A study of integrable form factors in massless relativistic $A d S_{2}$

Daniele Bielli ${ }^{a, b}$, Vaibhav Gautam ${ }^{a}$, Alessandro Torrielli ${ }^{a *}$
${ }^{a}$ Department of Mathematics, University of Surrey, Guildford, GU2 7XH, UK
${ }^{b}$ Dipartimento di Fisica, Università degli studi di Milano-Bicocca, and INFN, Sezione di Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, Italy

Abstract

In this paper we initiate the study of form factors for the massless scattering of integrable $A d S_{2}$ superstrings, where the difference-form of the S-matrix can be exploited to implement the relativistic form-factor bootstrap. The non-standard nature of the S-matrix implies that traditional methods do not apply. We use the fact that the massless $A d S_{2} S$-matrix is a limit of a better-behaved S-matrix found by Fendley. We show that the previously conjectured massless $A d S_{2}$ dressing factor coincides with the limit of the De Martino - Moriconi improved dressing factor for the Fendley S-matrix. We then solve the form factor constraints in the two-particle case. Along the way we find a method to construct integral representations of relativistic dressing factors satisfying specific assumptions, and use it to obtain analytic proofs of crossing and unitarity relations.

[^0]
Contents

1 Introduction 2
1.1 $A d S_{2}$ integrable scattering 2
1.2 This paper 3
2 Form Factors Recap 4
2.1 Form factors 4
3 Fendley S-matrix And Two-Particle Form Factors 6
4 Minimal Two-Particle Form Factors 9
4.1 Solution for the dressing phase 11
4.2 Eigenvalues part 12
5 Numerics Of The De Martino - Moriconi Dressing Factor 14
6 Conclusions 16
A Proofs Of Crossing And Unitarity 17
A. 1 Integral method 17
A. 2 Infinite product 18

1 Introduction

1.1 $A d S_{2}$ integrable scattering

Let us briefly describe some work that has recently taken place as regards to the $A d S_{2} \times S^{2} \times T^{6}$ string theory background [1] for what concerns its integrability description. The duality is in this case particularly mysterious, and it should involve a certain superconformal quantum mechanics or a particular chiral 2D CFT $[2,3,4]$. The coset action is based on $\frac{P S U(1,1 \mid 2)}{\operatorname{SO}(1,1) \times S O(2)}[5,3]$. This has been shown to have classical integrability [6] up to a second order expansion in the fermionic fields [7, 8].

The integrable S-matrix for this theory was constructed in [9] by postulating a centrally-extended $\mathfrak{p s u}(1 \mid 1)^{2}$ symmetry as the symmetry remaining after the choice of a BMN vacuum [10, 11], and adapting to it the familiar integrable AdS/CFT Hopf-algebraic construction [12]. The massive S-matrix was shown to satisfy the properties of crossing and unitarity, however fixing the appropriate dressing factor for massive particles is still an open problem. In the massive sector there is agreement with the perturbative calculations available in the literature [11]. The massive particle representations are of long type, as opposed to what happens in higher-dimensional $A d S$ s.

In $A d S_{2}$ only the massless particle representations are short. The massless S-matrix can be derived via a limiting procedure from the massive S-matrix [13], and it displays the typical right- and left-mover (chirality) splitting. An analysis of the Yangian symmetry, with a primary focus on the massive representations, is presented in $[9,14]$. The massless sector is less amenable to a matching with perturbation theory $[11,15]$. It is important to point out that massless scattering is rather different from its massive counterpart [16], and in relativistic models it is traditionally associated with the RG flow between
two-dimensional conformal field theories [13].
The BMN limit is trivial for massive particles and also for massless particle of opposite chirality [17, 18]. The BMN limit is non-trivial between right-right and left-left movers [18] and it describes a conformal field theory, where left and right movers are decoupled, with $\mathcal{N}=1$ supersymmetry. However, the S-matrix, for which a dressing factor has been conjectured [18] and whose validity extends to the whole massless sector, is not the standard one of $\mathcal{N}=1$ theories [20, 21, 22], although it is of eight-vertex type [23]. As a consequence of this fact (lack of $U(1)$ symmetry), there is no reference state (pseudovacuum) to setup the algebraic Bethe ansatz [24]. The Bethe equations have been conjectured from string theory [7]. There is a vast literature on the problem of Bethe ansaetze without $U(1)$ symmetry [25]. In [18] the free-fermion condition $[22,26]$ and the technique of inversion relations [27] were exploited to obtain a set of auxiliary Bethe equations, which were then compared with the ones from string theory. In [28] more evidence was found by brute-force diagonalising the transfer matrix for a maximum of 5 particles, and Yangian symmetry was also discussed for this superconformal scattering theory. The free-fermion condition was then used again in [29] to recast the problem in a different form, using a suitable Bogoliubov transformation. In this form a state was found for the two-particle transfer matrix, effectively playing the role of the pseudovacuum (this state was dubbed pseudo-pseudovacuum in [29]). In [19] a change of variable was found which recasts the massless scattering problem in difference form. This applies both to $A d S_{3}$, where the new variable has been further exploited in [44], and $A d S_{2}$. In [19] further properties of the massless $A d S_{2}$ dressing factor have been determined.

In recent literature [30], which connects to a series of works [31], a very interesting S-matrix and symmetries have been found which interpolate* between $A d S_{2}$ and $A d S_{3}$.

1.2 This paper

In this paper we initiate the study of form factors [32, 33, 34, 35, 36, 37, 38] associated with the $A d S_{2}$ integrable scattering problem. No attempt at this has been made so far to our knowledge, either in the domain of the hexagon approach [39, 40, 41], or using the more traditional approach (cf. [42]), which in the relativistic case is based on Smirnov's axioms (to be reviewed in the next section). We shall focus on the latter, and restrict ourselves to the massless sector, where difference form is restored. Moreover, we focus on the left-left and right-right scattering, which describes a conformal field theory in the BMN limit. By exploiting the difference form we can make progress on the explicit analytic computation of form factors based primarily on the criterion of meromorphicity, and verify the axioms.

The S-matrix being of eigth-vertex type means that the task of finding solutions to the relations, which the form factors have to satisfy, is rather complicated. In particular, the off-shell Bethe ansatz method which was developed in $[35,36]$ is here not available, due to the absence of a pseudo-vacuum. Supersymmetry complicates the task even further. In the literature similar models have been attacked before, and in particular the two-particle form factors have been the focus of attention [26, 46]. Our model does not fall in the class that has been studied before. We exploit the fact, observed in [18], that our S-matrices are limits of the Fendley S-matrix [20], for which the form factors are also not known. We construct the necessary minimal two-particle form factors explicitly in this paper, and show that they satisfy the appropriate axioms. Nevertheless, we can still employ a method which has been refined by Mussardo [46], and apply it to our situation. In order to solve our specific problem we also construct a method for finding implicit, and, in some simple cases, also explicit, integral expressions of relativistic

[^1]dressing factors. This method turns out to be applicable in a quite ample array of cases - provided that certain hypotheses are satisfied. With a combination of the Mussardo method and the integral representations which we construct, we obtain the minimal two-particle form-factors for the Fendley S-matrix with the De Martino - Moriconi improved dressing factor [45].

We then show numerically for the first time that the dressing factors postulated in [19] coincide with the limits of the Fendley dressing factors, in the improved version by De Martino and Moriconi. The fact that the right-hand side of the crossing and unitarity equations tend to the $A d S_{2}$ ones was known from [18], but here we show that the dressing factors of $[18,19]$ solving such conditions are also precisely the asymptotic limits of the De Martino - Moriconi dressing factor.

Our results open a new direction, which consists of obtaining predictions for the $A d S_{2}$ form factors as limits of the Fendley form factors, by-passing the limitations intrinsic to massless $A d S_{2}$. The $A d S_{2}$ S-matrix in the massless case is not braiding unitary, but rather satisfies a combined condition between the so-called solutions 3 and 5 . This prevents to apply even the Mussardo method for the form factors, which is the very reason why we have taken a detour via the better-behaved Fendley S-matrix. We end the paper with some future directions and an appendix with a few of the mathematical proofs.

2 Form Factors Recap

2.1 Form factors

Form factors [32,33] are an extremely important part of the bootstrap programme, which leads to the complete solution of an integrable quantum field theory. The bootstrap programme starts with determining the exact S-matrix and the Hilbert space of quantum states, and then proceeds with the finite-volume analysis and finally establishing the array of all the form factors for the operators in the theory. Using the explicit expressions of the form factors one can then ultimately reconstruct all the n point correlation functions. The formulas which one reaches at the end are then typically tested against the perturbative Feynman-graph expansion - for a review, see [34, 35] and references therein.

In a relativistic setting the n-particle form factor, which one associates with a local operator $\mathcal{O}(x, t)$, is defined to be the matrix element

$$
\begin{equation*}
F_{\alpha_{1} \ldots \alpha_{n}}^{\mathcal{O}}\left(\theta_{1}, \ldots, \theta_{n}\right)=\langle 0| \mathcal{O}(0)\left|\theta_{1}, \ldots, \theta_{n}\right\rangle_{\alpha_{1} \ldots \alpha_{n}} \tag{2.1}
\end{equation*}
$$

(the position is taken to be the origin, and time is suppressed) with θ_{i} being the rapidity of the i-th particle in the in state, i.e. the ket in (2.1), and α_{i} denote any other internal degree of freedom. We will focus in this paper on a relativistic dispersion relation, with massless right-movers, the internal degree of freedom being a boson vs fermion label:

$$
\begin{equation*}
p_{i}=E_{i}=e^{\theta_{i}}, \quad \alpha_{i} \in\{b, f\}, \quad b=\text { boson }, \quad f=\text { fermion } . \tag{2.2}
\end{equation*}
$$

We have left implicit a mass parameter M in the dispersion, as it will play no role. The scattering theory which we will treat describes a conformal field theory, and the mass or length scale only features when one puts the theory on a finite circle to setup the thermodynamic Bethe ansatz [17].

The computation of form factors proceeds axiomatically by requiring that they satisfy a set of constraints, see for instance [35] and [36]. The spirit is to by-pass perturbation theory in the first instance, and to directly guess the solution based on these axioms. We list here for convenience those axioms which are relevant to our massless situation.

$$
\begin{align*}
& F_{\alpha_{1} \ldots \alpha_{j-1} \beta_{j} \beta_{j+1} \alpha_{j+2} \ldots \alpha_{n}}^{\mathcal{O}}\left(\theta_{1}, \ldots, \theta_{j-1}, \theta_{j}, \theta_{j+1}, \theta_{j+2}, \ldots \theta_{n}\right)= \tag{2.3}\\
& \quad F_{\alpha_{1} \ldots \alpha_{j-1} \alpha_{j} \alpha_{j+1} \alpha_{j+2} \ldots \alpha_{n}}^{\mathcal{O}}\left(\theta_{1}, \ldots, \theta_{j-1}, \theta_{j+1}, \theta_{j}, \theta_{j+2}, \ldots \theta_{n}\right) S_{\beta_{j} \beta_{j+1} \beta_{j+1}\left(\theta_{j}-\theta_{j+1}\right) .} .
\end{align*}
$$

The entries of the S-matrix feature in this axiom as

$$
\begin{equation*}
S: V_{1} \otimes V_{2} \longrightarrow V_{2} \otimes V_{1}, \quad S\left|v_{\alpha}\left(\theta_{1}\right)\right\rangle \otimes\left|v_{\beta}\left(\theta_{2}\right)\right\rangle=S_{\alpha \beta}^{\rho \sigma}\left(\theta_{1}-\theta_{2}\right)\left|v_{\rho}\left(\theta_{2}\right)\right\rangle \otimes\left|v_{\sigma}\left(\theta_{1}\right)\right\rangle . \tag{2.4}
\end{equation*}
$$

It is often convenient to define an R-matrix associated with the S-matrix as

$$
\begin{equation*}
S=\Pi \circ R, \quad R: V_{1} \otimes V_{2} \longrightarrow V_{1} \otimes V_{2} . \tag{2.5}
\end{equation*}
$$

Π being the graded permutation on the quantum states:

$$
\begin{equation*}
\Pi|a\rangle \otimes|b\rangle=(-)^{\sigma}|b\rangle \otimes|a\rangle . \tag{2.6}
\end{equation*}
$$

The parity σ equals 1 only when both states are fermions, and it equals 0 in all the other cases.

