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We provide a first principles derivation of the microscopic entropy of a very general class of super-
symmetric, rotating and accelerating black holes in AdS4. This is achieved by analysing the large-N
limit of the spindle index and completes the construction of the first example of a holographic duality
involving supersymmetric field theories defined on orbifolds with conical singularities.

Introduction

The explanation of the microscopic origin of the entropy
of supersymmetric black holes in anti de Sitter (AdS) is
one of the most spectacular successes of the holographic
duality. This was first accomplished in [1] for a class of
AdS4 black holes through the study of the large-N limit
of the topologically twisted index [2]. The landscape of
supersymmetric black holes was significantly broadened
in [3], which constructed a supersymmetric, rotating and
accelerating black hole with spindle horizon, displaying
a number of remarkable features. Most strikingly, in this
solution supersymmetry is preserved via a novel mech-
anism, referred to as anti-twist. It is was later noted
that supersymmetry on the spindle may be preserved by
means of a more standard topological twist [4, 5]. Utilis-
ing the insight of [6], it was shown in [7] that the on-shell
action of a supersymmetric and complex deformation of
the black hole of [3] takes the form of an entropy func-

tion, whose extremization yields the Bekenstein-Hawking
entropy. A generalization of such entropy function was
conjectured in [8], where it was proposed that it can be
expressed in terms of gravitational blocks [9], as in all
previous examples of black holes. The block decomposi-
tion of the gravitational entropy function was proved in
[10] using the formalism of [11] and then in [12] employ-
ing equivariant localization in supergravity.
Motivated by these developments, [13, 14] computed

the localized partition function of N = 2 Chern-Simons-
matter theories defined on Σ×S1, where Σ = WCP

1
[n+,n−]

is the spindle, with either twist or anti-twist for the R-
symmetry connection A:

∫

Σ

dA

2π
=

1

2

(
1

n−
+

σ

n+

)
≡

χσ

2
, (1)

with σ = ±1. The result can be expressed by a single
formula, dubbed spindle index [13], which can be defined
[7] as a flavoured Witten index

ZΣ×S1 = TrH [Σ]

[
e−i

∑d
α=1 ϕαQα+iǫJ

]
, (2)

where Qα are the generators of global symmetries of rank
d, J generates angular momentum on Σ, H [Σ] is the
Hilbert space of BPS states on the spindle and the com-
plex chemical potentials are related by the constraint

d∑

α=1

ϕα +
χ−σ

2
ǫ = 2πn , n ∈ Z . (3)

In this letter we will demonstrate that the large-N limit
of the spindle index reproduces the entropy functions as-
sociated to the supersymmetric and accelerating AdS4
black holes. Explicitly, the entropy of a black hole with
electric chargesQα and angular momentum J is obtained
by extremizing with respect to the variables ϕα and ǫ the
entropy function

S ≡ logZΣ×S1 + i

d∑

α=1

ϕαQα − iǫJ , (4)

under the constraint (3), setting n = 1 and requiring that
J,Qα and S are real. In the case n+ = n− = 1 our result
encompasses the large-N limit of both the topologically
twisted index and the generalized superconformal index.
More details and generalizations will be discussed in [15].

The spindle index matrix model

We consider N = 2 Chern-Simons-matter quiver gauge

theories with gauge group G =
∏|G|

a=1U(N)a and chiral
multiplets transforming in either bi-fundamental or ad-
joint representations of the gauge group factors. The in-
dex has been derived using supersymmetric localization
in [13, 14] and it is written as the matrix model

ZΣ×S1(ϕ, n, ǫ) =
∑

m∈Γh

∮

C

du
|WG | Ẑ(u,m|ϕ, n, ǫ) , (5)

where h, Γh and WG denote the Cartan algebra, the co-
root lattice and the Weyl group of the gauge group G,
respectively; while C is a suitable integration contour for
u. Here we have collectively expressed by u ∈ h and
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m ∈ Γh the gauge holonomies on S1 and fluxes through
Σ, respectively. Similarly, ϕ and n are flavour/topological
charges and fluxes, with (5) implicitly depending on the
spindle data n+, n− and the twist parameter σ.

