
SCUOLA DI DOTTORATO
UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

Department of Informatics, Systems, and Communication

PhD program Computer Science Cycle XXXVI

Adapt and Automate:
Efficiently Monitoring in the Cloud Continuum

Alessandro Tundo

Registration number: 781257

Tutor: Prof. Claudio Zandron

Supervisor: Prof. Leonardo Mariani

Coordinator: Prof. Leonardo Mariani

ACADEMIC YEAR 2022/2023

A B S T R A C T

Monitoring systems are increasingly being deployed throughout the
cloud continuum, a distributed and heterogeneous environment with
varying software and hardware stacks designed to be simultaneously
accessible in a multi-tenant fashion. Its fog and edge computing layers
exhibit lower network latency and greater responsiveness compared
to the upper cloud layer. However, they have lower reliability due to
the prevalence of wireless connectivity, and fewer computational capa-
bilities due to limited device resources.
Managing monitoring systems in the cloud continuum poses several
challenges for automation and energy consumption. In this context,
this thesis addresses two main challenges: (i) automating the moni-
toring system configurations in response to dynamic needs and tech-
nological constraints, and (ii) efficiently utilizing available resources,
which is particularly relevant in the context of fog and edge environ-
ments. Regarding the first challenge, this thesis presents two main con-
tributions: (i) a Monitoring-as-a-Service (MaaS) framework that can
fully govern the life-cycle of the probes, including error-handling, and
(ii) the definition, analysis, and qualitative and quantitative evalua-
tion of 11 possible probe deployment patterns. Regarding the second
challenge, this thesis presents two additional contributions. Firstly, it
presents a self-adaptive peer-to-peer monitoring system for fog envi-
ronments that can abstract monitored indicators to logical states and
activate countermeasures in turn. Secondly, it proposes an energy-
aware approach to guide developers in implementing self-adaptive
applications for edge environments. Such applications are capable of
switching operation modes in response to changes in the environment,
ultimately balancing energy consumption with application-level objec-
tives, such as monitoring accuracy.

iii

A C K N O W L E D G M E N T S

I would like to express my deepest gratitude to my supervisor, Prof.
Leonardo Mariani, for his invaluable patience and for the knowledge
and expertise he generously shared with me. His passion and dedi-
cation to research have been extremely inspiring. I am sure that he
deeply shaped my forma mentis and taught me how to navigate the
incredible, yet difficult, academic world.

Special thanks to my colleagues and co-authors, Marco Mobilio and
Prof. Oliviero Riganelli, who supported and guided me throughout
my Master’s and Ph.D. studies. I am also grateful to Vera Colombo,
who has been extremely helpful in contributing to my research with
her master’s thesis. I would like to express my sincere thanks to Prof.
Michele Ciavotta and Marco Savi for the collaboration during these
years, and to Prof. Ezio Bartocci and the entire HPC research group
led by Prof. Ivona Brandić, who have been immensely welcoming since
the first moment I arrived in Vienna.

I would be remiss not to mention Matteo and Ilaria, who have been
my peers and friends throughout these years: their support has never
been just scientific. I want to thank my flatmates Luca and Alessan-
dro, the experience of living as a family and navigating the pandemic
together is unforgettable. I must thank Daniele and Clara too, the last
years in Milan were marked by your presence, and Lynn for being part
of the motivations that convinced me to stay in Vienna. I am grateful
to my therapist, Patrizia, because although I have had an easy doctoral
experience, I am sure it is also due to the healing we have achieved
together.

And last but not least, a heartfelt thank you to my parents, my broth-
ers and my whole family, “that dear octopus from whose tentacles we
never quite escape, nor, in our deepest hearts, ever quite wish to”, and
to Kseniia, who jumped into my life and is deeply rooting in it with
her sweet heart.

v

C O N T E N T S

introduction 1

1 the cloud continuum 5

1.1 Introduction to Cloud Continuum 6

1.2 Cloud Computing . 7

1.3 Fog Computing . 10

1.4 Edge Computing . 11

1.5 Monitoring Challenges in the Cloud Continuum 13

2 monitoring in the cloud continuum 15

2.1 Anatomy of a Monitoring System 15

2.2 Adapting Monitoring to Evolving Requirements 17

2.2.1 Support to Automated Evolution 18

2.2.2 Support to Multi-Tenancy and Heterogeneity . . 20

2.3 Adapting Monitoring to Available Resources 22

2.3.1 Efficiently Use Resources in the Fog 22

2.3.2 Efficiently Use Resources in the Edge 25

I adapting monitoring to evolving requirements 29

3 automating probe life-cycle for changing needs 31

3.1 Running Example . 31

3.2 Domain Concepts . 32

3.3 Solution Architecture . 34

3.3.1 Repositories . 35

3.3.2 API Service . 37

3.3.3 Monitoring Claim Controller 37

3.3.4 Monitoring Unit Controller 40

3.3.5 Cloud Bridge . 41

3.4 Error Handling Capabilities 41

3.5 Technology Agnostic Design 44

3.5.1 Incorporating New Probes 45

3.5.2 Supporting New Target Cloud Platforms 46

3.6 Empirical Evaluation . 46

3.6.1 Research Questions 46

3.6.2 Prototype . 47

3.6.3 RQ1.1: Framework Efficiency 48

3.6.4 RQ1.2: Error Handling 51

3.6.5 RQ1.3: Scalability 53

3.6.6 Threats to Validity 54

3.7 Discussion . 55

4 patterns for probe deployments 57

4.1 Probe Deployment . 57

4.2 Pattern Definitions . 58

4.3 Qualitative Discussion . 65

4.3.1 Pattern Implementation 66

vii

viii contents

4.3.2 Analysis of Quality Aspects 67

4.4 Empirical Evaluation . 69

4.4.1 Research Questions 69

4.4.2 Experimental Setup 70

4.4.3 RQ2.1: System-oriented Pattern Scalability 73

4.4.4 RQ2.2: Application-oriented Pattern Scalability . 76

4.4.5 Threats to Validity 78

4.5 Best Practices . 79

4.6 Usage Scenarios . 81

4.6.1 Monitoring a VM-based Microservice Application 82

4.6.2 Monitoring a microservice application running
on Kubernetes . 84

4.6.3 Monitoring serverless backend functions 86

4.7 Discussion . 88

II adapting monitoring to available resources 91

5 peer-to-peer self-adaptive monitoring in the fog 93

5.1 P2P Monitoring . 93

5.2 AdaptiveMon . 95

5.2.1 Knowledge . 96

5.2.2 Monitor . 98

5.2.3 Analyze . 98

5.2.4 Plan . 99

5.2.5 Execute . 100

5.3 Empirical Evaluation . 100

5.3.1 Research Questions 101

5.3.2 Prototype . 101

5.3.3 Experimental Setup 102

5.3.4 RQ3.1 - Monitoring Accuracy 102

5.3.5 RQ3.2 - Resource Consumption 106

5.3.6 Threats to Validity 110

5.4 Discussion . 110

6 energy-aware self-adaptive monitoring in the edge113

6.1 Motivational Scenario . 113

6.2 Designing Energy-Aware Self-Adaptive Applications . . 114

6.2.1 Defining the State-Based Adaptation Logic 116

6.2.2 Solving the Multi-Objective Optimization Problem117

6.2.3 Extracting the Operation Mode Configurations . 119

6.2.4 Implementing the Self-Adaptive Application . . . 121

6.3 Empirical Evaluation . 122

6.3.1 Research Questions 122

6.3.2 Experimental Setup 123

6.3.3 RQ4.1 - Meta-Heuristic VS Near-Exhaustive Search124

6.3.4 RQ4.2 - Objectives Trade-Off 126

6.3.5 Threats to Validity 129

6.4 Discussion . 130

7 conclusions 133

contents ix

a probe deployment pattern plots 137

b gw instek gpm-8213 power measurement accuracy 141

bibliography 143

L I S T O F F I G U R E S

Figure 0.1 A graphical overview of the thesis context, re-
search challenges (RCs), research questions (RQs),
and main contributions. 1

Figure 2.1 Generic architecture of a monitoring system. . . 16

Figure 2.2 Automation levels introduced in monitoring sys-
tems. 19

Figure 3.1 Architecture of the MaaS framework. 34

Figure 3.2 Probe deployment time figures. 49

Figure 3.3 Error handling time figures. 52

Figure 3.4 Time to fulfilling monitoring requests for a in-
creasing number of indicators (dot markers) and
operators (triangle markers), with both VMs run-
ning in Microsoft Azure (red lines) and on con-
tainers running in a local Kubernetes cluster
(light blue lines). 54

Figure 4.1 Probe deployment patterns feature diagram. . . 59

Figure 4.2 Probe deployment patterns. 62

Figure 4.3 System-oriented probe holders patterns scala-
bility. 73

Figure 4.4 Application-oriented probe holders patterns scal-
ability. 76

Figure 4.5 Shared-T∗P∗ pattern holder network I/O con-
sumption and Internal-T1P∗ pattern network out-
put consumption with respect to an increasing
number of payment service and recommenda-
tion service replicas, respectively. 83

Figure 4.6 Network I/O consumption of the Shared-T∗P1

and Reserved-T∗P1 pattern holders with respect
to an increasing number of cart service and Re-
dis replicas, respectively. 86

Figure 4.7 Network I/O consumption of the Shared-T∗P1

pattern holders with respect to an increasing
number of carts-get function replicas. 87

Figure 5.1 Hierarchical P2P monitoring architecture pro-
posed by Forti et al. [91]. 94

Figure 5.2 Monitor, Analyze, Plan, Execute, and Knowl-
edge (MAPE-K) loop as proposed by Kephart
and Chess [140]. 95

Figure 5.3 An example of the computed states with re-
spect to the time series values at different time
instants. 99

x

List of Figures xi

Figure 5.4 AdaptiveMon and StaticMon Follower time
series estimations for the stable-unstable scenario. 104

Figure 5.5 AdaptiveMon and StaticMon Leader time se-
ries estimations for the stable-unstable scenario. . 105

Figure 5.6 AdaptiveMon Follower time series estimation
for the spiky scenario. The vertical dotted grey
lines indicate the sampling rate. 105

Figure 5.7 StaticMon compared with AdaptiveMon coun-
termeasures for each of the collected quality
metrics. 107

Figure 5.8 StaticMon compared with AdaptiveMon coun-
termeasures for the network I/O metrics when
the bandwidth is not measured by the Follower. 109

Figure 6.1 A pedestrian detection scenario. 114

Figure 6.2 The steps of the proposed approach represented
as a workflow diagram. 116

Figure 6.3 An abstract state machine modeling the states
and the transitions of a self-adaptive applica-
tion for the motivational scenario. 117

Figure 6.4 A refined version of the abstract state machine
shown in Figure 6.3 with the set of weights and
thresholds for each of the operation modes. . . . 121

Figure 6.5 The concrete finite state machine implementing
a self-adaptive application for the motivational
scenario. 122

Figure 6.6 The test-bed used to run the evaluation experi-
ments. 123

Figure 6.7 Radar charts comparing the objective values of
the four self-adaptive operation modes when
employing a solution obtained with the meta-
heuristic search procedure and one obtained with
the near-exhaustive search procedure. The so-
lutions are extracted with the WGRA method
using the same set of weights and thresholds. . 124

Figure 6.8 Radar charts comparing the SAA and the 4 non-
adaptive applications in the weekdays and week-
ends scenarios. 128

Figure 6.9 Box-plots comparing energy consumption for
the self-adaptive and the four non-adaptive ap-
plications. 129

Figure A.1 System-oriented CPU Consumption 137

Figure A.2 System-oriented Memory Consumption 137

Figure A.3 System-oriented Network Input Consumption . 138

Figure A.4 System-oriented Network Output Consumption 138

Figure A.5 Application-oriented CPU Consumption 138

Figure A.6 Application-oriented Memory Consumption . . 139

Figure A.7 Application-oriented Network Input Consump-
tion . 139

Figure A.8 Application-oriented Network Output Consump-
tion . 139

Figure A.9 Monitoring a VM-based Microservice Applica-
tion Usage Scenario 140

Figure A.10 Monitoring a Microservice Application Running
on Kubernetes Usage Scenario 140

Figure A.11 Monitoring Serverless Backend Functions Us-
age Scenario . 140

L I S T O F TA B L E S

Table 4.1 Characterization of the Patterns 67

Table 4.2 Experiments Configurations 71

Table 4.3 System-oriented patterns probe holder monthly
costs for experiments INCREASING_KPIS_1, IN-
CREASING_KPIS_2, and INCREASING_TARGETS_1 75

Table 4.4 System-oriented patterns probe holder monthly
costs for experiments INCREASING_TARGETS_2,
INCREASING_USERS_1, and INCREASING_USERS_2 75

Table 4.5 Application-oriented patterns probe holder monthly
costs for experiments INCREASING_KPIS_1, IN-
CREASING_KPIS_2, and INCREASING_TARGETS_1 77

Table 4.6 Application-oriented patterns probe holder monthly
costs for experiments INCREASING_TARGETS_2,
INCREASING_USERS_1, and INCREASING_USERS_2 78

Table 5.1 States definitions for categorical and numerical
indicators. 97

Table 5.2 Accuracy of AdaptiveMon and StaticMon for
the 5 scenarios. Green (Red) cells indicate a bet-
ter (worse) result obtained by AdaptiveMon

compared to the StaticMon. 104

Table 5.3 Statistically valid comparisons for all the qual-
ity metrics with their associated effect size. . . . 108

Table 6.1 A set of four operation modes used in the mo-
tivational pedestrian detection scenario. 115

Table 6.2 The domain of the parameters used to define
the search space of the multi-objective optimiza-
tion problem. 118

Table B.1 GW Instek GPM-8213 Power Measurement Ac-
curacy . 141

xii

Listings xiii

L I S T I N G S

Listing 3.1 A metadata excerpt from an HTTP health check
probe entry in the Probe Catalog. 35

Listing 3.2 A metadata excerpt from the Apache Kafka ex-
porter probe entry in the Probe Catalog. 44

Listing 3.3 A sample JSON representation of a Target re-
trieved from Microsoft Azure. 45

Listing 5.1 An example rule that uses the Change Rate coun-
termeasure written with the CLIPS DSL. The
symbol => separates the antecedent and the con-
sequent of the rule. The salience value rep-
resents the rule priority. The bind operator as-
signs the result of a function call to a variable. . 100

I N T R O D U C T I O N

Monitoring is a critical activity in several fields, such as environmen-
tal sciences [126], information and communication technology (ICT) [4],
healthcare [158], and engineering [174]. A monitoring system gathers,
transmits, and archives data by using probes to sense a target, whether
it is natural (e.g., water), physical (e.g., industrial machinery), or vir-
tual (e.g., applications). This data can help understand the target be-
havior and potentially provide meaningful insights through both on-
line (e.g., real-time anomaly detection [254]) or offline (e.g., root-cause
analysis [129]) analyses.

Nowadays, monitoring systems are being deployed more frequently
along the cloud continuum. This is a seamless “continuum” of comput-
ing services that are available from traditional clouds running in data
centers located in the core network, as well as from heterogeneous de-
vices such as access points, routers, gateways, and cloudlets located in
the metro and access networks [176, 263].

RQ1 – How can a monitoring system be adapted to
evolving operators' needs?

RQ2 – How can a monitoring system operate probes in
heterogenous and multi-tenant environments?

RQ3 – How can a monitoring system adapt its behavior
to efficiently operate in fog environments?

RQ4 – How can a monitoring system adapt its behavior
to efficiently operate in edge environments?

Main Contributions:
§ Automated probe life-cycle management1
§ Probe deployment patterns2

[1TSC 2023, 2TSC 2024] Main Contributions:
§ Peer-to-peer self-adaptive monitoring in the Fog3

§ Energy-aware self-adaptive monitoring in the Edge4

[3SEAMS 2022, 4ASE 2023]

RC1 – Adapting Monitoring to Evolving Requirements RC2 – Adapting Monitoring to Available Resources

Cloud Continuum

Edge LayerFog LayerCloud Layer

Devices

Latency+
+
-

-

Figure 0.1: A graphical overview of the thesis context, research challenges
(RCs), research questions (RQs), and main contributions.

The cloud continuum integrates the Cloud with the IoT through
the fog computing and edge computing layers, as shown in the top part
of Figure 0.1. Fog computing is a computing model that distributes
computation, communication, control, and storage closer to the IoT
at the edge of the network by using a hierarchical architecture [62,

1

2 introduction

263]. Edge computing also provides computational and storage facili-
ties, but it is located at the very edge of the network, typically within
one or two hops, with a distributed and localized architecture [258,
263]. Compared to cloud computing, both fog and edge computing
exhibit lower network latency and greater responsiveness [43, 62, 263].
However, the number of devices in these layers is large, often reaching
millions, and their computational capabilities are limited compared
to those of cloud data centers. The cloud continuum results in a dis-
tributed and heterogeneous environment with varying software and
hardware stacks. It is accessible in a multi-tenant fashion, meaning
that resources are shared among tenants. Additionally, it includes fog
and edge computing layers, which may be unreliable due to prevalent
wireless connections and less powerful due to limited resources on the
devices [263].

This thesis focuses on two challenges that impact monitoring sys-
tems operating in the cloud continuum. The challenges, research ques-
tions, and main contributions are summarized in Figure 0.1.

The first research challenge (RC1) concerns with the adaptation of
monitoring systems to evolving requirements. For a monitoring system
that operates in the cloud continuum, it is essential to support its au-
tomated evolution to accommodate changes in operators’ needs due
to unpredictable events such as anomalies, failures, and requests for
new indicators to be collected [96, 215, 229]. For example, according to
data from a survey involving 63 data centers conducted in 2016 [150],
the average cost of downtime per data center increased by 38% from
$500,000 in 2010 to $740,357 [214]. This remarks how enhancing moni-
toring systems with faster adaptation and automation capabilities can
help predict anomalies and anticipate failures, ultimately impacting
revenues and operational costs. Furthermore, since the cloud contin-
uum is a heterogeneous environment used by multiple tenants, a mon-
itoring system should abstract from underlying technologies and re-
lieve operators from the configuration burden [1, 4].

In this challenge, the thesis delves into two research questions (RQs).
RQ1: How can a monitoring system be adapted to evolving opera-
tors’ needs? RQ1 analyzes how a monitoring system can assist cloud
operators and adapt its functionalities according to the their evolving
needs while minimizing the number of operational changes. This the-
sis proposes a Monitoring-as-a-Service (MaaS) framework that can fully
manage the life-cycle of probes, including error-handling, by starting
from declarative input. The contribution has been published in the
IEEE Transactions on Services Computing journal paper titled “Auto-
mated Probe Life-Cycle Management for Monitoring-as-a-
Service” [242].
RQ2: How can a monitoring system operate probes in heterogeneous
and multi-tenant environments? RQ2 studies possible probe deploy-
ment patterns by identifying and characterizing the components that
can be used to deploy probes. This thesis provides the definition, anal-

introduction 3

ysis, and qualitative and quantitative evaluation of 11 possible probe deploy-
ment patterns. The contribution has been published in the IEEE Transac-
tions on Services Computing journal paper titled “Monitoring Probe
Deployment Patterns for Cloud-Native Applications: Definition and
Empirical Assessment” [244].

The second research challenge (RC2) addressed in this thesis con-
cerns with the adaptation of monitoring systems to the available resources,
which is particularly relevant in the context of fog and edge environ-
ments. A monitoring system operating in these environments must
efficiently use available resources to handle an increasing number of
running devices, applications, and collected indicators, which produce
a significant amount of data for storage and analysis [1, 228]. Addi-
tionally, it is crucial for a monitoring system to function effectively in
unpredictable and possibly resource-limited conditions. This involves
ensuring the system’s capabilities while making efficient use of avail-
able resources, which may be limited at the network’s edge [216].

Regarding this second research challenge, this thesis investigates
two additional research questions.
RQ3: How can a monitoring system adapt its behavior to efficiently
operate in fog environments? RQ3 studies how a monitoring system
can efficiently operate in fog environments by adapting its behavior to
changes in the monitored targets. This thesis proposes a self-adaptive
P2P monitoring system that utilizes a hierarchical P2P architecture and
incorporates adaptive behaviors based on the MAPE-K feedback loop.
This contribution was presented at the 17th Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS) and
published in its proceedings with the title “Towards Self-Adaptive
Peer-to-Peer Monitoring for Fog Environments” [65].
RQ4: How can a monitoring system adapt its behavior to efficiently
operate in edge environments? RQ4 studies how a monitoring system
can operate in resource-constrained edge environments guaranteeing
its capabilities while wisely using available resources. This thesis pro-
poses an energy-aware approach that can guide developers to implement
an (AI-based) self-adaptive monitoring application able of switching its op-
eration modes in response to changes in the environment, finally bal-
ancing energy consumption with the application-level objectives. This con-
tribution was presented at the 38th International Conference on Auto-
mated Software Engineering (ASE) and published in its proceedings
with the title “An Energy-Aware Approach to Design Self-Adaptive
AI-based Applications on the Edge” [240].

The thesis is structured as follows. Chapter 1 presents the cloud con-
tinuum, its characteristics, and highlights the main challenges that af-
fect the monitoring activities. Chapter 2 deeply analyzes the two RCs
of monitoring in the cloud continuum, the identified research gaps,
and the main thesis contributions to the four RQs. The thesis is then
divided into two parts corresponding to the two research challenges of
interest. Part I presents contributions about adapting monitoring sys-

4 introduction

tems to evolving requirements. In particular, Chapter 3 explores RQ1

and presents a monitoring framework for automated life-cycle man-
agement of probes, while Chapter 4 investigates RQ2 and describes
the definition and assessment of probe deployment patterns. Part II
presents contributions about adapting monitoring systems to the avail-
able resources. Specifically, Chapter 5 studies RQ3 and presents a self-
adaptive monitoring approach for fog environments, while Chapter 6

investigates RQ4 and proposes an approach to design of energy-aware
and self-adaptive monitoring applications for edge environments. Fi-
nally, Chapter 7 presents concluding remarks and future work.

1
T H E C L O U D C O N T I N U U M

The rise of cloud computing is considered one of the factors that
contributed to the development and spread of Internet-of-Things (IoT)
applications [201]. These applications usually collect data from IoT de-
vices (e.g., sensors, home appliances, smartphones), and rely on cloud
resources for storage, data processing, and decision making [201, 263].

As reported in a recent analysis by IoT Analytics, the number of
devices connected to the network should reach 16.7 billion by the end
of 2023, while it is expected to be more than 29 billion by 2027 [49].
This large number of devices produces a massive amount of data, that
might reach 80 billion zettabytes by 2025 according to a forecast con-
ducted by the International Data Corporation in 2021 [117]. Moving
this large amount of data from remote devices to cloud data centers
can be inefficient, or in same cases, it might be even infeasible be-
cause of bandwidth limitations [263]. Despite an IoT-to-Cloud commu-
nication model can support non-latency sensitive applications, such
communication model is unfeasible for (near) real-time scenarios with
demanding response time constraints (i.e., milliseconds or microsec-
onds), such as, patient monitoring, drone fleets, cognitive assistance,
or autonomous driving [263].

Recently, researchers and practitioners started considering the po-
tential benefits of locating computing resources closer to end devices,
where data is generated [36, 41, 43, 62, 263]. By interconnecting large-
scale cloud data centers in the core network, with servers and network
devices distributed across the metro and access networks [263], it is
possible to provide seamless access to a continuum of cloud resources,
namely, the cloud continuum, to support the needs of such application
scenarios [36, 176].

Many computing paradigms have been proposed in the last decade
to fill the gap between the Cloud and the IoT devices [263], thus
realizing the continuum. In particular, fog computing [43] and edge
computing [216] emerged among many others (e.g., edge clouds [57],
cloudlet [208], multi-access edge computing [203]), but multiple defini-
tions of what the constituting tiers and the role of the cloud continuum
are can be found in current literature.

This chapter is organized as follows. Section 1.1 presents the defini-
tion of cloud continuum and its recent evolution. Section 1.2 provides
background information about cloud computing and its main limita-
tions. Section 1.3 describes the fog computing characteristics and the
main differences with the Cloud. Section 1.4 presents the edge com-
puting and the main differences with the Fog. Finally, Section 1.5 in-

5

6 the cloud continuum

troduces the main challenges that affect monitoring activities in the
cloud continuum environment.

1.1 introduction to cloud continuum

The definition of cloud continuum in current literature is not unique
and has evolved in the last years [176]. In a recent mapping study,
Moreschini et al. [176] consider 36 studies that propose definitions to
cloud continuum dated from 2016 to 2022. The authors identify three
main groups of definitions.

Studies in the first group define the cloud continuum as an extension
of the resources and focus on their distribution related to the concept of
fog and edge computing, that is, they consider it as “an aggregation
of heterogeneous resources from the Edge to the Cloud” [176]. Stud-
ies in the second group define the cloud continuum as an extension of
computational capabilities and focus on processing particularly, that is,
they consider it as a “set of processing units located between the IoT
and the Cloud” [176]. The third group is composed by the remaining
studies not belonging to any of the two previous groups. They mainly
focus on the different digital services executed across multiple physi-
cal infrastructures, without particular focus neither on the distribution
of the resources nor on the computational capabilities [176].

The two earliest definitions of cloud continuum have been both pre-
sented in 2016. Chiang and Zhang [62] define the cloud continuum
referring to computational aspects explicitly, highlighting where and
how the computation is performed. On the other hand, Gupta et al.
[113] define the cloud continuum as “a continuum of resources from
the network edge, through the core network, to the data centers”. It is
worth noting the study by Gupta et al. [113] belongs to gray literature.
However, it is referred to as the first definition of cloud continuum
by many other peer-reviewed studies, and “it represents an important
milestone for the definition of cloud continuum that has evolved over
time with the addition/removal of other keyword” according to the
authors of the mapping study [176].

In more recent studies, Dustdar et al. [81] define the cloud contin-
uum as a system simultaneously operated across the cloud, fog, and
edge computing tiers; while Spillner et al. [223] highlight it is a “novel
abstraction layer to express a continuous range of capacities”.

There is no complete agreement in current literature about how ex-
tensive the Cloud is, and so, about which other computing tiers (i.e.,
Fog, Edge, and IoT) are part of the cloud continuum. For instance,
Kassir et al. [139] consider the terms “cloud-to-thing(s) continuum”
and “Fog-to-Cloud continuum” synonyms. Similarly, both Mehran et
al. [165] and Nezami et al. [180] use the terms “Cloud-fog continuum”
and “fog continuum” to indicate the continuum extends the Cloud to-
wards the fog computing. Kahvazadeh et al. [136] use the term “IoT
continuum”, but in the end they describe the same connection between

1.2 cloud computing 7

cloud and edge computing. On the other hand, Xhafa and Krause [260]
define the cloud continuum as an ecosystem comprising digital ser-
vices operated across Fog, Edge, and IoT.

In studies belonging to the second group, that is, those focusing
on the processing capabilities, the definition of cloud continuum con-
sider connecting any computational-enabled entities (e.g., data centers
and fog/edge/IoT nodes). For instance, Beckman et al. [39] define the
cloud continuum as “a collective of components with various capa-
bilities and numbers in aggregate”. Meanwhile, Balouek-Thomert et
al. [35] define it as “a digital infrastructure jointly used by complex
application workflows” without mentioning any specific nodes being
connected by the cloud continuum.

By unifying the two main groups of definitions (i.e., extension of
processing and extension of resources), Moreschini et al. [176] propose
a new comprehensive definition of the cloud continuum as the out-
come of their mapping study:

Cloud continuum (Definition 1.1). Cloud continuum is an extension of
the traditional Cloud towards multiple entities (e.g., Edge, Fog, IoT)
that provide analysis, processing, storage, and data generation capabil-
ities [176].

In this thesis, the cloud continuum serves as an extension of both
processing and resources, as defined by Moreschini et al. [176] in Def-
inition 1.1. Specifically, the Cloud, the Fog, and the Edge are consid-
ered as entities that realize the continuum of resources and processing,
while the IoT is viewed as the motivation for implementing the cloud
continuum, and not part of the constituting tiers.

1.2 cloud computing

Cloud computing became the main computing paradigm in the last
decade, accelerating digital transformation and creating new business
opportunities in many sectors (e.g., agriculture, healthcare, manufac-
turing, information and communication technology) [163, 226].

Cloud computing (Definition 1.2). Cloud computing enables on-
demand and ubiquitous access to (virtually) infinite shared resources
(e.g., storage, servers, networks, and services) via the network. They
are provided by pools of configurable and virtualized computing re-
sources operated in data centers, that can be dynamically reconfig-
ured with minimal effort to accommodate variable and scalable work-
loads [166].

The U.S. National Institute of Standards and Technology (NIST) de-
fines the cloud model as consisting of five key characteristics [166].
Such characteristics contribute to the appealing attributes of cloud
computing, such as on-demand provisioning, elasticity, ubiquitous ac-
cessibility, reduced initial investments, and accelerated
time-to-market [41].

8 the cloud continuum

i) On-demand self-service, that is, a consumer can automatically pro-
vision computing resources (e.g., servers and storage) as needed
without requiring any human interaction with the service
providers;

ii) Broad network access, that is, cloud resources are available over
the network and accessed via heterogeneous clients (e.g., mobile
devices, laptops, and workstations) using standard mechanisms;

iii) Resource pooling, that is, provider’s resources are pooled to offer
services to multiple consumers in a multi-tenant fashion. Both
physical and virtual resources are dynamically (re)allocated ac-
cording to the current demand, and the customers are usually
unaware of the precise location of the resources provided, de-
spite they might be able to specify the location (e.g., data center);

iv) Rapid elasticity, that is, cloud resources can be elastically (and in
some cases automatically) (un)provisioned to quickly adapt to
the current workload demands. From the consumer’s perspec-
tive, resources appear infinite and can be consumed at any time;

v) Measured service, that is, cloud-based systems leverage metering
to control and optimize the resource usage. Usage metrics are
visible to both the provider and consumer for monitoring pur-
poses and to enable a pay-per-use cost model.

Cloud resources can be consumed according to three main service
models: Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), and
Software-as-a-Service (SaaS) [166]. Consumers can use a variety of these
services depending on their needs [263].

Infrastructure-as-a-Service (Definition 1.3). IaaS provides consumers
with the capability to provision IT infrastructure for compute, storage,
and network resources. Consumers have control over the provisioned
infrastructure resources in terms of configurations (e.g., CPU/RAM ca-
pacity for compute services), operating systems, storage, and they are
able to deploy and run arbitrary software. However, consumers do not
manage or control the underlying cloud infrastructure [166, 263].

Platform-as-a-Service (Definition 1.4). PaaS enables consumers to fo-
cus on software development, fully supporting the software life-cycle,
often using middleware for software management and configuration.
Consumers do not manage or control the underlying infrastructure
(e.g., network, servers, operating systems, or storage). However, they
have control over the deployed applications and possibly configuration
settings for the hosting environment. In addition, PaaS providers often
include tools for database management and application scaling [166,
263].

1.2 cloud computing 9

Software-as-a-Service (Definition 1.5). SaaS allows consumers to use
provider’s applications that run on a cloud infrastructure. The ap-
plications can be accessed from a variety of client devices (e.g., web
browsers or a program interface). Consumers have no control of the
underlying cloud infrastructure (e.g., network, servers, operating sys-
tems, or storage) or even individual application capabilities. However,
it is usually possible for consumers to access a limited user-specific
application configuration settings [166].

The NIST defines also four types of cloud deployments: private
cloud, community cloud, public cloud, and hybrid cloud [166].

Private cloud (Definition 1.6). Private clouds provide infrastructure to a
single entity exclusively and offer a high degree of privacy and config-
urability. They are a good choice for organizations that need infrastruc-
ture for their applications. A private cloud may be owned, managed,
and operated by an organization, a third party, or a combination of the
two, and may be located on or off premises [166, 263].

Community cloud (Definition 1.7). Community clouds are used by spe-
cific community of users, and the cloud infrastructure is usually shared
by multiple organizations that have the same concerns, for example,
the same mission or compliance. A community cloud results in de-
centralized ownership of the cloud by multiple organizations within
the community, a third party, or some combination of them, without
relying on a large cloud provider for the infrastructure [166, 263].

Public cloud (Definition 1.8). Public clouds are the most common de-
ployment type of cloud computing. In a public cloud, the infrastruc-
ture is for open use by the general public and it exists on the premises
of a cloud provider [166, 263].

Hybrid cloud (Definition 1.9). Hybrid clouds are a combination of
two or more different cloud deployment models (i.e., private, commu-
nity, or public). They enable consumers to have greater control over
the cloud infrastructure and streamline the capabilities of the differ-
ent deployment models through standardized or proprietary technolo-
gies [166, 263].

Despite cloud computing helps to create ubiquitous computing and
flexible access to resource pools, the time required to access cloud ser-
vices can be prohibitive for some applications with (ultra)low-latency
and high-bandwidth requirements [43, 263]. In addition, the increas-
ing number of connected devices and the rapid growth of data gener-
ated at the edge require cloud resources to be closer to where the data
is actually generated [263]. To address these needs, fog and edge com-
puting paradigms have been proposed by both industry and
academia [43, 216].

10 the cloud continuum

1.3 fog computing

Fog computing (Definition 1.10). Fog computing is a layered, decentral-
ized, and hierarchical computing paradigm that enables ubiquitous
access to computation, communication, control, and storage closer to
the edge of the network relying on heterogeneous nodes [43, 125, 258].
It supports the deployment of distributed, latency-aware applications
and services, and reduces data transfer costs, optimizing bandwidth
usage, and improving user experience [43, 62, 258, 263].

The fog computing infrastructure consists of nodes, either physi-
cal or virtual, located in the metro and access network between edge
devices and centralized cloud data centers in the core network [263].
Fog nodes are heterogeneous and enabled with virtualization capabil-
ities, and they include servers, routers, switches, and access points [41,
43, 62, 263]. Moreover, they are context-aware, and can be organized
in vertical clusters to support isolation, horizontal clusters to support
federation, or latency-based clusters according to their distance from
edge devices [125]. A wide array of industries could benefit from utiliz-
ing the fog computing paradigm, for example, energy, manufacturing,
transportation, healthcare, and smart cities [263].

As with cloud computing, NIST defines the paradigm of fog com-
puting describing its six primary characteristics [125]:

i) Contextual location awareness and low latency, that is, the low-latency
capability is enabled due to contextual location and data ex-
change cost-awareness of nodes. Fog nodes, which are often po-
sitioned in closer proximity of end-devices, facilitate faster anal-
ysis and response to data generated by these devices compared
to centralized cloud data centers;

ii) Geographical distribution, that is, geo-distributed and identifiable
deployments are necessary for fog services and applications to
provide high-quality services in proximity to end-devices (e.g.,
streaming services to vehicles on the move through nodes lo-
cated along highways);

iii) Heterogeneity, that is, it enables the collection and processing of
heterogeneous data acquired through different communication
networks;

iv) Interoperability and federation, that is, fog components must in-
teroperate and running services must be federated to provide
seamless support for services necessitates collaboration among
various providers (e.g., real-time streaming);

v) Real-time interactions, that is, it fosters real-time interactions rather
than - or only - batch processing data-intensive applications and
services;

1.4 edge computing 11

vi) Scalability and agility of federated clusters, that is, it eases adaptive
functions at both cluster and cluster-of-clusters level (e.g., com-
puting elasticity, resource pooling, data-load management, and
network condition variation).

In addition, they define two extra characteristics frequently linked
to fog computing [125]:

i) Predominance of wireless access, that is, it is highly compatible with
wireless IoT access networks to support the large number of
wireless sensors that requires distributed analytics and compute;

ii) Support for mobility, that is, it must support mobility techniques
to enable fog computing applications requiring direct communi-
cation with mobile devices.

Fog computing, like the conventional cloud computing model, im-
plements the architecture in several network topology layers [125, 263].
Therefore, fog computing supports traditional cloud computing ser-
vice models, that is, IaaS, PaaS, and SaaS, and enables private, com-
munity, public, and hybrid deployments [125].

Several differences exist between cloud and fog computing, particu-
larly in the hardware infrastructure scale [263]. Cloud computing gen-
erally utilizes extensive data centers, whereas fog computing employs
diverse and compact devices such as servers, routers, switches, gate-
ways, or access points [62, 125, 263]. As these devices require less space
for deployment in the field compared to the data centers used in cloud
computing, they can be positioned closer to users, resulting in faster
access times [263]. Moreover, cloud computing provides high avail-
ability of computing resources, albeit with comparably high power
consumption, while fog computing supplies moderate resource avail-
ability with lower power usage [128].

Fog computing services and applications can be accessed through
connected devices from the edge of the network (i.e., access and metro
networks) to the network core, while cloud computing can only be ac-
cessed through the network core itself [263]. Additionally, fog services
can operate autonomously with restricted or no Internet connectivity,
and then transmit critical updates to the cloud as soon as a connection
is again available. In contrast, cloud computing demands constant de-
vice connection while the cloud service is in use [263].

1.4 edge computing

The origin of edge computing is connected to the introduction of
content delivery networks (CDNs) to accelerate web performance back
in 1990 [207]. Since then, edge computing has evolved to encompass
not only caching but also computation and storage assistance for mo-
bile users and the IoT devices [207].

12 the cloud continuum

Edge computing (Definition 1.11). Edge computing provides computa-
tional and storage facilities at the very edge of the network, typically
within one or two hops [263]. It has a distributed and localized archi-
tecture consisting of heterogeneous resource-constrained devices with
limited capabilities [258, 263]. Edge computing enables computation
to occur at the edge of the network, processing downstream data in
support of cloud services and upstream data in support of IoT ser-
vices[216].

Edge computing allows for efficient access to network services with
high bandwidth and ultra-low latency, making it ideal for real-time ap-
plications like surveillance, virtual reality, and traffic monitoring [141].
To support such requirements, it is characterized by:

i) Mobility support, that is, it decouples the location identity from
the host identity and implements a distributed directory system
(i.e., the Locator ID Separation Protocol (LISP)) to support mo-
bile users [141];

ii) Location and contextual awareness, that is, it enables consumers to
employ several technologies (e.g., cell phone infrastructure, GPS,
or wireless access points) to find the location of the devices and
access to the closest services to their physical location. Also, con-
text information of the mobile device can be used to take offload-
ing decisions [114], and it enables the providers to improve the
Quality-of-Experience (QoE) [141];

iii) Dense geographical distribution and proximity, that is, it brings cloud-
based services (i.e., computation and storage) on top of geo-
distributed heterogeneous devices (e.g., access points, routers,
base stations) at the edge of the network forming a very dense
environment [141, 216]. The availability of the computational re-
sources and services in the proximity of consumers allows lever-
aging the network context information for making offloading de-
cisions and service usage decisions[114, 141];

iv) Low latency, that is, it reduces the latency in accessing the services
by making available services and applications in the proximity
of the end devices [141], enabling latency-sensitive application
scenarios (e.g., cognitive assistance [59]);

v) Heterogeneity, that is, it is characterized by the existence of het-
erogeneous elements at different levels, for instance, end devices
software and hardware technologies, service APIs and platforms,
and communication protocols [141].

It is worth noting that in current literature, the terms fog and edge
computing are often used interchangeably [216]. Additionally, some
sources consider the Fog to encompass the Edge as well [263]. The
OpenFog Consortium - now Industry IoT Consortium - tried to clarify

1.5 monitoring challenges in the cloud continuum 13

and make a distinction in the “OpenFog Reference Architecture for
Fog Computing” white paper [258]. In particular, they describe the fog
computing as hierarchical and able to provide computing, networking,
storage, control, and acceleration anywhere from the Cloud to the IoT
devices. On the other hand, the edge computing tends to be limited
to computing and storage at the very edge of the network [263]. In
this thesis, fog and edge computing are treated as separate entities, as
motivated by the fog reference architecture white paper [258].

1.5 monitoring challenges in the cloud continuum

The cloud continuum environment connects cloud data centers in
the core network with fog and edge nodes in the metro and access
network, resulting in a highly distributed and heterogeneous environ-
ment with varying software and hardware stacks [176]. The resources
are accessible in a multi-tenant fashion, meaning that they are shared
among tenants who jointly use them to deliver their services. Further-
more, the fog and edge computing tiers are less reliable and less pow-
erful than the upper cloud tier due to prevalent wireless connections
and limited resources available on the nodes providing computational
capabilities [263].

These characteristics pose a challenge to the continuum monitoring
systems on several dimensions. In particular, this thesis focuses two
challenges.

The first challenge arises from the dynamic, heterogeneous, and un-
predictable nature of the continuum environment. For example, un-
foreseeable circumstances affecting the monitored targets, such as ser-
vice failures, or changing business requirements, may necessitate the
collection of new indicators and modifications to the deployment lo-
cation of monitoring components. This requires monitoring systems
to adapt to changing operating requirements. The impact of this chal-
lenge is felt across all tiers of the continuum, starting from the cloud
tier. Monitoring systems must handle various technological stacks,
automate their configuration process, and strike a balance between
technology constraints, and operators’ needs in multi-tenant environ-
ments.

The second challenge pertains to the efficient utilization of compu-
tational resources in monitoring systems. Especially when monitoring
activities are executed on top of fog and edge devices, the volume
of collected data can be very large due to the number of devices
involved. This can reach millions in the Fog and the Edge, and bil-
lions if we consider monitoring data coming from devices in the IoT
tier [49]. Furthermore, when computations are performed at the net-
work’s edge, devices may be resource-constrained and powered by
unreliable sources such as batteries present in the gateways deployed
in remote rural areas for wildlife monitoring. Therefore, monitoring

14 the cloud continuum

systems must use available resources wisely and consider adapting
the monitoring configuration.

The next chapter provides a deep analysis these two challenges by
identifying the research gaps that resulted in the four research ques-
tions studied in this thesis.

2
M O N I T O R I N G I N T H E C L O U D C O N T I N U U M

Monitoring is a crucial activity in various fields, including environ-
mental sciences, ICT, healthcare, and engineering. The data collected
through monitoring activities can help understand the behavior of an
observed target and provide meaningful insights through data anal-
ysis. According to the Oxford dictionary, the term “monitoring” is
defined as follows.

Monitoring (Definition 2.1). To observe, supervise, or keep under re-
view; to keep under observation; to measure or test at intervals, espe-
cially for the purpose of regulation or control [77].

Monitoring activities are carried out by monitoring systems. For ex-
ample, continuous emissions monitoring systems (CEMS) are used to
monitor gas streams from combustion in industrial processes [126].
The data collected from CEMS is used to provide information for com-
bustion control and to comply with air emission standards imposed
by regulatory agencies [126]. Similarly, in the context of air pollution
monitoring, data collected by sensors can be used to indicate air qual-
ity through colorful LEDs installed on IoT devices deployed in public
areas, increasing public awareness about air quality [103]. In the ICT
industry, monitoring computing and networking resources is crucial
to meet Quality-of-Service (QoS) requirements, avoid Service Level
Agreement (SLA) violations, and optimize capacity and resource plan-
ning, among other functionalities [4].

This chapter presents background information on monitoring sys-
tems and defines their basic components and functionalities. Addi-
tionally, it analyzes in depth the two RCs investigated in this thesis by
identifying research gaps that resulted in four RQs. Finally, for each
RQ, it briefly describes the main contributions.

2.1 anatomy of a monitoring system

As monitoring systems are implemented in various domains and
approached differently, literature offers several definitions. This thesis
considers active monitoring systems, that is, monitoring systems which
rely on observations collected by probes, in contrast to passive mon-
itoring systems which rely on the passive observation and analysis
of existing targets, such as network flows [47], logs [58], or execution
traces [29]. This thesis defines a monitoring system with a comprehen-
sive yet general description that includes all key elements of such a
system.

15

16 monitoring in the cloud continuum

Monitoring System (Definition 2.2). A monitoring system is any soft-
ware system operating in the cloud continuum that is designed to ob-
serve and measure any indicator of a physical or virtual target.

Target (Definition 2.3). A target is any resource either physical or virtual
that can be monitored.

Indicator (Definition 2.4). An indicator (i.e., a metric) is an observable
target behavior for which raw measurements can be collected [85, 133,
146].

Probe (Definition 2.5). A probe is a component located close enough to
a target responsible for collecting one or multiple indicators [238, 248],
such as sampling the CPU consumption of a service or recording the
temperature in a room from a sensor.

Active monitoring systems can be classified into two groups: those
that deploy probes inside the targets to collect indicators directly from
the target’s environment and send the data to an external collector,
and those that rely on external probes to retrieve indicators from in-
terfaces exposed by the targets without adding any software to them.
Although monitoring systems that rely on external probes have low
maintenance costs and less risk of interference, monitoring systems
that deploy probes within the targets can provide deeper and more
specialized measurements than the protocols used in the first case (e.g.,
SNMP [54]). This is because they can access and have visibility of the
same environment.

Probes

Data Channels Ingestion Services

Ta
rg

et
s

Consuming Services

Visualization Alerting Management

......

Observing

Processing

Exposing

This image has been designed using images from Flaticon.com

Figure 2.1: Generic architecture of a monitoring system.

A monitoring system provides three main functionality: (i) observ-
ing, (ii) processing, and (iii) exposing [1]. Generally, such functionali-
ties are realized by mean of four key components: probes, data chan-

2.2 adapting monitoring to evolving requirements 17

nels, ingestion services, and consuming services. Figure 2.1 graphi-
cally illustrates these components.

The probes are opportunistically placed to efficiently observe and
collect indicators from the targets. Depending on the type of probes,
the collected data can be shipped according to different patterns, for
instance probes could push or pull data according to different poli-
cies [4, 248].

The ingestion services can be both data repositories used to store in-
dicator values for offline analysis, and data streams used to immedi-
ately consume incoming data for online analysis. The communication
between the probes and the ingestion services can be mediated by data
channels that are responsible for processing and transferring the data.
In some cases, the data channels could be as simple as direct commu-
nication between the probes and the ingestion services. In some other
cases, the data channels are pipelines devoted to data pre-processing
and distribution, according to non-trivial strategies.

The consuming services are used to access and utilize the monitoring
data provided by the ingestion services. When the collected data is
used to support advanced analysis services, multiple systems may an-
alyze the collected indicator values (e.g., alerting or management and
planning systems).

2.2 adapting monitoring to evolving requirements

Monitoring systems operating in the cloud continuum face several
challenges posed by the characteristics of such environments, and the
needs of both applications and operators. The first research challenge
(RC1) investigated in this thesis concerns with the adaptation of moni-
toring systems to evolving requirements.

For a monitoring system operating in the cloud continuum, sup-
porting its automated evolution is crucial to accommodate changes in
operators’ needs (e.g., the request of collecting new indicators) or to
react to run-time unpredictable events such as anomalies and failures.
Additionally, the cloud continuum is a very heterogeneous environ-
ment utilized in a multi-tenant fashion [176], thus a monitoring system
should abstract from underlying technologies and alleviate operators
from the configuration burden of adapting the system to emerging
requirements [1, 4].

In summary, the monitoring systems should facilitate their auto-
mated evolution while adhering to requirements from a diverse and
multi-tenant environment. The following section examines the exist-
ing literature, identifies research gaps, and briefly outlines this thesis’s
contribution to the related research questions.

18 monitoring in the cloud continuum

2.2.1 Support to Automated Evolution

A monitoring system must continuously observe the monitored re-
sources to timely react to anomalous behaviors, generating alerts, and
activating countermeasures [55, 149, 200, 215, 253]. Several cloud solu-
tions are systematically enriched with monitoring capabilities, either
natively offered by the platforms (e.g., Kubernetes [27]), or provided
by external tools (e.g., Elastic Stack [31] and Prometheus [26]).

These monitoring systems are mainly designed to collect a stable set
of indicators over time, being challenged by scenarios that require rapidly
modifying the set of collected indicators. In contrast, there are many well-
known causes of sudden changes to the set of collected indicators. The
goals of the operators change with the technical and business objectives
of the organization, consequently causing changes in the set of the in-
dicators that must be collected. The software usage patterns that emerge
from the field continuously evolve, often determining the need of ad-
justing the monitored indicators accordingly. The collected indicators
must be adapted to changes in the workload, which must be carefully
observed to timely reveal any symptom of stress on the services. More-
over, service updates normally require putting in place ad-hoc monitor-
ing capabilities that target the updated services to measure their reli-
ability and timely detect misbehaviors. Sometimes, the observation of
failures generates the need of continuously observing the services that
fail often, to prevent new failures and localize the causes of problems;
and dynamically deployed scenarios (e.g., to timely react to disasters and
emergencies) require quickly deploying new functional services and
the corresponding monitoring components.

