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Abstract
A crucial role in the security of modern networks is played by Intrusion Detection Systems (IDSs), security devices designed
to identify and mitigate attacks to networks structure. Data-driven approaches based on Machine Learning (ML) have gained
more and more popularity for executing the classification tasks required by signature-based IDSs. However, typical ML
models adopted for this purpose do not properly take into account the uncertainty associated with their prediction. This poses
significant challenges, as they tend to produce misleadingly high classification scores for both misclassified inputs and inputs
belonging to unknown classes (e.g. novel attacks), limiting the trustworthiness of existing ML-based solutions. In this paper,
we argue that ML-based IDSs should always provide accurate uncertainty quantification to avoid overconfident predictions.
In fact, an uncertainty-aware classification would be beneficial to enhance closed-set classification performance, would make
it possible to carry out Active Learning, and would help recognize inputs of unknown classes as truly unknowns, unlocking
open-set classification capabilities and Out-of-Distribution (OoD) detection. To verify it, we compare various ML-based
methods for uncertainty quantification and open-set classification, either specifically designed for or tailored to the domain of
network intrusion detection. Moreover, we develop a custom model based on Bayesian Neural Networks that stands out for
its OoD detection capabilities and robustness, with a lower variance in the results over different scenarios, compared to other
baselines, thus showing how proper uncertainty quantification can be exploited to significantly enhance the trustworthiness
of ML-based IDSs.

Keywords Network intrusion detection · Trustworthy machine learning · Uncertainty quantification · Out-of-distribution
detection · Active learning

1 Introduction

Network intrusions stand as a major scourge within mod-
ern communication networks. With the constant increase in
the number and complexity of occurring incidents [1], it is
fundamental to design and implement scrupulous detection
strategies and robust counteraction measures to effectively
identify and mitigate these threats. Intrusion Detection Sys-
tems (IDSs) are among the primary security measures in
communication networks,with the aimof identifying attacks,
unauthorized intrusions, as well as malicious activities [2].
The traditional approach for detecting intrusions relies on
knowledge-based systems [3] but as long as networks rise
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in complexity they become more prone to errors [4, 5]. As
a consequence, data-driven approaches based on Machine
Learning (ML) have been widely considered in recent years
for the detection of attacks.

IDSs are generally divided into signature-based oranomaly-
based [5]. The first category, also known as misuse-based
IDSs, is based on pattern recognition, with the goal of com-
paring signatures of well-known attacks and benign traffic
to the current network traffic patterns. In this context, super-
vised ML methods are promising tools to analyze network
traffic and classify it as benign or as a particular intrusion [6].
On the other hand, anomaly-based methods rely on a model
for the normal (i.e., benign) network traffic so that any pattern
that deviates from the usual one is considered an intrusion.
In contrast to misuse-based IDSs, anomaly-based IDSs are
able to detect also new types of attacks, but they typically
suffer from a high rate of false positives [7].
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ML-based IDSs have been extensively investigated in
the literature particularly, as said before, in the context
of signature-based intrusion detection. These systems have
demonstrated great performance in terms of classification
scores [7]. However, the vast majority of the proposed meth-
ods in the literature for signature-based intrusion detection
rely on the implicit assumption that all class labels are a-
priori known. This means that they are designated to perform
the classification in a closed-set setting where each input is
assigned to a category belonging to the set of labels provided
during the training phase. However, in practice, a ML model
might be presentedwith input pertaining to classes never seen
at training time [8]. This scenario is particularly compelling
in the context of intrusion detection [6], since networks are
subject to new attacks and the likelihood of being targeted
by zero-day attacks is getting higher and higher, especially
in modern network infrastructures [9].

Moreover, several studies (e.g. [10–12]) have shown that
ML models, including Deep Learning ones, tend to pro-
duce, overconfident, arbitrarily high per-class classification
scores not only to misclassified samples from known classes
but also to Out-of-Distribution (OoD) instances, which may
be related to unknown classes. This behaviour represents a
severe issue for the deployment of a trustworthy ML-based
IDS since we might expect that an IDS will have to face new
kinds of attacks or variations of known attacks [6]. In fact,
it would be desirable to rely on a model that allows network
operators or companies offering an IDS service to assess
more accurately the uncertainty associated with the chosen
model’s predictions, thus raising their awareness and allow-
ing them to perform more informed risk evaluations, while
taking the corresponding most appropriate countermeasures
accordingly.

We thus argue that for safety-critical applications, such
as intrusion detection, the adopted ML model should be
characterized not only through the lens of classification per-
formance (accuracy, precision, recall, etc.) but it should also:

1. Provide truthful uncertainty quantification on the predic-
tions for closed-set classification, a crucial property to
avoid making wrong and overconfident decisions when
the outcome is too uncertain, to help in the context of risk
decisionmaking. Having reliable uncertainty estimates is
valuable also for performing Active Learning [13], i.e.,
a process where a ML-based system could learn from
small amounts of data, and choose by itself what data
should be labelled by a domain expert. This is a crucial
aspect for the training and deployment of ML models
in storage and memory-constrained scenarios (e.g. Edge
Computing [14]) or when the labelling process of the
data is demanding as in network intrusion detection [8],
where huge amounts of data can be extracted in real time
by exchanged traffic flows.

2. Be able to recognize as “truly unknowns” inputs belong-
ing to unknown categories. This can be done by adopting
uncertainty-aware classifiers, which can perform at the
same time the usual closed-set classification and also be
able to detect OoD samples in an open-set classification
setting (i.e., with also unknown classes at test time).1

The goal of this paper is to perform a critical compari-
son of uncertainty-awareMLmodels and open-set classifiers
that could be used in the context of network intrusion detec-
tion, considering an uncertainty-unaware ML-based IDS as
a baseline. Moreover, we propose a custom model, based
on Bayesian Neural Networks (BNNs), which is designed
to offer well-founded uncertainty estimates for the classi-
fication of known network intrusions while enhancing the
detection of unknown traffic patterns, by reducing the num-
ber of false alarms. To this end, we designed a method to
recalibrate the uncertainty predicted by a given trained BNN
to enforce high uncertainty for inputs far away from the
training data, without adding substantial computational over-
head. Our illustrative experimental results are obtained on
two open-source datasets [15, 16], and show that the adop-
tion of uncertainty-aware models based on Neural Networks
(NNs), Bayesian Neural Networks and Random Forests (RF)
is very beneficial in the considered context, as they are able
(i) to perform truthful uncertainty classification in a closed-
set scenario, (ii) while also supporting Active Learning for
efficient data labelling, and (iii) to enhance OoD Detection
with respect to existing ad-hoc open-set classifiers. More-
over, we show how the proposed model stands out for its
ability to detect OoD samples, by reducing the false posi-
tives, and by showing higher robustness across different OoD
experiments, in comparison to other state-of-the-art meth-
ods. With our work, we therefore pave the way towards the
adoption of uncertainty-aware ML models in risk-sensitive
applications, such as intrusion detection, where the problem
of uncertainty quantification and OoD Detection is crucial
and still in its infancy.

The remainder of the paper is organized as follows. Sec-
tions2 and 3 are devoted to introduce relatedworks andmeth-
ods. In particular, in Sect. 2 we discuss some relevant related
works on open-set classification in the context of intrusion
detection. In Sect. 3, we revise the general approach for
uncertainty quantification with a focus on Bayesian Neural
Networks, given their principled uncertainty-aware nature,
and OoD Detection. Section4 is dedicated to formulating
the problem statement, presenting the considered state-of-
the-art models, and introducing our proposed approach. In

1 In this paper, when referring toOoDDetectionwewill always implic-
itly refer to the context of open-set classification. This means that the
two terms can be used interchangeably, with the assumption that OoD
samples belong to unknown classes.
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Sect. 5, we describe the utilized datasets and how we carried
out data preprocessing. In Sect. 6 we provide and discuss the
numerical results, and conclude the paper by highlighting the
main takeaways and lessons learned in Sect. 7.

2 Related works

In recent years, data-driven approaches for developing
signature-based IDSs have been extensively explored (e.g.
[3–5]) consideringdifferentmethods such asRandomForests,
Support Vector Machines, Neural Networks or Clustering
techniques. Various Machine Learning and especially Deep
Learning models have emerged as promising data-driven
methods with the capability to learn and extract meaning-
ful patterns from network traffic, which can be beneficial
for detecting security threats occurring in networked sys-
tems [15]. However, it is important to stress that the vast
majority of these ML-based IDSs are tested in a closed-set
scenario. For instance, [17, 18] compare different classifica-
tion algorithms for developing an IDS and, in general, the
best performance is achieved by tree-based classifiers, like
Random Forests and Multi-Layer Perceptrons (MLPs).

To the best of our knowledge, in the field of ML-
based intrusion detection only a few works have addressed
the specific problem of open-set classification to enhance
signature-based approaches, while the more general problem
of uncertainty quantification (also beneficial for enhanced
closed-set classification and for Active Learning) is still
unexplored. In the following, we thus discuss relevant related
works (i) on Active Learning based on uncertainty quantifi-
cation and (ii) on open-set classification in the considered
domain, while an exhaustive review of traditional ML mod-
els adopted by IDSs is beyond the scope of this paper.

