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Abstract The factorial latent structure of variables, if present, can be com-
plex and generally identified by nested latent concepts ordered in a hierarchy,
from the most specific to the most general one. This corresponds to a tree
structure, where the leaves represent the observed variables and the inter-
nal nodes coincide with latent concepts defining the general one (i.e., the
root of the tree). Although several methodologies have been proposed in the
literature to study hierarchical relationships among quantitative variables,
very little has been done for more general mixed-type data sets. Hence, it is
of the utmost importance to extend these methods and make them suitable
to the even more frequent availability of mixed-type data matrices, as com-
plex real phenomena are often described by both qualitative and quantitative
variables. In this work, we propose a new exploratory model to study the hi-
erarchical statistical relationships among variables of mixed-type nature by
fitting an ultrametric matrix to the general dependence matrix, where the
former is one-to-one associated with a hierarchical structure.

1 Introduction

In many statistical applications, the presence of mixed-type data brings an
additional level of complexity to the analysis as they usually result in intri-
cate dependence structures (De Leon and Chough, 2013). When this is the
case, the straightforward implementation of standard techniques is generally
inappropriate, and specific solutions are required to deal with the mixed na-
ture of the data depending on the final objective of the statistical analysis.
For instance, the majority of conventional tools that are used both in the
exploratory and the modeling phase relies on the assumption that the data,
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or at least a suitable transformation of them, follow a Normal distribution:
an assumption that no longer applies in such contexts. For these reasons,
several methods have been developed to deal with mixed-type data in many
applications, especially concerning dimensionality reduction (McParland and
Gormley, 2016; Van de Velden et al., 2019; Vichi et al., 2019). These method-
ologies mostly rely on the computation of the general dependence matrix,
say �̃�, which altogether includes the correct pairwise statistical relationship
measures, namely: 𝜒2 in the case of qualitative pairs; 𝜌2 between pairs of
quantitative variables; [2 in the mixed-type case. This general dependence
matrix can be proven to be positive semi-definite and it can be paired with
the matrix of the p-values assessing the statistical significance of the esti-
mated relationship. Hence, while being useful as an exploratory tool, �̃� has
been already used to extend Factor Analysis (FA) and Principal Component
Analysis (PCA) to the case of mixed-type data (Pagès, 2004; Chavent et al.,
2011) in order to detect latent structures underlying the data. However, if
complex phenomena are considered, FA and PCA for mixed-type data are
not able to pinpoint the hierarchical relationships among variables defining
nested dimensions (concepts). In this paper, we introduce a new simultane-
ous, exploratory model for identifying a hierarchy of latent concepts. The
proposal aims at reconstructing the general dependence matrix �̃� via an ul-
trametric dependence matrix by extending the model proposed by Cavicchia
et al. (2020b) to mixed-type data.

2 Background

Let x𝑖 be a (𝐽 × 1) random vector corresponding to a generic multivariate
observation 𝑖, where 𝑖 = 1, . . . , 𝑁 and 𝑁 > 𝐽. Without loss of generality, x𝑖
can be ordered such that the first 𝑃 values are realizations of qualitative (cat-
egorical) variables, while the remaining 𝐽 − 𝑃 values come from quantitative
(numerical) variables. Hence, we can rewrite x𝑖 = [𝑞x𝑖 ′, 𝑛x𝑖 ′]′, where 𝑞x𝑖 and

𝑛x𝑖 are the (𝑃×1) and the ((𝐽 −𝑃) ×1) vectors of the qualitative and quanti-
tative variables, respectively. Specifically, 𝑞x𝑖 has elements 𝑞𝑥𝑖 𝑗 ∈ {1, . . . , 𝑐 𝑗 },
where 𝑐 𝑗 ≥ 2 represents the number of distinct categories of variable 𝑗 , for
𝑗 = 1, . . . , 𝑃. For the moment, we assume that the categories are not ordered,
therefore defining the qualitative variables as nominal variables.

The sampled observations can be stacked together in the matrix X =

[𝑞X, 𝑛X], formed by two sub-matrices of dimensions (𝑁×𝑃) and (𝑁×(𝐽−𝑃)),
having a qualitative and quantitative part.

