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Abstract

The Deep Underground Neutrino Experiment (DUNE) is an international
long-baseline neutrino physics experiment composed of two detectors sepa-
rated by 1300 km and exposed to a high-intensity neutrino beam. The Far
Detector (FD) will consist of a set of four Liquid Argon Time Projection
Chamber (LArTPC) detectors with a total mass of 70 kilotons, installed
1.5 km underground at the Sanford Underground Research Facility (SURF).
The Near Detector (ND) will be located approximately 574 m from the beam
source at Fermi National Accelerator Laboratory (Fermilab), serving as the
beam monitoring system. The Long-Baseline Neutrino Facility (LBNF) will
deliver and support the 1.2 MW proton beam, with future plans to upgrade
to 2.4 MW . Upon collision with a high-power production target, this beam
will generate a very intense neutrino flux aimed in the direction of the ND
and FD. The main scientific goals of DUNE are to carry out a comprehensive
program of neutrino oscillation measurements, search for proton decays, and
detect and measure the neutrino flux from core-collapse supernovae within
our galaxy.

The scintillation light produced by charged particles passing through the
LArTPC is key to providing the initial time of ionization t0 required to re-
construct events. The highly performing Photon Detection System (PDS)
exploits a novel technology, the X-ARAPUCA device, a box with highly re-
flective internal surfaces that will capture the 128 nm scintillating photons
through an acceptance window employing dichroic filters and wavelength
shifter (WLS) materials. The trapped photons are detected by a large num-
ber of Silicon Photomultiplier (SiPM)s amplified and "ganged" in parallel or
in a hybrid paralell-series configuration by a very low-noise transimpedance
amplifier, the cold amplifier, designed to operate in the cryogenic environ-
ments inside the cryostat. The DAPHNE board is the analog-front end
system that will manage the digitization and triggering of 40 cold amplifier
channels or ten PDS modules in an Anode Plane Assembly (APA).

This Ph.D. thesis work focuses on the development of the readout elec-
tronics of the PDS, along with the optimization and validation of the in-
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terface between the SiPMs, cold electronics and DAPHNE, demonstrating
that a PDS module can be triggered at single photoelectron (P.E.) levels
and achieve a Signal-to-Noise Ratio (SNR) greater than 4 with a dynamic
range of 2000 P.E.. The investigation to achieve validation encompassed the
development of an end-to-end simulation to enhance signal performance, the
creation of advanced data acquisition software for testbench applications with
DAPHNE, longevity testing of the cold electronics active components in cryo-
genic conditions, hardware modi�cations in DAPHNE to enhance the SNR
up to 7.3, performance measurements of the cold ampli�er and DAPHNE
interface with SiPM from two vendors: Fondazione Bruno Kessler (FBK)
and Hamamatsu Photonics K.K. (HPK), optimum �ltering and undershoot
compensation, and the development of a triggering system for DAPHNE.



Sommario

Il Deep Underground Neutrino Experiment (DUNE) è un esperimento inter-
nazionale di �sica del neutrino che si basa sullo schema a longbaseline: due
siti di rilevatori, separati da 1300 km, vengono esposti ad un fascio di neutrini
ad alta intensità. Il Far Detector (FD) sarà costituito da quattro rilevatori
Liquid Argon Time Projection Chamber (LArTPC) installati a 1.5 km sotto
terra presso il Sanford Underground Research Facility (SURF) e con una
massa totale di 70 chilotonnellate. Il Near Detector (ND) sarà posizionato
a circa 574 m dalla sorgente del fascio presso il Fermi National Accelerator
Laboratory (Fermilab) e fungerà da sistema di monitoraggio del fascio. Il
Long-Baseline Neutrino Facility (LBNF) produrrà un fascio di protoni da
1.2 MW di intensità, la quale verrà portata a 2.4MW nella seconda fase
dell'esperimento. In seguito alla collisione dei protoni ad alta energia con
una targhetta �ssa, si genererà un �usso di neutrini molto intenso lungo la
direzione di ND e FD. I principali studi di �sica di DUNE prevedono un
programma completo di misure delle oscillazioni dei neutrini, la ricerca del
decadimento del protone e la rivelazione di neutrini provenienti dal collasso
del nucleo delle supernove che, eventualmente, avverranno all'interno della
nostra galassia.

