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Abstract
In this paper we consider a portfolio selection problem defined for irregularly spaced
observations. We use the Independent Component Analysis for the identification of
the dependence structure and continuous-time GARCH models for the marginals. We
discuss both estimation and simulation of market prices in a context where the time
grid of price quotations differs across assets. We present an empirical analysis of
the proposed approach using two high-frequency datasets that provides better out-of-
sample results than competing portfolio strategies except for the case of severe market
conditions with frequent rebalancements.

Keywords Irregular grids · Independent Component Analysis · Continuous
GARCH · Risk measures
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1 Introduction

Conditional heteroskedasticity is a well-known stylized fact observed in financial time
series. Generalized Autoregressive Conditional Heteroskedastic (GARCH) models
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have been widely used since their introduction in Bollerslev (1987). The main draw-
back of GARCH models, defined in discrete time, is that they assume realizations are
collected on an equally spaced time grid, but if we consider, for example, daily data
some irregularities appear due to market closing, weekends or bank holidays. The
same holds true in high-frequency trading as market activity in small time intervals
depends on the liquidity of the asset.

The Continuous GARCH(p, q) model, namely COGARCH(p, q), introduced in
Brockwell et al. (2006) shares many similarities with the GARCH model. Indeed,
the same noise process drives both the observable and the variance process; the vari-
ance in the COGARCH(p, q) model is a Continuous ARMA (CARMA) model (see
Brockwell and Davis 2016). Differences emerge in the estimation of the two models.
Recently, Iacus et al. (2018) proposed a discrete time process that is shown to con-
verge to the COGARCH(p, q) model. The innovations in the approximating process
are constructed using the first jump approximation method (see Maller and Szimayer
2007), whilemodel parameters are estimated through the pseudo-maximum likelihood
method.

Achallenging task in portfolio selection is themodeling of the joint behavior of asset
prices. Standard approaches are based on parametric multivariate distributions, while
alternative approaches build on the possibility of separating the task of dependence
structure identification from the study of marginal features. For instance, we can
use copula functions (see Babaei et al. 2015, and references therein) or blind source
separation (see Acharyya 2008, for details). The latter is based on the assumption that
observable series are a combination of unobservable signals. Extraction of signals can
be performed for example by means of the Independent Component Analysis (ICA)
introduced in Comon (1994) that considers the observed series as a linear combination
of independent non-Gaussian signals. Starting fromBack andWeigend (1998), several
authors have applied the ICA in forecasting financial time series for example in Lu
et al. (2009) or for portfolio selection (see Madan and Yen 2004; Madan 2006). In
Hitaj et al. (2015) some parametric and nonparametric distributions are considered
for the independent components in a portfolio optimization problem for a Constant
Absolute Risk Aversion (CARA) utility function.
The ICA algorithm has been also employed for the construction of multivariate
GARCH(p, q) processes, called ICA-GARCH(p, q) (see Broda et al. 2013, for
instance) and in portfolio optimization (see Chen et al. 2007, for optimal portfolios
where the risk measure in the objective function is the Value at Risk). The ICA-
GARCH(p, q) model assumes data are equally spaced, i.e., no effect is assigned to
missing data. Moreover, if we have data observed on a regularly space time grid, for
instance daily data, we cannot generate future scenarios with a higher time frequency,
e.g., intraday data or with a lower frequency that is not a multiple of the time distance
between two observations.
We present a framework based on the ICA-COGARCH(1,1) model where the inde-
pendent non-Gaussian signals are assumed to follow a COGARCH(1,1) process. In
the literature, a similar approach in discrete-time context has been proposed in Broda
and Paolella (2009) where the extracted factors are assumed to be described through
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GARCH(1,1) models.1 As in our framework, it is based on a two-step procedure
where the estimation of the correlation structure precedes the univariate modeling
of extracted components. The main difference with our proposal is that Broda and
Paolella (2009) exploit the time structure of the dataset to identify the independent
components. In particular, the independent components are extracted by maximizing
the autocorrelation of squared returns but with additional parameter restrictions as
the procedure requires finiteness of the fourth moments of all observed financial time
series. We apply directly the FastICA algorithm in Hyvarinen and Oja (1997) to the
series of returns without considering the autocorrelation structure of data, but we do
not make any assumption on the higher moments of asset returns.
The objective function in the portfolio selection problem is a combination of the
expected terminalwealth and a specific riskmeasure2.Another possibleway to address
this modeling issue would be to use multivariate COGARCH processes as defined
in Stelzer (2010) but with additional numerical estimation burden in a multivariate
context where the fitting is based on a quasi-maximum likelihood procedure. We
propose a less complex framework and present an empirical analysis of the proposed
approach using two high-frequency datasets composed of the members of the FTSE
100 Index.
Results of the portfolio selection problem are presented for different risk aversion
profiles. We discuss the results of a rolling window strategy both from an in-sample
and from the out-of-sample point of view. The proposed approach provides better out-
of-sample results than competing portfolio strategies except for the case of financial
turmoils as observed recently during the COVID19-induced crisis.
The outline of the paper is as follows. In Sect. 2we review theCOGARCH(p, q)model
proposed in Brockwell et al. (2006) and present some results on risk quantification in
the univariate framework. In Sect. 3 we construct an ICA-COGARCH(1,1) model for
the joint dynamics of log prices and used it in a portfolio selection problem. In Sect. 4
we present some empirical results. Section 5 concludes the paper.

2 COGARCH(p, q) model

Let L = (Lt )t≥0 be a pure jump Lévy process with finite variation. We define (Gt )t≥0
as a COGARCH(p, q)process with q ≥ p if it satisfies the following system of
stochastic differential equations:

⎧
⎨

⎩

dGt = √
VtdLt

Vt = a0 + a�Yt−
dYt = BYt−dt + (

a0 + a�Yt−
)
d [L, L](d)

t

(1)

1 This approach has been coined as the CHICAGO algorithm (Conditionally Heteroskedastic Independent
Component Analysis of Generalized Orthogonal GARCH).
2 We consider the two risk measures Value at Risk (VaR) and Expected Shortfall (ES), but the framework
is generic.
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where Yt ∈ R
q is a state vector process defined as:

Yt = [
Y1,t , . . . ,Yq,t

]�
,

matrix B ∈ R
q×q has the following form:

B =

⎡

⎢
⎢
⎢
⎣

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1
−bq −bq−1 . . . −b1

⎤

⎥
⎥
⎥
⎦

and a ∈ R
q is vector defined as:

a = [
a1, . . . , ap, ap+1, . . . , aq

]�

with ap+1 = · · · = aq = 0; [L, L](d)
t is the discrete part of the quadratic variation3

of the underlying Lévy process (Lt )t≥0 and is defined as:

[L, L](d)
t =

∑

0≤s≤t

(ΔLs)
2 .

