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A B S T R A C T   

In psychology, researchers often rely on face photographs to study face perception. However, finding suitable 
face stimuli for experiments is often challenging. Computer-generated (CG) faces have emerged as a potential 
solution due to their flexibility and controllability. However, it has been suggested that these stimuli are eval-
uated and processed differently from real faces, and their suitability as alternatives in experimental settings 
remains unclear. To address this, two studies were conducted to examine the impact of CG faces’ realism and 
observers’ self-reported exposure to CG faces on faces appraisals (Study 1) and processing (Study 2). 

In Study 1 (n = 97), we assessed perceptions of both real and CG faces. Findings indicated that participants 
generally viewed CG faces less favourably, especially when these faces lacked realism. This trend was particularly 
pronounced among individuals less exposed to digital characters. 

In Study 2 (n = 33), we examined the recognition accuracy of these faces in a memory task. The data revealed 
that CG faces, especially those less realistic, were less accurately recognized. However, this discrepancy was 
primarily observed among individuals with limited exposure to digital characters, while those more familiar with 
such characters showed no significant difference in recognition. 

Overall, this work confirmed that, to date, CG faces are not an adequate alternative to real faces and that 
researchers should be cautious when using these stimuli in experiments involving face processing. However, as 
digital graphics improve and as digital characters become more commonplace in daily life, the perceptual gap 
between CG and real faces may diminish.   

1. Introduction 

Faces are essential to many research areas in psychology as they 
provide valuable cues about the people we interact with. Faces indeed 
reveal information about age, gender, ethnicity, emotional state, and 
many other attributes that we can use to guide our behaviour during 
verbal and non-verbal communication (McKone & Robbins, 2011). 

Photographs or video clips portraying faces are commonly used in 
psychological research paradigms to explore how individuals respond to 
these stimuli. However, researchers investigating human face percep-
tion often find it challenging to retrieve adequate face stimuli that they 
can use in experimental settings to answer their research questions 

appropriately. Finding high-quality, standardized pictures or videos that 
fit different experimental goals may be challenging. Available face da-
tabases traditionally provide researchers with images of faces (Gross, 
2005). These databases contain photographs of individuals with unique 
identities but possibly different physical attributes and characteristics, 
including age and ethnicity. Sometimes models are captured in various 
poses and display various emotional expressions. However, these data-
bases are often tailored to the researchers’ individual needs and do not 
always meet the needs of other experimenters. Also, images from 
different databases are difficult to merge as they differ in several tech-
nical details and are usually validated on distinct psychological and 
perceptual dimensions. Finding a way to control stimuli and conduct 
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systematic investigations into how faces are perceived may turn out to 
be an arduous task. 

In recent years, the use of computer-generated (CG) faces has 
increased in psychological experimental settings (Dawel, Miller, Hors-
burgh, & Ford, 2021). CG faces are generated through computer soft-
ware from scratch or by converting real pictures into 3D head models. 
Today, there are numerous graphical software available, such as Face-
Gen (FaceGen Modeller, 2021), Poser (Poser, 2021), and Character 
Creator (Character Creator, 2022). These programs allow researchers to 
design highly realistic CG faces quickly and modify them to meet the 
requirements of specific studies by manipulating facial expressions, 
facial characteristics, and other socio-cognitive aspects (La Rocca, 
Gobbo, Tosi, Fiora, & Daini, 2023). These programs indeed provide in-
tegrated tools that enable researchers to control various aspects of the 
faces, including physical appearance, facial expression, and morpho-
logical features. Additionally, plugins can be integrated to fine-tune 
technical details such as shading and rendering. Consequently, these 
stimuli can be rapidly generated and manipulated without requiring 
advanced technical expertise, making them adaptable to meet the ob-
jectives of different research projects. 

Thus, CG faces have the potential to serve as versatile and flexible 
alternatives for conventional pictures. A recent systematic review 
(Dawel et al., 2021) found that approximately 7.3% of the publications 
focusing on psychological research and employing faces as stimuli used 
CG faces in their experiments. The authors highlighted two distinct 
applications of CG faces in their study. A few studies examined the 
unique responses elicited by CG faces compared to human faces. Most of 
these studies, however, used CG faces as substitutes for human faces. 
Therefore, it is crucial to investigate their appropriateness and suit-
ability as alternatives to real faces in psychological research, by directly 
verifying any changes in how observers appraise and process these 
stimuli. Central to this, are two intertwined factors: “realism” and 
“self-reported exposure". 

1.1. Realism 

Thanks to the rapid advances in digital graphics, it is now possible to 
create highly realistic CG faces that have the potential to serve as ver-
satile and flexible alternatives for conventional pictures. We here define 
realism as the accuracy of the details of the physical appearance. 
Lighting, shading, surface details, and resolution are all included in this 
category, which describes the degree of visual realism reached by 
different render details (Grewe, Liu, Kahl, Hildebrandt, & Zachow, 
2021; Nowak & Fox, 2018). Therefore, the degree of realism of a CG face 
is defined by the quality of its technical details and can be manipulated 
in terms of facial proportions, levels of details, skin appearance, lighting, 
and shading (Burleigh, Schoenherr, & Lacroix, 2013; Diel, Weigelt, & 
MacDorman, 2021; Green, MacDorman, Ho, & Vasudevan, 2008; Zell 
et al., 2015). Depending on the software, level of detail, and rendering 
techniques, the realism of these faces can vary widely. This variation has 
implications for how individuals appraise and process these stimuli. 

For instance, research suggests that CG faces elicit different 
emotional responses and first impressions than real faces (Miller, Foo, 
Mewton, & Dawel, 2023). This difference may be partially attributed to 
the level of realism in CG faces. The uncanny valley (UV) hypothesis 
(Mori, 1970) posits that as CG faces become more realistic, our 
emotional affinity towards them increases until a certain threshold, after 
which our response becomes negative or eerie. However, most studies 
investigating individuals’ responses to CG faces failed to find support for 
the UV hypothesis (Di Natale et al., 2023a). Some studies even propose 
an alternative, the uncanny slope hypothesis (Kätsyri, de Gelder, & 
Takala, 2019), suggesting a continuous positive response as realism in-
creases. This ongoing debate underscores the need to fully understand 
the relationship between CG faces’ realism and human responses. 
Beyond emotional responses, research has also shown that CG faces tend 
to have more unfavourable perceptions of social qualities than real ones 

(Miller et al., 2023). 
Another critical aspect to consider is the impact of realism on face 

processing (e.g., identity recognition). Different studies revealed that CG 
faces are less efficiently discriminated than real faces (Balas & Pacella, 
2015; Crookes et al., 2015; Kätsyri, 2018). One possible explanation 
relies on the realism of CG faces. These stimuli display lower amounts of 
discriminating information than real faces (Crookes et al., 2015). Spe-
cifically, due to the limitations of existing graphical programs, CG faces 
lack surface cues (e.g., colour, pigmentation, reflectance, albedo) that 
help an individual recognize a face. Consequently, the less realistic CG 
faces are, the more similar they become to each other and the harder 
they are to remember (Goldstein & Chance, 1980; Valentine, 1991). As a 
result, the level of realism can impact how individuals perceive and 
categorize CG faces, impacting how well they can recognize and 
distinguish them. 

1.2. Exposure 

Exposure, the second factor, also plays a crucial role in how in-
dividuals appraise and process CG faces. In this context, we refer to 
exposure as the frequency with which individuals encounter specific 
categories of stimuli, such as faces. It has been observed that self- 
reported frequency of exposure to certain stimulus types is correlated 
with increased familiarity and potentially enhanced processing capa-
bilities for these stimuli (Lu, Hua, Huang, Zhou, & Dosher, 2011). It has 
been suggested that exposure to particular groups of stimuli shapes our 
expertise with these kinds of stimuli. This process is often called 
perceptual narrowing (Nelson, 2001). According to perceptual narrow-
ing, the demands of our surrounding environment shape our perceptual 
abilities. This means that our perceptual system specializes in processing 
and recognizing the most frequently encountered stimuli. Among these 
stimuli, we can definitively find human faces. For example, there is 
evidence of a decrease in the capacity to distinguish between two faces 
within a category that is infrequently seen, such as other-race faces (e.g., 
Kelly et al., 2007), other-species (e.g., Scott & Monesson, 2009), and 
other-age faces (e.g., Kuefner, Macchi Cassia, Picozzi, & Bricolo, 2008). 