In the realm of uncertainty quantification in support to
Active Learning for intrusion detection only a few works can
be found in literature: [19–21] exploit the total uncertainty
(more details in Sect. 3) of ML models, mainly Neural Net-
works, to acquire samples to label. We will show why this
approach is sub-optimal and how an IDSmay take advantage
of a more appropriate uncertainty quantification, enhanc-
ing the trustworthiness and efficiency of such a process in
a closed-set classification scenario.

On the other hand, the literature on the open-set classifi-
cation problem for network intrusion detection is richer. As
an early contribution, [22] proposed a hybrid IDS, which
combined an anomaly detection module based on Spark
ML and a signature-based detection module based on a
Convolutional-LSTM network classifier. In this way, it is
possible to improve the scalability of intrusion detection by
combining an anomaly detection method with a closed-set
classifier.

More recent and competitive works based on a single
model rather than a hybrid system for tackling the open-set
classification problem are [23] and [24]: this is the approach
investigated in this paper. In [23] the authors propose the
“Open Set Classification Network” (OCD), a Convolutional
Neural Network trained using both fisher loss [25] andMMD
loss [26]. The rationale is trying to learn an optimal feature
representation in the hidden layers of the network so that fea-
ture representations within the same known class are close
together, while the feature representations of the unknown
class and the known class are as far apart as possible. For
that purpose, the authors propose to synthesize samples of
possible unknowns to ensure the second phenomenon during
the training phase. While this approach may be intriguing,
its drawback lies in the necessity for ad-hoc synthetic train-
ing data to simulate unknowns. In contrast, in this paper, we
focus onmethods trained only on known kinds of attacks, as a
common supervised classification task, without making any
explicit assumption on the possible OoD inputs. We argue
that, in general, it will not be possible or practical to make a
model aware of all of the possible unknowns. As an alterna-
tive, it may be sufficient for the model to detect that an input
is ambiguous or novel, and then to react in an appropriate
way, or require the intervention of a human expert for taking
a decision.

More recently, Souza et al. [24] proposed EFC, an Energy-
basedFlowClassifier able to tackle the open-set classification
problem. It is a statistical model for finding a probability
distribution characterizing the per-class flows, and then it cal-
culates the flow energy to quantify how likely a flow belongs
to a given probability distribution. So, if the energy is low for
a given flow, it is more likely that it belongs to the set of flows
that generated the posterior distribution (see Sect. 3) for that
class, while if the energy is above a certain threshold, it can
be considered as an unknown.We decided to incorporate this
method as a reference for our study due to its promising per-
formance in terms of OoD detection with respect to previous
models. Moreover, this approach stands out because it can
achieve reliable results by utilizing only known classes as
training data, eliminating the need of synthesizing unknown
samples.

Last, it is possible to find a vast literature regarding the
problem of zero-day attack detection (e.g., [27–29]). How-
ever it should be noted that most of these works tackle the
problem of detecting unknown attacks as a pure anomaly-
detection problem or as a binary classification problem
(benign traffic vs. attack). On the other hand, here, we pro-
pose the adoption of an end-to-end approach, with a single
model that can retain the classification performance (in terms
of high detection accuracy and recall) of a pure signature-
based IDS on known kinds of attacks, while adding the
capability of detecting unknowns, an aspect typical of pure
anomaly-based solutions. In essence, our analysis differs as
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Table 1 Related work on
ML-based IDS and their
peculiarities

Paper Uncertainty aware Hybrid model Open set classification

[3–5] ✗ ✗ ✗

[19–21] ✗ ✗ ✗

[22] ✗ ✓ ✓

[23] ✗ ✗ ✓

[24] ✗ ✗ ✓

[27–29] ✗ ✗ ✗

Our Work ✓ ✗ ✓

we are addressing an open-set classification task: we argue
that the development of an uncertainty-aware IDS is a means
for reaching this goal, in addition to the previously described
advantages compared to usual classification methods.

Table 1 summarizes the discussed related works, high-
lighting their peculiarities: if they are uncertainty-aware, if
the proposed approach is a hybrid model, and if the authors
tackle the open set classification problem. The symbol ✓

indicates that a model possesses the considered ability, the
green color means that it is a positive aspect, red a negative.

3 Uncertainty quantification and OoD
detection

In this section we begin by presenting the concept of uncer-
tainty quantification and Bayesian Neural Networks. Sub-
sequently, we focus on the problem of Out-of-Distribution
detection, discussing specialized methods tailored to address
this specific problem and how uncertainty-aware models can
effectively address this challenge.

3.1 Uncertainty quantification and Bayesian neural
networks

A crucial aspect of a model trustworthiness is the quanti-
tative assessment of the model’s uncertainty about its own
predictions. In general, the uncertainty in model predictions
can be decomposed in aleatoric uncertainty and model (or
epistemic)uncertainty [30].Aleatoric uncertainty arises from
the inherent randomness in the input data, whereas epistemic
uncertainty from the lack of the model’s knowledge. The lat-
termaybe due to samples either out of distribution or sparsely
covered by the training set. The Bayesian Inference theory
[31] provides a framework for quantifying and decoupling
aleatoric and epistemic uncertainty in a principled way: in
the following, we will review some basic results related to
this approach.

More specifically, we will refer to a supervised classifi-
cation problem, in which a set D of N input–output pairs
D = {(xi , yi )}Ni=1 is given, and the aim is to define a

parametric function (e.g. a Neural Network) that provides
the conditional probability distribution p( y|x,w) over K
classes, for a given input x and model parameters w [32]. A
particular set of parameters ŵ is typically chosen during the
training phase by minimizing a loss function (e.g. the neg-
ative log-likelihood) exploiting a given dataset D, and used
to make predictions. In order to provide a proper probabil-
ity distribution over K classes, traditional NNs employ the
softmax activation function in the output layer [32], which
is often erroneously interpreted as model confidence on the
classification predictions [30, 32]. This pitfall is essentially
due to the fact that this approach can not capture properly
the epistemic uncertainty of the model [33], which is crucial
especially for safety-critical applications.

However, it is possible to tackle this issue in a principled
way by couplingNNswith Bayesian probability theory, lead-
ing to the formulation of Bayesian Neural Networks (BNNs)
[30, 34, 35]. The most distinguishing property of a BNN
is marginalization, i.e., rather than using a single set of the
weights ŵ, determined at the end of the training phase, BNNs
rely on the computation of the predictive distribution for a
given input x, as follows [31]:

p( y|x,D) =
∫

p( y|x,w)p(w|D)dw (1)

where: p(w|D) is the posterior distribution over model
parameters, inferred from a given data-set D through the
Bayes theorem, starting from a prior distribution p(w) [32].
Equation1 can be also viewed as a Bayesian Model Aver-
aging, where we have an ensemble of models with different
parameters settings, and the overall predictions are achieved
by an average over the models ensemble, weighted by their
posterior probabilities [31].

The posterior distribution over the weights in Eq. (1)
allows for capturing the model uncertainty, arising from the
uncertainty associated with the parameters of the model,
given the training dataset. In fact, it is possible to recover the
usual non-Bayesian prediction p( y|x, ŵ), which depends on
a particular setting of the weights ŵ, by approximating the
posterior distribution over the weights with a delta distribu-
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tion p(w|D) ∼ δ(w − ŵMAP). δ is the Dirac distribution,
which is zero everywhere except at the maximum of the pos-
terior ŵMAP = arg maxw p(w|D) [31, 34].

In addition to properly quantifying the uncertainty associ-
ated with each prediction, BNNs can also offer a principled
decomposition of aleatoric and epistemic uncertainty. For
classification problems, it is possible to estimate the total
predictive uncertainty through the Shannon EntropyH of the
predictive distribution [32], which is maximized in case of
a flat distribution over the classes (i.e., the most uncertain
scenario). Moreover, the uncertainty of the predictive distri-
bution can be further decomposed [35], as follows:

H[p( y|x,D)]︸ ︷︷ ︸
Total Uncertainty

= I[ y,w | x,D]︸ ︷︷ ︸
Model Uncertainty

+

+ Ep(w|D)

[
H[p( y|x,w)]]︸ ︷︷ ︸

Aleatoric Uncertainty

(2)

where: I is the information gain between parameters and out-
put, and captures themodel uncertainty, while the second one
is the aleatoric uncertainty, computed as the expected value
E of the entropy of the predictions obtained by exploiting
the models of the ensemble. It is crucial to decouple these
two quantities since they behave differently [35]: the former
is typically high for previously unseen inputs, while the lat-
ter is high for ambiguous or noisy samples and it does not
decrease by acquiring more training data. In other words, the
latter cannot be exploited to enhance the quality of a model
to recognize unseen inputs.

Unfortunately, the exact evaluation of the predictive dis-
tribution is computationally intractable for Neural Networks
of practical size [30, 32]. To get around this problem, sev-
eral approximate inference methods have been proposed.
Most approaches rely on Variational Inference for finding
a tractable approximation to the Bayesian posterior distribu-
tion of the weights [36] or on Deep Ensembles, where the
same model is trained multiple times and then the resulting
models are averaged [31, 37].