It is worth to notice that the structure of a COGARCH(p, q) model is similar to
that of a GARCH(p, q). Indeed, we have the same noise process (Lt )t≥0 that drives
the observable process (Gt )t≥0 and the variance process (Vt )t≥0. Furthermore, the
variance process (Vt )t≥0 is described through a Continuous ARMA (CARMA) model
(see Brockwell and Davis 2016; Iacus andMercuri 2015, for more details on CARMA
models) driven by the quadratic variation of (Lt )t≥0, while, in a GARCH(p,q) model,
the variance is a discrete ARMA model driven by the squares of the innovations.
As observed in Brockwell et al. (2006), the state space process Yt in (1) can be written
as a stochastic recurrence equation as reported below:

Yt = Js,t Ys + Ks,t s ≤ t,

where for fixed s and t , Js,t is a random q × q-matrix and Ks,t is a random q-vector.
Using the theory of stochastic recurrence equations, it is possible to establish sufficient
conditions for the stationarity of a COGARCH(p,q) process, for the positivity of the
variance process (Vt )t≥0 and for the existence of higher-order unconditional moments
of the process (Gt )t≥0 (see Brockwell et al. 2006; Iacus et al. 2017, for details).
Choosing q = p = 1, the solution of system (1) coincides with the COGARCH(1,1)
proposed by Klüppelberg et al. (2004).

3 If (Lt )t≥0 is a pure jump with finite variation, the quadratic variation is equal to its discrete part.
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2.1 Discrete-time approximation of COGARCH(p, q)

We quickly review a result given in Iacus et al. (2018), particularly useful in the
estimation of COGARCH(p, q) models. If (Lt )t≥0 is a finite variation process, it
is possible to construct a sequence of discrete-time processes that converges to a
COGARCH(p, q) process in the Skorokhod distance4. For each n, we consider a
sequence of natural numbers (Nn)n∈N such that lim

n→+∞ Nn = +∞ and identify a

partition of the compact interval [0, T ] as follows:

0 = t0,n ≤ t1,n ≤ · · · ≤ ti,n ≤ · · · ≤ tNn ,n . (2)

On the partition in (2), it is possible to define recursively the discrete process Gi,n as:

Gi,n = Gi−1,n +√
Vi−1,nΔti,nεi,n (3)

with
Vi,n = a0 + a�Yi,n (4)

where the innovations (εi,n)n∈N are constructed using the first jump approximation
method introduced in Maller and Szimayer (2007) (see Appendix A for details). By
construction, (εi,n)n∈N have zeromean and unitary variance. The discrete state process
Yi,n is given by:

Yi,n = Ci,nYi−1,n + Di,n

Ci,n =
(
I + ε2i,nΔti,nea�) eBΔti,n

Di,n = a0ε
2
i,nΔti,ne. (5)

As shown in Iacus et al. (2018), the pair5 (Gi,n, Vi,n)n∈N converges in the Skorokhod
distance to the solution (Gt , Vt )t≥0 of the system in (1). We are particularly inter-
ested in the behavior of (Gi,n)n∈N and (Vi,n)n∈N for p = q = 1 where the random
coefficients Ci,n , Di,n and the variance process Vi,n read:

Ci,n =
(
1 + ε2i,nΔti,na1

)
e−b1Δti,n

Di,n = a0ε
2
i,nΔti,n

Vi,n = a0 + a1Yi,n . (6)

4 The Skorokhod distance between two processes U , V defined on Dd [0, T ], i.e., the space of càdlàg
R
d -valued stochastic processes on [0, T ], is:

ρ(U , V ) := inf
λ∈Λ

{

sup
0≤t≤T

‖Ut − Vλt ‖ + sup
0≤t≤T

|λt − t |
}

where Λ is a set of strictly increasing continuous functions with λ0 = 0 and λT = T .
5 In order to avoid confusion, we do not use brackets and do not indicate time positivity in the discretized
processes.
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Observing that:

Yi,n = Vi,n − a0
a1

=
(
1 + ε2i,nΔti,na1

)
e−b1Δti,n Vi−1,n − a0

a1
+ a0ε

2
i,nΔti,n,

by straightforward algebra, we get:

Vi,n = a0
(
1 − e−b1Δti,n

)
+ Δti,na1e

−b1Δti,nε2i,nVi−1,n + e−b1Δti,n Vi−1,n

+ a1a0ε
2
i,nΔti,n

(
1 − e−bΔti,n

)
.

(7)

Notice that since ε2i,nΔti,nVi−1,n = (
Gi,n − Gi−1,n

)2, the dynamics in (7) is sim-
ilar to that of the variance in a GARCH(1,1) process with an additional term
a1a0ε2i,nΔti,n(1− e−b1Δti,n ) that depends on the i.i.d. innovations εi,n . If we con-

sider the Taylor expansion of 1 − e−x and apply it to the terms 1 − eb1Δti,n in (7), we
get:

Vi,n = a0b1Δti,n + Δti,na1e
−b1Δti,nε2i,nVi−1,n + e−b1Δti,n Vi−1,n + o

(
Δti,n

)
. (8)

We recall that by construction εi,n has zero mean and unitary variance; thus, the
process identified by Gi,n in (3) with Vi,n in (8) can be well approximated with a
GARCH(1,1) for small values of Δtn := maxi=1,...Nn Δti,n . More precisely, if we
consider an equally spaced grid, i.e., ∀i, Δti,n = T

Nn
= Δtn we have:

Gi,n = Gi−1,n + σi,nεi,n

σ 2
i+1,n = ω0,n + αnσ

2
i,nε

2
i,n + βnσ

2
i,n

where

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σi,n := √
Vi−1,n Δtn

ω0,n := a0b1Δt2n
βn := e−b1Δtn

αn := a1Δtn .