The computation of �̃� relies on the suitable standardization of matrix X,
which can be defined as in Vichi et al. (2019):

𝑠X = [𝑠G,
1
√
𝑁
Z] = [𝑠G1, . . . ,𝑠 G𝑃 ,

1
√
𝑁
z1, . . . ,

1
√
𝑁
z𝐽−𝑃], (1)
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where 𝑠G is the (𝑁 ×𝐶) standardized matrix referring to the first 𝑃 nominal

variables, 𝐶 =
∑𝑃

𝑗=1 𝑐 𝑗 and Z = J𝑛Xdiag(diag(Σ
𝑛X))−

1
2 is the (𝑁×(𝐽−𝑃)) stan-

dardized matrix referring to the 𝐽 − 𝑃 quantitative variables. 𝑠G is obtained
by appending together the single 𝑠G 𝑗 = JG 𝑗 (G′

𝑗
G 𝑗 )−

1
2 , 𝑗 = 1, . . . , 𝑃, as in

multiple correspondence analysis (Greenacre, 2017), while Z has 0 mean and
unit sum of square columnwise; J = I− ( 1

𝑁
)1𝑁1′𝑁 is the centering idempotent

matrix. Note that 𝑠X has dimension (𝑁 × (𝐶 + 𝐽 − 𝑃)).
In the following section, we compute the general dependence matrix that

includes the relationships among variables of different nature, qualitative and
quantitative.

3 Statistical relationships between mixed-type variables

Considering the matrix 𝑠X in Eq. (1), we compute the matrix of the correct
pairwise statistical relationships among mixed-type variables as follows

𝑒𝚺𝑠X = 𝑠X
′
𝑠X.

𝑒𝚺𝑠X is a square, positive semi-definite matrix of dimension 𝐶 + 𝐽 − 𝑃, and it
can be divided into four blocks

𝑒𝚺𝑠X =

(
Φ

𝑠G H
𝑠GZ

H′
𝑠GZ R

𝑛X

)
,

where

• Φ
𝑠G = [𝑠G′

𝑗 𝑠
G𝑚 : 𝑗 , 𝑚 = 1, . . . , 𝑃] is a square matrix of order 𝐶, containing

positive values if two modalities of 𝑞X 𝑗 and 𝑞X𝑚, say 𝑙 and ℎ, are jointly
assumed, negative otherwise;

• R
𝑛X = [ 1

𝑁
z′
𝑘
z𝑟 : 𝑘, 𝑟 = 𝑃 + 1, . . . , 𝐽] is the correlation matrix of order 𝐽 − 𝑃

with elements |𝜌𝑘𝑟 | ≤ 1;
• H

𝑠GZ = [𝑠G 𝑗
′ z𝑘 : 𝑗 = 1, . . . , 𝑃, 𝑘 = 𝑃 + 1, . . . , 𝐽] is the matrix of order

(𝐶×(𝐽−𝑃)) accounting for the association between the qualitative variable

𝑞X 𝑗 and the quantitative variable 𝑛X𝑘 .

The dependence between qualitative and quantitative variables can be de-
fined by considering the matrix with elements equal to the square of elements
of 𝑒𝚺𝑠X = 𝑠X

′
𝑠X, i.e.

𝑒𝚺
2
𝑠X

=
©«
Φ2

𝑠G
H2

𝑠GZ

H2′
𝑠GZ R2

𝑛X

ª®®¬ .
The latter is evidently in connection with well-known dependence/correlation
measures.

• Φ2
𝑠G

can be exploited to compute
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𝑟 𝜒
2
𝑗𝑚 = 𝑡𝑟 (𝑠G 𝑗 𝑠G

′
𝑗 𝑠G𝑚 𝑠G

′
𝑚)/𝑚𝑖𝑛(𝑐 𝑗 − 1, 𝑐𝑚 − 1);

• R2
𝑛X

→ is the matrix of the squared Pearson’s correlation coefficients mea-
suring the relationship between 𝑛X𝑘 and 𝑛X𝑟 ;

• H2
𝑠GZ is the matrix of the correlation ratios between the qualitative variable

𝑞X 𝑗 and the quantitative variable 𝑛X𝑘 .