Relevantly, all these factors are dynamic and cannot be entirely antic-
ipated. Changing the set of collected indicators often requires chang-
ing the set of probes running in the field. However, configuring and
deploying new probes, as well as undeploying the existing probes,
are non-trivial and time-consuming activities. For instance, a tech com-
pany running many cloud services needs to collect indicators at dif-
ferent granularity levels, taking into account both business and tech-
nical needs [215]. The needs of managers shall follow business goals
and market evolution, while the needs of technicians shall follow QoS
goals and software evolution. These needs evolve independently, and
simultaneous changes in both business and technology may generate
a rapidly increasing number of requests for the operators responsible
of configuring the monitoring system. Operators may struggle adapt-
ing their monitoring systems at some point, especially when a large
number of targets (e.g., devices, platforms, and services) has to be
monitored. The first research question (RQ1) studies the adaptation of
monitoring systems.

2.2 adapting monitoring to evolving requirements 19

Research Question 1 (RQ1)

How can a monitoring system be adapted to evolving opera-
tors’ needs?

This RQ analyzes how a monitoring system can assist cloud opera-
tors and adapt its functionalities according to the their evolving needs
while minimizing the number of operational changes.

To address dynamicity and evolution of monitoring systems, re-
searchers and practitioners focused on increasing the level of automation
of probe management. Figure 2.2 shows the increasing levels of automa-
tion that have been introduced in monitoring systems.

Probes
Observe

behavior

Handle probes
life-cycle manually

Targets Collect data

Operator

Manually Configurable Monitoring System

Automated
scripts

Observe
behavior

Handle probes
life-cycle with scripts

Targets Collect data

Operator

Scripted Monitoring System

Observe
behavior

Handle probes
life-cycle manually

Targets Collect data

Operator

Monitoring System Supporting Autoscaling

Up/Down
scaling

Observe
behavior

Handle probes
life-cycle manually

Targets Collect data

Operator

MaaS (Activate/Deactivate)

MaaS System

Activate/
Deactivate

Observe
behavior

Choose indicators
supported by X

Targets on
platform X

Collect data

Operator

MaaS (Platform Specific)

MaaS System for X

Observe
behavior

Choose indicators

Targets Collect data

Operator

MaaS (Proposed Approach)

MaaS System Probes
Catalog

- Scalable deployment
- Error handling
- Technology-agnostic

(f)(e)(d)

(c)(b)(a)

Probes
Probes

Probes

Figure 2.2: Automation levels introduced in monitoring systems.

Simple manually configurable monitoring systems (Figure 2.2 (a)), such
as Elastic Stack [31] and Prometheus [26], require configuring and de-
ploying probes manually, that is, the life-cycle of every component of
the monitoring system must be handled manually by operators. Al-
though useful, these monitoring systems are expensive to use in pres-
ence of frequent changes to the set of collected indicators, and badly
adapt to dynamic scenarios.

Some probe deployment tasks could be implemented using general
purpose deployment systems (Figure 2.2 (b)), such as Ansible [124] and
Puppet [123]. However, these systems are not designed to specifically
serve monitoring systems, and defining and controlling the deploy-
ment strategies would still be entirely on the shoulder of the operators.
As discussed next in this thesis, general purpose deployment systems
can be indeed used as basic building blocks of more sophisticated de-
ployment solutions.

A simple form of automation present in some systems consists of
the support to autoscaling (Figure 2.2 (c)), that is, probes automatically
adapt to a changing number of replica of a monitored target [238]. This
is a useful feature, although limited to a specific scenario, missing to

20 monitoring in the cloud continuum

cope with the many changes that must be actuated as a consequence
of changes on the set of collected indicators and monitored targets.

To obtain a sufficient level of flexibility to address the aforemen-
tioned characteristics, Monitoring-as-a-Service (MaaS) solutions have
been studied [4, 87, 192, 238] (Figure 2.2 (d)-(f)). In fact, MaaS frame-
works provide operators with the capability to flexibly decide the set
of indicators to be collected, alleviating them from the burden of con-
figuring and handling the life-cycle of the probes. In principle, an oper-
ator using a MaaS framework can simply specify the set of indicators
that must be collected, while the operational aspects are automated by
the framework.

Unfortunately, in many cases, automation is limited to the activation
of manually pre-deployed probes [238] (Figure 2.2 (d)), that is, probes that
have been already installed and configured manually. Adding probes
to collect new indicators and removing existing probes must still be
done manually by operators.

A higher degree of automation is provided by some specific plat-
forms (Figure 2.2 (e)) that natively offer monitoring capabilities (e.g.,
Monasca [192]). These solutions are effective but significantly limit
both the range of platforms and indicators that can be used. So far,
there is no general MaaS solution that can be used to collect virtually any
indicator on any platform. Note that a MaaS system that fully handles
the life-cycle of probes is the only solution that can entirely free opera-
tors from the burden of handling probe deployment. In fact, they would be
able to control the monitoring system by simply specifying the set of
indicators to be collected.

Contribution

To address the aforementioned gap in MaaS solutions, this the-
sis proposes a MaaS framework (Figure 2.2 (f)) that exploits both
a catalog of probes annotated with metadata and access to the
API of the environment running the monitored resources, to de-
liver full MaaS capabilities including error-handling. The empirical
results show the effectiveness of the framework with both contain-
ers and VMs, the efficiency of error-handling, and the scalability for
an increasing number of operators’ requests. This contribution
is presented in Chapter 3.

2.2.2 Support to Multi-Tenancy and Heterogeneity

To deal with the multi-tenancy and the diverse number of technolo-
gies that characterize the cloud continuum environments, a monitor-
ing system must also consider how to distribute the probes in order to
respect and optimize both technological and operators’ requirements.
In fact, multiple probes serving different operators in a multi-tenant
environment can be deployed within a same VM to save computa-

2.2 adapting monitoring to evolving requirements 21

tional resources, at the expense of a reduced degree of privacy and
security. On the other hand, one probe per container or VM can be
deployed to preserve privacy, at the expense of more computational
resources allocated to the monitoring system.

The flexibility of monitoring systems and probe technologies allows
for diverse probe deployment patterns, which consist of probe deployment
architectures targeting specific environments (e.g., a container-based
environment) and satisfying specific constraints (e.g., probes must be
shared among multiple operators). The choice of a probe deployment
pattern has implications on the effectiveness and efficiency of the re-
sulting monitoring system.

The many possible probe deployment patterns have not been ana-
lyzed and assessed systematically so far, and the engineers who design
their monitoring systems are called to take decisions whose implica-
tions might be relatively well-known. The existing literature discusses
the characteristics of monitoring systems, without investigating the
many possible probe deployment patterns and their impact [4, 13, 87].

The second research question refers to monitoring systems and probe
deployments.

Research Question 2 (RQ2)

How can a monitoring system operate probes in heteroge-
neous and multi-tenant environments?

This RQ studies possible probe deployment patterns by identifying and
characterizing the components that can be used to deploy probes.

In software engineering, patterns are used to document knowledge
about how to solve recurring problems [209]. With the rise of the
cloud computing paradigm, the community has begun working on
cloud computing patterns [88, 143, 221]. Although their development
is still in the early stages, several online catalogs have been published,
providing both specific [16, 169] and agnostic [88] solutions. Specific
cloud patterns refer to particular cloud providers, are customized for
a target environment, and provide solutions optimized for it. In con-
trast, agnostic patterns are more generic solutions that are not tied to a
particular technology, are flexible, and can be applied to different plat-
forms. Agnostic pattern definition is a valuable means of improving
portability and interoperability between different cloud environments
[76]. However, none of these work specifically address the issue of
probe deployment.

Burns and Oppenheimer [50] propose design patterns for distributed
systems based on containers. Despite their work does not address the
issue of probe deployment, some of their patters can be used for mon-
itoring purposes (i.e., adapter single-node, multi-container patterns).

Albuquerque et al. [9] present proactive monitoring design patterns
for cloud-native applications, basing their definitions on existing lit-

22 monitoring in the cloud continuum

erature and tools. In particular, they present three patterns that can
generate events according to the event-based monitoring paradigm,
that is, Liveness Endpoint, Readiness Endpoint, and Synthetic Testing.
However, they do not focus on the placement of monitoring probes
and the possibility to share monitoring resources among users, and
they do not provide any empirical assessment about pattern scalabil-
ity as well.

Contribution

To address the research gap mentioned and answer RQ2, this
thesis provides the definition, analysis, and qualitative and quantita-
tive evaluation of 11 possible probe deployment patterns. The results
demonstrate the trade-offs between patterns that require more
resources to ensure good separation between users in multi-
tenant environments and patterns that make better use of re-
sources while reducing the degree of separation. The results
have been cross-validated by addressing three realistic monitor-
ing scenarios. Best practices have been distilled from the findings
to guide engineers in implementing and configuring their mon-
itoring systems. This contribution is presented in Chapter 4.

2.3 adapting monitoring to available resources

The second research challenge (RC2) investigated by this thesis con-
cerns with the adaptation of monitoring systems to the available resources,
that is particularly relevant in the context of fog and edge environ-
ments. A monitoring system operating in these environments must
efficiently use available resources to handle an increasing number of
running devices, applications, and collected indicators, which produce
a significant amount of data for storage and analysis [1, 228]. Addition-
ally, it is crucial for a monitoring system to function effectively in un-
predictable and possibly resource-limited conditions. This entails en-
suring its capabilities while utilizing available resources wisely, which
may be scarce at the edge of the network [216].

In summary, monitoring systems in fog and edge computing envi-
ronments must efficiently utilize available resources by adapting their
configuration and balancing their capabilities in resource-limited con-
ditions. The following section discusses current literature, identifies re-
search gaps, and briefly describes this thesis’s contribution to related
research questions.

2.3.1 Efficiently Use Resources in the Fog

In the last decade, a large number of cloud monitoring solutions,
both commercial and academic, have been proposed [31, 37, 51, 182,
191, 215, 238, 241, 245]. However, they are seriously challenged by sev-

2.3 adapting monitoring to available resources 23

eral characteristics of the Fog, such as its massively distributed infras-
tructure characterized by frequent changes to the topology, and the
presence of resource-constrained devices [228, 263].

Taherizadeh et al. [228] investigated the requirements that must be
satisfied by monitoring systems specialized for adaptive applications
orchestrated upon the cloud continuum. The survey reveals that none
of the solutions available for the Cloud can satisfy all the require-
ments, identifying decentralization and resource optimization via self-
adaptation as two of the main open challenges. Similar conclusions
have been reported by Abderrahim et al. [1] who explicitly identify
the adaptability of the granularity of the reported measures as one of
the key properties for monitoring systems that operate in the Fog.

Peer-to-Peer (P2P) architectures have been investigated as viable ap-
proaches to effectively address monitoring in the Fog [1, 91, 108, 263].
P2P systems are “self-organizing systems of equal, autonomous enti-
ties (peers) which aim for the shared usage of distributed resources in
a networked environment avoiding central services" [186]. Therefore,
they represent a legitimate option to address the dynamism of the Fog
without imposing strong constraints on the stability of the operating
environment.

Unfortunately, although these monitoring systems show some de-
gree of adaptivity thanks to the features provided by P2P architectures
(e.g., they can tolerate node disconnections and broken communica-
tion links), they lack adaptation mechanisms that take into account the
monitored indicators [1, 91, 108]. In fact, the collected indicators reveal
important information about the monitored resources and their envi-
ronment, and can be exploited to increase the awareness and adapt-
ability of the monitoring system itself. For example, a monitoring com-
ponent running in a device exhausting its battery may stop monitor-
ing the non-essential indicators. Similarly, the trend of a monitored
indicator can be used to optimize the sampling rate to avoid wasting
resources (e.g., increasing/decreasing the sampling rate based on the
degree of stability of the indicator). Based on these considerations, the
following third research question is formulated.

Research Question 3 (RQ3)

How can a monitoring system adapt its behavior to efficiently
operate in fog environments?

This RQ studies how a monitoring system can efficiently operate in fog
environments by adapting its behavior to cope with a growing number
of running devices, applications, and collected indicators that produce
a large amount of data to store and analyze.

Monitoring approaches specifically designed for the fog environ-
ment have been recently investigated [46, 91, 109, 222]. In particular,
FMonE [46] is a monitoring system that relies on a container orchestra-

24 monitoring in the cloud continuum

tion system to build monitoring pipelines, addressing the distinctive
features of a fog infrastructure. It provides users with the flexibility to
define their monitoring pipelines and operate them across the active
regions.

PyMon [109] is a lightweight prototypical monitoring system avail-
able for relevant Docker-enabled architectures such as ARM, AARCH64

and x86_64, and particularly suitable for single board computers (SBC).
It extends the host-based monitoring tool Monit with capabilities to in-
spect running Docker containers.

Souza et al. [222] proposed a monitoring system that extends the
CLABS model [12] and it is capable of monitoring targets by deploying
services along the cloud continuum.

Unfortunately, none of these solutions implement adaptive policies
to adapt the behavior of the monitoring system to the collected data.
Furthermore, they are not based on a P2P architecture, so that, they
struggle to cope with some of the fog distinctive traits such as heavily
distributed infrastructures, rapid changes in the topology, and com-
munication links failures.

FogMon [91] is a fog-oriented monitoring system that collects and
aggregates data about resource consumption, network conditions, and
IoT devices directly connected to fog nodes. It exploits a two-tier
(Leader-Follower) P2P architecture and gossip protocols to reduce the
network overhead. Also, it adapts the number of Leader nodes in the
P2P overlay and the underlying Followers topology based on current
network conditions. However, it does not provide any self-adaptive
behaviors to govern the internal functioning of the monitoring system.
For instance, FogMon cannot be used to dynamically change the set
of the collected indicators or the sampling rate.

Among the works that are not specifically designed for monitoring
in fog environments, it is worth mentioning some that still relate to
it. In particular, ADMin [239] is an IoT-specific monitoring framework
designed to reduce the energy consumption of the devices and the
volume of data sent over the network. This is achieved essentially by
adapting the rate at which devices disseminate monitoring streams
based on run-time knowledge (e.g., stream evolution, variability, sea-
sonality).

Also, Tangari et al. [230] propose a self-adaptive and decentralized
system for resource monitoring in the scope of Software Defined Net-
works (SDN). It enables indicators collection through a self-tuning and
adaptive monitoring technique that adjusts its settings based on traffic
dynamics to balance operation costs with monitoring accuracy while
reducing network overhead. However, the proposed system lacks gen-
erality since the adaptation capabilities are limited to some predeter-
mined aspects, and it is not designed to support the capability to run
multiple and diverse adaptation rules.

SkyEye [108] is a monitoring solution operating on structured P2P
overlay networks. It provides continuous monitoring for a wide range

2.3 adapting monitoring to available resources 25

of indicators for all peers in the network. It is characterized by a tree
structure, which enables peer partitions in a hierarchical fashion. The
aggregated monitoring information received by the upper layers of the
tree describe the information of the peers in the corresponding sub-
trees. Messages are used to disseminate the global monitoring data
retrieved from the top levels and maintain the tree topology. Neverthe-
less, it is not explicitly designed for the Fog, and it completely lacks
monitoring adaptivity (e.g., changing the set of collected indicators).

Contribution

To address the research gap mentioned and answer RQ3, this
thesis proposes a self-adaptive P2P monitoring system that utilizes
a hierarchical P2P architecture and incorporates adaptive behav-
iors based on the MAPE-K feedback loop [140]. The system can ab-
stract monitored indicators and activate countermeasures based
on their status. Countermeasures are defined using a lightweight
rule-based system embedded in the peers. The empirical evalua-
tion compares the accuracy and effectiveness of the adaptive
version of the monitoring system with the non-adaptive ver-
sion. The results show that adaptive behaviors can increase the
accuracy of collected data and save network and power con-
sumption, but at the cost of higher memory consumption. This
contribution is presented in Chapter 5.

2.3.2 Efficiently Use Resources in the Edge

The Edge is the last tier of the cloud continuum, and it is particularly
characterized by resource-constrained devices that cannot indefinitely
supply a constant amount of power, such as, battery-powered devices
and computing devices powered by renewable energy sources (e.g.,
photovoltaic panels or wind turbines) [52, 84, 190].

AI-based monitoring systems are particularly resource-intensive ap-
plications that are increasingly deployed along the cloud continuum
and especially on the Edge, thus, carefully using energy is a key re-
quirement to feasibly run AI services within these environments. For
example, critical monitoring services for smart cities (e.g., pedestrian
detection and traffic analysis [66, 160, 178]), environmental monitor-
ing applications (e.g., wildfire detection [15, 156], and wildlife mon-
itoring [80, 210]), all require fast data processing and high accuracy,
with cost-effective energy consumption.

These scenarios require consuming a large volume of data generated
from Internet-of-Things (IoT) sensors in various forms (e.g., time series
values, video streams, images) with resource-greedy machine learning
models (e.g., exploiting TPUs or GPUs) [95, 132, 197]. In contrast, the
feasibility of scenarios that involve battery-powered devices [3, 22]

26 monitoring in the cloud continuum

depends on the capability of reducing energy consumption to extend
the battery life.

For these reasons, reducing energy consumption is a high-priority
objective and a key technical challenge to wisely use the available re-
sources [132]. The issue is exacerbated by the significant amount of
energy consumed by ICT services and the increasing energy costs [90,
119, 152, 187], but also by initiatives like the European Green Deal [67]
that accounts for “prioritizing energy efficiency” in its key principles.
Based on these observations and critical aspects, the fourth research
question for this thesis is formulated.

Research Question 4 (RQ4)

How can a monitoring system adapt its behavior to efficiently
operate in edge environments?

This RQ studies how a monitoring system can operate in resource-
constrained edge environments guaranteeing its capabilities while
wisely using available resources.

Researchers have investigated several approaches to design systems
with a controllable and programmable trade-off among quality, effi-
ciency, and energy consumption. Energy-awareness and efficiency re-
search mainly targets low-level tasks such as scheduling and provi-
sioning [14, 18, 98, 179, 219], routing [206], data storage and process-
ing [246], and machine learning models optimization [45]. Although
valuable, only optimizing the low-level tasks may result in hardly-
predictable performance of the applications. Thus, it becomes chal-
lenging or even impossible to balance competing application-level ob-
jectives (e.g., accuracy, energy consumption, and efficiency) working
only on low-level features.

Other approaches targeted code optimizations [204], analysis of soft-
ware energy consumption [83, 237], and architectural tactics to contain
energy utilization [63] and costs [251]. Analyzing energy consumption
retrospectively to take corrective actions (e.g., code or architectural
refactoring) can be expensive and difficult to control in the long term.

In the context of IoT architectures and edge oriented systems, self-
adaptation and optimization technologies have been used to address
a range of aspects. For instance, adaptation capabilities have been en-
gineered to achieve auto-scaling and task offloading [10], introducing
flexibility in the computation at the cost of some jitter in the quality
of service and, often, not optimized energy consumption shifts among
the nodes [132].

Multiple approaches have been defined to modify the behavior of
the components at the edge. The most common examples of self-
adaptive edge components are those related to adaptive sampling.
Adaptive sampling refers to the idea of dynamically modifying the
sampling rate of sensors and software probes as well as the inference

2.3 adapting monitoring to available resources 27

rate of the components that process such data, according to the con-
text [99, 168, 264]. Collecting and transmitting less data can save en-
ergy and computational resources [127].

Similarly, adaptive filtering focuses on reducing the number of sam-
ples transmitted. For example, if a sensor value is considered similar
to a previously collected value or evolves in a predicable way, a moni-
toring node can avoid the transmission of such information to save the
transmission cost. Since filtering usually results in sub-optimal perfor-
mance, the filters must adapt at run-time to guarantee a consistent
behavior [99].

Adaptive compression has been also extensively exploited at the
edge. Adaptive compression solutions aim at reducing the data traffic
in the network by reducing the size of the data packets with minimal
loss, for instance using strategies that consider the importance of the
processed data [159]. Different compression algorithms may also be
used dynamically based on the shape of the data, enabling higher
compression without inducing significant losses in the accuracy of the
data [60].

Self-adaptive behaviors to improve energy consumption have been
also studied at the architectural level [132]. For instance, a number
of approaches have been proposed to target specific aspects of energy-
awareness such as memory handling [131], networking [34],
storage [246], and scheduling and provisioning [18]. Furthermore, the
ever growing interest in machine-learning based solutions lead to spe-
cific optimized models for the edge [45]. These solutions can address
specific dimensions but lack both the state-based adaptation capabili-
ties, and the definition of a practical empirical procedure to determine
the concrete configurations that must be used by the self-adaptive ap-
plications. Conversely, Da Silva et al. [218] proposed a framework for
the automatic generation of application processes. Such processes rep-
resent the goals and capabilities of the application in the form of ap-
plication workflows. This level of adaptation is not usually suitable
for edge applications, since the run-time generation of the application
processes requires extensive computational capabilities and introduces
significant computational overhead [53], which may not be available
at edge.

Mobile applications is another domain of self-adaptation where en-
ergy consumption is pivotal [111]. While adaptation mechanisms de-
signed for mobile applications are not directly comparable to applica-
tions running on the Edge, they share some key aspects, such as the
presence of a resource-constrained and battery-powered devices. For
instance, Ardito et al. [20, 21] proposed an architectural paradigm in
which the operating system or the middleware is able to offer energy-
related information to running applications. This enables the imple-
mentation of energy-aware self-adaptation strategies based on energy
levels, but it assumes run-time information about the available energy,
that it may be not always available.

28 monitoring in the cloud continuum

Contribution

To address RQ4 and the aforementioned limitations, this thesis
proposes an energy-aware approach that can guide developers to
implement an (AI-based) self-adaptive application able of switch-
ing its operation modes in response to changes in the environ-
ment, finally balancing energy consumption with the application-
level objectives. The configuration of the operation modes are
determined empirically, based on a meta-heuristic search proce-
dure that can identify useful configurations by sampling a small
portion of the configuration space. Experimental results show
how the proposed approach can outperform non-adaptive base-
line configurations, behaving as optimally as configurations se-
lected with a nearly exhaustive exploration of the configuration
space. The approach has been studied in the context of a Smart
Traffic Monitoring (STM) scenario, in particular for a pedestrian
detection task. This contribution is presented in Chapter 6.

Part I

A D A P T I N G M O N I T O R I N G T O E V O LV I N G
R E Q U I R E M E N T S

3
A U T O M AT I N G P R O B E L I F E - C Y C L E F O R C H A N G I N G
N E E D S

This chapter presents a Monitoring-as-a-Service (MaaS) framework
that fully automates the life-cycle of probes, including error-handling.
The proposed framework enables operators to easily automate probe
deployments required by changing needs, as discussed in Section 2.2.1.
Moreover, it is designed to integrate with different monitoring tech-
nologies (i.e., probes and ingestion services) and cloud platforms (e.g.,
IaaS, PaaS, or SaaS solutions) without binding the operators to a sin-
gle technical solution. The empirical evaluation examines the frame-
work’s capabilities and scalability using both VMs provided by a IaaS
solution and a container-based platform. The contribution presented
in this chapter has been published in the IEEE Transactions on Ser-
vices Computing journal paper titled “Automated Probe Life-Cycle
Management for Monitoring-as-a-Service” [242].

The chapter is organized as follows. Section 3.1 presents a run-
ning example used throughout the chapter to exemplify the proposed
framework. Section 3.2 introduces the domain concepts. Section 3.3
presents the architecture of the MaaS framework, its main components
and their algorithms. Section 3.4 describes the error-handling capabil-
ities. Section 3.5 describes the technology-agnostic design and how is
it possible to use the framework with different monitoring technolo-
gies. Section 3.6 presents the empirical evaluation. Finally, Section 3.7
concludes the chapter with closing remarks.

3.1 running example

This section introduces a running example to illustrate and exem-
plify how the proposed MaaS framework works. The example con-
sists of a PostgreSQL instance [110] target-PSQL running as part
of a larger cloud system. Such an instance is of interest for two op-
erators: operator op-A and operator op-B. Operator op-A is mostly
interested in infrastructure indicators and is collecting network con-
sumption data related to target-PSQL. Operator op-B is interested
in both infrastructure and application indicators, and is collecting 3

indicators: network consumption data, CPU consumption data, and
database metrics. This initial configuration is referred as init-conf.

In this context, operator op-A may notice anomalous data in the
network traffic and decide to collect information about two additional
indicators: CPU consumption and user session data. The configuration
where operator op-A is also collecting these two additional indicators
is referred as 2-more-indicators-conf.

31

32 automating probe life-cycle for changing needs

Finally, operator op-B may loose interest for the PostgreSQL service,
for instance because the services maintained by operator op-B may
stop using PostgreSQL. In such a case, operator op-B stops collecting
any indicator from target-PSQL. This final configuration is referred
as op-B-left-conf.

The rest of the chapter refers to these sample scenarios and con-
figurations to explain how the set of probes necessary to collect the
indicators required by operators op-A and op-B can be adjusted auto-
matically and transparently to the operators.

3.2 domain concepts

The proposed MaaS framework exploits a few relevant domain con-
cepts to organize the responsibilities of the components. In the follow-
ing, domain concepts are introduced, both informally and rigorously,
and then the framework architecture is discussed.

In the running example, the target is a PostgreSQL instance that can
be identified with the label target-PSQL in both a Kubernetes cluster
(as deployment name) and Microsoft Azure Compute Services (as VM
name).

Probe Artifact (Definition 3.1). A probe artifact represents a deployable
artifact that can be used to collect indicators from targets in different
environments. Probe artifacts (N.B., hereinafter in the chapter referred
as probe for simplicity) are annotated with metadata that describe how
they can be deployed and configured. More rigorously, a probe p is a
tuple p = (I,meta,artifact), where I = {i1, . . . in} is a set of indicators
that can be collected with the probe, meta is a set of key-value pairs
that represent the metadata associated with the probe, and artifact is a
reference to the artifacts that implement the actual software probe.

The notation pI, pmeta and partifact refers to the individual com-
ponents of a probe p.

Monitoring Claim (Definition 3.2). A monitoring claim specifies the
indicators that an operator may want to collect for a specific target.
More rigorously, a monitoring claim mc is a tuple mc = (I,op, t) where
I = {ii, . . . ik} is the set of indicators to be collected from the target t
for the operator op. The claim is intended as a complete specification
for the specified target, thus if the operator is already monitoring an
indicator i for a given target t and the newly submitted claim does not
include the indicator, the monitoring system will stop collecting i from
t.

For example, operator op-A shall submit a monitoring claim
({network_consumption, cpu_consumption, user_session_data},
op-A, target-PSQL) to start collecting CPU consumption and user
session data, in addition to network consumption. Similarly, operator
op-B shall submit a monitoring claim ({}, op-B, target-PSQL) to stop
collecting data.

3.2 domain concepts 33

Monitoring Request (Definition 3.3). A monitoring request is a collec-
tion of monitoring claims submitted with a single request by an oper-
ator. More rigorously, a monitoring request mr submitted by operator
op is a set mr = {mc1, . . .mcm} where mci = (Ii,op, ti).

For example, operator op-A shall submit a monitoring request con-
sisting of two monitoring claims [({network_consumption},
op-A, target-PSQL), ({cpu_consumption}, op-A, target-MARIADB)]
to start collecting network consumption from the PostgreSQL instance
and CPU consumption from a MariaDB instance.

Monitoring Unit (Definition 3.4). A monitoring unit is an execution
unit (e.g., a virtual machine or a container) that runs one or more
probes. When needed, the monitoring framework dynamically creates
and destroys monitoring units to collect the indicators specified by the
operators in their monitoring claims. A monitoring unit is also char-
acterized by a hosting platform, which represents the environment
where the unit is executed, and a configuration, which captures how
the probes in the monitoring unit are configured. More rigorously, a
monitoring unit mu is a tuple mu = (host,mus,C), where host iden-
tifies the platform that provides the unit, mus indicates the strategy
used to configure the unit (i.e., single probe or multi-probe), and C

is the configuration of the unit, which consists of zero or more probe
configurations, depending on the number of probes installed.

Probe Configuration (Definition 3.5). A probe configuration c ∈ C is a
tuple c = (p, I,op), where p is a probe, I ⊆ pI represents the set of
indicators that p is configured to collect, and op is the operator who
asked for the probe configuration c.

The notation muP refers to the set of probes in the current configu-
ration of mu, that is, muP = {p|∃(p, ·, ·) ∈ C}1. Finally, given a probe
configuration (p, I,op), The notation I(p) refers to the indicators that
p is configured to monitor, that is, I(p) = I.

The MaaS framework implements two strategies to configure the
monitoring units: the multi-probe monitoring unit and the single-probe
monitoring unit. The multi-probe monitoring unit strategy uses one mon-
itoring unit (e.g., a virtual machine) per monitored target (e.g., an in-
stance of PostgreSQL), hosting in the unit all the probes that share
a same target (e.g., every probe that collects indicators about Post-
greSQL). This strategy is well suited for virtual machines, which are
heavyweight units that typically run multiple processes. The single-
probe monitoring unit strategy uses one monitoring unit (e.g., a con-
tainer) per deployed probe (e.g., a Metricbeat probe for CPU consump-
tion). This strategy is well suited for containers, which are lightweight
units that preferably run a single process.

For instance, the initial configuration of the running example, where
virtual machines running on Microsoft Azure are used, implies the

1 The symbol · means any value is allowed in a tuple.

34 automating probe life-cycle for changing needs

existence of a single monitoring unit mu = (azure, multi-probe,C), run-
ning the probe pnet, which serves both operators op-A and op-B, and
the probes pcpu, pdb, which both serve operator op-B. Consequently,
C consists of the following four probe configurations:

1. (pnet, network_consumption, op-A),

2. (pnet, network_consumption, op-B),

3. (pcpu, cpu_consumption, op-B),

4. (pdb, db_metrics, op-B).

Note that the monitoring units are created to have the right visibil-
ity of the target to be monitored. In fact, a virtual machine monitoring
unit can be either the same virtual machine running the monitored
service or a separated virtual machine with probes that query an in-
terface exposed by the monitored service (e.g., using SNMP [54]). On
the other hand, a container monitoring unit can be created as a side-
car of the container running the target service [50], to have extensive
visibility of the monitored service, or as a standalone container run-
ning in the same node of the target. In the next chapter, a broader
set of strategies to configure monitoring units (i.e., probe deployment
patterns) are presented.

3.3 solution architecture

Service

Repository

Synchronous
Message

Asynchronous
Message

Cloud
Systems

Obtain Targets
and Probes Artifacts

Operate on
Cloud Resources

Operators

API Service

Monitoring Units
Repository (MUR)

MC Status Update
Events

Operate on API Resources

Operate on API Resources
Monitoring Claims
Repository (MCR)

Monitoring Claim
Controller

(MCC)

Cloud Bridge

Probes Catalog
(PC)

Monitoring Unit
Controller

(MUC)

MU Status Update
Events

Send Execution Plans

API

Send
Monitoring
Requests

Figure 3.1: Architecture of the MaaS framework.

Figure 3.1 shows the proposed monitoring framework, which consists
of four main stateless services and three repositories. The four services
are (i) an API Service, which offers a gateway to access and update state
information about the monitoring system, (ii) a Monitoring Claim Con-
troller, which is responsible for handling the life-cycle of every moni-
toring claim, (iii) a Monitoring Unit Controller, which is responsible for
handling the life-cycle of every monitoring unit, and (iv) a Cloud Bridge,
which exploits a plug-in based architecture to interact with different
cloud providers and platforms, actuating the operations decided by
the other services. The three repositories consist of (i) a repository of

3.3 solution architecture 35

monitoring claims submitted by operators, (ii) a repository with the cre-
ated monitoring units and their configurations, and (iii) a probe catalog
with all probes and deployable artifacts.

The automated life-cycle management of the probes is provided by the
two controllers that collaborate to manage the set of monitoring units,
and the deployed probes, based on the requests produced by the op-
erators that only include the information about the indicators to be
collected. The stateless nature of the controllers guarantees scalability,
as long as sufficient resources are provided to the monitoring system.
The controllers also track the status of the monitoring units to handle
and recover from errors. Finally, the framework is built with a plug-in
based architecture that allows multiple cloud platforms to be integrated,
as long as they provide a management API. The rest of this section
rigorously describes how the components, and the controllers in par-
ticular, behave.

3.3.1 Repositories

probe catalog The Probe Catalog is a repository PC = {p1, . . . pn}

where pi is a probe. I assume the Probe Catalog is organized in such a
way there is a unique artifact that can be used in a given context, that
is, given an index i and the execution constraints (e.g., the host envi-
ronment that executes the probe, the time series database that must
be used to store the data, etc.), there is a unique probe p, that can be
used to collect i in the target environment. The execution constraints
that can be used to identify the probe are not detailed here, but these
are represented in the metadata associated with the available artifacts
(e.g., Listing 3.1) and matched for equality (or inclusion in case of lists)
by the framework to select the probes.

Listing 3.1: A metadata excerpt from an HTTP health check probe entry in
the Probe Catalog.

{

"id": "5fb6337a4102891e3677b476",

"artifactId": "http_healthcheck_probe",

"supportedIndicators": [

"HEALTHCHECK"

],

"supportedDataOutputs": [

"ELASTICSEARCH"

],

"supportedMUStrategies": [

"SINGLE_PROBE",

"MULTI_PROBE"

]

}

Complex matching procedures can be also implemented in the cata-
log if needed, such as the possibility to have multiple probes suitable

36 automating probe life-cycle for changing needs

for a same context, and a decision procedure that can choose among
them. Defining algorithms to choose among multiple probe artifacts is
however out of the scope of the presented contribution and the frame-
work simply requires the operator to populate the Probe Catalog with
one usable artifact per execution context that must be addressed with
the framework.

To illustrate the matching procedure, consider the case of op-A ask-
ing to collect user session data from PostgreSQL. Let us assume the
system considered in the running example runs on Kubernetes and
that Elasticsearch is used as time-series database. In this context, the
monitoring system will check the Probe Catalog looking for a probe
whose metadata specify the capability to (a) collect user session data
from PostgreSQL, (b) to run within containers, and (c) to store data in
Elasticsearch. The monitoring system is configured with information
about the environment (e.g., how to access Elasticsearch and Kuber-
netes APIs) to be able to configure the probes once deployed. If a
matching entry is found, the corresponding artifacts are selected, and
then deployed in a container, as illustrated later in this section. Other-
wise, the request is aborted and the Probe Catalog has to be extended
to support new probes, as described in Section 3.5.

monitoring claim repository The Monitoring Claim Repository
stores the monitoring claims and tracks their statuses while they are
created, processed, and updated. Since operators can update their
claims about a given target, the repository can at most include one
monitoring claim for a given operator-target pair. For example, an
operator may submit a first monitoring claim to collect network con-
sumption for a running instance of PostgreSQL (corresponding to the
init-conf in the running example), and later update the monitoring
claim asking to collect two more indicators, CPU consumption and
user session data, still from PostgreSQL (corresponding to the 2-more-
indicators-conf in the running example).

monitoring unit repository The Monitoring Unit Repository
tracks the status of the monitoring units and their configurations. In
particular, the Monitoring Unit Repository stores both the current con-
figuration of a monitoring unit, which reflects the status of the soft-
ware monitoring unit, and the desired configuration of a monitoring unit,
which reflects the configuration that must be reached based on the re-
ceived requests, supporting the controllers in the process of adapting
the configurations.

To conveniently work with the configurations required by opera-
tors, I define the operator |op which discards every entry related to op

from a configuration. More formally, given a configuration C, I define
C|op = {ci | ci ∈ C and ci = (pi, Ii,opi) with opi ̸= op}.

A Monitoring Units Repository MUR stores tuples (t,mu,dc) that
associate a target t with a monitoring unit mu running probes that

3.3 solution architecture 37

collect data from t, to its desired configuration dc. Given a monitor-
ing unit mu = (host,mus,C), the notation confc(mu) refers to its
current configuration, that is, confc(mu) = C. I instead use the nota-
tion confd(mu) to refer to the desired configuration of a monitoring
unit mu, that is, confd(mu) = dc. The level of alignment between
confc(mu) and confd(mu) indicates how much the actual monitor-
ing unit (i.e., the unit running in the cloud) matches the monitoring
claims submitted by operators. If confc(mu) = confd(mu), the current
and desired monitoring configurations are the same, thus the moni-
toring unit mu is up to date and perfectly aligned with the existing
monitoring claims. Otherwise if confc(mu) ̸= confd(mu), the monitor-
ing unit mu needs to be modified to reach the desired configuration.

If MUR is handled according to the multi-probe monitoring unit
strategy, given a target t, there is at most one mu such that (t,mu, ·) ∈
MUR (i.e., one monitoring unit running multiple probes per target). If
MUR is handled according to the single-probe monitoring unit strat-
egy, given a target t and a probe p, there is at most one (t,mu,C) ∈
MUR, with (p, ·, ·) ∈ C, but there might exist multiple monitoring units
running different probes associated with a same target.

3.3.2 API Service

The API Service provides two APIs: a public API for external clients
and a private API for internal use only.

The public API is used by operators to submit monitoring requests,
receive information about the status of their requests, extract the list
of the current available Targets, and upload new probes to the Probes
Catalog.

The private API is used by the Monitoring Claim Controller and
Monitoring Unit Controller to handle (i.e., to read and update) the sta-
tus information about both the monitoring claims and the monitoring
units, as described in Sections 3.3.3 and 3.3.4.

Note that the API Service is the only service that can directly ac-
cess the three repositories. The presence of a single entry-point for ac-
cessing the persistent data drastically reduces the risk of (potentially)
introducing data inconsistencies. To avoid introducing a single-point
of failure in the architecture, I designed the API Service as a stateless
service that can be instantiated in multiple replicas.

The API Service is accessed through synchronous API calls, to guar-
antee that requests are processed as quickly as possible, but status
updates are delivered through a message bus, since serving a request
is not always an immediate operation.

3.3.3 Monitoring Claim Controller

The main responsibility of the Monitoring Claim Controller is to
manage the life-cycle of the submitted monitoring claims by assign-

38 automating probe life-cycle for changing needs

Algorithm 1 Monitoring Claim Controller

Require: a monitoring claim mc = (I,op, t) to be processed
Require: mus, the monitoring unit strategy
Ensure: desired configurations are updated according to mc

1: P ← APIService.getProbeConfigs(I, t)
2: if P = ∅ then return
3: end if

4: if mus=multi-probe then
5: UpdateConfUnit(P, op, t, mus)
6: else if mus=single-probe then
7: for pconf ∈ P do
8: UpdateConfUnit({pconf}, op, t, mus)
9: end for

10: end if

11: procedure UpdateConfUnit(Set of probe configurations P, operator op,
target t, monitoring unit strategy mus)

12: unit← APIService.getMonitoringUnit(t, mus, P)
13: if unit = ∅ then
14: unit← APIService.createEmpyMonitoringUnit(t)
15: end if
16: APIService.updateDesiredConf(unit, confd(unit)|op ∪ P)
17: end procedure

ing the desired configurations, derived from the received claims, with
the monitoring units. In particular, every time a monitoring request
is received by the API Service, the API Service stores the monitoring
claims included in the request in the dedicated repository and sends a
status update message to the Monitoring Claim Controller, which will
incrementally process them.

Since controllers are stateless, the capability to process monitoring
claims in parallel can be increased arbitrarily, based on the available
resources, by instantiating multiple Monitoring Claim Controllers.

Algorithm 1 shows in details the operations performed by the mon-
itoring claim controller every time a monitoring claim is processed.
When a monitoring claim mc = (I,op, t) of an operator op is processed,
the controller first identifies the set of probes necessary to collect the
indicators specified in the request and their configuration (line 1). This
set is computed by the API service based on the probe metadata.

The monitoring units are reconfigured differently depending on the
monitoring strategy. If the multi-probe monitoring unit strategy is used,
the UpdateConfUnit procedure is invoked to associate a single mon-
itoring unit with a desired configuration that includes all the probes
(line 5). If the single-probe monitoring unit strategy is used, the individ-
ual probes configurations are extracted and then used to update the
configuration of different monitoring units (lines 7-8).

3.3 solution architecture 39

The way a set of probe configurations are associated with a mon-
itoring unit is defined in the UpdateConfUnit procedure. To iden-
tify the monitoring unit that must be updated, the controller queries,
through the API Service, the monitoring units repository for an exist-
ing monitoring unit (line 12). If the multi-probe monitoring unit strategy
is used, units can conveniently run multiple probes for a same target.
In this case, the service looks for any monitoring unit created to ob-
serve t, that is, it looks for an entry unit = (t, multi-probe, ·), where t

is the target reported in the monitoring claim. If the single-probe mon-
itoring unit strategy is used, P can only include a single probe, and
the API service looks for a monitoring unit that is already using the
selected probe to monitor the target t, that is, it looks for an entry
unit = (t, single-probe, (p, ·, ·)).

In both cases, if the unit does not exist, a new unit with an empty
desired configuration is created for the target t (line 14). Finally, the
existing entry (i.e., the existing desired configuration) is updated by
replacing the probes associated with operator op with the new ones
specified in P (if the existing configuration is empty, P is simply used).

Let us consider the running example, with operator op-A asking to
collect two more indicators (CPU consumption and user session data)
from PostgreSQL, if we assume the monitoring framework is config-
ured to use the single-probe monitoring strategy, the submitted mon-
itoring claim would be processed as follows. The access to the probe
metadata would reveal the availability of two different probes that
can be configured to collect the two indicators: pcpu, which can moni-
tor CPU consumption using a Metricbeat probe, and psession, which
can use a custom probe to collect data about user sessions. That is,
P={(pcpu, cpu_consumption, op-A), (psession, user_session_data,
op-A)} at line 1. Since mus=single-probe, the UpdateConfUnit pro-
cedure is invoked twice, once for each probe.

The first invocation with probe pcpu leads to the identification of a
running unit that is already collecting cpu_consumption from Post-
greSQL for op-B (line 12). The current configuration of the retrieved
unit is {pcpu, cpu_consumption, op-B)}. The framework finally up-
dates the desired configuration of the unit by replacing the probe con-
figurations of operator op-A (none in this case) with the input config-
uration (pcpu, cpu_consumption, op-A), finally obtaining the desired
configuration {(pcpu, cpu_consumption, op-B),
(pcpu, cpu_consumption, op-A)}.

The second invocation with probe psession returns no unit that is
already running that probe. Thus, a new unit is created (line 14), and
the desired configuration {(psession, user_session_data, op-A)} is as-
sociated with the unit.

The time complexity of Algorithm 1 is linear with respect to the
number of selected indicators (I) and the number of matched probes
(P), that is, O(|I|+ |P|).

40 automating probe life-cycle for changing needs

3.3.4 Monitoring Unit Controller

Algorithm 2 Monitoring Unit Controller
Require: a monitoring unit mu

Require: its current configuration confc(mu) = {(p, I, op)}
Require: its desired configuration confd(mu) = {(p ′, I ′, op ′)}
Ensure: the unit is updated according to the desired configuration is gener-

ated
1: if confd(mu) = ∅ then dismiss mu

2: end if
3: Padd ← {p ∈ confd(mu)P \ confc(mu)P}

4: Pupdate ← {p ∈ confd(mu)P ∩ confc(mu)P s.t. I ′(p) ̸= I(p)}

5: Pdrop ← {p ∈ confc(mu)P \ confd(mu)P}

6: if Padd ∪ Pupdate ∪ Pdrop ̸= ∅ then
7: res← Bridge.doChanges(mu, Padd,Pupdate,Pdrop)
8: else
9: res← ∅

10: end if
11: UpdateConfiguration(mu, res) ▷ If no error, confc(mu) is updated with

confd(mu)

The main responsibility of the Monitoring Unit Controller is to man-
age the life-cycle of the monitoring units according to the desired con-
figurations generated by the Monitoring Claim Controller. In partic-
ular, the Monitoring Unit Controller runs a control-loop that contin-
uously checks the Monitoring Units for changes to be actuated, as a
consequence of a misalignment between the current and the desired
configurations. Multiple monitoring unit controllers can be active at
the same time, but two monitoring unit controllers cannot act simul-
taneously on a same monitoring unit, to prevent any potentially erro-
neous concurrent change that would introduce inconsistencies in the
process.

The operations performed by a Monitoring Unit Controller are shown
in Algorithm 2. It first checks if the desired configuration is empty, in
such a case the entire monitoring unit is dismissed (line 1). This is
an important step to avoid running phantom monitoring units with
no running probes. It then computes the diff between the current and
desired configuration, identifying the probes to be added (line 3), the
probes to be reconfigured to collect a different set of indicators (line 4),
and the probes to be dropped (line 5). If any of these sets is non empty,
the Cloud Bridge receives the probe configurations corresponding to
the changes that must be actuated (line 7). Passing all the changes to
be actuated at once enables the Cloud Bridge to potentially optimize
how these changes are actuated.

The Cloud Bridge returns a result that specifies the errors experi-
enced during the update process, if any. This information is used to
update the current and desired configuration. In case no error is expe-
rienced, the desired configuration simply replaces the current config-

3.4 error handling capabilities 41

uration (line 11). Otherwise, the update process takes the errors into
consideration. Error handling is described in Section 3.4.

Let us consider the case of the two desired configurations generated
by operator op-A when asking to collect two more indicators (CPU
consumption and user session data) from PostgreSQL with the single-
probe monitoring unit strategy, as discussed at the end of Section 3.3.3.
The desired configuration related to the already deployed probe pcpu

results in no changes to be operated (Padd ∪ Pupdate ∪ Pdrop = ∅),
since the existing probe will be simply shared between the two opera-
tors (this is achieved by only updating the configurations in Update-
Configuration without touching the running probes). While, the de-
sired configuration related to the new probe psession to be deployed
results in a probe to be added (Padd ̸= ∅).

The time complexity of Algorithm 2 is linear with respect to the
number of probes to add (|Padd|), update (|Pupdate|), and drop (|Pdrop|)
while configuring a monitoring unit. That is, if pchanges = |Padd| +

|Pupdate|+ |Pdrop|, the complexity of Algorithm 2 is O(pchanges).

3.3.5 Cloud Bridge

The main responsibility of the Cloud Bridge is to actuate plans on
cloud systems using their management APIs. The Cloud Bridge also
provides information about the targets and the deployment status of
the probe artifacts.

In particular, the Cloud Bridge exploits a plug-in based architecture
that can be extended to support additional cloud systems. A plug-
in for a target environment (e.g., Kubernetes) is used to map each
change requested by controllers into a concrete command for the spe-
cific management API (e.g., the Kubernetes API) or the specific con-
figuration management tool used to interact with the platform (e.g.,
Ansible [124]). This approach encapsulates the technological details
inside the plug-in, keeping the whole control-plane framework agnos-
tic from technology. Once all the changes have been actuated, the list
of probes resulting in an erroneous state is sent back to the controller.

3.4 error handling capabilities

The presented framework implements error handling procedures to
recover from deployment errors, namely, errors that might be expe-
rienced at deployment time while creating, updating and removing
either probes or monitoring units. The framework does not target the
run-time errors that might be experienced after a successful deploy-
ment. These procedures are extremely important for the dependability
of the monitoring framework, whose behavior may otherwise diverge
from the desired behavior. I distinguish two classes of errors that can
be detected and handled:

42 automating probe life-cycle for changing needs

Soft Errors (Definition 3.6). Soft errors indicate problems in the opera-
tions performed while preparing for the creation, update and deletion
of a unit, such as retrieving probes and preparing their configuration.
All these operations are performed before modifying any existing mon-
itoring unit. Since those are problems that do not compromise the de-
pendability of the running units, they are considered soft errors that
have negligible consequences on the running monitoring system.

Hard Errors (Definition 3.7). Hard errors indicate problems in the op-
erations performed while changing a running monitoring unit, such as
adding, reconfiguring or removing probes. Since these problems may
compromise the dependability of the running monitoring system, they
are considered hard errors that timely require corrective actions to be
managed.

Errors are detected by the Cloud Bridge while interacting with plat-
form management APIs and while running commands of configura-
tion systems. Soft errors are produced during the execution of the
preparatory steps, differently from hard errors that are generated while
changing the actual monitoring units. For this reason, depending on
if and when an error is detected, a probe to be deployed can be in one
of the following states:

Failed Probe (Definition 3.8). A probe is failed when a soft error has
been detected by the Cloud Bridge while preparing the probe.