In daily life, most of us encounter real faces far more frequently than 
computer-generated (CG) faces. This disparity in exposure has led re-
searchers to speculate that our unfamiliarity with CG faces could in-
fluence our reactions to them. For instance, studies have suggested that 
people may find CG faces ‘uncanny’ or strange due to this lack of fa-
miliarity them (Chattopadhyay & MacDorman, 2016; Kätsyri, 2018; 
Kätsyri et al., 2019). However, increased exposure to CG faces can 
mitigate these feelings, resulting in a more favourable impression of the 
character (Burleigh et al., 2013; Cheetham, Suter, & Jäncke, 2011, 2014; 
Yamada, Kawabe, & Ihaya, 2013). This unfamiliarity may also impact 
our perceptions of other attributes of CG faces, such as trustworthiness 
or attractiveness. 

Lastly, while there is limited research on how we process CG faces, 
initial findings suggest that people tend to be less accurate in recog-
nizing CG faces than real ones (Balas & Pacella, 2015; Crookes et al., 
2015; Kätsyri, 2018). Crookes et al. (2015) suggested that, beyond CG 
faces’ realism, a possible explanation also relies on the fact that we are 
less exposed to CG faces in everyday life, and therefore, we are less 
exposed to these stimuli. As a result, CG faces may be susceptible to the 
other-race effect (ORE). According to the ORE, we perceive more quickly 
and accurately the faces of our ethnic group. One explanation of such an 
effect is that individuals are less efficient in processing other-race faces 
since they are less exposed, and thus less trained, with this kind of 
stimuli (Rhodes, Brake, Taylor, & Tan, 1989). 

1.3. Present work 

As the use of CG faces in psychological research continues to grow, 
understanding the intertwined roles of realism and self-reported expo-
sure becomes increasingly crucial. These factors influence how we 
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perceive and process CG faces and have profound implications for the 
validity and generalizability of research findings. The goal of the present 
studies is to see whether face appraisals and identity recognition are 
affected by the realism of the faces and by the self-reported exposure of 
participants to CG characters. 

Study 1 delves into the appraisal of CG faces, focusing on aspects 
such as the UV and first impressions. We aim to understand how realism 
and self-reported exposure might influence these evaluations, poten-
tially offering insights into the responses elicited by CG faces compared 
to real ones. 

Study 2 shifts the focus to the processing of CG faces, particularly on 
face identity recognition. Here, we explore how individuals process and 
remember CG faces and whether their ability to do so is influenced by 
the realism of the CG face or their prior experience with such stimuli. 

With these studies, we aim to address the following research 
questions:  

• RQ1: Are there notable differences in how individuals appraise and 
process real faces compared to CG faces?  

• RQ2: How does the realism of CG faces affect participants’ appraisals and 
their ability to process these faces?  

• RQ3: Does prior experience or familiarity with CG faces influence how 
participants appraise and process them? 

2. Study 1: CG faces appraisals 

2.1. Introduction 

Faces deliver essential social and emotional information used for 
verbal and nonverbal communication. Human beings are good at 
detecting and using such information in social interactions. It has been 
suggested that, as soon as a face is perceived, humans tend to rapidly 
generate first impressions based on only a minimum amount of infor-
mation (Marzi, Righi, Ottonello, Cincotta, & Viggiano, 2014; Todorov & 
Uleman, 2004; Willis & Todorov, 2006). Specifically, when meeting 
someone new, individuals tend to form an automatic social evaluation of 
that person based on facial appearance (Todorov, Mende-Siedlecki, & 
Dotsch, 2013; Willis & Todorov, 2006; Zebrowitz, 2017). Information 
deriving from a facial appearance is used to make several other social 
evaluations, including, for example, estimates of attractiveness, trust-
worthiness, aggressiveness, and dominance (Bar, Neta, & Linz, 2006; 
Mende-Siedlecki, Said, & Todorov, 2013; Olson & Marshuetz, 2005). 

In previous works, Balas and colleagues (Balas, Tupa, & Pacella, 
2018) examined whether CG faces’ judgments are evaluated within the 
same social face space identified for real faces (Oosterhof & Todorov, 
2008). According to the face space model faces are evaluated on two 
main dimensions: valence and dominance. In their study, Balas and 
colleagues (Balas et al., 2018) found that CG and real faces were assessed 
within the same two-factor model (valence-dominance) but further 
revealed that CG faces were positioned differently within that face 
space. According to the authors, this result suggests that although ob-
servers apply the same strategy to judge CG and real faces, CG faces’ 
appraisals may be disrupted. This is in line with studies showing dif-
ferences in CG and real faces’ evaluations of, for example, likeability, 
trustworthiness, and attractiveness, finding CG faces to be rated more 
negatively (Balas & Pacella, 2017; Schindler, Zell, Botsch, & Kissler, 
2017; Zell et al., 2015). 

The first aim of our study was to confirm whether real faces are 
evaluated differently from CG faces. To this end, we collected partici-
pants’ assessments of real and CG faces. Within the study, we considered 
some psychologically-relevant features of face perception that span 
different aspects: human-likeness, eeriness, likability, attractiveness, 
and trustworthiness. We selected only six dimensions to ensure the task 
was not too repetitive. However, we specifically decided to measure 
human-likeness, likability, attractiveness, and trustworthiness as they 
are the most widely explored traits in the current literature but have 

never been measured together on the same images. Specifically, we 
hypothesized that: 

H1. Real faces are rated more human-like, likeable, attractive, trust-
worthy and less eerie than CG faces. 

A second goal was to explore the specific role of CG faces’ realism in 
face appraisals. Given that social evaluations are generated very fast 
based on facial appearance, it is plausible that observers’ appraisals of 
CG faces largely rely on their realism and the resulting perception of 
human-likeness. According to the more recent uncanny slope hypothesis 
(Kätsyri et al., 2019), when a CG face looks more realistic, it can be 
perceived as more familiar and more likely to elicit a positive response 
from the viewer. We, therefore, presented participants with two 
different degrees of realism. Realism was manipulated by modifying the 
texture resolution of the virtual characters (Diel et al., 2021). We 
included two CG variants of the original real faces representing a CG face 
with low realism (CG-low) and a CG face with high realism (CG-high). 
We predicted that: 

H2. The level of realism in CG faces influence observers’ appraisals of 
those stimuli, with CG-high faces being rated as more human-like, 
likeable, attractive, trustworthy, and less eerie compared to CG-low 
faces. 

Finally, our tertiary goal was to investigate the role of self-reported 
exposure to CG faces on their appraisals. It has been suggested that 
CG faces might be differently evaluated depending on individuals’ self- 
reported exposure to these entities (Chattopadhyay & MacDorman, 
2016; Kätsyri et al., 2019). Specifically, it has been argued that, 
compared to real faces, CG faces are less familiar to human observers 
since they are less exposed to these stimuli in everyday life. As a result, 
individuals’ judgments of CG faces might differ from those of real faces. 
However, to the best of our knowledge, no one has so far directly 
investigated the influence of self-reported exposure on face social 
evaluations. To this end, we asked participants to report how often they 
are exposed to or interact with realistic virtual characters. We then used 
this measure to examine how people’s responses to virtual characters’ 
faces differed depending on how frequently they were exposed to these 
characters. Specifically, we hypothesized that: 

H3. Self-reported exposure to CG faces influence CG faces ‘appraisals, 
with individuals reporting higher exposure rating both CG-high and CG- 
low faces as more human-like, likeable, attractive, trustworthy, and less 
eerie than individuals reporting lower exposure. However, this self- 
reported exposure does not influence real faces’ appraisals. 

2.2. Methods 

2.2.1. Materials 
In this study, we used 120 photographs of Caucasian females (n = 61) 

and males (n = 59) young adult models retrieved from the Chicago Face 
Database (CFD; Ma, Correll, & Wittenbrink, 2015). The photographs 
were chosen among those that did not present hairs on the face (e.g., 
fringe or tuft). We then used these pictures to generate two CG variants 
for each face using Character Creator 3 software (Character Creator, 
2022). Specifically, the two CG variants were created with different 
degree of realism in terms of texture resolution (Diel et al., 2021). To do 
so, we used two different tools available in the software. We used the 
Auto Mode tool to generate CG faces with low-resolution (1K) textures 
(CG-low faces), and the Pro Mode, to generate high-resolution (4K) 
textures CG faces (CG-high faces). In both steps, we used image matching 
and sculpt morph tools to match the CG faces as much as possible with 
the original faces. All faces were cropped to conceal hairs and ears and 
resized using an image editor program. The final pictures measured 
123x123 pixels with 123 dpi. Luminance means, and standard de-
viations were standardized across pictures using SHINE_color toolbox in 
Matlab (Dal Ben, 2021). Fig. 1 shows an example of the resulting stimuli. 
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Due to copyright restrictions, we were unable to publicly share all of the 
experiment stimuli on an open science platform. However, we would 
like to inform readers that the original real faces used in our study are 
accessible on the Chicago Face Database website (https://www.chicago 
faces.org), while the modified versions specifically created for our 
research can be found in the Additional Resources section of the same 
website (https://www.chicagofaces.org/resources/, Di Natale, La 
Rocca, Simonetti, & Bricolo, 2023b). We encourage interested readers to 
visit these sources for further reference. 