La luce di scintillazione prodotta dalle particelle cariche che attraversano
la LArTPC è fondamentale per fornire il tempo iniziale di ionizzazionet0,
informazione necessaria per ricostruire con precisione il vertice di interazione
degli eventi. Il Photon Detection System (PDS) è un dispositivo ad alte
prestazioni che sfrutta la nuova tecnologia dell' X-ARAPUCA: un sistema
con super�ci interne totalmente ri�ettenti che intrappola i fotoni di scin-
tillazione di 128 nm grazie ad una �nestra di accettazione, �ltri dicroici e
materiali wavelength shifter (WLS). I fotoni contenuti sono rilevati dai Sili-
con Photomultiplier (SiPM) ampli�cati e �raggruppati", in parallelo o in una
con�gurazione ibrida parallelo-serie, da un ampli�catore a transimpedenza a
bassissimo rumore: il cold ampli�er, progettato per operare negli ambienti
criogenici all'interno del criostato. La scheda DAPHNE è il sistema di front-
end analogico che gestirà la digitalizzazione e l'alimentazione di 40 canali di
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ampli�catori freddi o dieci moduli PDS in un Anode Plane Assembly (APA).
Il lavoro di tesi di dottorato si concentra sullo sviluppo dell'elettronica

di lettura del PDS, insieme all'ottimizzazione e alla convalida dell'interfaccia
tra i SiPM, l'elettronica a freddo e DAPHNE, dimostrando che un modulo
PDS è sensibile a singoli fotoelettroni photoelectron (P.E.), raggiungendo
un Signal-to-Noise Ratio (SNR) maggiore di 4 con un range dinamico di
2000 P.E.. L'indagine per raggiungere la convalida ha richiesto lo sviluppo
di una simulazione end-to-end per migliorare le prestazioni del segnale, la
creazione di un avanzato software di acquisizione dati per applicazioni di test-
bench con DAPHNE, test di longevità dei componenti attivi dell'elettronica a
freddo in condizioni criogeniche, modi�che hardware in DAPHNE per miglio-
rare il SNR �no al 7.3, stime delle prestazioni dell'ampli�catore a freddo
e dell'interfaccia DAPHNE con SiPM da due fornitori: Fondazione Bruno
Kessler (FBK) e Hamamatsu Photonics K.K. (HPK), il �ltraggio ottimale e
la compensazione dell'undershoot e lo sviluppo di un sistema di trigger per
DAPHNE.
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Chapter 1

The DUNE experiment

1.1 Overview

The Deep Underground Neutrino Experiment (DUNE) is an international
experiment and one of the most ambitious scienti�c program in neutrino
physics. DUNE is hosted by the United States Of America's Department of
Energy's Fermi National Accelerator Laboratory (Fermilab). The scienti�c
collaboration is comprised of over 1400 collaborators from over 200 institu-
tions from more than 30 countries. The experiment will be composed of two
detectors: the Far Detector (FD), which will be located 1.5 km underground
at the Sanford Underground Research Facility (SURF) in South Dakota,
United States of America; and the Near Detector (ND), which will be lo-
cated at Fermilab, in Illinois, United States of America. The two detectors
are planned to be separated by a distance of 1300 km and will be exposed to
a high intensity neutrino beamline originating from Fermilab.

The DUNE FD will consist of four detectors that will implement the
Liquid Argon Time Projection Chamber (LArTPC) technology, each with
a total LAr mass of 17.5 kt, adding to a total mass of 70 kt for the whole
FD. Each cryostat that will contain the LAr mass and the detectors will
have dimensions of 15.1 m� 14.0 m � 62.0 m. The Long-Baseline Neu-
trino Facility (LBNF) project will provide the civil construction, referred as
conventional facilities, for both DUNE FD and ND; and will also provide
the beamline. At SURF, LBNF is responsible for the excavation of three
underground caverns, the north and south caverns which will accommodate
two cryostats each, and the central cavern, referred as Central Utility Cavern
(CUC) which will contain the ancillary systems; is also responsible for the
construction of the cryostats, cryogenics systems and LAr supply, as well as
surface, shaft and underground infrastructure to support operations[1]. At
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Figure 1.1: Conceptual drawing of DUNE's main components. The SURF
complex in South Dakota is shown to the left, where the Far Detector (FD)
will be located 1.5 km underground. The LBNF beam production and the
Near Detector (ND) is shown to the right, located in Fermilab, Illinois. The
neutrino beam will travel underground 1300 km.[1]