Broken Probe (Definition 3.9). A probe is broken when a hard error has
been detected by the Cloud Bridge while deploying/undeploying the
probe.

Stable Probe (Definition 3.10). A probe is stable when no error is de-
tected.

The errors detected for each probe configuration that is processed
by the Cloud Bridge are reported in the results returned to the Moni-
toring Unit Controller (line 7 of Algorithm 2).

Consequently, a monitoring unit can be in any of the following
states, depending on the states of its probes:

Stable Unit (Definition 3.11). A monitoring unit is stable when no error
is detected for the probes in the monitoring unit.

Unsound Unit (Definition 3.12). A monitoring unit is unsound when
there is at least a failed probe and no broken probe in the monitoring
unit. This state indicates a failure in the attempt to align the desired
and current configurations of the monitoring unit, but no actual prob-
lem is affecting the running unit.

Dirty Unit (Definition 3.13). A monitoring unit is dirty when there is
at least a broken probe in the monitoring unit. This state indicates that
the software running in the unit might be compromised.

3.4 error handling capabilities 43

Algorithm 3 UpdateConfiguration
Require: a monitoring unit mu to be updated
Require: res = (Pconfsoft,Pconfhard), where Pconfsoft and Pconfhard

are the set of probe configurations that resulted in soft or hard errors
Require: RetryTable ⊆MUnits× ProbeConfigs×N, which is a table that

counts how many times a given probe configuration has been retried in
a monitoring unit

Require: BlackList ⊆MUnits× ProbeConfigs, which is a table that tracks
the probe configurations that cause errors and should not be retried again

Ensure: mu is updated and any error is reported
1: for pc ∈ Pconfsoft do
2: RetryTable.IncRetry(mu, pc)
3: end for
4: for pc ∈ Pconfhard do
5: BlackList.add(mu, pc)
6: end for
7: if Pconfhard ̸= ∅ then ▷ Dirty unit
8: Bridge.cleanUnit(mu)
9: confc(mu)← ∅

10: else
11: confc(mu)← confd(mu) \ (Pconfsoft ∪ Pconfhard) ▷ confd(mu) is

unchanged, so probe configs causing soft errors are retried, while probe configs
with too many retries and probe configs in blacklist are automatically ignored

12: end if

Errors are mostly handled in the context of the UpdateConfigu-
ration procedure whose pseudocode is shown in Algorithm 3. The
UpdateConfiguration procedure is invoked by the Monitoring Unit
Controller to finalize the update of a monitoring unit (line 11 in Algo-
rithm 2).

In addition to referring to a monitoring unit mu and the set of probe
configurations that resulted in soft (Pconfsoft) and hard (Pconfsoft)
errors, the procedure maintains two data structures. The RetryTable

is a table that stores for every monitoring unit the number of consecu-
tive soft failures generated by each probe configuration. The BlackList

data structure stores for each monitoring unit the list of probe config-
urations that generated hard failures. The idea is that soft failures are
not harmful for the monitoring unit, and thus the failed changes can
be safely retried. Instead, hard failures introduce dependability prob-
lems, and thus the failed changes should not be retried. Operators
can reset these tables to allow again certain operations (e.g., after a
compatibility problem in a probe has been fixed).

In practice, the error handling routine first increases the number of
retries for the probe configurations that caused soft failures (line 2)
and adds to the blacklist the probe configurations that caused hard er-
rors (line 5). When the number of retries exceeds an operator-defined
threshold, the configuration is blacklisted.

If at least a hard error has been detected, the unit is dirty and thus
the bridge is asked to clean it. This operation depends on the target

44 automating probe life-cycle for changing needs

environment and the implementation of the plug-in used in the Cloud
Bridge. For instance, in the implementation for containers, the bridge
destroys the existing container and creates a new monitoring unit to
replace it. The current configuration of the newly created monitoring
unit is consequently set to the empty configuration.

If no hard error is detected, the current configuration is updated by
adding all the configurations that generated no errors. In all the cases,
the desired configuration stays unchanged.

This process may lead to three main distinct situations:

• the current and desired configurations are aligned: no changes will
be performed on the monitoring unit in the future, unless a new
request is submitted by an operator;

• the current and desired configuration differs only for some blacklisted
configurations: in this case again there is nothing to be done.
Note that although for simplicity I have not used the blacklist
when computing the set of probes to be added, reconfigured,
and deleted, in reality the Monitoring Unit Controller discards
the configurations that appear in the BlackList data structure
when computing them (Algorithm 2, lines 3- 5)

• there are configurations that must be retried: in such a case the de-
sired and current configurations do not match, and the monitor-
ing unit controller will process them again in the next iteration
of its control-loop, retrying the failed probe configurations.

The time complexity of the Algorithm 3 is linear with respect to
the number of probe changes and number of errors occurred while
configuring the monitoring unit. In particular, if errors is the number of
probe configurations that resulted in soft or hard errors. The resulting
time complexity is O(pchanges + errors).

3.5 technology agnostic design

The proposed monitoring framework is designed to transparently
integrate heterogeneous monitoring technologies, releasing a technol-
ogy agnostic control-plane that can be exploited to obtain MaaS capa-
bilities using the preferred probe technologies and target platforms.
To witness this capability, this section exemplifies the integration of
probes of different types and the capability to support multiple cloud
platforms.

Listing 3.2: A metadata excerpt from the Apache Kafka exporter probe entry
in the Probe Catalog.

{

"id": "5fb6337a4102891e3677b475",

"artifactId": "kafka_exporter",

3.5 technology agnostic design 45

"supportedIndicators": [

"KAFKA_BROKERS", "..."

],

"supportedDataOutputs": [

"PROMETHEUS"

],

"supportedMUStrategies": [

"SINGLE_PROBE",

"MULTI_PROBE"

]

}

Listing 3.3: A sample JSON representation of a Target retrieved from Mi-
crosoft Azure.

{

"targetPlatform": "azure",

"targetPlatformId": "postgres-1",

"envType": "INACCESSIBLE_VM",

"metadata": {

"resourceGroup": "resource-group-vm-1",

"ipAddress": "52.92.34.124",

"privateIpAddress": "10.0.0.2",

"..."

}

}

3.5.1 Incorporating New Probes

To demonstrate the flexibility of the monitoring framework I de-
scribe how two largely different probes can be supported: a health-
check probe, which queries the health status endpoint of services ex-
ploiting the HTTP protocol, and a Prometheus exporter for Apache
Kafka [92], which monitors Kafka brokers resources (topics, partitions,
etc.) and exposes the collected indicators as Prometheus metrics.

Adding a new probe can be done in two steps. First, the probe ar-
tifacts have to be manipulated in such a way they can be used by the
Cloud Bridge. Second, the probe is added to the catalog by passing
the probe metadata, which include information about where the probe
can be deployed (the probe might be compatible with certain monitor-
ing unit strategies but not with others), the supported data outputs
(i.e., the database where the collected values can be stored), and the
supported indicators, to the API Service. Listing 3.2 and Listing 3.1
show an excerpt of the metadata associated with the Apache Kafka
Prometheus exporter and the health-check probe, respectively. Note
that the configuration of the monitoring framework (e.g., the knowl-
edge of both the available time-series database and the type of the
target platform), jointly with the requests produced by the operators,
allows the framework to select and deploy the right probes. In fact,

46 automating probe life-cycle for changing needs

artifact ids are mapped to the concrete software artifacts and scripts
that are executed for probe deployment.

Adding new probes (i.e., new artifacts and corresponding metadata)
to the catalog may require a different amount of time depending on
the knowledge of the involved technologies. It is however a quite con-
venient operation for people who know the monitoring framework.
For instance, I needed 1.5 hours to develop and setup a health-check
probe that can be deployed on virtual machines, and 30 minutes to
add a Kafka exporter that can be deployed on Kubernetes.

3.5.2 Supporting New Target Cloud Platforms

Supporting multiple target cloud platforms is another capability of
the framework. A platform can be supported only if it provides a man-
agement API that can be used by the Cloud Bridge to manage the
monitoring units and discover targets. Developers who want to create
a new Cloud Bridge plug-in have to implement the base interface in or-
der to run execution plans and provide information about the targets
to the framework. Listing 3.3 shows an example of target information
that can be retrieved by the API via the Cloud Bridge component. Plug-
ins are also associated with metadata (e.g., the supported monitoring
unit strategies) that can help the framework in taking some decisions.

The prototype implementation already includes two plug-in imple-
mentations that can transparently actuate the same plans on radically
different platforms: Kubernetes, a container-based platform, and Mi-
crosoft Azure Compute, a virtual-machine-based platform.

3.6 empirical evaluation

This section quantitatively evaluates the efficiency of the proposed
MaaS framework with respect to both probe deployments and error-
handling routines. Further, it studies the scalability for an increas-
ing number of requests. I discuss the sub-research questions (Sec-
tion 3.6.1), the implemented prototype (Section 3.6.2), the results of
the experiments to answer the sub-research questions (Section 3.6.3,
Section 3.6.4, and Section 3.6.5), and the threats to validity of the eval-
uation (Section 3.6.6).

3.6.1 Research Questions

This work responds to RQ1 and is assessed with the following three
sub-research questions that capture the two representative capabili-
ties of the proposed framework (i.e., probe deployment and error han-
dling), and study how the it scales with an increasing number of re-
quests and operators.

3.6 empirical evaluation 47

1. RQ1.1 - Framework Efficiency: How efficiently are probes
deployed? This research question validates the framework capa-
bility of deploying probes starting from a declarative input and
investigates how efficiently (i.e., in terms of time) it is in fulfilling
an operator monitoring request. This is investigated for both cloud
systems based on containers and virtual machines giving evidence
of the technology-agnostic capabilities of the framework. Results
are studied in comparison to a solution working with pre-deployed
probes that can be activated/deactivated (Figure 2.2, cases (d) and
(e)). To this end, I selected JCatascopia [238], which is consistent
with the MaaS case shown in Figure 2.2 (d), and it is usable with
no restrictions being an open-source research prototype.

2. RQ1.2 - Error Handling: How efficiently are errors handled? This
research question validates the framework capability of detecting
and recovering from errors and investigates the time required by
the framework to execute the error handling routine.

3. RQ1.3 - Scalability: How does the framework scale for an in-
creasing number of requests? This research question validates the
framework capability of optimizing the control-plane during the
evolution of the monitoring system. It studies scalability with re-
spect to the number of requests produced by operators.

All RQs were addressed with cloud systems based on both virtual
machines and containers. In the following, I describe the prototype
used to run experiments, the design of the study, and the results for
each research question.

3.6.2 Prototype

I implemented the MaaS framework described in this chapter in a
publicly available prototype hosted at https://gitlab.com/learnERC/
varys.

The services are implemented as Java standalone applications. The
repositories are implemented as MongoDB [122] collections. The JSON
format is used both for communication and to persist information,
except for the Cloud Bridge which exposes a gRPC API that uses
Protocol Buffers. The status update messages are delivered through
Redis Streams [68]. The monitoring system can be deployed both on
container-based and VM-based technologies, depending on the host-
ing environment.

I designed a probe catalog reusing probes from Metricbeat [33], a
popular monitoring solution part of ElasticStack [31]. The prototype
uses Elasticsearch [32], as ingestion service to store the values ex-
tracted by the probes. I implemented plug-ins for the Cloud Bridge
to support both Kubernetes and Microsoft Azure as target cloud plat-
forms.

https://gitlab.com/learnERC/varys
https://gitlab.com/learnERC/varys

48 automating probe life-cycle for changing needs

The Microsoft Azure plug-in supports either creating VM-based
monitoring units on-the-fly within the configured Azure resource
group, or accessing the same VM running the target to deploy the
probes internally. In the experiments, I annotated the target service as
an accessible VM, and made it reachable to the Cloud Bridge via SSH
in order to (un)deploy the probes directly within the VM running the
target service.

With respect to container monitoring units, the Kubernetes plug-in
deploys container monitoring units in the same platform of the target
and configures the probes accordingly. Purposely, it does not imple-
ment the container sidecar pattern [50] because it would trigger the
redeployment of the target service, due to how Pods work in Kuber-
netes, every time probes are (un)deployed, potentially causing service
or monitoring interruptions unless a robust rolling update strategy is
in place.

3.6.3 RQ1.1: Framework Efficiency

The monitoring framework can work in parallel on any number of
monitored targets, if enough instances of the monitoring unit con-
troller service are created. If there are more targets to modify than
controller instances, some modifications will be performed sequen-
tially. For instance, if 4 monitoring units must be modified and only
3 controller instances are available, one unit will be modified sequen-
tially after another one. I will thus study how efficiently a monitoring
unit can be managed by a single controller instance, the performance
over multiple simultaneously evolving units can be straightforwardly
deduced given the number of controllers available.

Two cases are considered for the experiments: PostgreSQL 9.5 run-
ning in a container in an on-premise installation of Kubernetes and
PostgreSQL 9.5 running in a virtual machine on Microsoft Azure (Stan-
dard B2s flavor, 2 vCPU, 4 GB of RAM, OS Debian 10). The on-premise
Kubernetes installation is run by a Minikube VM with 4 vCPU and 8

GB of RAM executed on a MacBook Pro 2017 (3.1 GHz Quad-Core In-
tel Core i7, 16 GB of RAM). The two cases show how the same frame-
work can be transparently used to address heterogeneous scenarios
where the involved technologies are significantly different. I collect
time figures considering the case of a request that requires the simul-
taneous deployment of three probes to collect the following three indi-
cators from PostgreSQL: CPU consumption (using the CPU metricset
of the Metricbeat probe), memory consumption (using the memory
metricset of the Metricbeat probe), and database metrics (using the
database metricset of the Metricbeat probe).

To study the efficiency of each step, I measure the time taken by
the first controller to process the claim, by the second controller to
compute the execution plan, and by the Cloud Bridge to actuate the
plan. To have a baseline measurement, I also consider the case of a

3.6 empirical evaluation 49

static framework, that is, a framework that does not support dynamic
probe deployment, requiring operators to deploy and configure probes
in-advance, which can be later activated and de-activated. This frame-
work is far less flexible than the framework presented in this chapter,
but faster since it does not deploy probes dynamically. To this end,
I both use the framework with pre-deployed probes and the JCatas-
copia [238] state of the art monitoring solution, which allows us to
collect further measurements from a third party system. I do not have
measurements for JCatascopia applied to containers since it only sup-
ports virtual machines. Every experiment is repeated 10 times to col-
lect stable measurements.

10

20

30

40

50

Monitoring
Claim

Processing

Monitoring
Unit

Processing

Probes
Deployment

Total Probe
Activation

Only

Jcatascopia

se
co

nd
s

(a) Virtual Machines running on Microsoft Azure.

0.4

0.8

1.2

Monitoring
Claim

Processing

Monitoring
Unit

Processing

Probes
Deployment

Total Probes
Activation

Only

se
co

nd
s

(b) Containers running on a local Kubernetes cluster.

Figure 3.2: Probe deployment time figures.

50 automating probe life-cycle for changing needs

results of rq1 .1 Figure 3.2 shows the collected time figures with
a semi-logarithmic scale considering both virtual machines (Figure 3.2a)
and containers (Figure 3.2b). The individual steps of the probe de-
ployment process are captured by the Monitoring Claim Processing,
Monitoring Unit Processing and Probes Deployment boxes. While To-
tal represents the total time elapsed between the submission of the
request and the time the deployed probes start collecting the required
indicators.

Not surprisingly Probes Deployment is the most expensive step of
the process for both virtual machines and containers. In the case of
virtual machines it takes nearly 50 seconds, while the other steps can
be completed an order of magnitude faster. In case of containers the
difference is remarkably smaller, due to their computational efficiency
and their ability to cache artifacts. In fact, probes deployment can be
performed in at most 1 second with containers, while the remaining
steps take less than 0.25 seconds.

Overall, the entire probe deployment process of the three probes
(indicated with Total in Figure 3.2) could be completed in slightly less
than a minute using virtual machines and less than 1.5s using contain-
ers, which is a nearly two orders of magnitude difference.

The box Probe Activation Only shows the time required to activate
pre-deployed probes using the framework. In the case of virtual ma-
chines, exploiting dynamic probe deployment might be quite expen-
sive compared to manually pre-deploying probes, since it increases the
runtime cost by an order of magnitude. However, pre-deploying many
probes can be expensive, can generate large and difficult to manage
virtual machines, and is efficient only when the indicators that might
be collected can be predicted. The comparison to JCatascopia shows
that the presented framework is efficient, also when just used to pro-
cess requests and activate pre-deployed probes. In fact, JCatascopia
required several seconds to activate the probes, while the proposed
framework could activate probes in less than a second. The difference
between dynamic probe deployment and pre-deployed probes for con-
tainers is indeed less significant, both in relative and especially abso-
lute terms.

answer to rq1 .1 In the case of VMs, the cost of flexibly deploying
probes is significantly higher than working with pre-deployed probes.
Thus, the trade-off between flexibility and efficiency should be care-
fully considered by operators to decide the monitoring solution that
should be adopted. Instead, in the case of containers, the cost of flexi-
bly deploying probes is significantly amortized by the efficiency of the
cloud technology.

3.6 empirical evaluation 51

3.6.4 RQ1.2: Error Handling

To study the capability of the framework to react to errors, I de-
signed a variant of the experiment performed for RQ1.1 where I de-
ploy a malfunctioning probe. I obtained such a probe by implement-
ing a wrong configuration of the Metricbeat probe for PostgreSQL that
makes the probe deployment to fail.

In the case of virtual machines, I study the creation of a new moni-
toring unit with two probes: one working probe and a malfunctioning
probe. The malfunctioning probe artifact contains an Ansible role with
a wrong command that leads to a hard deployment error when the
Cloud Bridge executes it. Since I use the multi-probe monitoring unit
strategy with virtual machines, error detection must autonomously
detect the problem with the monitoring unit with two probes and au-
tomatically create a monitoring unit with the working probe only. The
VM used as monitoring unit is created with a Standard B1s flavor (1
vCPU, 1 GB of RAM, OS Debian 10).

In the case of containers, I study the creation of a new monitoring
unit with the malfunctioning probe only. The malfunctioning probe
artifact contains a bugged Kubernetes manifest file that tries to deploy
the probe within a non-existent Kubernetes namespace. This leads to
a hard deployment error when the Cloud Bridge executes it. Since I
use the single-probe monitoring unit strategy with containers, error
detection should simply drop the malfunctioning monitoring unit (in
this case I do not consider the deployment of two probes because the
deployment strategy would simply create two different monitoring
units handled independently).

To capture how error detection works, I measure the time neces-
sary to the framework to attempt the deployment and detect that a mon-
itoring unit is not working (namely Error Detection), the time neces-
sary to process the error and take the decision to clean the monitoring
unit (namely Error Processing), and finally the time necessary to actu-
ate the cleaning plan (namely Error Cleaning). Error detection is per-
formed by the Cloud Bridge while actuating changes (see the call in
Algorithm 2, line 7), error processing consists of the operations shown
in Algorithm 3, and error cleaning is again performed by the Cloud
Bridge when cleaning a unit (see the call in Algorithm 3 line 8). I re-
peated measurements 10 times to collect stable time figures.

results of rq1 .2 Figure 3.3 shows the collected time figures with
a semi-logarithmic scale considering both virtual machines (Figure 3.3a)
and containers (Figure 3.3b).

In both environments, error detection and error cleaning are more
expensive than error processing. In fact, error detection requires per-
forming the deployment, at least partially, and similarly error clean-
ing requires disposing monitoring units and creating new stable units,
when possible.

52 automating probe life-cycle for changing needs

5

10

15

20

Error
Detection

Error
Processing

Error
Cleaning

se
co

nd
s

(a) Virtual machines running on Microsoft Azure.

0.25

0.50

0.75

1.00

1.25

Error
Detection

Error
Processing

Error
Cleaning

se
co

nd
s

(b) Containers running on a local Kubernetes cluster.

Figure 3.3: Error handling time figures.

Similarly to probe deployment, error handling is significantly more
efficient with containers than virtual machines. For instance, error de-
tection requires around 21 seconds with virtual machines while it can
be completed in less than 0.25 seconds with containers. Similarly, er-
ror cleaning requires around 13 seconds with virtual machines, while
it can be completed in about 0.15 seconds with containers, but it is
important to remark that the cleaning phase with containers does not
require recreating a monitoring unit that is instead only disposed. The
entire error handling process can be completed in around 35 seconds
with virtual machines and less than a second with containers.

3.6 empirical evaluation 53

answer to rq1 .2 Results show how the proposed MaaS solution
that flexibly allocates and destroys resources, although usable with
both VMs and containers, are naturally more suitable for containers
where errors can be recovered in seconds.

3.6.5 RQ1.3: Scalability

As discussed, the framework can update multiple monitoring units
in parallel as long as a sufficient number of controller instances are
created. I thus focus the scalability study on measuring how the cost
of collecting additional indicators grows with an increasing number of
requests when single instances of the controllers are available. In par-
ticular, I consider two cases: processing requests that require deploying
new probes and processing requests that require reconfiguring the mon-
itoring system without deploying new probes. The former case cor-
responds to operators asking for new indicators to be collected. The
latter case corresponds to operators asking for indicators already col-
lected by other operators that the framework handles in an optimized
way sharing the existing probes among operators without touching
the monitoring units, but only changing the set of configurations asso-
ciated with a unit.

I measure how the total deployment time grows while increasing
either the number of new indicators or the number of existing indica-
tors for new operators from 1 to 30. I submit all requests at once and I
measure the total time necessary to fulfill the request. I repeated every
experiment 5 times on both virtual machines and containers for a total
of 160 samples collected about scalability.

results of rq1 .3 Figure 3.4 shows the results. Again, the remark-
able difference between virtual machines and containers is confirmed.
The scalability experiment gives additional evidence of how the lin-
ear growth of the total time for virtual machines is far more steep
than containers. The difference is dramatic when considering the de-
ployment of 30 probes, which requires around 10 minutes, in contrast
with containers that can complete this operations in seconds.

The results show that sharing probes between multiple operators
can significantly improve the efficiency of the monitoring system. This
is particularly important for virtual machines where the probe deploy-
ment cost can be cut thanks to probes sharing.

answer to rq1 .3 Overall, results show that dynamic probe de-
ployment can be feasible with both virtual machines and containers.
However, the former environment can efficiently deal with probes only
if changes are sporadic and the number of parallel requests received is
limited. On the contrary, the container technology is definitely ready
to support dynamic probe deployment, even in rapidly evolving con-
texts, based on the proposed framework.

54 automating probe life-cycle for changing needs

100

200

300

400

500

0 10 20 30
Number of Indicators/Operators

se
co

nd
s

Indicators Operators Azure Kubernetes

Figure 3.4: Time to fulfilling monitoring requests for a increasing number of
indicators (dot markers) and operators (triangle markers), with
both VMs running in Microsoft Azure (red lines) and on contain-
ers running in a local Kubernetes cluster (light blue lines).

3.6.6 Threats to Validity

The threats to the validity of the results mainly concern with the
relationship between the technical setup of the experiment and the
collected time figures. In fact, efficiency is affected by both the avail-
able computational resources and the choice of the probes, For ex-
ample, the indicator type, and so its probe artifact implementation,
used in the experiment performed to study RQ1.3 can affect the col-
lected values. However, while changing the available computational
resources and the deployed probes are likely to affect absolute figures,
the trends and gaps between the different frameworks and cloud plat-
forms are clear, despite these factors. In fact, plots for virtual machines
and containers are similar, although values are on different scales. Fur-
ther, the scalability trends clearly identify a single case (collecting in-
creasingly more indicators on virtual machines) that scales remarkably
worst than the others.

In the evaluation, I also selected a specific target service to be mon-
itored (i.e., PostgreSQL) and I also used a specific malfunctioning
probe (Metricbeat for PostgreSQL). Both these choices do not likely
affect the results. In fact, the cost of handling a monitoring unit does
not depend on the monitoring target, and similarly the error handling
policy is the same for every type of error and malfunctioning probe.

3.7 discussion 55

Finally, the collected time figures might be affected by noise. To
mitigate this issue I repeated experiments between 5 and 10 times. Al-
though the statistical significance and effect size of the collected data
have not been computed, the reported box plots show a low variance
for the collected values, suggesting that measures are stable and mean-
ingful, and can be used to derive valid conclusions.

3.7 discussion

The proposed framework is capable of fully automating the deploy-
ment and undeployment of arbitrary probes starting from declarative
inputs (i.e., the list of indicators to be collected) entered by the opera-
tors, thus supporting automated evolution of the monitoring system to
adapt to changing requirements. Moreover, it embeds routines to han-
dle deployment errors, because error handling capabilities received
little attention so far, with approaches mostly focusing on error-free
deployment scenarios or relying on the direct intervention of opera-
tors, despite the importance of error handling for long-running sys-
tems, such as a monitoring system. Lastly, the presented framework
can be integrated with existing technologies (e.g., probe technology,
ingestion engines, and target environments) without the need of us-
ing ad-hoc solutions. Results show that the framework can be feasibly
used with cloud systems based on both virtual machines and con-
tainers, although it is significantly more efficient with containers. In
the latter case, the proposed framework can complete the probe de-
ployment process in 0.5-1.5 seconds, while activating the pre-deployed
probes requires slightly less than 0.5s, suggesting that dynamic probe
deployment might be often preferable for containers, while working
with pre-deployed probes might be helpful for VMs. Regarding the
error-handling capability studied by RQ1.2, the entire procedure can
be completed in around 35 seconds with VMs and less than a second
with containers. Finally, the results about the framework’s scalability
investigated by RQ1.3 give additional evidence of how sharing probes
between operators can significantly improve the monitoring system
efficiency. This is crucial for virtual machines where the probe deploy-
ment cost can be reduced by sharing probes. In fact, the difference is
particularly relevant when considering the deployment of 30 probes,
which requires around 10 minutes, in contrast with containers that can
complete this operations in few seconds.

The current framework implementation has three main limitations.
First, fine-grained control of the probes configurations (e.g., changing
the sampling rate of the individual probes) is not supported. This lim-
itation can be potentially addressed by enriching monitoring claims
with information about probe configurations. Second, the support to
elasticity right now depends on the probe intelligence (e.g., it requires
the probes to embed a discovery mechanism as the one in the Met-
ricbeat Kubernetes module). It would be interesting to move this sup-

56 automating probe life-cycle for changing needs

port at the level of the monitoring framework, so that any probe can
be used to monitor elastic services. Third, error-handling is limited to
the deployment phase, and it is unable to detect and repair run-time
errors that occur during the regular execution of the monitoring sys-
tem. Indeed, error handling requires further research to cover the full
range of situations.

4
PAT T E R N S F O R P R O B E D E P L O Y M E N T S

This chapter presents the definition, analysis, and both qualitative
and quantitative evaluation of 11 possible probe deployment patterns.
They are specified by means of a feature model that captures several
key features and logical constraints relevant to probe deployment. The
proposed patterns help in understanding how to distribute the probes
in order to respect and optimize both technological and operators’ re-
quirements, as discussed in Section 2.2.2. Results show trade-offs be-
tween patterns that require more resources to ensure good separation
between users in multi-tenant environments, and those patterns that
use less resources, while reducing the degree of separation at a cost of
less privacy and risk of interference. In addition, I distilled a set of best
practices from the findings to guide engineers in implementing and
configuring their monitoring systems. Finally, the results have been
cross-validated by addressing three realistic monitoring scenarios in-
volving different technologies, software architectures, and monitoring
requirements. The contribution presented in this chapter as been pub-
lished in the IEEE Transactions on Services Computing journal paper
titled “Monitoring Probe Deployment Patterns for Cloud-Native Ap-
plications: Definition and Empirical Assessment” [244].

The chapter is structured as follows. Section 4.1 briefly introduces
what probe deployment is and why it is a relevant problem for moni-
toring systems. Section 4.2 presents and defines the probe deployment
patterns. Section 4.3 provides a qualitative evaluation of the patterns.
Section 4.4 presents the empirical evaluation. Section 4.5 discusses the
best practices derived from the empirical findings. Section 4.6 demon-
strates the application of probe deployment patterns to three realistic
usage scenarios. Finally, Section 4.7 concludes the chapter with closing
remarks.

4.1 probe deployment

Monitoring systems can deploy probes using various strategies that
take into account features such as technology, efficiency, and privacy.
The previous chapter illustrated how the proposed MaaS framework
uses two different strategies to deploy probes based on the technol-
ogy used to host the probe artifacts, namely VMs and containers. For
further illustration, let us consider a multi-tenant environment. In this
case, multiple probes can be deployed within the same virtual ma-
chine to save resources. However, this comes at the cost of reduced
privacy and security. Alternatively, a single probe can be deployed
per container or virtual machine to preserve privacy, but this requires

57

58 patterns for probe deployments

more resources allocated to the monitoring system. Therefore, the ef-
fectiveness and efficiency of a monitoring system can be impacted by
the chosen probe deployment strategy.

Despite the many possible strategies, there has been no systematic
analysis and assessment. Engineers designing monitoring systems are
left to make their own decisions, which can have implications on the
monitoring efficiency and the flexibility of the monitoring system. The
next section introduces the concept of probe deployment patterns and
defines a set of key features for probe deployment that led to the defi-
nition of 11 patterns.

4.2 pattern definitions

Probe deployment patterns capture how probes can be deployed to
monitor the targets. The possible deployment depends on several key
features that I discuss in this section and are represented with the
feature diagram shown in Figure 4.1.

A feature diagram is a graphical representation of a feature model
that defines features and their dependencies in a tree structure [137].
In this case the model characterizes the features relevant to probe de-
ployment patterns. The inner nodes represent abstract features (fea-
tures that are not implemented but only used to group features), while
the leaf nodes represent the concrete features (features that are imple-
mented). The parent-child relationship represents the feature decom-
position, from abstract to concrete features. While the default inter-
pretation of feature decomposition is the AND relationship, other de-
composition are possible, such as the alternative decomposition that
indicates that only one feature can be selected among the ones that
are available (see the legend in the figure). Finally, features can be
optional or mandatory. All features are mandatory in the defined dia-
gram. A combination of features is a configuration. A configuration is
admissible if it satisfies its feature diagram.

A feature model may also include logical constraints that limit the
set of admissible configurations, that is, only the configurations that
satisfy the specified constraints can being admitted by the model. The
model also includes several constraints that prevent that infeasible or
highly inefficient configurations can be admitted by the model, thus
guaranteeing the reasonableness of the result.

I started from the papers that propose monitoring and probe de-
ployment approaches for multi-tenant and technology-heterogeneous
cloud environments [2, 50, 115, 173, 191, 235], the most used cloud
monitoring tools [25, 30, 151, 177, 195], and my personal experience,
to identify and distill a set of relevant features for probes deployment.

A feature model can be used to automatically generate the space of
all the admissible configurations. In fact, the configurations admitted
by the model obtained by the diagram in Figure 4.1 represent all the
probe deployment patterns that can be identified by using the consid-

4.2 pattern definitions 59

Probe Deployment
Pattern

Target

External Unit

Single-probe

Multi-probe

Shared Holder

Reserved Holder

Single-target

Multi-target

Reserved Probe

Shared Probe

System-oriented

Application-oriented

Probe Holder

Probe Instance

Execution
Environment

Holder Type

Probe Multiplicity

Holder Sharing

Target Multiplicity

Instance Sharing

Environment Type

)

)

)

)

)

)

Application−oriented ⇒ Single−probe
System−oriented ⇒ Multi−probe

Target ⇒ Single−target
Target ⇒ Multi−probe

Reserved	Holder ⇒ Reserved	Probe

Mandatory

Alternative Group

Abstract Feature

Concrete Feature

)

Target ⇒ Shared	Probe

Shared	Holder ∧ Single−probe ⇒ Shared	Probe
Constraints:

Figure 4.1: Probe deployment patterns feature diagram.

ered features and constraints. The semantics of the considered features
are discussed below.

• Probe Holder: it represents the objects that hosts probe instances
(N.B., hereinafter referred as holder). It can be a separate Virtual Ma-
chine or container, or can overlap with the target execution environ-
ment. With respect to the monitoring unit concept (Definition 3.4)
defined in Chapter 3, the probe holder is the solely hosting object
without any running probe.

– Holder Type: it represents the holder type [173].

* Target: the holder is the target of the monitoring activity,
that is, the holder hosts both the target and the monitoring
probes.

* External Unit: the holder is an external object which moni-
tors the target from the outside (e.g., a sidecar container [25,
30, 50, 151, 173, 177, 195]).

– Probe Multiplicity: it defines the number of probes that can be
executed within the unit [50].

* Single-probe: only one probe can be executed.

* Multi-probe: one or more probes can be executed.

– Holder Sharing: it defines if the holder can be shared among
multiple users [2, 115, 191, 235].

* Reserved Holder: the holder is reserved to a single user.

* Shared Holder: the holder can be shared among users.

• Probe Instance: it represents the running instance of a probe artifact
(Definition 3.1) executed within the holder to collect data.

– Target Multiplicity: it defines the number of targets that a single
probe can monitor simultaneously [25, 30, 50, 151, 177, 195].

60 patterns for probe deployments

* Single-target: a probe can monitor only one target.

* Multi-target: a probe can monitor multiple targets.

– Instance Sharing: it defines if a probe instance within a holder
can be shared among users [2, 115, 191, 235].

* Reserved Probe: the probe collects data for a single user.

* Shared Probe: the probe can collect data for multiple users.

• Execution Environment: it defines the supported execution envi-
ronment.

– Environment Type:

* System-oriented: monitoring is performed within a virtu-
alized entity aimed at offering a system-level environment.
This is usually the case with Virtual Machines and system-
level containerization technologies, such as LXC [70],
OpenVz [93], and Linux-VServer [71].

* Application-oriented: monitoring is performed within a
virtualized entity aimed at offering an application-level en-
vironment. This is the case of common containerization
technologies, such as Docker [121] or containerd [94].

The admissible configurations are bounded by constraints that cap-
ture bad/best practices and unfeasible combinations, as follows:

a) A shared holder that executes at most a single probe must allow for the
execution of shared probes (Shared Holder ∧ Single-probe ⇒ Shared
Probe): If the holder must be shared but only one probe can be
executed within the holder, the only way to actually share re-
sources is to allow for probes that can be shared among multiple
users.

b) If the holder is reserved to a single user, also the probes running within
that holder must be serving that user (Reserved Holder ⇒ Reserved
Probe): Clearly, if the holder is reserved to a single user, it is
impossible to install probes serving multiple-users within that
holder.

c) Each system-oriented virtualization unit should possibly run multiple
probes (System-oriented ⇒ Multi-probe): Virtual machines are ex-
pensive units whose instantiation should be limited to prevent
excessive resource consumption, due to their non-negligible size
and significant bootstrapping cost [157, 265]. For this reason, re-
serving a virtual machine to a single probe is strongly discour-
aged, and it should rather be used to run multiple probes.

d) Each Application-oriented virtualization unit should not run more than
one probe (Application-oriented⇒ Single-probe): Following good de-
sign practices concerning isolation and separation of concerns [50],

4.2 pattern definitions 61

each container should run one process at most, and thus each
container should be dedicated to a distinct monitoring probe, so
that any interference is prevented.

e) A probe sharing the holder with the target should only monitor that tar-
get (Target⇒ Single-target): When a probe is installed within the
same holder (e.g., a virtual machine) that runs the target of the
monitoring activity, the probe should not be configured to mon-
itor something else hosted outside the target, otherwise it may
interfere with the activity of the target. This follows the prac-
tice that, if needed, probes might be running within the same
holder of the target to circumvent observability issues. For in-
stance, collecting memory consumption either about a process
running inside a VM, or the VM itself, may not be possible via
external interfaces or at hypervisor level [73, 191], and in such
cases probes are specifically configured to extract data from that
target.

f) If probes are allowed to run within the same holder of the target, more
than one probe should be allowed to run (Target⇒Multi-probe): Lim-
iting the target to host a single probe would limit the monitor-
ing system to the collection of a single (set of) indicators, which
would not be acceptable in the majority of practical cases.

g) A probe sharing the holder with the target should be shared among
users (Target⇒ Shared Probe): Using the holder space for both the
target and the probes may raise interference issues. For this rea-
son having multiple copies of functionally-equivalent probes to
serve multiple users is particularly inefficient and risky, despite
ownership concerns. Thus, additional probes should be installed
only to collect data that are not collected by the already existing
probes, which have to be shared among users.

All these concepts and constraints are encoded in the feature dia-
gram in Figure 4.1, which has been implemented using
FeatureIDE [234], a tool for feature-oriented software development
based on Eclipse. All the admissible configurations from the model
are derived automatically, taking also into account the specified con-
straints. The tool created 11 admissible configurations corresponding
to 11 probe deployment patterns, which are by product correct, accord-
ing to the features and constraints represented in the feature model.
In this work, I focused on the key features that characterize a set of
monitoring probes. In the future, the model could be extended to in-
corporate additional features and constraints, which could be used to
refine the set of probe deployment patterns.

Figure 4.2 provides a graphical representation of the probe deploy-
ment patterns, and proposes names coherent with their structure. The
illustrations consistently refer to a case with two targets and two users,

62 patterns for probe deployments

Legend

Targetx Target

PKPI_x Probe

PHx Probe Holder

User

(a) Reserved-T∗P∗

PH2

PKPI_1

PKPI_2

PH1

PKPI_1

TargetB

TargetA

(b) Reserved-T∗P1

PH1

PKPI_1

PH2

PKPI_1

PH3

PKPI_2

TargetB

TargetA

(c) Shared-T∗P∗

PH1

PKPI_1

PKPI_2

TargetB

TargetA

(d) Shared-T∗P1

TargetB

TargetA
PH1

PKPI_1

PH2

PKPI_2

(e) Partially-shared-T∗P∗

PH1

PKPI_1

PKPI_1

PKPI_2TargetB

TargetA

(f) Reserved-T1P∗

TargetB

TargetA

PH1

PKPI_1

PH3

PKPI_2

PKPI_1

PH2

PKPI_1

(g) Reserved-T1P1

TargetB

TargetA

PH4

PKPI_2

PH1

PKPI_1

PH3

PKPI_1

PH2

PKPI_1

(h) Shared-T1P∗

PH2

PKPI_1

PKPI_2

PH1

PKPI_1

TargetB

TargetA

(i) Shared-T1P1

PH2

PKPI_1

PH1

PKPI_1

PH3

PKPI_2

TargetB

TargetA

(j) Partially-shared-T1P∗
PH1

PKPI_1

TargetB

TargetA

PH2

PKPI_1

PKPI_1

PKPI_2

(k) Internal-T1P∗
TargetA

PKPI_1

TargetB

PKPI_1

PKPI_2

Figure 4.2: Probe deployment patterns.

which is sufficient to exemplify the differences among the various pat-
terns. The number of holders and probes varies according to the con-
figuration. I use colors to represent ownership (a probe holder or a
probe of the same color of a user indicates the ownership of the user,
while multicolored elements represent shared resources).

I adopt a same schema to illustrate each pattern. In particular, I
use the following fields: name, which defines the name of the pattern;

4.2 pattern definitions 63

description, which provides a short description of the pattern, and tar-
get technology, which indicates the technical environment in which the
pattern is used.

A naming convention is defined to easily recall the details of a pat-
tern from its name. Specifically the name of each pattern is obtained
by concatenating three elements:

• The first element represents the level of sharing of the pattern, which
could be Reserved, Shared, or Partially Shared. Reserved is used for
holders reserved to individual users. Shared is used for shared hold-
ers running shared probes. Finally, Partially Shared is used for shared
holders that run reserved probes.

• The second element represents the type of executed probes. I use
T* for probes that can monitor multiple targets, while I use T1 for
probes that monitor a single target.

• The third element represents the probe multiplicity. I use P1 for
holders that run a single probe. While I use P* for holders that can
run multiple probes.

For example, the Partially-shared-T1P∗ pattern identifies the case of a
shared holder that can run multiple probes configured to serve indi-
vidual users and collect data from individual targets.

Reserved-T∗P∗ (Figure 4.2a) (Definition 4.1). Reserved-T∗P∗ pattern
uses a reserved holder for each user. A single holder hosts multiple
probes able to gather information from multiple targets. Note that in
this configuration, to increase data separation, both the holder and the
probes are reserved to a single user, but a single probe can gather the
same indicator from multiple targets.
Target Technology: Since each holder can host multiple probes, this pat-
tern is usually applied to system-oriented virtualization technologies.

Reserved-T∗P1 (Figure 4.2b) (Definition 4.2). Reserved-T∗P1 uses mul-
tiple reserved holders for each user, one for each probe deployed. Al-
though there is a one-to-one relationship between holders and probes,
probes are enabled to gather data from multiple targets.
Target Technology: This pattern is tailored for application-oriented virtu-
alization technologies (e.g., Docker containers) since each holder only
contains the process of a single probe. It is discouraged to exploit this
pattern with system-oriented virtualization technologies (e.g., VMs)
since the cumulative overhead caused by holders is likely unaffordable
for non-trivial settings.

Shared-T∗P∗ (Figure 4.2c) (Definition 4.3). Shared-T∗P∗ uses a single
holder, shared among different users. The holder can contain multiple
probes, which are also shared among the users for collecting the same
indicators from multiple targets.
Target Technology: Due to the presence of multiple processes within the
same holder, this pattern is specific to system-oriented environments.

64 patterns for probe deployments

Shared-T∗P1 (Figure 4.2d (Definition 4.4).] Shared-T∗P1 shares holders
among users and they contain a single probe that is able to acquire data
from multiple targets and for multiple users, if needed.
Target Technology: This pattern targets application-oriented environ-
ments because, while sharing probes among users and targets pro-
motes optimization and reuse, having a dedicated holder for each
probe can cause a significant overhead for the monitoring solution if
using heavier virtualized units (e.g., VMs).

Partially-shared-T∗P∗ (Figure 4.2e) (Definition 4.5). Partially-shared-
T∗P∗ uses a single holder, shared among users that contains multiple
probes able to acquire the indicators from multiple targets. In case the
same indicator is requested by multiple users, the probe is instanced
multiple times within the same holder, one for each user that requested
the indicator.
Target Technology: This pattern is specific to system-oriented environ-
ments as it creates a small number of holders with multiple processes
running in each one (i.e., multiple probes).

Reserved-T1P∗ (Figure 4.2f) (Definition 4.6). Reserved-T1P∗ uses a re-
served holder for each user. Moreover each holder is allowed to con-
tain only probes that acquire data from a single target, however, if a
single user requires to collect multiple indicators from the same target,
multiple probes can be placed within the same holder.
Target Technology: Due to the fact that a holder may contain multiple
probes, this pattern is suited for system-oriented environments.

Reserved-T1P1 (Figure 4.2g) (Definition 4.7). Reserved-T1P1 uses a re-
served holder for each user and contains a single probe. Every probe
is dedicated to the collection of indicators from a single target, which
means that if a single user requests the same indicator from a given
number of targets, an equal number of holders and probes will be de-
ployed to fulfill such request.
Target Technology: This pattern is dedicated to application-oriented en-
vironments as it fulfills the requirement of having a single process in
each holder.

Shared-T1P∗ (Figure 4.2h) (Definition 4.8). Shared-T1P∗ uses a holder
for each target. Such holder may contain multiple probes that can ac-
quire indicators from a single target. Since there is only one holder for
a specified target, multiple users interested in monitoring such target
share the holder. Moreover users also share the actual probes within
the holder.
Target Technology: Given the fact that each holder can contain multiple
probes, this pattern is tailored for system-oriented environments.

4.3 qualitative discussion 65

Shared-T1P1 (Figure 4.2i) (Definition 4.9). Shared-T1P1 uses multiple
holders for each target, where each holder contains only one probe
that acquires indicators from the target and shares the data among all
the users.
Target Technology: This pattern is designed to be applied to application-
oriented environments, mainly due to the high number of holders that
it can generate.

Partially-shared-T1P∗ (Figure 4.2j) (Definition 4.10). Partially-shared-
T1P∗ uses a single holder for each target, shared among users. How-
ever. the probes are not shared among users, implying that if two or
more users wish to monitor the same indicator, there will be an equal
number of instances of the same probe deployed, each one dedicated
to a single user.
Target Technology: Since this pattern involves a single holder for each tar-
get with a number of probes deployed within it, it is aimed at system-
oriented environments.

Internal-T1P∗ (Figure 4.2k) (Definition 4.11). Internal-T1P∗ is the only
case in which the holder matches with the execution unit that hosts
the target. The probes run within the same execution unit that runs
the target (e.g., within a VM). If the same indicators are collected by
multiple users for the same targets, the probes are necessarily shared,
mitigating the possibility of interfering with the target.
Target Technology: This pattern is specific to system-oriented environ-
ments since its nature implies multiple processes running in the target.

It is worth detailing further the Internal-T1P∗ pattern which is the
only one where the holder matches with the target execution unit. In
this unique instance, probes can gain the highest observability as they
have the privileged viewpoint of collecting data from inside the same
execution unit hosting the target. Hence, probes may easily observe
indicators that would otherwise be hard or even impossible to collect.

The implementation of this pattern can be highly intrusive as the
probes and target share execution unit resources. Additionally, users
cannot operate reserved probes unless the monitoring system permits
single-user access. There could also be challenges in precisely gath-
ering indicators specific to the target. This is particularly true for
resource-related metrics such as memory and CPU usage, which could
be influenced by the inclusion of probes that also consume resources.

4.3 qualitative discussion

This section discusses the qualitative aspects related to the presented
patterns. I first discuss how the patterns can be implemented with
different technologies. I then discuss the trade-off between separa-
tion and resource consumption. I conclude by discussing interoper-
ability, portability, robustness, affordability and security of the pat-
terns. Table 4.1 summarizes how patterns can be classified according

66 patterns for probe deployments

to these seven dimensions. For ease of comparison, patterns have been
grouped into three groups: (i) patterns that reserve both holders and
probes to individual users (column Patterns that privilege reservation);
(ii) patterns that share both probes and holders among users (col-
umn Patterns that privilege sharing); and (iii) patterns that share hold-
ers among users, but run probes reserved to individual users (column
Patterns that balance the two aspects).

4.3.1 Pattern Implementation

To show the practical applicability of the patterns, in this section I
provide guidance on how the identified patterns can be implemented
with current real-world monitoring tools. Further guidance on apply-
ing patterns in real-world contexts is provided in Section 4.6, where
realistic usage scenarios are reported.

A common way to implement the patterns with reserved resources
(Reserved-T∗P1, Reserved-T∗P∗, Reserved-T1P∗, and Reserved-T1P1) with
platforms such as Prometheus or the Elastic Stack is to have multiple
instances of the framework, one for each user, and then deploy their
holders with agentless Prometheus exporters [25] or Beats [30], such as
SNMP [54, 195] or HTTP based probes. This is also the case of tools
such as Zabbix [151] in its agentless configuration, where it is expected
to handle multi-tenancy with the deployment of distinct components
for each tenant. The reserved aspect of both the probes and the hold-
ers can be implemented either deploying distinct instances of the full
monitoring system or employing a probe deployment framework that
can support multi-tenancy [2, 235]. These patterns are well supported
also by commercial tools, such as Nagios [177] and Dynatrace [82],
and in scientific articles, such as [115, 191].

The patterns with shared resources (Shared-T∗P∗, Shared-T1P1,
Partially-shared-T∗P∗, Shared-T∗P1, Shared-T1P∗, Partially-shared-T1P∗)
are easy to implement with base technologies, such as Prometheus
and the Elastic Stack, as they exploit components that can be installed
in a single shared holder configured to permit multiple users to access
the data gathered from the deployed probes. These patterns are avail-
able also within commercial systems [82, 151, 177], and in scientific
articles, such as [51, 116, 167, 220, 227]

The Internal-T1P∗ pattern can be found in many agent-based solu-
tions [11, 164, 238]. It could also be obtained in Prometheus, by in-
stalling its exporters directly in the target VMs, and similarly with
Elastic Stack, by installing beats and custom probes directly within
the target VMs.

The study of approaches to switch from one pattern to another is
beyond the scope of this work. Nevertheless, designing monitoring
systems that can automatically change the deployment pattern accord-
ing to changes in monitoring needs would be valuable. In the context
of automated deployment of holders and probes, one feasible method

4.3 qualitative discussion 67

involves the use of Monitoring-as-a-Service (MaaS) frameworks [192,
238]. For instance, the MaaS framework proposed in Chapter 3 that has
the ability to automatically govern the entire life-cycle of the probes
from declarative inputs, thus relieving operators of any configuration
burden.