2.2.2. Participants 
Based on previous studies (Langner et al., 2010), we aimed to have 

about twenty participants rate each stimulus. Therefore 139 participants 
were invited to our study, but only 115 participants (females = 78; mean 
age = 26.5 ± 6.5) completed the task. All participants were informed 
about the characteristics of the study, and before the start of the 
experiment, they were required to provide informed consent. The study 
was approved by the local ethical committee of the University of 
Milano-Bicocca (Protocol RM-2021-407). After giving their informed 
written consent, participants were asked to share socio-demographic 
information, including age and gender. Second, they were asked to 
evaluate how frequently they are exposed to realistic CG characters (e. 
g., in video games, digital media or other contexts). Participants were 
presented with an example of a realistic CG character unrelated to the 
stimuli used in the experiment. They were asked to rate how often they 
interacted or were exposed to these kinds of stimuli on a 5-point Likert 
scale where 1 = Never, 2 = Less than once a month, 3 = Less than once a 
week, 4 = More than once a week, and 5 = Daily. We then divided 
participants into two groups: participants reporting limited exposure 
(limited-exposure participants, or LEPs) and participants reporting 
high-exposure (high-exposure participants, or HEPs). LEPs were 
considered participants answering either 1 (never) or 2 (less than once a 
month), while HEPs were considered those who answered either 4 (more 
than once a week) or 5 (daily). Out of 115 participants, 55 were LEPs, 
and 42 were HEPs. Analyses were then performed on a total of 97 
participants. 

2.2.3. Procedure 
The study was programmed and conducted using Qualtrics on an MSI 

P75 Creator 9SE with 1920 x 1080 resolution. All faces were presented 
in color and cropped for the experiment (see 2.2.1. Materials section for 
details). At the viewing distance of approximately 50 cm, stimuli sub-
tended a visual angle of approximately 6.3◦ × 8.57◦. Given the high 
number of stimuli to be rated, they were divided into six blocks of 60 
faces each. Stimuli were pseudo-randomized into each subset, made of 
60 different identities. Twenty pictures were real, 20 were CG-high, and 
20 were CG-low faces. Within each block, pictures were randomly pre-
sented. Each participant was presented with only one block and there-
fore was presented with 60 faces (20 real faces, 20 CG-high faces and 20 
CG-low faces) in random order. For each face, participants were then 
asked to answer six questions that were presented in random order. 
Participants were asked to evaluate faces using 7-point semantic 

differential scales measuring human-likeness (artificial-human; original 
Italian anchors: “artificiale-umano”), eeriness (eerie-reassuring; original 
Italian anchors: “inquietante-rassicurante”), likability (unpleasant- 
pleasant; original Italian anchors: “sgradevole-piacevole”), attractive-
ness (unattractive-attractive; original Italian anchors: “non attraente- 
attraente”), and trustworthiness (untrustworthy-trustworthy; original 
Italian anchors: “inaffidabile-affidabile”). Furthermore, we asked par-
ticipants to rate CG faces perceived gender to identify negligent re-
spondents. This variable was measured by asking participants “How 
feminine/masculine do you think the face in the photo is?” using a 7- 
points semantic differential scale (feminine-masculine; original Italian 
anchors: “femminile-mascolino”). The rationale behind this approach 
was that a consistent failure to appropriately capture the gender of the 
faces, or random responses across this scale, would indicate a lack of 
attention or engagement with the task, thus signalling a negligent 
respondent. To operationalize this, we focused on responses where the 
“extreme scores” for the gender that was clearly represented by the CG 
face were not selected. For instance, if a CG face was evidently male, any 
rating other than 6 or 7 (the extreme scores on the masculine end of the 
scale) was flagged for further review. This method was based on the 
assumption that attentive and engaged respondents would likely choose 
these extreme scores for a clearly gendered face. We then looked for 
patterns where the same respondents consistently failed to select the 
extreme scores for the correct gender. A threshold was set at 20% - if a 
respondent failed to choose the extreme scores in more than 20% of such 
cases, they were considered to potentially exhibit a negligent pattern. 
We did not identify any respondents who demonstrated patterns of re-
sponses indicative of negligence. 

2.2.4. Statistical analyses 
A series of linear mixed models (LMMs) were estimated to assess the 

effects of face type (real faces, CG-high faces, CG-low faces) and self-re-
ported exposure (low, high) on face appraisals (human-likeness, eeriness, 
likeability, attractiveness, and trustworthiness) using the lmer test in R 
(Kuznetsova, Brockhoff, & Christensen, 2015). 

For each model with a significant main effect or interaction, planned 
contrasts were implemented using the emmeans package (Lenth & Lenth, 
2018). Regression coefficients, standard errors, t values, and corre-
sponding p values are reported for these planned contrasts. Specifically, 
where a main effect of type was detected, planned contrasts between 
real faces’ appraisals and CG-high and CG-low faces were performed to 
test H1. Furthermore, planned contrasts between CG-high and CG-low 
faces were performed to test H2. Finally, where a significant interac-
tion was identified, planned contrasts between LEPs and HEPs at each 
“face type” level was performed to test H3. The database and the script 
are available at Open Science Framework (https://osf.io/nz9j3/? 
view_only=ee446255e5504650b6e0312354a523c9, DB_Study_1). 

2.3. Results 

Table 1 shows the estimated mean marginals and standard errors for 

Fig. 1. Example of the stimuli used in the experiment. 
The cropped and luminance matched real face (center), low-resolution CG face 
(left) and the high-resolution CG face (right). 

Table 1 
Estimated mean marginals (study 1).   

Exposure Face type 

Real CG-high CG-low 

Human-likeness LEPs 5.99 (0.09) 2.48 (0.09) 1.88 (0.09) 
HEPs 6.01 (0.10) 3.09 (0.09) 2.31 (0.10) 

Eeriness LEPs 4.03 (0.09) 4.51 (0.09) 4.81 (0.09) 
HEPs 3.80 (0.10) 4.05 (0.10 4.30 (0.10) 

Likeability LEPs 4.12 (0.09) 3.50 (0.08) 3.30 (0.08) 
HEPs 4.16 (0.10) 3.80 (0.10) 3.46 (0.10) 

Attractiveness LEPs 4.12 (0.08) 3.50 (0.08) 3.30 (0.08) 
HEPs 4.16 (0.10) 3.80 (0.10) 3.46 (0.10) 

Trustworthiness LEPs 4.22 (0.08) 3.76 (0.08) 3.58 (0.08) 
HEPs 4.35 (0.10) 4.00 (0.10) 3.80 (0.10)  
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the considered dimensions, including human-likeness, eeriness, like-
ability, attractiveness, and trustworthiness, across different conditions. 
The conditions include evaluations by LEPs and HEPs, as well as eval-
uations of real faces and two variations of CG faces: high realism (CG- 
high) and low realism (CG-low). The mean values and their standard 
errors are provided for each condition, allowing for a comparison of 
participants’ ratings across different factors. The figures representing 
the results is provided in the Supplementary Materials. 

2.3.1. Human-likeness 
The LMM performed on “human-likeness” (artificial-human) evalu-

ations explained about the 67% of the variance (conditional R2 = 0.67). 
Within the model we found a significant main effect of “face type” [F 
(2,5719) = 5094.66, p < 0.001]. Planned contrasts showed that 
“human-likeness” evaluations differed significantly between real faces 
and both CG-low faces and CG-high faces, confirming H1. Planned 
contrasts between CG-low faces and CG-high faces revealed an effect of 
realism, revealing a significant difference in “human-likeness” evalua-
tions between CG-low and CG-high faces, confirming H2. Planned con-
trasts are shown in Table 2. The analysis further revealed a significant 
main effect of “self-reported exposure” [F(1,95) = 7.41, p < 0.01] and a 
significant interaction between “face type” and “self-reported exposure” 
[F(2, 5719) = 26.07, p < 0.001]. Planned contrasts revealed a signifi-
cant difference in “human-likeness” evaluations between HEPs and LEPs 
in both CG-low and CG-high faces. As expected, the effect of self- 
reported exposure was not significant on real faces’ human-likeness 
evaluations. These results confirmed H3. Planned contrasts are shown 
in Table 3. 