More specifically, theVariational Inference approach aims
at approximating the posterior p(w|D)with a tractable distri-
bution q(w|θ), and adjusting the parameters θ to get the best
approximation by minimizing the ELBO loss [34]: a com-
mon assumption for q is a diagonal Gaussian distribution. In
[36], the authors proposed a principled and backpropagation-
compatible algorithm for minimizing the ELBO loss, which
makes Variational Inference scalable to complex Neural Net-
works. In particular, for estimating the model uncertainty via
Variational Inference, it is possible to compute the informa-
tion gain by considering N forward passes and sampling the

weights from the variational distribution q [36], as follows:

I[ y,w|x,D]︸ ︷︷ ︸
Model Uncertainty

= H

[
1

N

N∑
i=1

p( y|x,wi )

]

︸ ︷︷ ︸
Total Uncertainty

+

− 1

N

N∑
i=1

H[p( y|x,wi )]
︸ ︷︷ ︸

Aleatoric Uncertainty

(3)

where the total uncertainty is computed as the entropy of
the predictive distribution (i.e., Eq. (1)) approximated as an
ensemble average with respect to different parameters set-
tings. It is possible to show [38] that a similar decomposition
holds also for other kinds of classifiers, based on ensembles,
like Random Forests. In that case, the total uncertainty is
given by the entropy of themean predictions and the aleatoric
uncertainty by the mean entropy of the predictions of each
classifier of the ensemble [38]. The rationale is that the epis-
temic uncertainty is high when members of the ensemble
disagree, by assigning different and highly confident predic-
tions to a given input. This is something that we exploited to
build an uncertainty-aware RF model (see Sect. 4).

The main drawback of traditional Bayesian Neural Net-
works is that they typically require multiple forward passes
at test time to estimate the mean predictive distribution.
As a result, there has been a growing interest in develop-
ing methods for uncertainty quantification by employing
deterministic single forward-pass neural networks to pro-
vide a reduced latency estimation. Among them, it is worth
mentioning Deep Deterministic Uncertainty (DDU) [33],
an NN-based approach that employs a feature-space den-
sity model as a proxy for the epistemic uncertainty and the
entropy of the softmax outputs as a measure of the aleatoric
uncertainty. We considered also DDU in our critical compar-
ison of uncertainty-aware models.

3.2 Out-of-distribution detection

As already mentioned, most of ML models are trained based
on the closed-world (or closed-set) assumption, where the
test data is assumed to be drawn from the same distribution as
the training data. However, when models are deployed in an
open-world scenario, test samples can beOut-of-Distribution
and therefore should be handled with caution, by rejecting
them or handing them over to human domain experts [39].

OoD Detection is a broad topic, and here we concentrate
only on the sub-field of open-set classificationwhere amodel
must not only be able to distinguish between the training
classes, but also indicate if an input comes from a semanti-
cally new class it has not yet encountered. Moreover, in our
critical comparisonwewill considermethods forOoDDetec-
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tion that do not need training or fine-tuning on OoD data,
since these samples may not be available in practical appli-
cations. For a survey on OoD Detection the reader should
refer to [39].

Early works observe the overconfidence of Neural Net-
works and therefore focus on redistributing the logits (i.e.,
unnormalized Softmax values). In particular, one of the first
methods was OpenMax [11], which replaces the softmax
layer with an OpenMax layer and calibrate the logits with
a per-class probabilistic model based on the activation pat-
terns in the penultimate layer of the Neural Network. Amore
recent and competitive approach in terms of OoD Detec-
tion was proposed by [40]. They suggest an Energy-Based
OoDDetectionmethod that uses a scalar energy score, which
is lower for observed data and higher for unobserved ones.
Moreover, this approach can be applied to any pre-trained
neural classifier, without the need of re-training it or to mod-
ify its architecture. Given its advantages and peculiarities,
we will consider such an Energy-Based model in our critical
evaluation.

OoD Detection can be also seen as an application of
epistemic uncertainty quantification: since we do not train
on OoD data, we expect OoD data points to have higher
epistemic uncertainty than in-Distribution (iD) data. Sev-
eral works [33, 41, 42] explicitly leveraged this observation
for effective uncertainty quantification and competitive OoD
Detection.

In general, the Out-of-Distribution detection problem can
be formulated as a binary classification problem: for a given
input x and a given (closed-set) classifier f the following
decision rule g is applied:

g(x, f ) =
{
f (x), if S(x, f ) ≤ τ

unknown, if S(x, f ) > τ
(4)

where: S is a score associated to a certain input for distin-
guishing between known and unknown inputs (e.g. epistemic
uncertainty), and τ is a threshold that has to be carefully
defined.

4 Problem statement andmodels

In this section, we formalize the three closely-related prob-
lems that we investigate in this paper and then we briefly
describe the models used to address those problems in the
context of network intrusion detection.

4.1 Problem statement

Weconsider the following three problems, that ideally should
all be addressed by a ML-based model adopted for network
intrusion detection.

Problem1 (Closed-SetClassification). The first problem
deals with uncertainty quantification on a common (closed-
set) multi-class classification problem. A desirable property
of an algorithm employed for IDS would be to assign a high
degree of uncertainty to its erroneous predictions so that a
system administrator may be able to make better decisions
and likely avoid severe issues. In fact, a classifier can lever-
age accurate uncertainty estimates to refrain from making
predictions if the uncertainty degree associated to a certain
fraction of samples, let’s say p, is excessively high, and may
ask for the intervention of a human expert. In such case, the
classifier will onlymake predictions on the remaining (1− p)
fraction of samples, i.e., the ones whose prediction is more
certain. By relying on its capability of assessing uncertainty
effectively, the classifierwill prioritizemaking predictions on
instances where it feels more confident. Taking into account
two sources of uncertainty (i.e., aleatoric and epistemic) can
help well assess uncertainty in closed-set scenarios.

Problem 2 (Active Learning). The second problem we
focus on is related to acquiring and labelling large volumes of
network traffic for training a ML classifier. In the domain of
IDS, the process of acquiring data and label them is complex
and demanding, and there is the need of continuously acquire
new labeled data [8, 43, 44]. In this context Active Learning
[13] aims at training a ML model in a data-efficient man-
ner by iteratively acquiring only the most relevant samples
from a large pool of unlabelled data, rather than annotating
all samples, and labelling them with the help of an expert. In
particular, in the active-learning loop, everything starts by
training a model on a small random batch of labeled data.
Then, new informative samples are added to the original
training set and the model is trained on the updated train-
ing set. This procedure is repeated until the model achieves
a desirable classification performance. The ultimate goal is
to make the model ensure optimal performance while using
the minimum amount of training data.

Equation (2) offers a natural and principled way for mea-
suring how a sample is informative for a given model, since
the mutual information I[ y,w | x,D] expresses how much
knowing the label y of a given sample x will reduce our
uncertainty about the model parameters w, and thus can be
used as an acquisition strategy for selecting points to label.
This approach, known in the literature as Bayesian Active
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Fig. 1 Pictorial representation of the proposed approach: an
uncertainty-awareMLmodel is able to recognize unknowns or ambigu-
ous inputs and requires the intervention of a human expert. Moreover,
by estimating the epistemic uncertainty, it is possible to perform the
Active Learning loop, thus training the model with the smallest possi-
ble amount of data

Learning by Disagreement (BALD) [45], has proven to be
highly effective in the context of Deep Learning (e.g. [46,
47]). Active Learning effectiveness can also be seen as an
additional evaluation of the ability of a model to estimate
the epistemic uncertainty and disentangle different sources
of uncertainty [33].

Problem 3 (OoD Detection). The third problem that we
tackle in this paper can be summarized as follow: given a
classifier f trained using a dataset consisting of K known
classes (e.g. known kinds of attacks), is it able to recognize
as unknown, and thus abstain from performing the classifica-
tion, inputs which belongs to new, semantically different,
classes?

WhilemanyML-based IDSs have been proposed in the lit-
erature, the vast majority of them are focused on enhancing
closed-set classification performance, while not analyzing
their predictive uncertainty and the OoD Detection problem,
as highlighted in Sects. 2 and 3. In the context of intrusion
detection, truthful predictions are crucial for early identifica-
tion of potentially anomalous network traffic, e.g. new kinds
of attacks or variations of known attacks, allowing a network
operator to proactively take risk-informed countermeasures.

For instance, an alarm can be triggered if the observed
uncertainty or a custom score for OoD Detection exceeds a
predefined threshold set by the network operator upon expe-
rience. This threshold may be established by considering
known traffic patterns and serves as a basis for identifying
novel potential intrusions.By comparing the score against the
threshold, it is possible to identify suspicious activities that
deviate from normal behavior, alerting network operators to
potential security threats.