(9)

The reparameterization in (9) allows to obtain the GARCH(1,1) specification as a
special case of the COGARCH(1,1) in the case of equally spaced time grids. The
discrete process in (5) has been used in Iacus et al. (2018) for the construction of
a pseudo-maximum likelihood estimation procedure for a COGARCH(p,q) model
based on the assumption of normality for εi,n . This procedure generalizes the approach
proposed in Maller et al. (2008) for a COGARCH(1,1) model. In Appendix B we
provide some details on the pseudo-maximum likelihood method for the estimation
of COGARCH(p, q) models.

Once we have the COGARCH(p, q) parameters, we can estimate the increments
of the underlying Lévy Δ̂Lt using the approach introduced in Iacus et al. (2017) based
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on the explicit solution of the state process Yt in (1). The estimated increments Δ̂Lt

allow us to obtain the distribution of process G = (Gt )t≥0 for any time t using the
bootstrap methodology Carlstein (1986).

2.2 Risk measures in a COGARCH(p, q) model

Let (Ω,F , (Ft )t≥0, P) be a filtered probability space. We suppose the price of a risky
asset with initial value P0 to be modeled as:

Pt = P0 exp(μt + Gt ) (10)

where μ is a real constant and G = (Gt )t≥0 is a COGARCH(p, q) described through
the relations in (1). Using (10), we define a loss function Lt as:

Lt = P0
[
1 − exp (μt + Gt )

]
. (11)

Consequently, VaRα (Lt ) and ESα (Lt ) are computed, respectively, as:

VaRα (Lt ) := inf
(
l : FLt (l) ≥ 1 − α

)

ESα (Lt ) := E (Lt |Lt ≥ VaRα (Lt ) ) (12)

where FLt (l) = Pr (Lt ≤ l) is the cumulative distribution function (cdf) of the loss
at time t . The two risk measures in (12) depend only on the distribution of the loss
functionLt at a fixed horizon t . In our framework, under the assumption that the series
ln (Pt ) is ergodic and observed on an irregular spaced grid, the loss distribution can
be obtained following these steps:

– Let P0, P1, . . . , Pi , . . . , Pn be the prices observed at t0, t1, . . . , ti , . . . , tn . The drift
μ is estimated as follows:

μ̂ =
∑n

i Xi

n
where Xi = ln (Pi ) − ln (Pi−1)

Δti

and Δti = ti − ti−1. Starting from:

Xi = μ + Gi − Gi−1

Δti

the estimator μ̂ is written as6:

μ̂ = μ + 1

n

n∑

i=1

Gi − Gi−1

Δti
. (13)

6 μ̂ is an unbiased estimator of μ:

E
[
μ̂
] = μ + 1

n

n∑

i=1

E
(
Gi − Gi−1

)

Δti
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– Estimate the discrete-time sequence Ĝ0, Ĝ1, . . . , Ĝi , . . . , Ĝn obtained from (10).
– Apply the maximum pseudo-likelihood approach in Iacus et al. (2018) in order to
obtain the COGARCH((p, q) parameters. The underlying Lévy process is esti-
mated used the first jump approximation scheme. We provide some details in
Appendix B.

– Estimated Lévy increments and COGARCH parameters are used as inputs for the
distribution of loss function Lt at any maturity t . Simulated values are obtained
through block bootstrapping (see Carlstein (1986) for details). Finally, compute
VaRα (Lt ) and ESα (Lt ) in (12) using their sample estimators.

3 ICA-COGARCH (p, q) model and portfolio selection

We consider a one period [0, T ] portfolio optimization problem where the investor is
not allowed to rebalance the portfolio in an intermediate time instant t ∈ [0, T ]. We
consider an optimization problemwhere the objective function is a linear combination
of the expected value of the final gain GT and the risk associated with the final loss
LT where LT = −GT .
The considered market is composed of N̄ risky assets whose prices are the entries of
the N̄ -dimensional stochastic process Pt = [

P1,t , . . . .PN̄ ,t

]
. We denote with ci the

number of shares of the i-th asset bought at time 0. The static optimization problem
can be formalized as follows:

max
c1,...cN̄

U (LT ) := −E [LT ] − λρ (LT )

s.t.

{∑cN̄
i=1ci Pi,0 = W0

ci ≥ 0 ∀ i = 1, . . . cN̄

(14)

The final loss LT is defined as:

LT = W0 − WT =
N̄∑

i=1

ci
(
Pi,0 − Pi,t

)
(15)

E
(
Gi − Gi−1

) = 0 when the underlying Lévy process (Lt )t≥0 satisfies E (L1) = 0. The mean square
error of the estimator μ̂ tends to zero as n → +∞. Indeed:

MSE
(
μ̂
) = E

[(
μ̂ − μ

)2
]

= 1

n2
E

⎡

⎢
⎣

⎛

⎝
n∑

i=1

Gi − Gi−1

Δti

⎞

⎠

2
⎤

⎥
⎦

= 1

n2

n∑

i=1

E
[(
Gi − Gi−1

)2
]

(Δti )
2 + 2

n2

n−1∑

i=1

n∑

j=i+1

E
[(
Gi − Gi−1

) (
G j − G j−1

)]

ΔtiΔt j
.

Under the condition that ensures the existence of the secondmoment of the COGARCH process (see Brock-
well et al. 2006, for more details) we have E

[(
Gi − Gi−1

) (
G j − G j−1

)] = 0 and limn→+∞ MSE
(
μ̂
) =

0.
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where W0 and WT are the initial and the final wealth, respectively; λ is a positive
constant representing the marginal contribution of the risk measure to the objective
function U (LT ), i.e., an additional unit of the risk measure ρ (LT ) corresponds to
a reduction of λ units in the objective function U (LT ); intuitively7 λ can be also
interpreted as the risk aversion. In our framework short selling is not allowed. If the
risk measure ρ (LT ) is a positive homogeneous function, the objective function in (14)
can be rewritten as:

U (LT ) = W0

⎡

⎣
N̄∑

i=1

ci Pi,0
W0

E

(
Pi,t
Pi,0

− 1

)

− λρ

⎛

⎝
N̄∑

i=1

ci Pi,0
W0

(

1 − Pi,t
Pi,0

)
⎞

⎠

⎤

⎦ . (16)

Let Ri,t = Pi,t
Pi,0

−1 denote the linear return on the interval [0, T ]. Definingwi = ci Pi,0
W0

as the portfolio weight, the problem in (14) can be written equivalently as:

W0

[

max
w1,...wN̄

∑N̄
i=1wi E

(
Ri,t

)− λρ
(
−∑N̄

i=1wi Ri,t

)]

s.t.

