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Abstract—Monitoring is a key feature to enhance systems with the ca-
pability to anticipate, detect, predict, and mitigate failures, while provid-
ing Quality of Service (QoS) monitoring and Service Level Agreements
(SLAs) guarantee. Monitoring frameworks can serve these purposes
by deploying probes according to many possible patterns that have
different features, for instance in terms of efficiency and privacy. So far,
these probe deployment patterns have not been systematically defined,
analyzed and assessed. Thus, engineers who design and configure
their monitoring systems have to take decisions only based on partial
knowledge and personal experience.

This paper addresses this knowledge gap, by presenting a system-
atic analysis of 11 probe deployment patterns, their known uses, and
implementations. We assess these patterns qualitatively, and quantita-
tively using both VMs and containers. Results show the targets have
negligible resource consumption (e.g., less than 1% CPU usage), while
the probe holder consumption is mainly significant in relation to memory
consumption, reaching up to 10 GiB in our experiments. Our findings
suggest that reusing probes and holders among users can generally
enhance efficiency and scalability when direct access to the monitored
target is not an option. We generate a set of best practices that can
assist engineers in configuring their monitoring systems. Finally, we
showcase the application of certain patterns through three practical
usage scenarios, which feature diverse technologies and requirements.

Index Terms—Monitoring Probes, Probe Deployment, Deployment Pat-
terns, Design Patterns, Monitoring Best Practices, Container Monitoring,
Cloud Monitoring, Cloud Computing.

1 INTRODUCTION

Cloud computing is the de facto standard platform for the
global connectivity of actors (e.g., humans, robots, devices
and sensors) and services, across many heterogeneous do-
mains (e.g., mobile [1], health care [2], IoT [3] and telecom-
munication [4]). In this scenario, actors and services may
have to frequently interact in ways that cannot be fully an-
ticipated, demanding for strong configurability, adaptability
and programmability requirements [5], [6], [7], [8], [9], [10].

Highly dynamic systems require appropriate tools and
techniques for continuously verifying their behavior, so that
deviations can be timely detected and compensated. In
this context, monitoring is a key feature [11], [12], [13] to
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enhance systems with the capability to detect, predict, and
mitigate failures [14], [15], [16], [17], in addition to enable
more traditional operations, such as Quality of Service (QoS)
monitoring [18], [19], [20] and Service Level Agreements
(SLAs) guarantee [21], [22], [23].

There are several effective monitoring frameworks that
can be used to implement a monitoring system for cloud
applications. For instance, the Elastic Stack [24] can be
used to run probes that push the monitored data into an
Elasticsearch time series database, or Prometheus [25] can be
used to pull data from probes into its database. Regardless
of the adopted framework, the resulting cloud monitoring
system is a distributed system that runs potentially many
probes configured to collect several indicators for multiple
operators.

The flexibility of monitoring frameworks and probe
technologies allows for diverse probe deployment patterns,
which consist of probe deployment architectures targeting
specific environments (e.g., a container-based environment)
and satisfying specific constraints (e.g., probes must be
shared among multiple operators). The choice of a probe
deployment pattern has implications on the effectiveness
and efficiency of the resulting monitoring system. For in-
stance, multiple probes serving different operators in a
multi-tenant environment can be deployed within a same
virtual machine to save resource consumption, at the ex-
pense of a reduced degree of privacy and security. On the
other hand, one probe per container or virtual machine can
be deployed to preserve privacy, at the expense of more
resources allocated to the monitoring system.

The many possible probe deployment patterns have not
been analyzed and assessed systematically so far, and the
engineers who design their monitoring systems are called
to take decisions whose implications might be relatively
well-known. The existing body of work discusses the char-
acteristics of monitoring systems, without investigating the
many possible probe deployment patterns and their im-
pact [11], [12], [13]. To address this knowledge gap, this
paper systematically presents and analyzes the possible probe
deployment patterns, their known uses, and implementations.
This requires the careful identification and characterization
of the components that can be used to deploy probes.
Further, we assess these patterns both quantitatively and
qualitatively, distilling findings that can guide engineers in
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the implementation and configuration of their monitoring
systems.

In particular, we experimented with 11 patterns with
a range of configurations requiring a total of about 154
hours of data collection time and more than 175 hours of
total runtime for the empirical evaluation, including setup
and teardown of the VMs and containers. Results show the
trade-offs between the patterns that require more resources
while guaranteeing good separation between users acting
within multi-tenant environments, and patterns that make
better use of resources while reducing the degree of sepa-
ration. We cross-validate the obtained results by addressing
three realistic monitoring scenarios. The experimental ma-
terial containing all the software artifacts and the collected
dataset is publicly available at [26].

In a nutshell, this paper provides the following contribu-
tions:

• it systematically analyzes the possible probe deploy-
ment patterns and defines a feature diagram that com-
prehensively captures the possible deployment strate-
gies;

• it provides a set of empirically-derived best practices
for deploying probes, which can serve as a reference
for future use;

• it qualitatively and quantitatively assesses the patterns,
to understand their strengths and weaknesses;

• it showcases the implementation of some patterns
through three realistic usage scenarios involving differ-
ent monitoring technologies, application architectures,
and requirements.

The paper is organized as follows. Section 2 provides
background information about monitoring systems. Sec-
tion 3 defines the probe deployment patterns, which are
illustrated according to a same structure. Section 4 compares
probe deployment patterns qualitatively. Section 5 quanti-
tatively assesses the probe deployment patterns with a set
of comparative experiments. Section 6 discusses some best
practices distilled from our experiments. Section 7 show-
cases the implementation of some patterns through realistic
usage scenarios. Section 8 discusses related work. Section 9
provides final remarks.

2 BACKGROUND INFORMATION

This section provides the background information useful to
understand the probe deployment patterns introduced in
Section 3.

We use the term resource to generically refer to any cloud
element that can be monitored, including services, hardware
resources, and virtualized components. A probe is an artifact
that runs close enough to the monitored resource to observe
its behavior, and it collects observations of one or more
Key Performance Indicators (KPIs). A KPI is a measurable and
quantifiable metric used to track the behavior of a resource.
We mainly refer to observations resulting in time series data
(e.g., CPU consumption data), but the probe deployment
patterns are also valid for observations generating other
types of data (e.g., log files).

A cloud monitoring system generally consists of four
key components: a set of probes, a time series database, a

Probes

Data Channel

Time Series DB

Dashboards

Monitored 
Resources

Fig. 1: Architecture of a cloud monitoring system.

data transfer channel, and a dashboard. Fig. 1 graphically
illustrates these components.

The set of probes is opportunistically distributed within
a cloud system to efficiently collect data from the monitored
resources. Depending on the type of probes, the collected
data can be shipped according to different patterns, for in-
stance probes could push or pull data according to different
policies.

A time series database is used to store the data obtained
from the probes. The communication between the probes
and the database is usually mediated by a data transfer chan-
nel that is responsible for processing and transferring the
data. In some cases the channel could be as simple as direct
communication between the probes and the database. In
some other cases, the channel is a data processing pipeline
that is able to pre-process and distribute data, according to
non-trivial strategies.

The dashboard is finally used to access and visualize the
data stored in the time series database. When the collected
data is used to support advanced analysis routines, multiple
tools may analyze the collected data (e.g., alerting and
notification systems and anomaly detectors).

This work thoroughly investigates the organization of
the probes, studying the possible deployment patterns, and
their impact on the efficiency and effectiveness of the moni-
toring system.

3 PROBE DEPLOYMENT PATTERNS

Probe deployment patterns capture how probes can be
deployed to monitor the target resources. The possible de-
ployment depends on several key features that we discuss
in this section and are represented with the feature diagram
shown in Fig. 2.

A feature diagram is a graphical representation of a
feature model that defines features and their dependencies
in a tree structure [27]. In this case the model characterizes
the features relevant to probe deployment patterns. The
inner nodes represent abstract features (features that are not
implemented but only used to group features), while the
leaf nodes represent the concrete features (features that are
implemented). The parent-child relationship represents the
feature decomposition, from abstract to concrete features.
While the default interpretation of feature decomposition
is the AND relationship, other decomposition are possible,
such as the alternative decomposition that indicates that
only one feature can be selected among the ones that are
available (see the legend in the figure). Finally, features can
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be optional or mandatory. All features are mandatory in our
diagram. A combination of features is a configuration. A
configuration is admissible if it satisfies its feature diagram.

A feature diagram may also include logical constraints
that limit the set of admissible configurations, that is, only
the configurations that satisfy the specified constraints can
being admitted by the model. Our model also includes
several constraints that prevent that infeasible or highly
inefficient configurations can be admitted by the model,
thus guaranteeing the reasonableness of the result.

A feature model can be used to automatically generate
the space of all the admissible configurations. In fact, the
configurations admitted by the model in Fig. 2 represent
every possible probe deployment pattern.

We started from the papers that propose monitoring
and probe deployment approaches for multi-tenant and
technology-heterogeneous cloud environments [31], [28],
[32], [29], [30], [37], [46], the most used cloud monitoring
tools [40], [39], [43], [44], [42], and our experience, to identify
and distill a set of relevant features for probes deployment.
We discuss below the semantics of the considered features.

• Probe Holder: it represents the object that hosts the
probes that are executed (N.B., hereinafter referred
as holder). It can be a separate Virtual Machine or
Container, or can overlap with the target execution
environment.
– Holder Type: it represents the holder type [28]
∗ Target: the holder is the target of the monitoring

activity, that is, the holder hosts both the target
and the monitoring probes
∗ External Unit: the holder is an external object

which monitors the target from the outside (e.g.,
a sidecar container [28], [29], [43], [39], [40], [44],
[42])

– Probe Multiplicity: it defines the number of probes that
can be executed within the unit [30], [29]
∗ Single-probe: only one probe can be executed
∗ Multi-probe: one or more probes can be executed

– Holder Sharing: it defines if the holder can be shared
among multiple users [31], [32], [46], [37]
∗ Reserved Holder: the holder is reserved to a sin-

gle user
∗ Shared Holder: the holder can be shared among

users
• Probe Instance: it represents probe artifact executed

within the holder to collect data.
– Target Multiplicity: it defines the number of targets

that a single probe can monitor simultaneously [40],
[29], [39], [42], [43], [44]
∗ Single-target: a probe can monitor only one target
∗ Multi-target: a probe can monitor multiple targets

– Instance Sharing: it defines if a probe instance within
a holder can be shared among users [31], [32], [46],
[37]
∗ Reserved Probe: the probe collects data for a sin-

gle user
∗ Shared Probe: the probe can collect data for mul-

tiple users

• Execution Environment: it defines the supported exe-
cution environment.
– Environment Type [30]:
∗ System-oriented: monitoring is performed within

a virtualized entity aimed at offering a system-
level environment. This is usually the case with
Virtual Machines and system-level containeriza-
tion technologies, such as LXC, OPenVz, and
Linux-VServer.
∗ Application-oriented: monitoring is performed

within a virtualized entity aimed at offering an
application-level environment. This is the case of
common containerization technologies, such as
Docker or Containerd.