2.3.2. Eeriness 
The LMM performed on “eeriness” (reassuring-eerie) evaluations 

explained about the 30% of the variance (conditional R2 = 0.30). Within 
the model we found a significant main effect of “face type” [F(2,5719) =
108.97, p < 0.001]. Planned contrasts revealed that “eeriness” evalua-
tions differed significantly between real faces and both CG-low faces and 
CG-high faces, confirming hypothesis H1. Planned contrasts further 
revealed an effect of CG faces’ realism, showing a significant difference 
in “eeriness” evaluations between CG-low and CG-high faces, confirming 
H2. Planned contrasts are shown in Table 2. The analysis further 
revealed a significant main effect of “self-reported exposure” [F(1,95) =
9.81, p < 0.01] and a significant interaction between “face type” and 
“self-reported exposure” [F(2, 5719) = 5.63, p < 0.01]. Planned con-
trasts showed a significant difference in “eeriness” evaluations between 
LEPs and HEPs in CG-low and CG-high faces. As expected, we did not 
find a significant effect of self-reported exposure on real faces’ “eeriness” 

evaluations. These results confirmed H3. Planned contrasts are shown in 
Table 3. 

2.3.3. Likeability 
The LMM performed on “likeability” (unpleasant-pleasant) evalua-

tions explained about the 18% of the variance (conditional R2 = 0.18). 
Within the model we found a significant main effect of “face type” [F 
(2,5719) = 157.19, p < 0.001]. Planned contrasts revealed that “like-
ability” evaluations differed significantly between real faces and both 
CG-low faces and CG-high faces, confirming hypothesis H1. Planned 
contrasts further revealed an effect of CG faces’ realism, showing a 
significant difference in “likeability” evaluations between CG-low and 
CG-high faces, confirming H2. Planned contrasts are shown in Table 2. 
The analysis further revealed a significant interaction between “face 
type” and “self-reported exposure” [F(2, 5719) = 4.61, p < 0.05]. 
Planned contrasts showed a significant difference in “likeability” eval-
uations between LEPs and HEPs only in CG-high faces, but not on CG- 
low faces. The effect of self-reported exposure was not significant on 
real faces’ “likeability” evaluations. These results partially confirmed 
H3. Planned contrasts are shown in Table 3. 

2.3.4. Attractiveness 
The LMM performed on “attractiveness” (unattractive-attractive) 

evaluations explained about the 16% of the variance (conditional R2 =

0.16). Within the model we found a significant main effect of “face type” 
[F(2,5719) = 72.35, p < 0.001]. Planned contrasts revealed that 
“attractiveness” evaluations differed significantly between real faces 
and both CG-low faces and CG-high ì faces, confirming hypothesis H1. 
Planned contrasts further revealed an effect of CG faces’ realism, 
showing a significant difference in “attractiveness” evaluations between 
CG-low and CG-high faces, confirming H2. Planned contrasts are shown 
in Table 2. The analysis further revealed a significant main effect of 
“self-reported exposure” [F(1,95) = 17.13, p < 0.001] and a significant 
interaction between “face type” and “self-reported exposure” [F(2, 
5719) = 4.21, p < 0.05]. Planned contrasts revealed a significant dif-
ference in “attractiveness” evaluations between LEPs and HEPs on both 
CG-low faces and CG-high faces. However, we further found a significant 
effect of self-reported exposure on real faces’ “attractiveness” evalua-
tions. These results partially confirmed H3. Planned contrasts are shown 
in Table 3. 

2.3.5. Trustworthiness 
The LMM performed on “trustworthiness” (untrustworthy-trust-

worthy) evaluations explained about the 18% of the variance (condi-
tional R2 = 0.18). Within the model we found a significant main effect of 

Table 2 
Planned contrasts of “face type” (Study 1).   

Hp Level 1 Level 2 β 95% CI SE df t 

CI_low CI_high 

HL 1 Real CG-low 3.91 3.81 4.01 0.04 5719 94.57*** 
Real CG-high 3.22 3.12 3.32 0.04 5719 77.85*** 

2 CG-low CG-high − 0.69 − 0.79 − 0.59 0.04 5719 − 16.72*** 
EE 1 Real CG-low − 0.64 − 0.75 − 0.54 0.04 5719 − 14.72*** 

Real CG-high − 0.37 − 0.47 − 0.26 0.04 5719 − 8.36*** 
2 CG-low CG-high 0.28 0.17 0.38 0.04 5719 6.35*** 

LK 1 Real CG-low 0.76 0.66 0.87 0.04 5719 17.49*** 
Real CG-high 0.49 0.39 0.60 0.04 5719 11.27*** 

2 CG-low CG-high − 0.27 − 0.38 − 0.17 0.04 5719 − 6.22*** 
AT 1 Real CG-low 0.57 0.45 0.68 0.05 5719 12.00*** 

Real CG-high 0.25 0.14 0.36 0.05 5719 5.26*** 
2 CG-low CG-high − 0.32 − 0.43 − 0.20 0.05 5719 − 6.74*** 

TR 1 Real CG-low 0.60 0.49 0.70 0.04 5719 14.05*** 
Real CG-high 0.41 0.31 0.51 0.04 5719 9.64*** 

2 CG-low CG-high − 0.19 − 0.29 − 0.09 0.04 5719 − 4.41*** 

Note that *** < 0.001; ** < 0.01; * < 0.05. 
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“face type” [F(2,5719) = 103.3, p < 0.001]. Planned contrasts revealed 
that “trustworthiness” evaluations differed significantly between real 
faces and both CG-low faces and CG-high faces, confirming hypothesis 
H1. Planned contrasts further revealed an effect of CG faces’ realism, 
showing a significant difference in “trustworthiness” evaluations be-
tween CG-low and CG-high faces, confirming H2. Planned contrasts are 
shown in Table 2. The analysis did not reveal any other significant main 
effect or interaction. 

2.4. Discussion 

In this study, we compared real and CG faces’ evaluations by further 
analyzing the specific effect of CG faces’ realism and observers’ self- 
reported exposure to CG characters. 

We first examined the effect of “face type” by comparing partici-
pants’ perceived human-likeness of real faces and CG-high and CG-low 
faces. The analysis revealed a significant effect of the realism manipu-
lation on perceived human-likeness, showing that perceived human- 
likeness increased with increasing realism. Planned contrasts revealed 
that both CG faces were judged much less human-like than real faces. 
This is in line with previous literature showing that CG and real faces are 
perceived categorically rather than continuously (Cheetham et al., 2011; 
Looser & Wheatley, 2010). According to this view, CG faces are judged 
artificial until they become sufficiently realistic to cross the category 
boundary to move into the human category. Our results show that even 
highly realistic CG faces are still judged significantly less human-like 
than real faces and may fall into the virtual category side of the con-
tinuum. Similar findings were found on the evaluations of the facial 
traits considered in this study (i.e., eeriness, likeability, attractiveness, 
and trustworthiness), with CG faces receiving, overall, more negative 
evaluations than real faces and CG-low faces receiving more negative 
evaluations than CG-high faces. These findings confirmed our first hy-
pothesis (H1) that real faces were rated more human-like, likeable, 
attractive, trustworthy, and less eerie than both CG-high and CG-low 
faces. This supports the notion that people tend to perceive real faces 
more positively than CG faces, as shown in previous literature (Balas & 
Pacella, 2017; Schindler et al., 2017; Zell et al., 2015). Taken together 
these findings suggest that researchers should be aware of the limits that 
CG faces, even when highly realistic, might have before they can be 
considered proxies for human faces. 

Furthermore, it has been hypothesized that the degree of realism 
with which CG faces are created is a crucial determinant of how ob-
servers evaluate these stimuli. Whether increasing realism is beneficial 
or not for CG faces’ evaluation remains unclear. However, most studies 
have found a positive correlation between face evaluations and realism, 
with more realism leading to more favourable ratings (Cheetham, Suter, 

& Jancke, 2014; Kätsyri et al., 2019). Our results confirmed this pre-
diction, supporting our second hypothesis (H2), as individuals tended to 
perceive more realistic CG faces as more human-like, leading to a greater 
affinity and more favourable ratings over less realistic CG faces. Spe-
cifically, CG-high faces were rated more human-like, likeable, attractive, 
trustworthy, and less eerie than CG-low faces. This result suggests that 
increasing CG faces’ realism may reduce the discrepancies between CG 
and real faces. This is in line with the uncanny slope hypothesis (Kätsyri 
et al., 2019), which suggests that increased realism in CG characters can 
lead to a more positive response from viewers. Our findings indicate that 
the realism of CG faces plays a critical role in their evaluations, 
providing valuable insights for developing more realistic and socially 
acceptable virtual characters. 

