
SCUOLA DI DOTTORATO 

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA 

 
 

 

 

Department of 
 

Informatics, Systems and Communication  
 

PhD program in Computer Science, Cycle XXXVI 
 
 
 
 
 
 

Adaptation of Neural-enhanced Retrieval Models 

to Domain-specific Tasks  
 
 
 
 
 

 
 

Oscar Javier Espitia Mendoza                                          

Registration number 865289  

            
 
 
 
 
 

Supervisor: Prof.GabriellaPasi  
 

Coordinator: Prof.LeonardoMariani  

          
 
 
 
 

    ACADEMIC YEAR 2022-2023  

         
 



Adaptation of Neural-enhanced Retrieval
Models to Domain-specific Tasks
Enhancing on Medical and Academic search:

Domain-specific Applications of Advanced Retrieval

Oscar E. Mendoza

Supervisor: Prof. Gabriella Pasi

Department of Computer Science
University of Milano-Bicocca

This dissertation is submitted for the degree of
Doctor of Philosophy

January 2024



Declaration

I hereby declare that except where specific reference is made to the work of others,
the contents of this dissertation are original and have not been submitted in whole
or in part for consideration for any other degree or qualification in this or any other
university. This dissertation is my own work and contains nothing which is the
outcome of work done in collaboration with others, except as specified in the text and
Acknowledgments. This dissertation contains fewer than 65,000 words, including
appendices, bibliography, footnotes, tables, and equations, and has fewer than 150
figures.

Oscar E. Mendoza
January 2024





Acknowledgements

I extend my gratitude to the following individuals and institutions whose support and
guidance have been instrumental in the completion of my doctoral journey:

I express my appreciation to my main supervisor, Prof. Gabriella Pasi, whose
guidance and mentorship played a pivotal role in shaping my research. I am also
grateful to Prof. Allan Hanbury and Prof. Andrew Yates, my supervisors during
periods abroad, for their valuable insights and support.

To my local colleagues, especially Ricky, Georgos, and Pranav, I extend my ap-
preciation for the enriching environment. A special acknowledgement goes to my
colleagues during my stays abroad: Wojciech, Sophia, and Thong, who helped me
get the most out of those experiences.

I acknowledge the financial support provided by the Marie Sklodowska-Curie Actions
Innovative Training Networks project "Domain Specific Systems for Information
Extraction and Retrieval"–DoSSIER. Thanks to all network members, particularly
Florina, for their collaboration and encouragement.

I express my gratitude to the Department of Computer Science at the University of
Milano-Bicocca for their institutional support.

Appreciations to my friends back in Colombia and those who shared with me during
these three years. Special thanks to Luis and Riccardo, my cherished friends, who
provided companionship and camaraderie during the challenging phases of my PhD.
Their friendship and shared moments of respite were invaluable.

I am profoundly thankful to my family, especially Yuri Mejia, Ayde Mendoza, and
Mario Espitia Mendoza. Their life experiences and invaluable insights have been a
source of inspiration and support, shaping my personal and professional approach to
work. Thank you. This thesis is dedicated to you.





Abstract

Information retrieval (IR) plays the role of ranking information items in search
engines widely used in many scenarios. The criteria used to produce a rank of
information items are matching signals between information needs, expressed as
queries, and the items. These signals are related to the notion of relevance used to
judge such items.

This thesis studies how to design IR models in specific scenarios, characterized by
their domains, based on contextual factors from particular instances. We have consid-
ered the task contexts of Clinical Trials Retrieval (CTR) and Scholarly Document
Retrieval (SDR), specifically addressing search processes in clinical trials collections
and collections of academic documents, respectively. Compared to traditional ad-hoc
text retrieval, CTR and SDR exhibit different challenges: the queries could be much
longer and more complex than common keyword-based queries; the definition of
the relevance of a document to a query is beyond general topical relevance (i.e., the
semantic relationship between texts), and as such, its assessment may require expert
knowledge.