The overall picture of the considered approach for devel-
oping an IDS is summarized in Fig. 1. The uncertainty-aware
model is adopted by an IDS, which can be either a software
artifact running in a host or in an Edge Computing node, or
a hardware appliance placed at the edge. It is locally trained
and is able to acquire in real time packet-related data by

means of packet mirroring, executed by a border switch, or
by exploiting efficient feature extraction capabilities of inno-
vativeprogrammable dataplanesof networkingdevices [48].
The model acts on a labeled dataset of network traffic, pos-
sibly involving the Active Learning loop, and it can provide
truthful uncertainty estimates of incoming traffic, possibly
asking an expert (e.g. a security engineer) for intervention:
this may happen for ambiguous iD inputs or in the case of
OoD samples. In the latter situation, unknowns can then be
added to the training data, upon appropriate labelling by the
human expert, so that the model can be retrained also on new
kinds of intrusions.

Once again, wewould like to stress that uncertainty-aware
models are an appealing foundation for implementing the
described pipeline and tackling the three main problems pre-
viously described in this section. In the end, the ambition
is to develop a model that behaves as expected across dif-
ferent tasks (e.g. proper uncertainty quantification and OoD
detection) and ultimately increase one’s trust in it.

4.2 Models

In this section, we briefly describe the main peculiarities
of the models compared and evaluated in this paper. The
detailed implementation of each of them is instead described
in Sect. 6.1. Table 2 summarizes the considered approaches
and their ability to perform proper uncertainty quantifica-
tion (by decomposing aleatoric andmodel uncertainty),OoD
Detection andActive Learning. The symbol✓ indicates that a
model possesses the considered ability. In addition, the Table
also specifies whether the approach is based on a NN model
or not.

We considered four different types of NN-based models:

• Neural Network (NN): This is our uncertainty-unaware
baseline model. We consider a Multi-Layer Perceptron
(MLP), which is a deterministic model able to provide
the conditional probability distribution p( y|x,D) over
K classes through the softmax activation function [32]. It
is common to use the entropy of the softmax distribution
as a measure of uncertainty about the classification of
a given input. However, different studies [49, 50] have
shown that this quantity presents issues in uncertainty
quantification, especially considering OoD data, due to
the fact that softmax entropy is inherently not able to
capture epistemic uncertainty, as previously discussed.
This architecture will be exploited as a basis for other
models and methods discussed in the following.

• Energy-Based [40]:This approach is specifically designed
for OoD Detection without leveraging on uncertainty
quantification. The authors propose an energy score to
differentiate between OoD and iD samples and mitigate
the critical problem of softmax’s low confidence with
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Table 2 Summary of the considered models and their peculiarities

Model NN-based BNN-based Aleatoric and model uncertainty decomposition Active learning OoD detection

NN ✓ ✗ ✗ ✗ ✗

Energy-based [40] ✓ ✗ ✗ ✗ ✓

DDU [33] ✓ ✗ ✓ ✓ ✓

BNN ✓ ✓ ✓ ✓ ✓

RF ✗ ✗ ✓ ✓ ✓

EFC [24] ✗ ✗ ✗ ✗ ✓

UC-BNN (ours) ✓ ✓ ✓ ✓ ✓

arbitrarily high values for OoD examples. Specifically,
given a trained neural network, denoting the logits corre-
sponding to the y-th class label as fy(x), they define the
energy score as E(x, f ) = −T log

∑K
i=1 e

fi /T , where K
is the number of classes and T is a free parameter, typ-
ically equal to 1 [40]. During the test phase inputs with
higher energies are considered as OoD samples and vice
versa. The main advantage of this method is that it can
be applied to a given NN, without the need of modifying
the architecture or retrain it.

• Deep Deterministic Uncertainty (DDU) [33]: It is
based on approximating the feature space distribution
as a Gaussian mixture model, through a Gaussian Dis-
criminant Analysis (GDA). More specifically, let z be
the feature representation of an input x. DDU involves
computing the feature density p(z), as a proxy for the
epistemic uncertainty, by marginalizing over the classes’
distributions: p(z) = ∑

i p(z|ci )p(ci ), where p(z|ci )
is the conditional probability distribution (modelled as
a Gaussian) for each class ci , and p(ci ) is the per-class
prior. As a consequence, for a given input, it is possi-
ble to avoid the computation of multiple forward passes
through the NN at test time, since a proxy of the epis-
temic uncertainty is estimated by evaluating the density
of the feature representation given by the Gaussian mix-
ture density model. The key observation of [33] is that
density-based or distance-based models in the hidden
layers of NNs may fail due to the feature-collapse prob-
lem [51]: feature extractors might map the features of
OoD inputs to iD regions in the feature space, without
a suitable inductive bias. As a consequence, DDU pro-
poses to rely on spectral normalization [52] in models
with residual connections [53], in order to encourage a
distance-preserving hidden representation of the inputs
and hence enhance the OoD detection.

• Bayesian Neural Network (BNN): Also in this case,
the architecture is the same as that of NN (e.g. same
number of layers, neurons, etc.). The key difference is
that in a Bayesian setting the goal is to learn from a
training dataset an ensemble of plausible parameters in

the form of a posterior probability density, rather than a
point estimate. To get the posterior it must be specified
a prior over the weights (see Sect. 3). Here we employ
the common zero-mean, isotropic Gaussian distribution
as a prior over the weights: p(w) = N (0, α2 I), where
the variance α2 was chosen to recover the weight decay
β of the L2 regularizer employed for the NN in the fol-
lowing way: α2 = 1/2β [31, 32]. Bayesian predictions
involvemarginalization over the parameters’ posterior: to
evaluate Eq. (1), we leveraged the Variational Inference
approach described in Sect. 3.1, which makes Bayesian
inference scalable to complex networks [36]. Finally, it
is important to observe that BNNs may not consistently
exhibit elevated uncertainty for OoD inputs, particularly
in the case of simplemodels, likeMulti-Layer Perceptron
[31, 32]. In this case, there might be regions of the input
space where simple BNNs can exhibit overconfident pre-
dictions, even for inputs far away from the training data
(i.e., OoD samples). This observation serves as the start-
ing point for developing our custommodel to address this
undesired behavior.

• Proposed approach (UC-BNN): Our main goal is to
propose a model that shows all the benefits of a BNN
model in closed-set classification settings (i.e., meaning-
ful uncertainty estimates and the ability to performActive
Learning) and boost its capabilities of detecting OoD
inputs, thus reducing false alarms and without signifi-
cantly increasing the computational overhead. To achieve
this we propose a method for gauging the predicted total
and epistemic uncertainty of a given trained BNN model
to improve the OoD detection without affecting the iD
predictions. We call this model Uncertainty-Corrected
BNN (UC-BNN). The core ideas behind the definition of
this model are: (i) Building a meaningful and distance-
aware feature extractor, by avoiding the feature collapse
phenomenon, as previously described in the NN-based
DDU model [33]. (ii) After training the BNN, fitting a
density model in the feature space of the training data.
(iii) Exploiting the density model to compute the proba-
bility density function (pdf) associated with each input,
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anduse this quantity to re-calibrate both the total and epis-
temic uncertainty, to reduce overconfident predictions for
inputs which are far from the training set. A visual repre-
sentation of the proposed approach is depicted in Fig. 2.
To reduce the feature collapse in the feature space and
improve sensitivity (step (i)) we add a skip connection
to each layer [33, 54] of the previously described BNN
model, so that the output of each layer is now computed
as zOUT = xIN + f (xIN), where f denotes the activation
function, instead of the usual zOUT = f (xIN). More-
over, as activation functions, we employ LeakyReLU
[55] in the first hidden layer and ELU [55] in the sec-
ond, to further improve sensitivity, since also negative
activations can be propagated through the network, and
to provide more Gaussian-like activations with respect
to the ReLU activation function [55]. After implement-
ing such a distance-aware feature extractor, we model
the hidden (or latent) distributions of the training data
in the penultimate layer of the network as a multivariate
Gaussian (step (ii)), parameterized by a mean z and a
covariance matrix �. Under this assumption, the proba-
bility density associated with the hidden representation z
of a given input is uniquely determined by the so-called
Mahalanobis distance [56] between the mean of the fea-
ture distribution z and z itself:

d(z, z) =
√

(z − z)T�−1(z − z). (5)

The estimation of �−1, given n data and a feature space
of size m, has a computational complexity of O(nm2)

for estimating the covariance matrix, plus O(m3) for its
inversion. For our purposes, this computation is feasible
as we consider a number of neurons in the last hidden
layer of m = 64 (see Sect. 6.1), but may start to become
impractical for networks with the last hidden layers of
size larger than m ∼ 1000. The next step involves recal-
ibrating the uncertainty for each input (step (iii)). This
process relies on the intuition that we expect a high epis-
temic uncertainty for the farthest inputs (with reference
to the Mahalanobis distance), or, equivalently, for those
inputs whose hidden representation falls in the tails of
the latent distribution of the training data. The proposed
procedure can also be heuristically understood as placing
a prior on the expected uncertainty predicted by a model,
which should be high for inputs far away from the training
data. Considering that the entropy is an additive quantity
[56], we propose to gauge the total and epistemic uncer-
tainties provided by the BNN model by adding to them
a contribution δ that depends on the distance d(z, z) as
follow:

δ(d) =
{
0 if d ≤ d̃

2ε
(
sigmoid

(
d
d̃

− 1
)

− 1
2

)
if d > d̃

(6)

Fig. 2 Pictorial representation of the proposed model showing the
architectural changes with respect to a state-of-the-art BNN and the
recalibration process of the uncertainty

where: ε is the maximum entropy achievable by a flat
distribution over N (known) classes and d̃ is a thresh-
old over the distances in the features space. We treat the
threshold as an hyperparameter of this model and we set
its value as the 99.5% percentile of the distances calcu-
lated on the validation set, with the goal of not affecting
the predictions on iD data and mitigating the influence of
potential outlier values. The particular functional form of
Eq. (6) was chosen to be a continuous function that maps
distances to a bounded set, in such away to not correct the
predictions over the iD data and smoothly increases the
uncertainty prediction far away from the training data,
up to the maximum achievable entropy ε. The overall
procedure is summarized by the pseudocode in the Algo-
rithm 1. It should be noted that the proposed correction
applies to both the total and epistemic uncertainty (lines
9 and 12 of Algorithm 1) so that the aleatoric uncer-
tainty is unchanged, as well as the uncertainty associated
to predictions that are already maximally uncertain. In
fact, lines 10–12 ensure that both the total entropy and
the epistemic uncertainty are at most equal to the max-
imum entropy ε, when T + δ > ε. In this case, the
calibration is determined by the difference between the
maximum entropy and the total uncertainty predicted by
the model. Last, we emphasize that the recalibration pro-
cedure applies after the training of the model, which is
when the hidden feature distribution of the training data
can be considered fairly representative of the iD data dis-
tribution. In the Active Learning process this assumption
might not be valid, especially during the first iterations.
For this reason, UC-BNN relies on the epistemic uncer-
tainty directly offered by the BNN model to perform
Active Learning.

In addition, we considered two different promising mod-
els, not based on NNs:

• Random Forest (RF): It is a classification method based
on an ensemble of decision trees where each member of
the ensemble is trained with bootstrapped samples of a
given training set. Each tree can predict the class proba-
bility for a given input, which is estimated as the fraction
of samples of the same class in a leaf. Then, the over-
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Algorithm 1 Uncertainty correction (UC-BNN)
Require: Trained BNN
Require: Mean feature vector z and covariance matrix �

Require: Threshold d̃
1: function Calibration Function(input x):
2: Let z be the hidden representation of an input x
3: Let ε be the maximum entropy achievable

4: Predict the class-probabilities y of x
5: Compute Epistemic E and Total T uncertainty
6: Compute d(z, z) � as in Eq. (5)
7: Compute correction δ(d) � as in Eq. (6)
8: if T + δ ≤ ε then
9: return T + δ, E + δ

10: else
11: gap = ε − T
12: return T + gap,E + gap
13: end if
14: end function

all prediction of the forest is achieved by averaging the
predicted class probabilities over different trees, in con-
trast to the usual approach of majoring vote. Since this
model is an ensemble of different predictors, following
[38] it is possible to exploit the same decomposition of
total uncertainty reported in Eq. (3) (in this case the sum
runs over the number of trees of the forest), to estimate
the aleatoric and epistemic uncertainty, and to make RF
inherently uncertainty-aware.

• Multi-class Energy-based Flow Classifier (EFC) [24]:
This model is specifically designed for OoD Detection
in an intrusion detection scenario without leveraging
on uncertainty quantification: it is a statistical model
designed specifically for classifying network flows.With
EFC multiple distributions are inferred, with each distri-
bution representing a distinct flow class. Subsequently,
flow energies are computed within each distribution, and
these values are compared to determine the final classifi-
cation outcome (i.e., known class or unknown).

5 Dataset description and preprocessing

We consider two open-source datasets: “NF-ToN-IoT-v2”2

(here referred as as ToN-IoT) and “CICIDS2017”3 [16]
(here, as as CIC-IDS) which are widely used in the liter-
ature as a benchmark (e.g. [58–60]). Both are organized
per-flow: each row represents a flow (i.e., source/destination
IP pair), for which some additional statistics are computed
and also considered as features (e.g. longest flow packet,
shortest flow packet, flow duration, etc.) and is annotated
as belonging benign traffic or attacks. NF-ToN-IoT includes

2 Accessible at: https://staff.itee.uq.edu.au/marius/NIDS_datasets/#
RA7,Sarhan_2021.
3 Accessible at: https://www.unb.ca/cic/datasets/ids-2017.html.

Table 3 Samples distribution

Class Number of samples Scenario
3U 6U 8U

ToN-IoT

Benign 6,099,469 K K K

Scanning 3,781,419 K K K

XSS 2,455,020 K K U

DDoS 2,026,234 K K U

Password 1,153,323 K U U

DoS 712,609 K U U

Injection 684,465 K U U

Backdoor 16,809 U U U

MITM 7723 U U U

Ransomware 3425 U U U

CIC-IDS

Benign 2,095,057 K K K

DoS Hulk 172,846 K K K

DDoS 128,014 K K K

PortScan 90,694 K K U

DoS GoldenEye 10,286 K K U

FTP-Patator 5931 K U U

DoS slowloris 5385 K U U

DoS Slowhttptest 5228 K U U

SSH-Patator 3219 U U U

Bot 1948 U U U

Web Attack-Brute Force 1470 U U U

Web Attack-XSS 652 U U U

real collected data and is based on 43 NetFlow [61] features
extracted from the network packets (e.g. L4 source port, L4
destination port, TCPflags, etc.), describing the network traf-
fic between different sources and destinations identified by
their IP addresses [57] and presents 10 different classes. On
the other hand, the traffic present in CIC-IDS is captured
using the CICFlowMeter resulting in 80 different features
and 14 different classes of attacks, three of them content
only few tens of samples and therefore have been omitted in
the following analysis. For both datasets, among the over-
all features, we removed from the dataset the timestamp and
the source/destination IP addresses in order to only look for
intrinsic patterns in the network traffic flows. Moreover, we
removed features presenting a constant value (i.e. with a zero
variance) across all the samples.

Table 3 summarizes the different types of attacks, as long
as the distribution of samples (i.e., flows) for each class.
In general, we consider two testing scenarios: the usual
closed-set classification (exploited also for Active Learning
experiments) and OoD Detection. To simulate OoD inputs
appearing at run time, we entirely remove multiple classes
from the original dataset and consider them as unknowns.
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We treat the remaining samples, from the remaining known
classes, as a training set to develop a usual multi-class classi-
fier. Datasets with the known classes is partitioned into 60%
training, 20%, validation, and 20% testing set, and standard-
ized using the training data of known classes, so that each
feature distribution presents a zero mean and unit variance.
Also the unknowns are standardized by exploiting the fea-
tures means and variances computed on the training data.
Only with the Random Forest classifier [38] we did not stan-
dardized the data, since it is not required.

We consider different partitions of the dataset by varying
the number of classes moved in the OoD dataset (i.e., whose
samples are unknowns) to test the models with different dis-
tributions of knowns/unknowns. In particular, we considered
as knowns the classes with more samples, in order to mimic a
realistic case where an IDS is trained on the well-known and
most representative types of network traffic (i.e., the benign
traffic and the most common attacks). The considered sce-
narios are called 3U, 6U and 8U in Table 3, where the number
in the abbreviation indicates the percentage (30%, 60%, and
80%, respectively) of unknowns among the overall classes,
and what classes are unknowns (U) and knowns (K).

As a reference setup for the closed-set classification and
Active Learning experiments we considered the 3U scenario.
For further analysis of the OoD Detection setting, we then
varied the number of known (K) and unknown (U) classes to
check the robustness of the models with respect to changes
in the known/unknown distributions. It should be specified
that in all the cases we randomly sub-sampled the unknown
classes to obtain the same number of per-class unknowns.
The reason is that in this way we test models treating the
possible unknown distribution equally, without favoring any
particular region of the input space.

6 Numerical results

6.1 Models implementation details

Before getting into the numerical results, we report some
details on how we implemented the considered models:

• NN: We considered a Neural Network with 2 fully con-
nected hidden layers with 64 neurons each and ReLU as
activation function [32].To reduce overfitting we added
2 layers of batch normalization [62] after each single
hidden layer. Moreover, for each layer, we employed
the L2 regularizer with a weight decay β = 0.1 [32].
The training process is performed using the Adam opti-
mizer [63] with an initial learning rate of 10−2 and the
cross-entropy as loss function [32]. The training data is
presented to the NN in batches of 128 samples for up
to 10 epochs. All the parameters and hyperparameters

were chosen to minimize the loss on the validation set:
we explored different settings leveraging the Tree Parzen
Estimator (TPE) Bayesian optimization algorithm imple-
mented in the Optuna library [64]. We implemented the
classifier using Google’s TensorFlow platform [65] ver-
sion 2.12.

• Energy-Based [42]: We considered the same implemen-
tation of NN with the only difference that we added, in
the formof a Python script, the energy-score computation
from the logits.