{
∑N̄

i=1wi = 1
wi ≥ 0 ∀ i = 1, . . . N̄

(17)

Observe that the solution w� =
[
w�
1, . . . , w

�

N̄

]�
of (17) does not depend on the initial

wealth W0. For the computation of expected returns, only the marginal distributions
are required, while for the risk measure computed on the loss distribution of the port-
folio we need the joint distribution of assets. In Sect. 3.1 we review the mathematical
description of the ICA. In Sect. 3.2 we present the ICA-COGARCH(p, q) model for
portfolio selection. Section 3.3 provides some theoretical results in terms of conver-
gence.

3.1 Independent Component Analysis

The Independent Component Analysis (ICA) introduced in Comon (1994) is a sta-
tistical method that considers observed series as a linear transformation of latent
independent signals. Under the assumption that the observed return series are linear
combinations of unobserved independent components, the observed vector process
X = [

X1, . . . , XN̄

]� can be expressed as:

X = A S, (18)

where A is a N̄ × K mixing matrix and the vector S contains K independent ran-
dom variables called independent components (ICs). The independent components
are determined by looking for a K × N̄ matrix W such that:

S = W X . (19)

7 The formal proof of this intuition requires the axiomatic definition of the investor’s preferences.
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There are different statisticalmethodologies for obtaining the independent components
in S and the linear transformationmatrixW based for example onmaximum likelihood
or maximization of any non-Gaussianity measure. In particular, the Fast Fixed Point
algorithm FastICA proposed in Hyvarinen and Oja (1997) is an iterative algorithm
based on the maximization of the negentropy, a measure of non-Gaussianity. The
Independent Component Analysis is a statistical method to analyze data that allow
us to work on a linear transformation of observed time series with the advantage of
dealing with independence.

3.2 Portfolio selection using ICA-COGARCH(p, q) model

The ICA-COGARCH(p, q) model combines the COGARCH(p, q) discussed in
Sect. 2 with the ICA. The idea is similar to that developed in the ICA-GARCH(p, q)
model (see Wu and Philip 2005, for details), but we have to adapt it to a context of
irregular time grids. Given a set of irregularly spaced time series, the starting point is
the definition of a common grid. The points of the grid can be obtained as the union of
time points for each asset quotation where for missing data we can use linear interpola-
tion; this grid still contains irregularities due to the dailymarket closing, weekends and
holidays. In a context with standard activity for all assets in the portfolio, we expect the
final grid to resemble the grid of the most liquid asset. An alternative approach could
be that of discarding points with missing data for at least one asset. In this framework,
we expect the final grid to be similar to the grid of the less liquid asset. Although this
second approach does not require the use of any imputation method since we do not
have missing data, it seems not to be reasonable to apply it in the presence of highly
illiquid assets as it would neglect a lot of information.

In the proposedmodel, we use the ICA algorithm to recover the independent signals
and then model each signal as a COGARCH(p, q). Indeed, we consider a market
composed of N̄ assets with prices where the dynamics of the i-th asset price is:

Pi,t = Pi,0 exp
[
μi t + Xi,t

]
i = 1, . . . , N̄ , (20)

whereμi ∈ R, while the vector process Xt := [
X1,t . . . , X1,N̄

]� is described through
the ICA-COGARCH (p, q) model defined as:

Xt = A St , (21)

A is a N̄ × K matrix and St = (
S1,t , . . . , SK ,t

)� is a K -vector process where each
entry Si,t is a COGARCH(p, q) model defined in (1).
The optimization problem in (17) requires the joint distribution of the linear returns
RT = [

R1,T , . . . , RN̄ ,T

]� that can be simulated using the following steps:

– From theobserveddata estimate themixingmatrixW in (19), theCOGARCH(p, q)
parameters for each independent component Si,t and the increments of underlying
Lévy process.

– Using the estimated increments, simulate M sample paths of independent signals(
S1,t , . . . , SK ,t

)
until maturity T .
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Portfolio Selection with Irregular Time Grids 67

– Using the simulated signals
(
S1,t , . . . , SK ,t

)
, generate the corresponding sample

path of asset prices P1,t , . . . PN̄ ,t for t ∈ [0, T ].

– Compute the linear returns RT = [
R1,t , . . . , RN̄ ,T

]� on the simulated prices.

The next step is the approximation of the objective function in (17). We consider the
sample estimators for the expected return and for the risk measure (VaR or ES).

3.3 Convergence of the approximated process to the ICA-COGARCH(p, q) model

Using the same arguments in Iacus et al. (2018) we construct a piecewise constant
vector process Xn

t = ASnt defined on the partition of the interval [0, T ] introduced in
(2). The piecewise vector process Snt has the following form:

Snt =
[
Snt,1, . . . , S

n
t,N̄

]�
, (22)

where for any j ∈ {1, . . . , N̄}, the process Snt, j is:

Snt, j := Sni, j , with t ∈ [ti−1,n, ti,n
)
,

Sni, j has the same dynamics described in (3). Here we will prove the uniform conver-
gence in probability of the process Xn

t to Xt as n → +∞.
Let ‖·‖ and ‖·‖M be the Euclidean norm and its induced matrix norm, respectively,
the following inequality holds:

∥
∥Xn

t − Xt
∥
∥ = ∥

∥ASnt − ASt
∥
∥

= ∥
∥A

(
Snt − St

)∥
∥

≤ ‖A‖M
∥
∥Snt − St

∥
∥ (23)

where ‖A‖M := sup‖x‖�=0
‖Ax‖
‖x‖ . As shown in Iacus et al. (2018), each component of

the vector Snt converges uniformly in probability to St ; therefore, we have:

sup
0≤t≤T

∥
∥Xn

t − Xt
∥
∥ ≤ ‖A‖M sup

0≤t≤T

∥
∥Snt − St

∥
∥

≤ ‖A‖M sup
0≤t≤T

N̄∑

j=1

∣
∣
∣Snt, j − St

∣
∣
∣

≤ ‖A‖M
N̄∑

j=1

sup
0≤t≤T

∣
∣
∣Snt, j − St

∣
∣
∣ ,

that implies the uniform convergence in probability of Xn
t to Xt as n → +∞.
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Fig. 1 Daily number of observed quotations for the most capitalized asset (upper plot) and the least capi-
talized asset (lower plot) of the FTSE 100 Index in 2018