- Periodicity

$$
\begin{equation*}
F_{\alpha_{1} \alpha_{2} \ldots \alpha_{n-1} \alpha_{n}}^{\mathcal{O}}\left(\theta_{1}+2 i \pi, \theta_{2}, \ldots \theta_{n-1}, \theta_{n}\right)=(-)^{\sigma} F_{\alpha_{2} \alpha_{3} \ldots \alpha_{n} \alpha_{1}}^{\mathcal{O}}\left(\theta_{2}, \theta_{3}, \ldots \theta_{n}, \theta_{1}\right) . \tag{2.7}
\end{equation*}
$$

We have denoted by σ an appropriate statistical factor which involves the mutual statistics of the operator and the first particle appearing in the in state.

- Lorentz boost

$$
\begin{equation*}
F_{\alpha_{1} \alpha_{2} \ldots \alpha_{n-1} \alpha_{n}}^{\mathcal{O}}\left(\theta_{1}+\Lambda, \theta_{2}+\Lambda, \ldots \theta_{n-1}+\Lambda, \theta_{n}+\Lambda\right)=e^{s \Lambda} F_{\alpha_{1} \alpha_{2} \ldots \alpha_{n-1} \alpha_{n}}^{\mathcal{O}}\left(\theta_{1}, \theta_{2}, \ldots \theta_{n-1}, \theta_{n}\right) . \tag{2.8}
\end{equation*}
$$

We have denoted by s the Lorentz spin of the operator \mathcal{O}.

- Residue at the kinematical singularities

The idea is always to complexify and utilise the power of analyticity. The form factors have to be meromorphic functions in all of the complex variables θ_{i}, and may admit a series of poles. They have bound state poles, which do not concern us in the massless case (see also [37]), and kinematical poles. All these poles are simple. The kinematical poles generate the additional constraint

$$
\begin{align*}
& -\frac{i}{2} \operatorname{Res}_{\theta_{1}=\theta_{2}+i \pi} F_{\bar{\alpha}_{2} \alpha_{2} \ldots \alpha_{n-1} \alpha_{n}}^{\mathcal{O}}\left(\theta_{1}, \theta_{2}, \ldots \theta_{n-1}, \theta_{n}\right)= \tag{2.9}\\
& \quad \mathbf{C}_{\bar{\alpha}_{2} \beta_{2}}\left[\mathbb{1}-(-)^{\sigma} S_{\alpha_{n} p_{n-3}}^{\beta_{n} \beta_{2}}\left(\theta_{2}-\theta_{n}\right) \ldots S_{\alpha_{3} \alpha_{2}}^{\beta_{2} \rho_{1}}\left(\theta_{2}-\theta_{3}\right)\right] F_{\beta_{3} \beta_{4} \ldots \beta_{n-1} \beta_{n}}^{\mathcal{O}}\left(\theta_{3}, \ldots \theta_{n}\right) .
\end{align*}
$$

Here, $\bar{\alpha}$ is used to indicate the anti-particle of α and $\mathbf{C}_{\alpha \beta}$ represents the charge-conjugation matrix. One has again to allow for a statistical factor $(-)^{\sigma}$ in (2.9), depending on the mutual statistics of the operator and the first scattering particle.

See [43] for a discussion on the conformal case. Some essential references can be found in [33, 38].
The form factor programme has been at the centre of great progress in $A d S / C F T$, starting with $A d S_{5} / C F T_{4}$, where the complications of the model have led to the creation of a completely new and tailored hexagon approach [39] - see also [40]. The hexagon approach has been extended to AdS_{3} [41]. The more traditional approach, not based on the hexagon but rather on the relativistic form-factor axioms
which we have discussed above, was instead originally followed in [42], where it had to be generalised to the non-relativistic setting. In [43] the traditional relativistic bootstrap programme was applied to massless $A d S_{3}$, where difference form is restored thanks to the change of variable introduced in [19] - see also [44] - and one can proceed to conjecture exact solutions. In this paper we attack the $\operatorname{AdS} S_{2} / C F T_{1}$ case, which also displays difference form via the same change of variables [19] and is therefore amenable to the more traditional axiomatic approach.

3 Fendley S-matrix And Two-Particle Form Factors

In order to gain some understanding of the $A d S_{2}$ case it is convenient to first look at a more regular case, although slightly more complicated. This is the Fendley S-matrix [20] - this S-matrix is much more nicely-behaved than the $A d S_{2}$ one, and it tends to the various versions of the massless $A d S_{2} S$-matrix in precise limits. It can be considered therefore as a sort of parent model from which we can learn a number of lessons.

Let us focus here on the Fendley $p=\frac{1}{2} S$-matrix, by displaying the associated R-matrix:

$$
\begin{align*}
& R=\Phi_{F}(\theta)\left[E_{11} \otimes E_{11}-E_{22} \otimes E_{22}-\tanh \theta\left(E_{11} \otimes E_{22}-E_{22} \otimes E_{11}\right)+\right. \\
& \left.\operatorname{sech} \theta \cosh \frac{\theta}{2}\left(-E_{12} \otimes E_{21}+E_{21} \otimes E_{12}\right)-\operatorname{sech} \theta \sinh \frac{\theta}{2}\left(-E_{12} \otimes E_{12}+E_{21} \otimes E_{21}\right)\right] \tag{3.1}
\end{align*}
$$

The matrices $E_{i j}$ are 2×2 matrices with all zeroes, except 1 in row i, column j. They form a basis of 2×2 matrices and act on the states $|\phi\rangle \equiv|b\rangle \equiv|1\rangle$ (bosonic excitation) and $|\psi\rangle \equiv|f\rangle \equiv|2\rangle$ (fermionic excitation) as

$$
\begin{equation*}
E_{i j}|k\rangle=\delta_{j k}|i\rangle \tag{3.2}
\end{equation*}
$$

We have also set $\theta \equiv \theta_{1}-\theta_{2} . \Phi_{F}(\theta)$ is the dressing factor, satisfying the crossing equation

$$
\begin{equation*}
\Phi_{F}(\theta) \Phi_{F}(\theta+i \pi)=\frac{1}{1+\frac{\sinh ^{2} \frac{\theta}{2}}{\cosh ^{2} \theta}} \tag{3.3}
\end{equation*}
$$

This descends from imposing crossing symmetry:

$$
\begin{equation*}
\left[C^{-1} \otimes \mathbb{1}\right] R^{s t r_{1}}(\theta+i \pi)[C \otimes \mathbb{1}] R(\theta)=\mathbb{1} \otimes \mathbb{1} \tag{3.4}
\end{equation*}
$$

where ${ }^{s t r_{1}}$ denote supertransposition in the first factor of the tensor product, and C is the charge conjugation matrix:

$$
C=\left(\begin{array}{ll}
i & 0 \tag{3.5}\\
0 & 1
\end{array}\right)
$$

An explicit solution is given by [20]

$$
\begin{align*}
\Phi_{F}(\theta)= & 4\left[\frac{1}{2}-\frac{\theta}{\pi i}\right]^{2} \prod_{j=1}^{\infty} \frac{\left(j-\frac{1}{2}\right) \prod_{k=1}^{3}\left(3 j+\frac{1}{2}-k\right)}{\left(2 j-\frac{1}{2}\right)^{2}\left(2 j+\frac{1}{2}\right)^{2}}\left(4 j^{2}-\left[\frac{1}{2}-\frac{\theta}{\pi i}\right]^{2}\right)^{2} \\
& \times \frac{\Gamma\left(3 j-\frac{5}{2}+\frac{3}{2} \frac{\theta}{\pi i}\right) \Gamma\left(3 j-1-\frac{3}{2} \frac{\theta}{\pi i}\right) \Gamma \frac{\Gamma\left(j-\frac{1}{2}+\frac{\theta}{2 \pi i}\right) \Gamma\left(j-\frac{\theta}{2 \pi i}\right)}{\Gamma\left(3 j-1+\frac{3}{2} \frac{\theta}{\pi i}\right) \Gamma\left(3 j+\frac{1}{2}-\frac{3}{2} \frac{\theta}{\pi i}\right)} \frac{\Gamma\left(j+\frac{1}{2}-\frac{\theta}{2 \pi i}\right) \Gamma\left(j+\frac{\theta}{2 \pi i}\right)}{} .}{} . \tag{3.6}
\end{align*}
$$

This dressing factor also satisfies quite remarkably

$$
\begin{equation*}
\Phi_{F}(-\theta) \Phi_{F}(\theta)=\frac{1}{1+\frac{\sinh ^{2} \frac{\theta}{2}}{\cosh ^{2} \theta}}, \tag{3.7}
\end{equation*}
$$

which ensures both the braiding and the physical unitarity of the Fendley R-matrix:

$$
\begin{equation*}
R_{21}(-\theta) R(\theta)=\mathbb{1} \otimes \mathbb{1} \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
R^{\dagger}(\theta) R(\theta)=\mathbb{1} \otimes \mathbb{1} \quad \theta \in \mathbb{R}, \tag{3.9}
\end{equation*}
$$

respectively. The latter property is indeed guaranteed by

$$
\begin{equation*}
\Phi_{F}(\theta) \Phi_{F}^{*}(\theta)=\frac{1}{1+\frac{\sinh ^{2} \frac{\theta}{2}}{\cosh ^{2} \theta}}, \quad \theta \in \mathbb{R} \tag{3.10}
\end{equation*}
$$

which reduces to (3.7) upon inspection of the explicit formula for Φ_{F}.
It is clear that in the large (positive and negative) rapidity limit one recovers the relativistic $\operatorname{Ad} S_{2}$ crossing equation:

$$
\begin{equation*}
\Phi_{F}(\theta) \Phi_{F}(\theta+i \pi) \rightarrow \frac{e^{ \pm \frac{\theta}{2}}}{2 \cosh \frac{\theta}{2}}, \quad \theta \rightarrow \pm \infty \tag{3.11}
\end{equation*}
$$