• DDU [33]: Starting from the previously-described NN
architecture, we added in the form of a Python script a
residual connection to each layer and we estimated the
per-class density distribution in the last hidden layer of
64 neurons, following [33]. For training this model we
selected a batch size of 256 samples, which provides a
more stable training on the validation set.

• BNN: The architecture is the same as the previous NN
but without the batch normalization layers. In order to
implement the Variational Inference approximation we
relied on the TensorflowProbability library [66] version
0.20, exploiting DenseFlipout layers [67]. We trained the
network for 10 epochs with batches of 128 samples using
Adam optimizer with a learning rate of 10−2 and the
ELBO as loss function [36]. At test time, in order to
obtain the predictive distribution for a given input, we
computed 10 forward passes through the network, each
time by randomly sampling the weights from the inferred
posterior distribution.

• UC-BNN: The implementation follows the architecture
of previously described BNN architecture, both in terms
of parameters and hyperparameters. The only difference,
according to the description of the approach reported in
Sect. 4.2, is that here we added a first linear layer nec-
essary for implementing the skip connections and we
changed the activations function for the two hidden lay-
ers from ReLU to LeakyReLU and ELU, respectively.
Moreover, we added a skip connection to each layer and
we trained the network for 10 epochs with batches of
128 samples, as for the previous BNN model. Also this
neural network has been implemented through Tensor-
flowProbability platform. Lastly, themean feature vector
z and covariance matrix � are estimated through the
MinimumCovarianceDeterminant covariance estimator,
implemented in Scikit-learn [68]. Formaking predictions
regarding a given input, we computed 10 forward passes
to obtain the predictive distribution and the mean feature
vector z, which is then exploited to gauge the predicted
uncertainty.

• RF: We used the Random Forest Classifier from Scikit-
learn [68]. The number of trees within the forest is
set to 25, while the other hyperparameters are standard
from [68], and we use bootstrapping to induce diversity
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between the trees of the forest. The described setup has
been found to maximize the validation accuracy at a rea-
sonable computational cost.

• EFC [24]: All the experiments related to this model are
based on the public repository made available by the
authors considering its standard parameters [24].

6.2 Experimental setup and computational times

All the experiments were performed on a workstation with
Ubuntu-Linux operating system, 64 GB of RAM, and
equipped with an Intel Core Xeon 8-Core CPU. The soft-
ware exploited is model-specific and it has been detailed in
the previous sub-section for each model.

From the training timeperspective, givenour experimental
setup, RandomForest is the fastest algorithm (∼ 40s on CIC-
IDS), while standard MLP-based models (i.e., NN, Energy-
Based and DDU) and BNN-based models require roughly
one order of magnitude more time (∼ 200s for MLP-based
and ∼ 250s for BNN-based on CIC-IDS), while EFC [24]
requires another one order of magnitudemore time (∼ 1500s
on CIC-IDS). On the other hand, at test time, BNN-based
models are the slowest (∼ 20μs per sample), roughly anorder
ofmagnitudemore than standardMLP-basedmodels (∼ 2μs
per sample) andRandomForest (∼ 1μs per sample). As said,
the difference at test time between BNN-based and MLP-
based models is given by the need, for the former models, of
computing 10 forward passes instead of just 1, which makes
their test time 10x higher.

6.3 Closed-set classification

In this section we compare the models through the lens
of the usual closed-set classification for the 3U scenario (see
Table 3) by considering the overall Accuracy, the macro F1-
Score (F1-Macro, i.e., an arithmetic mean of the F1-Score of
each class) and the weighted F1-Score (F1-Weighted, i.e., a
meanof theF1-Score of each classweighted by the number of
per-class samples). Moreover, we reported also two common
metrics for measuring the calibration of a classifier, i.e., the
Expected Calibration Error (ECE), and the Maximum Cali-
bration Error (MCE) [12, 69].

A model is said to be calibrated if its predicted proba-
bilities match the empirical frequencies: for instance, if a
classifier predicts p(y = k | x) = 0.8 for a certain set of
inputs, then we expect the class k to be the true label of
the related inputs for about 80% of the time. It is possible
to assess calibration by dividing the predicted probabilities
into a finite set of M bins and then, for each bin, assess the
discrepancy between confidence and accuracy of samples
whose prediction confidence falls into the considered bin.
More precisely, the Expected Calibration Error is defined as
ECE = ∑M

i=1
Bi
n |acc(Bi ) − conf(Bi )|, where n is the num-

ber of samples and Bi is the set of indices of samples whose
prediction confidence falls into the i-th bin [12]. For risk-
sensitive applications, where reliable confidence measures
are necessary, it is possible to rely on the MCE, computed as
the maximum discrepancy between confidence and accuracy
over the bins [12]. The lower ECE and MCE, the better.

In Table 4 we report the mean value for each metric, along
with its standard error. These quantities are computed by
repeating the train-test loop 16 times with different random
initializations of the training algorithm, to check the robust-
ness of the classifiers with respect to the training procedure.
ECE and MCE are computed by partitioning the prediction
interval into 10 bins, as in [12].

On both datasets, Random Forest achieves the highest
performance, while NN-based approaches (i.e., NN, Energy-
Based, DDU, BNN and UC-BNN) are less competitive.
However, it is interesting to note that BNN-based mod-
els (i.e., BNN and UC-BNN) perform significantly better
than the standard NN (and related methods), despite they
basically share the same architecture, on both datasets. The
reason for that lies in how the two approaches (NN-based
and BNN-based) make their prediction and in particular in
the Bayesian model averaging of Eq. (1), which is benefi-
cial also for improving classification performance (in terms
of Accuracy and F1-Score), and not only for uncertainty
quantification [31, 70]. Moreover, it should be noted that
BBN-based models, present a more stable performance than
traditional NNs, represented by a smaller standard error on
the different classification metrics. Note that for EFC we do
not report any standard error since this quantity is negligi-
ble for this model. Finally, it is worth mentioning that NN,
Energy-Based and DDU achieve comparable performance,
since the first twomodels share exactly the same architecture,
while the last one only adds residual connections and spec-
tral normalization. Additionally, it can be concluded that the
architectural changes introduced by the proposed approach,
UC-BNN, have only a marginal impact on the performance
of BNN in the usual classification setting. Nevertheless, the
proposed model continues to exhibit superior performance
compared to NN-based models.

From the point of view of the calibration, all models show
similar performance, except Random Forest which shows
slightly higher values. We did not report ECE and MCE for
EFC as it does not predict a probability distribution as output.

In order to further investigate how well models provide
truthful uncertainty estimation on their prediction, we select
a subset of predictions whose confidence is above a vary-
ing threshold and, by applying the decision rule in Eq. (3),
we compute the Accuracy only on the most certain outputs,
rejecting the others. By increasing the threshold we expect
an increase in the number of Rejections as well as an increase
in the overall Accuracy. In Fig. 3 we report the plots of
the Accuracy-Rejections curve for non-Bayesian NN-based
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Table 4 Test set performance metrics

Closed-set classification
Model Accuracy F1-Weighted F1-Macro ECE MCE

ToN-IoT

NN 91.8 ± 0.6 91.7 ± 0.6 86.1 ± 0.7 0.777 ± 0.006 0.839 ± 0.002

Energy-based [42] 91.5 ± 0.6 91.5 ± 0.6 86.5 ± 0.7 0.775 ± 0.006 0.838 ± 0.002

DDU [33] 92.6 ± 0.4 92.4 ± 0.3 88.0 ± 0.6 0.785 ± 0.006 0.842 ± 0.002

BNN 96.55 ± 0.01 96.52 ± 0.01 93.85 ± 0.01 0.810 ± 0.002 0.841 ± 0.002

RF 98.291 ± 0.001 98.314 ± 0.001 96.652 ± 0.002 0.817 ± 0.0001 0.854 ± 0.001

EFC [24] 85.11 86.1 72.3 – –

UC-BNN (ours) 96.50 ± 0.01 96.48 ± 0.01 93.52 ± 0.01 0.809 ± 0.002 0.839 ± 0.002

CIC-IDS

NN 96.4 ± 0.2 96.5 ± 0.3 81.1 ± 0.4 0.877 ± 0.001 0.869 ± 0.001

Energy-based [42] 96.5 ± 0.2 96.4 ± 0.2 82.3 ± 0.4 0.876 ± 0.001 0.868 ± 0.001

DDU [33] 97.1 ± 0.2 97.2 ± 0.2 85.3 ± 0.3 0.878 ± 0.001 0.869 ± 0.001

BNN 98.95 ± 0.01 98.89 ± 0.01 96.97 ± 0.02 0.860 ± 0.001 0.835 ± 0.001

RF 98.99 ± 0.001 98.91 ± 0.001 97.252 ± 0.001 0.875 ± 0.0001 0.874 ± 0.001

EFC [24] 98.85 98.74 94.75 – –

UC-BNN (ours) 98.91 ± 0.01 98.48 ± 0.01 97.13 ± 0.01 0.846 ± 0.001 0.841 ± 0.001

models (i.e., NN, Energy-Based and DDU, which perform
the same), BNN models (including our proposal UC-BNN)
and Random Forest. EFC cannot be evaluated from this point
of view since it does not provide uncertainty on its predic-
tions. More specifically, we report the mean accuracy and the
standard deviation computed over 16 experiments.