It has to be noticed that all the three matrices have elements ranging between
0 and 1, where the former represents the case of independence and the latter
that one of perfect dependence.

The matrix 𝑒𝚺2
𝑠X

can be therefore synthesized into a 𝐽×𝐽 matrix of general
dependence as follows

�̃� =
©«
𝑟 𝝌

2
𝑠G

𝜼2
𝑠GZ

𝜼2
′
𝑠GZ R2

𝑛X

ª®®¬ . (2)

In the following section, we introduce a model for studying the relation-
ships occurring among quantitative and quantitative variables into �̃�.

4 Methods

The ultrametricity notion is well-known in statistics for hierarchical clus-
tering. Nevertheless, this notion has been introduced in mathematics with
regard to the p-adic number theory (Dellacherie et al., 2014) associated with
a generic matrix, which is not necessarily a distance matrix – specifically, a
reverse relationship occurs with an ultrametric distance matrix. Hereinafter,
we recall the definition of an ultrametric matrix.

Definition 1 A nonnegative1 matrix U of order 𝐽 is said to be ultrametric
if

1. 𝑢𝑖 𝑗 = 𝑢 𝑗𝑖 , 𝑖, 𝑗 = 1, . . . , 𝐽 (symmetry);
2. 𝑢 𝑗 𝑗 ≥ max{𝑢𝑖 𝑗 : 𝑖 = 1, . . . , 𝐽}, 𝑗 = 1, . . . , 𝐽 (column pointwise diagonal

dominance);
3. 𝑢𝑖 𝑗 ≥ min{𝑢𝑖𝑙 , 𝑢 𝑗𝑙}, 𝑖, 𝑗 , 𝑙 = 1, . . . , 𝐽 (ultrametricity).

Condition 3. can be rewritten as follows

• for each triplet 𝑖, 𝑗 , 𝑙, there exists a reordering {𝑖, 𝑗 , 𝑙} of the elements s.t.
𝑢𝑖 𝑗 ≥ 𝑢𝑖𝑙 = 𝑢 𝑗𝑙,

by unraveling that an ultrametric matrix U is composed of a reduced number
of distinct values subject to a specific order. This engenders an interesting
feature of an ultrametric matrix, that is of being associated with a hierarchy

1 A nonnegative matrix M = [𝑚𝑖 𝑗 ] is a matrix with nonnegative values, i.e., 𝑚𝑖 𝑗 ≥ 0.
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over variables. Moreover, every ultrametric matrix is positive semi-definite
(Dellacherie et al., 2014, pp. 60-61).

Dimensionality reduction for mixed-type data can be performed by Factor
Analysis (Pagès, 2004). However, FA is not able to reconstruct hierarchical
relationships among variables (both qualitative and quantitative) and thus to
unravel concepts of higher-order. Cavicchia et al. (2020b) introduced a model
to study the hierarchical relationships among variables by reconstructing a
nonnegative correlation matrix via an ultrametric correlation one. However,
their proposal pertains quantitative variables only. In this paper, we extend
the ultrametric model proposed by Cavicchia et al. (2020b) in order to detect
hierarchical structures on variables of different nature (i.e., quantitative and
qualitative). Specifically, we fit an ultrametric matrix to the general depen-
dence matrix �̃� defined in Eq. (2) – that is nonnegative by definition – as
follows

�̃� = �̃�u + E, (3)

where �̃� is an ultrametric dependence matrix of order 𝑃 and E is a residual
(error) matrix of the same order. �̃�u pinpoints a hierarchical structure by
defining a reduced number of variable groups associated with latent concepts
and identifying broader concepts as bottom-up aggregations of the lower-
order one. Model (3) can be estimated in the Least-Squares context or in the
Maximum-Likelihood framework under suitable specific assumptions on the
distribution of the error.

It is worthy to highlight that the proposal differs from hierarchical cluster-
ing methods applied on variables (see Cavicchia et al., 2020a, for the quanti-
tative case). Indeed, even if the latter can be implemented on variables after a
proper transformation of similarity measures into dissimilarity ones, they are
sequential and greedy procedures affected by misclassification at the bottom
of the hierarchy that can have an effect on higher levels. Other than detect-
ing specific features related to variables, the proposed methodology overcomes
the aforementioned drawbacks of hierarchical clustering procedures since this
is a simultaneous and parsimonious model.