An improved phase was found by De Martino - Moriconi, formulas (3.6) - (3.8) of [45]:

$$
\begin{array}{r}
\Phi_{D M}(\theta)=2 \sinh ^{2}\left(\frac{i \pi}{4}+\frac{\theta}{2}\right) \prod_{j=0}^{\infty} \frac{\Gamma\left(\frac{3}{2}+j\right) \Gamma\left(\frac{1}{2}+j-\frac{i \theta}{2 \pi}\right) \Gamma\left(1+j+\frac{i \theta}{2 \pi}\right)}{\Gamma\left(\frac{1}{2}+j\right) \Gamma\left(\frac{3}{2}+j+\frac{i \theta}{2 \pi}\right) \Gamma\left(1+j-\frac{i \theta}{2 \pi}\right)} \\
\times \frac{\Gamma\left(\frac{1}{2}+2 q j+2 q\right) \Gamma\left(\frac{1}{2}+2 q j-\frac{i q \theta}{\pi}\right) \Gamma\left(\frac{1}{2}+2 q j+q+\frac{i q \theta}{\pi}\right)}{\Gamma\left(\frac{1}{2}+2 q j\right) \Gamma\left(\frac{1}{2}+2 q j+2 q+\frac{i q \theta}{\pi}\right) \Gamma\left(\frac{1}{2}+2 q j+q-\frac{i q \theta}{\pi}\right)}, \tag{3.12}
\end{array}
$$

where

$$
\begin{equation*}
q=1+|p|=\frac{3}{2} \tag{3.13}
\end{equation*}
$$

with an integral representation given by

$$
\begin{equation*}
\Phi_{D M}(\theta)=\exp \left[-\int_{0}^{\infty} \frac{d t}{t} h(t) \frac{\sin t \theta \sin t(i \pi-\theta)}{\cosh \pi t}\right], \quad h(t)=\frac{2}{\sinh \pi t}-\frac{1}{\sinh 2 \pi t}-\frac{1}{\sinh \frac{\pi t}{q}} . \tag{3.14}
\end{equation*}
$$

In the Appendix A we prove that

$$
\begin{equation*}
\Phi_{D M}(\theta) \Phi_{D M}(\theta+i \pi)=\Phi_{D M}(-\theta) \Phi_{D M}(\theta)=\frac{1}{1+\frac{\sinh ^{2} \frac{\theta}{2}}{\cosh ^{2} \theta}} \tag{3.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi_{D M}(\theta) \Phi_{D M}^{*}(\theta)=\frac{1}{1+\frac{\sinh ^{2} \frac{\theta}{2}}{\cosh ^{2} \theta}}, \quad \theta \in \mathbb{R} \tag{3.16}
\end{equation*}
$$

It is clear that the crossing equation is the same as for Φ_{F}, hence one recovers $A d S_{2}$ in the limit (3.11).
The function $\Phi_{D M}(\theta)$ is meromorphic with poles and zeroes lying on the imaginary axis given as follows:

- Poles

Poles of the dressing factor $\Phi_{D M}$ are given by the poles of gamma functions in the numerator.

$$
\begin{align*}
& \theta=-(2 m-1) \pi i, \quad m=1,2,3, \ldots \quad 2 m^{t h} \text { order pole } \\
& \theta=2 m \pi i, \quad m=1,2,3, \ldots \quad 2 m^{t h} \text { order pole } \\
& \theta=-\frac{2 \pi i}{3}\left(m+\frac{1}{2}\right), \quad m=0,2,3,5, \ldots \quad(\lfloor m / 3\rfloor+1)^{t h} \text { order pole } \\
& \theta=\frac{2 \pi i}{3}(m+2), \quad m=0,2,3,5, \ldots \quad(\lfloor m / 3\rfloor+1)^{t h} \text { order pole } \tag{3.17}
\end{align*}
$$

where \rfloor is the floor function and in third and fourth lines we exclude the values of m when m $\bmod 3=1$. We exclude these values of m because, for $m \bmod 3=1$, the poles obtained from $\theta=-\frac{2 \pi i}{3}\left(m+\frac{1}{2}\right)$ coincide with those of $\theta=-(2 m-1) \pi i$ and the poles obtained from $\theta=\frac{2 \pi i}{3}(m+2)$ coincide with those of $\theta=2 m \pi i$, hence increasing the order of these poles from m to $2 m$.

- Zeroes

Zeroes of the dressing factor $\Phi_{D M}$ are given by the poles of gamma functions in the denominator and zeroes of the prefactor. Hence we have,

$$
\begin{align*}
& \theta=(2 m+1) \pi i, \quad m=1,2,3, \ldots \quad 2 m^{t h} \text { order zero } \\
& \theta=-2 m \pi i, \quad m=1,2,3, \ldots \quad 2 m^{t h} \text { order zero } \\
& \theta=-\frac{2 \pi i}{3}(m+2), \quad m=0,2,3,5, \ldots \quad(\lfloor m / 3\rfloor+1)^{t h} \text { order zero } \\
& \theta=\frac{2 \pi i}{3}\left(m+\frac{7}{2}\right), \quad m=0,2,3,5, \ldots \quad(\lfloor m / 3\rfloor+1)^{t h} \text { order zero } \\
& \theta=\left(2 m-\frac{1}{2}\right) \pi i, \quad m \in \mathbb{Z} \quad \text { double zeroes } \tag{3.18}
\end{align*}
$$

where \rfloor is the floor function and again in third and fourth lines we exclude the values of m when $m \bmod 3=1$. We do this again not because there are no zeroes at these values of m but because the zeroes obtained from $\theta=-\frac{2 \pi i}{3}(m+2)$ coincide with those of $\theta=-2 m \pi i$ and the zeroes obtained from $\theta=\frac{2 \pi i}{3}\left(m+\frac{7}{2}\right)$ coincide with those of $\theta=(2 m+1) \pi i$, hence increasing the order of these zeroes from m to $2 m$. The last set of zeroes are the zeroes of the prefactor $\sinh ^{2}\left(\frac{i \pi}{4}+\frac{\theta}{2}\right)$.

The poles and zeroes associated to the Fendley dressing phase $\Phi_{F}(\theta)$ are same as that of $\Phi_{D M}(\theta)$, except the zeroes coming from prefactor to the gamma functions. $\Phi_{F}(\theta)$ instead has double zeroes at $\theta=-\left(2 m-\frac{1}{2}\right) \pi i, m \in \mathbb{Z}$. This means that $\Phi_{F}(\theta)$ has a zero at $\theta=\pi i / 2$ which lies in the physical strip $\operatorname{Im}(\theta) \in[0, \pi]$, which is not the case for $\Phi_{D M}(\theta)$.

The braiding unitarity condition also tends to $A d S_{2}$. In fact, as shown in [19], there is a combined braiding-unitarity condition that links the so-called solutions 3 and 5 of massless $A d S_{2}$. If one calls Ω_{3} and Ω_{5} the respective $A d S_{2}$ dressing factors, one finds

$$
\begin{equation*}
\Omega_{5}(-\theta) \Omega_{3}(\theta)=\frac{1}{1+e^{-\theta}}=\frac{e^{\frac{\theta}{2}}}{2 \cosh \frac{\theta}{2}} \tag{3.19}
\end{equation*}
$$

This is precisely what descends from the condition

$$
\begin{equation*}
\Phi(-\theta) \Phi(\theta)=\frac{1}{1+\frac{\sinh ^{2} \frac{\theta}{2}}{\cosh ^{2} \theta}} \tag{3.20}
\end{equation*}
$$

common to both Φ_{F} and $\Phi_{D M}$, in the limit $\theta \rightarrow \infty$. In fact, we have to consider that for $\theta \rightarrow \infty$ (and, consequently, $-\theta \rightarrow-\infty$) one should expect that

$$
\begin{equation*}
\Phi_{A}(\theta) \rightarrow \Omega_{3}(\theta), \quad \Phi_{A}(-\theta) \rightarrow \Omega_{5}(-\theta), \quad A=F, D M \tag{3.21}
\end{equation*}
$$

Finally, physical unitarity works as well in the $A d S_{2}$ limit for both Φ_{F} and $\Phi_{D M}$, simply by considering (B.23) in [19].

These limiting considerations apply to the equations satisfied by the dressing factors. It is an interesting question whether either Φ_{F} or the new dressing phase of [45] really do tend as functions to the proposed $A d S_{2}$ dressing phase $\Omega(\theta)$ - formula (3.8) of [18] and appendix B of [19]. We will answer this question in the affirmative in a later section.

4 Minimal Two-Particle Form Factors

Let us now use the knowledge of the S-matrix data to construct solutions to the form-factor axioms, focusing on the two-particle case.

If we recall that the S-matrix is related to the R-matrix as

$$
\begin{equation*}
S=\Pi \circ R \tag{4.1}
\end{equation*}
$$

with Π the graded permutation, we can easily obtain the S-matrix entries. Let us start with the processes involving in-states (indices a, b in $S_{a b}^{c d}$) and out-states (indices c, d in $S_{a b}^{c d}$) such that $a+b=c+d=0$ $(\bmod 2)$. This means that the in- and out- states have total fermion number zero, and so can only be $b b$ or $f f$:

$$
\begin{equation*}
S_{b b}^{b b}=\Phi_{F}(\theta)=S_{f f}^{f f}, \quad S_{b b}^{f f}=-S_{f f}^{b b}=\Phi_{F}(\theta) \operatorname{sech} \theta \sinh \frac{\theta}{2} \tag{4.2}
\end{equation*}
$$

We also recall that any S-matrix will preserve the total fermion number mod 2 .
A useful strategy for how to proceed, if we are interested for instance in the two-particle minimal form factors, can be found in the paper [46]. The first thing to do is to (flavour-)diagonalise the S-matrix. One can check that the (un-normalised) bosonic (flavour-) eigenstates are given by

$$
\begin{equation*}
\left|b_{ \pm}\right\rangle=|b\rangle \otimes|b\rangle \pm i|f\rangle \otimes|f\rangle \tag{4.3}
\end{equation*}
$$

with eigenvalues

$$
\begin{equation*}
\Phi_{F}(\theta) \lambda_{ \pm}(\theta)=\Phi_{F}(\theta)\left(1 \mp i \operatorname{sech} \theta \sinh \frac{\theta}{2}\right) \tag{4.4}
\end{equation*}
$$

respectively. We remind that the tensor product is graded, hence

$$
\begin{equation*}
A \otimes B|i\rangle \otimes|j\rangle=(-)^{|B \| i|} A|i\rangle \otimes B|j\rangle \tag{4.5}
\end{equation*}
$$

and that $|b \equiv 1|=0,|f \equiv 2|=1,\left|E_{i j}\right|=|i|+|j| \bmod 2$. Likewise, using the fact that

$$
\begin{equation*}
S_{b f}^{f b}=-S_{f b}^{b f}=-\Phi_{F}(\theta) \tanh \theta, \quad S_{b f}^{b f}=S_{f b}^{f b}=\Phi_{F}(\theta) \operatorname{sech} \theta \cosh \frac{\theta}{2}, \tag{4.6}
\end{equation*}
$$

we find that the (un-normalised) fermionic (flavour-)eigenstates are given by

$$
\begin{equation*}
\left|f_{ \pm}\right\rangle=|b\rangle \otimes|f\rangle \pm i|f\rangle \otimes|b\rangle \tag{4.7}
\end{equation*}
$$