It is possible to notice that in the range of low Rejec-
tions the Accuracy increases monotonically for all models,
but for high Rejection percentages (i.e., by keeping only the
most certain samples), the Accuracy of non-Bayesian NN-
based models drops. This reflects the fact that standard NNs
tend to give misleading confidence predictions, as reported
also in [30, 37] and detailed in Sect. 3.1, leading those mod-
els to assign high confidence to samples that are, in fact,
wrongly classified. On the other hand, BNN-based models,
including UC-BNN, show a monotonic increase in accuracy,
which reflects the expected behavior of proper and mean-
ingful uncertainty estimates, and the same phenomenon is
experienced also by RF. It is also worth noting that the pro-
posed approach, UC-BNN, does not alter the performance of
BNN in termsof uncertainty estimates on iDdata, as expected
during the design of this method. It is worth mentioning that
we also found similar behaviours to those appearing in Fig. 3
for the F1-Score, but we do not report the plot for the sake
of conciseness.

In conclusion, this analysis emphasizes the importance of
having proper uncertainty estimates: if the confidence esti-
mates are meaningful, one can trust the model’s predictions
when the reported uncertainty is low and rely on a differ-
ent strategy (e.g. the intervention of a human expert) when

Fig. 3 Accuracy-Rejections plot for different models and datasets eval-
uated on the test sets. The accuracy is computed only on a subset of test
samples, by rejecting instances classified with a decreasing degree of
uncertainty. Solid curves represent the mean accuracy, while bands rep-
resent one standard deviation (negligible for RF, BNN and UC-BNN)
over 16 repeated experiments. Non-Bayesian NN-based models show
overconfident predictions by wrongly classifying the most certain sam-
ples
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the model is not confident, especially if the cost of a wrong
prediction may be severe.

6.4 Active learning

As we already mentioned, the real-time collection and
labelling of large volumes of network traffic present several
issues. Active Learning can exploit the epistemic uncertainty
estimation of a given model to acquire (and hence label)
the smallest amount of data that is relevant for the training
process. We evaluate different models exploiting different
acquisition functions:BALD (i.e., the epistemic uncertainty),
the total uncertainty (exploited for instance in [47]), and a
random acquisition function as a baseline.

We begin with a detailed analysis of the numerical results
obtained for the ToN-IoT dataset, followed by those for the
CIC-IDS dataset.

In particular, for ToN-IoT, we started the Active Learn-
ing loop with 105 samples (i.e., ∼ 1% of the overall dataset)
and added samples until the model reached the desired clas-
sification score, with an acquisition size of 105 samples at
each step. The acquisition size was chosen to have a reason-
able trade-off between collected size and computational cost
while performing the experiments. At each step, the model
is trained on the test set and evaluated in terms of the Macro
F1-Score, to give the same weight to each class, and these
experiments have been repeated 5 times for each model and
acquisition function. To summarize the results we report the
mean Macro F1-Score and the standard deviation, computed
on the test set, as a function of the acquired training dataset
size, expressed as a percentage of the full training set.

Figure4 shows the results for the BNN-based models,
including UC-BNN: BALD acquisition function performs
better than acquiring data at random and selecting points
exploiting only the total predictive uncertainty. By exploit-
ing BALD as an Active Learning acquisition strategy it is
possible to reach the expected F1-Score (i.e., that obtained
by considering the full training dataset) with just ∼ 11%
of the samples, which may be seen as a significant reduc-
tion in the effort of storing data, especially in storage and
memory-constrained scenarios (e.g. Edge Computing), and
in human intervention for labelling them. The results once
again confirm the significant benefits brought by a decom-
position of aleatoric and epistemic uncertainty. Finally, it
is noticeable that the architectural differences between UC-
BNN and BNN initially affect performance within the Active
Learning loop. However, after a few iterations, even UC-
BNN is capable of converging to its optimal performance
by leveraging the model’s predicted epistemic uncertainty,
without any correction, as a sampling strategy. We can thus
conclude that, in the long-term, UC-BNN does not signifi-
cantly affect Active Learning capabilities of BNN despite its

Fig. 4 Active Learning experiments with BNN-based models for the
ToN-IoT dataset. Solid curves represent the mean Macro F1-Score for
each acquired batch of data, while bands represent one standard devia-
tion

Fig. 5 Active Learning experiments with non-Bayesian NN models
(i.e., standard NN and DDU) on ToN-IoT. Solid curves represent the
mean Macro F1-Score for each acquired batch of data, while bands
represent one standard deviation

architectural changes, although the F1-score stabilized to a
slightly smaller value.

Figure5 shows the Active Learning experiments results
for non-Bayesian NN-Based models. In particular, we tested
NN by acquiring data exploiting a random acquisition func-
tion and the total uncertainty, given by the entropy of the
softmax layers output. Energy-based is not considered as its
obtained results are the same as for NN. Then, we employed
DDUto sample point according to their density in the features
space, so that a decomposition of epistemic and aleatoric
uncertainty can be performed and the former can be used
by the Active Learning loop. In this case, it was possible
to obtain a faster convergence to the performance obtained
with the overall dataset. However, it should be noted that
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Fig. 6 Active Learning experiments with Random Forest on ToN-IoT.
Solid curves represent themeanMacroF1-Score for each acquired batch
of data, while bands represent one standard deviation

traditional NN-based models (including DDU) require much
more data than BNN-based ones (∼ 35% of the dataset sam-
ples) to reach the desired performance, and thus are in general
less competitive for Active Learning.

Figure6 shows the experiments for the Random Forest.
In this case sampling with BALD and the total uncertainty
gives almost comparable performance with respect to a ran-
dom acquisition function. The fact that batch-based Active
Learning does not significantly improve Active Learning for
RandomForest was already noted in the literature in different
contexts [71, 72], not related to network traffic classification.
However, the obtained results make it possible to conclude
that Random Forest requires a much smaller amount of train-
ing data with respect to NN-based approaches, as with a
random acquisition it is possible to reach the desired per-
formance with only ∼ 10% of samples of the full training
dataset.

We conducted the same experiments on CIC-IDS, begin-
ning with an initial training dataset that consisted of 1% of
the total training samples, and utilizing acquisition steps that
corresponded to 1% of the entire dataset. Figure7 shows
the Active Learning experiments regarding the BNN-based
models: once again, BALD acquisition strategy outperforms
the other acquisition strategies with UC-BNN converging
to its optimal performance using only approximately ∼ 9%
of the entire dataset. Figures8 and 9 report the results for
non-Bayesian NN models and RF, respectively, with similar
trends obtained on ToN-IoT.

6.5 Out-of-distribution detection

In this section we discuss the numerical results for OoD
Detection. In order to evaluate the performance of different
models, we formulate OoD Detection as a binary classifica-

Fig. 7 Active Learning experiments with BNN-based models on CIC-
IDS. Solid curves represent themeanMacro F1-Score for each acquired
batch of data, while bands represent one standard deviation

Fig. 8 Active Learning experiments with non-Bayesian NN models on
CIC-IDS. Solid curves rep- resent the mean Macro F1-Score for each
acquired batch of data, while bands represent one standard deviation

tion problem (known vs. unknown) so that the comparison
may be performed in terms of ROC Curve and Area Under
the ROC (AUROC) [73] for each model (the higher AUROC,
the better). In this way it is possible to fairly compare
the classifiers in a threshold-independent manner and to
evaluate their discriminative performance in terms of OoD
Detection. Moreover, AUROC has the advantage of being
insensitive with respect to the imbalance of the classes (i.e.,
knowns/unknowns) [73], which makes this metric particu-
larly well-suited in our scenario.

It should be emphasized that a good IDS should operate
in a regime of low False Positive Rate (FPR), i.e., it should
provide a low rate of false unknowns. For this reason, we
report also the AUROC in the region below 20% of false pos-
itives, to compare the different methods in a realistic region
of deployment and assuming that 20%of false positives is the
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Fig. 9 Active Learning experiments with Random Forest on CIC-IDS.
Solid curves represent themeanMacroF1-Score for each acquired batch
of data, while bands represent one standard deviation

Table 5 Test set performance metrics for ToN-IoT with three unknown
classes

OoD Detection 3U (ToN-IoT)
Model AUROC20* AUROC

NN 0.34 ± 0.02 0.75 ± 0.01

Energy-based [42] 0.38 ± 0.02 0.76 ± 0.02

DDU [33] 0.65 ± 0.01 0.805 ± 0.007

BNN 0.61 ± 0.02 0.84 ± 0.01

RF 0.789 ± 0.001 0.898 ± 0.001

EFC [24] 0.74 0.94

UC-BNN (ours) 0.69 ± 0.02 0.91 ± 0.02

Random 0.1 0.5

maximum acceptable value. The AUROC below the 20% of
FPR has been normalized (denoted with *) so that a perfect
classifier with T PR = 1 for each value of FPR will have an
AUROC20* of 1. Moreover, as a reference, we report also
the AUROC for a random classifier.