We focus on theories whose gauge group and matter
content can be represented by a quiver diagram with
|G| nodes, where an arrow from node a to node b cor-
responds to a bifundamental field in the representation
Na ⊗ Nb, and a = b indicates the adjoint representa-
tion. For each U(N)a factor there are N holonomies
and fluxes, (ua

i ,m
a
i )

N−1
i=0 ; for each arrow we assign flavour

charges and fluxes (ϕI , nI), where the index I runs over
all the |R| chiral multiplets of the theory. If the cor-
responding arrow stretches from a node a to a node b,
we write I ∈ (a, b). Moreover, for each node we assign
charges/fluxes (ϕa

m, nam) for the topological symmetries.
As in [13, 14] we consider a choice of R-symmetry that as-
signs even charges to the chiral multiplets: rI ∈ 2Z. For
a chiral multiplet the corresponding chemical potential
ϕI is related to the flavour holonomy uF

I via

ϕI = 2πuF
I +

(
πn−

ǫ

4
χ−σ

)
rI , (6)

where, for each monomial term W in the superpotential,

∑

I∈W

uF
I =

∑

I∈W

nI = 0 ,
∑

I∈W

rI = 2 , (7)

so that

∑

I∈W

ϕI +
χ−σ

2
ǫ = 2πn . (8)

Notice that the index I runs over the fields belonging to
a superpotential term, while in (3) the index α labels the
generators of the global symmetries of the theory. For the
ABJM model, that is the main focus in this letter, these
two sets coincide. More general quivers will be discussed
in [15].
The integrand of (5) is the product of a classical part

and the 1-loop determinants of chiral and vector multi-
plets. In order to write it explicitly we need to introduce
some further notation [13]: first, we define the symbols
σ+ = σ and σ− = −1. Then, we set

bIij =1−
ma

i −mb
j

n+n−
−

nI

n+n−
−

rI
2
χσ −A−

I; ij − σ A+
I; ij ,

cIij =A−
I; ij − σ A+

I; ij , (9)

for each arrow I ∈ (a, b), with

l±a; i = n±

{
σ±a±m

a
i

n±

}
,

A±
I; ij =

{
l±a; i − l±b; j + σ±a±nI − rI/2

n±

}
, (10)

and a± ∈ Z such that n+a− − n−a+ = 1. Moreover
{x} ≡ x−⌊x⌋. Notice that bIij ∈ Z, while l±a; i, n±A

±
I; ij ∈

Zn± . Denoting by

yIij = e−iϕI−2πi(ua
i −ub

j) · q
1
2 c

I
ij , q = eiǫ , (11)

the gauge holonomies, the 1-loop determinant contribu-
tion of the chiral multiplets can be written as [13, 14]

ZCM
1-L =

|R|∏

I=1

N−1∏

i,j=0

ζσq (y
I
ij , b

I
ij) , (12)

in terms of the function

ζσq (y, b) ≡ (−y)
1−σ−2b

4 q
(1−σ)(b−1)

8
(q

1+b
2 y−1; q)∞

(q
1−b
2σ y−σ; q)∞

, (13)

where (z; q)∞ is the q-Pochhammer symbol, y, q ∈ C,
b ∈ Z and σ = ±1. This is the 1-loop determinant of a
single chiral multiplet in an Abelian theory, satisfying

ζσq (y, b) = ζσq (y
−σ, 1− σ − b)−σ . (14)

The 1-loop determinant of all vector multiplets reads

ZVM
1-L =

|G|∏

a=1

N−1∏

i,j=0

ζσq (y
a
ij , b

a
ij) , (15)

where yaij , b
a
ij , c

a
ij , and A±

a; ij are defined as in (9), (10),
and (11), with all the instances of I and b replaced by
a, and with the following identifications: ra ≡ 2, na ≡ 0,
ϕa ≡ 2πn− ǫ

2χ−σ.
The classical part receives contributions from the

Chern-Simons terms, which can be written as [15]

ZCS
eff =

|G|∏

a=1

N−1∏

i=0

(−yai )
ka (ba

i −1)
, (16)

where we defined

yai = e−2πiua
i · q

l
−
a; i

2n−
−σ

l
+
a; i

2n+ ,

bai = 1−
ma

i

n+n−
−

l−a; i

n−
− σ

l+a; i

n+
. (17)

In this paper we restrict to the case where
∑

a ka = 0,
corresponding to N = 2 Chern-Simons-matter quiver
gauge theories with an M theory dual AdS4 ×M7. The
topological symmetries also contribute to the classical
part but the explicit expression will not be needed in
this letter.

