�c [ 8, 42, 217], real-time analyt-
ics [17, 38], and intelligent driver assistants [ 153, 160, 250].

An STM system requires continuous monitoring of the traf�c scenar-
ios to identify potential incidents (e.g., the presence of pedestrians in
blind spots) through video streams and processing frames, and alert-
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Figure 6.1: A pedestrian detection scenario.

ing the nearby vehicles through the use of 5G-enabled edge nodes [160].
Such an STM system can host hundreds of cameras and sensors de-
ployed to roads in cities and countryside areas [ 78].

The edge devices processing video streams are in always-on mode
and potentially powered by batteries or renewable energy sources at
the edge, which is the basis for limited and unreliable power sup-
ply. Hence, reducing energy consumption and executing critical emer-
gency applications become extremely important. On the other hand,
such critical applications expect a minimum QoS for safety and reli-
ability (e.g., inference time and ML model accuracy). Therefore, they
require continuous monitoring of resources (e.g., energy budget) and
workload (e.g., number of detected pedestrians in time intervals), and
when needed, employing self-adaptive applications and adapting hard-
ware and software con�gurations (e.g., camera resolution, ML model,
and hardware acceleration).

Figure 6.1 depicts a pedestrian detection scenario where an appli-
cation can employ different operation modes according to pedestrian
traf�c volumes. For instance, this scenario could be addressed with
four operation modes as de�ned in Table 6.1. A self-adaptive appli-
cation for this scenario can autonomously balance resource (e.g., en-
ergy consumption) and application requirements (e.g., frame process-
ing speed and accuracy) by switching among the different operation
modes.

On the contrary, using a single operation mode for a whole day
cannot adapt to a changing environment. Considering a smart-city
scenario with hundreds of IoT cameras and dozens of application in-
stances deployed across several edge nodes, the bene�ts of such an
approach are exponential.

6.2 designing energy -aware self -adaptive applications

A self-adaptive application (SAA)(De�nition 5.1) is an application ca-
pable of modifying itself, or other connected resources, in response to
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Table 6.1: A set of four operation modes used in the motivational pedestrian
detection scenario.

Operation Mode Runtime Context
Desirable Characteristics

Energy Consumption Detection Accuracy Frames Processing Rate

power-saving no pedestrians detected very low low moderate

low-energy few pedestrians detected low moderate moderate

high-accuracy small group of pedestrians detected moderate high high

high-rate crowd detected high moderate very high

changes detected in the operational environment. SAAs are particu-
larly effective in resource-constrained environments. Let us consider
here the case of an AI-based application that implements the pedes-
trian detection use-case described in Section6.1 and that is hosted on
an embedded device (e.g., a Raspberry Pi) equipped with a video cam-
era and a hardware accelerator (e.g., a TPU). The device executes an
application capturing frames from the camera and processing them
with an object detection model to detect pedestrians.

The hardware accelerator boosts the processing speed by lowering
the ML model inference time. In this context, three main objectives
must be considered: achieving high detection accuracy, processing
frames at a high rate, and reducing energy consumption.

Optimizing these objectives at the same time for every possible op-
erational condition is generally infeasible. Interestingly, a SAA can dy-
namically balance the degree of satisfaction of these objectives depend-
ing on the run-time context. However, engineers designing SAAs need
to identify suitable con�gurationsfor the run-time to balance the cho-
sen objectives. Further, SAAs have to implement the logic to automat-
ically switch between con�gurations (e.g., the four operation modes
reported in Table 6.1), to adapt to changes in the operational environ-
ment (e.g., the pedestrian traf�c volumes).

Identifying the con�gurations that implement the intended opera-
tion modes is also challenging, especially for AI-based applications
running on heterogeneous and resource-constrained nodes. Indeed,
simply using a simulator may lead to results largely diverging from
the real behavior of these applications. On the other hand, taking em-
pirical measures by running the real devices and applications can be
extremely expensive, especially when large con�guration spaces must
be explored [189].

I propose here an approach that combines the bene�ts of the em-
pirical identi�cation of the con�gurations and those of an intelligent
exploration of the con�guration spaceto yield suitable solutions to design
an effective and energy-aware SAA.