As described in Sect. 5 we partitioned both datasets by
varying the fraction of known/unknown classes. For the sake
of conciseness, we report a detailed analysis of the results
for the ToN-IoT dataset, while for CIC-IDS we report the
average results across the different scenarios.

In the first scenario (3U scenario), we considered themod-
els trained on 7 known classeswhose closed-set classification
performance is summarized in Table 4. After such training,
we fed themodelswith input belonging to the three remaining
(novel) classes. In Table 5, the results are summarized with
mean values and corresponding standard errors. By look-
ing at AUROC20*, in this setting RF seems to be the most
promising method, followed by EFC, and UC-BNN among
the NN-based models. Figure10 shows the ROC curves for
the considered models. It can be observed that certain mod-

Fig. 10 Mean ROCs for the 3U scenario of ToN-IoT

Table 6 Test set performance metrics for ToN-IoT, with six unknown
classes

OoD Detection 6U (ToN-IoT)
Model AUROC20* AUROC

NN 0.39 ± 0.02 0.77 ± 0.02

Energy-based [42] 0.50 ± 0.02 0.815 ± 0.02

DDU [33] 0.63 ± 0.01 0.85 ± 0.01

BNN 0.65 ± 0.02 0.89 ± 0.04

RF 0.633 ± 0.001 0.804 ± 0.001

EFC [24] 0.58 0.88

UC-BNN (ours) 0.72 ± 0.02 0.92 ± 0.02

Random 0.1 0.5

els exhibit higher ROC curves in specific regions of False
Positive Rate (FPR) and lower curves in other regions (e.g.,
DDU performs better at low FPR than BNN, but worse at
high FPR). As a result, this behaviour may lead to AUROC
values that are misleading when compared and justifies our
decision to focus on AUROC at low FPR (AUROC20*) for
a fair comparison between methods. It is possible to notice
that UC-BNN significantly improves upon BNN, especially
at low false positives.

To further investigate the behaviour of those models, we
considered two additional scenarios by reducing the number
of known classes and increasing the unknowns.

We started by considering 40% of classes as known (i.e.,
Benign, DDoS, Scanning and XSS) and the remaining 60%
as unknowns (6U scenario). Since here we are interested in
OoD Detection, we did not reported the closed-set classi-
fication performance. However, it is worth mentioning that
the closed-set performance increased by almost 2% of F1
Score and Accuracy for each classifier, with respect to the
3U scenario. Table 6 summarizes the metric values for nov-
elty detection: in this scenario, UC-BNN exhibits the highest
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Table 7 Test set performancemetrics for ToN-IoT, with eight unknown
classes

OoD Detection 8U (ToN-IoT)
Model AUROC20* AUROC

NN 0.40 ± 0.02 0.75 ± 0.02

Energy-Based [42] 0.51 ± 0.02 0.84 ± 0.02

DDU [33] 0.56 ± 0.01 0.89 ± 0.01

BNN 0.72 ± 0.02 0.91 ± 0.02

RF 0.780 ± 0.002 0.797 ± 0.002

EFC [24] 0.23 0.74

UC-BNN (Ours) 0.74 ± 0.02 0.94 ± 0.02

Random 0.1 0.5

Fig. 11 Mean ROCs for the 8U scenario of ToN-IoT

values for AUROC and AUROC20*, while BNN performs
slightly better than Random Forest and DDU. For the sake of
conciseness, we did not reported the plot of ROC curve for
this intermediate scenario.

The last experiments were performed on the 8U Scenario,
which is represented by only 20% of known classes (i.e.,
Benign and Scanning) and 80% of unknown classes. This is
an extreme case, where malicious traffic is mainly unknown.
In this setting, the three best models are represented by RF,
UC-BNNandBNN,whileEFCperformancedrops (seeTable
7). Figure11 shows the ROC curves for the models in this
scenario. In this scenario it is possible to notice that UC-
BNN outperforms other NN-based models, and it exhibits
the highest True Positive Rate across awide region of interest
of low False Positive Rate, between ∼ 0.07 and ∼ 0.4

We tested the models also on the CIC-IDS dataset, by
exploiting the same aforementioned scenarios of knowns/
unknowns ratios. Table 8 reports the average results, along
with the standard deviation (STD) over the three different sce-
narios, for both datasets. In general, it is possible to state that
some methods (i.e., EFC, RF and DDU) are very sensitive to

Table 8 Overall test set performance metrics

OoD Detection (average)
Model AUROC20* AUROC

Mean STD Mean STD

ToN-IoT

NN 0.38 0.03 0.76 0.01

Energy-based [42] 0.46 0.06 0.80 0.03

DDU [33] 0.63 0.05 0.85 0.03

BNN 0.66 0.05 0.88 0.03

RF 0.73 0.07 0.83 0.05

EFC [24] 0.55 0.23 0.85 0.08

UC-BNN (ours) 0.72 0.02 0.92 0.014

CIC-IDS

NN 0.15 0.03 0.68 0.04

Energy-based [42] 0.16 0.04 0.68 0.05

DDU [33] 0.39 0.08 0.73 0.07

BNN 0.30 0.03 0.70 0.03

RF 0.41 0.06 0.69 0.05

EFC [24] 0.36 0.03 0.69 0.05

UC-BNN (ours) 0.39 0.02 0.73 0.03

the particular knowns-unknowns setting: this is reflected on
high values of the standard deviation of the AUROC, espe-
cially the AUROC20*. Moreover, it is possible to notice that
RF, BNN-basedmodels andDDU, i.e., the uncertainty-aware
methods able to decouple epistemic and aleatoric uncertainty,
lead to decent results in terms of OoD Detection capabil-
ities and outperform the other approaches, including the
ad-hoc ones such as Energy-Based and EFC. Overall, the
best-performing models in terms of AUROC20* are RF and
UC-BNN, however UC-BNN exhibits more stable and con-
sistent performance across different scenarios, as indicated
by its low value of standard deviation (STD), more than
almost three times lower than RF Moreover, it is possible to
notice that regarding the overall AUROC metric, UC-BNN
presents the highest value on ToN-IoT, while on CIC-IDS
it is at the same level of DDU. It is worth mentioning that
the OoD detection performance of the considered models is
lower on the CIC-IDS dataset, but shows consistent behavior
with that observed on ToN-IoT.

In particular, it is possible to state that uncertainty-aware
models are particularly interesting, since they give also good
results in the usual closed-set classification andwhen adopted
in the Active Learning loop, being thus the most promising
methods to address all the three problems related to intrusion
detection introduced in Sect. 4.

Overall, it is possible to notice that uncertainty-aware RF
[38] and UC-BNN should be considered as a strong base-
line in the field of network intrusion detection, although RF
presents a higher variance in the results with respect to BNN
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and especially UC-BNN. Furthermore, we want to highlight
that the UC-BNN method demonstrates superior perfor-
mance compared to other NN-based models. This under-
scores the effectiveness of the proposed approach in enhanc-
ing OoD detection capabilities without adversely affecting
closed-set classification performance. Last, it should be noted
that standard NNs give poor performance in OoD Detection:
this highlights the importance of enhancing NNs with uncer-
tainty awareness (e.g. by adopting BNN-based models or
DDU) for developing a NN-based trustworthy IDS.

7 Conclusion

This paper focuses on three fundamental and closely-related
problems in the field of trustworthy ML-based network
intrusion detection: (i) avoiding dangerous overconfident
predictions in typical closed-set classification settings, (ii)
performing efficient Active Learning on incoming network
flows, and (iii) enabling Out-of-Distribution Detection to
effectively identify unknowns. We argue that these problems
should all be addressed, and the goal of our research has been
assessing various ML models to solve them, with particu-
lar interest on methods able to guarantee proper uncertainty
quantification.

Our research reveals that conventional Neural Network-
based approaches are inadequate for trustworthy network
intrusion detection, due to their limited capability of quanti-
fying predictions’ uncertainty and detecting Out-of-
Distribution samples. In contrast, uncertainty-aware meth-
ods such as BNN-based models and Deep Deterministic
Uncertainty demonstrate promising potential to solve all the
three problems.

Specifically, we propose a custom BNN-based model,
called UC-BNN, which improves OoD detection capabilities
with respect to standard BNN and stands out for its robust-
ness, providing the most consistent results in the different
OoD detection experiments, without significantly reducing
the closed-set classification performance. In addition and
not surprisingly, our analysis brings out uncertainty-aware
Random Forests as another strong baseline for building a
trustworthy ML-based IDS.

As a future work we would like to leverage contin-
ual learning and class-incremental learning to update the
uncertainty-awareMLmodel at run timewith novelties,with-
out forgetting the previously learned classes. Moreover, it
would be interesting to investigate the relations between fea-
ture importance and and uncertainty quantification. Last, we
would like to explore distributed learning approaches (e.g.
Federated Learning) to build uncertainty-aware models in
a collaborative way and make them fully suitable for Edge
Computing operations.
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