with eigenvalues

$$
\begin{equation*}
\Phi_{F}(\theta) \mu_{ \pm}(\theta)=\Phi_{F}(\theta)\left(\operatorname{sech} \theta \cosh \frac{\theta}{2} \pm i \tanh \theta\right) \tag{4.8}
\end{equation*}
$$

respectively. For later convenience, let us divide the contributions to the S matrix into a redefined dressing phase for the fermionic block:

$$
\begin{equation*}
\Phi_{n}(\theta) \equiv \mu_{+}(\theta) \Phi_{F}(\theta), \quad \sigma_{a b}^{c d} \equiv \frac{S_{a b}^{c d}}{\Phi_{n}(\theta)} \tag{4.9}
\end{equation*}
$$

and try to solve the permutation axiom separately for the new dressing part Φ_{n} and the non-dressing part $\sigma_{a b}^{c d}$. Let us begin with the latter and consider the case of 2 -particle form factors. The S-matrix is of course diagonal on the eigenstates. Therefore, we define the form factors

$$
\begin{equation*}
B_{ \pm}^{t o t} \equiv\langle 0| \mathcal{O}_{b}\left|b_{ \pm}\right\rangle, \quad F_{ \pm}^{t o t} \equiv\langle 0| \mathcal{O}_{f}\left|f_{ \pm}\right\rangle \tag{4.10}
\end{equation*}
$$

with \mathcal{O}_{b} being a bosonic operator and \mathcal{O}_{f} being a fermionic operator, both operators though of spin 0 for simplicity (for the fermion, this is the case for instance of the fictitious operator introduced in [46], around formula (6.13) and the preceding discussion). We first focus on the fermionic form factors, then the permutation axiom just becomes (for the non-dressing part)

$$
\begin{equation*}
F_{+}(\theta)=F_{+}(-\theta), \quad F_{-}(\theta)=\frac{\mu_{-}(\theta)}{\mu_{+}(\theta)} F_{-}(-\theta) \tag{4.11}
\end{equation*}
$$

while the periodicity axiom just reads

$$
\begin{equation*}
F_{+}(\theta+2 \pi i)=-i F_{+}(-\theta), \quad F_{-}(\theta+2 \pi i)=i F_{-}(-\theta) \tag{4.12}
\end{equation*}
$$

The purely difference form with $\theta=\theta_{1}-\theta_{2}$ (θ_{1} being the rapidity of the first particle in the ket in (4.10), and θ_{2} the rapidity of the second, since $\left|b_{ \pm}\right\rangle$and $\left|f_{ \pm}\right\rangle$are two-particle states) is due to Lorentz invariance (with the caveat of the spin being zero for both the bosonic and the fermionic operator, see comment above). This form of periodicity descends from the fact that cycling the states we get

$$
\begin{equation*}
\left|f_{ \pm}\right\rangle=|b\rangle \otimes|f\rangle \pm i|f\rangle \otimes|b\rangle \mid \rightarrow(\text { cycling }) \rightarrow|f\rangle \otimes|b\rangle \mp i|b\rangle \otimes|f\rangle=\mp i\left|f_{ \pm}\right\rangle . \tag{4.13}
\end{equation*}
$$

There is a caveat: this is of course assuming that the statistical factor is just ± 1, while we know that it might be more complicated (semi-locality index). This means that we are at this moment searching for a solution where the statistical factors are the standard ones.

It is important to note that the splitting (4.9) is crucial if we want to solve separately the dressing and non-dressing parts of the form factor axioms. In fact, thanks to this choice, we have that (4.11) is not manifestly inconsistent: iterating it produces

$$
\begin{align*}
& F_{+}(-\theta)=F_{+}(\theta)=F_{+}(-\theta) \\
& F_{-}(-\theta)=\frac{\mu_{-}(-\theta)}{\mu_{+}(-\theta)} F_{-}(\theta)=\frac{\mu_{-}(-\theta)}{\mu_{+}(-\theta)} \frac{\mu_{-}(\theta)}{\mu_{+}(\theta)} F_{-}(-\theta) \tag{4.14}
\end{align*}
$$

which is consistent because, by inspection, we have

$$
\begin{equation*}
\mu_{ \pm}(\theta)=\mu_{\mp}(-\theta) . \tag{4.15}
\end{equation*}
$$

This means that we can hope to solve the non-dressing part (formulated in terms of the eigenstates) and the dressing part separately. The form factor pertaining to the dressing phase will solve

$$
\begin{equation*}
F^{d r}(\theta)=\Phi_{n}(\theta) F^{d r}(-\theta), \quad F^{d r}(\theta+2 \pi i)=F^{d r}(-\theta), \tag{4.16}
\end{equation*}
$$

such that

$$
\begin{equation*}
F_{ \pm}^{t o t}(\theta)=F^{d r}(\theta) F_{ \pm}(\theta) \tag{4.17}
\end{equation*}
$$

is a solution to the axioms of a two-particle form factor. If we require this object to have the least possible number of singularities, we can claim that we have found the minimal two-particle form factor. Notice that (4.16) is not immediately inconsistent either, since it implies

$$
\begin{equation*}
\Phi_{n}(-\theta)=\frac{F^{d r}(-\theta)}{F^{d r}(\theta)}=\frac{1}{\Phi_{n}(\theta)} \tag{4.18}
\end{equation*}
$$

which is true. In fact, from the properties of $\mu_{ \pm}$and the braiding unitarity property of Φ_{F}, we have

$$
\begin{equation*}
\Phi_{n}(-\theta)=\mu_{+}(-\theta) \Phi_{F}(-\theta)=\frac{\mu_{-}(\theta)}{\Phi_{F}(\theta)\left[1+\frac{\sinh ^{2} \frac{\theta}{2}}{\cosh ^{2} \theta}\right]}=\frac{1}{\Phi_{F}(\theta) \mu_{+}(\theta)}=\frac{1}{\Phi_{n}(\theta)}, \tag{4.19}
\end{equation*}
$$

where the second to last step just involves identities of hyperbolic functions.
The equation for the $B_{ \pm}$form factors are in a way simpler. In fact periodicity implies that cycling a bosonic operator gives

$$
\begin{equation*}
\left|b_{ \pm}\right\rangle=|b\rangle \otimes|b\rangle \pm i|f\rangle \otimes|f\rangle \mid \rightarrow(\text { cycling }) \rightarrow|b\rangle \otimes|b\rangle \pm i|f\rangle \otimes|f\rangle=\left|b_{ \pm}\right\rangle . \tag{4.20}
\end{equation*}
$$

In order to have once again a consistent splitting between dressing and non-dressing parts (the latter being again given in terms of the eigenbasis), we make a different choice in the bosonic vs. the fermionic block:

$$
S=\left(\begin{array}{cccc}
\left|b_{+}\right\rangle & \left|b_{-}\right\rangle & \left|f_{+}\right\rangle & \left|f_{-}\right\rangle \\
\left.\Phi_{F}(\theta) \lambda_{+}(\theta)\right] \times 1 & 0 & 0 & 0 \\
0 & {\left[\Phi_{F}(\theta) \lambda_{+}(\theta)\right] \times \frac{\lambda_{-}(\theta)}{\lambda_{+}(\theta)}} & 0 & 0 \\
0 & 0 & {\left[\Phi_{F}(\theta) \mu_{+}(\theta)\right] \times 1} & 0 \\
0 & 0 & 0 & {\left[\Phi_{F}(\theta) \mu_{+}(\theta)\right] \times \frac{\mu_{-}(\theta)}{\mu_{+}(\theta)}}
\end{array}\right) .
$$

This splitting is consistent since it produces

$$
\begin{equation*}
B_{+}(\theta)=B_{+}(-\theta), \quad B_{-}(\theta)=\frac{\lambda_{-}(\theta)}{\lambda_{+}(\theta)} B_{-}(-\theta), \tag{4.21}
\end{equation*}
$$

from permutation, with $\lambda_{ \pm}(\theta)=\lambda_{\mp}(-\theta)$, while the periodicity axiom reads

$$
\begin{equation*}
B_{+}(\theta+2 \pi i)=B_{+}(-\theta), \quad B_{-}(\theta+2 \pi i)=B_{-}(-\theta) . \tag{4.22}
\end{equation*}
$$

The form factor pertaining to the dressing phase in the bosonic block will solve

$$
\begin{equation*}
B^{d r}(\theta)=\Phi_{m}(\theta) B^{d r}(-\theta), \quad B^{d r}(\theta+2 \pi i)=B^{d r}(-\theta), \quad \Phi_{m}(\theta) \equiv \Phi_{F}(\theta) \lambda_{+}(\theta) \tag{4.23}
\end{equation*}
$$

such that

$$
\begin{equation*}
B_{ \pm}^{t o t}(\theta)=B^{d r}(\theta) B_{ \pm}(\theta) \tag{4.24}
\end{equation*}
$$

is a solution to the axioms of a two-particle form factor (which can again be chosen to be minimal). The first relation in (4.23) is also not manifestly inconsistent: one can repeat the same argument as in (4.19), with λ replacing μ everywhere, and it will still work. Since these considerations only rely on the braiding unitarity equation, they in fact hold both for Φ_{F} and for $\Phi_{D M}$.

4.1 Solution for the dressing phase

We shall solve the equations for the dressing factor by resorting to the Karowski-Weisz theorem [32] - see also footnote 1 in [43]. This can be applied irrespectively to the Fendley or the De Martino - Moriconi dressing phase, as it only relies on the property (4.19):

$$
\begin{equation*}
\Phi_{n}(-\theta)=\frac{1}{\Phi_{n}(\theta)} \tag{4.25}
\end{equation*}
$$

The idea is to recast the dressing factor as

$$
\begin{equation*}
\Phi_{n}(\theta)=\exp \int_{0}^{\infty} d t f(t) \sinh \frac{\theta t}{i \pi} \tag{4.26}
\end{equation*}
$$

We can try to solve (ignoring issues of branches for the moment)

$$
\begin{equation*}
\log \Phi_{n}(\theta)=\int_{0}^{\infty} d t f(t) \sinh \frac{\theta t}{i \pi}=-\frac{1}{2} \int_{0}^{\infty} d t f(t) e^{\frac{i \theta t}{\pi}}+\frac{1}{2} \int_{0}^{\infty} d t f(t) e^{-\frac{i \theta t}{\pi}} \tag{4.27}
\end{equation*}
$$

We now make a working assumption, which will need to be verified at the very end by looking at the solution which we will find, that

$$
\begin{equation*}
f(t)=-f(-t) \tag{4.28}
\end{equation*}
$$

This allows us to change variable in the second integral and to rewrite the rhs of (4.27) as a single integral:

$$
\begin{equation*}
\log \Phi_{n}(\theta)=-\frac{1}{2} \int_{-\infty}^{\infty} d t f(t) e^{\frac{i \theta t}{\pi}} \tag{4.29}
\end{equation*}
$$

This is simply a statement of Fourier transforms:

$$
\begin{equation*}
\log \Phi_{n}(\theta)=-\sqrt{\frac{\pi}{2}} \tilde{f}\left(\frac{\theta}{\pi}\right), \quad \tilde{f}(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d t f(t) e^{i k t} \tag{4.30}
\end{equation*}
$$

We can simply invert the transform and extract $f(t)$, by writing

$$
\begin{equation*}
f(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d k \tilde{f}(k) e^{-i k t}=-\frac{1}{\pi} \int_{-\infty}^{\infty} d \theta \log \Phi_{n}(\pi \theta) e^{-i \theta t} \tag{4.31}
\end{equation*}
$$

We now need to check the consistency of our working assumption, which involved $f(t)$ being odd. Indeed, this relies on (4.19), since

$$
\begin{align*}
f(-t) & =-\frac{1}{\pi} \int_{-\infty}^{\infty} d \theta \log \left[\Phi_{n}(\pi \theta)\right] e^{i \theta t}=-\frac{1}{\pi} \int_{-\infty}^{\infty} d \theta \log \left[\Phi_{n}(-\pi \theta)\right] e^{-i \theta t} \tag{4.32}\\
& =\frac{1}{\pi} \int_{-\infty}^{\infty} d \theta \log \left[\Phi_{n}(\pi \theta)\right] e^{-i \theta t}=-f(t)
\end{align*}
$$

where we have changed variable at the second step, and used (4.19) at the third step.
This means that we can simply apply the Karowski-Weisz theorem, which says that one solution to (4.16) is given by

$$
\begin{equation*}
F^{d r}(\theta)=\exp \frac{1}{2} \int_{-\infty}^{\infty} d t f(t) \frac{\sin ^{2}\left[\frac{t(i \pi-\theta)}{2 \pi}\right]}{\sinh t} \tag{4.33}
\end{equation*}
$$

with $f(t)$ given by (4.31), and where we have extended the integral using the even parity of $\frac{f(t)}{\sinh t}$. Notice that we could also multiply $F^{d r}(\theta)$ by an arbitrary constant and it would still be a solution.