Figure 6.2 describes the proposed approach with a work�ow dia-
gram. An engineer provides the adaptation logic (A) as a �nite-state
machine (FSM) whose states represent the SAA operation modes and
whose transitions encode the switching conditions between them. In
parallel, the engineer identi�es the con�guration space to explore, and
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Figure 6.2: The steps of the proposed approach represented as a work�ow
diagram.

de�nes a Multi-Objectives Optimization Problem (MOOP) that can be
solved automatically (B) using a meta-heuristic search procedure. Fur-
thermore, the engineer speci�es weights and thresholds for the objec-
tives to guide the (C) extraction of the con�gurations to set in each
operation mode. The work�ow terminates (D) with the implementa-
tion of the �nal FSM.

In the next subsections, I describe each step of the work�ow in detail
and exemplify the approach with the pedestrian detection scenario
described in Section 6.1.

6.2.1 De�ning the State-Based Adaptation Logic

The �rst step of the proposed approach requires an engineer, sup-
ported by domain experts, to de�ne, in a rigorous way, the behavioral
modelof the self-adaptive application [ 97].

As speci�cation I use a Finite-State Machine (FSM), since it allows to
explicitly represent the adaptation logic of an SAA [ 19, 138, 154]: the
states represent the operational modes of the SAA, and the transitions
represent the conditions triggering a change in the operation mode of
the application.

Finite-State Machine (De�nition 6.1). A FSM M is de�ned by a tuple
(S, � , � , s0), where S is the set of states,� is the set of the input symbols,
that is, the set of events that may trigger state transitions, � is the set of
all the possible transitions from a state s1 2 S to a state s2 2 S caused
by an event � 2 � , s0 is the initial state.

Let us consider the pedestrian detection scenario again. Here an
engineer may want to de�ne a SAA that can self-adapt across four
operation modes (see Table6.1) to address the four possible run-time
contexts in the area where the camera shall be deployed, de�ned for
instance according to the available studies [24, 78, 144]. Each operation
mode, for example low-energy, represents the working condition of the
software that is best suited for the corresponding run-time context,
for example few pedestrians detected. Each operation mode must satisfy
certain characteristics in terms of energy consumption, detection accu-
racy and frames processing rate. These characteristics are used to iden-
tify the exact software con�gurations at step (C) Extracting the Opera-
tion Mode Con�gurations by providing the corresponding sets of ob-
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Figure 6.3: An abstract state machine modeling the states and the transitions
of a self-adaptive application for the motivational scenario.

jective weights and thresholds. Figure 6.3 shows an abstract FSM, with
the four identi�ed abstract states and 9 transitions that capture when
the software must self-adapt. Please note that the domain-knowledge
is exploited here to determine the transitions that must be encoded in
the FSM, among the full set of the possible state transitions.

6.2.2 Solving the Multi-Objective Optimization Problem

Finding high-quality software con�gurations that correspond to the
operation modes identi�ed by the engineer (e.g., the four states shows
in Figure 6.3) is a hard problem. AI-based applications can be con�g-
ured according to several parameters (see for instance the list of pa-
rameters that may in�uence pedestrian detection listed in Table 6.2),
generating a huge exploration space that cannot be exhaustively ex-
plored. Computer-simulated experiments can reduce the time and ef-
fort, but they are usually inaccurate, especially in Cyber Physical Sys-
tems and other domains that include real-world metrics [ 202].

To address this challenge, I de�ned a Multi-Objective Optimization
Problem (MOOP)that is able to discover the con�gurations that deliver
the best results for the considered set of objectives, and that can be
exploited to �nd the actual con�gurations that effectively implement
the operation modes represented as states of the FSM.

An optimization process aims to �nd a set of input values for a
problem to obtain the “optimal” output values. The de�nition of op-
timality is problem-speci�c, and formally, it refers to minimizing or
maximizing one or more objective functions by varying the input val-
ues. Hence, a MOOP requires the satisfaction of a number of different
and often con�icting objectives at the same time [ 181, 224]. Intuitively,
there is no single best solution for all the objectives, but rather there
exist several optimal solutions representing the best trade-offs among
all the objectives [224].
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Search Space(De�nition 6.2). The search space is the set of all possi-
ble solutions, that then also contains the set of input values revealing
optimal outputs. The search space X is here de�ned as a set of con�g-
urations.