4 Empirical analysis

Weconsider two high-frequency (HFT) datasets composed of prices of the components
in the FTSE 100 Index in 2018 and 2020. Intraday prices are collected every five
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minutes8 from the beginning of January 2018 at market opening (09:00 AM) to mid-
July 2018 at market closing (05:30 PM) and from the end of February 2020 to the
beginning of September 2020 following the same opening-closure time pattern. The
datasets are selected to study the performance of the proposed model during relatively
stablemarket conditions (as observed in the dataset referring to the calendar year 2018)
and during a period of severe financial stress (observed in the first half of 2020)9.
The analysis performed revolves around two main parts. We first determine optimal
weights using the methodology described in Sect. 3.2 with an in-sample window of
length one month10. Then, we study the out-of-sample portfolio performance in terms
of monetary wealth for different lengths of the out-of-sample window (one week, two
weeks and three weeks), i.e., the rebalancing period11.

Figure 1 reports the number of daily quotations for themost and the least capitalized
members of the FTSE 100 Index at the beginning of 2018 from where we can have an
idea if irregularities in the time grids of quoted prices.

The first dataset is composed of 14078 points of successive time instants where we
have price quotations for at least one asset in the portfolio. We have 7927 points in
the original grid with at least one missing data for the components of the FTSE 100
Index12. Following the strategy of removing the whole row in the dataset with at least
one missing data, we obtain a loss of information due to the elimination of 55% of
the original observations; the final dataset would contain only 621,251 observations.
Moreover, the maximum distance Δt between two subsequent trading instants within
a trading day would become 180 minutes instead of the 10 minutes observed in the
original grid.
The alternative approach, based on the numerical approximation on the dataset of
prices, introduces only 2% of artificial data. Analyzing the frequency of the missing
data in each point in the time grid, we observe that we have only one missing data in
3799 of the cases and two missing data in 2096 of the cases. To complete the dataset,
we use linear interpolation since we have no more than two missing data in 74.35%
of the cases with at least one missing point in the trading day.
The second dataset is composed of 14086 points of successive time instants: we have
29110 missing data over the total 1422686 points (almost 2%) and we have 5705 time
instants with at least one missing data for the components. If we follow the strategy of
removing thewhole row that contains amissing datawe have a loss of about 40%of the
original observations; the dataset of 2020 is composed of 846,481 observations with a

8 Bloomberg provides price quotations with a minimum frequency of one minute. In order to minimize the
impact of noise, we downsample the dataset to a five-minute frequency (see Hansen and Asger (2006) as
reference).
9 The volatility of the FTSE100 Index in 2020, measured through the FTSE 100 IVI 30 index, almost
doubles the values observed for the same index in 2018 with a peak that reaches the level 0.7.
10 For the first window we use the weights published by FTSE Russell as reported in Table 1.
11 The FTSE 100 Index is composed of 100 companies, but in Table 1 we observe 101 shares. This is due
to the fact that Royal Dutch Shell has both class A and B shares listed. Both classes have identical rights,
except for the dividend access mechanism which applies only to the class B of ordinary shares.
12 Having 101 shares, we observe 28717 missing data over the total 1,421,878 points that represent 2% of
the sample size.
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similar behavior of the first dataset in terms of the maximum distance (160min) within
a trading day. Again we introduce use linear interpolation to complete the dataset.
In both cases, the final grid is still irregular and reflects the grid of most liquid com-
ponents of the FTSE 100 Index.

We first check whether the ICA algorithm based on the maximization of the
negentropy measure is able to extract components that are at least approximately inde-
pendent. We base our analysis on the mutual information of the two random variables
X and Y (see Comon 1994, for a complete discussion about the mutual information
in the ICA) defined as:

I (X ,Y ) =
∑

i

∑

j

p
(
xi , y j

)
ln

[
p
(
xi , y j

)

p (xi ) p
(
y j
)

]

.

Observe that I (X ,Y ) is equal to zero if two random variables are independent.
Table 2 contains the main statistics of the pairwise mutual information of extracted
components for each in sample window during 2018, while Table 3 refers to the same
quantities but on the components extracted from the second dataset, i.e., data of 2020.
All quantities are computed using the R package infotheo Meyer (2014).

It is worth noting that, in both datasets, mutual information is close to zero for each
in sample window denoting a situation relatively close to independence for almost all
components. In all windows we do not observe pairs of extracted components with
mutual information larger than 0.4; the average value for the mutual information is of
the order of 10−2.

We proceed with our analysis by fitting a COGARCH(1,1) model to the indepen-
dent components13.We present results on portfolio optimization for different values of
λ (we consider λ = (2, 5, 10, 15)) and two different out-of-sample windows, respec-
tively, 2 and 3 weeks.

We discuss the stability of portfolio weights using two measures, namely the Mod-
ified Herfindahl Index H1,t and the portfolio Turnover Index τt , respectively, defined
as:

H1,t :=
∑N̄

i=1 wi (t)2 − 1
N̄

1 − 1
N̄

, τt :=
N̄∑

i=1

|wi (t) − wi (t − 1)| .

By construction, the Modified Herfindahl Index ranges from zero to one: the lower
bound corresponds to the equally weighted portfolio, while the upper bound to the case
where the whole wealth is invested in a single asset. The Modified Herfindahl Index
gives an intuition on the level of diversification/concentration of the portfolio for a
given strategy. From Table 4, we observe for the first dataset that the strategies based
on the Value at Risk seem to be produce results closer to the equally weighted portfolio
than the corresponding strategies based on the Expected Shortfall. The lowest value
for the Herfindahl index is obtained for λ = 5 and 2-week out-of-sample windows
with VaR as a risk measure, while the highest value is obtained for λ = 15 and 2-week
out-of sample windows with ES in the objective function.