4.3.2 Analysis of Quality Aspects

Table 4.1: Characterization of the Patterns

Patterns that privilege isolation Patterns that privilege sharing
Patterns that balance

the two aspects

Patterns
Reserved-T∗P∗, Reserved-T∗P1,

Reserved-T1P∗, Reserved-T1P1

Internal-T1P∗, Shared-T∗P∗,
Shared-T∗P1, Shared-T1P∗,
Shared-T1P1

Partially-shared-T∗P∗,
Partially-shared-T1P∗

Resource

Consumption

number of probes and holders

growths with users
scalable growth with respect to users only number of probes growths

Separation no interference among users
probes shared between users who

have to agree on their configuration

possible interference at the level

of the holder

Interoperability

& Portability
no impact no impact no impact

Robustness
dedicated holder increases

failure containment

shared probes can propagate

failures among users, internal probe

can propagate failures to target

shared holder can propagate

failures among users

Affordability
resource utilization requires

higher cost

sharing probes and holders

can reduce overall cost of resources

sharing holders reduces

resource cost

Security
reserved resources can mitigate

security risks

sharing probe and holder can

significantly pose security risks

sharing holders can pose

security risks

separation versus resource consumption One of the as-
pects relevant to the choice of the pattern is the level of separation to
be achieved, in comparison to the possible resource consumption. Sep-
aration concerns with probes and holders acting for the purpose of a
single user or organization in a multi-tenant environment. Separation
is beneficial to privacy, security and reliability.

Some patterns require a given level of sharing to be accepted by the
users in order to be used. Depending on this choice, the behavior of
the probes serving a user may impact the probes serving other users.
On the other hand, guaranteeing separation requires extra resources
to be allocated on the monitoring system.

Patterns that privilege reservation guarantee the maximum level of
separation, but resource consumption may growth quite quickly with
a growing number of users. On the other hand, patterns that favor
sharing probes may save resources but require sharing probe configu-
rations (e.g., sampling rate and accuracy) among users, and this could
be problematic in some use cases.

Some patterns share the holders among users while running probes
reserved to individual users (Table 4.1, column Patterns that balance the
two aspects). This guarantees that probes may impact one another only
through the holder, which is unlikely to happen, although possible

68 patterns for probe deployments

(e.g., due to a malfunctioning probe). In terms of resources, although
the number of probes may still increase quickly, the number of holders
is guaranteed to stay small.

Resource consumption growth rate is quantitatively studied in de-
tail in Section 4.4.

interoperability and portability The proposed patterns are
cloud agnostic and thus are interoperable and portable across cloud
environments [76]. There might be however some practical aspects
that make certain patterns more suitable for an environment than an-
other. For instance, although the proposed patterns are conceptually
applicable to both containers and virtual machines, in practice I re-
stricted the application of some of them to certain technologies only,
so as not to go against well-known and widely accepted design prin-
ciples of those technologies.

Patterns are beneficial to interoperability and portability also when
used to describe and model existing monitoring systems. In fact, they
ease the understanding of different implementations of probe deploy-
ment designs by introducing a set of reference designs. This facilitates
the understanding of the responsibilities of monitoring components,
which could be easily replaced with compliant ones having the same
or similar characteristics of the replaced component.

robustness Robustness is an important aspect of monitoring sys-
tems. Among the described patterns, the ones that use a holder that
is distinct from the holder of the target service provide higher robust-
ness (Reserved-T∗P∗, Reserved-T∗P1, Reserved-T1P∗, Reserved-T1P1).
In fact, the external holder provides failure containment by isolating
the monitoring modules into separate units. This allows the target’s
functionalities to be safeguarded despite failures in the monitoring in-
frastructure. For example, the target can continue serving even if the
probe has failed.

In addition, these external units are deployed on dedicated VMs
and containers, allowing each piece of monitoring functionality to be
updated, configured and, when needed, rolled back, independently
from targets, and vice versa.

Shared holders may cause the propagation of failures from the probes
of a user to the probes of different users through the holders.

Finally, shared probes imply sharing failures between users (Shared-
T∗P∗, Shared-T∗P1, Shared-T1P∗, Shared-T1P1). Even worst, internal
probes may propagate failures to the target (Internal-T1P∗).

affordability Patterns that promote more efficient consumption
of cloud resources offer greater assurance of affordability. These are
the patterns that share resources among users, such as patterns that
share the holder and/or the probe instances. A further level of re-
source sharing is given by the pattern (Internal-T1P∗) that shares the

4.4 empirical evaluation 69

holder with the target holder, consequently saving also the cost of shar-
ing messages between the probes and the target, otherwise needed
with the other patterns.

security Security concerns may derive from the definition of the
patterns and their implementation. Different patterns introduce differ-
ent levels of resource sharing among users, which might be a source
of concerns. For example, if an attacker takes control of a holder, all
the probes running in the holder might be compromised. A compro-
mised probe may compromise the clients using the probe. In short,
shared and partially-shared probe deployment patterns expose users
to higher security risks compared to reserved patterns.

Pattern implementations may also be a source of security concerns.
For instance, resource pooling enables the use of the same pool of
resource by multiple users through multi-tenancy and virtualization
technologies. Although these technologies introduce rapid elasticity
and optimal resource management, they also introduce some risks into
the system. Multi-tenancy carries the risk of data visibility to other
users and tracking of operations. Similarly, the virtualized environ-
ment introduces its own set of risks and vulnerabilities that include
malicious cooperation between virtual components and the leakage of
these.

4.4 empirical evaluation

In this section, I quantitatively evaluate the cost-effectiveness of the
probe deployment patterns by measuring their cost in terms of CPU,
memory and network consumption, and their monthly operating costs.
I discuss the sub-research questions (Section 4.4.1), the experimental
plan that was carried out and the experimental setup that I used to
perform the experiments (Section 4.4.2), the results of the experiments
that I executed to answer the sub-research questions (Section 4.4.3 and
Section 4.4.4), and threats to validity of the evaluation (Section 4.4.5).

4.4.1 Research Questions

This work responds to RQ2, and in addition to the qualitative dis-
cussion reported in Section 4.7, it is quantitatively assessed with the
investigation of the cost-effectiveness of the probe deployment pat-
terns. This concerns with the scalability of the pattern with the respect
to the amount of monitored data. Investigating the scalability of the
patterns is important to determine how well the patterns can fit situ-
ations asking for different amounts of data to be collected. I consider
multiple scalability dimensions, including probe overhead and cost.
Since the two main target environments, system-oriented (e.g., virtual
machines) and application-oriented (e.g., Docker containers) environ-
ments, are significantly different in terms of elasticity and amount of

70 patterns for probe deployments

resources consumed to create and run holders, and plots would be
on radically different scales, I generate two distinct sub-research ques-
tions for each target environment as follows.
RQ2.1 - System-oriented Patterns Scalability: How do patterns for
system-oriented environments scale with the amount of monitored
data?
RQ2.2 - Application-oriented Pattern Scalability: How do patterns
for application-oriented environments scale with the amount of mon-
itored data?

RQ2.1 and RQ2.2 study how probe deployment patterns scale with
respect to an increasing number of users, indicators and targets for
system-oriented and application-oriented execution environments, re-
spectively.

4.4.2 Experimental Setup

To answer the two research questions, I studied the scalability of the
probe deployment patterns by performing 6 experiments each one in-
vestigating a different scalability dimension with 5 experimental config-
urations. An experimental configuration consists of a triplet: the num-
ber of users considered in the experiment, the number of monitored
targets, and the number of indicators requested per user. To measure
scalability, I considered how patterns consume the CPU (%), memory
(GiB/MiB), and network I/O (MiB) of both the holder and the target
holder. To this end, I could appreciate both how probes and holders
consume resources, but also how, and if, patterns may impact on the
target, also estimating the performance overhead and cost.

In each experiment, I vary at least one out of the three dimensions
that compose an experimental configuration to study how the patterns
handle the growth of that dimension. Table 4.2 summarizes the exper-
iments I did. Column Experiment specifies the name of the experiment,
while Column Sequence of Exp. Configurations reports the set of exper-
imental configurations investigated to study scalability. Note that the
sequence of configurations always have at least a growing dimension.
In all the cases, the growth rate corresponds to doubling a dimension
at each step. As shown in the experiments, the selected values are
sufficient to appreciated the trend shown by each dimension.

In particular, the INCREASING_KPIS_1 and INCREASING_KPIS_2
experiments investigate the scalability of the patterns with respect to
an increasing number of requested indicators by a single user for a given
target and by two users for a same target, respectively. That is, I inves-
tigate the impact of an increasing number of indicators collected, both
for single and multiple users.

The INCREASING_TARGETS_1 and INCREASING_TARGETS_2 ex-
periments investigate the scalability of the patterns with respect to an
increasing number of targets, for a user interested in collecting a given
indicator, and two users interested in collecting a same indicator. That

4.4 empirical evaluation 71

is, I investigate how a growing number of targets impact on the single
and multi-user scenarios.

The INCREASING_USERS_1 experiment investigates the scalability
of the patterns with respect to an increasing number users interested
in monitoring a single indicator for a given target. Finally, INCREAS-
ING_USERS_2 investigates the scalability of the patterns with respect
to an increasing number of users requesting an increasing number of
indicators for a same single target. That is, I study how a growing
number of users impact on the patterns, also considered in combina-
tion with an increasing number of indicators collected.

Overall, this set of experiments can provide a clear picture about
how patterns scale according to the different dimensions. All the ex-
periments are repeated for both patterns applicable to system-oriented
technologies (e.g., VMs) and patterns applicable to application-oriented
technologies (e.g., Docker containers).

Table 4.2: Experiments Configurations

Experiment Sequence of Exp. Configurations (Users - Targets - Indicators)

INCREASING_KPIS_1 (1-1-1), (1-1-2), (1-1-4), (1-1-8), (1-1-16)

INCREASING_KPIS_2 (2-1-1), (2-1-2), (2-1-4), (2-1-8), (2-1-16)

INCREASING_TARGETS_1 (1-1-1), (1-2-1), (1-4-1), (1-8-1), (1-16-1)

INCREASING_TARGETS_2 (2-1-1), (2-2-1), (2-4-1), (2-8-1), (2-16-1)

INCREASING_USERS_1 (1-1-1), (2-1-1), (4-1-1), (8-1-1), (16-1-1)

INCREASING_USERS_2 (1-1-1), (2-1-2), (4-1-4), (8-1-8), (16-1-16)

When collecting data, I run each experimental configuration 3 times
for 10 minutes to collect stable results. Since I sample the resource-
related metrics (CPU, memory and network) every 10 seconds, each
of the experimental configurations results in 60 samples for a sam-
pled resource-related metric. Overall, the 3 repetitions sustained for
10 minutes generates 180 samples per resource-metric for a given con-
figuration, that gives us good confidence on the stability and signif-
icance of the results. Since I study 30 configurations, to support the
6 experiments shown in Table 4.2, and I repeat the experiments for
the 11 patterns, a total of 330 configurations is obatined. I avoid re-
peating the execution of 22 configurations because some pattern con-
figurations produce the same experimental setting (e.g., same number
of deployed holders and probes). As a result, I collected 166,320 sam-
ples instead of the expected 178,200 samples (60 samples per metrics×
3 metrics× 3 repetitions× 330 configurations = 178, 200 samples).

I ran the experiments on both virtual machines (VM) and containers.
To automate experiments, I implemented Ansible playbooks [124] that
interact with the Azure Compute Platform [170] and with a managed
Azure Kubernetes Cluster [171] to run VM-based and container-based
experiments, respectively.

72 patterns for probe deployments

Virtual machine holders are created with the Azure Standard B1s
flavor (1 vCPU, 1GiB of RAM, Ubuntu 18.04 LTS), while VM targets
are created with the Standard A2 v2 flavor (2 vCPUs, 4GiB of RAM,
Ubuntu 18.04 LTS). The Kubernetes Cluster consists of a single node
pool with 3 workers (Standard B4ms flavor, 4 vCPU, 16GiB of RAM)
and run Kubernetes v1.20.9. I deployed container holders and targets
by mean of single-replica Kubernetes Deployments [232].

I used NGINX [86], a well-known web server and reverse-proxy, as
the target application; and Metricbeat [33] as probing system. Met-
ricbeat helps in monitoring servers by collecting metrics from both the
system and the services running on them. It can ship the collected
metrics to Elasticsearch [32] and can be configured to collect tailored
metrics. I configured the Metricbeat NGINX module to probe the tar-
get, while I activated the System and Kubernetes modules to measure
the resource consumption in the case of VMs and containers, respec-
tively.

To collect CPU, memory and network metrics on virtual machines, I
run a dedicated Metricbeat instance on both the targets and holders. In
Kubernetes, I deployed Metricbeat to measure the targets and holders
resource consumption as a Kubernetes DaemonSet [231].

I used Metricbeat also to implement the monitoring probes that are
part of the monitoring patterns, either deployed within virtual ma-
chines or deployed as single-replica Kubernetes Deployments.

I compute the CPU and memory consumption of a pattern as the
sum of the resource consumption of each holder activated by the pat-
tern. The consumption of a holder is obtained as its medium resource
consumption along the experiment. The CPU and memory consump-
tion of targets is computed as the mean value of the collected samples.
For network I/O consumption, since it is a cumulative metric, I simply
compute the total consumption of each element per experiment as the
difference between the first and last data point.

To compute the actual cost of running probes, I referred to the
monthly cost of a Microsoft Azure Standard B1s VM operated in the
West Europe zone (€8.18/month in July 2023), and to an Azure Con-
tainer Instance operated in the West Europe zone (€31.7762/month x
1vCPU + €3.4845/month x 1 GB of RAM in July 2023). I calculate the
cost range of system-oriented patterns by multiplying the monthly
expense of one VM by the number of holders generated by the pat-
tern. Meanwhile, the cost range of application-oriented patterns is de-
termined by multiplying the average CPU/RAM consumption values
collected during the experiments with the monthly CPU/RAM costs.
As for system-oriented patterns, also for application-oriented patterns
the expense of a single container instance is then multiplied by the
number of holders generated by the pattern.

The experimental material containing all the software artifacts (i.e.,
Ansible playbooks, execution scripts, configurations, data analysis) and
the collected dataset is publicly available at [243].

4.4 empirical evaluation 73

4.4.3 RQ2.1: System-oriented Pattern Scalability

Figure 4.3 shows how the resource consumption growths for the var-
ious metrics, considering the system-oriented patterns implemented
with VM holders. I do not include the Internal-T1P∗ pattern in the
plots related to memory consumption because no holder is added to
the system (the holder matches with the target holder). Thus the over-
head is limited to the resource consumption of the probe, which is
negligible compared to the resources already consumed by the tar-
get holder. I report a selection of plots that is sufficient to illustrate
the results and the trends. The complete set of plots with resources
consumed by the holders and the targets for all the metrics and exper-
iments is available in Appendix A.

02
-01

-01

02
-02

-01

02
-04

-01

02
-08

-01

02
-16

-01
0
2
4
6
8

10

M
em

or
y

(G
iB

)

INCREASING_TARGETS_2

01
-01

-01

02
-01

-02

04
-01

-04

08
-01

-08

16
-01

-16

Configuration Triplet (Users-Targets-Indicators)

0

2

4

6

8

M
em

or
y

(G
iB

)

INCREASING_USERS_2

02
-01

-01

02
-02

-01

02
-04

-01

02
-08

-01

02
-16

-01
0

20

40

60

Ne
tw

or
k

In
 (M

iB
)

INCREASING_TARGETS_2

01
-01

-01

02
-01

-02

04
-01

-04

08
-01

-08

16
-01

-16
0

10

20

30

Ne
tw

or
k

In
 (M

iB
)

INCREASING_USERS_2

02
-01

-01

02
-02

-01

02
-04

-01

02
-08

-01

02
-16

-01

Configuration Triplet (Users-Targets-Indicators)

0

20

40

60

Ne
tw

or
k

Ou
t (

M
iB

)

INCREASING_TARGETS_2

01
-01

-01

02
-01

-02

04
-01

-04

08
-01

-08

16
-01

-16
0

10

20

30

Ne
tw

or
k

Ou
t (

M
iB

)

INCREASING_USERS_2

System-oriented Probe Holders

Reserved-T1P*
Shared-T1P*

Reserved-T*P*
Shared-T*P*

Partially-shared-T*P*
Partially-shared-T1P*

Internal-T1P*

Figure 4.3: System-oriented probe holders patterns scalability.

results of rq2 .1 CPU and memory consumption are both negli-
gible for targets. In particular, it is less than 1% for CPU consumption
and less than 502 MiB for memory, independently of the dimension
that is increasing. This is a clear evidence that all the system-oriented
patterns are non-intrusive in terms of CPU and memory consumption
for the target, including the Internal-T1P∗ pattern (which may inter-
fere in other ways due to the holder matching with the target holder).

CPU consumption is also negligible in the holders (less than 1%).
In fact, probes are lightweight artifacts that consume little resources
and even when their number increases, their impact on CPU is neg-
ligible. On the contrary, memory consumption is non-trivial in hold-
ers, for some patterns (up to 10 GiB). In fact, an increasing number
of targets makes single-target (T1) holders used by Reserved-T1P∗,
Shared-T1P∗, Partially-shared-T1P∗ patterns subject to an exponential

74 patterns for probe deployments

increase of memory consumption, as shown in Figure 4.3 (INCREAS-
ING_TARGETS_2). On the other hand, an increasing number of users
makes reserved holders used by Reserved-T1P∗, Reserved-T∗P∗ pat-
terns subject to an exponential memory consumption as shown in Fig-
ure 4.3 (INCREASING_USERS_2). This trend can be expected, since
all the five probes deployment patterns create new holders for an in-
creasing number of users or targets, resulting in new VMs creation,
that is, new allocated resources.

Network I/O consumption is negligible on targets: up to 6 MiB
transferred in 10 minutes for reserved patterns in the most expensive
experiment (INCREASING_USERS_2). The transferred data are due
to probes extracting data from the target. The limited traffic generated
confirms the suitability of all patterns in terms of their interference on
the target.

With respect to holders, network I/O consumption can be more
significant. I observe in particular that both an increasing number of
users requesting different indicators (INCREASING_USERS_1 and IN-
CREASING_USERS_2 experiments) and an increasing number of tar-
gets (INCREASING_TARGETS_1 and INCREASING_TARGET_2 ex-
periments) resulted in an exponential network consumption trend, as
shown in Figure 4.3. In particular, single-target (T1) holders (Shared-
T1P∗ and Reserved-T1P∗ patterns) and the Internal-T1P∗ pattern are
sensitive to an increasing number of targets, while reserved holders
(Reserved-T1P∗ and Reserved-T∗P∗ patterns) are sensitive to an in-
creasing number of users requesting different indicators.

Based on this evidence, depending on the expected scalability trend,
there are patterns that should be preferred or avoided. It is however
useful to remark that the overall resource network consumption that
has been observed has been limited, even for the most expensive sce-
narios (up to 60 MiB transferred in 10 minutes). This order of mag-
nitude is likely relatively significant in a cloud environment, where
network resources are usually abundant, while it is indeed relevant
in resource-constrained environments, such as fog and edge environ-
ments.

I report in Table 4.3 and Table 4.4 how these differences may reflect
in the monthly operation cost. All costs are in euros (€) and each cost
interval is obtained by considering the minimum and the maximum
number of employed holders for a specific scalability experiment.

Cost figures directly depend on the number of holders created, and
are generally low as long as holders are not dedicated to individual
service instances, which is a case that immediately generates unrea-
sonable operation costs. Many scalability dimensions do not impact
on the cost because VMs are quite large holders that can easily run
several probes and their cost is not affected by the number of run-
ning probes, until the number is so large that multiple VMs have to
be created. For this reason, it is difficult to estimate the cost of the
Internal-T1P∗ pattern, since probes run within the VM that hosts the

4.4 empirical evaluation 75

target service and they do not induce a measurable costs as long as a
larger VM has to be created due to the presence of the probes.

Table 4.3: System-oriented patterns probe holder monthly costs for ex-
periments INCREASING_KPIS_1, INCREASING_KPIS_2, and IN-
CREASING_TARGETS_1

Pattern
Experiment

INCREASING_KPIS_1 INCREASING_KPIS_2 INCREASING_TARGETS_1

Internal-T1P* ≈ 0* ≈ 0* ≈ 0*

Reserved-T*P* [8.18, 8.18] [16.36, 16.36] [8.18, 8.18]

Reserved-T1P* [8.18, 8.18] [16.36, 16.36] [8.18, 130.88]

Partially-shared-T*P* [8.18, 8.18] [8.18, 8.18] [8.18, 8.18]

Partially-shared-T1P* [8.18, 8.18] [8.18, 8.18] [8.18, 130.88]

Shared-T*P* [8.18, 8.18] [8.18, 8.18] [8.18, 8.18]

Shared-T1P* [8.18, 8.18] [8.18, 8.18] [8.18, 130.88]

Table 4.4: System-oriented patterns probe holder monthly costs for experi-
ments INCREASING_TARGETS_2, INCREASING_USERS_1, and
INCREASING_USERS_2

Pattern
Experiment

INCREASING_TARGETS_2 INCREASING_USERS_1 INCREASING_USERS_2

Internal-T1P* ≈ 0* ≈ 0* ≈ 0*

Reserved-T*P* [16.36, 16.36] [8.18, 130.88] [8.18, 130.88]

Reserved-T1P* [16.36, 271.76] [8.18, 130.88] [8.18, 130.88]

Partially-shared-T*P* [8.18, 8.18] [8.18, 8.18] [8.18, 8.18]

Partially-shared-T1P* [8.18, 130.88] [8.18, 8.18] [8.18, 8.18]

Shared-T*P* [8.18, 8.18] [8.18, 8.18] [8.18, 8.18]

Shared-T1P* [8.18, 130.88] [8.18, 8.18] [8.18, 8.18]

None of the patterns impacts on targets, thus their selection should
be entirely based on the resource consumption of holders.

Holders are not CPU eager, so the choice of the pattern can focus
on memory and network consumption for environments where network con-
sumption should be carefully controlled, otherwise network consumption
can be overlooked due to limited absolute consumption.

The expected resource consumption should be considered in rela-
tion to the expected growing rate of the key dimensions. If the mon-
itoring system is employed in a multi-tenant environment where the
number of users requiring different indicators can easily increase, the
patterns with reserved holders are particularly impacted (Reserved-
T1P∗ and Reserved-T∗P∗ deployment patterns). This may suggest that
reusing probes and holders among users is advised when direct ac-
cess to the target is not possible. The use of multi-target (T∗) probe de-
ployment patterns (i.e., Reserved-T∗P∗, Shared-T∗P∗, Partially-shared-

76 patterns for probe deployments

T∗P∗) is advised when many different targets or instances must be
monitored.

answer to rq2 .1 Since the overhead is mostly due to the holders,
reducing their number increase the efficiency, making Shared-T∗P∗,
Partially-shared-T∗P∗, and Internal-T1P∗ the more scalable patterns
for applications based on system-oriented virtualization, with Shared-
T1P∗ highly recommended in situations where the number of targets
remains low, while the number of interested users increases.

4.4.4 RQ2.2: Application-oriented Pattern Scalability

Figure 4.4: Application-oriented probe holders patterns scalability.

Figure 4.4 shows how the resource consumption growths for the
various metrics, depending on the application-oriented patterns. I re-
port a selection of plots that is sufficient to illustrate the results and
the trends. The complete set of plots with resources consumed by the
holders and the targets for all the metrics and experiments is available
as Appendix A.

results of rq2 .2 Similarly to system-oriented patterns, also
application-oriented patterns do not impact on the target. In fact, CPU
and memory consumption of the target is below 0.01% and 5 MiB, re-
spectively. Again, it confirms the suitability of the monitoring patterns
to collect data from targets without interfering with their resource con-
sumption.

CPU consumption is also negligible in holders despite patterns and
growing trends (below 0.01%), while memory consumption can be sig-
nificant. In fact, increasing the number of users who request for differ-

4.4 empirical evaluation 77

ent indicators (Figure 4.4 INCREMENTING_USERS_2 experiment) re-
sults in an exponential memory consumption trend (up to more than
10 GiB for reserved holders (Reserved-T∗P1 and Reserved-T1P1 pat-
terns). Note that these two reserved probe deployment patterns create
a holder hosting one probe only for each of the users requesting a new
indicator to be collected. For instance, the last configuration triplet (16

Users - 1 Target - 16 Indicators) of the INCREMENTING_USERS_2 ex-
periment creates 256 holders to satisfy the user needs. Thus, although
memory consumption may growth exponentially, the overall consump-
tion in relation to the number of created containers is still quite good.

Network I/O consumption is also negligible for targets, less than 1

MiB in all the experiments except for the INCREASING_USERS_2 ex-
periment where I observed up to 6 MiB of network I/O consumption
for the patterns using reserved holders (Reserved-T1P1 and Reserved-
T∗P1 patterns).

With respect to holders, network I/O consumption can be still con-
sidered negligible (up to 17 MiB), but I observed that both an in-
creasing number of users requesting different indicators (INCREAS-
ING_USERS_2 experiment) and an increasing number of targets (IN-
CREASING_TARGETS_1 and INCREASING_TARGET_2 experiments)
resulted in an exponential network consumption trend as shown in
Figure 4.4. In particular, single-target (T1) holders (Shared-T1P1 and
Reserved-T1P1 patterns) are sensitive to targets increment, while re-
served holders (Reserved-T1P1 and Reserved-T∗P1 patterns) are sen-
sitive to an increasing number of users requesting different indicators.

Table 4.5 and Table 4.6 summarize the monthly cost of executing
application-oriented holders in the experiments. I can notice how de-
ploying probes within an application-based environment is cheaper
than in a system-oriented environment, due to the nature of the envi-
ronments and the billing strategies. The Internal-T1P∗ VM-based pat-
tern is the only exception, but such a pattern introduces non-trivial
security and reliability issues, as discussed later. Interestingly, costs
based on containers is often negligible, reaching a cost that could be
appreciated on a monthly basis only for the most demanding configu-
rations.

Table 4.5: Application-oriented patterns probe holder monthly costs for ex-
periments INCREASING_KPIS_1, INCREASING_KPIS_2, and IN-
CREASING_TARGETS_1

Pattern
Experiment

INCREASING_KPIS_1 INCREASING_KPIS_2 INCREASING_TARGETS_1

Reserved-T*P1 [0.1752, 2,8401] [0.3519, 5.6497] [0.1752, 0.1939]

Reserved-T1P1 [0.1732, 2.8022] [0.3397, 5.7135] [0.1732, 3.1300]

Shared-T*P1 [0.1755, 2.8495] [0.1652, 2.7965] [0.1755, 0.1980]

Shared-T1P1 [0.1814, 2.8513] [0.1765, 2.8226] [0.1814, 3.1658]

78 patterns for probe deployments

Table 4.6: Application-oriented patterns probe holder monthly costs for ex-
periments INCREASING_TARGETS_2, INCREASING_USERS_1,
and INCREASING_USERS_2

Pattern
Experiment

INCREASING_TARGETS_2 INCREASING_USERS_1 INCREASING_USERS_2

Reserved-T*P1 [0.3519, 0.3910] [0.1752, 2.7764] [[0.1752, 43.9768]

Reserved-T1P1 [0.3397, 6.2549] [0.1732, 2.8346] [0.1732, 43.5852]

Shared-T*P1 [0.1652, 0.1970] [0.1750 0.1755] [0.1755, 2.8446]

Shared-T1P1 [0.1765, 3.1053] [0.1712, 0.1814] [0.1814, 2.8193]

Although on different scale values, experiments with container-based
applications resulted in trends similar to the ones obtained for VM-
based applications. In fact, resource consumption on targets is negligi-
ble and the holder consumption is significantly mainly in relation to
memory consumption.

Similarly, increasing the number of indicators and increasing the
number of users are the least impactful drivers for container-based
holders. However, their combination (i.e., the increment of users re-
questing different indicators) particularly impact reserved holders em-
ployed by Reserved-T1P1 and Reserved-T∗P1 probe deployment pat-
terns. This suggests that an optimization and reuse of probes and
holders among users is advised for application-oriented patterns too.
Single-target (T1) holders are mostly impacted by the increase of tar-
gets, thus, the use of multi-target (T∗) probe deployment patterns (i.e.,
Reserved-T∗P1, Shared-T∗P1) is advised when many different targets
or instances must be monitored.

answer to rq2 .2 Shared-T∗P1 is the most scalable pattern in the
context of container-based applications, with Shared-T1P1 as a solid
alternative option when there are few targets to be monitored but a po-
tentially high number of users, and Reserved-T∗P1 yet another option
when several targets must be monitored for a few users only.

4.4.5 Threats to Validity

The threats to the validity of the presented results mainly concern
the relationship between the setup of the experiment and the collected
resource consumption values. In fact, the consumption is affected by
both the available computational resources and the choice of the probe
technology and configuration. However, while changing the available
computational resources and the deployed probes are likely to affect
absolute values, the trends and differences among the probe deploy-
ment patterns are clear, despite these factors.

In fact, plots for system-oriented and application-oriented probe de-
ployment patterns are similar although specific values are different.

4.5 best practices 79

Nevertheless, the relationship between increasing specific variables
(e.g., the number of targets or the number of users) and the pattern
characteristics (e.g., single-target or reserved patterns) are clearly iden-
tified by the resulting consumption trends.

In the evaluation, I also selected a specific target service to be mon-
itored (i.e., NGINX) and I used a specific probe technology (i.e., Met-
ricbeat module for NGINX). Moreover, I deployed the same probe
when experiments required to increment the number of requested in-
dicators, and a probe is configured to collect a single indicator. In a
real-world scenario probes may be configured to collect several indi-
cators, potentially lowering the resource consumption. While using a
single target application (i.e., NGINX) in the evaluation may raise con-
cerns about the generalization of the results, it is important to remark
that the monitored application was not a factor in the study. The mon-
itored application has no impact on the cost and effectiveness of the
deployment patterns. I thus intentionally used a single application in
the quantitative study to ensure that the evaluation is conducted under
controlled and similar conditions, minimizing the possibility to intro-
duce any confounding factor that could affect the results. To mitigate
this issue I report results about the experience with three real-world
applications of the patterns in Section 4.6.

Finally, the collected resource consumption values might be affected
by noise. To mitigate this issue I repeated the experiments for 3 times
for a total of 30 minutes of execution collecting 180 samples for each
resource-related metric in any of the experiment configurations. Al-
though the statistical significance and effect size of the collected data
have not been calculated, I computed the mean and the standard de-
viation by all the data samples, thus, stabilizing the results to derive
more solid conclusions.

4.5 best practices

This section discusses a distilled list of best practices for probe de-
ployment derived from the empirical findings. Engineers can exploit
them when designing and configuring their monitoring systems, de-
pending on the target environment and desired qualities.

BP-1: Share probe instances and holders for non-accessible targets
in multi-user environments. Results show that resource consumption
might grow quite quickly when the number of users and the num-
ber of monitored indicators increase (e.g., see experiments INCREAS-
ING_TARGETS_2 and INCREASING_USERS_2). Indeed, the case of
a large number of users asking for many indicators in multi-user en-
vironments must be handled carefully, regardless of the underlying
technology (e.g., system-oriented or application-oriented). This issue
is exacerbated by non-accessible targets (e.g., third-party applications
and inaccessible services for security concerns) that require the deploy-
ment of probes that sample the target from the outside. In such cases,

80 patterns for probe deployments

the monitoring system should be configured to share as many re-
sources as possible. This implies sharing the deployed probes, and pos-
sibly also the holders (see patterns Shared-T∗P∗, Shared-T1P∗, Shared-
T∗P1 and Shared-T1P1). Sometime, when probes cannot be shared,
the patterns with partially-shared holders (see Partially-shared-T∗P∗,
Partially-shared-T1P∗ patterns) offer a valuable trade-off. When pos-
sible, probe instances must be configured to collect multiple indica-
tors to lower the consumption (see trend results for the INCREAS-
ING_USERS_2 experiment in Figure 4.3).

BP-2: Use multi-target probe deployment in large-scale monitor-
ing environments. Single-target patterns show that probes may con-
sume significant amount of resources with an increasing size of the
monitoring system (see for instance single-target patterns trends for
INCREASING_TARGETS_2 experiment in Figure 4.3 and Figure 4.4).
For this reason, large-scale deployments with tens or more targets
must adopt multi-target probe deployments. This is strongly advised
for system-oriented environments where resource allocation for re-
served holders can be resource eager (e.g., VMs), and thus also ex-
pensive. Suitable patterns for this case are: Shared-T∗P∗, Shared-T∗P1,
Partially-shared-T∗P∗, Reserved-T∗P∗ and Reserved-T∗P1. Single-target
application-oriented holders (Reserved-T1P1, Shared-T1P1 patterns) can
sometime still be used thanks to the lightness of application-oriented
containers.

BP-3: Privilege application-oriented holders to address
highly-dynamic indicator collection requirements. In the case of indi-
cators requirements that change often (e.g., many users with different
business goals), application-oriented holders can be life-savers. Their
advantage is twofold: first, their bootstrapping phase is way faster
than VMs, and thus frequent creation and destruction of holders can
be accomplished efficiently; second, even when probe instances (hold-
ers) cannot be shared to guarantee high configurability and isolation
to multiple tenants, their allocation is still affordable in terms of re-
sources and cost, when compared to system-oriented holders imple-
mented with VMs (see INCREASING_USERS_2 experiment results for
system-oriented holders shown in Figure 4.3 and in Appendix A for
further details). Again, probe instances should be configured to collect
multiple indicators at once to save resources.

BP-4: Prefer container-based holders for isolation requirements.
Dealing with third-party applications or strict security requirements
may require satisfy isolation despite efficiency, and to deploy probe in-
stances in dedicated holders. System-oriented holders can be resource-
greedy and expensive when implemented with VMs especially. In
fact, reserved patterns implemented with VM-based holders scale sig-
nificantly worse for an increasing number of targets, as results for
INCREASING_TARGETS experiments demonstrated. Thus container-
based holders should be preferred when possible (Reserved-T∗P1,
Reserved-T1P1 patterns). In the cases where VMs must be employed

4.6 usage scenarios 81

(e.g., due to constraints on the technology stack), the best practice is to
use partially-shared holders (Partially-shared-T∗P∗, Partially-shared-
T1P∗ patterns) and implement isolation at probe instance level.

BP-5: When the target is accessible and resource consumption is a
concern, probes should be deployed within the same execution unit
of the target. An accessible target offers the opportunity of collecting
indicators efficiently, since there is not the burden of querying any
monitoring interface and sharing the holder with the target increases
observability. The low resource consumption has been confirmed with
the experiments (see Figure 4.3 and the Appendix A for further de-
tails). The same cannot be usually achieved with application-oriented
execution environments (e.g., due to the single main container pro-
cess practice [40]). Due to the side-effects that probes may introduce
on targets, this choice is advice when resource consumption is a pri-
mary concern, compared to system reliability. Some specific technol-
ogy stacks may offer interesting compromises. For example, engineers
can exploit the concept of pod (i.e., Kubernetes Pod [233], Podman [69])
to obtain a setup similar to the Internal-T1P∗ pattern. In fact, thanks
to pods, it is possible to execute multiple co-located containers that
share storage and network resources, circumventing observability is-
sues even though the execution unit is not the same.

4.6 usage scenarios

This section demonstrates the application of probe deployment pat-
terns to three realistic usage scenarios that involve different technolo-
gies, software architectures, and monitoring requirements. In particu-
lar, I provide (i) a scenario for a VM-based microservice application,
(ii) a scenario for a microservice application running on top of a Ku-
bernetes cluster, and (iii) a scenario for serverless backend functions
operated with the OpenFaaS platform.

I first describe the application architecture, the technology stack,
and the monitoring requirements for each scenario. Second, I dis-
cuss how patterns are selected based on monitoring requirements and
probe deployment best practices. I also describe how the selected pat-
terns would be impacted by an increase in the number of the collected
indicators, the number of target instances, and the number of users
interested in the collected data. Finally, I quantitatively evaluate the se-
lected probe deployment patterns by collecting the CPU (%), memory
(MiB), and network I/O (MiB) consumption for an increasing number
of target instances, mimicking real-life situations that are faced in op-
eration. I sample resource-related metrics every 10 seconds, repeating
the experiment 3 times for 10 minutes to collect stable results, obtain-
ing a total of about 180 samples.

The experimental material containing both the code to reproduce
the experiment and the collected data is publicly available [243]. In

82 patterns for probe deployments

the chapter, I report a selection of the plots, the complete set of plots
is available in Appendix A.

4.6.1 Monitoring a VM-based Microservice Application

scenario description A company operates an e-commerce ap-
plication composed of 11 microservices and a Redis database (e.g., On-
line Boutique [107]). For each service instance, the engineers spin up
a VM following the Service-as-a-VM deployment pattern [198]. The
payment, currency, and advertisement services are outsourced to an
external provider that does not allow direct access to the service plat-
form. Moreover, the company has a strong knowledge about Elastic
Stack [31], since this monitoring service is used in several other com-
pany products.

The outsourced services expose indicators using the Prometheus for-
mat (i.e., running the node exporter [194]), so the engineers need to
collect these indicators to obtain insights about the behavior of the out-
sourced service instances. In addition, they need to monitor the Redis
database and some infrastructure indicators (e.g., CPU and memory
consumption, filesystem usage) for the VMs they are responsible for.

applying the probe deployment patterns This scenario can
be effectively addressed with two patterns: the Shared-T∗P∗ pattern
and the Internal-T1P∗ pattern. The Shared-T∗P∗ pattern can be used to
monitor inaccessible service instances, consistently with best practice
BP-2. While the Internal-T1P∗ pattern can be used to monitor the ser-
vices running on their own VMs according to best practice BP-5. The
probes can be implemented as Metricbeat [33] probe instances and
can be configured to save data in the already available Elasticsearch
cluster, resulting in the following deployment:

• Shared-T∗P∗ pattern: it consists of a VM hosting a Metricbeat probe
instance configured with the Prometheus module to collect the in-
dicators exposed by the node exporters of the three outsourced ser-
vices.

• Internal-T1P∗ pattern:

– for each VM running application services, it consists of a Met-
ricbeat instance configured with the system module to monitor
CPU load, memory, and filesystem.

– for each of the Redis database replicas, it consists of a Met-
ricbeat instance configured with (i) the Redis module to collect
tailored Redis indicators; and (ii) the system module to moni-
tor CPU load, memory, and filesystem.

scaling impact

4.6 usage scenarios 83

• Increasing Indicators: dealing with an increasing number of indi-
cators requires the reconfiguration of the Metricbeat probe in-
stances, activating new modules, or deploying new probes in
the case the indicators to collect are not provided by any of the
already deployed modules. Considering that both the patterns
can hold multiple probes, no new holders have to be created to
accommodate additional probe instances.

• Increasing Targets: increasing the number of targets requires to:
(i) reconfigure the Metricbeat probe in the Shared-T∗P∗ holder in
the case new instances of the outsourced services are deployed;
(ii) run a Metricbeat instance within any new VM they spin up
to scale the internal services or the Redis database.

• Increasing Users: increasing the number of users accessing the
monitoring system and interested in collected data do not re-
quire any new holders or probe instances because both the se-
lected patterns allow sharing of resources among users.

1 2 4 8 16
Paymentservice Replicas

4

6

8

10

12

14

Ne
tw

or
k

In
 (M

iB
)

Shared-T*P* Probe Holder Network In

(a)

1 2 4 8 16
Paymentservice Replicas

20

30

40

50

60

70

80

90

Ne
tw

or
k

Ou
t (

M
iB

)

Shared-T*P* Probe Holder Network Out

(b)

1 2 4 8 16
Recommendationservice Replicas

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ne
tw

or
k

Ou
t (

M
iB

)

Internal-T1P* Network Out

(c)

Figure 4.5: Shared-T∗P∗ pattern holder network I/O consumption and
Internal-T1P∗ pattern network output consumption with respect
to an increasing number of payment service and recommendation
service replicas, respectively.

quantitative evaluation for increasing target instances

I exploit the implementation of this scenario to collect resource-related
metrics for an increasing number of target instances, measuring the
overhead introduced by the two implemented patterns. I increment
both the number of payment and recommendation service replicas up to

84 patterns for probe deployments

16 to observe the impact on the Shared-T∗P∗ and Internal-T1P∗ pat-
terns. All the other services are deployed with a single replica. Please
note that in the case of the holder implementing the Shared-T∗P∗ pat-
tern, it is simultaneously collecting indicators from a single replica of
the currency, a single replica of the advertisement service, and all the
payment service replicas deployed during the experiment.

The collected data for the holder implementing the Shared-T∗P∗ pat-
tern revealed CPU consumption is negligible (less than 1%), thus an
increasing number of targets does not impact on CPU. Memory con-
sumption was below 491.5 MiB in all the runs, and it is also not im-
pacted by an increasing number of targets. Not surprisingly network
I/O consumption is affected by an increasing number of targets (up
to 13.9/87.0 MiB) due to the network traffic caused by the probes both
scraping the indicator values from the targets, and then pushing them
to the Elasticsearch instance for storage. Figure 4.5a and Figure 4.5b
show the linear increment trend for an increasing number of payment
service replicas.

When the number of recommendation service replicas is increased, no
holder is added to the system since the holder matches with the target
holder for the Internal-T1P∗ pattern. Thus the overhead in terms of
CPU and memory consumption is limited to the resource consump-
tion of the probe, which is negligible compared to the resources al-
ready consumed by the target. Network output consumption is in-
stead affected by an increasing number of target instances due to
the cumulative amount of data transferred by the probes contained
in the target holders to the Elasticsearch instance (up to 18.2 MiB). Fig-
ure 4.5c shows the linear increment trend for an increasing number of
recommendation service replicas.

The trends observed in this scenario are indeed consistent with
those obtained by the controlled evaluation reported in Section 4.4
for both the implemented patterns.

4.6.2 Monitoring a microservice application running on Kubernetes

scenario description A company operates the same applica-
tion described in the previous usage scenario on top of a Kubernetes
cluster. This time the company fully developed the application in-
house. The company has a dedicated team for managing database
infrastructure and several service development teams, with a strong
knowledge about both Prometheus [26] and the application services.

In this case, the service development teams want to monitor HTTP
and gRPC indicators for their application services, and some specific
indicators for the Redis database. However, the requirements for mon-
itoring Redis are different between the database ops team and the
service development teams (e.g., collected indicators and frequency).

4.6 usage scenarios 85

applying probe deployment patterns This scenario can be
well addressed with the Shared-T∗P1 pattern, to monitor the applica-
tion services and gather indicators from multiple instances according
to best practice BP-2, and the Reserved-T∗P1 pattern, to monitor the
Redis database replicas using a different holder to meet the conflict-
ing requirements of the teams according to best practice BP-4. The
monitoring solution exploits an already available Prometheus cluster
as data storage, and Prometheus exporters [25] as probe instance tech-
nology, resulting in the following deployment:

• Shared-T∗P1 pattern: a Kubernetes Pod hosting a Prometheus Black-
box exporter [193] instance to collect HTTP and gRPC indicators
from the application services.

• Reserved-T∗P1 pattern: two Kubernetes Pods hosting the Prometheus
Redis exporter [100] instance configured to collect Redis indicators
from all the available replicas for the database ops team and the
service development teams, respectively.

scaling impact

• Increasing Indicators: increasing the number of indicators requires
the engineers to reconfigure the probe instances activating new mod-
ules (e.g., TCP-level module for the Blackbox exporter), or deploy-
ing new holders hosting the probe instances for indicators that are
not already collected by any of the deployed probes.

• Increasing Targets: No actions are required for new service instances
since both the exporters can be configured to collect indicators from
annotated targets (i.e., through Kubernetes annotations and
Prometheus service discovery configuration).

• Increasing Users: increasing the number of users accessing the mon-
itoring system and interested in the collected data may require cre-
ating new holders and instances, as for the database ops and the
service development teams, because the Reserved-T∗P1 pattern priv-
ileges isolation.

quantitative evaluation for increasing target instances

I incremented the number of cart service replicas and Redis replicas
up to 16 to observe the impact on the Shared-T∗P1 and Reserved-T∗P1

patterns, respectively. All the other services are deployed with a single
replica.

I observed a negligible increase (less than 1%) in CPU consumption.
Memory consumption does not exceed 340 MiB for any of the two
patterns, and it is not impacted by an increased number of targets.
Network input consumption is negligible for the Shared-T∗P1 pattern
holder (i.e., less than 1 MiB), while on average network output con-
sumption is slightly higher in terms of absolute values, reaching up to

86 patterns for probe deployments

1 2 4 8 16
Cartservice Replicas

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Ne
tw

or
k

In
 (M

iB
)

Shared-T*P1 Probe Holder Network In

(a)

1 2 4 8 16
Cartservice Replicas

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

Ne
tw

or
k

Ou
t (

M
iB

)

Shared-T*P1 Probe Holder Network Out

(b)

1 2 4 8 16
Redis-cart Replicas

2

4

6

8

Ne
tw

or
k

In
 (M

iB
)

Reserved-T*P1 Probe Holders Network In

(c)

1 2 4 8 16
Redis-cart Replicas

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ne
tw

or
k

Ou
t (

M
iB

)

Reserved-T*P1 Probe Holders Network Out

(d)

Figure 4.6: Network I/O consumption of the Shared-T∗P1 and Reserved-
T∗P1 pattern holders with respect to an increasing number of cart
service and Redis replicas, respectively.

2.18 MiB. Results are different in terms of absolute values for Reserved-
T∗P1 pattern. In particular the network input consumption is higher
compared to the output (i.e., up to 9.3/3.4 MiB), a scenario explained
by the probe specific implementation. In fact, the Redis exporter has to
query the Redis database instances to obtain the indicator values, and
than it simply exposes the values as a web endpoint to Prometheus.
However, both the patterns scales linearly with an increasing number
of targets as shown in Figure 4.6.

Also in this usage scenario, it is possible to observe trends consis-
tent with the ones obtained in the controlled evaluation reported in
Section 4.4.

4.6.3 Monitoring serverless backend functions

scenario description A company serves a serverless-based socks
e-commerce application composed of 12 functions, 6 databases, and
a message queue (e.g., SockShop Serverless [101]) exploiting Open-
FaaS [183] and Kubernetes. The engineers adopt the FaaS model to
exploit auto-scaling policies and obtain a flexible number of function
replicas in response to the volatile workload that can affect their appli-
cation (e.g., peaks of purchases during Black Friday, intense browsing
and cart usage before Christmas, low demand in summer). They are
particularly interested in monitoring the backend functions in terms of
CPU and RAM usage in order to tweak auto-scaling policies and the

4.6 usage scenarios 87

cluster nodes size. Moreover, the company has a strong knowledge on
using Prometheus to monitor the Kubernetes cluster nodes and the
application services.

applying probe deployment patterns It is possible to ad-
dress this scenario by implementing the Shared-T∗P1 pattern, to mon-
itor multiple targets (i.e., functions) together, enabling less effort and
resource usage in response to an increasing number of function repli-
cas according to best practice BP-2.

The monitoring solution exploits the Prometheus cluster provided
by OpenFaaS as data storage, and cAdvisor [102] as probe instance
technology. The resulting deployment consists of a Kubernetes Dae-
monSet (i.e., a Kubernetes Pod for each of the cluster nodes) host-
ing a cAdvisor instance to collect the needed function indicators at
container-level.

scaling impact

• Increasing Indicators: increasing the number of indicators requires
the reconfiguration of the cAdvisor probe instances activating new
indicators, or deploying new holders and instances in the case the
indicators to collect are not provided by cAdvisor.

• Increasing Targets: increasing the number of targets does not require
any change since cAdvisor is able to automatically detect new tar-
gets (i.e., container functions running on the Kubernetes node).

• Increasing Users: increasing the number of users accessing the mon-
itoring system and interested in the collected data does not require
any new holders or probe instances since the selected pattern sup-
ports sharing of resources.