Con�guration (De�nition 6.3). A con�guration conf is n-tuple
(c1 , : : : , cn ), where ck is the value of the k-th con�gurable param-
eter pk 2 P assuming values in its domain Dp k . The size of X is
jXj =

Q n
k = 1 jDp k j.

Pareto Front (De�nition 6.4). The set of solutions X� is called the Pareto
front, which contains all the solutions where no improvement is possi-
ble in any objective function without sacri�cing at least one of the other
objective functions [ 181]. This is also referred to as the non-dominated
solutions set.

In the pedestrian detection scenario there are three objectives: (i)
maximize the pedestrians detection accuracy (acc), (ii) minimize the
energy consumption ( eng), and (iii) maximize the number of processed
frames in a time window ( rate). Hence, I de�ne a MOOP with these
three objectives (depending on the speci�c case, it might be possible
to have a different number of objectives):

min - acc(conf) ^ eng(conf) ^ - rate(conf)

s.t. conf 2 X
(1)

The search spaceX is de�ned as a set of con�guration quintuples
with �ve con�guration parameters for the example application, that
is, the camera resolution (R), the camera frame rate (FPS), the object
detection model (M ), the detection threshold (T), and whether to use
the external hardware accelerator (TPU). Each parameter domain has
a different cardinality (see details in Table 6.2). Accordingly, jXj = jRj �
jFPSj � jM j � jTj � jTPUj = 3402con�guration quintuples.

Table 6.2: The domain of the parameters used to de�ne the search space of
the multi-objective optimization problem.

Parameter Parameter Type Domain

Camera Resolution (R) Categorical {1920x1080, 1280x720, 640x480}

Camera Frame Rate (FPS) Categorical {1, 5, 10, 15, 20, 25, 30}

Object Detection Model (M ) Categorical
{SSD MobileNet V1, SSD/FPN MobileNet V 1 TF2, SSD MobileNet V2,

SSD MobileNet V2 TF2, SSDLite MobileDet, Ef�cientDet-Lite 0,

Ef�cientDet-Lite 1, Ef�cientDet-Lite 2, Ef�cientDet-Lite 3}

Detection Threshold (T) Numerical (low: 0.1, high: 0.9, step: 0.1) {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}

Use HW Accelerator (TPU) Categorical {true, false}

Solving the Equation 1 results in a Pareto front with non-dominated
solutions, that is, con�gurations that ful�ll the three objectives by a dif-
ferent, but relevant, degree. I use a strategy derived from NSGA-II to
compute the Pareto front.

NSGA-II is a solid and widely used optimization algorithm in real-
world applications [ 249]. I use the approach de�ned by Deb et al. [74]
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for the exploration of the search space: it is explored by searching for
dominant solutions (i.e., the �tness of a solution is de�ned by com-
puting its non-domination level) in less populated areas of the space
(i.e., determined by computing the crowding distance) guaranteeing
the diversity of the identi�ed solutions; mutations randomly change
parameter values with a probability that is computed according to the
number of parameters in the con�guration, and uniform crossover re-
combines con�gurations with a probability of 0.9.

During the search space exploration, the presented procedure records
all the evaluated objective values, and at the end it extracts the Pareto
front from the whole results set. In the empirical evaluation, I show
how this strategy can be used to explore only 10% of the search space
to select nearly optimal con�gurations. Note this is particularly rele-
vant, since assessing how a single con�guration ful�lls the three ob-
jectives requires collecting empirical measures by repeating a same
experiment multiple times.

6.2.3 Extracting the Operation Mode Con�gurations

The Pareto front obtained by solving the MOOP usually contains
a large number of non-dominated solutions, compared to the oper-
ation modes needed by the self-adaptive application. The decision-
making process to identify the actual solutions from the Pareto front
involves comparing multiple criteria, trading-off certain objectives for
others [148, 255]. To address this problem, I use the weighted gray rela-
tional analysis (WGRA)[148] method, a weighted version of the GRA
introduced by Ju-Long [ 135] and employed in multiple application
domains [61]. This is a very robust method [ 161], preferable to other
multi-criteria decision making (MCDM) methods as it inherently in-
corporates uncertainty in data, and it is simple to calculate [ 161, 259]
and to integrate into existing software.