A completely analogous argument works for the solution to (4.23), by simply replacing Φ_{n} by Φ_{m} everywhere it appears, and F with B. We shall comment later on the applicability of this particular way of solving the minimal conditions, as it appears rather universal but also rather formal at the moment.

4.2 Eigenvalues part

In fact, one can go further: the same method solves the equations for B_{-}in (4.21) and (4.22), given that

$$
\begin{equation*}
\frac{\lambda_{-}(\theta)}{\lambda_{+}(\theta)} \equiv \Lambda(\theta) \tag{4.34}
\end{equation*}
$$

again satisfies the key relation which will ensure the consistency of the procedure:

$$
\begin{equation*}
\Lambda(-\theta)=\frac{1}{\Lambda(\theta)} \tag{4.35}
\end{equation*}
$$

Hence the formal solution for B_{-}is, by the very same argument outlined in the previous section,

$$
\begin{equation*}
B_{-}(\theta)=\exp \frac{1}{2} \int_{-\infty}^{\infty} d t g_{-}(t) \frac{\sin ^{2}\left[\frac{t(i \pi-\theta)}{2 \pi}\right]}{\sinh t} \tag{4.36}
\end{equation*}
$$

with

$$
\begin{equation*}
g_{-}(t)=-\frac{1}{\pi} \int_{-\infty}^{\infty} d \theta \log \Lambda(\pi \theta) e^{-i \theta t} \tag{4.37}
\end{equation*}
$$

Of course a consistent solution for B_{+}is just a constant solution $B_{+}(\theta)=$ const., as one can see from (4.21) and (4.22). The method introduced in the previous section would also produce this solution via a $\log 1=0$ as the function f.

In the case of F_{+}, from (4.11) and (4.12) we see that we can adopt the method above, with a slight refinement first. Let us take the equation

$$
\begin{equation*}
F_{+}(\theta+2 \pi i)=-i F_{+}(-\theta)=-i F_{+}(\theta), \tag{4.38}
\end{equation*}
$$

where we have combined the two conditions on F_{+}. Let us simply define

$$
\begin{equation*}
\tilde{F}_{+}(\theta) \equiv e^{\frac{\theta}{4}} F_{+}(\theta) \tag{4.39}
\end{equation*}
$$

for which we get

$$
\begin{equation*}
\tilde{F}_{+}(\theta+2 \pi i)=\tilde{F}_{+}(\theta) \tag{4.40}
\end{equation*}
$$

Moreover, we also get

$$
\begin{equation*}
\tilde{F}_{+}(-\theta)=e^{-\frac{\theta}{4}} F_{+}(-\theta)=e^{-\frac{\theta}{4}} F_{+}(\theta)=e^{-\frac{\theta}{2}} \tilde{F}_{+}(\theta) . \tag{4.41}
\end{equation*}
$$

It is clear that now (4.40) and (4.41) are of the same form as the problem which we do know how to solve using the Karowski-Weisz theorem (it is also clear that the function $e^{-\frac{\theta}{2}}$ goes into its reciprocal under a change of sign of θ). One could actually realise that in this case it is easiest to just guess the solution by simple inspection:

$$
\begin{equation*}
\tilde{F}_{+}(\theta)=A e^{\frac{\theta}{4}+i \frac{\theta^{2}}{8 \pi}} \tag{4.42}
\end{equation*}
$$

with A any constant. From this we can easily reconstruct F using (4.39). However notice that, although in a slightly unorthodox way, our method does work in this case very explicitly. In fact, we would then simply say

$$
\begin{equation*}
\tilde{F}_{+}(\theta)=\exp \frac{1}{2} \int_{-\infty}^{\infty} d t g_{+}(t) \frac{\sin ^{2}\left[\frac{t(i \pi-\theta)}{2 \pi}\right]}{\sinh t} \tag{4.43}
\end{equation*}
$$

with

$$
\begin{equation*}
g_{+}(t)=-\frac{1}{\pi} \int_{-\infty}^{\infty} d \theta \log \left[e^{\frac{\pi \theta}{2}}\right] e^{-i \theta t}=-\pi i \frac{d}{d t} \delta(t) \tag{4.44}
\end{equation*}
$$

This implies
$\tilde{F}_{+}(\theta)=\exp \left[-i \frac{\pi}{2} \int_{0}^{\infty} d t \frac{d}{d t} \delta(t) \frac{\sin ^{2}\left[\frac{t(i \pi-\theta)}{2 \pi}\right]}{\sinh t}\right]=\exp i \frac{\pi}{2}\left[\frac{d}{d t} \frac{\sin ^{2}\left[\frac{t(i \pi-\theta)}{2 \pi}\right]}{\sinh t}\right]_{t=0}=\exp \left[-\frac{i}{8}+\frac{\theta}{4}+i \frac{\theta^{2}}{8 \pi}\right]$.
Considering that a constant can be fixed arbitrarily, we get exactly the solution which we guessed by inspection in (4.42).

Finally, we can do the more complicated case of F_{-}with a slightly more elaborated trick, which reduces the problem, once more, to the same structure. Consider (4.11) and (4.12), and define

$$
\begin{equation*}
G_{-}(\theta) \equiv \mu_{+}(\theta) F_{-}(\theta) \tag{4.45}
\end{equation*}
$$

Using the fact that $\mu_{ \pm}(\theta)=\mu_{\mp}(-\theta)$ we can recast the second equation in (4.11) as

$$
\begin{equation*}
\mu_{+}(\theta) F_{-}(\theta)=\mu_{+}(-\theta) F_{-}(-\theta), \quad \text { namely } \quad G_{-}(\theta)=G_{-}(-\theta) \tag{4.46}
\end{equation*}
$$

The second equation in (4.12) then implies

$$
\begin{equation*}
G(\theta+2 \pi i)=\mu_{+}(\theta+2 \pi i) F_{-}(\theta+2 \pi i)=-\mu_{+}(-\theta) i F_{-}(-\theta)=-i G_{-}(-\theta) \tag{4.47}
\end{equation*}
$$

In this derivation we have also used the fact that $\mu_{+}(\theta+2 \pi i)=-\mu_{+}(-\theta)$. This means that G_{-}satisfies the exact same system of equations as F_{+}, therefore we can take the solution which we have found earlier:

$$
\begin{equation*}
G_{-}(\theta)=B e^{-\frac{\theta}{4}} e^{\frac{\theta}{4}+i \frac{\theta^{2}}{8 \pi}}=B e^{i \frac{\theta^{2}}{8 \pi}} \tag{4.48}
\end{equation*}
$$

with B any constant. From here we can easily reconstruct F_{-}by using (4.45).
With the explicit example we have therefore derived a lesson, concerning the applicability of our technique. That is, the convergence of the integral involved might have to be understood in the distributional sense. If one accepts that, as we have seen, this seems to produce a finite result, which one can then check in those cases where an explicit solution is otherwise available.

5 Numerics Of The De Martino - Moriconi Dressing Factor

In this section we use a numerical approach to study the behaviour of the integral representation (3.14) of the improved dressing phase proposed by De Martino and Moriconi, providing evidence for (3.21). To study the limits $\theta \rightarrow \pm \infty$ of the DM and $A d S_{2}$ dressing phases, we begin by rewriting them as

$$
\begin{gather*}
\Phi_{D M}(\theta)=\exp \left[-\int_{0}^{\infty} d t f(t, \theta)\right] \quad \text { with } \quad f(t, \theta) \equiv h(t) \frac{\sin t \theta \sin [t(i \pi-\theta)]}{t \cosh \pi t} \\
\Omega_{3}(\theta)=\frac{e^{-i \frac{\pi}{8}}}{\sqrt{2}} \exp \left[\frac{\theta}{4}+\frac{1}{2} \int_{0}^{\infty} d x l(x, \theta)\right] \quad \text { with } \quad l(x, \theta) \equiv \frac{\cosh \left[x\left(1-\frac{2 \theta}{i \pi}\right)\right]-\cosh x}{x \cosh x \sinh 2 x} \tag{5.1}\\
\Omega_{5}(\theta)=\frac{1}{\Omega_{3}(-\theta)} \frac{1}{1+e^{\theta}} \tag{5.2}
\end{gather*}
$$

with $h(t)$ defined in (3.14) and $\Omega_{3}(\theta), \Omega_{5}(\theta)$ respectively given in equations (B.28) and (B.4) of [19]. In order to compare the two dressing factors for large positive and negative values of θ, one needs to numerically approximate the integrals appearing in the exponentials and to this aim it is useful to perform a preliminary study of the two integrands $f(t, \theta), l(x, \theta)$, so as to identify an appropriate restriction for the integration domains. For increasing positive and negative values of θ one finds the following behaviours

Figure 1: Real part of $f(t, \theta)$ for $\theta \rightarrow+\infty$

Figure 2: Real part of $f(t, \theta)$ for $\theta \rightarrow-\infty$

Figure 3: Imaginary part of $f(t, \theta)$ for $\theta \rightarrow+\infty$

Figure 5: Real part of $l(x, \theta)$ for $\theta \rightarrow+\infty$

Figure 7: Imaginary part of $l(x, \theta)$ for $\theta \rightarrow+\infty$

Figure 4: Imaginary part of $f(t, \theta)$ for $\theta \rightarrow-\infty$

Figure 6: Real part of $l(x, \theta)$ for $\theta \rightarrow-\infty$

Figure 8: Imaginary part of $l(x, \theta)$ for $\theta \rightarrow-\infty$

These plots highlight how both the real and imaginary parts of the integrands $f(t, \theta), l(x, \theta)$ tend to zero pretty fast in t and x for any value of θ. For the sake of clarity we restricted the plots at $t, x=4$ but the behaviour extends on the rest of the domain of integration. For $l(x, \theta)$ we also restricted the domain shown on the y-axis, as both real and imaginary parts take huge values in the limit $x \rightarrow 0$. Due to the above results, in the following we shall proceed by truncating the integrals appearing in $\Phi_{D M}$ and Ω_{3} at $t, x=10$, as at this value the real and imaginary parts of the integrands $f(t, \theta), l(x, \theta)$ are already of the order $\simeq 10^{-10}$ for any θ. As discussed around (3.21), the plot below shows how, in the limit $\theta \rightarrow \infty$, the function $\Phi_{D M}(\theta) \rightarrow \Omega_{3}(\theta)$

Figure 9: $\operatorname{Re}\left[\Phi_{D M}(\theta)\right] \rightarrow \operatorname{Re}\left[\Omega_{3}(\theta)\right]$ for $\theta \rightarrow+\infty$

Given the limit $\Omega_{3}(\theta) \rightarrow 1$ for $\theta \rightarrow \infty$, observed in the above plots, and the relation (5.2), one automatically has that $\Omega_{5}(\theta) \rightarrow 1$ for $\theta \rightarrow-\infty$. This implies that for $\Phi_{D M}(\theta)$ to be tending to $\Omega_{5}(\theta)$ in the limit $\theta \rightarrow-\infty$ one should find $\Phi_{D M}(\theta) \rightarrow 1$. This is indeed the case, as shown by the plots below.