1 2 4 8 16
Carts-get Replicas

0.05
0.06
0.07
0.08
0.09
0.10
0.11
0.12
0.13
0.14

Ne
tw

or
k

In
 (M

iB
)

Shared-T*P1 Probe Holder Network In

(a)

1 2 4 8 16
Carts-get Replicas

2.8

2.9

3.0

3.1

3.2

Ne
tw

or
k

Ou
t (

M
iB

)

Shared-T*P1 Probe Holder Network Out

(b)

Figure 4.7: Network I/O consumption of the Shared-T∗P1 pattern holders
with respect to an increasing number of carts-get function repli-
cas.

quantitative evaluation for increasing target instances

I collect resource-related metrics for an increasing number of carts-get

88 patterns for probe deployments

function instances (i.e., up to 16) to measure the overhead introduced
by Shared-T∗P1 pattern. All the other functions are deployed with a
single replica.

Collected data revealed CPU consumption is negligible (less than
1%). Memory consumption does not exceed 320 MiB, and it is not im-
pacted by an increasing number of targets. Network input consump-
tion is negligible (i.e., less than 0.2 MiB), as shown in Figure 4.7a,
while on average network output consumption reaches 3.1 MiB. Net-
work output scales linearly with an increasing number of function
replicas, as shown in Figure 4.7b.

As for the previous scenarios, the observed trends for the Shared-
T∗P1 pattern are consistent with the results obtained with the con-
trolled evaluation reported in Section 4.4.

4.7 discussion

The proposed patterns address the knowledge gap regarding how to
efficiently distribute the probes in order to respect and optimize both
technological and operators’ requirements, dealing with the multi-
tenancy and the diverse number of technologies that characterize the
cloud continuum environments. The results obtained with the empiri-
cal evaluation show the targets have negligible resource consumption
(e.g., less than 1% CPU usage), while the probe holder consumption
is mainly significant in relation to memory consumption, reaching up
to 10 GiB in the performed experiments. The findings suggest that
reusing probes and holders among users can generally enhance ef-
ficiency and scalability when direct access to the monitored target
is not an option due to technical limitations. In particular, the use
of multi-target (T∗) probe deployment patterns (i.e., Reserved-T∗P∗,
Shared-T∗P∗, Partially-shared-T∗P∗, Reserved-T∗P1, Shared-T∗P1) is
advised when many different targets or target instances have to be
monitored. Overall, since the overhead is mostly due to the holders,
reducing their number increase the efficiency, making Shared-T∗P∗,
Partially-shared-T∗P∗, and Internal-T1P∗ the more scalable patterns
for applications based on system-oriented virtualization, with Shared-
T1P∗ highly recommended in situations where the number of targets
remains low, while the number of interested users increases. On the
other hand, the Shared-T∗P1 pattern is the most scalable pattern in the
context of application-oriented virtualization, with Shared-T1P1 as a
solid alternative option when there are few targets to be monitored but
a potentially high number of users, and Reserved-T∗P1 yet another op-
tion when several targets must be monitored for a few users only. The
best practices distilled by the results may help engineers in designing
and configuring their monitoring systems, and they generate a set of
reusable solutions that people can refer to. Finally, the showcase of the
application of certain patterns through three practical usage scenarios

4.7 discussion 89

cross-validates the findings and give evidence of the concrete outcome
of the work.

The main limitation of this study concerns the relevant features and
constraints used to define the presented patterns. Although they were
extracted from both white and gray literature, as well as my personal
experience with monitoring systems in cloud environments, a system-
atic protocol for reviewing and analyzing the literature references is
missing. This might have introduced both conscious and unconscious
biases in the pattern definitions.

Part II

A D A P T I N G M O N I T O R I N G T O AVA I L A B L E
R E S O U R C E S

5
P E E R - T O - P E E R S E L F - A D A P T I V E M O N I T O R I N G I N
T H E F O G

This chapter presents a self-adaptive Peer-to-Peer (P2P) monitoring
system for the Fog that incorporates adaptive behaviors based on the
MAPE-K feedback loop [140]. The monitoring system abstracts moni-
tored indicators by using logical states that represent their trend over
time and, if necessary, activates countermeasures based on such indi-
cator trends. Countermeasures are defined by means of a lightweight
rule-based system that is directly embedded in the peers. The empiri-
cal evaluation compares the accuracy and effectiveness of the adaptive
version of the monitoring system with the non-adaptive version. The
results indicate that adaptive behaviors can increase the accuracy of
collected data and save both network and power consumption, but at
the cost of higher memory consumption. The contribution reported in
this chapter was presented at the 17th Symposium on Software Engi-
neering for Adaptive and Self-Managing Systems (SEAMS) and pub-
lished in its proceedings with the title “Towards Self-Adaptive Peer-
to-Peer Monitoring for Fog Environments” [65].

The chapter is organized as follows. Section 5.1 introduces the P2P
monitoring and provides background information. Section 5.2 presents
the proposed self-adaptive P2P monitoring system for fog environ-
ments by defining its internal functioning for each phase of the MAPE-
K feedback loop. Section 5.3 presents the empirical evaluation. Finally,
Section 5.4 concludes the chapter with closing remarks.

5.1 p2p monitoring

A P2P architecture consists of a network of autonomous
self-organizing entities (i.e., peers) that employ distributed resources
to accomplish a common task in a decentralized fashion, thus, without
relying on central services [172, 186, 225].

The P2P architecture provides the applications with the capability to
deal with some of the highly dynamic traits of fog computing, increas-
ing the tolerance to both network failures and nodes joining and leav-
ing the system [1, 64, 91]. Furthermore, it provides autonomy, scale,
and robustness, which are critical capabilities to operate in such an
environment [236]. Finally, P2P architectures make monitoring data
available across the network without relying on a single centralized
component, but rather on a set of peers constituting a self-organized
overlay network. This is particularly beneficial when the connectivity
to the Cloud is limited, such as during disasters or severe network
outages [263].

93

94 peer-to-peer self-adaptive monitoring in the fog

This work uses the two-tier hierarchical P2P monitoring architec-
ture [91, 145, 262] proposed by Forti et al. [91] that is shown in Fig-
ure 5.1, with Followers at the lower tier and Leaders at the higher tier.

The benefit of employing such an architecture in the Fog is twofold.
First, it implies different roles for peers running in different tiers, de-
pending on the available resources. Followers are designed to collect
data by running on the edge, within nodes and devices with limited
resources. Leaders are designed to consume more resources to store
the data received from the Followers while creating and operating the
P2P network. Followers are connected to a single Leader and work in
a classic client-server fashion [262]. These distinct roles can be used
to opportunistically exploit the available resources, including the pos-
sibility to adapt to changing conditions (e.g., bandwidth or resource
degradation) through dynamic peer promotion/demotion.

Second, it helps reducing the network overhead by limiting the
amount of data transferred between the peers. Actually, Followers can
forward data to their Leader only, leaving the thinner upper-tier with
the responsibility of building a global state of the monitored resources
by exchanging monitoring data among Leaders.

I refer to FogMon as reference implementation for this architec-
ture [91]. In FogMon, the Followers monitor their own deployment
node by probing hardware resources (i.e., CPU, memory, and hard
disk) and collecting end-to-end network QoS data (i.e., latency and
bandwidth). Data is collected and sent to Leader nodes at a fixed rate.
To limit network overhead, Followers send differential updates, that
is, they only send data whose average or variance differ more than a
sensitivity threshold (i.e., 10% by default) from the last value sent [91].
Leaders periodically aggregate monitoring data received from Follow-
ers, and share the aggregated data with the other Leaders through a
gossip protocol [130].

P2P

Client/Server
Leader

Leader

Leader

Follower

Follower

Follower

Follower

Follower

Follower Follower

Figure 5.1: Hierarchical P2P monitoring architecture proposed by Forti et
al. [91].

5.2 adaptivemon 95

5.2 adaptivemon

This section describes how P2P monitoring can be enhanced with
self-adaptive capabilities to both make a better use of the available re-
sources and enable the capability to promptly react to run-time events.
I refer to the self-adaptive version of the P2P monitoring solution
presented in this thesis as AdaptiveMon, in contrast with the non-
adaptive version that I refer to as StaticMon.

Autonomic Manager

Managed Resource

Monitor

Analyze Plan

Execute

Knowledge

Sensors Effectors

Figure 5.2: Monitor, Analyze, Plan, Execute, and Knowledge (MAPE-K) loop
as proposed by Kephart and Chess [140].

Self-Adaptive Application (Definition 5.1). A self-adaptive application
(SAA) is an application capable of modifying itself or other connected
resources in response to a continuously changing operational environ-
ment [48, 205]. A SAA consists of a pair (AL,MR), where AL is the
adaptation logic, and MR represents the managed resources [147], which
are a group of resources, such as robotics, vehicles, and generic hard-
ware with software, that the SAA can control [147]. The adaptation
logic is composed by all those items responsible for monitoring the
environment (M), analyzing the data (A), planning (P), and executing
the adaptation (E).

This basic feedback framework proposed by Kephart and Chess [140]
is named MAPE loop, and it is often extended by a knowledge com-
ponent (K) responsible for managing content (e.g., monitoring val-
ues and adaptation policies). AdaptiveMon enriches the capabilities
of the monitoring system by embedding the MAPE-K control frame-
work [140], shown in Figure 5.2, within each peer.

The monitor component of the MAPE-K loop collects data about a
managed resource through sensors. In this case, this is achieved by
the monitoring probes running within the peers. The analyze and plan

96 peer-to-peer self-adaptive monitoring in the fog

steps analyze the collected data and plan for the countermeasures to
be activated. Finally, the execute step exploits effectors to run the se-
lected countermeasures. In this case, the countermeasures reconfigure
the monitoring systems according to the observations collected from
the managed resource. The knowledge about the managed resource is
shared among all the components. Note that the MAPE-K loop runs
withing each peer, independently of the overall architecture, which
gives peers the capability to run self-adaptive behaviors regardless of
their role within the architecture.

In the following, I describe how the components of the MAPE-K
loop embedded in the peers are defined, and present two countermea-
sures that have been experienced in the prototype implementation,
namely (i) Change Rate, which adjusts the rate Followers sample and
forward data to their Leader, and (ii) Select Indicators, which dynami-
cally activates and deactivates the set of monitored indicators.

5.2.1 Knowledge

The knowledge exploited in AdaptiveMon consists of the moni-
tored indicators, which represent the raw knowledge about the mon-
itored resource, and the associated logical states, which capture the
semantics of the values of an indicator. To this end, I introduce here
below a formal definition of what an indicator value, a time series,
and the logical states are.

Indicator Value (Definition 5.2). Given a monitored indicator I and a
domain D of values for I, vIt ∈ D denotes the value of the indicator I

at time t.

Time Series (Definition 5.3). A sequence of values for a same indica-
tor generates a time series, that is, vIi, vIi+1, . . . , vIk is a time series for
indicator I.

Logical States (Definition 5.4). Given a monitored indicator I and a fi-
nite set of abstract states S, SIt ⊆ S represents a potentially empty set
of logical states associated with the indicator I at time t. The sequence
of states sets SIi,SIi+1, . . . ,SIk associated with an indicator also forms
a time series. For sake of notation, I is omitted when the indicator is
obvious from the context.

While time series of values simply reflect the sequence of probed
samples, the corresponding time series of logical states captures the
state of an indicator at a specific time, revealing information about the
monitored resource. For instance, an indicator might be unstable, too
high, or within a normal range of values. These states can be derived
from the time series of raw values and used to fire countermeasures,
as explained below.

I defined a set of logical states useful for the presented countermea-
sures, but this set can be clearly extended depending on the coun-
termeasures to be implemented. Table 5.1 summarizes the rigorous

5.2 adaptivemon 97

Indicator State Definition

Type

Categorical
stable st = stable ⇐⇒ vt = vt−x ∀x ∈ [1,k]

unstable st = unstable ⇐⇒ ∃x ∈ [1,k] | vt ̸= vt−x

Numerical

stable
st = stable ⇐⇒ |Stabt| ⩾ p · k∧ |vt − vt−1| ⩽ ∆max,

Stabt = {|vx − vx−1| ⩽ ∆max}x∈[1,k]

unstable
st = unstable ⇐⇒ |Stabt| < p · k∨ |vt − vt−1| > ∆max,

Stabt = {|vx − vx−1| < ∆max}x∈[1,k]

too high
st = too high ⇐⇒ |Too_Hight| ⩾ p · k∧ vt ∈ Itoo_high,

Too_Hight = {vx ∈ Itoo_high}x∈[0,k]

high
st = high ⇐⇒ |Hight| ⩾ p · k∧ vt ∈ Ihigh,

Hight = {vx ∈ Ihigh}x∈[0,k]

normal
st = normal ⇐⇒ |Normalt| ⩾ p · k∧ vt ∈ Inormal,

Normalt = {vx ∈ Inormal}x∈[0,k]

low
st = low ⇐⇒ |Lowt| ⩾ p · k∧ vt ∈ Ilow,

Lowt = {vx ∈ Ilow}x∈[0,k]

too low
st = too low ⇐⇒ |Too_Lowt| ⩾ p · k∧ vt ∈ Itoo_low,

Too_Lowt = {vx ∈ Itoo_low}x∈[0,k]

Symbols Definition

|| Cardinality of a set.

k Number of samples considered in the recent history of an indicator.

p ∈ [0, 1] Tolerance parameter that indicates the percentage of k samples.

It must satisfy the constraint that characterizes the state definition.

∆max Maximum delta allowed to consider an indicator as stable.

Itoo_high = [too_high,+∞) Interval of indicator values considered too high.

Ihigh = [high, too_high) Interval of indicator values considered high.

Inormal = (low, high) Interval of indicator values considered normal.

Ilow = (too_low, low] Interval of indicator values considered low.

Itoo_low = (−∞, too_low] Interval of indicator values considered too low.

Table 5.1: States definitions for categorical and numerical indicators.

definitions of the logical states, while they are discussed informally
below.

In case the domain of a metric is categorical, I defined two logical
states: stable and unstable. A categorical indicator is stable at a time t

if its value has been constant in the recent history of the execution,
otherwise it is unstable.

In case the domain of an indicator is numerical, I defined seven states:
stable, unstable, normal, high, low, too high, too low. A numerical indicator
is stable at a time t if its value is close to its value at time t− 1, and
the indicator had small variations in the recent history of the execu-
tion. Similarly, a numerical indicator is unstable at a time t if its value
differs significantly from the value at time t− 1, and the indicator had
significant variations in the recent history of the execution.

98 peer-to-peer self-adaptive monitoring in the fog

The remaining five states detect values that steadily stay in a given
region of the domain. In particular, an indicator is too high or high if
its value is above given thresholds and the indicator has been mostly
above those thresholds in its recent execution history. Similarly, an in-
dicator is too low or low if its value is below given thresholds and
the indicator has been mostly below those thresholds in its recent ex-
ecution history. Finally, an indicator is normal if its value is in the
normal range, and the indicator has been mostly normal in its recent
history of the execution. The thresholds for the various levels are de-
fined on a per-indicator basis since they depend on both the indicator
and the application domain. For instance, threshold values for mem-
ory and CPU consumption are clearly different, and threshold values
of memory consumption for a memory-intensive application and a
lightweight application are also different.

The set of the collected indicators, along with their raw values and
state values represent the knowledge available to AdaptiveMon.

5.2.2 Monitor

Monitoring is rather natural and inexpensive in AdaptiveMon since
Followers collect data from a monitored resource by construction, and
thus the same data sent to Leaders is also available to the MAPE-K
loop. If needed, extra indicators can be collected for the only purpose
of controlling the adaptive behavior of the peers, even if not needed
by the applications accessing the data produced by the monitoring
system.

The monitoring behavior is controlled by a sampling rate parameter
that determines how frequently values vIt are collected and forwarded
to Leader peers.

5.2.3 Analyze

The analysis mainly consists of a data processing routine that con-
verts the raw values collected for every indicator into its logical state
representation. In particular, the analysis process accesses the collected
values and applies the definitions reported in Table 5.1 to generate a
time series of logical states for every monitored indicator.

Figure 5.3 visually exemplifies the logical states that can be associ-
ated with a time series, according to the definitions in Table 5.1. The
logical states are represented as annotations on the X-axis. Note that
in the example, depending on the shape of the curve, a same point
may have 0, 1 or up to 2 logical states associated.

5.2 adaptivemon 99

t

vI

too low

too high

low

high

stable
high

unstable
too low normal

stable unstable

Figure 5.3: An example of the computed states with respect to the time series
values at different time instants.

5.2.4 Plan

AdaptiveMon embeds the lightweight CLIPS expert system [199],
which is responsible for determining the countermeasures that have
to activate according to the accumulated knowledge based on a set of
adaptation rules.

An adaptation rule consists of two parts: an antecedent, that is a
set of conditions on the logical states of the indicators that must be
satisfied to fire the rule, and a consequent, that is a countermeasure to
be executed.

Functions that can be used to evaluate the logical states of the indica-
tors are implemented by extending CLIPS, such as functions that can
check specific conditions on the last few samples of an indicator. These
functions can be used as part of the adaptation rules specified using
the CLIPS Domain-Specific Language (DSL). For instance, Listing 5.1
shows an adaptation rule defined to fire the Change Rate countermea-
sure when the CPU consumption has a stable trend. The symbol =>
separates the antecedent and the consequent of the rule.

It is worth noting that the example adaptation rule uses some of
the functions I defined in AdaptiveMon. It checks if the CPU con-
sumption is in a stable state with the is_indicator_in_state func-
tion and it computes the new rate for such indicator by executing the
compute_indicator_rate function. The new rate value is in turn used,
along with other variables retrieved from the knowledge base, by the
change_rate function that implements the Change Rate countermea-
sure.

During the plan phase, AdaptiveMon uses the CLIPS expert system
to take adaptation decisions, that is, CLIPS evaluates the antecedents
of every rule and inserts the countermeasures activated by the conse-
quent of the fired rules in a priority-based queue. Also CLIPS handles
the activation of the rules by preventing their simultaneous execution.

100 peer-to-peer self-adaptive monitoring in the fog

To demonstrate the self-adaptive capabilities of AdaptiveMon, two
specific countermeasures are defined, namely, Select Indicators and
Change Rate.

The Select Indicators countermeasure can change the set of monitored
indicators, either activating or deactivating some of them. The Change
Rate countermeasure changes the rate used to sample and send data
to Leaders based on the current trends of the indicators. The goal of
the countermeasure is to gradually increase (decrease) the rate while
the monitored indicator is less (more) stable. In particular, the coun-
termeasure updates the sampling rate of the indicator I within pre-
determined boundaries proportionally to the number of consecutive
samples with the same logical state out of the last k samples collected.

These countermeasures are exploited in the context of several adap-
tation rules. For instance, two rules that can enable/disable monitor-
ing for every indicator different from power consumption if the power
is above/below a given threshold are defined, to limit the chance a
battery-powered device is abruptly shut down. In addition, I defined
two rules to adapt the sampling and forwarding rate of CPU indicator
to its trend.

Listing 5.1: An example rule that uses the Change Rate countermeasure writ-
ten with the CLIPS DSL. The symbol => separates the antecedent
and the consequent of the rule. The salience value represents
the rule priority. The bind operator assigns the result of a func-
tion call to a variable.

(defrule adapt_cpu_rate_when_stable (declare (salience 10))

(is_indicator_in_state (indicator cpu) (state stable))

(has_parameter (rate ?current_rate))

=>

(bind ?num_of_states (count_indicator_states_in "cpu" "stable"))

(change_rate "cpu" (compute_indicator_rate "stable" ?num_of_states ?

current_rate))

)

5.2.5 Execute

In this phase, AdaptiveMon merely executes countermeasures by
running their implementation according to their priority of activation.
The actual countermeasures I defined act on the configuration of the
peers adapting their behavior to the evolution of the indicators. The
actuation interface is straightforward since a peer can directly access
the internal variables that govern its behavior.

5.3 empirical evaluation

In this section, I quantitatively evaluate the effectiveness (monitor-
ing accuracy) and the efficiency (resource consumption) of Adaptive-
Mon. I discuss the sub-research questions (Section 5.3.1), the imple-

5.3 empirical evaluation 101

mented prototype (Section 5.3.2), the experimental setup used to per-
form the experiments (Section 5.3.3), the results of the experiments
to answer the sub-research questions (Section 5.3.4 and Section 5.3.5),
and the threats to validity of the evaluation (Section 5.3.6).

5.3.1 Research Questions

This work responds to RQ3 and it is assessed with the following two
sub-research questions that investigate its effectiveness (i.e., the moni-
toring accuracy) and its efficiency (i.e., the resource consumption).
RQ3.1 - Monitoring Accuracy: Can AdaptiveMon improve the mon-
itoring accuracy of StaticMon? This research question investigates
whether the Change Rate policy of AdaptiveMon can provide a better
monitoring accuracy than StaticMon, considering multiple represen-
tative trends of the monitored indicators.
RQ3.2 - Resource Consumption: Can AdaptiveMon save node
resources compared to StaticMon? This research question studies
whether the adaptive behavior of AdaptiveMon reduces resource uti-
lization compared to StaticMon. The impact of the Change Rate and
Select Indicators countermeasures on resource consumption are assessed,
both individually and jointly.

5.3.2 Prototype

AdaptiveMon is implemented by extending the open-source C++
FogMon P2P monitoring tool [91] along multiple dimensions.

In particular, (i) the structure of the peer’s local storage (based on
the SQLite1 database) has been extended to store the logical states
used to classify of the monitored indicators; (ii) the CLIPS rule-based
expert system [199] has been embedded to support the implementa-
tion of adaptation rules; (iii) the peers have been extended to incor-
porate adaptive behaviors; (iv) helper functions that can be used as
part of the adaptation rules to interact with the knowledge have been
added; and (v) the Select Indicators and Change Rate countermeasures
have been implemented to dynamically change the set of the collected
indicators and the sampling rate parameters. AdaptiveMon does not
extend the set of monitored indicators, since the indicators already col-
lected by FogMon to monitor the environment were already sufficient
to control the activation of the proposed countermeasures.

The resulting prototype is publicly available with an open-source li-
cense at https://github.com/veracoo/FogMon/tree/adaptive-fogmon.

1 https://www.sqlite.org

https://github.com/veracoo/FogMon/tree/adaptive-fogmon

102 peer-to-peer self-adaptive monitoring in the fog

5.3.3 Experimental Setup

All the experiments are executed on a Linux virtual machine (Intel
i7-9700 CPU @ 3.00GHz x 4, 4 GB RAM, 13 GB SSD, Ubuntu 20.04 LTS
64-bit, Docker v20.10.0). All the peers run inside dedicated Docker con-
tainers, deployed on the same host, and communicate over a bridged
network. The computational and network resources of the container
executing the Follower agent are limited to reproduce a scenario in-
volving resource-constrained and battery-powered devices. Reference
devices are single-board computers (SBC) and micro-controller units
(MCU) [79, 134, 211]; thus, container resources are upper-bounded at
5% of one CPU core, 20 MB of RAM, and 1 Mbps of bandwidth.

I measure accuracy and resource consumption at the level of indi-
vidual peers to obtain results that do not depend on the number of co-
deployed peers. Thus, each experiment involves one Leader and one
Follower (of AdaptiveMon or StaticMon, respectively). Cumulative
resource consumption for multiple nodes can be derived by scaling
the results proportionally.

5.3.4 RQ3.1 - Monitoring Accuracy

This RQ investigates the accuracy of the collected data for both
AdaptiveMon and StaticMon considering synthetic indicators fol-
lowing different representative trends. More in detail, a probe report-
ing readings from such indicators has been implemented. This allowed
us to test the correctness of AdaptiveMon’s adaptive behavior and
verify its effectiveness. I defined 5 scenarios (also referred to as time
series in the following) mimicking different key cases for an indicator
conventionally ranging between 0 and 1:

1. stable is a time series representing a regular and stable, almost con-
stant, trend. It is generated by alternating two close values (0.8 and
0.83), each of which remains stable for 14 seconds;

2. unstable is a time series that represents an irregular and erratic indi-
cator with fluctuating values in the range [0.5, 0.85]; a real-life trace
on CPU utilization was used as a base.

3. stable-unstable is a time series that alternates phases of stability with
phases of instability, with each phase lasting for about 150 seconds;

4. random is a time series with chaotic and totally unpredictable val-
ues; it is generated by a sequence of random values uniformly dis-
tributed in the range [0, 1];

5. spiky is a time series with mostly regular values interleaved with
rare spikes; it is generated by alternating stable values for 28 sec-
onds, unstable values for 12 seconds, and then a spike value for 4

seconds.

5.3 empirical evaluation 103

Every time series has a duration of 10 minutes, except for the stable-
unstable time series that lasts 20 minutes since it is a combination of
the stable and unstable time series.

StaticMon and AdaptiveMon’s Follower peers are configured to
forward the average of the last 20 measurements to their respective
Leaders at each probing point. The StaticMon Follower probes a new
value from the monitored metric at a fixed interval: every 30 seconds.
AdaptiveMon exploits the Change Rate countermeasure to adjust the
sampling rate to handle the variability of the monitored indicator. The
hypothesis to test is that this can lead to improved monitoring accu-
racy because the Leader should have access to a higher number of
samples when the monitored indicator is highly dynamic and fewer
samples in the presence of more stable indicators.

I investigate the capability of the monitoring system to reconstruct
the shape of the monitored indicators at the level of both the Follower,
which directly samples the indicator, and the Leader, which collects a
sequence of average values. The Root Mean Square Error (RMSE), which
measures the differences between the original and the reconstructed
indicator, is used as the primary quality metric. A smarter sampling
strategy should achieve a lesser error. To appreciate the activity of
the peers in relation to the monitored indicator, I also gauge the mes-
sages/second ratio, that is, the ratio of the messages sent by the Follower
to the Leader. Finally, for the spiky time series, I also computed the per-
centage of detected spikes, which measures the capability of a monitoring
technique to spot rare but significant events.

results of rq3 .1 Table 5.2 summarizes the results obtained by
both AdaptiveMon and StaticMon for the considered 5 scenarios.
The last two columns show the absolute (Abs) and relative (Rel) devi-
ations between the AdaptiveMon and StaticMon results for any of
the presented quality indicators. Green (Red, respectively) cells indi-
cate a better (worst) result obtained by AdaptiveMon compared to the
StaticMon baseline. It is possible to observe that AdaptiveMon esti-
mates the observed indicator more accurately than StaticMon at both
levels of the Leader-Followers hierarchy in 4 out 5 scenarios (viz. stable,
unstable, stable-unstable, random). The reduction in the RMSE reached
33.6% at Follower level (unstable scenario) and 82.7% at Leader level
(random scenario). A higher accuracy, however, comes at the cost of a
higher number of messages exchanged in the 4 scenarios where the
monitored indicator is more erratic (nearly 5 times more than Stat-
icMon in the worst case), and fewer messages produced when the
indicator is stable (saving nearly one third of the messages).

Figures 5.4 and 5.5 exemplify the results of the comparison between
AdaptiveMon and StaticMon for the stable-unstable scenario. It is
possible to observe that the time series reconstructed by Adaptive-
Mon (solid orange line) is closer to the reference indicator (dotted
green line) than the StaticMon baseline (dashed blue line). It is also

104 peer-to-peer self-adaptive monitoring in the fog

Scenario Quality Metric AdaptiveMon StaticMon Abs Rel

RMSE (Follower) 0.019 0.020 - 0.181 - 5.0 %

RMSE (Leader) 6.696 8.200 - 1.504 - 18.3 %Stable

Messages/second 0.027 m/s 0.040 m/s - 0.013 - 32.5 %

RMSE (Follower) 0.087 0.131 - 0.044 - 33.6 %

RMSE (Leader) 2.428 5.033 - 2.605 - 51.7 %Unstable

Messages/second 0.217 m/s 0.037 m/s + 0.180 + 486.5 %

RMSE (Follower) 0.108 0.122 - 0.014 - 11.5 %

RMSE (Leader) 5.269 6.546 - 1.277 - 19.5 %Stable-unstable

Messages/second 0.103 m/s 0.035 m/s + 0.068 + 194.3 %

RMSE (Follower) 0.235 0.321 - 0.086 - 26.8 %

RMSE (Leader) 1.899 10.683 - 8.784 - 82.7 %Random

Messages/second 0.217 m/s 0.037 m/s + 0.180 + 486.5 %

RMSE (Follower) 0.092 0.087 + 0.005 + 5.8 %

RMSE (Leader) 5.713 6.251 - 0.538 - 8.6 %

Messages/second 0.062 m/s 0.037 m/s + 0.025 + 67.6 %Spiky

Detected spikes 30 % 0 +30 % -

Table 5.2: Accuracy of AdaptiveMon and StaticMon for the 5 scenarios.
Green (Red) cells indicate a better (worse) result obtained by Adap-
tiveMon compared to the StaticMon.

interesting to notice how the rapid change in the observed trend is not
immediately handled by AdaptiveMon, which shows some delay in
sensing the drift and adjusting the sampling rate. In contrast, Static-
Mon always fails to follow the observed time series, confirming the
importance of adaptivity in similar contexts.

00:00:00 00:05:00 00:10:00 00:15:00 00:20:00
Elapsed Time (HH:MM:SS)

0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90

Ground truth
StaticMon
AdaptiveMon

Figure 5.4: AdaptiveMon and StaticMon Follower time series estimations
for the stable-unstable scenario.

The spiky scenario is the only one resulting in an increment of the
RMSE metric for the adaptive Follower (+5.8%). However, this incre-
ment is a consequence of the capability to (partially) follow the trend
of the indicator. In fact, the StaticMon configuration could detect

5.3 empirical evaluation 105

00:00:00 00:05:00 00:10:00 00:15:00 00:20:00
Elapsed Time (HH:MM:SS)

0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75

Ground truth
StaticMon
AdaptiveMon

Figure 5.5: AdaptiveMon and StaticMon Leader time series estimations for
the stable-unstable scenario.

spikes only incidentally, while AdaptiveMon could change its sam-
pling rate to increase the chance to capture them. Figure 5.6 illustrates
a representative execution of StaticMon and AdaptiveMon for the
spiky scenario, with some spikes successfully detected by Adaptive-
Mon only. Although successfully capturing some spikes, the recon-
structed time series generates a higher error compared to the flat time
series reconstructed by StaticMon. Indeed, this is a challenging sce-
nario for both approaches (rare short events are hard to detect by mon-
itoring techniques), and more work is required to design cost-effective
monitoring techniques that can accurately address spikes.

00:00:00 00:01:00 00:02:00 00:03:00 00:04:00 00:05:00 00:06:00 00:07:00 00:08:00 00:09:00 00:10:00
Elapsed Time (HH:MM:SS)

0.60
0.65
0.70
0.75
0.80
0.85
0.90

Ground truth
AdaptiveMon

Figure 5.6: AdaptiveMon Follower time series estimation for the spiky sce-
nario. The vertical dotted grey lines indicate the sampling rate.

answer to rq3 .1 AdaptiveMon estimates the observed indica-
tor more accurately than StaticMon at both levels of the Leader-
Followers hierarchy in 4 out of 5 scenarios. The results show that
AdaptiveMon is capable of adjusting resource consumption as nec-
essary by sending more messages only when the monitored indicator
requires more precise sampling, and conserving bandwidth otherwise.
However, further investigation is required to design an effective mon-
itoring solution that can accurately detect spikes.

106 peer-to-peer self-adaptive monitoring in the fog

5.3.5 RQ3.2 - Resource Consumption

This RQ investigates resource consumption considering the two
countermeasures currently implemented in AdaptiveMon, both in
isolation and jointly. Again, StaticMon is used as the baseline for
the comparison.

For the experiments reported in this section, I defined a probe (at
the follower level only) that exploits the Docker Engine API2 and Pow-
erTOP3 to collect the following quality metrics:

• CPU and memory consumption: the percentage of the host’s CPU
and memory used.

• NET I/O (MB): the cumulative amount of data sent and received
over its network interface from the beginning of the experiment.

• PIDs: the number of processes or threads spawned by the peer.

• PW (mW): the estimated instantaneous power consumption.

The three AdaptiveMon configurations assessed in this RQ exploit
the two strategies defined in Section 5.2. Change Rate adjusts the sam-
pling and forwarding rates of all the collected indicators from 30 to
60 seconds based on the monitored values. Select Indicators disables
the collection of all indicators except of power consumption if the
battery level drops below a threshold. Combined Countermeasures uses
both strategies. I study the impact of these configurations, along with
the StaticMon baseline, on resource consumption: a total of four pos-
sible configurations are therefore considered. In each experiment, the
Follower peer is configured to collect the indicators from its node for
30 minutes and to apply the countermeasures at the beginning of the
execution, in such a way the impact of the countermeasures can be
accurately measured (in fact, more than 300 hundreds samples per
metric have been collected).

results of rq3 .2 Figure 5.7 shows a series of five box plots (one
for each quality metric) where each plot compares the four compared
configurations visually.

I checked the significance of the differences between distributions
with the non-parametric Mann–Whitney U test [162], as it was possi-
ble to observe (via the Shapiro-Wilk test [213]) that such differences
are not normally distributed. I specifically checked if the observed dif-
ferences between the baseline and any other configuration are statis-
tically significant and if Combined Countermeasures is significantly bet-
ter than the individual adaptations strategies (Change Rate and Select
Indicators). I considered a significance level α = 0.05, and I also com-
puted the effect size of the observed phenomenon using the Wendt’s

2 https://docs.docker.com/engine/reference/commandline/stats/
3 https://github.com/fenrus75/powertop

5.3 empirical evaluation 107

(a) (b) (c)

(d) (e)

Figure 5.7: StaticMon compared with AdaptiveMon countermeasures for
each of the collected quality metrics.

formula [256]. Table 5.3 shows the significant cases only with their
corresponding effect size using the conventional categories small (less
than 0.3), medium (between 0.3 and 0.5), and large (greater than 0.5).

Only observe marginal differences in CPU consumption are observed.
In particular, differences between AdaptiveMon and StaticMon are
not significant, and Combined Countermeasures introduces significant
but small differences compared to employing the other two adaptive
strategies individually.

108 peer-to-peer self-adaptive monitoring in the fog

Quality Metric Comparison Effect Size

CPU consumption
Change Rate vs Combined Countermeasures small (0.197)

Select Indicators vs Combined Countermeasures small (0.260)

Memory consumption

StaticMon vs Select Indicators large (0.858)

StaticMon vs Change Rate large (0.993)

StaticMon vs Combined Countermeasures large (0.861)

Change Rate vs Combined Countermeasures large (0.990)

Select Indicators vs Combined Countermeasures small (0.279)

spawned sub-processes

StaticMon vs Select Indicators large (0.980)

StaticMon vs Change Rate small (0.027)

StaticMon vs Combined Countermeasures large (0.963)

Change Rate vs Combined Countermeasures large (0.962)

Network Input

StaticMon vs Select Indicators medium (0.449)

StaticMon vs Change Rate small (0.101)

StaticMon vs Combined Countermeasures medium (0.483)

Change Rate vs Combined Countermeasures medium (0.431)

Select Indicators vs Combined Countermeasures small (0.145)

Network Output

StaticMon vs Select Indicators medium (0.473)

StaticMon vs Change Rate small (0.245)

StaticMon vs Combined Countermeasures large (0.521)

Change Rate vs Combined Countermeasures medium (0.460)

Select Indicators vs Combined Countermeasures small (0.203)

Battery power estimation StaticMon vs Combined Countermeasures medium (0.376)

Table 5.3: Statistically valid comparisons for all the quality metrics with their
associated effect size.

The memory consumption results show statistical significance for
all cases with a large effect size for all comparisons, except for Select
Indicators compared to Combined Countermeasures where the effect size
is small. The impact of the adaptive strategies on the memory indi-
cator is antithetic: while it is possible to notice an increase in mem-
ory consumption of about 10% for Change Rate (compared to Static-
Mon), memory overhead decreases to about 3% when Select Indicators
or Combined Countermeasures are used. These results can be easily ex-
plained considering that although the MAPE-K control loop increases
the amount of memory used by AdaptiveMon when all probes are
active, while when these are disabled (freeing the associate resources)
the overall average memory usage decreases.

Since limiting the number of processes can be particularly impor-
tant when the underlying device platform is resource constrained I
measured the number of sub-processed spawned by all compared con-
figuration. In this regard, the number of spawned sub-processes show
significant reduction with large effect size when Select Indicators and
Combined Countermeasures are used.

Limiting bandwidth consumption is also extremely important in fog
environments. As a matter of fact, limiting I/O operations is crucial

5.3 empirical evaluation 109

when the network bandwidth is limited and shared by multiple de-
vices and thus can be quickly saturated. Moreover, intensive commu-
nication implies high power consumption, a threat to energy efficiency
and batteries lifespan in portable devices. The results for network I/O
show statistically significant reduction for all adaptive configurations
compared to StaticMon, with an effect size ranging from small to
medium. Note that results for Input (I) and Output (O) present a sim-
ilar behavior for the same configuration.

More in detail, results show a small effect size for Change Rate ver-
sus StaticMon comparison. Since I expected a stronger impact of rate
adaptation in this context, I analyzed the behavior of the probes, and
discovered that the bandwidth gauge exploits iPerf4, which measures
the bandwidth by saturating it with packets. Such an invasive behav-
ior nullifies the potential benefits of a dynamic sampling rate. There-
fore, to further investigate this dimension, I repeated the experiments
by disabling the bandwidth monitoring probe for both StaticMon

and AdaptiveMon. Results are presented in Figure 5.8. The impact
of Change Rate is now remarkable, with a reduction on transmitted
data ranging between 31% and 34%, with an even higher reduction
(between the 37% and the 49%) when both countermeasures are si-
multaneously active.

St
at

icM
on

 I

St
at

icM
on

 O

Ch
an

ge
 R

at
e

I

Ch
an

ge
 R

at
e

O

Se
le

ct
 In

di
ca

to
rs

 I

Se
le

ct
 In

di
ca

to
rs

 O

Co
m

bi
ne

d
Co

un
te

rm
ea

su
re

s I

Co
m

bi
ne

d
Co

un
te

rm
ea

su
re

s O

0.00

0.05

0.10

0.15

Ne
tw

or
k

I/O
 (M

B)

Figure 5.8: StaticMon compared with AdaptiveMon countermeasures for
the network I/O metrics when the bandwidth is not measured by
the Follower.

Finally, the results on power consumption show meaningful differ-
ences only for StaticMon versus Combined Countermeasures, suggest-
ing that the individual countermeasures may introduce limited bene-
fits. Still, their combination can significantly improve battery lifetime
(with an estimated reduction in power usage of about 36%).

4 https://iperf.fr/

110 peer-to-peer self-adaptive monitoring in the fog

answer to rq3 .2 AdaptiveMon can help reduce network I/O
and device battery usage without affecting CPU utilization. This is
achieved by allocating extra memory to store the necessary data for
running the adaptive mechanisms. Such result is cost-effective in fog
environments, because the impact of limited extra memory is miti-
gated by the availability of memory, even on resource-constrained de-
vices deployed in the Fog.

5.3.6 Threats to Validity

The presented study is affected by both internal and external threats
to validity. The main internal threats to validity concern with the de-
sign of the scenarios used to study RQ3.1. I proposed five scenarios to
mimic different trends. Although indicators collected in real scenarios
may behave differently than the ones I investigated, the results ob-
tained with the stereotyped trends are still informative, at least locally
(e.g., it is possible to refer to the results reported in the thesis for an
indicator that becomes unstable or too high).

The definition of the logical states for an indicator depends on sev-
eral parameters, which are application-dependent. In this thesis, I
studied how AdaptiveMon can be used to obtain self-adaptive capa-
bilities relevant to monitoring, focusing on the assessment of simple
countermeasures that do not strongly depend on the domain. Assess-
ing AdaptiveMon in the context of dedicated application scenarios is
part of future work and is out of the scope of this thesis.

The generality of the results obtained about efficiency (RQ3.2) might
depend on the specific implementation used and the size of the experi-
ment. I used an independent implementation for StaticMon (i.e., Fog-
Mon) to minimize any implementation bias, and the adaptive behavior
is added to this implementation. To further reduce any implementa-
tion threat, the solution is publicly released. In principle, additional
experiments may lead to different results. However, I obtained quite
clear evidence and I checked the statistical significance of the results
to mitigate the risk of overgeneralizing.

5.4 discussion

The self-adaptive monitoring system proposed in this thesis can ab-
stract monitored indicators and activate countermeasures based on
their logical states. Empirical results demonstrate that adaptive be-
haviors can enhance monitoring accuracy while optimizing resource
utilization, compared to non-adaptive solutions. AdaptiveMon can
help reduce network I/O and device battery usage without affect-
ing CPU utilization. This can be achieved by allocating extra mem-
ory to store the necessary data. This result can be beneficial in the
Fog since monitoring systems are called to reduce network overhead
without impacting on power consumption, especially when devices

5.4 discussion 111

are battery-powered. Even resource-constrained devices at the edge
of the network are typically well-equipped with memory, which mit-
igates the impact of the monitoring system’s limited extra memory
consumption. In particular, the reduction in the RMSE reached 33.6%
at Follower level in the unstable scenario and 82.7% at Leader level in
the random scenario. A higher accuracy, however, comes at the cost of
a higher number of messages exchanged in the 4 scenarios where the
monitored indicator is more erratic (nearly 5 times more than Static-
Mon in the worst case), and fewer messages produced when the indi-
cator is stable (saving nearly one third of the messages). With respect
to the resource consumption, the results for network I/O show statis-
tically significant reduction for all adaptive configurations compared
to StaticMon, while the combination of both the countermeasures
can improve battery lifetime with an estimated reduction of the power
usage of about 36%.

The presented work has three main limitations. First, defining the
adaptive rules and their parameters is a manual activity, subject to
the application knowledge of the operators managing the monitoring
system. Additionally, it is possible that multiple instances of the moni-
toring system require different rules and configurations, necessitating
a non-negligible configuration effort. To potentially mitigate this limi-
tation, MaaS solutions can be adopted to automate the configuration
process. Secondly, while the obtained results have been statistically
checked and threats to validity have been discussed, AdaptiveMon

has not been evaluated on a realistic scale involving a fog infrastruc-
ture test-bed. A more exhaustive experimental campaign can demon-
strate the contribution of work on a larger scale. Third, each peer is
autonomous at both the Follower and Leader tiers. Therefore, aggre-
gated information obtained by Leaders may differ if some peers stop
collecting certain indicators or change their sampling and forwarding
rates. It would be worthwhile to investigate the impact of this archi-
tectural choice or to distribute the MAPE-K components differently,
with Leaders responsible for governing the adaptive behavior of their
Followers.

6
E N E R G Y- AWA R E S E L F - A D A P T I V E M O N I T O R I N G I N
T H E E D G E

This chapter presents an energy-aware approach to design and im-
plement self-adaptive applications for edge environments. Specifically,
this work focuses on AI-based monitoring systems, which are increas-
ingly deployed in the Edge. These systems represent a real-world and
challenging scenario that requires the delivery of effective and sustain-
able AI edge services. The proposed approach can guide developers
in implementing applications that can switch operation modes in re-
sponse to environmental changes, balancing energy consumption with
application-level objectives. The empirical evaluation shows how the
approach can outperform non-adaptive baseline configurations, per-
forming as optimally as configurations selected with a nearly exhaus-
tive exploration of the configuration space. The contribution reported
in this chapter was presented at the 38th International Conference
on Automated Software Engineering (ASE) and published in its pro-
ceedings with the title “An Energy-Aware Approach to Design Self-
Adaptive AI-based Applications on the Edge” [240].

The chapter is structured as follows. Section 6.1 presents a Smart
Traffic Monitoring (STM) motivational scenario. Section 6.2 describes
the proposed approach, with specific reference to the motivational sce-
nario. Section 6.3 presents the empirical evaluation. Finally, Section 6.4
concludes the chapter with closing remarks.

6.1 motivational scenario

According to the latest report released by Governors Highway Safety
Association (GHSA), “nearly 3.500 pedestrians died in the United States
in the first six months of 2022 (+5% from the same period in 2021)” [23].
“In three years, pedestrian deaths raised about 18%, that is, nine times
faster than U.S. population growth” [175]. Similarly, the European
Transport Safety Council (ETSC) reported “20.600 road deaths in the
EU last year, with vulnerable road users (pedestrians, cyclists, and
users of powered two-wheelers) representing just under 70% of total
fatalities within urban areas” [72, 212]. Addressing this critical issue
of preventing accidents not only depends on social education [56] but
also requires developing Smart Traffic Monitoring (STM) systems that
enable digital monitoring of urban traffic [8, 42, 217], real-time analyt-
ics [17, 38], and intelligent driver assistants [153, 160, 250].

An STM system requires continuous monitoring of the traffic scenar-
ios to identify potential incidents (e.g., the presence of pedestrians in
blind spots) through video streams and processing frames, and alert-

113

114 energy-aware self-adaptive monitoring in the edge

IoT Cameras

AI-Based Self-
Adaptive Applications

Edge Computing Nodes

This image has been designed using images from Flaticon.com

Figure 6.1: A pedestrian detection scenario.

ing the nearby vehicles through the use of 5G-enabled edge nodes [160].
Such an STM system can host hundreds of cameras and sensors de-
ployed to roads in cities and countryside areas [78].

The edge devices processing video streams are in always-on mode
and potentially powered by batteries or renewable energy sources at
the edge, which is the basis for limited and unreliable power sup-
ply. Hence, reducing energy consumption and executing critical emer-
gency applications become extremely important. On the other hand,
such critical applications expect a minimum QoS for safety and reli-
ability (e.g., inference time and ML model accuracy). Therefore, they
require continuous monitoring of resources (e.g., energy budget) and
workload (e.g., number of detected pedestrians in time intervals), and
when needed, employing self-adaptive applications and adapting hard-
ware and software configurations (e.g., camera resolution, ML model,
and hardware acceleration).

Figure 6.1 depicts a pedestrian detection scenario where an appli-
cation can employ different operation modes according to pedestrian
traffic volumes. For instance, this scenario could be addressed with
four operation modes as defined in Table 6.1. A self-adaptive appli-
cation for this scenario can autonomously balance resource (e.g., en-
ergy consumption) and application requirements (e.g., frame process-
ing speed and accuracy) by switching among the different operation
modes.

On the contrary, using a single operation mode for a whole day
cannot adapt to a changing environment. Considering a smart-city
scenario with hundreds of IoT cameras and dozens of application in-
stances deployed across several edge nodes, the benefits of such an
approach are exponential.

6.2 designing energy-aware self-adaptive applications

A self-adaptive application (SAA) (Definition 5.1) is an application ca-
pable of modifying itself, or other connected resources, in response to

6.2 designing energy-aware self-adaptive applications 115

Table 6.1: A set of four operation modes used in the motivational pedestrian
detection scenario.

Operation Mode Runtime Context
Desirable Characteristics

Energy Consumption Detection Accuracy Frames Processing Rate

power-saving no pedestrians detected very low low moderate

low-energy few pedestrians detected low moderate moderate

high-accuracy small group of pedestrians detected moderate high high

high-rate crowd detected high moderate very high

changes detected in the operational environment. SAAs are particu-
larly effective in resource-constrained environments. Let us consider
here the case of an AI-based application that implements the pedes-
trian detection use-case described in Section 6.1 and that is hosted on
an embedded device (e.g., a Raspberry Pi) equipped with a video cam-
era and a hardware accelerator (e.g., a TPU). The device executes an
application capturing frames from the camera and processing them
with an object detection model to detect pedestrians.

The hardware accelerator boosts the processing speed by lowering
the ML model inference time. In this context, three main objectives
must be considered: achieving high detection accuracy, processing
frames at a high rate, and reducing energy consumption.

Optimizing these objectives at the same time for every possible op-
erational condition is generally infeasible. Interestingly, a SAA can dy-
namically balance the degree of satisfaction of these objectives depend-
ing on the run-time context. However, engineers designing SAAs need
to identify suitable configurations for the run-time to balance the cho-
sen objectives. Further, SAAs have to implement the logic to automat-
ically switch between configurations (e.g., the four operation modes
reported in Table 6.1), to adapt to changes in the operational environ-
ment (e.g., the pedestrian traffic volumes).

Identifying the configurations that implement the intended opera-
tion modes is also challenging, especially for AI-based applications
running on heterogeneous and resource-constrained nodes. Indeed,
simply using a simulator may lead to results largely diverging from
the real behavior of these applications. On the other hand, taking em-
pirical measures by running the real devices and applications can be
extremely expensive, especially when large configuration spaces must
be explored [189].

I propose here an approach that combines the benefits of the em-
pirical identification of the configurations and those of an intelligent
exploration of the configuration space to yield suitable solutions to design
an effective and energy-aware SAA.