13 Fitted parameters for each window are available upon request.
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Table 4 Mean and standard errors of the Modified Herfindahl Index in the considered out-of-sample win-
dows of 2018 where RP stands for rebalancing period

2018 - MH ρ (L) = VaR5% ρ (L) = ES5%
λ RP Mean SD Mean SD

2 2 weeks 4.518e–04 1.326e–04 4.656e–04 1.064e–04

2 3 weeks 5.630e–04 2.615e–04 4.950e–04 1.509e–04

5 2 weeks 3.738e–04 8.322e–05 4.214e–04 2.095e–04

5 3 weeks 4.064e–04 8.222e–05 5.077e–04 2.903e–04

10 2 weeks 3.851e–04 9.869e–05 4.272e–04 2.496e–04

10 3 weeks 4.345e–04 1.432e–04 4.931e–04 1.825e–04

15 2 weeks 1.759e–02 8.362e–04 1.740e–02 6.123e–04

15 3 weeks 4.518e–04 1.326e–04 4.656e–04 1.064e–04

Table 5 Mean and standard errors of the Modified Herfindahl Index in the considered out-of-sample win-
dows of 2020 where RP stands for rebalancing period

2020 - MH ρ (L) = VaR5% ρ (L) = ES5%
λ RP Mean SD Mean SD

2 2 weeks 1.137e–03 2.063e–03 8.126e–04 6.416e–04

2 3 weeks 9.528e–04 5.137e–04 1.065e–03 3.882e–04

5 2 weeks 1.058e–03 1.465e–03 8.807e–04 6.705e–04

5 3 weeks 9.131e–04 5.551e–04 8.391e–04 4.775e–04

10 2 weeks 1.014e–03 1.475e–03 6.898e–04 5.134e–04

10 3 weeks 8.199e–04 4.160e–04 7.725e–04 4.245e–04

15 2 weeks 8.281e–04 9.913e–04 6.143e–04 2.737e–04

15 3 weeks 9.602e–04 5.986e–04 9.157e–04 6.476e–04

Table 5 contains information on the Modified Herfindahl Index of portfolios built
using data of 2020. Results suggest that portfolio weights are not to far from the
equally weighted strategy. The smallest value for the index is obtained using the
portfolio selection strategy based on VaR5% with λ = 10 and 3-week out-of-sample
window, while the strategy based on ES5% displays the lowest value for the Modified
Herfindahl Index is obtained with λ = 15 and 2-week out-of-sample window.

The portfolio Turnover Index τt can be seen as a proxy of the transaction costs as
the composition of portfolio weights changes at time t . A value close to zero denotes
a stability of the weights. From Table 6 we observe that the values of the Turnover
Index in the first dataset are always lower than 0.21 that suggests a stability of weights
when VaR or ES are considered as risk measures in our optimization problem. For the
second dataset, the values of the Turnover Index in Table 7 seem to assume larger
values in line with the greater perceived uncertainty during the COVID 19 crisis. In
the second dataset, the situation seems to be slightly different in this as the maximum
value is more than 0.3.
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Table 6 Mean and standard errors of the Turnover Index in the considered out-of-sample windows of 2018
where RP stands for rebalancing period

2018 - TI ρ (L) = VaR5% ρ (L) = ES5%
λ RP Mean SD Mean SD

2 2 weeks 1.779e–01 1.925e–02 1.945e–01 2.674e–02

2 3 weeks 2.095e–01 3.056e–02 1.880e–01 2.893e–02

5 2 weeks 1.387e–01 2.414e–02 1.420e–01 3.718e–02

5 3 weeks 1.724e–01 1.698e–02 1.911e–01 5.225e–02

10 2 weeks 1.432e–01 2.584e–02 1.463e–01 3.802e–02

10 3 weeks 1.755e–01 1.920e–02 1.882e–01 3.501e–02

15 2 weeks 7.260e–02 7.670e–03 7.401e–02 1.287e–02

15 3 weeks 1.779e–01 1.925e–02 1.945e–01 2.674e–02

Table 7 Mean and standard errors of the Turnover Index in the considered out-of-sample windows of 2020
where RP stands for rebalancing period

2020 - TI ρ (L) = VaR5% ρ (L) = ES5%
λ RP Mean SD Mean SD

2 2 weeks 2.788e–01 2.394e–01 2.434e–01 1.533e–01

2 3 weeks 2.801e–01 1.118e–01 3.017e–01 5.492e–02

5 2 weeks 2.822e–01 2.020e–01 2.701e–01 1.333e–01

5 3 weeks 2.518e–01 9.604e–02 2.492e–01 1.003e–01

10 2 weeks 2.633e–01 2.120e–01 2.178e–01 1.367e–01

10 3 weeks 2.396e–01 7.631e–02 2.314e–01 8.210e–02

15 2 weeks 2.347e–01 1.595e–01 1.996e–01 9.488e–02

15 3 weeks 2.732e–01 1.172e–01 2.551e–01 1.078e–01

Figures 2, 3, 4 and 5 show the cumulative performance in terms ofmonetary wealth,
respectively, for two- and three-week out-of-sample windows. In the first dataset the
two strategies, i.e., VaR and ES based, consistently outperform the FTSE 100 Index
and most of the time perform better than the equally weighted portfolio.

To investigate further the out-of-sample results, we consider the maximum draw-
down index MaxDD associated with the wealth Wt over [0, T ] defined as:

MaxDD = max
τ∈(0,T )

[

0, max
t∈(0,τ )

(Wt − Wτ )

]

.

This measure allows to have a first intuition of the maximum loss for a given portfolio
strategy. The MaxDD index is particularly convenient in our framework since it can
be easily computed in a context with irregular time grids.