5 Application

We apply the ultrametric model described in Section 4 on the well-known
benchmark data set mtcars (Henderson and Velleman, 1981), available in
the package MASS of R statistical software (Team et al., 2013). The data was
extracted from the 1974 Motor Trend US magazine, and comprises fuel con-
sumption and 10 aspects of design and performance for 32 cars. Specifically,
the data set includes 6 quantitative variables:

• miles per gallon (mpg): a proxy for the fuel consumption efficiency;
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Paper54-fig01.pdf

Fig. 1: Observed �̃� for the mtcars data set.

• displacement (disp): the total volume (in cubic inches) of all the cylinders
in an engine;

• gross horsepower (hp): a measurement of engine output, taken at the fly-
wheel;

• rear axle ratio (drat): the number of revolutions the driveshaft must make
to spin the axle one full turn;

• weight (wt): the weight of the vehicle (in 1000 lbs.);
• quarter per mile (qsec): the shortest time from a standing start to the

end of a straight 1⁄4 mile track;

and 5 qualitative variables:

• number of cylinders (cyl): low, medium, high;
• engine (vs): V-shaped or straight;
• transmission (am): automatic or manual;
• number of gears (gear): low, medium, high;
• number of carburetors (carb): single, low, medium, high.

We computed �̃� as described in Section 3. From Fig. 1, we can clearly see
an overall high dependence among the variables in the data set: the largest
𝜒2 is observed for the number of cylinders and the engine shape; the largest
[2 between the number of cylinders and the displacement ; the largest 𝜌2

between the displacement and the weight.
The results of the ultrametric model on the mtcars data set are provided

in Fig. 2. The model applied herein considers a complete hierarchy over the 11
variables. Looking at Fig. 2b, we can highlight four main groups of variables,
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each one associated with a latent concept: the first composed of displacement,
number of cylinders, weight, miles per gallon and gross horsepower, thus rep-
resenting the efficiency of a car; the second group included rear axle ration,
number of gears and transmission, thus identifying the gearshift features; the
third group formed by quarter per mile and engine, hence depicting the per-
formances on the standing start ; the fourth group solely defined by number of
carburetors, representing a singleton. Remark that we model the dependence
between mixed-type data measured into �̃�, whose elements are non-negative
and range between 0 and 1. In defining the hierarchical structure, the ul-
trametric model therefore considers the strength of the dependence among
variables, but not its sign. Nonetheless, the direction of dependence can be
taken into account for interpreting the results. For instance, in defining the
first latent concept, i.e., efficiency, negative relationships manifest between
miles per gallon and weight, and miles per gallon and gross horsepower since
the lower the weight and the horsepower of a car are, the higher the perfor-
mances of a car are and, consequently, its efficiency.

The existence of these four latent concepts, with highly dependent vari-
ables defining them, is clearly visible in Fig. 2a, as well as the order of their
aggregations. Indeed, the first aggregation occurs between efficiency and
gearshift features, the second one between the performances on the stand-
ing start and number of carburetors and the last one defines the aggregation
of the aforementioned two broader groups.

Paper54-fig02a.pdf

(a) Heatmap of the fitted �̃�u on the
mtcars data set

Paper54-fig02b.pdf

(b) Path diagram representation

Fig. 2
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6 Discussion

In this work, we firstly revised the importance of the general dependence
matrix �̃�, which depicts pairwise relationships among variables of different
nature. The latter is a fundamental tool for the application of methodologies
for dimensionality reduction, such as Factor Analysis and Principal Compo-
nent Analysis, to mixed-type data. Even if these methodologies are suitable to
detect latent structures underlying multivariate data, they are not able to un-
ravel hierarchical relationships among variables. In this paper, we extended
the ultrametric model proposed by Cavicchia et al. (2020b) to mixed-type
data with the aim of inspecting the relationships among dimensions with
different levels of abstraction defining a complex phenomenon.

Further developments of this work can be explored. Indeed, it would be
interesting to compare the performances of our proposal with the ones of
traditional hierarchical clustering algorithms, i.e., to extended the proof in
Cavicchia et al. (2020a) to the more general case of mixed-type data.
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