Figure 6.2 describes the proposed approach with a workflow dia-
gram. An engineer provides the adaptation logic (A) as a finite-state
machine (FSM) whose states represent the SAA operation modes and
whose transitions encode the switching conditions between them. In
parallel, the engineer identifies the configuration space to explore, and

116 energy-aware self-adaptive monitoring in the edge

DSolving the Multi-Objective
Optimisation Problem

Defining the State-Based
Adaptation Logic

Search
Space

Objectives
Set

Number of
Trials

State Machine

Pareto
Front

Extracting the Operation
Mode Configurations Configurations Implementing the Self-

Adaptive Application
Self-Adaptive
Application

B

A

C

This image has been designed using images from Flaticon.com

Figure 6.2: The steps of the proposed approach represented as a workflow
diagram.

defines a Multi-Objectives Optimization Problem (MOOP) that can be
solved automatically (B) using a meta-heuristic search procedure. Fur-
thermore, the engineer specifies weights and thresholds for the objec-
tives to guide the (C) extraction of the configurations to set in each
operation mode. The workflow terminates (D) with the implementa-
tion of the final FSM.

In the next subsections, I describe each step of the workflow in detail
and exemplify the approach with the pedestrian detection scenario
described in Section 6.1.

6.2.1 Defining the State-Based Adaptation Logic

The first step of the proposed approach requires an engineer, sup-
ported by domain experts, to define, in a rigorous way, the behavioral
model of the self-adaptive application [97].

As specification I use a Finite-State Machine (FSM), since it allows to
explicitly represent the adaptation logic of an SAA [19, 138, 154]: the
states represent the operational modes of the SAA, and the transitions
represent the conditions triggering a change in the operation mode of
the application.

Finite-State Machine (Definition 6.1). A FSM M is defined by a tuple
(S,Σ, δ, s0), where S is the set of states, Σ is the set of the input symbols,
that is, the set of events that may trigger state transitions, δ is the set of
all the possible transitions from a state s1 ∈ S to a state s2 ∈ S caused
by an event σ ∈ Σ, s0 is the initial state.

Let us consider the pedestrian detection scenario again. Here an
engineer may want to define a SAA that can self-adapt across four
operation modes (see Table 6.1) to address the four possible run-time
contexts in the area where the camera shall be deployed, defined for
instance according to the available studies [24, 78, 144]. Each operation
mode, for example low-energy, represents the working condition of the
software that is best suited for the corresponding run-time context,
for example few pedestrians detected. Each operation mode must satisfy
certain characteristics in terms of energy consumption, detection accu-
racy and frames processing rate. These characteristics are used to iden-
tify the exact software configurations at step (C) Extracting the Opera-
tion Mode Configurations by providing the corresponding sets of ob-

6.2 designing energy-aware self-adaptive applications 117

high-
rate

power-
saving

low-
energy

high-
accuracy

crowd detected

few pedestrians detected

very few or no pedestrians detected

small group detected

crowd detected

few pedestrians detected few pedestrians detected

very few or no pedestrians detected

very few or no
pedestrians detected

Figure 6.3: An abstract state machine modeling the states and the transitions
of a self-adaptive application for the motivational scenario.

jective weights and thresholds. Figure 6.3 shows an abstract FSM, with
the four identified abstract states and 9 transitions that capture when
the software must self-adapt. Please note that the domain-knowledge
is exploited here to determine the transitions that must be encoded in
the FSM, among the full set of the possible state transitions.

6.2.2 Solving the Multi-Objective Optimization Problem

Finding high-quality software configurations that correspond to the
operation modes identified by the engineer (e.g., the four states shows
in Figure 6.3) is a hard problem. AI-based applications can be config-
ured according to several parameters (see for instance the list of pa-
rameters that may influence pedestrian detection listed in Table 6.2),
generating a huge exploration space that cannot be exhaustively ex-
plored. Computer-simulated experiments can reduce the time and ef-
fort, but they are usually inaccurate, especially in Cyber Physical Sys-
tems and other domains that include real-world metrics [202].

To address this challenge, I defined a Multi-Objective Optimization
Problem (MOOP) that is able to discover the configurations that deliver
the best results for the considered set of objectives, and that can be
exploited to find the actual configurations that effectively implement
the operation modes represented as states of the FSM.

An optimization process aims to find a set of input values for a
problem to obtain the “optimal” output values. The definition of op-
timality is problem-specific, and formally, it refers to minimizing or
maximizing one or more objective functions by varying the input val-
ues. Hence, a MOOP requires the satisfaction of a number of different
and often conflicting objectives at the same time [181, 224]. Intuitively,
there is no single best solution for all the objectives, but rather there
exist several optimal solutions representing the best trade-offs among
all the objectives [224].

118 energy-aware self-adaptive monitoring in the edge

Search Space (Definition 6.2). The search space is the set of all possi-
ble solutions, that then also contains the set of input values revealing
optimal outputs. The search space X is here defined as a set of config-
urations.

Configuration (Definition 6.3). A configuration conf is n-tuple
(c1, . . . , cn), where ck is the value of the k-th configurable param-
eter pk ∈ P assuming values in its domain Dpk

. The size of X is
|X| =

∏n
k=1 |Dpk

|.

Pareto Front (Definition 6.4). The set of solutions X∗ is called the Pareto
front, which contains all the solutions where no improvement is possi-
ble in any objective function without sacrificing at least one of the other
objective functions [181]. This is also referred to as the non-dominated
solutions set.

In the pedestrian detection scenario there are three objectives: (i)
maximize the pedestrians detection accuracy (acc), (ii) minimize the
energy consumption (eng), and (iii) maximize the number of processed
frames in a time window (rate). Hence, I define a MOOP with these
three objectives (depending on the specific case, it might be possible
to have a different number of objectives):

min − acc(conf)∧ eng(conf)∧−rate(conf)

s.t. conf ∈ X
(1)

The search space X is defined as a set of configuration quintuples
with five configuration parameters for the example application, that
is, the camera resolution (R), the camera frame rate (FPS), the object
detection model (M), the detection threshold (T), and whether to use
the external hardware accelerator (TPU). Each parameter domain has
a different cardinality (see details in Table 6.2). Accordingly, |X| = |R|×
|FPS|× |M|× |T |× |TPU| = 3402 configuration quintuples.

Table 6.2: The domain of the parameters used to define the search space of
the multi-objective optimization problem.

Parameter Parameter Type Domain

Camera Resolution (R) Categorical {1920x1080, 1280x720, 640x480}

Camera Frame Rate (FPS) Categorical {1, 5, 10, 15, 20, 25, 30}

Object Detection Model (M) Categorical
{SSD MobileNet V1, SSD/FPN MobileNet V1 TF2, SSD MobileNet V2,

SSD MobileNet V2 TF2, SSDLite MobileDet, EfficientDet-Lite0,

EfficientDet-Lite1, EfficientDet-Lite2, EfficientDet-Lite3}

Detection Threshold (T) Numerical (low: 0.1, high: 0.9, step: 0.1) {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}

Use HW Accelerator (TPU) Categorical {true, false}

Solving the Equation 1 results in a Pareto front with non-dominated
solutions, that is, configurations that fulfill the three objectives by a dif-
ferent, but relevant, degree. I use a strategy derived from NSGA-II to
compute the Pareto front.

NSGA-II is a solid and widely used optimization algorithm in real-
world applications [249]. I use the approach defined by Deb et al. [74]

6.2 designing energy-aware self-adaptive applications 119

for the exploration of the search space: it is explored by searching for
dominant solutions (i.e., the fitness of a solution is defined by com-
puting its non-domination level) in less populated areas of the space
(i.e., determined by computing the crowding distance) guaranteeing
the diversity of the identified solutions; mutations randomly change
parameter values with a probability that is computed according to the
number of parameters in the configuration, and uniform crossover re-
combines configurations with a probability of 0.9.

During the search space exploration, the presented procedure records
all the evaluated objective values, and at the end it extracts the Pareto
front from the whole results set. In the empirical evaluation, I show
how this strategy can be used to explore only 10% of the search space
to select nearly optimal configurations. Note this is particularly rele-
vant, since assessing how a single configuration fulfills the three ob-
jectives requires collecting empirical measures by repeating a same
experiment multiple times.

6.2.3 Extracting the Operation Mode Configurations

The Pareto front obtained by solving the MOOP usually contains
a large number of non-dominated solutions, compared to the oper-
ation modes needed by the self-adaptive application. The decision-
making process to identify the actual solutions from the Pareto front
involves comparing multiple criteria, trading-off certain objectives for
others [148, 255]. To address this problem, I use the weighted gray rela-
tional analysis (WGRA) [148] method, a weighted version of the GRA
introduced by Ju-Long [135] and employed in multiple application
domains [61]. This is a very robust method [161], preferable to other
multi-criteria decision making (MCDM) methods as it inherently in-
corporates uncertainty in data, and it is simple to calculate [161, 259]
and to integrate into existing software.

GRA combines into a single value all the objectives. This simplifies
the original MCDM problem into a single-criterion decision-making
problem [148], making Pareto front solutions easily comparable. To
let engineers extract states that fulfill the objectives by different de-
grees, I employ the weighted version of the algorithm that uses a set
of weights W to give more importance to certain objectives [61].

The WGRA algorithm consists of three main steps: (i) data normal-
ization, (ii) reference network computation, and (iii) gray relational
grade (GRG) computation [255].

The data normalization step consists of the normalization of the objec-
tive values in the Pareto front according to two cases: larger-the-better
for maximization, and smaller-the-better for minimization. The nor-

120 energy-aware self-adaptive monitoring in the edge

malized value Fij is calculated by Equation 2 and 3 for maximization
and minimization cases, respectively:

Fij =
fij − mini∈nfij

maxi∈nfij − mini∈nfij
(2)

Fij =
maxi∈nfij − fij

maxi∈nfij − mini∈nfij
(3)

with fij as the i-th value of the j-th objective in the matrix O, a matrix
n×m composed of n Pareto front solutions and m objectives. Fij is
the value of fij after normalization.

The reference network computation step consists in forming the refer-
ence network F+j , that is, an ideal network obtained by choosing the
best value of each of the objectives as follows:

F+j = maxi∈nFij (4)

Finally, the gray relational grade (GRG) computation step consists in
calculating the similarity between each candidate network (i.e., the
objective values of each optimal solution in the Pareto front) and the
reference network F+j . The GRG for each i-th value in the Pareto Front
is computed as follows:

GRGi =
1

n

m∑
j=1

wj
∆min −∆max
∆ij +∆max

(5)

where wj is the weight of the j-th objective value (with
∑m

j=1wj = 1);
∆ij = |F+j − Fij| is the absolute value of the difference of between the
j-th objective value in the reference network and the one in the candi-
date network; ∆max = maxi∈n,j∈m(∆ij) and ∆min = mini∈n,j∈m(∆ij)

are the maximum and minimum deltas, respectively.
The conf ∈ X with the largest GRGi is the recommended optimal

solution outputed by the WGRA process. Depending on the set of
weights used to extract the configuration from the Pareto front, the
configuration shall map to a different state of the FSM, that is, it im-
plements a different operation mode of the AI-based edge service.

To illustrate further, let us focus on two operation modes in the ex-
ample application, namely, power-saving and high-rate. The engineer,
jointly with domain experts [118], may provide the following sets
of weights for the two operation modes, respectively: Wpower-saving =

{0.05, 0.9, 0.05} and Whigh-rate = {0.6, 0, 0.4}. The specific weights could
be derived from a Service Level Agreement (SLA) defining the QoS,
and the costs the application service provider to sustain and deliver
the application.

Engineers could also define a set of objective thresholds tj for each
objectives Oj to reduce the size of the Pareto front given in input to the
WGRA algorithm, filtering out solutions that might be unreasonable
for a given operation mode op. In particular, a solution is filtered from
the Pareto front if the value it achieved on objective Oj is above the
threshold tj.

6.2 designing energy-aware self-adaptive applications 121

For example, let us consider the power-saving and the high-rate oper-
ation modes again. The weights assigned to the Wpower-saving set must
give a large importance to the energy consumption objective in order
to extract an energy-efficient configuration. However, this may lead to
the identification of a very poor but still non-dominated solution for
the other two objectives. To prevent this risk, the engineer can filter all
the solutions that do not provide a minimum detection accuracy level
and/or number of processed frames. For instance, they can define a set
of thresholds Tpower-saving = {tacc, teng, trate} = {0.2, 0, 60} to exclude
solutions with a detection accuracy lower than 0.2, and a number of
processed frames lower than 60. A completely different set of thresh-
olds could be defined for the high-rate, that is, Thigh-rate = {0.3, 0, 0}.
In this case, solutions with a detection accuracy lower than 0.3 are
filtered out in order to provide a minimum detection accuracy level,
when compared to the power-saving mode.

high-
rate

power-
saving

low-
energy

high-
accuracy

crowd detected

few pedestrians detected

very few or no pedestrians detected

small group detected

crowd detected

few pedestrians detected few pedestrians detected

very few or no pedestrians detected

very few or no
pedestrians detected

wacc: 0.6
weng: 0.4
wrate: 0

tacc: 0.3
teng: 0
trate: 60

wacc: 0.6
weng: 0
wrate: 0.4

tacc: 0.3
teng: 0
trate: 0

wacc: 0.05
weng: 0.9
wrate: 0.05
tacc: 0.2
teng: 0
trate: 60

wacc: 0.9
weng: 0.05
wrate: 0.05
tacc: 0
teng: 0
trate: 120

Figure 6.4: A refined version of the abstract state machine shown in Fig-
ure 6.3 with the set of weights and thresholds for each of the
operation modes.

Figure 6.4 shows the refined version of the abstract FSM previously
shown in Figure 6.3 with the weights and thresholds for WGRA anal-
ysis defined by the engineers attached to states. The chosen weights
and thresholds represent the actual specification of the desirable char-
acteristics of the operation modes listed in Table 6.1. The execution of
the WGRA algorithm for each of the FSM state extracts a configura-
tion confop with the actual configuration parameter values that can be
used by the SAA application to self-adapt the operation mode.

6.2.4 Implementing the Self-Adaptive Application

In the last step, the engineer is required to implement the self-
adaptive application according to the output of the analysis. The ab-
stract state machine is transformed into a concrete one in two steps:
first, each of the transitions must be turned into an actual triggering
condition; second, the operation mode configurations extracted in the
previous step are mapped into a piece of logic able to set these config-

122 energy-aware self-adaptive monitoring in the edge

urations at runtime. Figure 6.5 shows the final FSM for the pedestrian
detection scenario, with actual conditions and operation modes.

high-
rate

power-
saving

low-
energy

high-
accuracy

pedestrians >= 5

pedestrians > 1

pedestrians <= 1 in the last 5 mins

2 < pedestrians <= 4

pedestrians >= 5

pedestrians < 2pedestrians < 4

pedestrians <= 1 in the last 5 mins

pedestrians <= 1 in
the last 5 mins

• R: 1280x720
• FPS: 1
•M: EfficientDet-Lite3
• T: 0.1
• TPU: false

• R: 1280x720
• FPS: 25
•M: EfficientDet-Lite3
• T: 0.1
• TPU: true

• R: 640x480
• FPS: 1
•M: SSD MobileNet V2
• T: 0.3
• TPU: false

• R: 1920x1080
• FPS: 15
•M: EfficientDet-Lite2
• T: 0.1
• TPU: false

Figure 6.5: The concrete finite state machine implementing a self-adaptive
application for the motivational scenario.

The FSM can be translated into working code using generators [196,
247] or when this is not possible or too difficult [6], the SAA can be
obtained semi-automatically or manually [5, 6, 261]. The proposed ap-
proach outputs a concrete FSM encoding the SAA and does not bind
the engineer to use any specific method to implement the SAA.

6.3 empirical evaluation

In this section, I quantitatively evaluate the effectiveness of the meta-
heuristic strategy and the capability of the proposed approach to re-
lease a better trade-off between application-level objectives and the en-
ergy consumption. I discuss the sub-research questions (Section 6.3.1),
the experimental setup and the test-bed used to perform the experi-
ments (Section 6.3.2), the results of the experiments to answer the sub-
research questions (Section 6.3.3 and Section 6.3.4), and the threats to
validity of the evaluation (Section 6.3.5).

6.3.1 Research Questions

This work responds to RQ4 and it is assessed with the following
two sub-research questions in the context of the pedestrian detection
scenario described in Section 6.1.
RQ4.1 - Meta-Heuristic VS Near-Exhaustive Search: Can the meta-
heuristic search approach discover solutions whose quality is com-
parable to those obtained by a near-exhaustive search? This research
question investigates the effectiveness of the proposed meta-heuristic
strategy. In particular, it studies whether the heuristic exploration of a
small portion of the search space can lead to results comparable to a
near-exhaustive exploration.
RQ4.2 - Objectives Trade-Off : Can a self-adaptive pedestrians detec-
tion application better balance energy consumption and application
objectives compared to a non-adaptive application? This research
question investigates whether the self-adaptive application resulting

6.3 empirical evaluation 123

from the proposed methodology can release a better trade-off among
accuracy, energy, and processing speed compared to four baseline non-
adaptive applications.

6.3.2 Experimental Setup

Latch Bistable
Relay

Coral USB
Accelerator

Raspberry Pi
Camera Module v2

Raspberry Pi 4
Model B Rev 1.1

USB 3.0 Extension Cable

Digital Power Meter

Digital Power Meter Raspberry Pi
Camera Module v2

Raspberry Pi 4
Model B Rev 1.1

Coral USB Accelerator

Latch Bistable Relay

USB 3.0 Extension Cable

GPIO Interface

GPIO Interface

This image has been designed using images from Flaticon.com

Figure 6.6: The test-bed used to run the evaluation experiments.

Figure 6.6 shows the test-bed I used to run the case study evaluation,
first schematically (above), then its concrete in-lab implementation (be-
low).

I employ a Raspberry Pi (RPi) 4 Model B Rev 1.1 (64-bit quad-core
ARMv8, 4GB of RAM, RPi OS Lite 64-bit Debian GNU/Linux 11)
equipped with the RPi Camera Module v2 and boxed in a LABISTS
case with a 5V fan connected to the RPi General Purpose Input/Out-
put (GPIO) interface. The RPi is powered by a USB-C AC adapter
connected through a GW Instek GPM-8213 digital power meter [104]
that I use to collect instant power values1.

To reduce the idle energy consumption of RPi, I disable the unnec-
essary components: all the LEDs (i.e., activity, power, and Ethernet
port), the Wi-Fi antenna, the Bluetooth, and the HDMI port. Internet
and private network connectivity is provided via network cable. A
Coral USB Accelerator (Edge TPU) [106] is plugged-in for those exper-
iments that require hardware accelerator. The accelerator is automati-
cally powered-on when connected to the USB port.

Since it not always possible to easily enable and disable a single
USB port on-the-fly via software, a self-adaptive application running
on such device would not be capable to completely power-off the ac-
celerator when not in use, reducing the potential benefits of switching

1 The accuracy of the power measurements is reported Appendix B.

124 energy-aware self-adaptive monitoring in the edge

to an energy-efficient operation mode. To overcome this limitation, I
realize a software-level power switch by employing a latch bi-stable
relay (SONGLE SRD-05VC-SL-C) connected to the GPIO interface and
a USB 3.0 extension cable. This enables us to turn it on and off by trig-
gering the relay through software to close or open the circuit using a
GPIO pin. For pedestrian detection, I employ state-of-art object detec-
tion models pre-trained on the COCO dataset [155]. The models are
publicly available at the Coral.ai website [105], and they are already
compiled for both CPU and Edge TPU execution.

The experimental material to fully reproduce the study, including
instructions to recreate the test-bed based on Raspberry Pi, is available
in a publicly accessible repository2.

6.3.3 RQ4.1 - Meta-Heuristic VS Near-Exhaustive Search

Detection
Accuracy (mAP)

Frames
Processing Rate
(FPR)

Energy
Consumption

(Wh)

0.2
0.4
0.6
0.8

0.2
0.4

0.6
0.8

3.8
3.6

3.4
3.2

near-exhaustive meta-heuristic

(a) power-saving

Detection
Accuracy (mAP)

Frames
Processing Rate
(FPR)

Energy
Consumption

(Wh)

0.2
0.4
0.6
0.8

0.2
0.4

0.6
0.8

4.8
4.6

4.4
4.2

near-exhaustive meta-heuristic

(b) low-energy
Detection

Accuracy (mAP)

Frames
Processing Rate
(FPR)

Energy
Consumption

(Wh)

0.2
0.4
0.6
0.8

1.2
1.4

1.6
1.8

4.8
4.6

4.4
4.2

near-exhaustive meta-heuristic

(c) high-accuracy

Detection
Accuracy (mAP)

Frames
Processing Rate
(FPR)

Energy
Consumption

(Wh)

0.2
0.4
0.6
0.8

3.2
3.4

3.6
3.8

6.8
6.6

6.4
6.2

near-exhaustive meta-heuristic

(d) high-rate

Figure 6.7: Radar charts comparing the objective values of the four self-
adaptive operation modes when employing a solution obtained
with the meta-heuristic search procedure and one obtained with
the near-exhaustive search procedure. The solutions are extracted
with the WGRA method using the same set of weights and thresh-
olds.

This research question aims to investigate whether exploring a small
portion of the search space efficiently can lead to comparable results
with a near-exhaustive exploration.

To answer RQ4.1, I first compute the Pareto front of the MOOP as
defined in Equation 1 with the meta-heuristic search procedure by

2 https://gitlab.com/sustainable-continuum-monitoring/self-adaptive-moop/-/

tree/ASE_2023?ref_type=tags

https://gitlab.com/sustainable-continuum-monitoring/self-adaptive-moop/-/tree/ASE_2023?ref_type=tags
https://gitlab.com/sustainable-continuum-monitoring/self-adaptive-moop/-/tree/ASE_2023?ref_type=tags

6.3 empirical evaluation 125

only exploring 10% of the search space reported in Table 6.2 (i.e., 340

unique trials out of 3402 trials), and then I explore more than 80%
of the same space (i.e., 2790 unique trials out of 3402 trials) with a
random search procedure. Second, I extract the four operation modes
needed to address the pedestrian detection scenario (according to the
weights and thresholds reported in Figure 6.4) from the two Pareto
fronts: the one computed with the meta-heuristic search procedure
and the one obtained with the near-exhaustive procedure. Finally, I
compare the objective values achieved with the two SAAs that derive
from the two sets of selected states. A good meta-heuristic procedure
should be able to achieve results as good as the near-exhaustive explo-
ration.

The whole optimization procedure is implemented with the Optuna
framework [7], a state-of-art hyperparameter optimization framework
with MOOP capabilities. The meta-heuristic search procedure with
memory capabilities is realized by using the NSGAIISampler [184]
implementing the NSGA-II algorithm and the results database pro-
vided by Optuna. I use the default framework values to configure the
sampler and I repeat the search 10 times with a different seed value
recorded for reproducibility. The near-exhaustive search procedure, in-
stead, employs the RandomSampler [185].

At each optimization round, when a sampler selects a point conf

from the search space, two experiments must be executed to determine
the objective values for the selected conf.

The first experiment computes the detection accuracy by employing
a pedestrian street scene belonging to the Multiple Object Tracking
benchmark dataset [75] (i.e., the ADL-Rundle-6 video). Both the frame
size and the ground truth have been properly adjusted to match the
camera resolution (R) parameter values defined by the search space.

I use the Mean Average Precision (mAP) as detection accuracy met-
ric, a popular metric for object detection algorithms [188], and I eval-
uate the model predictions by using the open-source FiftyOne COCO-
style evaluator [252].

The second experiment, instead, computes both the achieved Frames
Processing Rate (FPR) and the energy consumption. I run the pedestrian
detection application on the device (i.e., the Raspberry Pi described in
Section 6.3.2 for 120 seconds configured according to conf). I collect
both the consumed energy in Watt-hours (Wh) and the FPR computed
as the ratio between the number of processed frames and the experi-
ment duration.

results of rq4 .1 The near-exhaustive search executed for about
18 days sampling 2790 unique trials and discovered a Pareto front with
131 solutions. The meta-heuristic search executed for about 54 hours
sampling 340 unique trials (10% of the entire space) and discovered a
Pareto front with 83 solutions on average. Note that the saving, when

126 energy-aware self-adaptive monitoring in the edge

the sampling involves running experiments, is significant in both rela-
tive and absolute terms (more than 2 weeks of computing saved).

Since each run of the meta-heuristic search may return a slightly
different configuration for a given state, I selected the configuration
that occurred most frequently in the 10 repetitions to derive the cor-
responding SAA. When multiple solutions have the same highest fre-
quency, I excluded the solution matching the one extracted from the
near-exhaustive Pareto front to avoid any bias, and consider a worst
case scenario.

Figure 6.7 shows four radar charts - one per each operation mode
in the SAA - comparing the three objective values of the solution ex-
tracted with the near-exhaustive search (green, dashed, dot mark), and
the one extracted from meta-heuristic search (purple, solid line, trian-
gle mark), respectively. Each of the axes has its own scale, but for all
the objectives, the higher is the value the better it is.

The plots clearly indicate that the states identified by the meta-
heuristic search procedure and the ones obtained with the
near-exhaustive search result in highly similar performance. The low-
energy operation mode (Figure 6.7b) resulted in exactly the same solu-
tion returned by the two procedures. While the near-exhaustive search
identified solutions performing comparably to the ones identified by
the meta-heuristic search in the remaining three operation modes.

In the case of the power-saving operation mode (Figure 6.7a), the two
solutions perform with the same FPR and with negligible difference
in energy consumption (< 1%). The difference is slightly larger for the
detection accuracy (0.307 mAP VS 0.215 mAP), whose relevance in the
power-saving mode is however limited.

In the case of the high-accuracy operation mode (Figure 6.7c), the
two solutions perform with the same detection accuracy, and with
negligible differences for FPR(< 1%) and energy consumption (4.442

Wh VS 4.570 Wh).
Finally, the two solutions obtained for high-rate (Figure 6.7d) per-

form with the same detection accuracy, and with negligible differences
for both FPR and the energy consumption (< 2%).

answer to rq4 .1 The search procedure has been as effective as
the near exhaustive procedure for the pedestrian detection scenario,
despite an empirical exploration of only 10% of the search space.

6.3.4 RQ4.2 - Objectives Trade-Off

This research question aims to investigate whether a self-adaptive
application changing its operation mode can better balance the fulfill-
ment of multiple objectives compared to a non-adaptive application
using a single operation mode.

I study this research question in the context of two pedestrian traf-
fic scenarios, namely, weekdays and weekends, derived from real-world

6.3 empirical evaluation 127

traffic shapes reported by Dobler et al. [78] in their work about ur-
ban pedestrians dynamic in the borough of Manhattan. In particular,
the weekdays scenario has a 3-peaks structure aligned with the “9-to-5”
workday time, in which the peaks correspond to commuting to work,
exiting buildings at lunch time, and leaving the work place. The week-
end scenario does not show a peaked structure, but rather a steady
increase of pedestrians until the night.

I create a scenario by selecting 1440 frames, that is, 60 frames per
hour, from a pool 115 of manually annotated frames containing be-
tween 0 and 5 pedestrians. Each hour of the day is labeled as 0 pedes-
trians, 1 to 3 pedestrians, and 4 to 5 pedestrians. The frames used for
the experiment are taken from a study about real-time analytics for
traffic safety [160].

I implement a self-adaptive pedestrian detection application accord-
ing to the FSM depicted in Figure 6.5 using the Python State Ma-
chine library [112]. Then, I use the same pedestrian detection logic
to obtain the non-adaptive baseline application. The four operation
mode configurations obtained by the meta-heuristic search procedure
in RQ4.1 are used to configure both the self-adaptive application and
the non-adaptive baselines, obtaining four non-adaptive applications.
Figure 6.5 shows the configuration parameter values. Further, I include
in the study a non-adaptive configuration, namely the balanced config-
uration, that assigns the same weight (0.33) to the three objectives and
uses the thresholds (tacc = 0.3, teng = 0, trate = 120) that filter out
the same unsatisfactory configurations collectively filtered out by the
four operation modes of the adaptive approach. This configuration
implements the best attempt to balance all the objectives without in-
troducing any self-adaptation logic. Interestingly, the balanced config-
uration matches the high-accuracy configuration, that is, high-accuracy
can be released maintaining a good level of energy consumption and
frame rate.

I evaluate the resulting self-adaptive and non-adaptive applications
by using the same set of metrics used for RQ4.1, that is, the MOOP
objectives: detection accuracy (mAP), energy consumption (Wh), and
FPR.

results of rq4 .2 Figure 6.8 compares the performance of the
SAA (purple, solid line) with the four non-adaptive applications
(black/red/green/cyan, dotted lines) in both the weekdays (Figure 6.8a)
and weekends (Figure 6.8b) scenarios. As for the radar charts in Fig-
ure 6.7, the higher the better.

The shape of the triangle in both the radar charts visually shows
how the adaptive behavior guarantees the achievement of a better
trade-off among the three objectives compared to the non-adaptive
behavior. It outperforms three out of four non-adaptive applications re-
garding both energy consumption (i.e., low-energy, high-accuracy/
balanced, high-rate) and FPR (i.e., power-saving, low-energy,

128 energy-aware self-adaptive monitoring in the edge

Detection
Accuracy (mAP)

Frames
Processing Rate
(FPR)

Energy
Consumption

(Wh)

0.2
0.4
0.6
0.8

0.8
1.6

2.4
3.2

6.2
5.4

4.6
3.8

high-accuracy/balanced
high-rate
low-energy
power-saving
self-adaptive

(a) Weekdays Scenario
Detection

Accuracy (mAP)

Frames
Processing Rate
(FPR)

Energy
Consumption

(Wh)

0.2
0.4
0.6
0.8

0.8
1.6

2.4
3.2

6.2
5.4

4.6
3.8

high-accuracy/balanced
high-rate
low-energy
power-saving
self-adaptive

(b) Weekends Scenario

Figure 6.8: Radar charts comparing the SAA and the 4 non-adaptive applica-
tions in the weekdays and weekends scenarios.

high-accuracy/balanced), and one out of four w.r.t. the detection accu-
racy (i.e., power-saving). Notably, it is still able to guarantee a similar
accuracy when compared to the other three non-adaptive applications
(i.e., low-energy, high-accuracy/balanced, high-rate).

In particular, compared to the best/worst non-adaptive operation
mode, the SAA is able to save between 0.5% and 61% of energy in the
weekdays scenario, and between 13% and 81% in the weekends scenario.
The improvement on the FPR is between 96% and 233% in the weekdays
scenario, and between 77% and 196% in the weekends scenario. The
accuracy loss is between 2% and 4% in the weekdays scenario, and
between 5% and 6% in the weekends scenario, but the SAA outperforms
the power-saving application with a gain in the accuracy between 62%
and 189%.

The SAA performed slightly differently in the two scenarios. In fact,
the presence of a 3-peaks structure with a higher number of pedestri-
ans in the weekdays scenario makes the self-adaptive application to use
more accurate and faster operation modes (i.e., high-accuracy and high-
rate) for a larger amount of time, resulting in a higher FPR at the cost
of a higher energy consumption. On the other hand, the traffic shape

6.3 empirical evaluation 129

of the weekends scenario fosters the usage of energy efficient operation
modes (i.e., power-saving and low-energy), resulting in a lower energy
consumption and slower processing speed.

4 6

high-accuracy
balanced

power-saving

high-rate

low-energy

self-adaptive

high-accuracy
balanced

power-saving

high-rate

low-energy

self-adaptive

high-accuracy
balanced

power-saving

high-rate

low-energy

self-adaptive

high-accuracy
balanced

power-saving

high-rate

low-energy

self-adaptive

high-accuracy
balanced

power-saving

high-rate

low-energy

self-adaptive

high-accuracy
balanced

power-saving

high-rate

low-energy

self-adaptive

high-accuracy
balanced

power-saving

high-rate

low-energy

self-adaptive

high-accuracy
balanced

power-saving

high-rate

low-energy

self-adaptive

high-accuracy
balanced

power-saving

high-rate

low-energy

self-adaptive

high-accuracy
balanced

power-saving

high-rate

low-energy

self-adaptive

00:00 - 05:00
0 pedestrians

4 6

05:00 - 09:00
1-3 pedestrians

4 6

09:00 - 10:00
4-5 pedestrians

4 6

10:00 - 12:00
1-3 pedestrians

4 6
Energy Consumption (Wh)

12:00 - 13:00
4-5 pedestrians

4 6

13:00 - 17:00
1-3 pedestrians

4 6

17:00 - 18:00
4-5 pedestrians

4 6

18:00 - 21:00
1-3 pedestrians

4 6

21:00 - 00:00
0 pedestrians

4 6

Whole Day

(a) Weekdays Scenario

3 4 5 6 7

high-accuracy
balanced

power-saving

high-rate

low-energy

self-adaptive

high-accuracy
balanced

power-saving

high-rate

low-energy

self-adaptive

high-accuracy
balanced

power-saving

high-rate

low-energy

self-adaptive

high-accuracy
balanced

power-saving

high-rate

low-energy

self-adaptive

high-accuracy
balanced

power-saving

high-rate

low-energy

self-adaptive

high-accuracy
balanced

power-saving

high-rate

low-energy

self-adaptive

00:00 - 09:00
0 pedestrians

3 4 5 6 7

09:00 - 14:00
1-3 pedestrians

3 4 5 6 7
Energy Consumption (Wh)

14:00 - 18:00
4-5 pedestrians

3 4 5 6 7

18:00 - 21:00
1-3 pedestrians

3 4 5 6 7

21:00 - 00:00
0 pedestrians

3 4 5 6 7

Whole Day

(b) Weekends Scenario

Figure 6.9: Box-plots comparing energy consumption for the self-adaptive
and the four non-adaptive applications.

This behavior is also confirmed by the energy consumption box
plots shown in Figure 6.9a and Figure 6.9b. The two figures show
the energy consumption of the self-adaptive application and the four
non-adaptive applications in different time windows of the day for
both the scenarios. The vertical orange line in the boxes indicates the
median value.

It is possible to observe how the self-adaptive application captures
correctly the 3-peaks structure in the weekdays scenario (Figure 6.9a)
and uses the high-rate in these three time windows. At the same time,
it employs energy efficient operation modes (i.e., power-saving and low-
energy) when the pedestrians traffic is less intense (e.g., 00:00 - 05:00

and 21:00 - 00:00). A similar behavior is obtained in the weekends sce-
nario shown in Figure 6.9b.

answer to rq4 .2 The SAA application can employ more accu-
rate operation modes when the pedestrians workload is higher, using
less accurate operation modes (i.e., power-saving) when the pedestrians
workload is less demanding. In a nutshell, the self-adaptive solution
is consuming energy only when it is worth doing it.

6.3.5 Threats to Validity

First, the design of the FSM requires the definition of a set of oper-
ations modes characterized by weights and thresholds, and the defi-
nition of state transition conditions. This is a manual and non-trivial
operation guided by domain-expert knowledge that can limit the feasi-
bility of the approach and lead to different results. Nevertheless, the re-
ported results show how a SAA can largely outperform non-adaptive
baselines, regardless of the specific configuration used.

130 energy-aware self-adaptive monitoring in the edge

Second, the design of the pedestrian traffic shapes may have an im-
pact on the results. To mitigate this threat, I referred to real scenarios
to achieve realistic and informative results.

Finally, the results may not generalize to other application domains.
Indeed, a case study evaluation focusing on AI-services for pedestrian
detection running at the edge has been proposed, and the design of
a SAA addressing a different problem may produce different results.
Although the methodology and the approach are general, it is not pos-
sible to claim the results shall straightforwardly generalize to other
contexts. The illustrated case study nevertheless provides evidence
that the proposed approach can generate useful results in non-trivial
domains such as pedestrian detection, which requires to balance high-
speed computations (e.g., video-processing) with energy saving re-
quirements.

6.4 discussion

The presented approach can guide developers in implementing
energy-aware, AI-based, self-adaptive monitoring systems that can
switch operation modes in response to changes in the environment.
Balancing application-level objectives, such as accuracy, with energy
consumption is a particularly relevant problem for systems deployed
at the Edge, where resource-constrained devices are in place and may
be powered by unreliable sources. Practitioners should consider ap-
plying the proposed approach if their goal is to obtain trade-offs that
provide the optimal compromise for multiple application scenarios,
rather than always striving for the best outcome for any individual
application objective in all scenarios, which is usually unfeasible in
real-world problems. The operation mode configurations of the result-
ing SAA are determined empirically through a meta-heuristic search
procedure that samples a small portion of the configuration space to
identify useful configurations. Empirical results demonstrate that the
proposed approach can outperform non-adaptive baseline configura-
tions and behave as optimally as configurations selected with a nearly
exhaustive exploration of the configuration space in a pedestrian detec-
tion scenario. Specifically, the study reveals that the self-adaptive ap-
plication can save up to 81% of energy compared to non-adaptive base-
line configurations, with a minimal loss of accuracy ranging from 2%
to 6%. Additionally, the meta-heuristic search procedure only needed
to sample 10% of the configuration space to identify the operation
mode configurations.

The main limitation of the proposed approach is the manual defi-
nition of the FSM. The FSM design is a critical part of the approach
that can influence the final outcome, and therefore deserves specific
attention and engagement of all parties involved in the application de-
velopment. Therefore, practitioners should always involve domain ex-
perts and stakeholders in the design process to discover application re-

6.4 discussion 131

quirements and capture the information that can be translated into the
technical implementation of the FSM (i.e., the operation modes, tran-
sitions, and optimal set of weights and thresholds). To overcome this
limitation, automating the FSM design and synthesis through data-
driven methods would be beneficial in reducing the effort required by
engineers.

7
C O N C L U S I O N S

Monitoring is a key task performed in several fields as it can aid
in understanding the behavior of the monitored targets. Monitoring
systems are increasingly being deployed throughout the cloud contin-
uum, a distributed and heterogeneous environment with varying soft-
ware and hardware stacks designed to be simultaneously accessible in
a multi-tenant fashion [176]. Its fog and edge computing layers exhibit
lower network latency and greater responsiveness when compared to
the upper cloud layer, balanced by lower reliability, due to the preva-
lence of wireless connectivity, and fewer computational capabilities,
due to limited device resources [263].

Managing monitoring systems in the cloud continuum presents sev-
eral challenges to automation and energy consumption. This thesis
investigates how to automate monitoring system configurations in re-
sponse to dynamic needs and technological constraints, and how to
efficiently use available resources.

In particular, the first challenge concerns with adapting monitoring
systems to evolving requirements based on operators’ needs and the char-
acteristics of the cloud continuum. It is essential to support the auto-
mated evolution of the monitoring system to accommodate changes in
operators’ needs due to unpredictable events such as anomalies, fail-
ures, and requests for new indicators. Furthermore, as the cloud con-
tinuum is a heterogeneous environment used by multiple tenants, a
monitoring system should abstract from underlying technologies and
relieve operators from the configuration burden [1, 4].

To address the dynamicity and evolution of monitoring systems, re-
searchers and practitioners have focused on increasing the level of au-
tomation of probe deployments by studying Monitoring-as-a-Service
(MaaS) solutions [4, 87, 192, 238]. However, there is currently no gen-
eral MaaS solution that can be used to collect virtually any indicator
on any platform. Current approaches significantly limit both the range
of platforms and indicators that can be used.
Contribution 1: Automated Probe Life-Cycle Management To address
the aforementioned gap, this thesis proposes a Monitoring-as-a-Service
framework that utilizes a catalog of probes annotated with metadata and ac-
cess to the API of the environment running the targets to monitor. This
framework provides full MaaS capabilities, including error-handling.
The results indicate that the framework is effective for both containers
and VMs, with virtual machines taking slightly less than a minute and
containers taking less than 1.5 seconds. The framework also demon-
strates efficient error-handling, with containers taking only a few sec-

133

134 conclusions

onds to recover for erroneous configurations. Additionally, the frame-
work is scalable for an increasing number of operators’ requests.

The monitoring systems and probe technologies offer flexibility in
deploying probes, allowing for diverse probe deployment patterns.
These patterns consist of probe deployment architectures that target
specific environments, such as container-based environments, and sat-
isfy specific constraints, such as the need for probes to be shared
among multiple operators. The effectiveness and efficiency of the re-
sulting monitoring system can be impacted by the choice of probe de-
ployment pattern. However, there has not been a systematic analysis
and assessment of the many possible patterns available.
Contribution 2 Probe Deployment Patterns This thesis presents the def-
inition, analysis, and qualitative and quantitative evaluation of 11 possible
probe deployment patterns to fill this knowledge gap. The results indi-
cate the trade-offs between patterns that require more resources to
ensure good separation between users in multi-tenant environments
and patterns that make better use of resources while reducing the de-
gree of separation. The findings have been cross-validated by address-
ing three realistic monitoring scenarios. Furthermore, results helped
in distilling probe deployment best practices with valuable insights
that can guide engineers in implementing and configuring their mon-
itoring systems.

This thesis investigates a second research challenge, which concerns
the adaptation of monitoring systems to the available resources. This is par-
ticularly relevant in the context of fog and edge environments, where
a monitoring system must efficiently use available resources to handle
an increasing number of running devices, applications, and collected
indicators that produce a significant amount of data for storage and
analysis [1, 228].

Recently, monitoring approaches specifically designed for the fog
environment have been investigated [46, 91, 109, 222]. However, none
of these solutions implement a comprehensive adaptive solution that
can support a diverse range of adaptive behaviors, such as changing
the set of collected indicators or updating the configuration parame-
ters based on current data trends.
Contribution 3: Peer-to-Peer Self-Adaptive Monitoring in the Fog
This thesis presents a self-adaptive P2P monitoring system for fog envi-
ronments that utilizes a hierarchical P2P architecture and incorporates adap-
tive behaviors based on the MAPE-K feedback loop. The monitoring system
can abstract monitored indicators and activate countermeasures based
on their status. Countermeasures are defined using a lightweight rule-
based system embedded in the peers. The findings indicate that utiliz-
ing adaptive behaviors can enhance the precision of gathered data (up
to -82.7% RMSE in unstable scenarios) while also reducing network
usage (up to -51.7% messages/second in stable scenarios) and power
consumption (up to approximately -36%). However, this comes at the
expense of increased memory consumption (up to +10%).

conclusions 135

In addition, it is crucial for a monitoring system to function effec-
tively in unpredictable and possibly resource-limited conditions. This
requires ensuring its capabilities while utilizing available resources
wisely, which may be scarce at the edge of the network [216]. Re-
searchers have investigated several approaches to optimize the energy
consumption, including low-level task optimization such as schedul-
ing and provisioning [14, 18, 98, 179, 219], architectural tactics [63],
and specific adaptive behaviors like sampling, filtering, and compres-
sion [99, 159].
Contribution 4: Energy-Aware Self-Adaptive Monitoring in the Edge
In contrast to prior work, this thesis proposes an approach that consid-
ers energy consumption and guides developers to implement a self-adaptive
application capable of switching operation modes in response to changes in
the environment. This ultimately balances energy consumption with
application-level objectives, such as monitoring accuracy. The configu-
ration of operation modes is determined empirically through a meta-
heuristic search procedure that samples a small portion of the configu-
ration space to identify useful configurations. The experimental results
indicate that the proposed approach outperforms non-adaptive base-
line configurations and behaves optimally, similar to configurations se-
lected with a nearly exhaustive exploration of the configuration space.
This is achieved by saving up to 81% of energy while losing only be-
tween 2% and 6% in accuracy.

Practitioners can exploit the contributions provided by this thesis
either independently or in combination to create a more comprehen-
sive, automated, and adaptive monitoring process. The proposed ap-
proaches can be opportunistically combined in a cloud continuum
monitoring framework that automates probe deployment according
to different patterns and adapts monitoring configurations (i.e., probe
deployment pattern, probe configurations, and system-wide configu-
rations) in response to changes in collected data, available resources,
and the operational environment. Optimization techniques and finite-
state machines are recommended for discovering a discrete set of mon-
itoring configurations and designing adaptive behavior in resource-
constrained environments. This ensures that the monitoring system
uses available resources wisely while maintaining regular its function-
ality.

open challenges and research directions The results re-
ported in this thesis advanced knowledge in monitoring in the cloud
continuum, but also opened new challenges for the community.
Probe-Level Adaptation and Configurability The contributions on au-
tomated probe deployments and deployment patterns demonstrated
that MaaS solutions can aid operators in configuring monitoring sys-
tems and managing the configuration burden. However, in some sce-
narios, the centralized and human-centered redeployment of probes
can be time-consuming. Although a centralized decision point is un-

136 conclusions

doubtedly useful, it can also be too slow for some cloud continuum
scenarios, such as volatile edge environments [28, 120]. Thus, the first
challenge pertains the design of configurable and adaptive monitor-
ing behaviors at the probe-level for a rapid local adaptation. To offer
controllable and configurable self-adaptive capabilities, probes have to
be carefully designed, incorporating managers, which can reconfigure
the components in the probe, and variability points, which offer mul-
tiple options to flexibly fit the various use cases that can be faced at
run-time. This would enable monitoring systems to adapt to a wide
range of scenarios without predefined configurations and offer fine-
grained configurability for probes deployed in the field.
Semi-Automatic Adaptive Behavior Definition The studies on self-
adaptive monitoring systems for fog and edge environments demon-
strated the effectiveness of adaptive behaviors in responding to changes
in the operating environment and optimizing resource utilization. How-
ever, the definition and configuration of these behaviors still rely on
expert knowledge. This is a critical aspect because defining triggering
events, countermeasures, and configuration parameters can be a cum-
bersome and application-dependent task [257]. Relying solely on engi-
neers’ knowledge can be difficult and may not work in all application
scenarios due to the unpredictability of the cloud continuum environ-
ment. Therefore, the second challenge concerns with the definition of
adaptive behaviors exploiting (semi-)automatic techniques. A poten-
tial approach to investigate involves utilizing continual reinforcement
learning techniques [142] to capture current behavioral patterns of the
application and environment. These patterns can then be utilized to
define and adjust adaptive behaviors in a (semi-)automated manner.
Accurate Software-Level Power Models Power estimations can be
obtained through simulations or relevant software executions in the
field, as demonstrated in the last contribution presented in this the-
sis. However, continuous changes to the monitoring software may
impact the accuracy of previous measurements, resulting in an out-
dated solution that require additional executions to collect new energy
data. The third challenge concerns with deriving precise power mod-
els that help in defining optimal trade-offs between energy consump-
tion and application-level objectives, such as monitoring accuracy. Un-
fortunately, implementing energy-aware solutions at the software level
is challenging due to the difficulty of obtaining accurate energy con-
sumption information at run-time for specific sections of the software
code. Improvements have been made in this area [44, 89], but the so-
lutions are still limited to measuring hardware-level APIs and do not
extend beyond the process level. This limitation hinders the ability to
gain a clear understanding of how the execution of a specific part of
the code, for example, as a result of an adaptive behavior, will impact
energy consumption.