GRA combines into a single value all the objectives. This simpli�es
the original MCDM problem into a single-criterion decision-making
problem [ 148], making Pareto front solutions easily comparable. To
let engineers extract states that ful�ll the objectives by different de-
grees, I employ the weighted version of the algorithm that uses a set
of weights W to give more importance to certain objectives [ 61].

The WGRA algorithm consists of three main steps: (i) data normal-
ization, (ii) reference network computation, and (iii) gray relational
grade (GRG) computation [ 255].

The data normalizationstep consists of the normalization of the objec-
tive values in the Pareto front according to two cases: larger-the-better
for maximization, and smaller-the-better for minimization. The nor-
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malized value Fij is calculated by Equation 2 and 3 for maximization
and minimization cases, respectively:

Fij =
f ij - min i 2 n f ij

maxi 2 n f ij - min i 2 n f ij
(2)

Fij =
maxi 2 n f ij - f ij

maxi 2 n f ij - min i 2 n f ij
(3)

with f ij as the i -th value of the j -th objective in the matrix O, a matrix
n � m composed of n Pareto front solutions and m objectives. Fij is
the value of f ij after normalization.

The reference network computationstep consists in forming the refer-
ence network F+

j , that is, an ideal network obtained by choosing the
best value of each of the objectives as follows:

F+
j = maxi 2 n Fij (4)

Finally, the gray relational grade (GRG) computationstep consists in
calculating the similarity between each candidate network (i.e., the
objective values of each optimal solution in the Pareto front) and the
reference network F+

j . The GRG for eachi -th value in the Pareto Front
is computed as follows:

GRGi =
1
n

mX

j = 1

w j
� min - � max
� ij + � max

(5)

where w j is the weight of the j -th objective value (with
P m

j = 1 w j = 1);
�ij = jF+

j - Fij j is the absolute value of the difference of between the
j -th objective value in the reference network and the one in the candi-
date network; � max = maxi 2 n ,j 2 m (�ij ) and � min = min i 2 n ,j 2 m (�ij )
are the maximum and minimum deltas, respectively.

The conf 2 X with the largest GRG i is the recommended optimal
solution outputed by the WGRA process. Depending on the set of
weights used to extract the con�guration from the Pareto front, the
con�guration shall map to a different state of the FSM, that is, it im-
plements a different operation mode of the AI-based edge service.

To illustrate further, let us focus on two operation modes in the ex-
ample application, namely, power-savingand high-rate. The engineer,
jointly with domain experts [ 118], may provide the following sets
of weights for the two operation modes, respectively: Wpower-saving =
f0.05,0.9,0.05gand Whigh-rate = f0.6,0,0.4g. The speci�c weights could
be derived from a Service Level Agreement (SLA) de�ning the QoS,
and the costs the application service provider to sustain and deliver
the application.

Engineers could also de�ne a set of objective thresholds t j for each
objectivesOj to reduce the size of the Pareto front given in input to the
WGRA algorithm, �ltering out solutions that might be unreasonable
for a given operation mode op. In particular, a solution is �ltered from
the Pareto front if the value it achieved on objective Oj is above the
threshold t j .
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For example, let us consider the power-savingand the high-rateoper-
ation modes again. The weights assigned to the Wpower-savingset must
give a large importance to the energy consumption objective in order
to extract an energy-ef�cient con�guration. However, this may lead to
the identi�cation of a very poor but still non-dominated solution for
the other two objectives. To prevent this risk, the engineer can �lter all
the solutions that do not provide a minimum detection accuracy level
and/or number of processed frames. For instance, they can de�ne a set
of thresholds Tpower-saving= ft acc , t eng , t rate g = f0.2,0,60g to exclude
solutions with a detection accuracy lower than 0.2, and a number of
processed frames lower than 60. A completely different set of thresh-
olds could be de�ned for the high-rate, that is, Thigh-rate = f0.3,0,0g.
In this case, solutions with a detection accuracy lower than 0.3 are
�ltered out in order to provide a minimum detection accuracy level,
when compared to the power-savingmode.

Figure 6.4: A re�ned version of the abstract state machine shown in Fig-
ure 6.3 with the set of weights and thresholds for each of the
operation modes.