Figure 11: $\operatorname{Re}\left[\Phi_{D M}(\theta)\right] \rightarrow \operatorname{Re}\left[\Omega_{5}(\theta)\right]$ for $\theta \rightarrow-\infty$

We thus conclude that the improved phase $\Phi_{D M}(\theta)$ proposed by De Martino and Moriconi in [45] does indeed tend to $\Omega_{3}(\theta)$ for $\theta \rightarrow+\infty$ and to $\Omega_{5}(\theta)$ for $\theta \rightarrow-\infty$.

6 Conclusions

In this paper we have initiated the study of form factors for the massless $A d S_{2}$ integrable scattering problem. We have focused on the purely right-right and left-left sectors to begin with, as these sectors describe a 2D CFT in the BMN limit. In the two-particle case, which is the target of our attention, the functional form of the minimal solution, which we determine here, is expected to also extend to the non-relativistic massless $A d S_{2}$ scattering as well.

We first study the $\mathcal{N}=1$ supersymmetric S-matrix of Fendley's [20], with the improved dressing factor found by De Martino and Moriconi [45]. We provide explicit analytic checks of the crossing and braiding/physical unitarity relations. For the first time we show numerically that the $A d S_{2}$ dressing factors conjectured in $[18,19]$ can be obtained as limits of the De Martino - Moriconi dressing factor.

We then follow [46] to diagonalise the S-matrix and determine the two-particle minimal form-factors. We develop a method to obtain an integral representation of dressing factors and other quantities, which are characterised by a specific integral exponential formula inspired by [32] and involving an antisymmetric function. Our method applies quite generally, and has to possibly be understood in the distributional sense.

As in the case of the relativistic approach to $A d S_{3}$ form factors [43], the main challenge is to find a way to test the formulas which we have obtained. Since in the BMN limit the theory is at the conformal point and presumably interactive, the scattering theory is completely non-perturbative and therefore non-perturbative methods are needed to match our predictions. In $A d S_{2}$, moreover, the S-matrix has properties that are less-standard than in $A d S_{3}$, and ordinary methods do not directly apply. This is why we had to resort to the Fendley S-matrix which is better-behaved, and argue about $A d S_{2}$ by taking appropriate limits.

The next step is of course to study higher-point functions. Already for ordinary $\mathcal{N}=1 S$-matrices, which are of 8 -vertex type, this is rendered impervious by the absence of a pseudo-vacuum and the consequent impossibility to apply the off-shell Bethe ansatz technique of [35, 36]. Once again we plan to study multi-particle form factors for the Fendley S-matrix in the future, using the building blocks which we have constructed in this paper. We hope that the known limits would then be well defined also for these putative expressions, which would then constitute predictions for $A d S_{2}$.

A Proofs Of Crossing And Unitarity

A. 1 Integral method

As a further demonstration of the technique which we have devised in section 4.1, we can offer a neat way of proving the crossing and unitarity equation for $\Phi_{D M}$. This proceeds as follows using the integral representation (3.14).

First, we can use simple trigonometric identites to combine the two exponents which appear on the respective l.h.s.s of the crossing and braiding-unitarity equation, which turn out to produce the exact same expression:

$$
\begin{equation*}
\Phi_{D M}(\theta) \Phi_{D M}(\theta+i \pi)=\Phi_{D M}(\theta) \Phi_{D M}(-\theta)=\exp 2 \int_{0}^{\infty} d t \frac{h(t)}{t} \sin ^{2} t \theta \equiv \exp g(\theta) . \tag{A.1}
\end{equation*}
$$

By taking a derivative we can reduce the integral to the familiar form (4.26):

$$
\begin{equation*}
\frac{d g(\theta)}{d \theta}=2 \int_{0}^{\infty} d t h(t) \sin 2 t \theta=\frac{i}{\pi} \int_{0}^{\infty} d t h\left(\frac{t}{2 \pi}\right) \sinh \frac{t \theta}{i \pi} . \tag{A.2}
\end{equation*}
$$

Since $h(t)$ is an odd function, we are exactly in the situation of the assumption (4.28) which we made in order for our method to work, therefore we can simply apply the result:

$$
\begin{equation*}
\frac{d g(\theta)}{d \theta}=-\sqrt{\frac{\pi}{2}} \tilde{f}\left(\frac{\theta}{\pi}\right), \quad f(t)=\frac{1}{2 \pi i} h\left(\frac{t}{2 \pi}\right) . \tag{A.3}
\end{equation*}
$$

Mathematica knows how to do this Fourier transform:

$$
\begin{equation*}
\frac{d g(\theta)}{d \theta}=\frac{1}{2}\left(-\tanh \frac{\theta}{2}+4 \tanh \theta-3 \tanh \frac{3 \theta}{2}\right), \tag{A.4}
\end{equation*}
$$

hence

$$
\begin{equation*}
g(\theta)=-\log \cosh \frac{\theta}{2}+2 \log \cosh \theta-\log \cosh \frac{3 \theta}{2}+c, \tag{A.5}
\end{equation*}
$$

with c a constant. But this simply means that

$$
\begin{equation*}
\exp g(\theta)=e^{c} \cosh ^{2} \theta \operatorname{sech} \frac{\theta}{2} \operatorname{sech} \frac{3 \theta}{2}=\frac{1}{1+\frac{\sinh ^{2} \frac{\theta}{2}}{\cosh ^{2} \theta}}, \tag{A.6}
\end{equation*}
$$

where we have adjusted the constant to be $c=0$. This can be seen by the fact that $\exp g(0)$ must be equal to 1 for the definition (A.1) to reproduce the crossing equation. We have therefore recovered (3.15) and (3.16). In fact conjugating the integral expression (3.14) is the same as changing the sign of θ, and braiding and physical unitarity effectively work the same way for this dressing factor.

A. 2 Infinite product

Let us also recap how it is possible to prove that the infinite product representation (3.12) satisfies crossing, braiding unitarity and physical unitarity - namely (3.15) and (3.16).

By simply multiplying the infinite product expression, times the same expression shifted $\theta+i \pi$, one obtains a bigger infinite product. However, a lot of the gamma functions now cancel out. The remaining gamma functions can also be made to cancel simply by repeated use of

$$
\begin{equation*}
\Gamma(z+1)=z \Gamma(z) . \tag{A.7}
\end{equation*}
$$

At the end of the massive cancellation one is left with an infinite product of the rational terms which the repeated use of (A.7) has left behind. Such remnants end up being exactly the same for crossing and for unitarity, and they read (assuming $\theta \in \mathbb{R}$)

$$
\begin{aligned}
& \Phi_{D M}(\theta) \Phi_{D M}(\theta+i \pi)=\Phi_{D M}(\theta) \Phi_{D M}(-\theta)=\Phi_{D M}(\theta) \Phi_{D M}(\theta)^{*}=\cosh ^{2} \theta \times \\
& \prod_{j=0}^{\infty} \frac{\left(\frac{1}{2}+j\right)^{2}\left(\frac{5}{2}+3 j\right)^{2}\left(\frac{3}{2}+3 j\right)^{2}\left(\frac{1}{2}+3 j\right)^{2}}{\left(\frac{1}{2}+j-t\right)\left(\frac{1}{2}+j+t\right)\left(\frac{5}{2}+3 j-3 t\right)\left(\frac{5}{2}+3 j+3 t\right)\left(\frac{3}{2}+3 j-3 t\right)\left(\frac{3}{2}+3 j+3 t\right)\left(\frac{1}{2}+3 j-3 t\right)\left(\frac{1}{2}+3 j+3 t\right)},
\end{aligned}
$$

where we have set

$$
\begin{equation*}
t \equiv \frac{i \theta}{2 \pi} \tag{A.8}
\end{equation*}
$$

(such that under crossing $t \rightarrow t-\frac{1}{2}$, while under both braiding and physical unitarity $t \rightarrow-t$). Once again Mathematica can do this product and, once multiplied by the $\cosh ^{2} \theta$ in front, we obtain precisely the expression

$$
\begin{equation*}
\frac{1}{1+\frac{\sinh ^{2} \theta}{\cosh ^{2} \theta}} \tag{A.9}
\end{equation*}
$$

which we need to complete the proofs.

Acknowledgements

AT gratefully acknowledges support from the EPSRC-SFI grant EP/S020888/1 Solving Spins and Strings. VG thanks STFC for Doctoral Training Programme funding (ST/W507854-2021 Maths DTP). DB was partially supported by Università degli studi di Milano-Bicocca, by the Italian Ministero dell’Università e della Ricerca (MUR), and by the Istituto Nazionale di Fisica Nucleare (INFN) through the research project 'Gauge theories, Strings, Supergravity' (GSS).

Data and Licence Management

No additional research data beyond the data presented and cited in this work are needed to validate the research findings in this work. For the purpose of open access, the authors have applied a Creative Commons Attribution (CC BY) licence to any Author Accepted Manuscript version arising.