The admissible configurations are bounded by con-
straints that capture bad/best practices and unfeasible com-
binations, as follows:

a) A shared holder that executes at most a single probe must
allow for the execution of shared probes (Shared Holder
∧ Single-probe ⇒ Shared Probe): If the holder must be
shared but only one probe can be executed within the
holder, the only way to actually share resources is to
allow for probes that can be shared among multiple
users.

b) If the holder is reserved to a single user, also the probes
running within that holder must be serving that user (Re-
served Holder ⇒ Reserved Probe): Clearly, if the holder
is reserved to a single user, it is impossible to install
probes serving multiple-users within that holder.

c) Each system-oriented virtualization unit should possibly
run multiple probes (System-oriented ⇒ Multi-probe): Vir-
tual machines are expensive units whose instantiation
should be limited to prevent excessive resource con-
sumption, due to their non-negligible size and sig-
nificant bootstrapping cost [34], [35]. For this reason,
reserving a virtual machine to a single probe is strongly
discouraged, and it should rather be used to run multi-
ple probes.

d) Each Application-oriented virtualization unit should not run
more than one probe (Application-oriented⇒ Single-probe):
Following good design practices concerning isolation
and separation of concerns [29], each container should
run one process at most, and thus each container should
be dedicated to a distinct monitoring probe, so that any
interference is prevented.

e) A probe sharing the holder with the target should only
monitor that target (Target⇒ Single-target): When a probe
is installed within the same holder (e.g., a virtual ma-
chine) that runs the target of the monitoring activity, the
probe should not be configured to monitor something
else hosted outside the target, otherwise it may interfere
with the activity of the target. This follows the practice
that, if needed, probes might be running within the
same holder of the target to circumvent observability
issues. For instance, collecting memory consumption
either about a process running inside a VM, or the VM
itself, may not be possible via external interfaces or at
hypervisor level [36], [37], and in such cases probes are
specifically configured to extract data from that target.

f) If probes are allowed to run within the same holder of
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Fig. 2: Probe deployment patterns feature diagram.

the target, more than one probe should be allowed to run
(Target ⇒ Multi-probe): Limiting the target to host a
single probe would limit the monitoring system to the
collection of a single (set of) KPIs, which would not be
acceptable in the majority of practical cases.

g) A probe sharing the holder with the target should be shared
among users (Target ⇒ Shared Probe): Using the holder
space for both the target and the probes may raise inter-
ference issues. For this reason having multiple copies of
functionally-equivalent probes to serve multiple users
is particularly inefficient and risky, despite ownership
concerns. Thus, additional probes should be installed
only to collect data that are not collected by the already
existing probes, which have to be shared among users.

We encoded all these concepts and constraints in the
feature diagram in Fig. 2, which has been implemented
using FeatureIDE [38], a tool for feature-oriented software
development based on Eclipse. We generated all the admis-
sible configurations from the model automatically, taking
also into account the specified constraints. The tool created
11 admissible configurations corresponding to 11 probe de-
ployment patterns, which are by product correct, according
to the features and constraints represented in the feature
model. In this work, we focused on the key features that
characterize a set of monitoring probes. In the future, the
model could be extended to incorporate additional features
and constraints, which could be used to refine the set of
probe deployment patterns.

Fig. 3 provides a graphical representation of the probe
deployment patterns, and proposes names coherent with
their structure. The illustrations consistently refer to a case
with two targets and two users, which is sufficient to
exemplify the differences among the various patterns. The
number of monitoring units and probes varies according
to the configuration. We use colors to represent ownership
(a monitoring unit or a probe of the same color of a user
indicates the ownership of the user, while multicolored
elements represent shared resources).

We adopt a same schema to illustrate each pattern. In
particular, we use the following fields: name, which defines

the name of the pattern; description, which provides a short
description of the pattern, and target technology, which in-
dicates the technical environment in which the pattern is
used.

We also defined a naming convention to easily recall the
details of a pattern from its name. Specifically the name of
each pattern is obtained by concatenating three elements:

• The first element represents the level of sharing of the pat-
tern, which could be Reserved, Shared, or Partially Shared.
Reserved is used for holders reserved to individual users.
Shared is used for shared holders running shared probes.
Finally, Partially Shared is used for shared holders that run
reserved probes.

• The second element represents the type of executed
probes. We use T* for probes that can monitor multiple
targets, while we use T1 for probes that monitor a single
target.

• The third element represents the probe multiplicity. We
use P1 for holders that run a single probe. While we use
P* for holders that can run multiple probes.

For example, the Partially-shared-T1P* pattern identifies
the case of a shared holder that can run multiple probes
configured to serve individual users and collect data from
individual targets.

Table 1 contains a detailed description of each identified
pattern, along with information regarding its target tech-
nologies.

It is worth detailing further the Internal-T1P∗ pattern
which is the only one where the holder matches with the
target execution unit. In this unique instance, probes can
gain the highest observability as they have the privileged
viewpoint of collecting data from inside the same execution
unit hosting the target. Hence, probes may easily observe
indicators that would otherwise be hard or even impossible
to collect.

The implementation of this pattern can be highly intru-
sive as the probes and target share execution unit resources.
Additionally, users cannot operate reserved probes unless
the monitoring system permits single-user access. There
could also be challenges in precisely gathering indicators
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Fig. 3: Probe deployment patterns.

specific to the target. This is particularly true for resource-
related metrics such as memory and CPU usage, which
could be influenced by the inclusion of probes that also
consume resources.

4 QUALITATIVE DISCUSSION

This section discusses the qualitative aspects related to the
presented patterns. We first discuss how the patterns can be
implemented with different technologies. We then discuss
the trade-off between separation and resource consumption.
We conclude by discussing interoperability, portability, ro-
bustness, affordability and security of the patterns. Table 2
summarizes how patterns can be classified according to
these seven dimensions. For ease of comparison, patterns
have been grouped into three groups: (i) patterns that
reserve both holders and probes to individual users (column
Patterns that privilege reservation); (ii) patterns that share
both probes and holders among users (column Patterns
that privilege sharing); and (iii) patterns that share holders
among users, but run probes reserved to individual users
(column Patterns that balance the two aspects).

4.1 Pattern Implementation

To show the practical applicability of the patterns, in this
section we provide guidance on how the identified patterns
can be implemented with current real-world monitoring
tools. Further guidance on applying patterns in real-world
contexts is provided in Section 7, where realistic usage
scenarios are reported.

A common way to implement the patterns with reserved
resources (Reserved-T∗P1, Reserved-T∗P∗, Reserved-T1P∗, and
Reserved-T1P1) with platforms such as Prometheus or the
Elastic Stack is to have multiple instances of the framework,
one for each user, and then deploy their holders with
agentless Prometheus exporters [39] or Beats [40], such as
SNMP [41], [42] or HTTP based probes. This is also the case
of tools such as Zabbix [43] in its agentless configuration,
where it is expected to handle multi tenancy with the
deployment of distinct components for each tenant. The
reserved aspect of both the probes and the holders can
be implemented either deploying distinct instances of the
full monitoring system or employing a probe-deployment
framework that can support multi-tenancy [30]. These pat-
terns are well supported also by commercial tools, such as
Nagios [44] and Dynatrace [45], and in scientific articles,
such as [46], [37].
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TABLE 1: Probe Deployment Patterns: Description and Target Technology

Description Target Technology

Reserved-T∗P∗ (Fig. 3a): it uses a reserved holder for each user. A single holder
hosts multiple probes able to gather information from multiple targets. Note that in
this configuration, to increase data separation, both the holder and the probes are
reserved to a single user, but a single probe can gather the same KPI from multiple
targets.

Since each holder can host multiple probes, this pat-
tern is usually applied to system-oriented virtualization
technologies.

Reserved-T∗P1 (Fig. 3b): it uses multiple reserved holders for each user, one for
each probe deployed. Although there is a one-to-one relationship between holders
and probes, probes are enabled to gather data from multiple targets.

This pattern is tailored for application-oriented virtu-
alization technologies (e.g., Docker containers) since
each holder only contains the process of a single probe.
It is discouraged to exploit this pattern with system-
oriented virtualization technologies (e.g., VMs) since
the cumulative overhead caused by holders is likely
unaffordable for non-trivial settings.

Shared-T∗P∗ (Fig. 3c): it uses a single holder, shared among different users. The
holder can contain multiple probes, which are also shared among the users for
collecting the same KPIs from multiple targets.

Due to the presence of multiple processes within the
same holder, this pattern is specific to system-oriented
environments.

Shared-T∗P1 (Fig. 3d): the holders are shared among users and contain a single
probe that is able to acquire data from multiple targets and for multiple users, if
needed.

This pattern targets application-oriented environments
because, while sharing probes among users and targets
promotes optimization and reuse, having a dedicated
holder for each probe can cause a significant overhead
for the monitoring solution if using heavier virtualized
units (e.g., VMs).

Partially-shared-T∗P∗ (Fig. 3e): it uses a single holder, shared among users that
contains multiple probes able to acquire the KPIs from multiple targets. In case
the same KPI is requested by multiple users, the probe is instanced multiple times
within the same holder, one for each user that requested the KPI.

This pattern is specific to system-oriented environments
as it creates a small number of holders with multiple
processes running in each one (i.e., multiple probes).

Reserved-T1P∗ (Fig. 3f): it uses a reserved holder for each user. Moreover each
holder is allowed to contain only probes that acquire data from a single target,
however, if a single user requires to collect multiple KPIs from the same target,
multiple probes can be placed within the same holder.

Due to the fact that a holder may contain multiple
probes, this pattern is suited for system-oriented envi-
ronments.

Reserved-T1P1 (Fig. 3g): it uses a reserved holder for each user and contains a
single probe. Every probe is dedicated to the collection of KPIs from a single target,
which means that if a single user requests the same KPI from a given number of
targets, an equal number of holders and probes will be deployed to fulfill such
request.

This pattern is dedicated to application-oriented envi-
ronments as it fulfills the requirement of having a single
process in each holder.

Shared-T1P∗ (Fig. 3h): it uses a holder for each target. Such holder may contain
multiple probes that can acquire KPIs from a single target. Since there is only one
holder for a specified target, multiple users interested in monitoring such target
share the holder. Moreover users also share the actual probes within the holder.

Given the fact that each holder can contain multiple
probes, this pattern is tailored for system-oriented en-
vironments.

Shared-T1P1 (Fig. 3i): it uses multiple holders for each target, where each holder
contains only one probe that acquires data from the target and shares the data
among all the users.

This pattern is designed to be applied to application-
oriented environments, mainly due to the high number
of holders that it can generate.

Partially-shared-T1P∗ (Fig. 3j): it uses a single holder for each target, shared among
users. However. the probes are not shared among users, implying that if two or
more users wish to monitor the same KPI, there will be an equal number of instances
of the same probe deployed, each one dedicated to a single user.

Since this pattern involves a single holder for each
target with a number of probes deployed within it, it
is aimed at system-oriented environments.

Internal-T1P∗ (Fig. 3k): it is the only case in which the holder matches with the
execution unit that hosts the target. The probes run within the same execution unit
that runs the target (e.g., within a VM). If the same indicators are collected by
multiple users for the same targets, the probes are necessarily shared, mitigating
the possibility of interfering with the target.

This pattern is specific to system-oriented environments
since its nature implies multiple processes running in
the target.