Based on the results of the first dataset presented in Tables 8, 9 and 10 we can affirm
that our approach provides better results in terms of the Maximum Drawdown, for the
VaR and ES-based strategies, than those obtained using the equally weighted approach
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Fig. 2 Out-of-sample performance of portfolios obtained using two-week rebalancing period for varying
values of λ for the period January 2018–July 2018

Fig. 3 Out-of-sample performance of portfolios obtained using two-week rebalancing period for varying
values of λ for the period January 2020–July 2020

123



78 F. Bianchi et al.

Fig. 4 Out-of-sample performance of portfolios obtained using three-week rebalancing period for varying
values of λ for the period January 2018–July 2018

Fig. 5 Out-of-sample performance of portfolios obtained using three-week rebalancing period for varying
values of λ for the period February 2020–September 2020
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Table 8 Out-of-sample
Maximum Drawdown of
portfolios obtained using
two-week rebalancing period for
varying values of λ for the
period January 2018–July 2018

2018 λ = 2 λ = 5 λ = 10 λ = 15

Index 8.423e–02 8.423e–02 8.423e–02 8.423e–02

VaR 7.119e–02 7.061e–02 7.025e–02 7.891e–02

ES 7.087e–02 7.153e–02 7.197e–02 7.901e–02

Eqw 7.336e–02 7.336e–02 7.336e–02 7.336e–02

Table 9 Out-of-sample
Maximum Drawdown of
portfolios obtained using
two-week rebalancing period for
varying values λ for the period
February 2020–September 2020

2020 λ = 2 λ = 5 λ = 10 λ = 15

Index 3.257e–01 3.257e–01 3.257e–01 3.257e–01

VaR 1.094e–01 1.050e–01 1.046e–01 9.989e–02

ES 1.091e–01 1.055e–01 1.008e–01 1.025e–01

Eqw 1.080e–01 1.080e–01 1.080e–01 1.080e–01

Table 10 Out-of-sample
Maximum Drawdown of
portfolios obtained using
three-week rebalancing period
for varying values of λ for the
period January 2018–July 2018

2018 λ = 2 λ = 5 λ = 10 λ = 15

Index 8.423e–02 8.423e–02 8.423e–02 8.423e–02

VaR 6.458e–02 6.484e–02 6.608e–02 6.568e–02

ES 6.544e–02 6.590e–02 6.586e–02 6.648e–02

Eqw 6.825e–02 6.825e–02 6.825e–02 6.825e–02

Table 11 Out-of-sample
Maximum Drawdown of
portfolios obtained using
three-week rebalancing period
for varying values of λ for the
period February
2020–September 2020

2020 λ = 2 λ = 5 λ = 10 λ = 15

Index 3.257e–01 3.257e–01 3.257e–01 3.257e–01

VaR 9.790e–02 9.852e–02 9.763e–02 9.902e–02

ES 9.542e–02 9.952e–02 9.870e–02 9.906e–02

Eqw 1.079e–01 1.079e–01 1.079e–01 1.079e–01

or the strategy of investing the entire sum on the FTSE 100 Index. In particular, the
approach based on VaR seems to be the most conservative14.

Tables 9 and 11 refer to the Maximum Drawdown of, respectively, for 2-week and
3-week rebalancing periods for the second dataset. Except for the case λ = 2 with
out-of-sample windows of length 2 weeks, the portfolio strategies based on VaR and
ES perform better than the equally weighted strategy.

Table 12 reports the excess performance with respect to the equally weighted strat-
egy for different levels of transaction costs. We can observe that the transaction costs
seem not to influence the ranking of models in almost all cases where the strategies
based on the ICA-COGARCH model outperform the equally weighted portfolio in
the original analysis (i.e., with no transaction costs). Indeed we have only three cases
where the inclusion of transaction costs leads to a change of sign in the final perfor-
mance. This fact seems to be coherent with the small values of the Turnover Index.

14 It is worth to notice that MaxDD can be seen as the worst loss of a portfolio in a fixed time horizon.
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Table 12 Out-of-sample excess performance of the proposed approach using as benchmark the equally
weighted strategy for different levels of transaction costs expressed in basis points (bps)

Strategy λ RP 2018 2020

No costs 5bps 10bps No costs 5bps 10bps

VaR 2 2 weeks 0.7512 0.7297 −0.0430 −3.1199 −3.2702 −3.4202

ES 2 2 weeks 0.9082 0.8866 0.8650 −2.5796 −3.2481 −3.3761

VaR 2 3 weeks 1.1135 1.0975 1.0815 0.0530 −0.0410 −0.1348

ES 2 3 weeks 0.9526 0.9365 0.9204 0.0056 −0.0497 −0.1523

VaR 5 2 weeks 1.1841 1.1626 1.1410 −2.2121 −2.3652 −2.5182

ES 5 2 weeks 0.8669 0.8456 0.8241 −1.4752 −2.3560 −2.4998

VaR 5 3 weeks 0.7968 0.7809 0.7649 0.6659 0.5804 0.4949

ES 5 3 weeks 0.7161 0.7001 0.6841 0.6735 0.5809 0.4959

VaR 10 2 weeks 1.0735 1.0520 1.0305 −2.7653 −2.9094 −3.0532

ES 10 2 weeks 0.5709 0.5496 0.5282 −2.0507 −2.8816 −2.9977

VaR 10 3 weeks 0.6849 0.6690 0.6532 0.5225 0.4412 0.3600

ES 10 3 weeks 0.7414 0.7254 0.7094 0.5254 0.3682 0.2191

VaR 15 2 weeks 1.1042 1.0836 1.0630 −1.7548 −1.8848 −2.0145

ES 15 2 weeks 1.0929 1.0724 1.0517 −1.8265 −1.8605 −1.9660

VaR 15 3 weeks 0.6732 0.6572 0.6413 0.3820 0.2893 0.1967

ES 15 3 weeks 0.5579 0.5419 0.5260 0.8932 0.2957 0.2094

5 Conclusion

In this study, we use continuous-timemodels for the dynamics of the independent com-
ponents extracted from real market time series. The independence of the components
and the estimation algorithm for COGARCH(p, q) models proposed in Iacus et al.
(2018) constitutes the main ingredients of a portfolio optimization problem where the
objective function is expressed as a linear combination of expected portfolio wealth
and a homogeneous risk measure. Through an empirical analysis, performed on the
members of the FTSE100 Index, we observe that the out-of-sample performance of
the portfolio in the proposed framework does not depend on the specific risk measure
(VaR or ES) but seems to be sensitive to λ coefficient.