References

[1] I. R. Klebanov and A. A. Tseytlin, Intersecting M-branes as four-dimensional black holes, Nucl. Phys. B 475 (1996) 179 [arXiv:hep-th/9604166]. A. A. Tseytlin, Harmonic superpositions of Mbranes, Nucl. Phys. B 475 (1996) 149 [arXiv:hep-th/9604035]. M. J. Duff, H. Lu and C. N. Pope, AdS $S_{5} \times S^{5}$ untwisted, Nucl. Phys. B 532 (1998) 181 [arXiv:hep-th/9803061]. H. J. Boonstra, B. Peeters and K. Skenderis, Brane intersections, anti-de Sitter space-times and dual superconformal theories, Nucl. Phys. B 533 (1998) 127 [arXiv:hep-th/9803231]. J. Lee and S. Lee, Mass spectrum of $D=11$ supergravity on $A d S_{2} \times S^{2} \times T^{7}$, Nucl. Phys. B 563 (1999) 125 [arXiv:hep-th/9906105].
[2] A. Strominger, $A d S_{2}$ quantum gravity and string theory, JHEP 9901 (1999) 007 [arXiv:hepth/9809027]. G. W. Gibbons and P. K. Townsend, Black holes and Calogero models, Phys. Lett. B 454 (1999) 187 [arXiv:hep-th/9812034]. J. M. Maldacena, J. Michelson and A. Strominger, Antide Sitter fragmentation, JHEP 9902 (1999) 011 [arXiv:hep-th/9812073]. C. Chamon, R. Jackiw, S.-Y. Pi and L. Santos, Conformal quantum mechanics as the $C F T_{1}$ dual to $A d S_{2}$, Phys. Lett. B 701 (2011) 503 [arXiv:1106.0726]. O. Lunin, Bubbling geometries for $A d S_{2} \times S^{2}$, JHEP 1510 (2015) 167 [arXiv:1507.06670]. M. Cadoni, P. Carta, D. Klemm and S. Mignemi, AdS S_{2} gravity as conformally invariant mechanical system, Phys. Rev. D 63 (2001) 125021 [arXiv:hep-th/0009185]. A. Strominger, A Matrix model for $A d S_{2}$, JHEP 0403 (2004) 066 [arXiv:hep-th/0312194]. H. L. Verlinde, Superstrings on $A d S_{2}$ and superconformal matrix quantum mechanics, [arXiv:hep-th/0403024]. A. Castro, D. Grumiller, F. Larsen and R. McNees, Holographic Description of AdS S_{2} Black Holes, JHEP 0811 (2008) 052 [arXiv:0809.4264]. D. Ridout and J. Teschner, Integrability of a family of quantum field theories related to sigma models, Nucl. Phys. B 853 (2011) 327 [arXiv:1102.5716]. A. Dabholkar, J. Gomes and S. Murthy, Quantum black holes, localization and the topological string, JHEP 1106 (2011) 019 [arXiv:1012.0265]. A. Almheiri and J. Polchinski, Models of AdS ${ }_{2}$ backreaction and holography, JHEP 1511 (2015) 014 [arXiv:1402.6334]. M. Heinze, B. Hoare, G. Jorjadze and L. Megrelidze, Orbit method quantization of the $A d S_{2}$ superparticle, J. Phys. A 48 (2015) 31, 315403 [arXiv:1504.04175]. O. Lechtenfeld and S. Nampuri, A Calogero formulation for four-dimensional black-hole microstates, Phys. Lett. B 753 (2016) 263 [arXiv:1509.03256].
[3] R. Borsato, A. A. Tseytlin and L. Wulff, Supergravity background of λ-deformed model for $\operatorname{AdS} S_{2} \times S^{2}$ supercoset, Nucl. Phys. B 905 (2016) 264 [arXiv:1601.08192].
[4] F. Benini, K. Hristov and A. Zaffaroni, Black hole microstates in AdS from supersymmetric localization, JHEP 1605 (2016) 054 [arXiv:1511.04085]. M. Cvetič and I. Papadimitriou, AdS S_{2} holographic dictionary, JHEP 1612 (2016) 008 Erratum: [JHEP 1701 (2017) 120] [arXiv:1608.07018]. Q. Li, Minisuperspace quantization of bubbling $A d S_{2} \times S^{2}$ geometries, Phys. Rev. D 95 (2017) 026014 [arXiv:1612.03113]. M. Mezei, S. S. Pufu and Y. Wang, A 2d/1d Holographic Duality, [arXiv:1703.08749]. S. Giombi, R. Roiban and A. A. Tseytlin, Half-BPS Wilson loop and $A d S_{2} / C F T_{1}$, Nucl. Phys. B 922 (2017) 499 [arXiv:1706.00756].
[5] R. R. Metsaev and A. A. Tseytlin, Type IIB superstring action in $A d S_{5} \times S^{5}$ background, Nucl. Phys. B 533 (1998) 109 [arXiv:hep-th/9805028]. J.-G. Zhou, Super 0-brane and GS superstring actions on $A d S_{2} \times S^{2}$, Nucl. Phys. B 559 (1999) 92 [arXiv:hep-th/9906013]. N. Berkovits, M. Bershadsky, T. Hauer, S. Zhukov and B. Zwiebach, Superstring theory on $A d S_{2} \times S^{2}$ as a coset supermanifold, Nucl. Phys. B 567 (2000) 61 [arXiv:hep-th/9907200].
[6] I. Bena, J. Polchinski and R. Roiban, Hidden symmetries of the $A d S_{5} \times S^{5}$ superstring, Phys. Rev. D 69 (2004) 046002 [arXiv:hep-th/0305115].
[7] D. Sorokin, A. Tseytlin, L. Wulff and K. Zarembo, Superstrings in AdS $S_{2} \times S^{2} \times T^{6}$, J. Phys. A 44 (2011) 275401 [arXiv:1104.1793].
[8] A. Cagnazzo, D. Sorokin and L. Wulff, More on integrable structures of superstrings in $A d S_{4} \times \mathbb{C} P^{3}$ and $A d S_{2} \times S^{2} \times T^{6}$ superbackgrounds, JHEP 1201 (2012) 004 [arXiv:1111.4197].
[9] B. Hoare, A. Pittelli and A. Torrielli, Integrable S-matrices, massive and massless modes and the $A d S_{2} \times S^{2}$ superstring, JHEP 1411 (2014) 051 [arXiv:1407.0303].
[10] D. E. Berenstein, J. M. Maldacena and H. S. Nastase, Strings in flat space and pp waves from $\mathcal{N}=4$ Super Yang Mills, JHEP 0204 (2002) 013 [arXiv:hep-th/0202021].
[11] B. Hoare and A. A. Tseytlin, Towards the quantum S-matrix of the Pohlmeyer reduced version of $A d S_{5} \times S^{5}$ superstring theory, Nucl. Phys. B 851 (2011) 161 [arXiv:1104.2423]. J. Murugan, P. Sundin and L. Wulff, Classical and quantum integrability in $A d S_{2} / C F T_{1}$, JHEP 1301 (2013) 047 [arXiv:1209.6062]. M. C. Abbott, J. Murugan, P. Sundin and L. Wulff, Scattering in AdS $S_{2} / C F T_{1}$ and the BES Phase, JHEP 1310 (2013) 066 [arXiv:1308.1370]. R. Roiban, P. Sundin, A. Tseytlin and L. Wulff, The one-loop worldsheet S-matrix for the $A d S_{n} \times S^{n} \times T^{10-2 n}$ superstring, JHEP 1408 (2014) 160 [arXiv:1407.7883]. P. Sundin and L. Wulff, The $A d S_{n} \times S^{n} \times T^{10-2 n} B M N$ string at two loops, JHEP 1511 (2015) 154 [arXiv:1508.04313].
[12] N. Beisert, C. Ahn, L. F. Alday, Z. Bajnok, J. M. Drummond, L. Freyhult, N. Gromov, R. A. Janik, V. Kazakov and T. Klose, et al. Review of $A d S / C F T$ Integrability: An Overview, Lett. Math. Phys. 99 (2012), 3-32 [arXiv:1012.3982]. N. Beisert, The $\mathfrak{s u}(2 \mid 2)$ dynamic S-matrix, Adv. Theor. Math. Phys. 12 (2008) 945 [arXiv:hep-th/0511082]. R. A. Janik, The $A d S_{5} \times S^{5}$ superstring worldsheet S-matrix and crossing symmetry, Phys. Rev. D 73 (2006) 086006 [arXiv:hep-th/0603038]. C. Gomez and R. Hernandez, The magnon kinematics of the AdS/CFT correspondence, JHEP 0611 (2006) 021 [arXiv:hep-th/0608029]. J. Plefka, F. Spill and A. Torrielli, On the Hopf algebra structure of the AdS/CFT S-matrix, Phys. Rev. D 74 (2006) 066008 [arXiv:hep-th/0608038]. G. Arutyunov, S. Frolov and M. Zamaklar, The Zamolodchikov-Faddeev algebra for $A d S_{5} \times S^{5}$ superstring, JHEP 0704 (2007) 002 [arXiv:hep-th/0612229].
[13] A. B. Zamolodchikov and A. B. Zamolodchikov, Massless factorized scattering and sigma models with topological terms, Nucl. Phys. B 379 (1992) 602. P. Fendley, H. Saleur and A. B. Zamolodchikov, Massless flows, 2. The Exact S-matrix approach, Int. J. Mod. Phys. A 8 (1993) 5751 [arXiv:hepth/9304051].
[14] B. Hoare, A. Pittelli and A. Torrielli, S-matrix algebra of the $A d S_{2} \times S^{2}$ superstring, Phys. Rev. D 93 (2016) 066006 [arXiv:1509.07587].
[15] M. C. Abbott and I. Aniceto, Massless Lüscher terms and the limitations of the AdS S_{3} asymptotic Bethe ansatz, Phys. Rev. D 93 (2016) 106006 [arXiv:1512.08761].
[16] R. Borsato, O. Ohlsson Sax, A. Sfondrini, B. Stefański, Jr. and A. Torrielli, On the dressing factors, Bethe equations and Yangian symmetry of strings on $A d S_{3} \times S^{3} \times T^{4}$, J. Phys. A 50 (2017) 024004 [arXiv:1607.00914].
[17] D. Bombardelli, B. Stefanski and A. Torrielli, The low-energy limit of $A d S_{3} / C F T_{2}$ and its TBA, JHEP 1810 (2018) 177, [arXiv:1807.07775].
[18] A. Fontanella and A. Torrielli, Massless AdS 2 scattering and Bethe ansatz, JHEP 09 (2017), 075 [arXiv:1706.02634].
[19] A. Fontanella and A. Torrielli, Geometry of Massless Scattering in Integrable Superstring, JHEP 06 (2019), 116 [arXiv:1903.10759].
[20] P. Fendley, A Second supersymmetric S-matrix for the perturbed tricritical Ising model, Phys. Lett. B 250 (1990) 96.
[21] K. Schoutens, Supersymmetry and Factorizable Scattering, Nucl. Phys. B 344 (1990) 665.
[22] M. Moriconi and K. Schoutens, Thermodynamic Bethe ansatz for $\mathcal{N}=1$ supersymmetric theories, Nucl. Phys. B 464 (1996) 472 [arXiv:hep-th/9511008].
[23] R. J. Baxter, Partition function of the eight vertex lattice model, Annals Phys. 70 (1972) 193. R. J. Baxter, One-dimensional anisotropic Heisenberg chain, Annals Phys. 70 (1972) 323.
[24] F. Levkovich-Maslyuk, The Bethe ansatz, J. Phys. A 49 (2016) 323004 [arXiv:1606.02950].