A
P R O B E D E P L O Y M E N T PAT T E R N P L O T S

01
-01

-01

01
-01

-02

01
-01

-04

01
-01

-08

01
-01

-16
0.00

0.05

0.10

0.15

0.20

0.25

0.30

CP
U

(%
)

INCREASING_KPIS_1

02
-01

-01

02
-01

-02

02
-01

-04

02
-01

-08

02
-01

-16

INCREASING_KPIS_2

01
-01

-01

01
-02

-01

01
-04

-01

01
-08

-01

01
-16

-01
0.00

0.05

0.10

0.15

0.20

0.25

0.30

CP
U

(%
)

INCREASING_TARGETS_1

02
-01

-01

02
-02

-01

02
-04

-01

02
-08

-01

02
-16

-01

INCREASING_TARGETS_2

01
-01

-01

02
-01

-01

04
-01

-01

08
-01

-01

16
-01

-01

Configuration Triplet (Users-Targets-KPIs)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

CP
U

(%
)

INCREASING_USERS_1

01
-01

-01

02
-01

-02

04
-01

-04

08
-01

-08

16
-01

-16

Configuration Triplet (Users-Targets-KPIs)

INCREASING_USERS_2

CPU PROBE HOLDERS

Reserved-T1P*
Shared-T1P*
Reserved-T*P*
Shared-T*P*
Partially-shared-T*P*
Partially-shared-T1P*

(a)

01
-01

-01

01
-01

-02

01
-01

-04

01
-01

-08

01
-01

-16

0.002

0.004

0.006

0.008

0.010

0.012

0.014

CP
U

(%
)

INCREASING_KPIS_1

02
-01

-01

02
-01

-02

02
-01

-04

02
-01

-08

02
-01

-16

INCREASING_KPIS_2

01
-01

-01

01
-02

-01

01
-04

-01

01
-08

-01

01
-16

-01

0.002

0.004

0.006

0.008

0.010

0.012

0.014

CP
U

(%
)

INCREASING_TARGETS_1

02
-01

-01

02
-02

-01

02
-04

-01

02
-08

-01

02
-16

-01

INCREASING_TARGETS_2

01
-01

-01

02
-01

-01

04
-01

-01

08
-01

-01

16
-01

-01

Configuration Triplet (Users-Targets-KPIs)

0.002

0.004

0.006

0.008

0.010

0.012

0.014

CP
U

(%
)

INCREASING_USERS_1

01
-01

-01

02
-01

-02

04
-01

-04

08
-01

-08

16
-01

-16

Configuration Triplet (Users-Targets-KPIs)

INCREASING_USERS_2

CPU TARGETS

Reserved-T1P*
Shared-T1P*
Reserved-T*P*
Shared-T*P*
Partially-shared-T*P*
Partially-shared-T1P*

(b)

Figure A.1: System-oriented CPU Consumption

01
-01

-01

01
-01

-02

01
-01

-04

01
-01

-08

01
-01

-16
0

2

4

6

8

10

M
em

or
y

(G
iB

)

INCREASING_KPIS_1

02
-01

-01

02
-01

-02

02
-01

-04

02
-01

-08

02
-01

-16

INCREASING_KPIS_2

01
-01

-01

01
-02

-01

01
-04

-01

01
-08

-01

01
-16

-01
0

2

4

6

8

10

M
em

or
y

(G
iB

)

INCREASING_TARGETS_1

02
-01

-01

02
-02

-01

02
-04

-01

02
-08

-01

02
-16

-01

INCREASING_TARGETS_2

01
-01

-01

02
-01

-01

04
-01

-01

08
-01

-01

16
-01

-01

Configuration Triplet (Users-Targets-KPIs)

0

2

4

6

8

10

M
em

or
y

(G
iB

)

INCREASING_USERS_1

01
-01

-01

02
-01

-02

04
-01

-04

08
-01

-08

16
-01

-16

Configuration Triplet (Users-Targets-KPIs)

INCREASING_USERS_2

MEMORY PROBE HOLDERS

Reserved-T1P*
Shared-T1P*
Reserved-T*P*
Shared-T*P*
Partially-shared-T*P*
Partially-shared-T1P*

(a)

01
-01

-01

01
-01

-02

01
-01

-04

01
-01

-08

01
-01

-16

0.42

0.44

0.46

0.48

M
em

or
y

(G
iB

)

INCREASING_KPIS_1

02
-01

-01

02
-01

-02

02
-01

-04

02
-01

-08

02
-01

-16

INCREASING_KPIS_2

01
-01

-01

01
-02

-01

01
-04

-01

01
-08

-01

01
-16

-01

0.42

0.44

0.46

0.48

M
em

or
y

(G
iB

)

INCREASING_TARGETS_1

02
-01

-01

02
-02

-01

02
-04

-01

02
-08

-01

02
-16

-01

INCREASING_TARGETS_2

01
-01

-01

02
-01

-01

04
-01

-01

08
-01

-01

16
-01

-01

Configuration Triplet (Users-Targets-KPIs)

0.42

0.44

0.46

0.48

M
em

or
y

(G
iB

)

INCREASING_USERS_1

01
-01

-01

02
-01

-02

04
-01

-04

08
-01

-08

16
-01

-16

Configuration Triplet (Users-Targets-KPIs)

INCREASING_USERS_2

MEMORY TARGETS

Reserved-T1P*
Shared-T1P*
Reserved-T*P*
Shared-T*P*
Partially-shared-T*P*
Partially-shared-T1P*

(b)

Figure A.2: System-oriented Memory Consumption

137

138 probe deployment pattern plots

01
-01

-01

01
-01

-16

01
-01

-02

01
-01

-04

01
-01

-08
0

10

20

30

40

50

60

Ne
tw

or
k

In
 (M

iB
)

INCREASING_KPIS_1

02
-01

-01

02
-01

-16

02
-01

-02

02
-01

-04

02
-01

-08

INCREASING_KPIS_2

01
-01

-01

01
-16

-01

01
-02

-01

01
-04

-01

01
-08

-01
0

10

20

30

40

50

60

Ne
tw

or
k

In
 (M

iB
)

INCREASING_TARGETS_1

02
-01

-01

02
-16

-01

02
-02

-01

02
-04

-01

02
-08

-01

INCREASING_TARGETS_2

01
-01

-01

16
-01

-01

02
-01

-01

04
-01

-01

08
-01

-01

Configuration Triplet (Users-Targets-KPIs)

0

10

20

30

40

50

60

Ne
tw

or
k

In
 (M

iB
)

INCREASING_USERS_1

01
-01

-01

16
-01

-16

02
-01

-02

04
-01

-04

08
-01

-08

Configuration Triplet (Users-Targets-KPIs)

INCREASING_USERS_2

NETWORK_IN PROBE HOLDERS

Reserved-T1P*
Shared-T1P*
Reserved-T*P*
Shared-T*P*
Partially-shared-T*P*
Partially-shared-T1P*
Internal-T1P*

(a)

01
-01

-01

01
-01

-16

01
-01

-02

01
-01

-04

01
-01

-08
0

10

20

30

40

Ne
tw

or
k

In
 (M

iB
)

INCREASING_KPIS_1

02
-01

-01

02
-01

-16

02
-01

-02

02
-01

-04

02
-01

-08

INCREASING_KPIS_2

01
-01

-01

01
-16

-01

01
-02

-01

01
-04

-01

01
-08

-01
0

10

20

30

40

Ne
tw

or
k

In
 (M

iB
)

INCREASING_TARGETS_1

02
-01

-01

02
-16

-01

02
-02

-01

02
-04

-01

02
-08

-01

INCREASING_TARGETS_2

01
-01

-01

16
-01

-01

02
-01

-01

04
-01

-01

08
-01

-01

Configuration Triplet (Users-Targets-KPIs)

0

10

20

30

40

Ne
tw

or
k

In
 (M

iB
)

INCREASING_USERS_1

01
-01

-01

16
-01

-16

02
-01

-02

04
-01

-04

08
-01

-08

Configuration Triplet (Users-Targets-KPIs)

INCREASING_USERS_2

NETWORK_IN TARGETS

Reserved-T1P*
Shared-T1P*
Reserved-T*P*
Shared-T*P*
Partially-shared-T*P*
Partially-shared-T1P*

(b)

Figure A.3: System-oriented Network Input Consumption

01
-01

-01

01
-01

-16

01
-01

-02

01
-01

-04

01
-01

-08
0

10

20

30

40

50

60

Ne
tw

or
k

Ou
t (

M
iB

)

INCREASING_KPIS_1

02
-01

-01

02
-01

-16

02
-01

-02

02
-01

-04

02
-01

-08

INCREASING_KPIS_2

01
-01

-01

01
-16

-01

01
-02

-01

01
-04

-01

01
-08

-01
0

10

20

30

40

50

60

Ne
tw

or
k

Ou
t (

M
iB

)

INCREASING_TARGETS_1

02
-01

-01

02
-16

-01

02
-02

-01

02
-04

-01

02
-08

-01

INCREASING_TARGETS_2

01
-01

-01

16
-01

-01

02
-01

-01

04
-01

-01

08
-01

-01

Configuration Triplet (Users-Targets-KPIs)

0

10

20

30

40

50

60

Ne
tw

or
k

Ou
t (

M
iB

)

INCREASING_USERS_1

01
-01

-01

16
-01

-16

02
-01

-02

04
-01

-04

08
-01

-08

Configuration Triplet (Users-Targets-KPIs)

INCREASING_USERS_2

NETWORK_OUT PROBE HOLDERS

Reserved-T1P*
Shared-T1P*
Reserved-T*P*
Shared-T*P*
Partially-shared-T*P*
Partially-shared-T1P*
Internal-T1P*

(a)

01
-01

-01

01
-01

-16

01
-01

-02

01
-01

-04

01
-01

-08

1

2

3

4

5

6

Ne
tw

or
k

Ou
t (

M
iB

)

INCREASING_KPIS_1

02
-01

-01

02
-01

-16

02
-01

-02

02
-01

-04

02
-01

-08

INCREASING_KPIS_2

01
-01

-01

01
-16

-01

01
-02

-01

01
-04

-01

01
-08

-01

1

2

3

4

5

6

Ne
tw

or
k

Ou
t (

M
iB

)

INCREASING_TARGETS_1

02
-01

-01

02
-16

-01

02
-02

-01

02
-04

-01

02
-08

-01

INCREASING_TARGETS_2

01
-01

-01

16
-01

-01

02
-01

-01

04
-01

-01

08
-01

-01

Configuration Triplet (Users-Targets-KPIs)

1

2

3

4

5

6

Ne
tw

or
k

Ou
t (

M
iB

)

INCREASING_USERS_1

01
-01

-01

16
-01

-16

02
-01

-02

04
-01

-04

08
-01

-08

Configuration Triplet (Users-Targets-KPIs)

INCREASING_USERS_2

NETWORK_OUT TARGETS

Reserved-T1P*
Shared-T1P*
Reserved-T*P*
Shared-T*P*
Partially-shared-T*P*
Partially-shared-T1P*

(b)

Figure A.4: System-oriented Network Output Consumption

01
-01

-01

01
-01

-02

01
-01

-04

01
-01

-08

01
-01

-16
0.0

0.5

1.0

1.5

2.0

CP
U

(n
an

oc
or

es
)

1e8 INCREASING_KPIS_1

02
-01

-01

02
-01

-02

02
-01

-04

02
-01

-08

02
-01

-16

INCREASING_KPIS_2

01
-01

-01

01
-02

-01

01
-04

-01

01
-08

-01

01
-16

-01
0.0

0.5

1.0

1.5

2.0

CP
U

(n
an

oc
or

es
)

1e8 INCREASING_TARGETS_1

02
-01

-01

02
-02

-01

02
-04

-01

02
-08

-01

02
-16

-01

INCREASING_TARGETS_2

01
-01

-01

02
-01

-01

04
-01

-01

08
-01

-01

16
-01

-01

Configuration Triplet (Users-Targets-KPIs)

0.0

0.5

1.0

1.5

2.0

CP
U

(n
an

oc
or

es
)

1e8 INCREASING_USERS_1

01
-01

-01

02
-01

-02

04
-01

-04

08
-01

-08

16
-01

-16

Configuration Triplet (Users-Targets-KPIs)

INCREASING_USERS_2

CPU PROBE HOLDERS

Shared-T1P1
Reserved-T1P1
Reserved-T*P1
Shared-T*P1

(a)

01
-01

-01

01
-01

-02

01
-01

-04

01
-01

-08

01
-01

-16
0

1

2

3

4

CP
U

(n
an

oc
or

es
)

1e6 INCREASING_KPIS_1

02
-01

-01

02
-01

-02

02
-01

-04

02
-01

-08

02
-01

-16

INCREASING_KPIS_2

01
-01

-01

01
-02

-01

01
-04

-01

01
-08

-01

01
-16

-01
0

1

2

3

4

CP
U

(n
an

oc
or

es
)

1e6 INCREASING_TARGETS_1

02
-01

-01

02
-02

-01

02
-04

-01

02
-08

-01

02
-16

-01

INCREASING_TARGETS_2

01
-01

-01

02
-01

-01

04
-01

-01

08
-01

-01

16
-01

-01

Configuration Triplet (Users-Targets-KPIs)

0

1

2

3

4

CP
U

(n
an

oc
or

es
)

1e6 INCREASING_USERS_1

01
-01

-01

02
-01

-02

04
-01

-04

08
-01

-08

16
-01

-16

Configuration Triplet (Users-Targets-KPIs)

INCREASING_USERS_2

CPU TARGETS

Shared-T1P1
Reserved-T1P1
Reserved-T*P1
Shared-T*P1

(b)

Figure A.5: Application-oriented CPU Consumption

probe deployment pattern plots 139

01
-01

-01

01
-01

-02

01
-01

-04

01
-01

-08

01
-01

-16
0

2

4

6

8

10
M

em
or

y
(G

iB
)

INCREASING_KPIS_1

02
-01

-01

02
-01

-02

02
-01

-04

02
-01

-08

02
-01

-16

INCREASING_KPIS_2

01
-01

-01

01
-02

-01

01
-04

-01

01
-08

-01

01
-16

-01
0

2

4

6

8

10

M
em

or
y

(G
iB

)

INCREASING_TARGETS_1

02
-01

-01

02
-02

-01

02
-04

-01

02
-08

-01

02
-16

-01

INCREASING_TARGETS_2

01
-01

-01

02
-01

-01

04
-01

-01

08
-01

-01

16
-01

-01

Configuration Triplet (Users-Targets-KPIs)

0

2

4

6

8

10

M
em

or
y

(G
iB

)

INCREASING_USERS_1

01
-01

-01

02
-01

-02

04
-01

-04

08
-01

-08

16
-01

-16

Configuration Triplet (Users-Targets-KPIs)

INCREASING_USERS_2

MEMORY PROBE HOLDERS

Shared-T1P1
Reserved-T1P1
Reserved-T*P1
Shared-T*P1

(a)

01
-01

-01

01
-01

-02

01
-01

-04

01
-01

-08

01
-01

-16

0.00300

0.00325

0.00350

0.00375

0.00400

M
em

or
y

(G
iB

)

INCREASING_KPIS_1

02
-01

-01

02
-01

-02

02
-01

-04

02
-01

-08

02
-01

-16

INCREASING_KPIS_2

01
-01

-01

01
-02

-01

01
-04

-01

01
-08

-01

01
-16

-01

0.00300

0.00325

0.00350

0.00375

0.00400

M
em

or
y

(G
iB

)

INCREASING_TARGETS_1

02
-01

-01

02
-02

-01

02
-04

-01

02
-08

-01

02
-16

-01

INCREASING_TARGETS_2

01
-01

-01

02
-01

-01

04
-01

-01

08
-01

-01

16
-01

-01

Configuration Triplet (Users-Targets-KPIs)

0.00300

0.00325

0.00350

0.00375

0.00400

M
em

or
y

(G
iB

)

INCREASING_USERS_1

01
-01

-01

02
-01

-02

04
-01

-04

08
-01

-08

16
-01

-16

Configuration Triplet (Users-Targets-KPIs)

INCREASING_USERS_2

MEMORY TARGETS

Shared-T1P1
Reserved-T1P1
Reserved-T*P1
Shared-T*P1

(b)

Figure A.6: Application-oriented Memory Consumption

01
-01

-01

01
-01

-16

01
-01

-02

01
-01

-04

01
-01

-08
0

5

10

15

Ne
tw

or
k

In
 (M

iB
)

INCREASING_KPIS_1

02
-01

-01

02
-01

-16

02
-01

-02

02
-01

-04

02
-01

-08

INCREASING_KPIS_2

01
-01

-01

01
-16

-01

01
-02

-01

01
-04

-01

01
-08

-01
0

5

10

15

Ne
tw

or
k

In
 (M

iB
)

INCREASING_TARGETS_1

02
-01

-01

02
-16

-01

02
-02

-01

02
-04

-01

02
-08

-01

INCREASING_TARGETS_2

01
-01

-01

16
-01

-01

02
-01

-01

04
-01

-01

08
-01

-01

Configuration Triplet (Users-Targets-KPIs)

0

5

10

15

Ne
tw

or
k

In
 (M

iB
)

INCREASING_USERS_1

01
-01

-01

16
-01

-16

02
-01

-02

04
-01

-04

08
-01

-08

Configuration Triplet (Users-Targets-KPIs)

INCREASING_USERS_2

NETWORK_IN PROBE HOLDERS

Shared-T1P1
Reserved-T1P1
Reserved-T*P1
Shared-T*P1

(a)

01
-01

-01

01
-01

-16

01
-01

-02

01
-01

-04

01
-01

-08
0

1

2

3

4

5

6

Ne
tw

or
k

In
 (M

iB
)

INCREASING_KPIS_1

02
-01

-01

02
-01

-16

02
-01

-02

02
-01

-04

02
-01

-08

INCREASING_KPIS_2

01
-01

-01

01
-16

-01

01
-02

-01

01
-04

-01

01
-08

-01
0

1

2

3

4

5

6

Ne
tw

or
k

In
 (M

iB
)

INCREASING_TARGETS_1

02
-01

-01

02
-16

-01

02
-02

-01

02
-04

-01

02
-08

-01

INCREASING_TARGETS_2

01
-01

-01

16
-01

-01

02
-01

-01

04
-01

-01

08
-01

-01

Configuration Triplet (Users-Targets-KPIs)

0

1

2

3

4

5

6

Ne
tw

or
k

In
 (M

iB
)

INCREASING_USERS_1

01
-01

-01

16
-01

-16

02
-01

-02

04
-01

-04

08
-01

-08

Configuration Triplet (Users-Targets-KPIs)

INCREASING_USERS_2

NETWORK_IN TARGETS

Shared-T1P1
Reserved-T1P1
Reserved-T*P1
Shared-T*P1

(b)

Figure A.7: Application-oriented Network Input Consumption

01
-01

-01

01
-01

-16

01
-01

-02

01
-01

-04

01
-01

-08
0.0

2.5

5.0

7.5

10.0

12.5

15.0

Ne
tw

or
k

Ou
t (

M
iB

)

INCREASING_KPIS_1

02
-01

-01

02
-01

-16

02
-01

-02

02
-01

-04

02
-01

-08

INCREASING_KPIS_2

01
-01

-01

01
-16

-01

01
-02

-01

01
-04

-01

01
-08

-01
0.0

2.5

5.0

7.5

10.0

12.5

15.0

Ne
tw

or
k

Ou
t (

M
iB

)

INCREASING_TARGETS_1

02
-01

-01

02
-16

-01

02
-02

-01

02
-04

-01

02
-08

-01

INCREASING_TARGETS_2

01
-01

-01

16
-01

-01

02
-01

-01

04
-01

-01

08
-01

-01

Configuration Triplet (Users-Targets-KPIs)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Ne
tw

or
k

Ou
t (

M
iB

)

INCREASING_USERS_1

01
-01

-01

16
-01

-16

02
-01

-02

04
-01

-04

08
-01

-08

Configuration Triplet (Users-Targets-KPIs)

INCREASING_USERS_2

NETWORK_OUT PROBE HOLDERS

Shared-T1P1
Reserved-T1P1
Reserved-T*P1
Shared-T*P1

(a)

01
-01

-01

01
-01

-16

01
-01

-02

01
-01

-04

01
-01

-08
0

1

2

3

4

5

6

Ne
tw

or
k

Ou
t (

M
iB

)

INCREASING_KPIS_1

02
-01

-01

02
-01

-16

02
-01

-02

02
-01

-04

02
-01

-08

INCREASING_KPIS_2

01
-01

-01

01
-16

-01

01
-02

-01

01
-04

-01

01
-08

-01
0

1

2

3

4

5

6

Ne
tw

or
k

Ou
t (

M
iB

)

INCREASING_TARGETS_1

02
-01

-01

02
-16

-01

02
-02

-01

02
-04

-01

02
-08

-01

INCREASING_TARGETS_2

01
-01

-01

16
-01

-01

02
-01

-01

04
-01

-01

08
-01

-01

Configuration Triplet (Users-Targets-KPIs)

0

1

2

3

4

5

6

Ne
tw

or
k

Ou
t (

M
iB

)

INCREASING_USERS_1

01
-01

-01

16
-01

-16

02
-01

-02

04
-01

-04

08
-01

-08

Configuration Triplet (Users-Targets-KPIs)

INCREASING_USERS_2

NETWORK_OUT TARGETS

Shared-T1P1
Reserved-T1P1
Reserved-T*P1
Shared-T*P1

(b)

Figure A.8: Application-oriented Network Output Consumption

140 probe deployment pattern plots

1 2 4 8 16
Paymentservice Replicas

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

CP
U

(%
)

Shared-T*P* Probe Holder CPU Consumption

(a)

1 2 4 8 16
Paymentservice Replicas

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

M
em

or
y

(G
iB

)

Shared-T*P* Probe Holder Memory Consumption

(b)

1 2 4 8 16
Paymentservice Replicas

4

6

8

10

12

14

Ne
tw

or
k

In
 (M

iB
)

Shared-T*P* Probe Holder Network In

(c)

1 2 4 8 16
Paymentservice Replicas

20

30

40

50

60

70

80

90

Ne
tw

or
k

Ou
t (

M
iB

)

Shared-T*P* Probe Holder Network Out

(d)

1 2 4 8 16
Recommendationservice Replicas

2

4

6

8

Ne
tw

or
k

In
 (M

iB
)

Internal-T1P* Network In

(e)

1 2 4 8 16
Recommendationservice Replicas

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ne
tw

or
k

Ou
t (

M
iB

)

Internal-T1P* Network Out

(f)

Figure A.9: Monitoring a VM-based Microservice Application Usage Sce-
nario

1 2 4 8 16
Cartservice Replicas

1.25

1.50

1.75

2.00

2.25

2.50

2.75

CP
U

(n
an

oc
or

es
)

1e6
Shared-T*P1 Probe Holder CPU Consumption

(a)

1 2 4 8 16
Cartservice Replicas

0.0

0.1

0.2

M
em

or
y

(G
iB

)

Shared-T*P1 Probe Holder Memory Consumption

(b)

1 2 4 8 16
Cartservice Replicas

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Ne
tw

or
k

In
 (M

iB
)

Shared-T*P1 Probe Holder Network In

(c)

1 2 4 8 16
Cartservice Replicas

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

Ne
tw

or
k

Ou
t (

M
iB

)

Shared-T*P1 Probe Holder Network Out

(d)

1 2 4 8 16
Redis-cart Replicas

1

2

3

4

5

6

7

8

CP
U

(n
an

oc
or

es
)

1e6
Reserved-T*P1 Probe Holders CPU Consumption

(e)

1 2 4 8 16
Redis-cart Replicas

0.0

0.1

0.2

M
em

or
y

(G
iB

)

Reserved-T*P1 Probe Holders Memory Consumption

(f)

1 2 4 8 16
Redis-cart Replicas

2

4

6

8

Ne
tw

or
k

In
 (M

iB
)

Reserved-T*P1 Probe Holders Network In

(g)

1 2 4 8 16
Redis-cart Replicas

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ne
tw

or
k

Ou
t (

M
iB

)

Reserved-T*P1 Probe Holders Network Out

(h)

Figure A.10: Monitoring a Microservice Application Running on Kubernetes
Usage Scenario

1 2 4 8 16
Carts-get Replicas

9.0

9.2

9.4

9.6

9.8

CP
U

(n
an

oc
or

es
)

1e6
Shared-T*P1 Probe Holder CPU Consumption

(a)

1 2 4 8 16
Carts-get Replicas

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

M
em

or
y

(G
iB

)

Shared-T*P1 Probe Holder Memory Consumption

(b)

1 2 4 8 16
Carts-get Replicas

0.05
0.06
0.07
0.08
0.09
0.10
0.11
0.12
0.13
0.14

Ne
tw

or
k

In
 (M

iB
)

Shared-T*P1 Probe Holder Network In

(c)

1 2 4 8 16
Carts-get Replicas

2.8

2.9

3.0

3.1

3.2

Ne
tw

or
k

Ou
t (

M
iB

)

Shared-T*P1 Probe Holder Network Out

(d)

Figure A.11: Monitoring Serverless Backend Functions Usage Scenario

B
G W I N S T E K G P M - 8 2 1 3 P O W E R M E A S U R E M E N T
A C C U R A C Y

Table B.1: GW Instek GPM-8213 Power Measurement Accuracy

Effective Range 1% to 110% of range

DC ±(0.2% reading + 0.2% range)

45 Hz < f ⩽ 66 Hz ±(0.1% reading + 0.1% range)

66 Hz < f ⩽ 1 kHz ±(0.1% reading + 0.2% range)

1 kHz < f ⩽ 6 kHz ± 3% of range

The filter is turned on Increase 0.3% reading @ 45Hz to 66Hz

141

B I B L I O G R A P H Y

[1] Mohamed Abderrahim, Meryem Ouzzif, Karine Guillouard, Jerome
Francois, and Adrien Lebre. “A holistic monitoring service for
fog/edge infrastructures: a foresight study.” In: 2017 IEEE 5th
International Conference on Future Internet of Things and Cloud (Fi-
Cloud). IEEE. 2017.

[2] Mohamed Abderrahim, Meryem Ouzzif, Karine Guillouard, Jérôme
François, Adrien Lebre, Charles Prud’homme, and Xavier Lorca.
“Efficient Resource Allocation for Multi-Tenant Monitoring of
Edge Infrastructures.” In: 2019 27th Euromicro International Con-
ference on Parallel, Distributed and Network-Based Processing (PDP).
2019, pp. 158–165.

[3] Muhammad Abrar, Ushna Ajmal, Ziyad M Almohaimeed, Xi-
ang Gui, Rizwan Akram, and Roha Masroor. “Energy efficient
UAV-enabled mobile edge computing for IoT devices: A re-
view.” In: IEEE Access 9 (2021), pp. 127779–127798.

[4] Giuseppe Aceto, Alessio Botta, Walter De Donato, and Antonio
Pescapè. “Cloud monitoring: A survey.” In: Computer Networks
57.9 (2013), pp. 2093–2115.

[5] Paul Adamczyk. “The anthology of the finite state machine de-
sign patterns.” In: The 10th Conference on Pattern Languages of
Programs. 2003.

[6] Paul Adamczyk. “Selected patterns for implementing finite state
machines.” In: The 11th Conference on Pattern Languages of Pro-
grams. 2004.

[7] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta,
and Masanori Koyama. “Optuna: A Next-generation Hyperpa-
rameter Optimization Framework.” In: Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. 2019.

[8] Saravanan Alagarsamy, S Ramkumar, Kartheeban Kamatchi, Hari
Shankar, Ajith Kumar, Sanjeev Karthick, and Praveen Kumar.
“Designing a Advanced Technique for Detection and Violation
of Traffic Control System.” In: Journal of Critical Reviews 7.8
(2020), pp. 2874–2879.

[9] Carlos Albuquerque, Kadu Relvas, Filipe Figueiredo Correia,
and Kyle Brown. “Proactive Monitoring Design Patterns for
Cloud-Native Applications.” In: Proceedings of the 27th Euro-
pean Conference on Pattern Languages of Programs. Association
for Computing Machinery, 2023, pp. 1–13.

143

144 bibliography

[10] Iván Alfonso, Kelly Garcés, Harold Castro, and Jordi Cabot.
“Modeling self-adaptative IoT architectures.” In: 2021 ACM/IEEE
International Conference on Model Driven Engineering Languages
and Systems Companion. IEEE. 2021, pp. 761–766.

[11] K. Alhamazani, R. Ranjan, K. Mitra, P. P. Jayaraman, Z. Huang,
L. Wang, and F. Rabhi. “CLAMS: Cross-layer Multi-cloud Ap-
plication Monitoring-as-a-Service Framework.” In: Proceedings
of the IEEE International Conference on Services Computing. 2014,
pp. 283–290.

[12] Khalid Alhamazani, Rajiv Ranjan, Prem Prakash Jayaraman,
Karan Mitra, Chang Liu, Fethi Rabhi, Dimitrios Georgakopou-
los, and Lizhe Wang. “Cross-layer multi-cloud real-time appli-
cation QoS monitoring and benchmarking as-a-service frame-
work.” In: IEEE Transactions on Cloud Computing 7.1 (2015), pp. 48–
61.

[13] Khalid Alhamazani, Rajiv Ranjan, Karan Mitra, Fethi Rabhi,
Prem Prakash Jayaraman, Samee Ullah Khan, Adnene Guabtni,
and Vasudha Bhatnagar. “An overview of the commercial cloud
monitoring tools: research dimensions, design issues, and state-
of-the-art.” In: Computing 97.4 (2015), pp. 357–377.

[14] Abdullah Fawaz Aljulayfi and Karim Djemame. “A Novel QoS
and Energy-aware Self-adaptive System Architecture for Effi-
cient Resource Management in an Edge Computing Environ-
ment.” In: Proceedings of the 35th UK Performance Engineering
Workshop. 2019, p. 39.

[15] Robert S Allison, Joshua M Johnston, Gregory Craig, and Sion
Jennings. “Airborne optical and thermal remote sensing for
wildfire detection and monitoring.” In: Sensors 16.8 (2016), p. 1310.

[16] Amazon Web Services. AWS Prescriptive Guidance Patterns. 2023.
url: https://docs.aws.amazon.com/prescriptive-guidance/
latest/patterns/. (accessed: 26.05.2023).

[17] Sasan Amini, Ilias Gerostathopoulos, and Christian Prehofer.
“Big data analytics architecture for real-time traffic control.” In:
2017 5th IEEE international conference on models and technologies
for intelligent transportation systems. IEEE. 2017, pp. 710–715.

[18] Atakan Aral, Vincenzo De Maio, and Ivona Brandic. “ARES:
Reliable and sustainable edge provisioning for wireless sensor
networks.” In: IEEE Transactions on Sustainable Computing 7.4
(2021), pp. 761–773.

[19] Paolo Arcaini, Elvinia Riccobene, and Patrizia Scandurra. “For-
mal design and verification of self-adaptive systems with de-
centralized control.” In: ACM Transactions on Autonomous and
Adaptive Systems 11.4 (2017), pp. 1–35.

https://docs.aws.amazon.com/prescriptive-guidance/latest/patterns/
https://docs.aws.amazon.com/prescriptive-guidance/latest/patterns/

bibliography 145

[20] Luca Ardito. “Energy aware self-adaptation in mobile systems.”
In: Proceedings of the 35th International Conference on Software En-
gineering (ICSE). IEEE. 2013, pp. 1435–1437.

[21] Luca Ardito, Marco Torchiano, Marco Marengo, and Paolo Fal-
carin. “gLCB: an energy aware context broker.” In: Sustainable
Computing: Informatics and Systems 3.1 (2013), pp. 18–26.

[22] Amna Arouj and Ahmed M Abdelmoniem. “Towards energy-
aware federated learning on battery-powered clients.” In: Pro-
ceedings of the 1st ACM Workshop on Data Privacy and Federated
Learning Technologies for Mobile Edge Network. 2022, pp. 7–12.

[23] Governors Highway Safety Association. Pedestrian Traffic Fatal-
ities by State: 2022 Preliminary Data. 2023. url: https://www.
ghsa.org/resources/Pedestrians23. (accessed: 08.01.2024).

[24] Lisa Aultman-Hall, Damon Lane, and Rebecca R Lambert. “As-
sessing impact of weather and season on pedestrian traffic vol-
umes.” In: Transportation research record 2140.1 (2009), pp. 35–
43.

[25] Prometheus Authors. Exporters and integrations. 2023. url: https:
//prometheus.io/docs/instrumenting/exporters/. (accessed:
08.01.2024).

[26] Prometheus Authors. Prometheus. 2024. url: https://prometheus.
io/. (accessed: 08.01.2024).

[27] The Kubernetes Authors. Kubernetes. 2024. url: https://kubernetes.
io. (accessed: 08.01.2024).

[28] Cosmin Avasalcai, Christos Tsigkanos, and Schahram Dustdar.
“Adaptive Management of Volatile Edge Systems at Runtime
With Satisfiability.” In: ACM Transactions on Internet Technology
22.1 (2021).

[29] Pavel Avgustinov, Julian Tibble, and Oege de Moor. “Making
Trace Monitors Feasible.” In: Proceedings of the 22nd Annual ACM
SIGPLAN Conference on Object-Oriented Programming Systems, Lan-
guages and Applications. ACM. 2007, 589–608.

[30] Elasticsearch B.V. Beats: Data Shippers for Elasticsearch. 2023. url:
https://www.elastic.co/beats. (accessed: 08.01.2024).

[31] Elasticsearch B.V. ElasticStack. 2024. url: https://www.elastic.
co/elastic-stack. (accessed: 08.01.2024).

[32] Elasticsearch B.V. Elasticsearch. 2024. url: https://www.elastic.
co/elasticsearch. (accessed: 08.01.2024).

[33] Elasticsearch B.V. Metricbeat: Lightweight Shipper for Metrics. 2024.
url: https://www.elastic.co/beats/metricbeat. (accessed:
08.01.2024).

https://www.ghsa.org/resources/Pedestrians23
https://www.ghsa.org/resources/Pedestrians23
https://prometheus.io/docs/instrumenting/exporters/
https://prometheus.io/docs/instrumenting/exporters/
https://prometheus.io/
https://prometheus.io/
https://kubernetes.io
https://kubernetes.io
https://www.elastic.co/beats
https://www.elastic.co/elastic-stack
https://www.elastic.co/elastic-stack
https://www.elastic.co/elasticsearch
https://www.elastic.co/elasticsearch
https://www.elastic.co/beats/metricbeat

146 bibliography

[34] Ahmet Cihat Baktir, Atay Ozgovde, and Cem Ersoy. “How can
edge computing benefit from software-defined networking: A
survey, use cases, and future directions.” In: IEEE Communica-
tions Surveys & Tutorials 19.4 (2017), pp. 2359–2391.

[35] Daniel Balouek-Thomert, Eduard Gibert Renart, Ali Reza Za-
mani, Anthony Simonet, and Manish Parashar. “Towards a com-
puting continuum: Enabling edge-to-cloud integration for data-
driven workflows.” In: The International Journal of High Perfor-
mance Computing Applications 33.6 (2019), pp. 1159–1174.

[36] Luciano Baresi, Danilo Filgueira Mendonça, Martin Garriga,
Sam Guinea, and Giovanni Quattrocchi. “A unified model for
the mobile-edge-cloud continuum.” In: ACM Transactions on In-
ternet Technology (TOIT) 19.2 (2019), pp. 1–21.

[37] Wolfgang Barth. Nagios: System and network monitoring. No Starch
Press, 2008.

[38] Johan Barthélemy, Nicolas Verstaevel, Hugh Forehead, and Pas-
cal Perez. “Edge-computing video analytics for real-time traffic
monitoring in a smart city.” In: Sensors 19.9 (2019), p. 2048.

[39] Pete Beckman, Jack Dongarra, Nicola Ferrier, Geoffrey Fox, Terry
Moore, Dan Reed, and Micah Beck. “Harnessing the Comput-
ing Continuum for Programming Our World.” In: Fog Comput-
ing. John Wiley & Sons, Ltd, 2020. Chap. 7, pp. 215–230.

[40] D. Bernstein. “Containers and Cloud: From LXC to Docker to
Kubernetes.” In: IEEE Cloud Computing 1.3 (2014), pp. 81–84.

[41] Luiz Bittencourt, Roger Immich, Rizos Sakellariou, Nelson Fon-
seca, Edmundo Madeira, Marilia Curado, Leandro Villas, Luiz
DaSilva, Craig Lee, and Omer Rana. “The internet of things, fog
and cloud continuum: Integration and challenges.” In: Internet
of Things 3 (2018), pp. 134–155.

[42] Marina Bolsunovskaya, Alexander Leksashov, Svetlana Shirokova,
and Vladimir Tsygan. “Development of an information system
structure for photo-video recording of traffic violations.” In:
E3S Web of Conferences. Vol. 244. EDP Sciences. 2021, p. 07007.

[43] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Adde-
palli. “Fog Computing and Its Role in the Internet of Things.”
In: Proceedings of the 1st edition of the MCC workshop on Mobile
cloud computing. ACM, 2012, 13–16.

[44] Aurélien Bourdon, Adel Noureddine, Romain Rouvoy, and Li-
onel Seinturier. “Powerapi: A software library to monitor the
energy consumed at the process-level.” In: ERCIM News 2013.92

(2013), pp. 43–44.

[45] Ivona Brandic. “Sustainable and Trustworthy Edge Machine
Learning.” In: IEEE Internet Computing 25.5 (2021), pp. 5–9.

bibliography 147

[46] Álvaro Brandón, María S Pérez, Jesus Montes, and Alberto
Sanchez. “Fmone: A flexible monitoring solution at the edge.”
In: Wireless Communications and Mobile Computing 2018 (2018).

[47] Pierre-Olivier Brissaud, Jérôme François, Isabelle Chrisment,
Thibault Cholez, and Olivier Bettan. “Passive Monitoring of
HTTPS Service Use.” In: 2018 14th International Conference on
Network and Service Management (CNSM). 2018, pp. 219–225.

[48] Yuriy Brun, Giovanna Di Marzo Serugendo, Cristina Gacek,
Holger Giese, Holger Kienle, Marin Litoiu, Hausi Müller, Mauro
Pezzè, and Mary Shaw. “Engineering self-adaptive systems through
feedback loops.” In: Software engineering for self-adaptive systems
(2009), pp. 48–70.

[49] Fernando Brügge, Mohammad Hasan, Matthieu Kulezak, Knud
Lasse Lueth, Eugenio Pasqua, Satyajit Sinha, Philipp Wegner,
Kalpesh Baviskar, and Anand Taparia. State of IoT – Spring 2023.
Tech. rep. IoT Analytics, 2023.

[50] B. Burns and D. Oppenheimer. “Design patterns for container-
based distributed systems.” In: Proceedings of the 8th USENIX
Conference on Hot Topics in Cloud Computing. 2016.

[51] Jose M Alcaraz Calero and Juan Gutierrez Aguado. “Monpaas:
An adaptive monitoring platformas a service for cloud com-
puting infrastructures and services.” In: IEEE Transactions on
Services Computing 8.1 (2014), pp. 65–78.

[52] Gilles Callebaut, Guus Leenders, Jarne Van Mulders, Geoffrey
Ottoy, Lieven De Strycker, and Liesbet Van der Perre. “The Art
of Designing Remote IoT Devices—Technologies and Strategies
for a Long Battery Life.” In: Sensors 21.3 (2021), p. 913.

[53] Javier Cámara, David Garlan, Bradley Schmerl, and Ashutosh
Pandey. “Optimal planning for architecture-based self-adaptation
via model checking of stochastic games.” In: Proceedings of the
30th annual ACM symposium on applied computing. 2015, pp. 428–
435.

[54] Jeffrey D Case, Mark Fedor, Martin Lee Schoffstall, and James
Davin. Rfc1157: Simple network management protocol (snmp). 1990.

[55] P. Cedillo, J. Jimenez-Gomez, S. Abrahao, and E. Insfran. “To-
wards a Monitoring Middleware for Cloud Services.” In: Pro-
ceedings of the 12th International Conference on Services Computing.
IEEE, 2015, pp. 451–458.

[56] Centers for Disease Control and Prevention. Pedestrian Safety.
2022. url: https : / / www . cdc . gov / transportationsafety /

pedestrian_safety/index.html. (accessed: 08.01.2024).

https://www.cdc.gov/transportationsafety/pedestrian_safety/index.html
https://www.cdc.gov/transportationsafety/pedestrian_safety/index.html

148 bibliography

[57] Hyunseok Chang, Adiseshu Hari, Sarit Mukherjee, and TV Lak-
shman. “Bringing the cloud to the edge.” In: 2014 IEEE Con-
ference on Computer Communications Workshops (INFOCOM WK-
SHPS). IEEE. 2014, pp. 346–351.

[58] Boyuan Chen and Zhen Ming (Jack) Jiang. “A Survey of Soft-
ware Log Instrumentation.” In: ACM Computing Surveys 54 (2021).

[59] Zhuo Chen et al. “An Empirical Study of Latency in an Emerg-
ing Class of Edge Computing Applications for Wearable Cog-
nitive Assistance.” In: Proceedings of the Second ACM/IEEE Sym-
posium on Edge Computing. 2017, pp. 1–14.

[60] Jie Cheng, Qiang Ye, Hongbo Jiang, Dan Wang, and Chong-
gang Wang. “STCDG: An efficient data gathering algorithm
based on matrix completion for wireless sensor networks.” In:
IEEE Transactions on Wireless Communications 12.2 (2012), pp. 850–
861.

[61] Goh Chia Yee, Chin Jeng Feng, Mohd Azizi Bin Chik, and Mo-
hzani Mokhtar. “Weighted grey relational analysis to evaluate
multilevel dispatching rules in wafer fabrication.” In: Grey Sys-
tems: Theory and Application 11.4 (2021), pp. 619–649.

[62] Mung Chiang and Tao Zhang. “Fog and IoT: An Overview of
Research Opportunities.” In: IEEE Internet of Things Journal 3.6
(2016), pp. 854–864.

[63] Katerina Chinnappan, Ivano Malavolta, Grace A Lewis, Michel
Albonico, and Patricia Lago. “Architectural Tactics for Energy-
Aware Robotics Software: A Preliminary Study.” In: Software
Architecture: 15th European Conference, ECSA 2021, Virtual Event,
Sweden, September 13-17, 2021, Proceedings. Springer. 2021, pp. 164–
171.

[64] Michele Ciavotta, Davide Motterlini, Marco Savi, and Alessan-
dro Tundo. “DFaaS: Decentralized Function-as-a-Service for Fed-
erated Edge Computing.” In: 2021 IEEE 10th International Con-
ference on Cloud Networking (CloudNet). 2021, pp. 1–4.

[65] Vera Colombo, Alessandro Tundo, Michele Ciavotta, and Leonardo
Mariani. “Towards Self-Adaptive Peer-to-Peer Monitoring for
Fog Environments.” In: 2022 International Symposium on Soft-
ware Engineering for Adaptive and Self-Managing Systems (SEAMS).
IEEE, 2022, pp. 156–166.

[66] Tabitha S Combs, Laura S Sandt, Michael P Clamann, and Noreen
C McDonald. “Automated vehicles and pedestrian safety: ex-
ploring the promise and limits of pedestrian detection.” In:
American journal of preventive medicine 56.1 (2019), pp. 1–7.

[67] Directorate-General for Communication. The European Green Deal.
url: https://commission.europa.eu/strategy-and-policy/
priorities-2019-2024/european-green-deal_en. (accessed:
02.04.2024).

https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en
https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en

bibliography 149

[68] Redis Community and Redis Ltd. Redis Streams. 2024. url: https:
//redis.io/docs/data-types/streams/. (accessed: 08.01.2024).

[69] Containers Organization. What is Podman? 2023. url: https:
//docs.podman.io/en/latest/. (accessed: 08.01.2024).

[70] Linux Containers Contributors. Linux Containers - LXC. 2024.
url: https://linuxcontainers.org/lxc/introduction/. (ac-
cessed: 08.01.2024).

[71] Linux-VServer Contributors. Linux-VServer. 2024. url: http://
linux-vserver.org/. (accessed: 08.01.2024).

[72] European Transport Safety Council. Five ways Europe can tackle
road deaths. 2023. url: https://etsc.eu/five-ways-europe-
can-tackle-road-deaths/. (accessed: 08.01.2024).

[73] Shirlei Aparecida De Chaves, Rafael Brundo Uriarte, and Car-
los Becker Westphall. “Toward an architecture for monitoring
private clouds.” In: IEEE Communications Magazine 49.12 (2011),
pp. 130–137.

[74] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT
Meyarivan. “A fast and elitist multiobjective genetic algorithm:
NSGA-II.” In: IEEE transactions on evolutionary computation 6.2
(2002), pp. 182–197.

[75] Patrick Dendorfer, Aljosa Osep, Anton Milan, Konrad Schindler,
Daniel Cremers, Ian Reid, Stefan Roth, and Laura Leal-Taixé.
“Motchallenge: A benchmark for single-camera multiple target
tracking.” In: International Journal of Computer Vision 129 (2021),
pp. 845–881.

[76] Beniamino Di Martino, Giuseppina Cretella, and Antonio Es-
posito. “Semantic and agnostic representation of cloud patterns
for cloud interoperability and portability.” In: 2013 IEEE 5th In-
ternational Conference on Cloud Computing Technology and Science.
Vol. 2. IEEE. 2013, pp. 182–187.

[77] Oxford English Dictionary, ed. monitor, v., sense 2.c. Oxford Uni-
versity Press, 2023.

[78] Gregory Dobler, Jordan Vani, and Trang Tran Linh Dam. “Pat-
terns of urban foot traffic dynamics.” In: Computers, Environ-
ment and Urban Systems 89 (2021), p. 101674.

[79] Dalibor Dobrilovic, Francesco Flammini, Andrea Gaglione, and
Daniel Tokody. Open-source hardware performance in Edge Com-
puting. 2021. url: https://smartcities.ieee.org/newsletter/
july- 2021/open- source- hardware- performance- in- edge-

computing. (accessed: 11.01.2024).

https://redis.io/docs/data-types/streams/
https://redis.io/docs/data-types/streams/
https://docs.podman.io/en/latest/
https://docs.podman.io/en/latest/
https://linuxcontainers.org/lxc/introduction/
http://linux-vserver.org/
http://linux-vserver.org/
https://etsc.eu/five-ways-europe-can-tackle-road-deaths/
https://etsc.eu/five-ways-europe-can-tackle-road-deaths/
https://smartcities.ieee.org/newsletter/july-2021/open-source-hardware-performance-in-edge-computing
https://smartcities.ieee.org/newsletter/july-2021/open-source-hardware-performance-in-edge-computing
https://smartcities.ieee.org/newsletter/july-2021/open-source-hardware-performance-in-edge-computing

150 bibliography

[80] Juan P Dominguez-Morales, Lourdes Duran-Lopez, Daniel Gutierrez-
Galan, Antonio Rios-Navarro, Alejandro Linares-Barranco, and
Angel Jimenez-Fernandez. “Wildlife monitoring on the edge:
A performance evaluation of embedded neural networks on
microcontrollers for animal behavior classification.” In: Sensors
21.9 (2021), p. 2975.

[81] Schahram Dustdar, Victor Casamayor Pujol, and Praveen Ku-
mar Donta. “On Distributed Computing Continuum Systems.”
In: IEEE Transactions on Knowledge and Data Engineering 35.4
(2023), pp. 4092–4105.

[82] Dynatrace LLC. Dynatrace. 2024. url: https://www.dynatrace.
com. (accessed: 08.01.2024).

[83] Kerstin Eder, John P Gallagher, G Fagas, L Gammaitoni, and
DJ Paul. “Energy-aware software engineering.” In: ICT-energy
concepts for energy efficiency and sustainability (2017), pp. 103–127.

[84] Hassan Elahi, Khushboo Munir, Marco Eugeni, Sofiane Atek,
and Paolo Gaudenzi. “Energy harvesting towards self-powered
IoT devices.” In: Energies 13.21 (2020), p. 5528.

[85] Justin Ellingwood. An Introduction to Metrics, Monitoring, and
Alerting. url: https://www.digitalocean.com/community/
tutorials/an-introduction-to-metrics-monitoring-and-

alerting. (accessed: 20.12.2023).

[86] F5, Inc. NGINX. 2024. url: https://www.nginx.com/. (accessed:
08.01.2024).

[87] Kaniz Fatema, Vincent C. Emeakaroha, Philip D. Healy, John
P. Morrison, and Theo Lynn. “A survey of Cloud monitoring
tools: Taxonomy, capabilities and objectives.” In: Journal of Par-
allel and Distributed Computing 74.10 (2014), pp. 2918 –2933.

[88] Christoph Fehling, Frank Leymann, Ralph Retter, Walter Schu-
peck, and Peter Arbitter. Cloud computing patterns: fundamentals
to design, build, and manage cloud applications. Springer, 2014.

[89] Guillaume Fieni, Romain Rouvoy, and Lionel Seinturier. “Smart-
watts: Self-calibrating software-defined power meter for con-
tainers.” In: Proceedings of the 20th IEEE/ACM International Sym-
posium on Cluster, Cloud and Internet Computing (CCGRID). IEEE.
2020, pp. 479–488.

[90] Alcides Fonseca, Rick Kazman, and Patricia Lago. “A mani-
festo for energy-aware software.” In: IEEE Software 36.6 (2019),
pp. 79–82.

[91] Stefano Forti, Marco Gaglianese, and Antonio Brogi. “Lightweight
self-organising distributed monitoring of Fog infrastructures.”
In: Future Generation Computer Systems 114 (2021), pp. 605–618.