Our third hypothesis (H3) was also confirmed, showing that self- 
reported exposure affected CG faces’ evaluations. Our results showed 
that individuals more frequently exposed to digital characters evaluate 
CG faces more positively than people reporting being less exposed. 
Specifically, these individuals rated CG-high and CG-low faces as more 
human-like, likeable, attractive, trustworthy, and less eerie than LEPs. 

Contrary to our expectations, self-reported exposure also influenced 
real faces’ attractiveness evaluations. This could be due to HEPs having a 
more refined perception of attractiveness based on their exposure to a 
wider variety of facial features, including those found in CG faces. This 
result could be explained by the expertise hypothesis (Diamond & Carey, 
1986). According to this hypothesis, face experts see attractiveness in all 
faces as an indication of a broader appreciation of faces. Being more 
exposed to CG faces widens the range and the number of faces in-
dividuals are exposed to, and therefore they become more familiar with 
faces in general which in turn affects faces perceptions (Carr, Brady, & 
Winkielman, 2017; Claypool, Hugenberg, Housley, & Mackie, 2007; 
Yan, Young, & Andrews, 2017). Further research is needed to clarify this 
point. 

3. Study 2: CG faces identity recognition 

3.1. Introduction 

Faces represent a special kind of visual stimuli (Farah, Wilson, Drain, 
& Tanaka, 1998). In particular, it has been argued that faces are pro-
cessed differently from other stimuli, for example, objects. According to 
the holistic hypothesis (Maurer, Le Grand, & Mondloch, 2002), indi-
vidual facial structures are simultaneously encoded and integrated into a 
single global perception. One of the most important pieces of evidence in 
support of the holistic hypothesis, together with the composite (Young, 
Hellawell, & Hay, 1987) and the part-whole (Tanaka & Farah, 1993) 
effects, is the inversion effect. According to the inversion effect, face 

Table 3 
Planned contrasts of “self-reported exposure” at each level of “face type” (Study 1).   

Hp Level 1 Level 2 Type β 95% CI SE df t 

CI_low CI_high 

HL 3 HEPs LEPs real 0.02 − 0.25 0.30 0.14 122.48 0.17 
HEPs LEPs CG-high 0.61 0.33 0.88 0.14 122.48 4.38*** 
HEPs LEPs CG-low 0.43 0.16 0.70 0.14 122.48 3.11** 

EE 3 HEPs LEPs real − 0.24 − 0.51 0.04 0.14 126.48 − 1.70 
HEPs LEPs CG-high − 0.47 − 0.74 − 0.19 0.14 126.48 − 3.37*** 
HEPs LEPs CG-low − 0.51 − 0.78 − 0.23 0.14 126.48 − 3.67*** 

LK 3 HEPs LEPs real 0.03 − 0.22 0.29 0.13 132.16 0.25 
HEPs LEPs CG-high 0.30 0.04 0.55 0.13 132.16 2.30* 
HEPs LEPs CG-low 0.16 − 0.10 0.42 0.13 132.16 1.24 

AT 3 HEPs LEPs real 0.34 0.08 0.60 0.13 122.48 2.57* 
HEPs LEPs CG-high 0.58 0.32 0.84 0.13 122.48 4.40*** 
HEPs LEPs CG-low 0.57 0.31 0.83 0.13 138.26 4.33*** 

TR 3 HEPs LEPs real 0.21 − 0.04 0.47 0.13 129.56 1.65 
HEPs LEPs CG-high 0.24 − 0.01 0.50 0.13 129.56 1.89 
HEPs LEPs CG-low 0.13 − 0.13 0.39 0.13 129.56 1.01 

Note that *** < 0.001; ** < 0.01; * < 0.05. 
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recognition is slower and less accurate when the face is presented upside 
down (Yin, 1969). This effect is traditionally interpreted as indicative of 
holistic processing (but see Gerlach, Kühn, Mathiassen, Kristensen, & 
Starrfelt, 2023; Murphy, Gray, & Cook, 2020). While this effect has been 
extensively observed in studies with real faces (e.g., Taubert, Apthorp, 
Aagten-Murphy, & Alais, 2011; Turati, Sangrigoli, Ruely, & de Schonen, 
2004; Valentine, 1988; Yovel & Kanwisher, 2005), little is known about 
whether it applies also to CG faces. To the best of our knowledge, only 
three studies have analyzed the inversion effect for both real and CG 
faces in recognition tasks (Balas & Pacella, 2015; Kätsyri, 2018; Math-
eson & McMullen, 2011). All these results revealed that CG faces are 
susceptible to the inversion effect and, therefore, suggest that CG faces 
are processed as face stimuli, in a holistic manner. 

However, further results revealed that, although CG faces are pro-
cessed as face stimuli, they might be processed less efficiently than real 
faces. In particular, different results were obtained when CG faces’ 
recognition accuracy was measured, specifically in the context of the 
other-race effect (ORE). According to the ORE, we perceive more quickly 
and accurately the faces of our ethnic group than others (O’toole, Def-
fenbacher, Valentin, & Abdi, 1994). One possible explanation of such 
effect is that we have an innate predisposition to processing stimuli 
belonging to conspecifics. However, the most supported explanation for 
this effect is that people are more accurate in recognizing the faces of 
their ethnic group since they are more exposed to that type of stimuli 
throughout their lives (Tanaka, Kiefer, & Bukach, 2004). The effect of 
expertise has indeed been shown also with other categories of stimuli, 
including faces of different ages (Kuefner et al., 2008). Crookes et al. 
(2015) investigated whether the expertise acquired with processing real 
faces is applied to processing CG faces. The authors asked participants to 
complete discrimination and face recognition tasks. In both experi-
ments, participants (Caucasian and Asian) were presented with real and 
CG faces of both ethnicities (Caucasian and Asian). The authors found 
that accuracy in recognizing faces of one’s ethnicity was drastically 
reduced for CG faces compared to real faces and that the ORE was 
substantially attenuated for CG faces. According to the authors, taken 
together these results demonstrate that our perceptual expertise gained 
with real faces do not entirely transfer to CG faces that, in turn, are less 
accurately recognized. Other studies have hypothesized that artificial 
faces themselves generate the ORE (Balas & Pacella, 2015; Kätsyri, 
2018). Balas and Pacella (2015) analyzed participants’ performance in a 
recognition and a face-matching task performed with real faces and their 
CG counterparts, presented in upright or inverted orientation. The au-
thors observed that performances in both tasks were poorer for CG faces 
than real faces, meaning CG faces were harder to remember. Similarly, 
Kätsyri (2018) presented participants with real and CG faces in both 
upright and inverted orientations and asked them to complete a recog-
nition task. Results showed a greater tendency to respond “seen before” 
incorrectly (false alarms) for CG faces than for real faces. This result is 
consistent with the ORE and the author concluded that individuals 
demonstrate a greater difficulty of processing CG faces than real faces. 

These latter studies suggest that although CG faces are processed in a 
face-like manner, as indicated by the inversion effect, they are processed 
less efficiently. For this reason, the first hypothesis of this study was: 

H1. CG faces are more difficult to recognize than real faces. 

Crookes et al. (2015) suggested three possible explanations for this 
effect. 

First, according to the authors (Crookes et al., 2015) identity 
recognition tasks performed with CG might be more difficult as they 
contain less perceptual information, such as texture details, that are 
normally used to discriminate a face. Based on this premises we 
formulated the following hypothesis: 

H2. CG faces with a lower texture resolution (CG-low) are harder to 
remember than CG faces with a higher texture resolution (CG-high). 

Second, the result of their study (Crookes et al., 2015) showed that 

CG faces were less efficiently processed than real faces, and all partici-
pants reported having minimal exposure to CG faces. They therefore 
postulated that our perceptual system may not be tuned to CG faces as to 
real ones, given that individuals are less exposed to CG faces than real 
faces in everyday life. Following this premises, we formulated an addi-
tional hypothesis: 

H3. Participants that are less exposed to CG characters, find CG faces 
harder to remember than participants with more experience. 