Figure 1.2: 3D CAD of the DUNE FD underground cavern complex at SURF.
Two of the �nal four cryostats are shown located in the north and south cav-
erns. The central cavern, referred as Central Utility Cavern (CUC) contains
the ancillary systems for the detectors.[1]

Fermilab, LBNF will be responsible for providing and supporting the most
intense neutrino beam to the FD and ND. The Proton Improvement Plan II
(PIP-II) project is constructing an 800 MeV H- ion superconducting radio
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frequency linear accelerator and upgrading the existing Booster, Main Injec-
tor and Recycling rings to provide 1.2 MW proton beam pulsed at 20Hz, and
a further upgrade to 2.4MW and continuous mode operation[2]. The pro-
ton beam will be aimed and focused to collide with a high-power production
target with a corresponding protons-on-target of 1.1� 1021/year to create a
secondary and very intense� � �ux in the direction of the detectors, peaking
at an energy of 2.5 GeV and sending an approximate of 4.0� 1019 neutrinos
per year through the ND[3].

The DUNE ND will be located approximately 574 m from the neutrino
source and will consist of three main components: a modular LArTPC, a
magnetized gaseous argon TPC and large magnetized beam monitor[3].

1.2 Goals of the DUNE scienti�c program

The general overview of DUNE described in the previous section responds to
a strategy developed by the LBNF/DUNE to meet the requirements set by
the U.S. Particle Physics Project Prioritization Panel (P5), setting the goal
to achieve a sensitivity to charge-parity symmetry violation (CPV) better
than three standard deviations (3� ) over more than 75% of the range of
possible values of the unknown CP-violating phase� CP [1][4].

The primary scienti�c program goals of DUNE are [4][3]:

ˆ Carry out a comprehensive program of neutrino oscillation measure-
ments using� � and � � beams from Fermilab. This program includes
measurements of the charge parity (CP) phase, determination of the
neutrino mass ordering, measurement of the neutrino mixing angle� 23

and the determination of the octant in which this angle lies, ans sensi-
tive tests of the three-neutrino paradigm.

ˆ Search for proton decay in several decay modes.

ˆ Detect and measure the� e �ux from core-collapse supernova within our
galaxy, should one occur during the lifetime of the DUNE experiment.

The secondary scienti�c program goals are set taking advantage of the
high intensity neutrino beam, large volume of the DUNE FD and the preci-
sion of the DUNE ND[4][3]:

ˆ Conduct other accelerator based neutrino �avor transition measure-
ments with sensitivity to beyond standard model (BSM) phenomena.

ˆ Conduct measurements of neutrino oscillations using atmospheric neu-
trinos.
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ˆ Search for dark matter.

ˆ Develop a rich program of neutrino interaction physics, including a
wide range of measurements of neutrino cross sections and studies of
nuclear e�ects.

ˆ Continuous improvement of the detectors during the construction phase
would allow enhanced capabilities to observe very low-energy phenom-
ena.



Chapter 2

Photon Detection System

The scintillation light produced by charged particles passing through the
liquid argon, which amounts to � 24,000 photons per MeV [5], is key to
providing the t0 of the event, i.e. the initial time of ionization for each event
that occurs inside the DUNE FD LArTPC. The charge detection system can
determine the position of the events in they and z coordinates, while to
determine thex position the independentt0 is needed becausex is derived
by the product of the drift velocity of the electrons and the time needed to
reach the TPC anode. DUNE will provide this information to the FD with
two independent systems:

ˆ The Fermilab accelerator system for neutrino beam events.

ˆ The Photon Detection System (PDS).