[25] L. A. Takhtajan and L. D. Faddeev, The Quantum method of the inverse problem and the Heisenberg XYZ model, Russ. Math. Surveys 34 (1979) 11 [Usp. Mat. Nauk 34 (1979) 13]. D. Fioravanti and M. Rossi, From the braided to the usual Yang-Baxter relation, J. Phys. A 34 (2001) L567 [arXiv:hep-th/0107050]. J. Cao, W. L. Yang, K. Shi and Y. Wang, Off-diagonal Bethe ansatz solution of the $X X X$ spin-chain with arbitrary boundary conditions, Nucl. Phys. B 875 (2013) 152 [arXiv:1306.1742]. S. Belliard and N. Crampé, Heisenberg XXX Model with General Boundaries: Eigenvectors from Algebraic Bethe Ansatz, SIGMA 9 (2013) 072 [arXiv:1309.6165]. X. Zhang, J. Cao, S. Cui, R. I. Nepomechie, W. L. Yang, K. Shi and Y. Wang, Bethe ansatz for an AdS/CFT open spin chain with non-diagonal boundaries, JHEP 1510 (2015) 133 [arXiv:1507.08866]. Y. Wang, W. L. Yang, J. Cao and K. Shi, Off-Diagonal Bethe Ansatz for Exactly Solvable Models. Springer, 2015. M. Guica, F. Levkovich-Maslyuk and K. Zarembo, Integrability in dipole-deformed $N=4$ super Yang-Mills, [arXiv:1706.07957].
[26] C. Ahn, Thermodynamics and form-factors of supersymmetric integrable field theories, Nucl. Phys. B 422 (1994) 449 [arXiv:hep-th/9306146].
[27] A. B. Zamolodchikov, Thermodynamic Bethe ansatz for RSOS scattering theories, Nucl. Phys. B 358 (1991) 497.
[28] A. Torrielli, On $A d S_{2} / C F T_{1}$ transfer matrices, Bethe ansatz and scale invariance, J. Phys. A 51 (2018) no.1, 015402 [arXiv:1708.09598].
[29] M. De Leeuw, C. Paletta, A. Pribytok, A. L. Retore and A. Torrielli, JHEP 02 (2021), 191 doi:10.1007/JHEP02(2021)191 [arXiv:2011.08217].
[30] M. de Leeuw, A. Pribytok, A. L. Retore and P. Ryan, Integrable deformations of AdS/CFT, JHEP 05 (2022), 012 [arXiv:2109.00017].
[31] M. De Leeuw, A. Pribytok, A. L. Retore and P. Ryan, New integrable 1D models of superconductivity, J. Phys. A 53 (2020) no.38, 385201 [arXiv:1911.01439]. M. de Leeuw, C. Paletta, A. Pribytok, A. L. Retore and P. Ryan, Classifying Nearest-Neighbor Interactions and Deformations of AdS, Phys. Rev. Lett. 125 (2020) no.3, 031604 [arXiv:2003.04332]. M. de Leeuw, C. Paletta, A. Pribytok, A. L. Retore and P. Ryan, Yang-Baxter and the Boost: splitting the difference, SciPost Phys. 11 (2021), 069 [arXiv:2010.11231]. A. Pribytok, Automorphic symmetries and AdS S_{n} integrable deformations, [arXiv:2112.10843]. A. Pribytok, Automorphic Symmetries, String integrable structures and Deformations, [arXiv:2210.16348].
[32] M. Karowski and P. Weisz, Exact Form-Factors in (1+1)-Dimensional Field Theoretic Models with Soliton Behavior, Nucl. Phys. B 139 (1978) 455.
[33] P. H. Weisz, Perturbation Theory Check of a Proposed Exact Thirring Model S Matrix, Nucl. Phys. В 122 (1977) 1.
[34] D. Bombardelli, S-matrices and integrability, J. Phys. A 49 (2016) no.32, 323003 [arXiv:1606.02949].
[35] H. M. Babujian, A. Foerster and M. Karowski, The form factor programme: A review and new results, the nested $\mathfrak{s u}(N)$ off-shell Bethe ansatz and the $\frac{1}{N}$ expansion, Theor. Math. Phys. 155 (2008), 512 [Teor. Mat. Fiz. 155 (2008), 13]. H. M. Babujian, A. Foerster and M. Karowski, The nested $\mathfrak{s u}(N)$ off-shell Bethe ansatz and exact form-factors, J. Phys. A 41 (2008), 275202 [arXiv:hepth/0611012].
[36] H. M. Babujian, A. Fring, M. Karowski and A. Zapletal, Exact form factors in integrable quantum field theories: The sine-Gordon model, Nucl. Phys. B 538 (1999), 535 [arXiv:hep-th/9805185].
[37] G. Delfino, G. Mussardo and P. Simonetti, Correlation functions along a massless flow, Phys. Rev. D 51 (1995), 6620 [arXiv:hep-th/9410117].
[38] B. Berg, M. Karowski and P. Weisz, Construction of Green Functions from an Exact S-Matrix, Phys. Rev. D 19 (1979), 2477. J. L. Cardy and G. Mussardo, Form-factors of Descendent Operators in Perturbed Conformal Field Theories, Nucl. Phys. B 340 (1990), 387. F. A. Smirnov, Formfactors in completely integrable models of quantum field theory, Adv. Ser. Math. Phys. 14 (1992), 1. G. Mussardo, Integrable deformations of the nonunitary minimal conformal model $M(3,5)$, Int. J. Mod. Phys. A 7 (1992), 5027. A. Fring, G. Mussardo and P. Simonetti, Form-factors for integrable Lagrangian field theories, the sinh-Gordon theory, Nucl. Phys. B 393 (1993), 413 [arXiv:hepth/9211053]. G. Delfino and G. Mussardo, The spin-spin correlation function in the two-dimensional Ising model in a magnetic field at $T=T_{c}$, Nucl. Phys. B 455 (1995), 724 [arXiv:hep-th/9507010]. A. Leclair and G. Mussardo, Finite temperature correlation functions in integrable QFT, Nucl. Phys. B 552 (1999), 624 [arXiv:hep-th/9902075]. B. Pozsgay and I. M. Szécsényi, LeClair-Mussardo series for two-point functions in Integrable QFT, [arXiv:1802.05890]. G. Mussardo, Statistical field theory: an introduction to exactly solved models in statistical physics. Oxford University Press, 2010. S. Britton and S. Frolov, Free field representation and form factors of the chiral Gross-Neveu model, JHEP 1311 (2013), 076 [arXiv:1305.6252].
[39] B. Basso, S. Komatsu and P. Vieira, Structure Constants and Integrable Bootstrap in Planar $\mathcal{N}=4$ SYM Theory, [arXiv:1505.06745].
[40] Y. Jiang, S. Komatsu, I. Kostov and D. Serban, The hexagon in the mirror: the three-point function in the SoV representation, J. Phys. A 49 (2016), 174007 [arXiv:1506.09088]. B. Eden and A. Sfondrini, Three-point functions in $\mathcal{N}=4$ SYM: the hexagon proposal at three loops, JHEP 1602 (2016), 165 [arXiv:1510.01242]. B. Eden, Y. Jiang, D. le Plat and A. Sfondrini, Colour-dressed hexagon tessellations for correlation functions and non-planar corrections, JHEP 02 (2018), 170 [arXiv:1710.10212]. B. Eden, Y. Jiang, M. de Leeuw, T. Meier, D. le Plat and A. Sfondrini, Positivity of hexagon perturbation theory, JHEP 11 (2018), 097 [arXiv:1806.06051]. M. De Leeuw, B. Eden, D. Le Plat, T. Meier and A. Sfondrini, Multi-particle finite-volume effects for hexagon tessellations, JHEP 09 (2020), 039 [arXiv:1912.12231]. B. Basso, V. Goncalves, S. Komatsu and P. Vieira, Gluing Hexagons at Three Loops, Nucl. Phys. B 907 (2016), 695-716 [arXiv:1510.01683]. B. Basso, V. Goncalves and S. Komatsu, Structure constants at wrapping order, JHEP 05 (2017), 124 [arXiv:1702.02154]. J. M. Nieto, Cutting the cylinder into squares: The square form factor, JHEP 03 (2019), 097 [arXiv:1810.11430].
[41] B. Eden, D. l. Plat and A. Sfondrini, Integrable bootstrap for $A d S_{3} / C F T_{2}$ correlation functions, [arXiv:2102.08365].
[42] T. Klose and T. McLoughlin, Worldsheet Form Factors in $A d S / C F T$, Phys. Rev. D 87 (2013), 026004 [arXiv:1208.2020]. T. Klose and T. McLoughlin, Comments on World-Sheet Form Factors in $A d S / C F T$, J. Phys. A 47 (2014), 055401 [arXiv:1307.3506]. R. Hernandez and J. M. Nieto, Correlation functions and the algebraic Bethe ansatz in the AdS/CFT correspondence, [arXiv:1403.6651]. P. Vieira and T. Wang, Tailoring Non-Compact Spin Chains, JHEP 1410 (2014), 35 [arXiv:1311.6404]. J. Caetano and T. Fleury, Three-point functions and $\mathfrak{s u}(1 \mid 1)$ spin chains, JHEP 1409 (2014), 173 [arXiv:1404.4128]. Z. Bajnok, R. A. Janik and A. Wereszczyński, HHL correlators, orbit averaging and form factors, JHEP 1409 (2014), 050 [arXiv:1404.4556]. L. Hollo, Y. Jiang and A. Petrovskii, Diagonal Form Factors and Heavy-Heavy-Light Three-Point Functions at Weak Coupling, JHEP 1509 (2015), 125 [arXiv:1504.07133]. Z. Bajnok and R. A. Janik, The kinematical $A d S_{5} \times S^{5}$ Neumann coefficient, JHEP 1602 (2016), 138 [arXiv:1512.01471]. Z. Bajnok and R. A. Janik, Classical limit of diagonal form factors and HHL correlators, JHEP 1701 (2017), 063 [arXiv:1607.02830]. S. Frolov, Free field representation of the $Z F$ algebra of the $\mathfrak{s u}(N) \times \mathfrak{s u}(N) P C F$ model, J. Phys. A 50 (2017), 374001 [arXiv:1705.02602]. L. Gerotto and T. McLoughlin, Diagonal Form Factors in Landau-Lifshitz Models, [arXiv:1710.02138]. Z. Bajnok and R. A. Janik, From the octagon to the SFT vertex - gluing and multiple wrapping, JHEP 06 (2017), 058 [arXiv:1704.03633].
[43] A. Torrielli, A study of integrable form factors in massless relativistic $A d S_{3}$, J. Phys. A 55 (2022) no.17, 175401 [arXiv:2106.06874].
[44] A. Fontanella, O. Ohlsson Sax, B. Stefański and A. Torrielli, The effectiveness of relativistic invariance in $A d S_{3}$, JHEP 1907 (2019), 105 [arXiv:1905.00757]. S. Frolov and A. Sfondrini, "Massless S matrices for $A d S_{3} / C F T_{2}$," [arXiv:2112.08895]. S. Frolov and A. Sfondrini, "New Dressing Factors for $A d S_{3} / C F T_{2}$," [arXiv:2112.08896]. S. Frolov and A. Sfondrini, "Mirror Thermodynamic Bethe Ansatz for $A d S_{3} / C F T_{2}$," [arXiv:2112.08898].
[45] A. De Martino and M. Moriconi, Tricritical Ising model with a boundary, Nucl. Phys. B 528 (1998), 577-594 [arXiv:hep-th/9803136].
[46] G. Mussardo, Exact matrix elements in supersymmetric theories, Nucl. Phys. B 532 (1998), 529-566 [arXiv:hep-th/9806184].

[^0]: *E-mail addresses: d.bielli@surrey.ac.uk, v.gautam@surrey.ac.uk, a.torrielli@surrey.ac.uk

[^1]: *We thank Ben Hoare for discussions on the interpolation procedure.