Lastly, Crookes et al. (2015) proposed that the lower recognition of 
computer-generated (CG) faces could be attributed to the UV effect, 
according to which highly realistic human-like entities evoke discomfort 
and aversion responses. This unfavourable reaction would lead ob-
servers to categorize CG faces as an out-group, such as “non-human”. 
This effect could lead observers to perceive all CG faces as similar and, 
therefore, harder to differentiate and recognize individually. As a result, 
CG faces may be more likely to be categorized as a single out-group 
rather than as a set of diverse individuals, further contributing to their 
lower recognition rates. While this study did not directly investigate this 
hypothesis, it is noteworthy that we utilized the same stimuli as those 
employed in Study 1, which included measurements of the UV variables. 
Therefore, we here also discussed the implications of this hypothesis. 

3.2. Methods 

3.2.1. Materials 
Face stimuli were the same as those used in Study 1. Similarly, faces 

were randomly divided into six blocks of 60 faces each (20 real faces, 20 
CG-high faces, 20 CG-low faces). 

3.2.2. Participants 
As an approximation of the present analysis using linear mixed- 

effects models, the sample size of this study was calculated a-priori 
with G*Power and it was found that 28 participants were needed to find 
a medium effect size (f = 0.25) with 80% power in a repeated measures 
within/between design (number of groups 2; number of measurements: 
3; correlation between repeated measurements: 0.5). Considering 
possible issues related to missing data or incomplete experimental ses-
sions, we invited more participants than the minimum required to 
ensure enough data to maintain statistical power even if some partici-
pants did not complete the study or if technical problems lead to 
incomplete data collection. As a result, a total of 39 participants were 
invited. 

All participants were informed about the characteristics of the study 
and before the experiments they were required to provide informed 
consent. The study was approved by the local ethical committee of the 
University of Milano-Bicocca (Protocol RM-2021-474). Each participant 
completed a short questionnaire about their experience with artificial 
faces in different contexts (e.g., video games and digital media), as in 
Study 1. Out of 39 participants, 24 were LEPs and 9 were HEPs. Analyses 
were then performed on a total of 33 participants, a sample size 
consistent with similar studies in the field (e.g., Crookes et al., 2015). 

3.2.3. Procedure 
Participants completed three face recognition tasks, separately for 

real faces, CG-high faces and CG-low faces. The three tasks were sepa-
rated by a short break and administered randomly across subjects. The 
procedure was administered following Crookes and colleagues’ para-
digm (Crookes et al., 2015). Specifically, each task consisted of a 
learning phase and a testing phase. During the learning phase, 10 faces 
(5 females, 5 males) were presented for 3000 ms in random order. Each 
face was preceded by a fixation cross in the center of the screen for 250 
ms. After the face had disappeared, participants were asked to identify 
the gender of the face. Once participants had responded, a blank screen 
appeared for 500 ms and a second face stimulus appeared. The same 10 
faces were then presented a second time in a different random order to 
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complete the learning phase. In the testing phase, participants were 
presented with 20 faces in random order. Ten were faces previously 
presented during the learning phase, while ten were new faces. Partic-
ipants were asked to indicate whether they had already seen the face in 
the learning phase as quickly and accurately as possible using the 
keyboard. Stimuli remained on the screen until response, or up to a 
maximum of 5000 ms. The procedure is shown in Fig. 2. All faces were 
presented in color and cropped in the experiment. 

3.2.4. Statistical analyses 
To measure accuracy, the d’ index was calculated according to the 

standard formula of signal detection theory d’ = z(hits)-z(false alarms) and 
used to measure accuracy. Hits are defined as the correct response to the 
presentation of the previously seen stimulus and false alarms as the 
“already seen” response to faces not previously presented in the learning 
phase. To compare recognition accuracy between LEPs and HEPs with CG- 
low, CG-high and real faces, we run a mixed model with realism (CG-low 
faces, CG-high faces and real faces) and self-reported exposure (low, high) 
as predictors of accuracy (d’). We also included participants’ intercept as a 
random effect. As in Study 1, if the model exhibited a significant main 
effects or interactions, planned contrasts were conducted using the 
emmeans package (Lenth & Lenth, 2018). Specifically, if a main effect 
related to the type of face was observed, planned contrasts were performed 
between evaluations of real faces and CG-high or CG-low faces to test H1. 
Moreover, planned contrasts were conducted between CG-high and 
CG-low faces to examine H2. Lastly, in cases where a significant interac-
tion was detected, planned contrasts were carried out between LEPs and 
HEPs at each level of “face type,” serving to test H3. The database and the 
script are available at Open Science Framework (https://osf.io/nz9j3/? 
view_only=ee446255e5504650b6e0312354a523c9, DB_Study_2). 

3.3. Results 

Table 4 shows the estimated mean marginals and standard errors of 
accuracy (d’) as a function of realism and self-reported exposure. 

The LMM performed on “accuracy” (d’) explained about the 62% of 
the variance (conditional R2 = 0.62). Within the model we found a 
significant main effect of “face type” [F(2,62) = 18.56, p < 0.001]. The 
figure representing the results is provided in the Supplementary Mate-
rials. Planned contrasts revealed that “accuracy” (d’) differed signifi-
cantly between real faces and both CG-low faces and CG-high faces, 
confirming hypothesis H1. Planned contrasts further revealed an effect 
of CG faces’ realism, showing a significant difference in “accuracy” 
scores between CG-low and CG-high faces, confirming H2. Planned 
contrasts are shown in Table 5. The figure representing the result is 
shown in the Supplementary Materials section. 

The analysis further revealed a significant interaction between “face 

type” and “self-reported exposure” [F(2, 62) = 3.54, p < 0.05]. Planned 
contrasts revealed a significant difference in “accuracy” scores between 
LEPs and HEPs on CG-low faces. These results partially confirmed H3. 
Planned contrasts are shown in Table 6. 

3.4. Discussion 

The present study investigated the relationship between individuals’ 
self-reported exposure to CG faces and recognition accuracy on a face 
memory task. To do that we measured the frequency of exposure to or 
interaction with these stimuli in everyday contexts (e.g., video games, 
social media, movies, professional experience, etc.). The main objective 
was to establish how self-reported exposure impacts participants’ 
identity recognition abilities with CG faces. We also investigated what 
effect different degrees of realism of CG faces might have had on 
recognition accuracy. We, therefore, manipulated CG faces’ realism by 
varying their texture resolution (Burleigh et al., 2013) on two levels. We 
generated our CG faces using Character Creator 3 (Character Creator, 
2022). This choice was justified because this program allowed us to 
easily manipulate texture resolution on the same face. 

The first result of this study revealed that, in general, recognition 
accuracy is reduced for CG faces compared to real faces. We indeed 
found a significant main effect of face type (CG-low faces, CG-high faces, 
real faces) accuracy scores. These results confirm the first two hypoth-
eses, suggesting that CG faces are indeed harder to remember than real 
faces (H1) and are in line with previous research investigating identity 
recognition skills with CG and real faces (Balas & Pacella, 2015; Crookes 
et al., 2015; Kätsyri, 2018). 

Unlike previous studies, we further investigated the effect of the 
realism of CG faces and of participants’ self-reported exposure CG 
characters on recognition accuracy. Our results are discussed following 
the explanations proposed by Crookes et al. (2015). 

First, the authors (Crookes et al., 2015) suggested that lower accu-
racy scores for CG faces may be because, unlike real faces, CG faces 
contain less perceptual information that can be used to discriminate a 
face. They suggested that CG faces have less detailed texture than real 
faces and thus lack a number of features and details that are used in face 
recognition. Our results found support for this hypothesis. Specifically, 
we found a significant difference between real faces, CG-high and 

Fig. 2. The procedure for the face recognition task. 
Participants first completed a learning phase (left) and then a test phase (right). In both phases, stimuli were presented in the center of the screen. Viewing distance 
was approximately 50 cm and stimuli subtended a visual angle of approximately 6.3◦ × 8.57◦. 

Table 4 
Estimated mean marginals (study 2).  

Exposure Face type 

Real CG-high CG-low 

LEPs 2.31 (0.15) 1.53 (0.15) 1.04 (0.15) 
HEPs 2.17 (0.24) 1.83 (0.24) 1.69 (0.24)  
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GC-low faces, and between CG-high and CG-low faces on recognition 
accuracy. Among different manipulation techniques previously used, we 
manipulated realism specifically in terms of texture resolution (Burleigh 
et al., 2013; Diel et al., 2021). In particular, we generated two CG var-
iants from each selected real photograph by only modifying their texture 
realism. We chose this technique as it was one of the suggested manip-
ulations that did not introduce other confounding variables, including 
non-human or abnormal features (Burleigh et al., 2013), which could 
have affected our results. Our results revealed that CG faces with the 
least realistic texture (CG-low faces), were less accurately remembered 
than CG-high and real faces. CG-low faces were the stimuli containing 
less surface information than the others. Under these conditions, it is 
possible that lower realism indeed decreases the accuracy of face 
recognition. 