The patterns with shared resources (Shared-T∗P∗,
Shared-T1P1, Partially-shared-T∗P∗, Shared-T∗P1, Shared-
T1P∗, Partially-shared-T1P∗) are easy to implement with base
technologies, such as Prometheus and the Elastic Stack, as
they exploit components that can be installed in a single
shared holder configured to permit multiple users to access
the data gathered from the deployed probes. These patterns
are available also within commercial systems [45], [44], [43],
and in scientific articles, such as [47], [48], [49], [50], [51]

The Internal-T1P∗ pattern can be found in many agent-
based solutions [52], [53], [54]. It could also be obtained in
Prometheus, by installing its exporters directly in the target

VMs, and similarly with Elastic Stack, by installing beats
and custom probes directly within the target VMs.

The study of approaches to switch from one pattern
to another is beyond the scope of this work. Neverthe-
less, designing monitoring systems that can automatically
change the deployment pattern according to changes in
monitoring needs would be valuable. In the context of
automated deployment of holders and probes, one fea-
sible method involves the use of Monitoring-as-a-Service
(MaaS) frameworks [54], [55], [30]. For instance, Tundo et
al. [30] proposed a MaaS framework that has the ability
to automatically govern the entire life-cycle of the probes
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from declarative inputs, thus relieving operators of any
configuration burden.

4.2 Separation Versus Resource Consumption
One of the aspects relevant to the choice of the pattern is
the level of separation to be achieved, in comparison to the
possible resource consumption. Separation concerns with
probes and holders acting for the purpose of a single user
or organization in a multi-tenant environment. Separation is
beneficial to privacy, security and reliability.

Some patterns require a given level of sharing to be
accepted by the users in order to be used. Depending
on this choice, the behavior of the probes serving a user
may impact the probes serving other users. On the other
hand, guaranteeing separation requires extra resources to
be allocated on the monitoring system.

Patterns that privilege reservation guarantee the max-
imum level of separation, but resource consumption may
growth quite quickly with a growing number of users. On
the other hand, patterns that favor sharing probes may save
resources but require sharing probe configurations (e.g.,
sampling rate and accuracy) among users, and this could
be problematic in some use cases.

Some patterns share the holders among users while run-
ning probes reserved to individual users (Table 2, column
Patterns that balance the two aspects). This guarantees that
probes may impact one another only through the holder,
which is unlikely to happen, although possible (e.g., due to
a malfunctioning probe). In terms of resources, although the
number of probes may still increase quickly, the number of
holders is guaranteed to stay small.

Resource consumption growth rate is quantitatively
studied in detail in Section 5.

4.3 Interoperability and Portability
The proposed patterns are cloud agnostic and thus are
interoperable and portable across cloud environments [56].
There might be however some practical aspects that make
certain patterns more suitable for an environment than
another. For instance, although the proposed patterns are
conceptually applicable to both containers and virtual ma-
chines, in practice we restricted the application of some of
them to certain technologies only, so as not to go against
well-known and widely accepted design principles of those
technologies.

Patterns are beneficial to interoperability and portability
also when used to describe and model existing monitoring
systems. In fact, they ease the understanding of different im-
plementations of probe deployment designs by introducing
a set of reference designs. This facilitates the understanding
of the responsibilities of monitoring components, which
could be easily replaced with compliant ones having the
same or similar characteristics of the replaced component.

4.4 Robustness
Robustness is an important aspect of monitoring systems.
Among the described patterns, the ones that use a holder
that is distinct from the holder of the target service pro-
vide higher robustness (Reserved-T∗P∗, Reserved-T∗P1,

Reserved-T1P∗, Reserved-T1P1). In fact, the external holder
provides failure containment by isolating the monitoring
modules into separate units. This allows the target’s func-
tionalities to be safeguarded despite failures in the moni-
toring infrastructure. For example, the target can continue
serving even if the probe has failed.

In addition, these external units are deployed on ded-
icated VMs and containers, allowing each piece of moni-
toring functionality to be updated, configured and, when
needed, rolled back, independently from targets, and vice
versa.

Shared holders may cause the propagation of failures
from the probes of a user to the probes of different users
through the holders.

Finally, shared probes imply sharing failures between
users (Shared-T∗P∗, Shared-T∗P1, Shared-T1P∗, Shared-
T1P1). Even worst, internal probes may propagate failures
to the target (Internal-T1P∗).

4.5 Affordability
Patterns that promote more efficient consumption of cloud
resources offer greater assurance of affordability. These are
the patterns that share resources among users, such as
patterns that share the holder and/or the probe instances.
A further level of resource sharing is given by the pattern
(Internal-T1P∗) that shares the holder with the target holder,
consequently saving also the cost of sharing messages be-
tween the probes and the target, otherwise needed with the
other patterns.

4.6 Security
Security concerns may derive from the definition of the
patterns and their implementation. Different patterns intro-
duce different levels of resource sharing among users, which
might be a source of concerns. For example, if an attacker
takes control of a holder, all the probes running in the
holder might be compromised. A compromised probe may
compromise the clients using the probe. In short, shared and
partially-shared probe deployment patterns expose users to
higher security risks compared to reserved patterns.

Pattern implementations may also be a source of security
concerns. For instance, resource pooling enables the use
of the same pool of resource by multiple users through
multi-tenancy and virtualization technologies. Although
these technologies introduce rapid elasticity and optimal
resource management, they also introduce some risks into
the system. Multi-tenancy carries the risk of data visibility
to other users and tracking of operations. Similarly, the
virtualized environment introduces its own set of risks and
vulnerabilities that include malicious cooperation between
virtual components and the leakage of these.

5 QUANTITATIVE EVALUATION

In this section, we quantitatively evaluate the cost-
effectiveness of the probe deployment patterns by mea-
suring their cost in terms of CPU, memory and network
consumption, and their monthly operating costs. We discuss
the research questions (Section 5.1), the experimental plan
that was carried out (Section 5.2), the experimental setup
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TABLE 2: Characterization of the Patterns

Patterns that privilege isolation Patterns that privilege sharing Patterns that balance the two aspects

Patterns Reserved-T∗P∗, Reserved-T∗P1,
Reserved-T1P∗, Reserved-T1P1

Internal-T1P∗, Shared-T∗P∗, Shared-T∗P1,
Shared-T1P∗, Shared-T1P1

Partially-shared-T∗P∗,
Partially-shared-T1P∗

Resource Consumption number of probes and holders
growths with users scalable growth with respect to users only number of probes growths

Separation no interference among users probes shared between users who
have to agree on their configuration

possible interference at the level
of the holder

Interoperability & Portability no impact no impact no impact

Robustness dedicated holder increases
failure containment

shared probes can propagate
failures among users, internal probe
can propagate failures to target

shared holder can propagate
failures among users

Affordability resource utilization requires higher cost sharing probes and holders
can reduce overall cost of resources

sharing holders reduces
resource cost

Security reserved resources can mitigate
security risks

sharing probe and holder can
significantly pose security risks

sharing holders can pose
security risks

that we used to perform the experiments (Section 5.3),
the results of the experiments that we executed to answer
the research questions (Section 5.4 and 5.5), and threats to
validity of our evaluation (Section 5.6).

5.1 Research Questions
The quantitative investigation of the cost-effectiveness of
the probe deployment patterns concerns with the following
main research question

RQ - How do patterns scale with the amount of
monitored data?

Investigating the scalability of the patterns is important
to determine how well the patterns can fit situations asking
for different amounts of data to be collected. We consider
multiple scalability dimensions, including probe overhead
and cost. Since the two main target environments, system-
oriented (e.g., virtual machines) and application-oriented
(e.g., Docker containers) environments, are significantly
different in terms of elasticity and amount of resources
consumed to create and run holders, and plots would be
on radically different scales, we generate two distinct sub-
research questions for each target environment as follows.
RQ-SO - How do patterns for system-oriented environ-
ments scale with the amount of monitored data?
RQ-AO - How do patterns for application-oriented envi-
ronments scale with the amount of monitored data?

RQ-SO and RQ-AO study how probe deployment pat-
terns scale with respect to an increasing number of users,
KPIs and targets for system-oriented and application-
oriented execution environments, respectively.

5.2 Experimental Plan
To answer the two research questions, we studied the scal-
ability of the probe deployment patterns by performing
6 experiments each one investigating a different scalability
dimension with 5 experimental configurations. An experimen-
tal configuration consists of a triplet: the number of users
considered in the experiment, the number of monitored
targets, and the number of KPIs requested per user. To
measure scalability, we considered how patterns consume
the CPU (%), memory (GiB/MiB), and network I/O (MiB) of
both the holder and the target holder. To this end, we could
appreciate both how probes and holders consume resources,

but also how, and if, patterns may impact on the target, also
estimating the performance overhead and cost.

In each experiment, we vary at least one out of the
three dimensions that compose an experimental configura-
tion to study how the patterns handle the growth of that
dimension. Table 3 summarizes the experiments we did.
Column Experiment specifies the name of the experiment,
while Column Sequence of Exp. Configurations reports the set
of experimental configurations investigated to study scala-
bility. Note that the sequence of configurations always have
at least a growing dimension. In all the cases, the growth
rate corresponds to doubling a dimension at each step. As
shown in the experiments, the selected values are sufficient
to appreciated the trend shown by each dimension.

In particular, the INCREASING_KPIS_1 and INCREAS-
ING_KPIS_2 experiments investigate the scalability of the
patterns with respect to an increasing number of requested KPIs
by a single user for a given target and by two users for a
same target, respectively. That is, we investigate the impact
of an increasing number of KPIs collected, both for single
and multiple users.

The INCREASING_TARGETS_1 and INCREAS-
ING_TARGETS_2 experiments investigate the scalability of
the patterns with respect to an increasing number of targets,
for a user interested in collecting a given KPI, and two users
interested in collecting a same KPI. That is, we investigate
how a growing number of targets impact on the single and
multi-user scenarios.

The INCREASING_USERS_1 experiment investigates the
scalability of the patterns with respect to an increasing
number users interested in monitoring a single KPI for a
given target. Finally, INCREASING_USERS_2 investigates
the scalability of the patterns with respect to an increasing
number of users requesting an increasing number of KPIs
for a same single target. That is, we study how a growing
number of users impact on the patterns, also considered in
combination with an increasing number of KPIs collected.

Overall, this set of experiments can provide a clear
picture about how patterns scale according to the different
dimensions. All the experiments are repeated for both pat-
terns applicable to system-oriented technologies (e.g., VMs)
and patterns applicable to application-oriented technologies
(e.g., Docker containers).

When collecting data, we run each experimental con-
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TABLE 3: Experiments Configurations

Experiment Sequence of Exp. Configurations (Users - Targets - KPIs)

INCREASING_KPIS_1 (1-1-1), (1-1-2), (1-1-4), (1-1-8), (1-1-16)

INCREASING_KPIS_2 (2-1-1), (2-1-2), (2-1-4), (2-1-8), (2-1-16)

INCREASING_TARGETS_1 (1-1-1), (1-2-1), (1-4-1), (1-8-1), (1-16-1)

INCREASING_TARGETS_2 (2-1-1), (2-2-1), (2-4-1), (2-8-1), (2-16-1)

INCREASING_USERS_1 (1-1-1), (2-1-1), (4-1-1), (8-1-1), (16-1-1)

INCREASING_USERS_2 (1-1-1), (2-1-2), (4-1-4), (8-1-8), (16-1-16)

figuration 3 times for 10 minutes to collect stable results.
Since we sample the resource-related metrics (CPU, memory
and network) every 10 seconds, each of the experimental
configurations results in 60 samples for a sampled resource-
related metric. Overall, the 3 repetitions sustained for 10
minutes generates 180 samples per resource-metric for a
given configuration, that gives us good confidence on the
stability and significance of the results. Since we study
30 configurations, to support the 6 experiments shown in
Table 3, and we repeat the experiments for the 11 patterns,
we obtain a total of 330 configurations. We avoid repeating
the execution of 22 configurations because some pattern
configurations produce the same experimental setting (e.g.,
same number of deployed holders and probes). As a result,
we collected 166,320 samples instead of the expected 178,200
samples (60 samples per metrics × 3 metrics × 3 repetitions ×
330 configurations = 178, 200 samples).