Some parts of the DUNE physics program can be partially realized with-
out the data provided by the PDS. For instance, the Neutrino CPV program
can be carried out using the beam timing to measure thet0 of the event and
the DUNE FD deep underground location reduces background events to a
negligible level. Still, the beam timing would provide a vertex precision of the
order of 1 cm, while the use of the PDS to estimate the initial time improves
such precision by one order of magnitude (1 mm). Similar considerations
hold for the SNBs detection, where the TPC can unambiguously detect the
presence of thousands of low-energy neutrino events but the energy resolu-
tion would be quite impaired. On the other hand, the DUNE's nucleon decay
program cannot be carried out without the crucialt0 information provided
by the PDS that will determine if the decay event was fully contained and
originates from inside the TPC volume or if it was associated to an exter-
nal source entering the detector volume. The PDS will enhance the physics
capabilities of DUNE by[6]:
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ˆ allowing proper location of the event vertex at 1mm level,

ˆ improving energy resolution by allowing position-dependent energy cor-
rections,

ˆ providing complementary direct calorimetric measurements, further im-
proving energy resolution, especially at low energy,

ˆ provide complementary triggering capabilities,

ˆ and provide redundancy in energy calorimetric measurements for the
TPC system in case of temporary malfunctioning of the TPC.

2.1 Photon Collection

To capture the LAr scintillation photons, a new photon collection concept was
developed aimed at compactness and e�ciency. Compactness is instrumental
to positioning the PDS inside the DUNE APA, just behind the anode wires.
The X-ARAPUCA[7] device is the core component of the PDS and is an
improvement of the original ARAPUCA[8] concept. The development of
this concept responds to the need to minimize the impact of the PDS on the
active volume of the detector and satisfy the APA fabrication constraints and
mechanical integrity while allowing the detection of scintillation light over a
large area of the detector volume. Traditional large area detectors, like photo
multipliers tubes, cannot be employed here given their inability to comply
with the aforementioned requirements.

2.1.1 The ARAPUCA

The original ARAPUCA concept, shown in �gure 2.1, is aimed at capturing
photons inside a box coated with highly re�ective surfaces of 3M Vikuiti®,
with an acceptance window. The acceptance window is a dichroic �lter
with the property of being highly transparent to photons below a certain
wavelength, namely cut-o�, and extremely re�ective to photons above the
cut-o�. Two wavelength shifter materials are deposited on both sides of
the dichroic �lter so that their emission wavelengths are below (p-terphenyl
(PTP) with � e = 350nm[9]) and above (Tetraphenyl-butadiene (TPB) with
� e = 430nm[10]) the cut-o�, respectively. The latter faces the internal part
of the box. Considering the case when a Vacuum Ultra Violet (VUV) photon
produced by the LAr scintillation process with a wavelength� � 127nm hits
the external coated surface, its wavelength will be shifted to allow the photon
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Figure 2.1: The original ARAPUCA concept: A light trapping device [8].

to cross the �lter. When the photon is inside the box, the photon wavelength
is shifted once more by the internal wavelength-shifting material. The �lter
is highly re�ective for the new wavelength and the photon is thus trapped
inside the box and bounces until it is detected by the active surface or is lost
due to non-ideal re�ectivity of the inner materials[8].

The total collection e�ciency is theoretically estimated to achieve 1%
levels[8] an has been experimentally found to be1:0� 0:2%for alpha particles
and 1:2 � 0:2% for muons[11][12]. It depends on three factors[6]:

ˆ The WLS conversion e�ciency and the fraction of the converted pho-
tons that are accepted.

ˆ The photon transport e�ciency of the ARAPUCA. This is the ability
to direct the trapped photons into the active area.

ˆ The photosensor e�ciency.

The modular and compact form factor which allows high scalability and
compliance with the APAs mechanical constraints, combined with the capa-
bility to cover large areas of the detector while maintaining high collection ef-
�ciencies made the ARAPUCA an attractive solution over other designs that
relied on long WLS light guides. The concept was tested in cryostats, and
prototypes, with the code name Standard ARAPUCA (S-ARAPUCA), were
deployed in the LArIAT[13] experiment and in ProtoDUNE-SP[14] where the
validity for DUNE was established[12].
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