Second, Crookes et al. (2015) hypothesized that when it comes to 
analyzing CG faces, our face processing system is not as efficient as it is 
with real faces. In their study, all participants reported having little 
exposure to CG faces and found poorer recognition performances with 
CG faces. Therefore, they suggested that individuals with little or no 
experience with CG faces may be less efficient in recognizing these 
stimuli. Our results supported this hypothesis as well. Interestingly, our 
results revealed a significant interaction between face type and partic-
ipant’s self-reported exposure. Specifically, LEPs remembered CG-low 
faces less accurately than HEPs did. This finding partially supports the 
hypothesis that participants less exposed to CG characters may find CG 
faces harder to remember than participants with more experience (H3). 
However, the effect was limited to CG-low faces, and no significant 
difference was found between LEPs and HEPs in remembering CG-high 
faces. The difference in self-reported exposure between the two groups 
may affect how they process and attend to visual information, resulting 
in different memory performances for low-resolution CG faces. For 
example, HEPs may rely more on top-down cognitive processing and 
prior knowledge to identify identities in low-resolution CG faces. In 
contrast, LEPs may rely more on bottom-up sensory processing and 
feature detection. 

Finally, Crookes et al. (2015) suggested that CG faces are less well 
recognized as a result of the UV effect (Mori, 1970). According to this 
theory, realistic anthropomorphic entities elicit an adverse reaction 
denoted by feelings of unease and unpleasantness. As a result of this 
adverse reaction, observers would classify artificial faces as an 
out-group (e.g., “non-human”). Our results cannot directly support or 
refute this hypothesis. However, results from our previous study 
described in Study 1 might help in this case. We have indeed discussed 
the possibility that CG stimuli elicit an aversive reaction that possibly 
leads to avoidance behaviours. Given that, in the current study, we used 

the same stimuli from Study 1, this allows us to compare results between 
the two studies. In our former experiment, we found CG faces to be rated 
eerier than real faces, with CG-low ì faces rated as the uncanniest entity. 
This would seem to support Crookes and colleagues’ hypothesis (2015). 
However, we have no data directly correlating eeriness with recognition 
accuracy, as participants in studies 1 and 2 were not the same. 

Therefore, it is possible that one or more of these factors contributed 
to the observed differences in the accuracy of artificial and real face 
recognition accuracy. Future studies should investigate each aspect in 
more detail to better understand how each modulates identity recogni-
tion mechanisms. First, to clarify the role of realism, it would be rec-
ommended that future studies consider different realism manipulation 
techniques to investigate what aspects of the aesthetic appearance of 
artificial faces might make them harder to process. Texture realism is 
only one of many techniques that are used in digital graphics to create 
virtual characters with different degrees of realism (Diel et al., 2021; 
MacDorman, Green, Ho, & Koch, 2009). First, our result may be 
restricted to this type of manipulation, and other techniques produce 
different results. Second, to further explore the role of experience, it 
would be desirable to conduct training experiments. If exposure is 
indeed the main predictor of CG faces’ recognition accuracy, then we 
would expect that training with these stimuli, either by being expose to 
or by interacting with virtual characters, would be beneficial for 
recognition accuracy scores, reducing the variability in individual’s 
performances (Gauthier & Tarr, 1997). 

Furthermore, to define the role of uncanniness in face recognition, it 
would be interesting for future studies to directly investigate the rela-
tionship between CG faces’ recognition accuracy and eeriness evalua-
tions. To our knowledge, only one study has attempted to explore this 
relationship further, though not with CG faces. Geiger and Balas (Geiger 
& Balas, 2021) conducted a study comparing recognition accuracy with 
eeriness evaluations of a robot entity. The authors found that higher 
recall accuracy was linked to an increased perception of uncanniness. 
The authors speculated that these results could be explained by how 
eeriness judgments affect a face’s distinctiveness. The process of face 
recognition implies a comparison between the face to be recognized and 
the set faces observed in our lives: the more it deviates from a perceptual 
norm, or prototype, the more distinctive it is and the easier it is to 
recognize it compared to typical faces (Goldstein & Chance, 1980; 
Valentine, 1991). Based on this assumption, the authors suggested that 
an uncanny face should be perceived as more atypical than others and 
they drew on this hypothesis to explain their results. This result is 
interesting as it seems to contradict the prediction made by Crookes 
et al. (2015) who, in contrast, hypothesized that CG faces are less effi-
ciently remembered because, since they are evaluated eerier and 

Table 5 
Planned contrasts of “face type” (Study 2).  

Hp Level 1 Level 2 β 95% CI SE df t 

CI_low CI_high 

1 Real CG-low − 0.31 − 0.67 0.04 0.14 62 − 2.16*** 
Real CG-high − 0.87 − 1.23 − 0.51 0.14 62 − 5.97*** 

2 CG-low CG-high − 0.55 − 0.91 − 0.19 0.14 62 − 3.81* 

Note that *** < 0.001; ** < 0.01; * < 0.05. 

Table 6 
Planned contrasts of “self-reported exposure” at each level of “face type” (Study 2).  

Hp Level 1 Level 2 Type β 95% CI SE df t 

CI_low CI_high 

3 HEPs LEPs real − 0.13 − 0.69 0.42 0.28 65.16 − 0.47 
HEPs LEPs CG-high 0.30 − 0.26 0.86 0.28 65.16 1.07 
HEPs LEPs CG-low 0.65 0.08 1.21 0.28 65.16 2.30* 

Note that *** < 0.001; ** < 0.01; * < 0.05. 
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categorized as out-group, they are less efficiently processed. Neverthe-
less, results from the experiment in Study 1, seem to support this second 
hypothesis, as CG faces, especially less realistic ones, were considered 
eerier and less memorable than real faces. 

In conclusion, the present study highlights the challenges associated 
with recognizing CG faces, compared to real faces. Our findings suggest 
that CG faces are generally harder to remember and recognize than real 
faces, with CG faces with lower texture realism being the most difficult. 
Furthermore, participants with little experience with CG faces were 
found to have lower recognition accuracy than those with more expe-
rience, particularly with CG faces with lower texture resolution. While 
the UV effect may contribute to the lower recognition of CG faces, more 
research is needed to investigate the relationship between eeriness, 
memorability, typicality, and recognition accuracy of CG faces. Overall, 
this study provides insights into the factors that affect the recognition of 
CG faces, which could have again implications for the design of CG 
characters in various contexts. 

4. General discussion 

In psychological research, using CG faces to replace traditional 
photographs in face perception studies is becoming increasingly com-
mon (Dawel et al., 2021). Although CG faces represent a versatile and 
flexible alternative to conventional pictures, preliminary research sug-
gested that CG faces’ appraisals and processing differ from real faces. 
This work aimed to analyze CG faces’ evaluations (Study 1) and identity 
recognition (Study 2) by further providing evidence of the effects of CG 
faces’ realism and individuals’ self-reported exposure to virtual 
characters. 

4.1. Face appraisal: affinity and first impressions 

Initial research has suggested that CG faces tend to receive more 
unfavourable perceptual and social evaluations than real faces (Balas 
et al., 2018; Kätsyri, Förger, Mäkäräinen, & Takala, 2015). Results ob-
tained in Study 1 confirmed that CG faces are judged more negatively 
than real faces. In particular, individuals rated CG faces as less 
human-like, likable, attractive, trustworthy and eerier than real faces. 
We further hypothesized that the degree of realism with which CG faces 
are created is crucial to how observers evaluate these stimuli. Most 
studies have found a positive correlation between face evaluations and 
realism, with more realism leading to more favourable ratings (Chee-
tham et al., 2014; Kätsyri et al., 2019). Our results confirmed this pre-
diction as individuals tended to perceive more realistic CG faces as more 
human-like, leading to more favourable ratings over less realistic CG 
faces. This result suggests that increasing CG faces’ realism may reduce 
the discrepancies between CG and real faces. However, researchers 
should be aware that currently available programs are limited in terms 
of the level of realism they can achieve. Inconsistencies in the levels of 
realism of different parts of the CG faces seem unavoidable with the 
current available graphical programs. Therefore, we suggest that re-
searchers aiming to use CG faces in their experimental paradigms should 
pre-test whether the realism achieved by their stimuli does not evoke 
negative feelings and interfere with individuals’ evaluations. 