Holomorphic block factorization

The spindle index factorizes into the product of dual
holomorphic blocks [16]. It is convenient to use a choice
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of factorization that breaks the Weyl-symmetry of the
gauge group, generalizing the one introduced in [17] for
the superconformal index. Starting from (12), we split
the product over i, j into a product over i < j and one
over i > j, ignoring the diagonal terms that are sublead-
ing at large N ; then we apply (14) to the i > j terms
and we find

ZCM
1-L =

|R|∏

I=1

ΨI · B
+
I · B−

I , (18)

where for I ∈ (a, b) we defined

ΨI =
∏

i<j

(yIij)
1−σ−2bI

ij

4 (yIji)
−

1−σ−2bI
ji

4 · q
(1−σ)(bI

ij
−bI

ji
)

8 ,

B±
I =

∏

B−: i<j

B+: i>j

((
z±
a; i

z±
b; j

)±σ±

e−iσ±∆±
I q1−A±

I; ij ; q

)

∞((
z±
a; j

z±
b; i

)∓σ±

eiσ±∆±
I qA

±
I; ji ; q

)

∞

. (19)

Notice that here we have swapped the role of i, j in the
blocks for convenience. The ΨI will turn out to be sub-
leading after the cancellation of the long-range forces.
The blocks B±

I depend on the combinations

∆±
I = ϕI ±

ǫ

2

(
nI

n+n−
+

χσ

2
rI

)
,

z±a; i = e∓2πiua
i q

−
ma

i
2n+n− . (20)

Notice that the variables ∆±
I satisfy the constraints

∑

I∈W

∆±
I = 2πn+

σ±ǫ

n±
. (21)

We derive the vector-multiplet counterparts of (18) and
(19) by replacing the indices I and b with a and applying
standard identifications.

Strategy for the large-N limit

We will implement the large-N limit of the spindle index
by relying on its factorization into holomorphic blocks,
generalizing the approach of [17–19]. For the partition
functions on S2×S1 the sum over all the possible values of
the gauge fluxes m ∈ Γh ≡ Z|G|N is usually approximated
at large N by promoting the fluxes m to continuous vari-
ables. However, for Σ×S1 this approximation is hindered
by the presence of fractional parts in (10). To take care
of this, we split each gauge flux as ma

i ≡ n+n−(m
′)ai + rai ,

with (m′)ai ∈ Z and rai ∈ Zn+n− . We then observe that
there is a one-to-one correspondence between the possible
values of l±a; i and rai :

l±a; i

n±
=

{
σ±a±r

a
i

n±

}
,

rai
n+n−

=

{
−
l−a; i

n−
− σ

l+a; i

n+

}
. (22)

We can therefore split the sum over ma
i as

∑

ma
i
∈Z

=

n−−1∑

l
−
a; i=0

n+−1∑

l
+
a; i=0

∑

(m′)a
i
∈Z

, (23)

and in the large-N limit we may promote the (m′)ai to
be continuous variables while keeping the l±a; i discrete.
Thus, we approximate the integration measure of (5) by

∑

m∈Γh

∮

C

du
|WG | −→

∑

l±∈(Zn±)|G|N

∫

C+

dz+
∫

C−

dz−, (24)

at large N , where the variables z± were defined in
(20), C± are appropriate middle-dimensional contours in
C|G|N , and the order of the Weyl group can be ignored
since log |WG | = O(N logN).

Since the B±
I blocks depend separately on z±, we will

be able to perform the saddle point approximation in z−

and z+ independently of one another. However the right
hand side of (24) also features a sum over the vectors of
integers l±, which can take a total of (n+n−)

|G|N pos-
sible values, exponentially growing with N . At large N
only one value of the l± is expected to dominate at any
given region of the parameter space: in particular, there
will be one such value associated to the saddle point that
reproduces the accelerating AdS4 black holes. Two ob-
servations are in order to find the correct ansatz for l±:
first, we need to restrict our attention to the set of possi-
ble choices of l± that, up to an appropriate permutation
of the index i, are periodic under shifts i → i+T for some
T ≪ N . This assumption is necessary in order to be able
to take (partially) the continuum limit: splitting the in-
dex i as i = T i′ + ı̃ with ı̃ ∈ {0, . . . , T − 1}, makes the
fluxes l±a; i only depend on the index ı̃, l±a; i ≡ l±a; ı̃. Hence,