The advantage of our approach is found in the formulation of a mathematical
problem for portfolio selection that incorporates information generated both from
price level and time distribution of market quotations. Compared to recent machine
learning techniques that look for patterns of asset dynamics useful in price prediction,
we have a direct interpretation of model parameters that allows to perform a sensitivity
analysis.
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A First jump approximation of a Lévy process

A pure jump Lévy process (Lt )t≥0 is identified by the triplet (γ, 0, π (x)) where γ is
a real scalar, while π (x) is a Lévy measure with characteristic function written as:

E
(
eiθLt

)
= exp

[

iθγ t + t
∫

R\0

(
eiθx − 1 − iθx1|x |≤1

)
π (dx)

]

, t ≥ 0.

For each n ∈ N, we consider a sequence of natural numbers Nn such that
limn→+∞ Nn = +∞ to define the following partition of the interval [0, T ]:

0 = t0,n ≤ t1,n ≤ · · · ≤ tNn ,n = T .

Let Δtn = maxi=1,...Nn ti,n − ti−1,n with the requirement Δtn → 0 as n → +∞.
We introduce the sequence of positive scalars mn such that mn ≤ 1 and mn → 0 as
n → +∞.
If the Lévy measure π (x) satisfies the condition:

lim
n→+∞ΔtnΠ̄

2 (mn) = 0

with Π̄ (x) = ∫

|y|>x π (dy), we can construct a sequence of stopping time processes
τi,n defined as:

τi,n =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

inf
(
t ∈ [ti−1,n, ti,n

) : |ΔLt | > mn
)
if there exists at least an increment
with a magnitude greater than mn

in the interval
[
ti−1,n, ti,n

)

+∞ otherwise
(24)

withΔLt = Lt−Lt−. For each n, we associate to the stopping time process a sequence
of independent random variables

(
1τi,n<∞ΔLτi,n

)

i=1,...,Nn
. As shown in Fig. 6, the

random variable 1τi,n<∞ΔLτi,n refers to the interval
[
ti−1,n, ti,n

)
and corresponds to

the first jump of Lt in the i-th interval whose magnitude exceeds mn if such a jump
occurs and zero otherwise (Fig. 6).
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Fig. 6 First jump approximation of a Lévy process Lt based on the stopping times τi,n defined as in (24)
where the magnitude of the increments exceeds the barrier mn . The blue line refers to the trajectory of
1τi,n<∞ΔLτi,n

Under the requirement E
[
L2
1

]
< +∞, we construct the innovations

(
εi,n

)

i=1,...,Nn
as:

εi,n = 1τi,n<∞ΔLτi,n − vi,n

ηi,n

where vi,n and ηi,n are, respectively, the mean and the standard error of the random
variable 1τi,n<∞ΔLτi,n .

B pseudo-maximum likelihood estimation procedure of a COGARCH
(p, q) process

Let
(
Ω,F , (Ft )t≥0, P

)
be a filtered probability space. We observe the following

quantities Gt0 ,Gt1 , . . . ,Gti , . . . ,GtN and assume they are the realizations of a COG-
ARCH(p,q) model as in (1), i.e., we write the increments as follows:

ΔGti = Gti − Gti−1 =
∫ ti

ti−1

√
VudLu .

The likelihood of the increments has the following form:

L (a0, a,B) = f
(
ΔGtN ,ΔGtN−1 , . . . , ΔGti , . . . , ΔGt1

)

=
N∏

i=1

f
(
ΔGti

∣
∣Fti−1

)
.
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In general the conditional density f
(
ΔGti

∣
∣Fti−1

)
is unknown. In the pseudo-

maximum likelihood approachwe can assume this conditional density to be aGaussian
with mean E

[
ΔGti

∣
∣Fti−1

] = 0 and variance (see Brockwell et al. 2006; Iacus et al.
2017, formore details on the calculation of the first twomoments of a COGARCH(p,q)
model):

Var
[
ΔGti

∣
∣Fti−1

] = m2
a0bqΔti

bq − a1m2
+ m2a� [eB̃Δti B̃−1

(
I − e−B̃Δti

)] (
Yti−1 − E (Y∞)

)

(25)
where m2 = ∫

x2π (dx) is the second moment of the Lévy measure π ; E (Y∞) is the
first unconditional moment of the state process Yt in (1) and B̃ = B + m2ea�. The
substitution of the real density with the normal one is widely applied in the estimation
of stochastic differential equations, see for instance Yoshida (1992) where the driving
noise is a Brownian Motion and recently Masuda (2013); Masuda and Uehara (2017)
for the case where the driving noise is an ergodic Lévy process.

Denoting with L̂ (a0, a,B) the pseudo-likelihood, i.e., the likelihood under the
normality assumption, we need to filter from the dataset a proxy for the unobservable
state process Yt necessary for the computation of the variance in (25). Starting from
the discretization in (5), we write the dynamics of the discrete-time process Yti as
follows:

Yti =
(
I + ε2i Δtiea�) eBΔti Yti−1 + α0ε

2
i Δtie. (26)

From (3) and (4), we get

Δtiε
2
i =

(
Gti − Gti−1

)2

a0 + a�Yti−1

. (27)

Substituting (27) into (26), we obtain:

Yti =
(

I +
(
Gti − Gti−1

)2

a0 + a�Yti−1

ea�
)

eBΔti Yti−1 + α0

(
Gti − Gti−1

)2

a0 + a�Yti−1

e. (28)

It is worth noting that, given a set of model parameters and a initial value Yt0 , we can
univocally determine the sequence Yt1 ,Yt2 , . . . ,YtN−1 through the relation in (28) and
the observed increments ΔGti . Therefore we can compute the conditional variance in
(25) and evaluate the pseudo-likelihood L̂ (a0, a,B) function. We estimate the model
parameters solving the following maximization problem:

(
a�
0, a

�,B�
) = argmax

a0,a,B∈Θ

L̂ (a0, a,B) ,

where the setΘ is composed of themodel parameters that ensure stationarity, existence
of the mean for the state process Yt and non-negativity of the variance process Vt (see
Brockwell et al. 2006, for more details).

From the estimated parameters
(
a�
0, a

�,B�
)
we are able to obtain get an estimator

Y �
ti based on the dynamics in 26. The approximated underlying Lévy process L̃�

t is
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obtained as follows:

L̃�
t =

∑

ti≤t

Gti − Gti−1

a�
0 + (a�)� Y �

ti−1

.
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