Study 1 also showed that individuals more frequently exposed to CG 
characters evaluate CG faces more positively than people with report 
less exposure. This distinction supports the notion that repeated expo-
sure to highly realistic CG characters, potentially develop a form of 
expertise with these stimuli. HEPs’ increased acceptance of CG charac-
ters as human-like, alongside their more positive impressions, could be 
interpreted as a manifestation of this expertise. Such observation aligns 
with previous research within the UV literature, indicating that a lack of 
familiarity with virtual characters can influence observers’ appraisals of 
virtual faces (Chattopadhyay & MacDorman, 2016; Kätsyri, 2018; 
Kätsyri et al., 2019) and that regular exposure to an artificial entity 
diminishes negative feelings and leads to a more positive perception of 

the character (Burleigh & Schoenherr, 2015; Cheetham, Suter & Jäncke, 
2011, 2014; Yamada et al., 2013). The expertise hypothesis (Diamond & 
Carey, 1986) provides a theoretical framework suggesting that extensive 
exposure to a category of stimuli, such as faces, enhances one’s capa-
bility to discern and appreciate stimuli within that category. In the 
context of CG character evaluation, this hypothesis suggests that HEPs, 
through their prolonged interaction with CG faces, become more 
familiar with and skilled at processing CG characters. This increased 
familiarity and expertise could lead to a greater propensity to perceive 
these characters as human-like, thereby diminishing the UV effect and 
fostering more positive evaluations. 

Furthermore, CG characters are typically used to replace a human 
being in a virtual context (e.g., video games). Therefore, HEPs might be 
more likely to accept a CG character as a human, feel more familiar with 
it, and form more positive impressions of it. However, this observation 
doesn’t conclusively prove a direct cause-and-effect relationship be-
tween higher exposure and positive perceptions. An alternative expla-
nation could be that individuals who find CG faces more aesthetically 
pleasant or less eerie are more inclined to interact with or view such 
faces in their daily life. 

4.2. Face processing: identity recognition 

Preliminary findings indicated that individuals’ accuracy in 
discriminating CG faces is poorer than their accuracy in recognizing real 
faces. The ORE has been proposed to explain this result. Specifically, 
since individuals are less exposed to CG faces than real faces in daily 
contexts, their perceptual systems would be less tuned to these stimuli. 
The present work results confirmed that CG faces are less efficiently 
recognized than real faces. Study 2 revealed that individuals’ accuracy 
in recognizing CG faces is lower than real faces. Specifically, recognition 
accuracy scores on a face’s memory task were lower for CG faces than 
real faces. This result could be interpreted by looking at the specific role 
of realism and self-reported exposure. 

Concerning face recognition, it has been suggested that increasing 
realism may be beneficial for face identity recognition (Crookes et al., 
2015). Our results showed that less realistic CG faces were more chal-
lenging to recall than realistic CG faces. There are two possible expla-
nations for this. First, the current digital graphics techniques generate 
stimuli with limited texture and surface information typically used to 
discriminate face identities. Consequently, less realistic CG faces with 
fewer texture details are harder to remember as they lack discriminating 
information essential for face identity recognition. Given that we 
manipulated realism in terms of texture resolution, our results support 
this hypothesis. A second explanation could be that, because highly 
realistic CG faces resemble humans more accurately, their processing 
may rely on perceptual expertise gained with real faces. Therefore, their 
recognition would be facilitated by the individuals’ already acquired 
expertise with real faces. 

Furthermore, it has been suggested that expertise may play a key role 
in determining CG faces’ recognition. Research indicates that since in-
dividuals are exposed to many different human faces throughout their 
lives, they develop significant expertise in recognizing and discrimi-
nating these stimuli. In particular, because individuals are more 
frequently exposed to own-ethnicity faces, their accuracy in identifying 
them is greater than in recognizing other-race faces (Rhodes et al., 
1989). Undoubtedly, individuals are less exposed to CG faces than real 
faces in their daily lives. Consequently, researchers suggested that CG 
faces may represent a different category of stimuli than real faces, as 
other-race faces, and therefore be less efficiently recognized. Nonethe-
less, previous studies have not directly investigated the relationship 
between individuals’ expertise with digital characters and CG faces’ 
perception. Our results showed that individuals frequently exposed to 
realistic digital characters recognized CG faces more accurately than 
people with little or no experience with these entities. Therefore, in-
dividuals can acquire expertise by being exposed to or interacting with 
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digital characters in everyday life (e.g., playing video games, using 
digital representations on social media, or using CG faces in professional 
contexts). Developing expertise with CG faces may improve individuals’ 
capacity to discriminate these stimuli and make their processing less 
vulnerable to ORE. 

5. Limitations 

The present studies had some limitations. First, we compared face 
appraisal and processing using only three levels of realism (CG-low, CG- 
high and real), making it hard to generalize our results. However, we 
decided to create only two CG variants to isolate the specific effect of our 
manipulation technique, namely texture resolution. If we had, for 
example, created morphs or modified components of the faces, we 
would have indeed introduced other possible noise variables. Never-
theless, we may have obtained different results using other manipula-
tion techniques, as different changes in CG faces’ appearance may 
produce different responses. To expand external validity, future studies 
should consider other techniques to understand the specific contribution 
of each modification on CG character evaluations. Additionally, the 
design of our study might have influenced the categorical perception 
observed between CG and real faces. Employing a broader, more graded 
spectrum of realism in CG faces could potentially yield a more contin-
uous perception of human-likeness. Future research with a finer 
gradation of realism may provide further insights into how subtle vari-
ations in CG realism influence perception. 

Similarly, we generated CG faces using Character Creator 3 (Char-
acter Creator, 2022). This choice was motivated by the fact that it 
allowed us to manipulate texture resolution directly. However, our re-
sults could be limited to the software used, and therefore future com-
parison between different graphical programs is encouraged. 

Finally, another key limitation is that we relied on self-reported 
exposure to CG characters as an indicator of expertise, without 
directly manipulating exposure levels. This may not fully capture the 
intricacies of expertise in recognizing and evaluating CG faces. Future 
research should consider more direct methods of assessing and manip-
ulating exposure to CG characters for more robust conclusions. For 
instance, researchers could conduct experiments in which participants 
are introduced to CG characters in a controlled environment, with ad-
justments made to how long and how often they are exposed. Addi-
tionally, longitudinal studies could be implemented, tracking individual 
exposure to CG characters over time to assess how exposure influences 
evaluations and perceptions. 

6. Conclusions and future directions 

Altogether, these results add new insights into the current literature 
by showing that realism and self-reported exposure are implicated in CG 
faces’ perception. Specifically, these studies suggest that, to date, CG 
faces present several limitations that might discourage their use as 
research stimuli in experimental studies where face perception mecha-
nisms are examined. However, the results on realism and self-reported 
exposure suggest that the advances in graphics technologies and our 
increased exposure to realistic digital characters in our life may soon 
change how we perceive CG faces. 

These results extend beyond experimental psychology, with partic-
ular relevance for developing CG characters in domains like video 
games, movies, and virtual reality environments. Such insights hold 
significant value in contexts where favourable social evaluations can 
profoundly enrich user experiences. Furthermore, these findings hold 
substantial implications for computer-mediated communication and the 
utilization of avatars. Avatars, which symbolize individuals in virtual 
settings or online platforms (Nowak & Fox, 2018), are crucial in shaping 
user’’ interactions and perceptions, impacting communication quality 
and source credibility (Di Natale et al., 2021). 

In conclusion, our studies contribute to understand how real and CG 

faces are evaluated differently, the role of realism in these evaluations, 
and the impact of exposure. Our results emphasize the importance of 
realism and self-reported exposure in evaluating CG faces and provide 
valuable insights for developing more socially acceptable CG characters. 
Researchers have recently considered another kind of CG faces, created 
by generative adversarial networks, or GANs (Goodfellow et al., 2020; 
Karras, Laine, & Aila, 2019, pp. 4401–4410). These faces are produced 
by artificial intelligence (AI) and machine learning algorithms. The 
machine is trained on photographs of real faces to generate fake faces 
that realistically look like real people. Generated Photos (Generated 
Photos, 2022) is an example of such AI system. So far, no evidence exists 
of their use in psychological research contexts, but the results are 
encouraging (Nightingale & Farid, 2022). Future research should 
continue to explore the factors influencing the perception and evalua-
tion of CG faces and their implications for various applications and user 
experiences. 
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