at large N the index i′ can be replaced with a continuous
variable t. Second, all the known methods for computing
3d partition functions at large N [1, 20, 21] require that
terms with i ∼ j dominate over the terms with |i−j| ≫ 1.
The latter are called “long-range forces” and with the ap-
propriate assumptions they cancel out at leading order,
at least for a class of quiver theories that we shall dis-
cuss momentarily. The cancellation of long-range forces
constrains the possible choices of l±, although in general
the constraint is complicated and it involves the value of
z± as well. Remarkably, the special value

l±a; i = i mod n± (25)

makes the long-range forces vanish for any z±. We also
anticipate that (25), along with a simple ansatz for z±,
reproduces the entropy of accelerating AdS4 black holes.
Curiously, (25) exhibits a strong similarity to the ansatz
reproducing the entropy of AdS5 black holes with arbi-
trary momenta, as discussed in [22, 23].
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Long-range forces cancellation

In (19) the prefactors ΨI encode long-range forces among
the variables z± that could spoil the large-N limit. As in
previous work on 3d theories, we cancel the long-range
forces by restricting to “non-chiral” quivers, where for
any bi-fundamental connecting the nodes a and b there
is a bi-fundamental connecting b and a and

∑

I∈(a)

nI =
∑

I∈(a)

uF
I =

∑

I∈(a)

(rI − 1) + 2 = 0 , (26)

at each node a, where the sum is taken over all the arrows
in the quiver with an endpoint at the node a, with ad-
joint chirals counting twice. In a four-dimensional quiver
this condition would be equivalent to the absence of ABJ
anomalies for any symmetry. The conditions (26) also
imply that Tr Q = 0 for any global or R-symmetry sym-
metry with generator Q, where the trace is taken over all
the fermions in the theory.
Using the periodicity relation l±a; i = l±a; i+T that we

have assumed, for the non-chiral quivers satisfying (26)
the product of all the prefactor terms (19) at large N can
be simplified down to

|R|∏

I=1

ΨI ·

|G|∏

a=1

Ψa −→

|R|∏

I=1

Ψ̃I ·

|G|∏

a=1

Ψ̃a , (27)

where for I ∈ (a, b)

Ψ̃I =
∏

s=±

N−1∏

i,j=0

(
zsa; i
zsb; j

)σs
4 (1−

1
ns

−2As
I; ij)· sign(i−j)

(28)

and a similar definition holds for Ψ̃a. Requiring the right
hand side of (27) to vanish yields a mixed constraint on
l± and z±. Crucially, the ansatz (25) is the only one that
satisfies the property

1

n±

j0+n±−1∑

j=j0

A±
I; ij =

1

2

(
1−

1

n±

)
(29)

(and a similar relation with i, j inverted) ensuring that
the long-range forces coming from (27) vanish for any
z±. Thanks to the Weyl-symmetry breaking factoriza-
tion that we have used, the blocks B±

I will not produce
any long-range term at leading order, as will now show.

Holomorphic blocks at large N

In order to compute the large-N limit of the blocks B±
I ,

we will first consider the usual ansatz for the saddle point
distribution of z± [1, 20, 21],

log z±a; i = −σ±N
αti ∓ iy±a (ti) , (30)

where ti, ya(ti) are real and are assumed to be ordered
so that ti ≤ tj for i < j. The power of N must be set to
α = 1

2 , otherwise the 1-loop contributions and the Chern-
Simons terms would grow with a different power law at
large N and it would not be possible to find non-trivial
critical points. When we take the continuum limit we
split the index i ≡ T i′+ ı̃: assuming that the eigenvalues
ti conform to a single continuous distribution at large N
allows to make the replacements ti ≡ ti′ ≡ t and define
the eigenvalue density ρ±(t) such that

1

N

N−1∑

i=0

• −→
1

T

T−1∑

ı̃=0

∫
dtρ±(t)• ,

∫
dtρ±(t) = 1. (31)

Expanding the q-Pochhammer symbols in terms of poly-
logarithms at all orders in ǫ and taking the large-N limit
of each term as in [1, 20, 21] yields

logB±
I =N

3
2

2∑

k=0

ǫk−1Bk

k!