5.3 Experimental Setup

We ran the experiments on both virtual machines (VM) and
containers. To automate experiments, we implemented An-
sible playbooks [57] that interact with the Azure Compute
Platform [58] and with a managed Azure Kubernetes Clus-
ter [59] to run VM-based and container-based experiments,
respectively.

Virtual machine holders are created with the Azure
Standard B1s flavor (1 vCPU, 1GiB of RAM, Ubuntu 18.04
LTS), while VM targets are created with the Standard A2
v2 flavor (2 vCPUs, 4GiB of RAM, Ubuntu 18.04 LTS). The
Kubernetes Cluster consists of a single node pool with 3
workers (Standard B4ms flavor, 4 vCPU, 16GiB of RAM)
and run Kubernetes v1.20.9. We deployed container holders
and targets by mean of single-replica Kubernetes Deploy-
ments [60].

We used NGINX [61], a well-known web server and
reverse-proxy, as the target application; and Metricbeat [33]
as probing system. Metricbeat helps in monitoring servers
by collecting metrics from both the system and the services
running on them. It can ship the collected metrics to Elastic-
search [62] and can be configured to collect tailored metrics.
We configured the Metricbeat NGINX module to probe
the target, while we activated the System and Kubernetes
modules to measure the resource consumption in the case
of VMs and containers, respectively.

To collect CPU, memory and network metrics on vir-
tual machines, we run a dedicated Metricbeat instance on
both the targets and holders. In Kubernetes, we deployed
Metricbeat to measure the targets and holders resource
consumption as a Kubernetes DaemonSet [63].

We used Metricbeat also to implement the monitoring
probes that are part of the monitoring patterns, either
deployed within virtual machines or deployed as single-
replica Kubernetes Deployments.

We compute the CPU and memory consumption of a
pattern as the sum of the resource consumption of each
holder activated by the pattern. The consumption of a
holder is obtained as its medium resource consumption
along the experiment. The CPU and memory consumption
of targets is computed as the mean value of the collected
samples. For network I/O consumption, since it is a cumu-
lative metric, we simply compute the total consumption of
each element per experiment as the difference between the
first and last data point.

To compute the actual cost of running probes, we re-
ferred to the monthly cost of a Microsoft Azure Standard
B1s VM operated in the West Europe zone (€8.18/month
at the time of writing), and to an Azure Container In-
stance operated in the West Europe zone (€31.7762/month
x 1vCPU + €3.4845/month x 1 GB of RAM at the time
of writing). We calculate the cost range of system-oriented
patterns by multiplying the monthly expense of one VM by
the number of holders generated by the pattern. Meanwhile,
the cost range of application-oriented patterns is deter-
mined by multiplying the average CPU/RAM consumption
values collected during the experiments with the monthly
CPU/RAM costs. As for system-oriented patterns, also for
application-oriented patterns the expense of a single con-
tainer instance is then multiplied by the number of holders
generated by the pattern.

The experimental material containing all the software
artifacts (i.e., Ansible playbooks, execution scripts, config-
urations, data analysis) and the collected dataset is publicly
available at [26].

5.4 RQ-SO - How do patterns for system-oriented
clouds scale with the amount of monitored data?

Fig. 4 shows how the resource consumption growths for
the various metrics, considering the system-oriented pat-
terns implemented with VM holders. We do not include
the Internal-T1P∗ pattern in the plots related to memory
consumption because no holder is added to the system (the
holder matches with the target holder). Thus the overhead
is limited to the resource consumption of the probe, which is
negligible compared to the resources already consumed by
the target holder. We report a selection of plots that is suf-
ficient to illustrate the results and the trends. The complete
set of plots with resources consumed by the holders and the
targets for all the metrics and experiments is available as an
online appendix [64].
CPU and Memory Consumption CPU and memory con-
sumption are both negligible for targets. In particular, it
is less than 1% for CPU consumption and less than 502
MiB for memory, independently of the dimension that is
increasing. This is a clear evidence that all the system-
oriented patterns are non-intrusive in terms of CPU and
memory consumption for the target, including the Internal-
T1P∗ pattern (which may interfere in other ways due to the
holder matching with the target holder).
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System-oriented Probe Holders
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Fig. 4: System-oriented probe holders patterns scalability

CPU consumption is also negligible in the holders (less
than 1%). In fact, probes are lightweight artifacts that con-
sume little resources and even when their number increases,
their impact on CPU is negligible. On the contrary, memory
consumption is non-trivial in holders, for some patterns
(up to 10 GiB). In fact, an increasing number of targets
makes single-target (T1) holders used by Reserved-T1P∗,
Shared-T1P∗, Partially-shared-T1P∗ patterns subject to an
exponential increase of memory consumption, as shown in
Fig. 4 (INCREASING_TARGETS_2). On the other hand, an
increasing number of users makes reserved holders used
by Reserved-T1P∗, Reserved-T∗P∗ patterns subject to an
exponential memory consumption as shown in Fig. 4 (IN-
CREASING_USERS_2). This trend can be expected, since all
the five probes deployment patterns create new holders for
an increasing number of users or targets, resulting in new
VMs creation, that is, new allocated resources.
Network I/O Consumption Network I/O consumption is
negligible on targets: up to 6 MiB transferred in 10 minutes
for reserved patterns in the most expensive experiment
(INCREASING_USERS_2). The transferred data are due to
probes extracting data from the target. The limited traffic
generated confirms the suitability of all patterns in terms of
their interference on the target.

With respect to holders, network I/O consumption can
be more significant. We observe in particular that both
an increasing number of users requesting different KPIs
(INCREASING_USERS_1 and INCREASING_USERS_2 ex-
periments) and an increasing number of targets (INCREAS-
ING_TARGETS_1 and INCREASING_TARGET_2 experi-
ments) resulted in an exponential network consumption
trend, as shown in Fig. 4. In particular, single-target (T1)
holders (Shared-T1P∗ and Reserved-T1P∗ patterns) and the
Internal-T1P∗ pattern are sensitive to an increasing num-
ber of targets, while reserved holders (Reserved-T1P∗ and
Reserved-T∗P∗ patterns) are sensitive to an increasing num-
ber of users requesting different KPIs.

Based on this evidence, depending on the expected
scalability trend, we have patterns that should be preferred
or avoided. It is however useful to remark that the overall
resource network consumption that we observed has been
limited, even for the most expensive scenarios (up to 60 MiB
transferred in 10 minutes). This order of magnitude is likely
relatively significant in a cloud environment, where network
resources are usually abundant, while it is indeed relevant
in resource-constrained environments, such as fog and edge
environments.

Monthly Operating Costs We report in Table 4 how these
differences may reflect in the monthly operation cost. All
costs are in euros (€) and each cost interval is obtained
by considering the minimum and the maximum number of
employed holders for a specific scalability experiment.

Cost figures directly depend on the number of holders
created, and are generally low as long as holders are not
dedicated to individual service instances, which is a case
that immediately generates unreasonable operation costs.
Many scalability dimensions do not impact on the cost
because VMs are quite large holders that can easily run
several probes and their cost is not affected by the number
of running probes, until the number is so large that multiple
VMs have to be created. For this reason, it is difficult to
estimate the cost of the Internal-T1P∗ pattern, since probes
run within the VM that hosts the target service and they do
not induce a measurable costs as long as a larger VM has to
be created due to the presence of the probes.

Answer to RQ-SO None of the patterns impacts on targets,
thus their selection should be entirely based on the resource
consumption of holders.

Holders are not CPU eager, so the choice of the pattern
can focus on memory and network consumption for environ-
ments where network consumption should be carefully controlled,
otherwise network consumption can be overlooked due to
limited absolute consumption.

The expected resource consumption should be consid-
ered in relation to the expected growing rate of the key
dimensions. If the monitoring system is employed in a
multi-tenant environment where the number of users re-
quiring different KPIs can easily increase, the patterns with
reserved holders are particularly impacted (Reserved-T1P∗
and Reserved-T∗P∗ deployment patterns). This may suggest
that reusing probes and holders among users is advised
when direct access to the target is not possible. The use of
multi-target (T∗) probe deployment patterns (i.e., Reserved-
T∗P∗, Shared-T∗P∗, Partially-shared-T∗P∗) is advised when
many different targets or instances must be monitored.
Overall, since the overhead is mostly due to the holders, re-
ducing their number increase the efficiency, making Shared-
T∗P∗, Partially-shared-T∗P∗, and Internal-T1P∗ the more
scalable patterns for applications based on system-oriented
virtualization, with Shared-T1P∗ highly recommended in
situations where the number of targets remains low, while
the number of interested users increases.
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TABLE 4: System-oriented Patterns Probe Holder Monthly Costs

Pattern Experiment

INCREASING_KPIS_1 INCREASING_KPIS_2 INCREASING_TARGETS_1 INCREASING_TARGETS_2 INCREASING_USERS_1 INCREASING_USERS_2

Internal-T1P* ≈ 0* ≈ 0* ≈ 0* ≈ 0* ≈ 0* ≈ 0*

Reserved-T*P* [8.18, 8.18] [16.36, 16.36] [8.18, 8.18] [16.36, 16.36] [8.18, 130.88] [8.18, 130.88]

Reserved-T1P* [8.18, 8.18] [16.36, 16.36] [8.18, 130.88] [16.36, 271.76] [8.18, 130.88] [8.18, 130.88]

Partially-shared-T*P* [8.18, 8.18] [8.18, 8.18] [8.18, 8.18] [8.18, 8.18] [8.18, 8.18] [8.18, 8.18]

Partially-shared-T1P* [8.18, 8.18] [8.18, 8.18] [8.18, 130.88] [8.18, 130.88] [8.18, 8.18] [8.18, 8.18]

Shared-T*P* [8.18, 8.18] [8.18, 8.18] [8.18, 8.18] [8.18, 8.18] [8.18, 8.18] [8.18, 8.18]

Shared-T1P* [8.18, 8.18] [8.18, 8.18] [8.18, 130.88] [8.18, 130.88] [8.18, 8.18] [8.18, 8.18]

5.5 RQ-AO - How do patterns for application-oriented
clouds scale with the amount of monitored data?

Fig. 5 shows how the resource consumption growths for
the various metrics, depending on the application-oriented
patterns. We report a selection of plots that is sufficient to
illustrate the results and the trends. The complete set of plots
with resources consumed by the holders and the targets for
all the metrics and experiments is available as an online
appendix [64].
CPU and Memory Consumption Similarly to system-
oriented patterns, also application-oriented patterns do not
impact on the target. In fact, CPU and memory consumption
of the target is below 0.01% and 5 MiB, respectively. Again, it
confirms the suitability of the monitoring patterns to collect
data from targets without interfering with their resource
consumption.