Figure 6.4 shows the re�ned version of the abstract FSM previously
shown in Figure 6.3 with the weights and thresholds for WGRA anal-
ysis de�ned by the engineers attached to states. The chosen weights
and thresholds represent the actual speci�cation of the desirable char-
acteristicsof the operation modes listed in Table 6.1. The execution of
the WGRA algorithm for each of the FSM state extracts a con�gura-
tion confop with the actual con�guration parameter values that can be
used by the SAA application to self-adapt the operation mode.

6.2.4 Implementing the Self-Adaptive Application

In the last step, the engineer is required to implement the self-
adaptive application according to the output of the analysis. The ab-
stract state machine is transformed into a concrete one in two steps:
�rst, each of the transitions must be turned into an actual triggering
condition; second, the operation mode con�gurations extracted in the
previous step are mapped into a piece of logic able to set these con�g-
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urations at runtime. Figure 6.5 shows the �nal FSM for the pedestrian
detection scenario, with actual conditions and operation modes.

Figure 6.5: The concrete �nite state machine implementing a self-adaptive
application for the motivational scenario.

The FSM can be translated into working code using generators [196,
247] or when this is not possible or too dif�cult [ 6], the SAA can be
obtained semi-automatically or manually [ 5, 6, 261]. The proposed ap-
proach outputs a concrete FSM encoding the SAA and does not bind
the engineer to use any speci�c method to implement the SAA.

6.3 empirical evaluation

In this section, I quantitatively evaluate the effectiveness of the meta-
heuristic strategy and the capability of the proposed approach to re-
lease a better trade-off between application-level objectives and the en-
ergy consumption. I discuss the sub-research questions (Section6.3.1),
the experimental setup and the test-bed used to perform the experi-
ments (Section6.3.2), the results of the experiments to answer the sub-
research questions (Section6.3.3 and Section 6.3.4), and the threats to
validity of the evaluation (Section 6.3.5).

6.3.1 Research Questions

This work responds to RQ 4 and it is assessed with the following
two sub-research questions in the context of the pedestrian detection
scenario described in Section6.1.
RQ4.1 - Meta-Heuristic VS Near-Exhaustive Search : Can the meta-
heuristic search approach discover solutions whose quality is com-
parable to those obtained by a near-exhaustive search? This research
question investigates the effectiveness of the proposed meta-heuristic
strategy. In particular, it studies whether the heuristic exploration of a
small portion of the search space can lead to results comparable to a
near-exhaustive exploration.
RQ4.2 - Objectives Trade-Off : Can a self-adaptive pedestrians detec-
tion application better balance energy consumption and application
objectives compared to a non-adaptive application? This research
question investigates whether the self-adaptive application resulting
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from the proposed methodology can release a better trade-off among
accuracy, energy, and processing speed compared to four baseline non-
adaptive applications.

6.3.2 Experimental Setup

Figure 6.6: The test-bed used to run the evaluation experiments.

Figure 6.6 shows the test-bed I used to run the case study evaluation,
�rst schematically (above), then its concrete in-lab implementation (be-
low).

I employ a Raspberry Pi (RPi) 4 Model B Rev 1.1 (64-bit quad-core
ARMv 8, 4GB of RAM, RPi OS Lite 64-bit Debian GNU/Linux 11)
equipped with the RPi Camera Module v 2 and boxed in a LABISTS
case with a 5V fan connected to the RPi General Purpose Input/Out-
put (GPIO) interface. The RPi is powered by a USB-C AC adapter
connected through a GW Instek GPM-8213digital power meter [ 104]
that I use to collect instant power values 1.

To reduce the idle energy consumption of RPi, I disable the unnec-
essary components: all the LEDs (i.e., activity, power, and Ethernet
port), the Wi-Fi antenna, the Bluetooth, and the HDMI port. Internet
and private network connectivity is provided via network cable. A
Coral USB Accelerator (Edge TPU) [106] is plugged-in for those exper-
iments that require hardware accelerator. The accelerator is automati-
cally powered-on when connected to the USB port.

Since it not always possible to easily enable and disable a single
USB port on-the-�y via software, a self-adaptive application running
on such device would not be capable to completely power-off the ac-
celerator when not in use, reducing the potential bene�ts of switching

1 The accuracy of the power measurements is reported Appendix B.
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