1

T 2

T−1∑

ı̃,̃=0

∫
dtρ±(t)2· (32)

· g3−k(−σ±δy
±
ab(t)− σ±∆

±
I − ǫA±

I; ı̃̃) + o(N
3
2 ) ,

with Bk = Bk(1) = {1, 12 ,
1
6 , . . .} and

gk(x) =
(2π)k

k!
Bk

( x

2π
+ ν
)
, (33)

where Bk(w) are the Bernoulli polynomials and the
integer ν in (33) must be chosen so that Im

(
1
ǫ

)
<

Im
(
1
ǫ (

x
2π + ν)

)
< 0. We are using the notation δy±ab(t) ≡

y±a (t)− y±b (t).

The Large-N limit of the spindle index

We assume that the index is dominated by the config-
uration (25), which leads to a consistent large-N limit.
The large-N limit of the classical Chern-Simons terms
simplifies to

logZCS
eff = N3/2

∑

a

∑

s=±

σs

ǫ
ka

∫
dt tρs(t)ysa(t) . (34)

Consistently with fact that for saddles with gravity duals
flux quantization implies N/(n+n−) ∈ N [3], we can take
T = n+n−. Moreover, in order to compare with the
black hole solutions, we need to take n = 1 [7]. Finally,
we also need to choose a determination: we assume that
Im
(
1
ǫ

)
< Im

(
1

2πǫ(y
±
ab(t) + ϕI)

)
< 0. After some algebra,

the explicit expression for l±a; i and the conditions (26)
yield

logZΣ×S1 = −
∑

s=±

σs
F (ρs, δysab,∆

s
I)

ǫ
(35)
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with

F (ρ±, δy±ab,∆
±
I )

N3/2
= −

∑

a

ka

∫
dt tρ±(t)y±a (t)

+
∑

I∈(a,b)

∫
dtρ±(t)2G±

3 (δy
±
ab(t) + ∆±

I ) , (36)

where G±
3 (x) = 1

6x(x −
∑

I∈W ∆±
I /2)(x −

∑
I∈W ∆±

I ).

The functions G±
3 (x) are obtained by g3(x) in the range

Rex ∈ [0, 2π] by replacing all occurrences of π with∑
I∈W ∆±

I /2. The two terms in (35) depend on different
variables and they can be extremized independently.
For example, for the ABJM theory dual to AdS4 ×S7,

with |G| = 2, Chern-Simons level k1 = 1 and k2 = −1
and four bi-fundamental fields transforming as N1 ⊗N2

for I = 1, 2 and as N2 ⊗N1 for I = 3, 4, we find

(36) =

∫
dttρ±δy±21 −

1

2

∫
dt(ρ±)2

(∑

I

∆±
I (δy

±
21)

2

− 2(∆±
1 ∆

±
2 −∆±

3 ∆
±
4 )δy

±
21 −

∑

I<J<K

∆±
I ∆

±
J ∆

±
K

)
. (37)

This functional coincides with the large-N limit of the
effective twisted superpotential for the ABJM theory de-
rived in [1], expressed in terms of ± quantities, and its
extremization is straightforward [24]. The explicit ex-
pressions for ρ± and δy±21 can be found for example in [1,
(2.70)-(2.75)]. The critical value is

F (ρ±, δy±21,∆
±
I )
∣∣∣
crit

=
2

3
N3/2

√
2∆±

1 ∆
±
2 ∆

±
3 ∆

±
4 . (38)

Using (35) we recover the gravitational block form [8] [25]
of the entropy function obtained in [7] and more generally
conjectured in [5]. The density of eigenvalues ρ± also
agrees with the gravitational analysis performed in [26].
We can extend the result to more general quivers: in-

deed, the term of order zero of F in the ǫ expansion
coincides with the large-N limit of the effective twisted
superpotential of the N = 2 theory [27]

i
W(ρ, δyab,∆I)

N3/2
= −

∑

a

ka

∫
dt tρ(t)ya(t)

+
∑

I∈(a,b)

∫
dtρ(t)2g3(δyab(t) + ∆I) , (39)

where ∆I = ∆±
I |ǫ=0 = 2πuF

I + πrI and we are ignor-
ing topological symmetries for simplicity. This agrees
with well-known asymptotic behaviour of the holomor-
phic blocks [16]: log(block)= iWǫ + O(ǫ). We then ob-
serve that (36) is a homogeneous form of the large-N
limit of the effective twisted superpotential W obtained
by replacing ∆I with ∆±