CPU consumption is also negligible in holders despite
patterns and growing trends (below 0.01%), while mem-
ory consumption can be significant. In fact, increasing the
number of users who request for different KPIs (Fig. 5
INCREMENTING_USERS_2 experiment) results in an expo-
nential memory consumption trend (up to more than 10 GiB
for reserved holders (Reserved-T∗P1 and Reserved-T1P1
patterns). Note that these two reserved probe deployment
patterns create a holder hosting one probe only for each of
the users requesting a new KPI to be collected. For instance,
the last configuration triplet (16 Users - 1 Target - 16 KPIs)
of the INCREMENTING_USERS_2 experiment creates 256
holders to satisfy the user needs. Thus, although memory
consumption may growth exponentially, the overall con-
sumption in relation to the number of created containers
is still quite good.
Network I/O Consumption Network I/O consumption is
also negligible for targets, less than 1 MiB in all the exper-
iments except for the INCREASING_USERS_2 experiment
where we observed up to 6 MiB of network I/O consump-
tion for the patterns using reserved holders (Reserved-T1P1
and Reserved-T∗P1 patterns).

With respect to holders, network I/O consumption can
be still considered negligible (up to 17 MiB), but we ob-
served that both an increasing number of users requesting
different KPIs (INCREASING_USERS_2 experiment) and an
increasing number of targets (INCREASING_TARGETS_1
and INCREASING_TARGET_2 experiments) resulted in an
exponential network consumption trend as shown in Fig. 5.
In particular, single-target (T1) holders (Shared-T1P1 and
Reserved-T1P1 patterns) are sensitive to targets increment,
while reserved holders (Reserved-T1P1 and Reserved-T∗P1

patterns) are sensitive to an increasing number of users
requesting different KPIs.
Monthly Operating Costs Table 5 summarizes the monthly
cost of executing application-oriented holders in the ex-
periments. We can notice how deploying probes within an
application-based environment is cheaper than in a system-
oriented environment, due to the nature of the environ-
ments and the billing strategies. The Internal-T1P∗ VM-
based pattern is the only exception, but such a pattern
introduces non-trivial security and reliability issues, as dis-
cussed later. Interestingly, costs based on containers is often
negligible, reaching a cost that could be appreciated on a
monthly basis only for the most demanding configurations.
Answer to RQ-AO Although on different scale values,
experiments with container-based applications resulted in
trends similar to the ones obtained for VM-based applica-
tions. In fact, resource consumption on targets is negligible
and the holder consumption is significantly mainly in rela-
tion to memory consumption.

Similarly, increasing the number of KPIs and increasing
the number of users are the least impactful drivers for
container-based holders. However, their combination (i.e.,
the increment of users requesting different KPIs) particu-
larly impact reserved holders employed by Reserved-T1P1
and Reserved-T∗P1 probe deployment patterns. This sug-
gests that an optimization and reuse of probes and holders
among users is advised for application-oriented patterns
too. Single-target (T1) holders are mostly impacted by the
increase of targets, thus, the use of multi-target (T∗) probe
deployment patterns (i.e., Reserved-T∗P1, Shared-T∗P1) is
advised when many different targets or instances must
be monitored. Overall, Shared-T∗P1 is the most scalable
pattern in the context of container-based applications, with
Shared-T1P1 as a solid alternative option when there are few
targets to be monitored but a potentially high number of
users, and Reserved-T∗P1 yet another option when several
targets must be monitored for a few users only.

5.6 Threats to Validity

The threats to the validity of the presented results mainly
concern the relationship between the setup of the experi-
ment and the collected resource consumption values. In fact,
the consumption is affected by both the available computa-
tional resources and the choice of the probe technology and
configuration. However, while changing the available com-
putational resources and the deployed probes are likely to
affect absolute values, the trends and differences among the
probe deployment patterns are clear, despite these factors.
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Fig. 5: Application-oriented probe holders patterns scalability.

TABLE 5: Application-oriented Patterns Probe Holder Monthly Costs

Pattern Experiment

INCREASING_KPIS_1 INCREASING_KPIS_2 INCREASING_TARGETS_1 INCREASING_TARGETS_2 INCREASING_USERS_1 INCREASING_USERS_2

Reserved-T*P1 [0.1752, 2,8401] [0.3519, 5.6497] [0.1752, 0.1939] [0.3519, 0.3910] [0.1752, 2.7764] [0.1752, 43.9768]

Reserved-T1P1 [0.1732, 2.8022] [0.3397, 5.7135] [0.1732, 3.1300] [0.3397, 6.2549] [0.1732, 2.8346] [0.1732, 43.5852]

Shared-T*P1 [0.1755, 2.8495] [0.1652, 2.7965] [0.1755, 0.1980] [0.1652, 0.1970] [0.1750 0.1755] [0.1755, 2.8446]

Shared-T1P1 [0.1814, 2.8513] [0.1765, 2.8226] [0.1814, 3.1658] [0.1765, 3.1053] [0.1712, 0.1814] [0.1814, 2.8193]

In fact, plots for system-oriented and application-
oriented probe deployment patterns are similar although
specific values are different. Nevertheless, the relationship
between increasing specific variables (e.g., the number of
targets or the number of users) and the pattern charac-
teristics (e.g., single-target or reserved patterns) are clearly
identified by the resulting consumption trends.

In our evaluation, we also selected a specific target
service to be monitored (i.e., NGINX) and we used a spe-
cific probe technology (i.e., Metricbeat module for NGINX).
Moreover, we deployed the same probe when experiments
required to increment the number of requested KPIs, and a
probe is configured to collect a single KPI. In a real-world
scenario probes may be configured to collect several KPIs,
potentially lowering the resource consumption.While using
a single target application (i.e., NGINX) in our evaluation
may raise concerns about the generalization of the results, it
is important to remark that the monitored application was
not a factor in our study. The monitored application has
no impact on the cost and effectiveness of the deployment
patterns. We thus intentionally used a single application
in our quantitative study to ensure that the evaluation is
conducted under controlled and similar conditions, mini-
mizing the possibility to introduce any confounding factor
that could affect the results. To mitigate this issue we report
results about our experience with three real-world applica-
tions of the patterns in Section 7.

Finally, the collected resource consumption values might
be affected by noise. To mitigate this issue we repeated the
experiments for 3 times for a total of 30 minutes of execution
collecting 180 samples for each resource-related metric in
any of the experiment configurations. We computed the
mean and the standard deviation by all the data samples,
thus, stabilizing the results to derive valid conclusions.

6 BEST PRACTICES FOR PROBE DEPLOYMENT

This section discusses a distilled list of best practices for
probe deployment derived from our empirical findings.

Engineers can exploit them when designing and configuring
their monitoring systems, depending on the target environ-
ment and desired qualities.

BP-1: Share probe instances and holders for non-
accessible targets in multi-user environments. Results
show that resource consumption might grow quite quickly
when the number of users and the number of mon-
itored KPIs increase (e.g., see experiments INCREAS-
ING_TARGETS_2 and INCREASING_USERS_2). Indeed,
the case of a large number of users asking for many KPIs
in multi-user environments must be handled carefully, re-
gardless of the underlying technology (e.g., system-oriented
or application-oriented). This issue is exacerbated by non-
accessible targets (e.g., third-party applications and inacces-
sible services for security concerns) that require the deploy-
ment of probes that sample the target from the outside. In
such cases, the monitoring system should be configured to
share as many resources as possible. This implies sharing the
deployed probes, and possibly also the holders (see patterns
Shared-T∗P∗, Shared-T1P∗, Shared-T∗P1 and Shared-T1P1).
Sometime, when probes cannot be shared, the patterns with
partially-shared holders (see Partially-shared-T∗P∗, Partially-
shared-T1P∗ patterns) offer a valuable trade-off. When pos-
sible, probe instances must be configured to collect multiple
KPIs to lower the consumption (see trend results for the
INCREASING_USERS_2 experiment in Fig. 4).

BP-2: Use multi-target probe deployment in large-scale
monitoring environments. Single-target patterns show that
probes may consume significant amount of resources with
an increasing size of the monitoring system (see for instance
single-target patterns trends for INCREASING_TARGETS_2
experiment in Fig.s 4 and 5). For this reason, large-scale
deployments with tens or more targets must adopt multi-
target probe deployments. This is strongly advised for
system-oriented environments where resource allocation for
reserved holders can be resource eager (e.g., VMs), and
thus also expensive. Suitable patterns for this case are:
Shared-T∗P∗, Shared-T∗P1, Partially-shared-T∗P∗, Reserved-
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T∗P∗ and Reserved-T∗P1. Single-target application-oriented
holders (Reserved-T1P1, Shared-T1P1 patterns) can sometime
still be used thanks to the lightness of application-oriented
containers.

BP-3: Privilege application-oriented holders to address
high-dynamic KPI collection requirements. In the case of
KPIs requirements that change often (e.g., many users with
different business goals), application-oriented holders can
be life-savers. Their advantage is twofold: first, their boot-
strapping phase is way faster than VMs, and thus frequent
creation and destruction of holders can be accomplished
efficiently; second, even when probe instances (holders) can-
not be shared to guarantee high configurability and isolation
to multiple tenants, their allocation is still affordable in
terms of resources and cost, when compared to system-
oriented holders implemented with VMs (see INCREAS-
ING_USERS_2 experiment results for system-oriented hold-
ers shown in Fig. 4 and in the online appendix [64] for fur-
ther details). Again, probe instances should be configured to
collect multiple KPIs at once to save resources.

BP-4: Prefer container-based holders for isolation re-
quirements. Dealing with third-party applications or strict
security requirements may require satisfy isolation despite
efficiency, and to deploy probe instances in dedicated hold-
ers. System-oriented holders can be resource-greedy and ex-
pensive when implemented with VMs especially. In fact, re-
served patterns implemented with VM-based holders scale
significantly worse for an increasing number of targets, as
results for INCREASING_TARGETS experiments demon-
strated. Thus container-based holders should be preferred
when possible (Reserved-T∗P1, Reserved-T1P1 patterns). In
the cases where VMs must be employed (e.g., due to con-
straints on the technology stack), the best practice is to use
partially-shared holders (Partially-shared-T∗P∗, Partially-
shared-T1P∗ patterns) and implement isolation at probe
instance level.

BP-5: When the target is accessible and resource con-
sumption is a concern, probes should be deployed within
the same execution unit of the target. An accessible target
offers the opportunity of collecting indicators efficiently,
since there is not the burden of querying any monitoring
interface and sharing the holder with the target increases
observability. The low resource consumption has been con-
firmed with our experiments (see Fig. 4 and the online ap-
pendix [64] for further details). The same cannot be usually
achieved with application-oriented execution environments
(e.g., due to the single main container process practice [65]).
Due to the side-effects that probes may introduce on targets,
this choice is advice when resource consumption is a pri-
mary concern, compared to system reliability. Some specific
technology stacks may offer interesting compromises. For
example, engineers can exploit the concept of pod (i.e.,
Kubernetes Pod [66], Podman [67]) to obtain a setup similar
to the Internal-T1P∗ pattern. In fact, thanks to pods, it is
possible to execute multiple co-located containers that share
storage and network resources, circumventing observability
issues even though the execution unit is not the same.

7 USAGE SCENARIOS

This section demonstrates the application of probe deploy-
ment patterns to three realistic usage scenarios that involve
different technologies, software architectures, and monitor-
ing requirements. In particular, we provide (i) a scenario
for a VM-based microservice application, (ii) a scenario for
a microservice application running on top of a Kubernetes
cluster, and (iii) a scenario for serverless backend functions
operated with the OpenFaaS platform.