[92] The Apache Software Foundation. Apache Kafka. 2024. url: https:
//kafka.apache.org/. (accessed: 08.01.2024).

https://www.dynatrace.com
https://www.dynatrace.com
https://www.digitalocean.com/community/tutorials/an-introduction-to-metrics-monitoring-and-alerting
https://www.digitalocean.com/community/tutorials/an-introduction-to-metrics-monitoring-and-alerting
https://www.digitalocean.com/community/tutorials/an-introduction-to-metrics-monitoring-and-alerting
https://www.nginx.com/
https://kafka.apache.org/
https://kafka.apache.org/

bibliography 151

[93] The Linux Foundation. OpenVz. 2024. url: https://openvz.
org/. (accessed: 08.01.2024).

[94] The Linux Foundation. cotainerd. 2024. url: https://containerd.
io/. (accessed: 08.01.2024).

[95] Eva García-Martín, Crefeda Faviola Rodrigues, Graham Riley,
and Håkan Grahn. “Estimation of energy consumption in ma-
chine learning.” In: Journal of Parallel and Distributed Computing
134 (2019), pp. 75–88.

[96] Peter Garraghan, Renyu Yang, Zhenyu Wen, Alexander Ro-
manovsky, Jie Xu, Rajkumar Buyya, and Rajiv Ranjan. “Emer-
gent failures: Rethinking cloud reliability at scale.” In: IEEE
Cloud Computing 5.5 (2018), pp. 12–21.

[97] Carlo Ghezzi, Andrea Mocci, and Mario Sangiorgio. “Runtime
monitoring of component changes with Spy@ Runtime.” In:
2012 34th International Conference on Software Engineering (ICSE).
IEEE. 2012, pp. 1403–1406.

[98] Rajrup Ghosh, Siva Prakash Reddy Komma, and Yogesh Simmhan.
“Adaptive energy-aware scheduling of dynamic event analyt-
ics across edge and cloud resources.” In: Proceedings of the 18th
IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing. IEEE. 2018, pp. 72–82.

[99] Dimitrios Giouroukis, Alexander Dadiani, Jonas Traub, Steffen
Zeuch, and Volker Markl. “A survey of adaptive sampling and
filtering algorithms for the internet of things.” In: Proceedings
of the 14th ACM International Conference on Distributed and Event-
based Systems. 2020, pp. 27–38.

[100] GitHub Contributors. Redis Exporter. 2024. url: https://github.
com/oliver006/redis_exporter. (accessed: 08.01.2024).

[101] Github Contributors. Serverless Sock Shop. 2024. url: https://
github.com/deib-polimi/serverless-sock-shop. (accessed:
08.01.2024).

[102] Github Contributors. cAdvisor. 2024. url: https://github.com/
google/cadvisor. (accessed: 08.01.2024).

[103] e Gminy. EcoClou. url: https://ecoclou.eu/. (accessed: 18.12.2023).

[104] Good Will Instrument Co. Ltd. GPM-8213-Gwinstek. url: https:
//www.gwinstek.com/en- GB/products/detail/GPM- 8213.
(accessed: 08.01.2024).

[105] Google LLC. Models - Object Detection. url: https://coral.ai/
models/object-detection/. (accessed: 08.01.2024).

[106] Google LLC. USB Accelerator. url: https://coral.ai/products/
accelerator. (accessed: 08.01.2024).

[107] GoogleCloudPlatform. Online Boutique. 2023. url: https : / /

github.com/GoogleCloudPlatform/microservices-demo. (ac-
cessed: 08.01.2024).

https://openvz.org/
https://openvz.org/
https://containerd.io/
https://containerd.io/
https://github.com/oliver006/redis_exporter
https://github.com/oliver006/redis_exporter
https://github.com/deib-polimi/serverless-sock-shop
https://github.com/deib-polimi/serverless-sock-shop
https://github.com/google/cadvisor
https://github.com/google/cadvisor
https://ecoclou.eu/
https://www.gwinstek.com/en-GB/products/detail/GPM-8213
https://www.gwinstek.com/en-GB/products/detail/GPM-8213
https://coral.ai/models/object-detection/
https://coral.ai/models/object-detection/
https://coral.ai/products/accelerator
https://coral.ai/products/accelerator
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo

152 bibliography

[108] Kalman Graffi and Andreas Disterhöft. “SkyEye: A tree-based
peer-to-peer monitoring approach.” In: Pervasive and Mobile Com-
puting 40 (2017), pp. 593–610.

[109] Marcel Großmann and Clemens Klug. “Monitoring container
services at the network edge.” In: 2017 29th International Tele-
traffic Congress (ITC 29). Vol. 1. IEEE. 2017, pp. 130–133.

[110] The PostgreSQL Global Development Group. PostgreSQL: The
World’s Most Advanced Open Source Relational Database. 2024. url:
https://www.postgresql.org/. (accessed: 08.01.2024).

[111] Eoin Martino Grua, Ivano Malavolta, and Patricia Lago. “Self-
adaptation in mobile apps: a systematic literature study.” In:
Proceedings of the IEEE/ACM 14th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems (SEAMS).
IEEE. 2019, pp. 51–62.

[112] Piotr Gularski. Python State Machine. url: https://pysm.readthedocs.
io/. (accessed: 08.01.2024).

[113] Harshit Gupta, Shubha Brata Nath, Sandip Chakraborty, and
Soumya K Ghosh. “SDFog: A software defined computing ar-
chitecture for QoS aware service orchestration over edge de-
vices.” In: arXiv preprint arXiv:1609.01190 (2016).

[114] Bin Han, Stan Wong, Christian Mannweiler, Marcos Rates Crippa,
and Hans D. Schotten. “Context-Awareness Enhances 5G Multi-
Access Edge Computing Reliability.” In: IEEE Access 7 (2019),
pp. 21290–21299.

[115] P. Hasselmeyer and N. d’Heureuse. “Towards holistic multi-
tenant monitoring for virtual data centers.” In: Proceedings of the
IEEE/IFIP Network Operations and Management Symposium Work-
shops. 2010, pp. 350–356.

[116] Christopher B Hauser and Stefan Wesner. “Reviewing cloud
monitoring: Towards cloud resource profiling.” In: International
Conference on Cloud Computing (CLOUD). IEEE. 2018, pp. 678–
685.

[117] Jeffrey Hojlo. Future of Industry Ecosystems: Shared Data and In-
sights. url: https://blogs.idc.com/2021/01/06/future-
of-industry-ecosystems-shared-data-and-insights/. (ac-
cessed: 17.11.2023).

[118] Chao-Jung Hsu and Chin-Yu Huang. “Comparison of weighted
grey relational analysis for software effort estimation.” In: Soft-
ware Quality Journal 19 (2011), pp. 165–200.

[119] IEA. Data Centres and Data Transmission Networks. Tech. rep. IEA,
2022.

https://www.postgresql.org/
https://pysm.readthedocs.io/
https://pysm.readthedocs.io/
https://blogs.idc.com/2021/01/06/future-of-industry-ecosystems-shared-data-and-insights/
https://blogs.idc.com/2021/01/06/future-of-industry-ecosystems-shared-data-and-insights/

bibliography 153

[120] Shashikant Ilager, Jakob Fahringer, Samuel Carlos de Lima Dias,
and Ivona Brandic. “DEMon: Decentralized Monitoring for Highly
Volatile Edge Environments.” In: 2022 IEEE/ACM 15th Interna-
tional Conference on Utility and Cloud Computing (UCC). IEEE.
2022, pp. 145–150.

[121] Docker Inc. Docker. 2024. url: https://www.docker.com/. (ac-
cessed: 08.01.2024).

[122] MongoDB Inc. MongoDB. 2024. url: https://www.mongodb.com.
(accessed: 08.01.2024).

[123] Perforce Software Inc. Puppet. 2024. url: https://www.puppet.
com/. (accessed: 08.01.2024).

[124] Red Hat Inc. How Ansible works. 2024. url: https://www.ansible.
com/overview/how-ansible-works. (accessed: 08.01.2024).

[125] Michaela Iorga, Larry Feldman, Robert Barton, Michael Martin,
Nedim Goren, and Charif Mahmoudi. Fog Computing Concep-
tual Model. 2018.

[126] James A. Jahnke. Continuous emission monitoring. John Wiley &
Sons, 2022.

[127] Ankur Jain and Edward Y Chang. “Adaptive sampling for sen-
sor networks.” In: Proceeedings of the 1st international workshop
on Data management for sensor networks: in conjunction with VLDB
2004. 2004, pp. 10–16.

[128] Fatemeh Jalali, Kerry Hinton, Robert Ayre, Tansu Alpcan, and
Rodney S. Tucker. “Fog Computing May Help to Save Energy
in Cloud Computing.” In: IEEE Journal on Selected Areas in Com-
munications 34.5 (2016), pp. 1728–1739.

[129] Hiranya Jayathilaka, Chandra Krintz, and Rich Wolski. “Perfor-
mance Monitoring and Root Cause Analysis for Cloud-Hosted
Web Applications.” In: Proceedings of the 26th International Con-
ference on World Wide Web. 2017, 469–478.

[130] Márk Jelasity. “Gossip.” In: Self-organising software. Springer,
2011, pp. 139–162.

[131] Gangyong Jia, Guangjie Han, Jiaxin Du, and Sammy Chan. “A
maximum cache value policy in hybrid memory-based edge
computing for mobile devices.” In: IEEE Internet of Things Jour-
nal 6.3 (2018), pp. 4401–4410.

[132] Congfeng Jiang, Tiantian Fan, Honghao Gao, Weisong Shi, Liangkai
Liu, Christophe Cérin, and Jian Wan. “Energy aware edge com-
puting: A survey.” In: Computer Communications 151 (2020), pp. 556–
580.

[133] Miao Jiang, Mohammad A. Munawar, Thomas Reidemeister,
and Paul A.S. Ward. “System Monitoring with Metric-Correlation
Models: Problems and Solutions.” In: Proceedings of the 6th Inter-
national Conference on Autonomic Computing. ACM. 2009, 13–22.

https://www.docker.com/
https://www.mongodb.com
https://www.puppet.com/
https://www.puppet.com/
https://www.ansible.com/overview/how-ansible-works
https://www.ansible.com/overview/how-ansible-works

154 bibliography

[134] Steven J Johnston, Philip J Basford, Colin S Perkins, Herry Herry,
Fung Po Tso, Dimitrios Pezaros, Robert D Mullins, Eiko Yoneki,
Simon J Cox, and Jeremy Singer. “Commodity single board
computer clusters and their applications.” In: Future Generation
Computer Systems 89 (2018), pp. 201–212.

[135] Deng Ju-Long. “Control problems of grey systems.” In: Systems
& control letters 1.5 (1982), pp. 288–294.

[136] Sarang Kahvazadeh, Xavi Masip-Bruin, Eva Marín-Tordera, and
Alejandro Gómez Cárdenas. “Securing Combined Fog-to-Cloud
Systems: Challenges and Directions.” In: Proceedings of the Fu-
ture Technologies Conference (FTC) 2019. 2020, pp. 877–892.

[137] K. C. Kang, S. G. Cohen, J.. A. Hess, W. E. Novak, and A.
S. Peterson. Feature-oriented domain analysis (FODA) feasibility
study. Tech. rep. CMU/SEI-90-TR-21. Carnegie-Mellon Univer-
sity - Software Engineering Institute, 1990.

[138] Gabor Karsai and Janos Sztipanovits. “A model-based approach
to self-adaptive software.” In: IEEE Intelligent Systems and Their
Applications 14.3 (1999), pp. 46–53.

[139] Saadallah Kassir, Gustavo de Veciana, Nannan Wang, Xi Wang,
and Paparao Palacharla. “Service Placement for Real-Time Ap-
plications: Rate-Adaptation and Load-Balancing at the Network
Edge.” In: 2020 7th IEEE International Conference on Cyber Secu-
rity and Cloud Computing (CSCloud)/2020 6th IEEE International
Conference on Edge Computing and Scalable Cloud (EdgeCom). 2020,
pp. 207–215.

[140] Jeffrey O Kephart and David M Chess. “The vision of auto-
nomic computing.” In: Computer 36.1 (2003), pp. 41–50.

[141] Wazir Zada Khan, Ejaz Ahmed, Saqib Hakak, Ibrar Yaqoob,
and Arif Ahmed. “Edge computing: A survey.” In: Future Gen-
eration Computer Systems 97 (2019), pp. 219–235.

[142] Khimya Khetarpal, Matthew Riemer, Irina Rish, and Doina
Precup. “Towards continual reinforcement learning: A review
and perspectives.” In: Journal of Artificial Intelligence Research 75

(2022), pp. 1401–1476.

[143] Foutse Khomh and S Amirhossein Abtahizadeh. “Understand-
ing the impact of cloud patterns on performance and energy
consumption.” In: Journal of Systems and Software 141 (2018),
pp. 151–170.

[144] Taehyun Kim, Dong-Wook Sohn, and Sangho Choo. “An anal-
ysis of the relationship between pedestrian traffic volumes and
built environment around metro stations in Seoul.” In: KSCE
Journal of Civil Engineering 21 (2017), pp. 1443–1452.

bibliography 155

[145] Michael Kleis, Eng Keong Lua, and Xiaoming Zhou. “Hierar-
chical peer-to-peer networks using lightweight superpeer topolo-
gies.” In: Proceedings of the 10th IEEE Symposium on Computers
and Communications. IEEE. 2005, pp. 143–148.

[146] Ales Komarek, Jakub Pavlik, Lubos Mercl, and Vladimir Sobeslav.
“Metric based cloud infrastructure monitoring.” In: Proceedings
of the 12th International Conference on P2P, Parallel, Grid, Cloud
and Internet Computing (3PGCIC-2017). Springer. 2018, pp. 391–
400.

[147] Christian Krupitzer, Felix Maximilian Roth, Sebastian VanSy-
ckel, Gregor Schiele, and Christian Becker. “A survey on engi-
neering approaches for self-adaptive systems.” In: Pervasive and
Mobile Computing 17 (2015), pp. 184–206.

[148] Yiyo Kuo, Taho Yang, and Guan-Wei Huang. “The use of grey
relational analysis in solving multiple attribute decision-making
problems.” In: Computers & industrial engineering 55.1 (2008),
pp. 80–93.

[149] M. Kutare, K. Schwan, G. Eisenhauer, V. Talwar, C. Wang, and
M. Wolf. “Monalytics: online monitoring and analytics for man-
aging large scale data centers.” In: Proceeding of the 7th Interna-
tional Conference on Autonomic computing. ACM, 2010, pp. 141–
150.

[150] Ponemon Institute LLC. Cost of Data Center Outages. Tech. rep.
Ponemon Institute LLC, 2016.

[151] Zabbix LLC. Zabbix. 2023. url: https://www.zabbix.com. (ac-
cessed: 08.01.2024).

[152] Steffen Lange, Johanna Pohl, and Tilman Santarius. “Digital-
ization and energy consumption. Does ICT reduce energy de-
mand?” In: Ecological Economics 176 (2020), p. 106760.

[153] Igor Lashkov and Alexey Kashevnik. “Smartphone-based in-
telligent driver assistant: context model and dangerous state
recognition scheme.” In: Intelligent Systems and Applications: Pro-
ceedings of the 2019 Intelligent Systems Conference Volume 2. Springer.
2020, pp. 152–165.

[154] Euijong Lee, Young-Duk Seo, and Young-Gab Kim. “Self-adaptive
framework based on mape loop for internet of things.” In: sen-
sors 19.13 (2019), p. 2996.

[155] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro
Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick.
“Microsoft coco: Common objects in context.” In: Computer Vision–
ECCV 2014: 13th European Conference, Zurich, Switzerland, Septem-
ber 6-12, 2014, Proceedings, Part V 13. Springer. 2014, pp. 740–
755.

https://www.zabbix.com

156 bibliography

[156] Zhongjie Lin, Hugh HT Liu, and Mike Wotton. “Kalman filter-
based large-scale wildfire monitoring with a system of UAVs.”
In: IEEE Transactions on Industrial Electronics 66.1 (2018), pp. 606–
615.

[157] Ashish Lingayat, Ranjana R Badre, and Anil Kumar Gupta.
“Performance evaluation for deploying docker containers on
baremetal and virtual machine.” In: Proceedings of the 3rd In-
ternational Conference on Communication and Electronics Systems
(ICCES). IEEE. 2018, pp. 1019–1023.

[158] Jaime Lloret, Lorena Parra, Miran Taha, and Jesús Tomás. “An
architecture and protocol for smart continuous eHealth mon-
itoring using 5G.” In: Computer Networks 129 (2017), pp. 340–
351.

[159] Tao Lu, Wen Xia, Xiangyu Zou, and Qianbin Xia. “Adaptively
Compressing IoT Data on the Resource-constrained Edge.” In:
3rd {USENIX} Workshop on Hot Topics in Edge Computing. 2020.

[160] Ivan Lujic, Vincenzo De Maio, Klaus Pollhammer, Ivan Bodrozic,
Josip Lasic, and Ivona Brandic. “Increasing traffic safety with
real-time edge analytics and 5G.” In: Proceedings of the 4th In-
ternational Workshop on Edge Systems, Analytics and Networking.
ACM. 2021, pp. 19–24.

[161] Amin Mahmoudi, Saad Ahmed Javed, Sifeng Liu, and Xiaopeng
Deng. “Distinguishing coefficient driven sensitivity analysis of
GRA model for intelligent decisions: application in project man-
agement.” In: Technological and Economic Development of Economy
26.3 (2020), pp. 621–641.

[162] Henry B Mann and Donald R Whitney. “On a test of whether
one of two random variables is stochastically larger than the
other.” In: The annals of mathematical statistics (1947), pp. 50–60.

[163] Sean Marston, Zhi Li, Subhajyoti Bandyopadhyay, Juheng Zhang,
and Anand Ghalsasi. “Cloud computing — The business per-
spective.” In: Decision Support Systems 51.1 (2011), pp. 176–189.

[164] M. L. Massie, B. N. Chun, and D. E. Culler. “The Ganglia dis-
tributed monitoring system: design, implementation, and expe-
rience.” In: Parallel Computing 30.7 (2004), pp. 817–840.

[165] Narges Mehran, Dragi Kimovski, and Radu Prodan. “A Two-
Sided Matching Model for Data Stream Processing in the Cloud
– Fog Continuum.” In: 2021 IEEE/ACM 21st International Sym-
posium on Cluster, Cloud and Internet Computing (CCGrid). 2021,
pp. 514–524.

[166] Peter Mell and Timothy Grance. The NIST Definition of Cloud
Computing. 2011.

bibliography 157

[167] Shicong Meng and Ling Liu. “Enhanced monitoring-as-a-service
for effective cloud management.” In: IEEE Transactions on Com-
puters 62.9 (2012), pp. 1705–1720.

[168] Jhonny Mertz and Ingrid Nunes. “Software runtime monitor-
ing with adaptive sampling rate to collect representative sam-
ples of execution traces.” In: Journal of Systems and Software
(2023), p. 111708.

[169] Microsoft. Cloud Design Patterns. 2023. url: https : / / docs .

microsoft.com/en-us/azure/architecture/patterns/. (ac-
cessed: 26.05.2023).

[170] Microsoft. Azure Compute. 2024. url: https://azure.microsoft.
com/en-gb/products/category/compute/. (accessed: 08.01.2024).

[171] Microsoft. Azure Kubernetes Service (AKS). 2024. url: https://
azure.microsoft.com/en-gb/services/kubernetes-service/.
(accessed: 08.01.2024).

[172] Dejan S Milojicic, Vana Kalogeraki, Rajan Lukose, Kiran Na-
garaja, Jim Pruyne, Bruno Richard, Sami Rollins, and Zhichen
Xu. Peer-to-peer computing. 2002.

[173] Angelos Mimidis-Kentis, Jose Soler, Paul Veitch, Adam Broad-
bent, Marco Mobilio, Oliviero Riganelli, Steven Van Rossem,
Wouter Tavernier, and Bessem Sayadi. “The Next Generation
Platform as A Service: Composition and Deployment of Plat-
forms and Services.” In: Future Internet 11.119 (2019).

[174] Mayank Mishra, Paulo B Lourenço, and Gunturi Venkata Ra-
mana. “Structural health monitoring of civil engineering struc-
tures by using the internet of things: A review.” In: Journal of
Building Engineering 48 (2022), p. 103954.

[175] Tanya Mohn. Pedestrian Deaths On The Rise Again, A Walker
Dies Every 75 Minutes On America’s Roads. 2023. url: https :

//www.forbes.com/sites/tanyamohn/2023/02/28/pedestrian-

deaths- on- the- rise-- again- a- walker- dies- every- 75-

minutes-on-americas-roads/. (accessed: 08.01.2024).

[176] Sergio Moreschini, Fabiano Pecorelli, Xiaozhou Li, Sonia Naz,
David Hästbacka, and Davide Taibi. “Cloud Continuum: The
Definition.” In: IEEE Access 10 (2022), pp. 131876–131886.

[177] Nagios Enterprises. Nagios. 2024. url: https://www.nagios.
com. (accessed: 08.01.2024).

[178] Attila M Nagy and Vilmos Simon. “Survey on traffic prediction
in smart cities.” In: Pervasive and Mobile Computing 50 (2018),
pp. 148–163.

[179] Yucen Nan, Wei Li, Wei Bao, Flavia C Delicato, Paulo F Pires,
Yong Dou, and Albert Y Zomaya. “Adaptive energy-aware com-
putation offloading for cloud of things systems.” In: IEEE Ac-
cess 5 (2017), pp. 23947–23957.

https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://azure.microsoft.com/en-gb/products/category/compute/
https://azure.microsoft.com/en-gb/products/category/compute/
https://azure.microsoft.com/en-gb/services/kubernetes-service/
https://azure.microsoft.com/en-gb/services/kubernetes-service/
https://www.forbes.com/sites/tanyamohn/2023/02/28/pedestrian-deaths-on-the-rise--again-a-walker-dies-every-75-minutes-on-americas-roads/
https://www.forbes.com/sites/tanyamohn/2023/02/28/pedestrian-deaths-on-the-rise--again-a-walker-dies-every-75-minutes-on-americas-roads/
https://www.forbes.com/sites/tanyamohn/2023/02/28/pedestrian-deaths-on-the-rise--again-a-walker-dies-every-75-minutes-on-americas-roads/
https://www.forbes.com/sites/tanyamohn/2023/02/28/pedestrian-deaths-on-the-rise--again-a-walker-dies-every-75-minutes-on-americas-roads/
https://www.nagios.com
https://www.nagios.com

158 bibliography

[180] Zeinab Nezami, Kamran Zamanifar, Karim Djemame, and Evan-
gelos Pournaras. “Decentralized Edge-to-Cloud Load Balanc-
ing: Service Placement for the Internet of Things.” In: IEEE Ac-
cess 9 (2021), pp. 64983–65000.

[181] Patrick Ngatchou, Anahita Zarei, and A El-Sharkawi. “Pareto
multi objective optimization.” In: Proceedings of the international
conference on, intelligent systems application to power systems. IEEE.
2005, pp. 84–91.

[182] Rihards Olups. Zabbix Network Monitoring. Packt Publishing
Ltd, 2016.

[183] OpenFaaS Ltd. OpenFaaS. 2024. url: https://www.openfaas.
com. (accessed: 08.01.2024).

[184] Optuna Contributors. optuna.samplers.NSGAIISampler. url: https:
//optuna.readthedocs.io/en/stable/reference/samplers/

generated/optuna.samplers.NSGAIISampler.html. (accessed:
08.01.2024).

[185] Optuna Contributors. optuna.samplers.RandomSampler. url: https:
//optuna.readthedocs.io/en/stable/reference/samplers/

generated/optuna.samplers.RandomSampler.html. (accessed:
08.01.2024).

[186] Andy Oram. Peer-to-Peer: Harnessing the power of disruptive tech-
nologies. " O’Reilly Media, Inc.", 2001.

[187] UK Parliament POST. Energy Consumption of ICT. Tech. rep. UK
Parliament, 2022.

[188] Rafael Padilla, Sergio L Netto, and Eduardo AB Da Silva. “A
survey on performance metrics for object-detection algorithms.”
In: 2020 international conference on systems, signals and image pro-
cessing. IEEE. 2020, pp. 237–242.

[189] Jacopo Panerati, Donatella Sciuto, and Giovanni Beltrame. “Op-
timization strategies in design space exploration.” In: Handbook
of Hardware/Software Codesign. Springer, 2017, pp. 189–216.

[190] Vincenzo Pecunia, Luigi G Occhipinti, and Robert LZ Hoye.
“Emerging indoor photovoltaic technologies for sustainable in-
ternet of things.” In: Advanced Energy Materials 11.29 (2021),
p. 2100698.

[191] Javier Povedano-Molina, Jose M Lopez-Vega, Juan M Lopez-
Soler, Antonio Corradi, and Luca Foschini. “DARGOS: A highly
adaptable and scalable monitoring architecture for multi-tenant
Clouds.” In: Future Generation Computer Systems 29.8 (2013), pp. 2041–
2056.

[192] OpenStack Project. Monasca. 2024. url: https://www.openstack.
org/software/releases/antelope/components/monasca. (ac-
cessed: 08.01.2024).

https://www.openfaas.com
https://www.openfaas.com
https://optuna.readthedocs.io/en/stable/reference/samplers/generated/optuna.samplers.NSGAIISampler.html
https://optuna.readthedocs.io/en/stable/reference/samplers/generated/optuna.samplers.NSGAIISampler.html
https://optuna.readthedocs.io/en/stable/reference/samplers/generated/optuna.samplers.NSGAIISampler.html
https://optuna.readthedocs.io/en/stable/reference/samplers/generated/optuna.samplers.RandomSampler.html
https://optuna.readthedocs.io/en/stable/reference/samplers/generated/optuna.samplers.RandomSampler.html
https://optuna.readthedocs.io/en/stable/reference/samplers/generated/optuna.samplers.RandomSampler.html
https://www.openstack.org/software/releases/antelope/components/monasca
https://www.openstack.org/software/releases/antelope/components/monasca

bibliography 159

[193] Prometheus Authors. Blackbox Exporter. 2024. url: https://

github.com/prometheus/blackbox_exporter. (accessed: 08.01.2024).

[194] Prometheus Authors. Node Exporter. 2024. url: https://github.
com/prometheus/node_exporter. (accessed: 08.01.2024).

[195] Prometheus Authors. SNMP exporter for Prometheus. 2024. url:
https://github.com/prometheus/snmp_exporter. (accessed:
08.01.2024).

[196] Codrin Pruteanu and Cristian-gyözö Haba. “GenFSM: A finite
state machine generation tool.” In: Proc. 9th Int. Conf. Dev. Ap-
plicat. Syst. 2008, pp. 165–168.

[197] Albert Reuther, Peter Michaleas, Michael Jones, Vijay Gade-
pally, Siddharth Samsi, and Jeremy Kepner. “Survey and bench-
marking of machine learning accelerators.” In: Proceedings of the
8th IEEE High Performance Extreme Computing Conference (HPEC).
IEEE. 2019, pp. 1–9.

[198] Chris Richardson. Microservices patterns: with examples in Java.
Simon and Schuster, 2018.

[199] Gary Riley. “Clips: An expert system building tool.” In: Proceed-
ings Second National Technology Transfer Conference and Exposition.
Vol. 2. 1991, pp. 149–158.

[200] L. Romano, D. De Mari, Z. Jerzak, and C. Fetzer. “A Novel Ap-
proach to QoS Monitoring in the Cloud.” In: Proceedings of the
1st International Conference on Data Compression, Communications
and Processing. 2011, pp. 45–51.

[201] Karen Rose, Scott Eldridge, and Lyman Chapin. “The internet
of things: An overview.” In: The internet society (ISOC) 80 (2015),
pp. 1–50.

[202] Timothy Rupprecht and Yanzhi Wang. “A survey for deep rein-
forcement learning in markovian cyber-physical systems: Com-
mon problems and solutions.” In: Neural Networks (2022).

[203] Dario Sabella, Alessandro Vaillant, Pekka Kuure, Uwe Rauschen-
bach, and Fabio Giust. “Mobile-edge computing architecture:
The role of MEC in the Internet of Things.” In: IEEE Consumer
Electronics Magazine 5.4 (2016), pp. 84–91.

[204] Hareem Sahar, Abdul A Bangash, and Mirza O Beg. “Towards
energy aware object-oriented development of android appli-
cations.” In: Sustainable Computing: Informatics and Systems 21

(2019), pp. 28–46.

[205] Mazeiar Salehie and Ladan Tahvildari. “Towards a goal-driven
approach to action selection in self-adaptive software.” In: Soft-
ware: Practice and Experience 42.2 (2012), pp. 211–233.

https://github.com/prometheus/blackbox_exporter
https://github.com/prometheus/blackbox_exporter
https://github.com/prometheus/node_exporter
https://github.com/prometheus/node_exporter
https://github.com/prometheus/snmp_exporter

160 bibliography

[206] Arun Kumar Sangaiah, Ali Shokouhi Rostami, Ali Asghar Rah-
mani Hosseinabadi, Morteza Babazadeh Shareh, Amir Javad-
pour, Shirin Hatami Bargh, and Mohammad Mehedi Hassan.
“Energy-Aware Geographic Routing for Real-Time Workforce
Monitoring in Industrial Informatics.” In: IEEE Internet of Things
Journal 8.12 (2021), pp. 9753–9762.

[207] Mahadev Satyanarayanan. “The Emergence of Edge Comput-
ing.” In: Computer 50.1 (2017), pp. 30–39.

[208] Mahadev Satyanarayanan, Paramvir Bahl, Ramón Caceres, and
Nigel Davies. “The case for vm-based cloudlets in mobile com-
puting.” In: IEEE pervasive Computing 8.4 (2009), pp. 14–23.

[209] Douglas C Schmidt, Mohamed Fayad, and Ralph E Johnson.
“Software patterns.” In: Communications of the ACM 39.10 (1996),
pp. 37–39.

[210] Daniel Schwartz, Jonathan Michael Gomes Selman, Peter Wrege,
and Andreas Paepcke. “Deployment of Embedded Edge-AI for
Wildlife Monitoring in Remote Regions.” In: Proceedings of the
20th IEEE International Conference on Machine Learning and Appli-
cations. IEEE. 2021, pp. 1035–1042.

[211] Seedstudio.com. All about cpus: Microprocessor, microcontroller
and Single Board Computer. 2020. url: https://www.seeedstudio.
com/blog/2020/10/27/all- about- cpus- microprocessor-

microcontroller - and - single - board - computer/. (accessed:
11.01.2024).

[212] Commission Spokesperson’s Service. Road safety in the EU. 2023.
url: https://ec.europa.eu/commission/presscorner/detail/
en/ip_23_953. (accessed: 08.01.2024).

[213] Samuel Sanford Shapiro and Martin B Wilk. “An analysis of
variance test for normality (complete samples).” In: Biometrika
52.3/4 (1965), pp. 591–611.

[214] Yogesh Sharma, Bahman Javadi, Weisheng Si, and Daniel Sun.
“Reliability and energy efficiency in cloud computing systems:
Survey and taxonomy.” In: Journal of Network and Computer Ap-
plications 74 (2016), pp. 66–85.

[215] Anas Shatnawi, Matteo Orrù, Marco Mobilio, Oliviero Riganelli,
and Leonardo Mariani. “Cloudhealth: a model-driven approach
to watch the health of cloud services.” In: Proceedings of the
IEEE/ACM 1st International Workshop on Software Health (SoHeal).
IEEE. 2018, pp. 40–47.

[216] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu.
“Edge Computing: Vision and Challenges.” In: IEEE Internet of
Things Journal 3.5 (2016), pp. 637–646.

https://www.seeedstudio.com/blog/2020/10/27/all-about-cpus-microprocessor-microcontroller-and-single-board-computer/
https://www.seeedstudio.com/blog/2020/10/27/all-about-cpus-microprocessor-microcontroller-and-single-board-computer/
https://www.seeedstudio.com/blog/2020/10/27/all-about-cpus-microprocessor-microcontroller-and-single-board-computer/
https://ec.europa.eu/commission/presscorner/detail/en/ip_23_953
https://ec.europa.eu/commission/presscorner/detail/en/ip_23_953

bibliography 161

[217] R Shreyas, BV Pradeep Kumar, HB Adithya, B Padmaja, and
MP Sunil. “Dynamic traffic rule violation monitoring system
using automatic number plate recognition with SMS feedback.”
In: 2017 2nd International Conference on Telecommunication and
Networks. IEEE. 2017, pp. 1–5.

[218] Carlos Eduardo da Silva and Rogério de Lemos. “A framework
for automatic generation of processes for self-adaptive software
systems.” In: Informatica 35.1 (2011).

[219] Joaquim Silva, Eduardo RB Marques, Luís Lopes, and Fernando
Silva. “Energy-aware adaptive offloading of soft real-time jobs
in mobile edge clouds.” In: Journal of Cloud Computing 10.1
(2021), pp. 1–21.

[220] Michael Smit, Bradley Simmons, and Marin Litoiu. “Distributed,
Application-Level Monitoring for Heterogeneous Clouds Us-
ing Stream Processing.” In: Future Generation Computer Systems
29.8 (2013), pp. 2103–2114.

[221] Tiago Boldt Sousa, Hugo Sereno Ferreira, and Filipe Figueiredo
Correia. “A Survey on the Adoption of Patterns for Engineer-
ing Software for the Cloud.” In: IEEE Transactions on Software
Engineering 48.6 (2022), pp. 2128–2140.

[222] Arthur Souza, Nélio Cacho, Ayman Noor, Prem Prakash Ja-
yaraman, Alexander Romanovsky, and Rajiv Ranjan. “Osmotic
monitoring of microservices between the edge and cloud.” In:
2018 IEEE 20th International Conference on High Performance Com-
puting and Communications; IEEE 16th International Conference on
Smart City; IEEE 4th International Conference on Data Science and
Systems (HPCC/SmartCity/DSS). IEEE. 2018, pp. 758–765.

[223] Josef Spillner, Juliana Freitag Borin, and Luiz Fernando Bitten-
court. “Intent-based placement of microservices in computing
continuums.” In: Future Intent-Based Networking: On the QoS Ro-
bust and Energy Efficient Heterogeneous Software Defined Networks.
Springer, 2021, pp. 38–50.

[224] Wolfram Stadler. Multicriteria Optimization in Engineering and in
the Sciences. Vol. 37. Springer Science & Business Media, 1988.

[225] Ralf Steinmetz and Klaus Wehrle. Peer-to-peer systems and appli-
cations. Vol. 3485. Springer, 2005.

[226] Ali Sunyaev. “Cloud Computing.” In: Internet Computing: Prin-
ciples of Distributed Systems and Emerging Internet-Based Technolo-
gies. Springer International Publishing, 2020, pp. 195–236. isbn:
978-3-030-34957-8.

[227] Hassan Jamil Syed, Abdullah Gani, Fariza Hanum Nasaruddin,
Anjum Naveed, Abdelmuttlib Ibrahim Abdalla Ahmed, and
Muhammad Khurram Khan. “Cloudprocmon: A non-intrusive
cloud monitoring framework.” In: IEEE Access 6 (2018), pp. 44591–
44606.

162 bibliography

[228] Salman Taherizadeh, Andrew C Jones, Ian Taylor, Zhiming Zhao,
and Vlado Stankovski. “Monitoring self-adaptive applications
within edge computing frameworks: A state-of-the-art review.”
In: Journal of Systems and Software 136 (2018), pp. 19–38.

[229] Damian A Tamburri, Marco Miglierina, and Elisabetta Di Nitto.
“Cloud applications monitoring: An industrial study.” In: Infor-
mation and Software Technology 127 (2020), p. 106376.

[230] Gioacchino Tangari, Daphne Tuncer, Marinos Charalambides,
Yuanshunle Qi, and George Pavlou. “Self-adaptive decentral-
ized monitoring in software-defined networks.” In: IEEE Trans-
actions on Network and Service Management 15.4 (2018), pp. 1277–
1291.

[231] The Kubernetes Authors. Kubernetes DaemonSet. 2024. url: https:
//kubernetes.io/docs/concepts/workloads/controllers/

daemonset/. (accessed: 08.01.2024).

[232] The Kubernetes Authors. Kubernetes Deployment. 2024. url: https:
//kubernetes.io/docs/concepts/workloads/controllers/

deployment/. (accessed: 08.01.2024).

[233] The Kubernetes Authors. Kubernetes Pod. 2024. url: https://
kubernetes.io/docs/concepts/workloads/pods/. (accessed:
08.01.2024).

[234] Thomas Thüm, Christian Kästner, Fabian Benduhn, Jens Meinicke,
Gunter Saake, and Thomas Leich. “FeatureIDE: An extensible
framework for feature-oriented software development.” In: Sci-
ence of Computer Programming 79 (2014), pp. 70–85.

[235] Daniel Tovarňák and Tomáš Pitner. “Towards multi-tenant and
interoperable monitoring of virtual machines in cloud.” In: Pro-
ceedings of the 14th International Symposium on Symbolic and Nu-
meric Algorithms for Scientific Computing. 2012, pp. 436–442.

[236] David Tracey and Cormac Sreenan. “How to see through the
Fog? Using Peer to Peer (P2P) for the Internet of Things.” In:
Proceedings of the IEEE 5th World Forum on Internet of Things.
IEEE. 2019, pp. 47–52.

[237] Anne E Trefethen and Jeyarajan Thiyagalingam. “Energy-aware
software: Challenges, opportunities and strategies.” In: Journal
of Computational Science 4.6 (2013), pp. 444–449.

[238] Demetris Trihinas, George Pallis, and Marios D Dikaiakos. “Jcatas-
copia: Monitoring elastically adaptive applications in the cloud.”
In: Proceedings of the 14th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing. IEEE. 2014, pp. 226–235.

[239] Demetris Trihinas, George Pallis, and Marios D Dikaiakos. “AD-
Min: Adaptive monitoring dissemination for the Internet of
Things.” In: IEEE INFOCOM 2017-IEEE conference on computer
communications. IEEE. 2017, pp. 1–9.

https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/workloads/pods/

bibliography 163

[240] Alessandro Tundo, Marco Mobilio, Shashikant Ilager, Ivona
Brandić, Ezio Bartocci, and Leonardo Mariani. “An Energy-
Aware Approach to Design Self-Adaptive AI-based Applica-
tions on the Edge.” In: Proceedings of the 38th IEEE/ACM In-
ternational Conference on Automated Software Engineering. IEEE.
2023.

[241] Alessandro Tundo, Marco Mobilio, Matteo Orrù, Oliviero Rig-
anelli, Michell Guzmàn, and Leonardo Mariani. “VARYS: An
Agnostic Model-Driven Monitoring-as-a-Service Framework for
the Cloud.” In: Proceedings of the 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. ACM, 2019, 1085–1089.

[242] Alessandro Tundo, Marco Mobilio, Oliviero Riganelli, and Leonardo
Mariani. “Automated Probe Life-Cycle Management for Monitoring-
As-a-Service.” In: IEEE Transactions on Services Computing 16.2
(2023), pp. 969–982.

[243] Alessandro Tundo, Marco Mobilio, Oliviero Riganelli, and Leonardo
Mariani. Monitoring Probe Deployment Patterns for Cloud-Native
Applications: Definition and Empirical Assessment (Experimental
Material). 2024. url: https://gitlab.com/learnERC/monitoring-
patterns-experiments. (accessed: 08.01.2024).

[244] Alessandro Tundo, Marco Mobilio, Oliviero Riganelli, and Leonardo
Mariani. “Monitoring Probe Deployment Patterns for Cloud-
Native Applications: Definition and Empirical Assessment.”
In: IEEE Transactions on Services Computing (Early Access) (2024),
pp. 1–19.

[245] James Turnbull. Monitoring with Prometheus. Turnbull Press, 2018.

[246] Ruben Vales, Jose Moura, and Rui Marinheiro. “Energy-aware
and adaptive fog storage mechanism with data replication ruled
by spatio-temporal content popularity.” In: Journal of Network
and Computer Applications 135 (2019), pp. 84–96.

[247] Bertrand Vandeportaele. “A Finite State Machine modeling lan-
guage and the associated tools allowing fast prototyping for
FPGA devices.” In: 2017 IEEE International Workshop of Electron-
ics, Control, Measurement, Signals and their Application to Mecha-
tronics. IEEE. 2017, pp. 1–6.

[248] Yiannis Verginadis. “A Review of Monitoring Probes for Cloud
Computing Continuum.” In: Proceedings of the International Con-
ference on Advanced Information Networking and Applications. Springer.
2023, pp. 631–643.

[249] Shanu Verma, Millie Pant, and Vaclav Snasel. “A comprehen-
sive review on NSGA-II for multi-objective combinatorial opti-
mization problems.” In: Ieee Access 9 (2021), pp. 57757–57791.

https://gitlab.com/learnERC/monitoring-patterns-experiments
https://gitlab.com/learnERC/monitoring-patterns-experiments

164 bibliography

[250] Gheorghe-Daniel Voinea, Cristian Cezar Postelnicu, Mihai Duguleana,
Gheorghe-Leonte Mogan, and Radu Socianu. “Driving perfor-
mance and technology acceptance evaluation in real traffic of a
smartphone-based driver assistance system.” In: International
journal of environmental research and public health 17.19 (2020),
p. 7098.

[251] Sophie Vos, Patricia Lago, Roberto Verdecchia, and Ilja Heit-
lager. “Architectural Tactics to Optimize Software for Energy
Efficiency in the Public Cloud.” In: 2022 International Conference
on ICT for Sustainability. IEEE. 2022, pp. 77–87.

[252] Voxel51 Inc. Evaluating Models. url: https://docs.voxel51.
com/user_guide/evaluation.html. (accessed: 08.01.2024).

[253] C. Wang, K. Schwan, V. Talwar, G. Eisenhauer, L. Hu, and M.
Wolf. “A Flexible Architecture Integrating Monitoring and An-
alytics for Managing Large-scale Data Centers.” In: Proceedings
of the 8th International Conference on Autonomic Computing. ACM,
2011, pp. 141–150.

[254] Tao Wang, Jiwei Xu, Wenbo Zhang, Zeyu Gu, and Hua Zhong.
“Self-adaptive cloud monitoring with online anomaly detec-
tion.” In: Future Generation Computer Systems 80 (2018), pp. 89–
101.

[255] Zhiyuan Wang and Gade Pandu Rangaiah. “Application and
analysis of methods for selecting an optimal solution from the
Pareto-optimal front obtained by multiobjective optimization.”
In: Industrial & Engineering Chemistry Research 56.2 (2017), pp. 560–
574.

[256] Hans W Wendt. “Dealing with a common problem in social sci-
ence: A simplified rank-biserial coefficient of correlation based
on the statistic.” In: European Journal of Social Psychology (1972).

[257] Danny Weyns. An introduction to self-adaptive systems: A contem-
porary software engineering perspective. John Wiley & Sons, 2020.

[258] OpenFog Architecture Workgroup. OpenFog Reference Architec-
ture for Fog Computing. Tech. rep. OpenFog Consortium, 2017.

[259] Hsin-Hung Wu. “A comparative study of using grey relational
analysis in multiple attribute decision making problems.” In:
Quality Engineering 15.2 (2002), pp. 209–217.

[260] Fatos Xhafa and Paul Krause. “IoT-Based Computational Mod-
eling for Next Generation Agro-Ecosystems: Research Issues,
Emerging Trends and Challenges.” In: IoT-based Intelligent Mod-
elling for Environmental and Ecological Engineering: IoT Next Gen-
eration EcoAgro Systems. 2021, pp. 1–21.

[261] Sherif M Yacoub and Hany Hussein Ammar. Pattern-oriented
analysis and design: composing patterns to design software systems.
Addison-Wesley Professional, 2004.

https://docs.voxel51.com/user_guide/evaluation.html
https://docs.voxel51.com/user_guide/evaluation.html

bibliography 165

[262] B Beverly Yang and Hector Garcia-Molina. “Designing a super-
peer network.” In: Proceedings 19th international conference on
data engineering. IEEE. 2003, pp. 49–60.

[263] Ashkan Yousefpour, Caleb Fung, Tam Nguyen, Krishna Kadiyala,
Fatemeh Jalali, Amirreza Niakanlahiji, Jian Kong, and Jason P.
Jue. “All one needs to know about fog computing and related
edge computing paradigms: A complete survey.” In: Journal of
Systems Architecture 98 (2019), pp. 289–330.

[264] Ding Yuan, Soyeon Park, and Yuanyuan Zhou. “Characterizing
logging practices in open-source software.” In: 2012 34th Inter-
national Conference on Software Engineering. IEEE. 2012, pp. 102–
112.

[265] Zhaoning Zhang, Dongsheng Li, and Kui Wu. “Large-scale vir-
tual machines provisioning in clouds: challenges and approaches.”
In: Frontiers of Computer Science 10.1 (2016), pp. 2–18.

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Listings
	Introduction
	1 The Cloud Continuum
	1.1 Introduction to Cloud Continuum
	1.2 Cloud Computing
	1.3 Fog Computing
	1.4 Edge Computing
	1.5 Monitoring Challenges in the Cloud Continuum

	2 Monitoring in the Cloud Continuum
	2.1 Anatomy of a Monitoring System
	2.2 Adapting Monitoring to Evolving Requirements
	2.2.1 Support to Automated Evolution
	2.2.2 Support to Multi-Tenancy and Heterogeneity

	2.3 Adapting Monitoring to Available Resources
	2.3.1 Efficiently Use Resources in the Fog
	2.3.2 Efficiently Use Resources in the Edge

	Adapting Monitoring to Evolving Requirements
	3 Automating Probe Life-Cycle for Changing Needs
	3.1 Running Example
	3.2 Domain Concepts
	3.3 Solution Architecture
	3.3.1 Repositories
	3.3.2 API Service
	3.3.3 Monitoring Claim Controller
	3.3.4 Monitoring Unit Controller
	3.3.5 Cloud Bridge

	3.4 Error Handling Capabilities
	3.5 Technology Agnostic Design
	3.5.1 Incorporating New Probes
	3.5.2 Supporting New Target Cloud Platforms

	3.6 Empirical Evaluation
	3.6.1 Research Questions
	3.6.2 Prototype
	3.6.3 RQ1.1: Framework Efficiency
	3.6.4 RQ1.2: Error Handling
	3.6.5 RQ1.3: Scalability
	3.6.6 Threats to Validity

	3.7 Discussion

	4 Patterns for Probe Deployments
	4.1 Probe Deployment
	4.2 Pattern Definitions
	4.3 Qualitative Discussion
	4.3.1 Pattern Implementation
	4.3.2 Analysis of Quality Aspects

	4.4 Empirical Evaluation
	4.4.1 Research Questions
	4.4.2 Experimental Setup
	4.4.3 RQ2.1: System-oriented Pattern Scalability
	4.4.4 RQ2.2: Application-oriented Pattern Scalability
	4.4.5 Threats to Validity

	4.5 Best Practices
	4.6 Usage Scenarios
	4.6.1 Monitoring a VM-based Microservice Application
	4.6.2 Monitoring a microservice application running on Kubernetes
	4.6.3 Monitoring serverless backend functions

	4.7 Discussion

	Adapting Monitoring to Available Resources
	5 Peer-to-Peer Self-Adaptive Monitoring in the Fog
	5.1 P2P Monitoring
	5.2 AdaptiveMon
	5.2.1 Knowledge
	5.2.2 Monitor
	5.2.3 Analyze
	5.2.4 Plan
	5.2.5 Execute

	5.3 Empirical Evaluation
	5.3.1 Research Questions
	5.3.2 Prototype
	5.3.3 Experimental Setup
	5.3.4 RQ3.1 - Monitoring Accuracy
	5.3.5 RQ3.2 - Resource Consumption
	5.3.6 Threats to Validity

	5.4 Discussion

	6 Energy-Aware Self-Adaptive Monitoring in the Edge
	6.1 Motivational Scenario
	6.2 Designing Energy-Aware Self-Adaptive Applications
	6.2.1 Defining the State-Based Adaptation Logic
	6.2.2 Solving the Multi-Objective Optimization Problem
	6.2.3 Extracting the Operation Mode Configurations
	6.2.4 Implementing the Self-Adaptive Application

	6.3 Empirical Evaluation
	6.3.1 Research Questions
	6.3.2 Experimental Setup
	6.3.3 RQ4.1 - Meta-Heuristic VS Near-Exhaustive Search
	6.3.4 RQ4.2 - Objectives Trade-Off
	6.3.5 Threats to Validity

	6.4 Discussion

	7 Conclusions
	A Probe Deployment Pattern Plots
	B GW Instek GPM-8213 Power Measurement Accuracy
	Bibliography