I and all occurrences of π with∑
I∈W ∆±

I /2. The extremization of (36) is then equiv-
alent to the extremization of W with the constraint

∑
I∈W ∆I = 2π. One concludes that the entropy func-

tion has always a block form

logZΣ×S1 =
Fcrit(∆

−
I )

ǫ
− σ

Fcrit(∆
+
I )

ǫ
. (40)

We also see that the block function Fcrit(∆I), up to fac-
tors, is the homogeneous form of the large-N on-shell
value of the effective twisted superpotential W . This has
been computed for many examples in [28]. At large N
W coincides with the S3 partition function of the N = 2
theory [27] and, for theories with an AdS4×M7 dual, the
latter is in turn related [20, 21] to the Sasakian volume
[29, 30] of M7. Using this chain of equalities, one pro-
vides a field theory derivation of the gravitational block
decomposition obtained in [10, 12, 31] for configurations
with a “mesonic” (or, “flavour”) twist [32]. More details
about topological symmetries and issues with baryonic
symmetries will be discussed in [15].

Discussion

In this letter we solved the fundamental problem of eluci-
dating the microscopic origin of the Bekenstein-Hawking
entropy of the most general class of rotating BPS black
holes currently known in four dimensions. Specifically,
our findings demonstrate that the microstates contribut-
ing to the entropy of accelerating black holes in four-
dimensional anti de Sitter space-time are precisely mir-
rored by the physical degrees of freedom characterizing
three-dimensional gauge theories quantized on a spin-
dle. To successfully solve this problem we developed
a novel approach tailored to deal with the degrees of
freedom of gauge theories on orbifolds. This technique
holds vast potential impact as it applies to supersym-
metric systems in any number of dimensions, including
e.g. three-dimensional orbifold partition functions [14]
and four-dimensional orbifold indices [33]. Our results
complete the construction of the first duality between a
gravitational theory and a quantum field theory defined
on an orbifold, paving the way for a re-energized research
program in holography.
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and J. Sparks, (2024), arXiv:2401.10977 [hep-th].

[13] M. Inglese, D. Martelli, and A. Pit-
telli, J. Phys. A 57, 085401 (2024),
arXiv:2303.14199 [hep-th].

[14] M. Inglese, D. Martelli, and A. Pittelli, (2023),
arXiv:2312.17086 [hep-th].

[15] E. Colombo, S. M. Hosseini, D. Martelli, A. Pittelli, and
A. Zaffaroni, (2024).

[16] C. Beem, T. Dimofte, and S. Pasquetti,
JHEP 12, 177 (2014), arXiv:1211.1986 [hep-th].

[17] S. Choi, C. Hwang, and S. Kim, (2019),
arXiv:1908.02470 [hep-th].

[18] S. Choi and C. Hwang, JHEP 03, 068 (2020),
arXiv:1911.01448 [hep-th].

[19] S. M. Hosseini and A. Zaffaroni, JHEP 12, 025 (2022),
arXiv:2209.09274 [hep-th].

[20] C. P. Herzog, I. R. Klebanov, S. S. Pufu, and
T. Tesileanu, Phys. Rev. D83, 046001 (2011),
arXiv:1011.5487 [hep-th].

[21] D. Martelli and J. Sparks,
Phys. Rev. D84, 046008 (2011),
arXiv:1102.5289 [hep-th].

[22] F. Benini, E. Colombo, S. Soltani, A. Zaffaroni,
and Z. Zhang, Class. Quant. Grav. 37, 215021 (2020),
arXiv:2005.12308 [hep-th].

[23] E. Colombo, JHEP 12, 013 (2022),
arXiv:2110.01911 [hep-th].

[24] The functional W written in [1] has a critical point un-
der the condition

∑
I
∆I = 2π. We are using a homo-

geneous form of W where this condition has been used
to eliminate all occurrences of π. The variables ∆I in [1]
correspond to our ∆±

I
|ǫ=0.

[25] To compare with the formulas in [8] we set n = 1 and
identify the variables as follows: π∆±

i
|there = ∆∓

I
|here,

−2πǫ|there = ǫ|here , πϕi|there = ϕI |here, ri|there = rI |here,
ni|there = nI |here/(n+n−) + rIχσ/2.
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