We first describe the application architecture, the tech-
nology stack, and the monitoring requirements for each
scenario. Second, we discuss how patterns are selected
based on monitoring requirements and probe deployment
best practices. We also describe how the selected patterns
would be impacted by an increase in the number of the
collected KPIs, the number of target instances, and the
number of users interested in the collected data. Finally,
we quantitatively evaluate the selected probe deployment
patterns by collecting the CPU (%), memory (MiB), and net-
work I/O (MiB) consumption for an increasing number of
target instances, mimicking real-life situations that are faced
in operation. We sample resource-related metrics every 10
seconds, repeating the experiment 3 times for 10 minutes to
collect stable results, obtaining a total of about 180 samples.

The experimental material containing both the code to
reproduce the experiment and the collected data is publicly
available [26]. In the paper we report a selection of the plots,
the complete set of plots is available in our online appendix
[64].

7.1 Monitoring a VM-based Microservice Application

Scenario Description A company operates an e-commerce
application composed of 11 microservices and a Redis
database (e.g., Online Boutique1). For each service instance,
the engineers spin up a VM following the Service-as-a-VM
deployment pattern [68]. The payment, currency, and ad-
vertisement services are outsourced to an external provider
that does not allow direct access to the service platform.
Moreover, the company has a strong knowledge about Elas-
tic Stack [24], since this monitoring service is used in several
other company products.

The outsourced services expose KPIs using the
Prometheus format (i.e., running the node exporter2), so
the engineers need to collect these KPIs to obtain insights
about the behavior of the outsourced service instances. In
addition, they need to monitor the Redis database and some
infrastructure KPIs (e.g., CPU and memory consumption,
filesystem usage) for the VMs they are responsible for.
Applying the Probe Deployment Patterns This scenario
can be effectively addressed with two patterns: the Shared-
T∗P∗ pattern and the Internal-T1P∗ pattern. The Shared-
T∗P∗ pattern can be used to monitor inaccessible service
instances, consistently with best practice BP-2. While the
Internal-T1P∗ pattern can be used to monitor the services
running on their own VMs according to best practice BP-
5. The probes can be implemented as Metricbeat [33] probe
instances and can be configured to save data in the already

1. https://github.com/GoogleCloudPlatform/microservices-demo
2. https://github.com/prometheus/node_exporter
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available Elasticsearch cluster, resulting in the following
deployment:

• Shared-T∗P∗ pattern: it consists of a VM hosting a Met-
ricbeat probe instance configured with the Prometheus
module to collect the KPIs exposed by the node exporters
of the three outsourced services.

• Internal-T1P∗ pattern:
– for each VM running application services, it consists

of a Metricbeat instance configured with the system
module to monitor CPU load, memory, and filesystem.

– for each of the Redis database replicas, it consists of a
Metricbeat instance configured with (i) the Redis mod-
ule to collect tailored Redis KPIs; and (ii) the system
module to monitor CPU load, memory, and filesystem.

Scaling Impact

• Increasing KPIs: dealing with an increasing number
of KPIs requires the reconfiguration of the Metricbeat
probe instances, activating new modules, or deploying
new probes in the case the KPIs to collect are not
provided by any of the already deployed modules.
Considering that both the patterns can hold multiple
probes, no new holders have to be created to accommo-
date additional probe instances.

• Increasing Targets: increasing the number of targets re-
quires to: (i) reconfigure the Metricbeat probe in the
Shared-T∗P∗ holder in the case new instances of the
outsourced services are deployed; (ii) run a Metricbeat
instance within any new VM they spin up to scale the
internal services or the Redis database.

• Increasing Users: increasing the number of users access-
ing the monitoring system and interested in collected
data do not require any new holders or probe instances
because both the selected patterns allow sharing of
resources among users.

Quantitative Evaluation for Increasing Target Instances
We exploit our implementation of this scenario to collect

resource-related metrics for an increasing number of target
instances, measuring the overhead introduced by the two
implemented patterns. We increment both the number of
payment and recommendation service replicas up to 16 to
observe the impact on the Shared-T∗P∗ and Internal-T1P∗
patterns. All the other services are deployed with a single
replica. Please note that in the case of the holder implement-
ing the Shared-T∗P∗ pattern, it is simultaneously collecting
KPIs from a single replica of the currency, a single replica of
the advertisement service, and all the payment service replicas
deployed during the experiment.

The collected data for the holder implementing the
Shared-T∗P∗ pattern revealed CPU consumption is negli-
gible (less than 1%), thus an increasing number of targets
does not impact on CPU. Memory consumption was below
491.5 MiB in all the runs, and it is also not impacted by an
increasing number of targets. Not surprisingly network I/O
consumption is affected by an increasing number of targets
(up to 13.9/87.0 MiB) due to the network traffic caused by
the probes both scraping the KPI values from the targets,
and then pushing them to the Elasticsearch instance for
storage. Fig. 6a and Fig. 6b show the linear increment trend
for an increasing number of payment service replicas.

When the number of recommendation service replicas
is increased, no holder is added to the system since the
holder matches with the target holder for the Internal-T1P∗
pattern. Thus the overhead in terms of CPU and memory
consumption is limited to the resource consumption of the
probe, which is negligible compared to the resources already
consumed by the target. Network output consumption is
instead affected by an increasing number of target instances
due to the cumulative amount of data transferred by the
probes contained in the target holders to the Elasticsearch
instance (up to 18.2 MiB). Fig. 6c shows the linear increment
trend for an increasing number of recommendation service
replicas.

The trends observed in this scenario are indeed con-
sistent with those obtained by the controlled evaluation
reported in Section 5 for both the implemented patterns.

7.2 Monitoring a microservice application running on
Kubernetes
Scenario Description A company operates the same appli-
cation described in the previous usage scenario on top of a
Kubernetes cluster. This time the company fully developed
the application in-house. The company has a dedicated team
for managing database infrastructure and several service
development teams, with a strong knowledge about both
Prometheus [25] and the application services.

In this case, the service development teams want to
monitor HTTP and gRPC KPIs for their application services,
and some specific KPIs for the Redis database. However, the
requirements for monitoring Redis are different between the
database ops team and the service development teams (e.g.,
collected KPIs and frequency).
Applying Probe Deployment Patterns This scenario can
be well addressed with the Shared-T∗P1 pattern, to monitor
the application services and gather KPIs from multiple
instances according to best practice BP-2, and the Reserved-
T∗P1 pattern, to monitor the Redis database replicas using
a different holder to meet the conflicting requirements of
the teams according to best practice BP-4. The monitoring
solution exploits an already available Prometheus cluster
as data storage, and Prometheus exporters [39] as probe
instance technology, resulting in the following deployment:
• Shared-T∗P1 pattern: a Kubernetes Pod hosting a

Prometheus Blackbox exporter instance3 to collect HTTP
and gRPC KPIs from the application services.

• Reserved-T∗P1 pattern: two Kubernetes Pods hosting the
Prometheus Redis exporter instance4 configured to collect
Redis KPIs from all the available replicas for the database
ops team and the service development teams, respectively.

Scaling Impact
• Increasing KPIs: increasing the number of KPIs requires

the engineers to reconfigure the probe instances activating
new modules (e.g., TCP-level module for the Blackbox
exporter), or deploying new holders hosting the probe
instances for KPIs that are not already collected by any
of the deployed probes.

• Increasing Targets: No actions are required for new service
instances since both the exporters can be configured to

3. https://github.com/prometheus/blackbox_exporter
4. https://github.com/oliver006/redis_exporter
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Fig. 6: Shared-T∗P∗ pattern holder network I/O consumption and Internal-T1P∗ pattern network output consumption with
respect to an increasing number of payment service and recommendation service replicas, respectively.

collect KPIs from annotated targets (i.e., through Ku-
bernetes annotations and Prometheus service discovery
configuration).

• Increasing Users: increasing the number of users accessing
the monitoring system and interested in the collected data
may require creating new holders and instances, as for the
database ops and the service development teams, because
the Reserved-T∗P1 pattern privileges isolation.

Quantitative Evaluation for Increasing Target Instances
We incremented the number of cart service replicas and

Redis replicas up to 16 to observe the impact on the Shared-
T∗P1 and Reserved-T∗P1 patterns, respectively. All the other
services are deployed with a single replica.

We observed a negligible increase (less than 1%) in CPU
consumption. Memory consumption does not exceed 340
MiB for any of the two patterns, and it is not impacted by an
increased number of targets. Network input consumption is
negligible for the Shared-T∗P1 pattern holder (i.e., less than
1 MiB), while on average network output consumption is
slightly higher in terms of absolute values, reaching up to
2.18 MiB. Results are different in terms of absolute values
for Reserved-T∗P1 pattern. In particular the network input
consumption is higher compared to the output (i.e., up to
9.3/3.4 MiB), a scenario explained by the probe specific
implementation. In fact, the Redis exporter has to query
the Redis database instances to obtain the KPI values, and
than it simply exposes the values as a web endpoint to
Prometheus. However, both the patterns scales linearly with
an increasing number of targets as shown in Fig. 7.

Also in this usage scenario, we observe trends consistent
with the ones obtained in our controlled evaluation reported
in Section 5.

7.3 Monitoring serverless backend functions

Scenario Description A company serves a serverless-based
socks e-commerce application composed of 12 functions, 6
databases, and a message queue (e.g., SockShop Serverless5)
exploiting OpenFaaS6 and Kubernetes. The engineers adopt
the FaaS model to exploit auto-scaling policies and obtain
a flexible number of function replicas in response to the
volatile workload that can affect their application (e.g.,
peaks of purchases during Black Friday, intense browsing
and cart usage before Christmas, low demand in summer).

5. https://github.com/deib-polimi/serverless-sock-shop
6. https://openfaas.com

They are particularly interested in monitoring the backend
functions in terms of CPU and RAM usage in order to tweak
auto-scaling policies and the cluster nodes size. Moreover,
the company has a strong knowledge on using Prometheus
to monitor the Kubernetes cluster nodes and the application
services.
Applying Probe Deployment Patterns We can address
this scenario by implementing the Shared-T∗P1 pattern, to
monitor multiple targets (i.e., functions) together, enabling
less effort and resource usage in response to an increasing
number of function replicas according to best practice BP-2.

The monitoring solution exploits the Prometheus cluster
provided by OpenFaaS as data storage, and cAdvisor7 as
probe instance technology. The resulting deployment con-
sists of a Kubernetes DaemonSet (i.e., a Kubernetes Pod for
each of the cluster nodes) hosting a cAdvisor instance to
collect the needed function KPIs at container-level.
Scaling Impact

• Increasing KPIs: increasing the number of KPIs requires the
reconfiguration of the cAdvisor probe instances activating
new KPIs, or deploying new holders and instances in the
case the KPIs to collect are not provided by cAdvisor.

• Increasing Targets: increasing the number of targets does
not require any change since cAdvisor is able to automat-
ically detect new targets (i.e., container functions running
on the Kubernetes node).

• Increasing Users: increasing the number of users accessing
the monitoring system and interested in the collected data
does not require any new holders or probe instances since
the selected pattern supports sharing of resources.

Quantitative Evaluation for Increasing Target Instances
We collect resource-related metrics for an increasing

number of carts-get function instances (i.e., up to 16) to
measure the overhead introduced by Shared-T∗P1 pattern.
All the other functions are deployed with a single replica.

Collected data revealed CPU consumption is negligible
(less than 1%). Memory consumption does not exceed 320
MiB, and it is not impacted by an increasing number of
targets. Network input consumption is negligible ( i.e., less
than 0.2 MiB), as shown in Fig. 8a, while on average
network output consumption reaches 3.1 MiB. Network
output scales linearly with an increasing number of function
replicas, as shown in Fig. 8b.

7. https://github.com/google/cadvisor

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3349648

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



16

1 2 4 8 16
Cartservice Replicas

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90
Ne

tw
or

k 
In

 (M
iB

)
Shared-T*P1 Probe Holder Network In

(a)

1 2 4 8 16
Cartservice Replicas

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

Ne
tw

or
k 

Ou
t (

M
iB

)

Shared-T*P1 Probe Holder Network Out

(b)

1 2 4 8 16
Redis-cart Replicas

2

4

6

8

Ne
tw

or
k 

In
 (M

iB
)

Reserved-T*P1 Probe Holders Network In

(c)

1 2 4 8 16
Redis-cart Replicas

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ne
tw

or
k 

Ou
t (

M
iB

)

Reserved-T*P1 Probe Holders Network Out

(d)

Fig. 7: Network I/O consumption of the Shared-T∗P1 and Reserved-T∗P1 pattern holders with respect to an increasing
number of cart service and Redis replicas, respectively.
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Fig. 8: Network I/O consumption of the Shared-T∗P1 pat-
tern holders with respect to an increasing number of carts-
get function replicas.

As for the previous scenarios, the observed trends for the
Shared-T∗P1 pattern are consistent with the results obtained
with the controlled evaluation reported in Section 5.

8 RELATED WORK

There are two distinct areas of research that are related to
our contribution: cloud patterns and cloud monitoring.

Cloud patterns. In software engineering, patterns are used
to document knowledge about how to solve recurring prob-
lems [69]. With the rise of the cloud computing paradigm,
the community has begun working on cloud computing
patterns [70], [71], [72]. Although their development is
still in the early stages, several online catalogs have been
published, providing both specific [73], [74] and agnostic
[70] solutions. Specific patterns refer to particular cloud
providers, are customized for a target environment, and pro-
vide solutions optimized for it. In contrast, agnostic patterns
are more generic solutions that are not tied to a particular
technology, are flexible, and can be applied to different
platforms. The patterns presented in this article are agnostic
since they are not tied to a specific cloud technology and can
be applied to any execution environment. Agnostic pattern
definition is a valuable means of improving portability and
interoperability between different cloud environments [56].
However, none of these work specifically address the issue
of probe deployment. Burns and Oppenheimer [29] propose
design patterns for distributed systems based on containers.
Despite their work does not address the issue of probe de-
ployment, some of their patters resemble our Shared-T1P1
or Reserved-T1P1 patterns. Albuquerque et al. [75] present

proactive monitoring design patterns for cloud-native ap-
plications, basing their definitions on existing literature and
tools. In particular, they present three patterns that can
generate events according to the event-based monitoring
paradigm. Compared to our work, there are three main dif-
ferences: (i) we focus on the placement of monitoring probes
and the possibility to share monitoring resources among
users; (ii) we extract features and constraints from exist-
ing literature and bad/best practices, to then define more
generic and agnostic patterns; and (iii) we both qualitatively
and empirically assess scalability of the proposed patterns,
and further showcase their implementation in diverse usage
scenarios involving different monitoring technologies.

Cloud Monitoring. We can broadly classify the methods
for cloud monitoring into two main classes: active mon-
itoring [76], in which measurements are based on probes
injected into the system, and passive monitoring, in which
measurements are not based on probing, but rather on the
passive observation and analysis of existing resources, such
as network flows [77] or logs [78]. The advantage of passive
monitoring is that it does not add any communication over-
head. It makes sense for some components where important
indicators can be observed, but is less useful for others
where it is not sufficient to observe existing flows to capture
the state of the monitored component. In our work, we
focus on the case of active monitoring, which requires probe
deployment.

We can further distinguish two sub-classes of approaches
in active monitoring: agent-based solutions [76] and agent-
less solutions [79]. Agent-based solutions install software
agents inside the monitored components. These agents cal-
culate measurements on the component and then send the
data to an external collector. In contrast, agent-less solu-
tions rely on external components to retrieve monitoring
data from interfaces exposed by the monitored components,
without adding any software to the latter. Although the
agent-less solution has low maintenance costs and less risk
of interference, agent-based monitoring systems provide
deeper and more specialized measurements than the pro-
tocols used by agent-less protocols, such as SNMP [41]. In
this paper we presented monitoring patterns for both agent-
based (i.e., Internal-T1P∗) and agent-less solutions (i.e., all
the other ten patterns presented in the paper).

Recently, fog and edge computing paradigms have
emerged to create a continuum of cloud services that ex-
tend from centralized data centers to end devices. In his
review, Verginadis [80] compares twenty prominent moni-

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3349648

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



17

toring technologies for the cloud continuum, encompassing
both active and passive solutions across various dimen-
sions, such as monitoring level, output types, supported
metrics, and more. The analysis indicates that Netdata [81]
is a suitable solution for fog-edge environments, which
often involve resource-constrained devices. Netdata offers
internal and external plugins for gathering KPIs, and these
plugins can be deployed according to the presented probe
deployment patterns (e.g., Internal-T1P∗ or Shared-T∗P∗).
Other works focusing on fog monitoring [82], [83], [84], [85]
rely on monitoring agents for collecting KPIs. FMone [83]
employs agents executed in separate Docker containers
similarly to the Shared-T∗P1 and Shared-T1P1 patterns.
Souza et al.’s approach [84] involves the utilization of both
internal and external agents, which can be deployed using
the Internal-T1P∗ pattern or external unit patterns, such
as Shared-T∗P1 and Partially-shared-T∗P∗, depending on
the execution environment or sharing policies. Addition-
ally, both FogMon [82] and its self-adaptive extension [85]
employ internal monitoring agents to gather multiple KPIs,
following the Internal-T1P∗ pattern.

9 CONCLUSION

The flexibility of monitoring frameworks and probe tech-
nologies for the Cloud allows for diverse probe deployment
strategies, which may have implications on the effective-
ness and efficiency of the resulting monitoring system. For
instance, multiple probes serving different operators in a
multi-tenant environment can be deployed within a same
virtual machine to save resources, at the expense of a
reduced degree of privacy and security. On the other hand,
one probe per container or virtual machine can be deployed
to preserve privacy, at the expense of more resources allo-
cated to the monitoring system.

This paper systematically derives, presents, and analyzes
possible probe deployment strategies, resulting in 11 probe
deployment patterns that are described and assessed em-
pirically. The results of this work may help engineers in
designing their monitoring systems, and generate a set of
reusable solutions that people can refer to. We also released
publicly all the experimental material containing the soft-
ware artifacts and the collected dataset at [26].

Future work mainly concerns with exploiting and empir-
ically assessing the presented patterns in the design of novel
monitoring systems for a range of environments, including
fog and edge systems. An additional area of research is the
identification of the conditions that may necessitate shifting
from one pattern to another, in order to develop intelligent,
self-adaptive monitoring solutions, for instance using rule-
based expert systems and machine learning techniques.
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[32] D. Tovarňák and T. Pitner, “Towards multi-tenant and interop-
erable monitoring of virtual machines in cloud,” in 2012 14th
International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing, 2012, pp. 436–442.

[33] Elasticsearch B.V., “Metricbeat: Lightweight Shipper for Metrics,”
https://www.elastic.co/beats/metricbeat, 2023, [Online; accessed
25-July-2023].

[34] A. Lingayat, R. R. Badre, and A. K. Gupta, “Performance evalu-
ation for deploying docker containers on baremetal and virtual
machine,” in 2018 3rd International Conference on Communication
and Electronics Systems (ICCES). IEEE, 2018, pp. 1019–1023.

[35] Z. Zhang, D. Li, and K. Wu, “Large-scale virtual machines provi-
sioning in clouds: challenges and approaches,” Frontiers of Com-
puter Science, vol. 10, no. 1, pp. 2–18, 2016.

[36] S. A. De Chaves, R. B. Uriarte, and C. B. Westphall, “Toward an
architecture for monitoring private clouds,” IEEE Communications
Magazine, vol. 49, no. 12, pp. 130–137, 2011.

[37] J. Povedano-Molina, J. M. Lopez-Vega, J. M. Lopez-Soler, A. Cor-
radi, and L. Foschini, “Dargos: A highly adaptable and scalable
monitoring architecture for multi-tenant clouds,” Future Generation
Computer Systems, vol. 29, no. 8, pp. 2041–2056, 2013.

[38] T. Thüm, C. Kästner, F. Benduhn, J. Meinicke, G. Saake, and T. Le-
ich, “Featureide: An extensible framework for feature-oriented
software development,” Science of Computer Programming, vol. 79,
pp. 70–85, 2014.

[39] Prometheus Authors, “Exporters and Integrations,” https://
prometheus.io/docs/instrumenting/exporters/, 2023, [Online;
accessed 25-July-2023].

[40] Elasticsearch B.V., “Beats: Data Shippers for Elasticsearch,” https:
//www.elastic.co/beats/, 2022, [Online; accessed 05-September-
2022].

[41] J. D. Case, M. Fedor, M. L. Schoffstall, and J. Davin, “Simple
network management protocol (snmp),” Tech. Rep., 1989.

[42] Prometheus Authors, “SNMP exporter for Prometheus,” https://
github.com/prometheus/snmp_exporter, 2023, [Online; accessed
25-July-2023].

[43] Zabbix, “Zabbix,” https://www.zabbix.com, 2023, [Online; ac-
cessed 25-July-2023].

[44] Nagios Enterprises, “Nagios,” https://www.nagios.com, 2023,
[Online; accessed 25-July-2023]].

[45] Dynatrace LLC, “Dynatrace,” https://www.dynatrace.com, 2023,
[Online; accessed 25-July-2023]].

[46] P. Hasselmeyer and N. d’Heureuse, “Towards holistic multi-tenant
monitoring for virtual data centers,” in 2010 IEEE/IFIP Network
Operations and Management Symposium Workshops, Apr. 2010, pp.
350–356.

[47] M. Smit, B. Simmons, and M. Litoiu, “Distributed, application-
level monitoring for heterogeneous clouds using stream process-
ing,” Future Gener. Comput. Syst., vol. 29, no. 8, pp. 2103–2114,
2013.

[48] J. M. A. Calero and J. G. Aguado, “Monpaas: An adaptive monitor-
ing platformas a service for cloud computing infrastructures and
services,” IEEE Transactions on Services Computing, vol. 8, no. 1, pp.
65–78, 2014.

[49] C. B. Hauser and S. Wesner, “Reviewing cloud monitoring: To-
wards cloud resource profiling,” in International Conference on
Cloud Computing (CLOUD). IEEE, 2018, pp. 678–685.

[50] H. J. Syed, A. Gani, F. H. Nasaruddin, A. Naveed, A. I. A.
Ahmed, and M. K. Khan, “Cloudprocmon: A non-intrusive cloud
monitoring framework,” IEEE Access, vol. 6, pp. 44 591–44 606,
2018.

[51] S. Meng and L. Liu, “Enhanced monitoring-as-a-service for effec-
tive cloud management,” IEEE Transactions on Computers, vol. 62,
no. 9, pp. 1705–1720, 2012.

[52] K. Alhamazani, R. Ranjan, K. Mitra, P. P. Jayaraman, Z. Huang,
L. Wang, and F. Rabhi, “Clams: Cross-layer multi-cloud appli-
cation monitoring-as-a-service framework,” in 2014 IEEE Interna-
tional Conference on Services Computing, 2014, pp. 283–290.

[53] M. L. Massie, B. N. Chun, and D. E. Culler, “The Ganglia dis-
tributed monitoring system: design, implementation, and experi-
ence,” Parallel Computing, vol. 30, no. 7, pp. 817–840, 2004.

[54] D. Trihinas, G. Pallis, and M. D. Dikaiakos, “Jcatascopia: Mon-
itoring elastically adaptive applications in the cloud,” in 2014
14th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, 2014, pp. 226–235.

[55] The OpenStack Project, “Monasca,” https://docs.openstack.org/
monasca-api/latest/, 2023, [Online; accessed 21-Nov-2023].

[56] B. Di Martino, G. Cretella, and A. Esposito, “Semantic and agnostic
representation of cloud patterns for cloud interoperability and
portability,” in 2013 IEEE 5th International Conference on Cloud
Computing Technology and Science, vol. 2. IEEE, 2013, pp. 182–187.

[57] Red Hat, Inc., “How Ansible Works,” https://www.ansible.com/
overview/how-ansible-works, 2023, [Online; accessed 25-July-
2023].

[58] Microsoft. (2023) Azure compute. https://azure.microsoft.com/
en-gb/products/category/compute/. [Online; accessed 25-July-
2023].

[59] ——. (2023) Azure kubernetes service (aks). https://azure.
microsoft.com/en-gb/services/kubernetes-service/. [Online; ac-
cessed 25-July-2023].

[60] The Kubernetes Authors. (2023) Kubernetes deployment.
https://kubernetes.io/docs/concepts/workloads/controllers/
deployment/. [Online; accessed 25-July-2023].

[61] F5, Inc. (2023) Nginx. https://www.nginx.com/. [Online; accessed
25-July-2023].

[62] Elasticsearch B.V., “Elasticsearch: The Official Distributed Search &
Analytics Engine,” https://www.elastic.co/elasticsearch/, 2023,
[Online; accessed 25-July-2023].

[63] The Kubernetes Authors. (2023) Kubernetes daemonset.
https://kubernetes.io/docs/concepts/workloads/controllers/
daemonset/. [Online; accessed 25-July-2023].

[64] A. Tundo, M. Mobilio, O. Riganelli, and L. Mariani, “Monitoring
Probe Deployment Patterns for Cloud-Native Applications:
Definition and Empirical Assessment (Online Appendix),” 2023.
[Online]. Available: https://doi.org/10.5281/zenodo.7081889

[65] D. Bernstein, “Containers and Cloud: From LXC to Docker to
Kubernetes,” IEEE Cloud Computing, vol. 1, no. 3, pp. 81–84, 2014.

[66] The Kubernetes Authors. (2023) Kubernetes pod. https:
//kubernetes.io/docs/concepts/workloads/pods/. [Online; ac-
cessed 25-July-2023].

[67] Containers Organization. (2023) What is podman? https://docs.
podman.io/en/latest/. [Online; accessed 25-July-2023].

[68] C. Richardson, Microservices patterns: with examples in Java. Simon
and Schuster, 2018.

[69] D. C. Schmidt, M. Fayad, and R. E. Johnson, “Software patterns,”
Communications of the ACM, vol. 39, no. 10, pp. 37–39, 1996.

[70] C. Fehling, F. Leymann, R. Retter, W. Schupeck, and P. Arbitter,
Cloud computing patterns: fundamentals to design, build, and manage
cloud applications. Springer, 2014.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3349648

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://www.elastic.co/elastic-stack/
https://www.elastic.co/elastic-stack/
https://prometheus.io/
https://gitlab.com/learnERC/monitoring-patterns-experiments
 https://www.elastic.co/beats/metricbeat
https://prometheus.io/docs/instrumenting/exporters/
https://prometheus.io/docs/instrumenting/exporters/
https://www.elastic.co/beats/
https://www.elastic.co/beats/
https://github.com/prometheus/snmp_exporter
https://github.com/prometheus/snmp_exporter
 https://www.zabbix.com
 https://www.nagios.com
 https://www.dynatrace.com
https://docs.openstack.org/monasca-api/latest/ 
https://docs.openstack.org/monasca-api/latest/ 
 https://www.ansible.com/overview/how-ansible-works 
 https://www.ansible.com/overview/how-ansible-works 
https://azure.microsoft.com/en-gb/products/category/compute/
https://azure.microsoft.com/en-gb/products/category/compute/
https://azure.microsoft.com/en-gb/services/kubernetes-service/
https://azure.microsoft.com/en-gb/services/kubernetes-service/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://www.nginx.com/
 https://www.elastic.co/elasticsearch/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://doi.org/10.5281/zenodo.7081889
https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/workloads/pods/
https://docs.podman.io/en/latest/
https://docs.podman.io/en/latest/


19

[71] F. Khomh and S. A. Abtahizadeh, “Understanding the impact of
cloud patterns on performance and energy consumption,” Journal
of Systems and Software, vol. 141, pp. 151–170, 2018.

[72] T. B. Sousa, H. S. Ferreira, and F. F. Correia, “A survey on the
adoption of patterns for engineering software for the cloud,” IEEE
Transactions on Software Engineering, vol. 48, no. 6, pp. 2128–2140,
2022.

[73] Microsoft. (2023) Cloud design patterns. https://docs.microsoft.
com/en-us/azure/architecture/patterns/. [Online; accessed 26-
May-2023].

[74] Amazon Web Services. (2023) Aws prescriptive guidance
patterns. https://docs.aws.amazon.com/prescriptive-guidance/
latest/patterns/. [Online; accessed 26-May-2023].

[75] C. Albuquerque, K. Relvas, F. F. Correia, and K. Brown, “Proac-
tive monitoring design patterns for cloud-native applications,” in
Proceedings of the 27th European Conference on Pattern Languages of
Programs. Association for Computing Machinery, 2023, pp. 1–13.

[76] A. Meera and S. Swamynathan, “Agent based resource monitoring
system in iaas cloud environment,” Procedia Technology, pp. 200–
207, 2013, 1st International Conference on Computational Intelli-
gence: Modeling Techniques and Applications (CIMTA).

[77] P.-O. Brissaud, J. François, I. Chrisment, T. Cholez, and O. Bettan,
“Passive monitoring of https service use,” in 2018 14th International
Conference on Network and Service Management (CNSM), 2018, pp.
219–225.

[78] B. Chen and Z. M. J. Jiang, “A survey of software log instrumen-
tation,” ACM Comput. Surv., vol. 54, no. 4, 2021.

[79] M. Brattstrom and P. Morreale, “Scalable agentless cloud network
monitoring,” in 2017 IEEE 4th International Conference on Cyber
Security and Cloud Computing (CSCloud). IEEE, 2017, pp. 171–176.

[80] Y. Verginadis, “A review of monitoring probes for cloud comput-
ing continuum,” in International Conference on Advanced Information
Networking and Applications. Springer, 2023, pp. 631–643.

[81] N. Inc. (2023) Netdata. https://www.netdata.cloud/. [Online; ac-
cessed 23-Nov-2023].

[82] S. Forti, M. Gaglianese, and A. Brogi, “Lightweight self-organising
distributed monitoring of fog infrastructures,” Future Generation
Computer Systems, vol. 114, pp. 605–618, 2021.

[83] Á. Brandón, M. S. Pérez, J. Montes, and A. Sanchez, “Fmone: A
flexible monitoring solution at the edge,” Wireless Communications
and Mobile Computing, vol. 2018, pp. 1–15, 2018.

[84] A. Souza, N. Cacho, A. Noor, P. P. Jayaraman, A. Romanovsky,
and R. Ranjan, “Osmotic monitoring of microservices between the
edge and cloud,” in 2018 IEEE 20th International Conference on High
Performance Computing and Communications; IEEE 16th International
Conference on Smart City; IEEE 4th International Conference on Data
Science and Systems (HPCC/SmartCity/DSS), 2018, pp. 758–765.

[85] V. Colombo, A. Tundo, M. Ciavotta, and L. Mariani, “Towards
self-adaptive peer-to-peer monitoring for fog environments,” in
Proceedings of the 17th Symposium on Software Engineering for Adap-
tive and Self-Managing Systems, 2022, pp. 156–166.

Alessandro Tundo is a Ph.D. student at the
University of Milano-Bicocca. He holds a Master
Degree in Computer Science received from the
same university in 2018.

His research interests include cloud and fog
computing, distributed systems monitoring and
software architectures.

Marco Mobilio is an Assistant Professor at the
University of Milano-Bicocca, where he got his
Ph.D. in 2017 and his Master Degree in Com-
puter Science in 2013. His main interests cover
software architecture, cloud monitoring and self-
healing, automatic testing for web and mobile
applications, and human activity recognition.

Oliviero Riganelli is an Associate Professor at
the University of Milano-Bicocca. He holds a
Ph.D., in Computer Science and Complex Sys-
tem from the University of Camerino in 2009.
He is a computer scientist with a keen interest
in Software Engineering.

His main research interests focus on creat-
ing advanced methodologies and technologies
to build better software by automatically testing,
analyzing, and correcting the software itself and
its development process. He is and has been

involved in several research projects, both international and national,
in close collaboration with leading partners from industry and academia.
He is also regularly involved in the program committees of workshops
and conferences in his areas of interest.

Leonardo Mariani is a Full Professor at the
University of Milano-Bicocca. He holds a Ph.D.
in Computer Science received from the same
university in 2005.

His research interests include software en-
gineering, in particular software testing, pro-
gram analysis, automated debugging, specifica-
tion mining, and self-healing and self-repairing
systems. He has authored more than 100 papers
appeared at top software engineering confer-
ences and journals.

He has been awarded with the ERC Consolidator Grant in 2015, an
ERC Proof of Concept grant in 2018, and he is currently active in several
European and National projects. He is regularly involved in organizing
and program committees of major software engineering conferences.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3349648

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.aws.amazon.com/prescriptive-guidance/latest/patterns/
https://docs.aws.amazon.com/prescriptive-guidance/latest/patterns/
https://www.netdata.cloud/

	Introduction
	Background Information
	Probe Deployment Patterns
	Qualitative Discussion
	Pattern Implementation
	Separation Versus Resource Consumption
	Interoperability and Portability
	Robustness
	Affordability
	Security

	Quantitative Evaluation
	Research Questions
	Experimental Plan
	Experimental Setup
	RQ-SO - How do patterns for system-oriented clouds scale with the amount of monitored data?
	RQ-AO - How do patterns for application-oriented clouds scale with the amount of monitored data?
	Threats to Validity

	Best Practices for Probe Deployment
	Usage Scenarios
	Monitoring a VM-based Microservice Application
	Monitoring a microservice application running on Kubernetes
	Monitoring serverless backend functions

	Related work
	Conclusion
	References
	Biographies
	Alessandro Tundo
	Marco Mobilio
	Oliviero Riganelli
	Leonardo Mariani