Curriculum learning is an approach in machine learning that involves designing a
curriculum to enable the model to learn concepts progressively from simple to com-
plex, especially when a task can be decomposed. We proposed a curriculum learning
approach to address the CTR problem, in which a model is first optimized based on
topical relevance and then on eligibility classification (i.e., screening the criteria given
in a trial for patient enrollment). This setting is used to establish a re-ranking pipeline.
Our proposed re-ranking formula explicitly models the eligibility decisions instead
of using only the topical relevance and shows additional performance improvement
comparable to more expensive approaches.

In the case of SDR, classifying scholarly documents according to their research
themes is an important task to improve their retrievability. To establish a benchmark
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for research theme classification, we present experiments and evaluation results
with traditional machine learning models and compare them to a more sophisticated
ensemble with state-of-the-art models. A clear limitation is the overlap between
disciplines that leads to incorrect predictions when considering mutually exclusive
categories. We consider, then, a fine-grained theme distribution. We leverage the
capabilities of large pre-trained Transformer models in an architecture that uses
a sequence-to-sequence learning system to map text to fine-grained themes. We
evaluate an approximation to Learned sparse retrieval (LSR) to directly introduce
these theme annotations to a sparse model.

Constraining search with theme classification can contribute to the performance of a
retrieval system based on the results of the different tasks, and LSR has shown to be
a potential channel to incorporate contextual domain-specific information in the IR
system.
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Context





1
Introduction

In many scenarios, users often turn to search engines for help. Such systems point
them in the direction of possible relevant information items. Information retrieval
(IR) plays the role of ranking these information items to generate an ordered list
retrieved from a corpus in response to an information need a user might have. The
criteria used to produce a rank are matching signals between information needs,
expressed as queries, and the information items. These signals are related to the
notion of relevance used to judge the result.

Different volumes of data, document sizes, the structure of the documents, jargon,
and the way information needs are defined, among others, are features that justify
that a retrieval model should not handle all information equally when it comes to
domain-specific retrieval tasks, e.g., in healthcare, and academia.

Some of those features can be considered contextual elements, i.e., factors influencing
how an IR system is used and how its performance should be evaluated. The concept
of context in IR has been extensively studied within the contextual IR paradigm. This
paradigm in itself aims to optimize the retrieval performance by defining the search
context to be considered in the information selection process and in assessing the
search outcome [65].

According to different interpretations, context can be considered from different
perspectives based on the sources of evidence available to the search system, such as
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content (queries, content of the collection, supplementary content, etc.), user behavior
(visited content, explicit/implicit feedback), and environment (location, time, device,
etc.) [31]. Thus, there are approaches that have used content as context, domain as
context, environment as context, user preferences as context, and search task or type
of information as context.

In this thesis, we study how to design IR models in specific domains based on a set
of particular instances where we first consider the task contexts:

Patient-clinical trials matching. Clinical trials (CT) are experiments to develop
new medical treatments, drugs, or devices. Recruiting candidates for a trial
motivates the IR task of matching eligible patients to CT [51] (we will refer to
as CT Retrieval or CTR).

Searching for academic literature. Broadly, queries are usually given under
an informational intent [22], i.e., by submitting them to the search system,
we want to obtain some related information that is assumed to be available.
Additionally, the user might be aiming to solve a task of information gathering,
which involves collecting information from multiple sources [47] (we will refer
to this task as Scholarly Document Retrieval or SDR).

Exhibiting different challenges, these tasks involve queries that can be much longer
and more complex than common keyword-based queries. For example, in CTR,
queries often arise from patient descriptions in unstructured snippets. Furthermore,
determining the relevance of a document to a query goes beyond general topical
relevance. In CTR, a document is considered relevant not only based on its seman-
tic relationship to the query but also, for instance, to the eligibility criteria. This
complexity in assessment may require expert knowledge. These tasks also exhibit
domain-specific properties (e.g., jargon, multi-fielded structure), allowing the explo-
ration of domain-based information sources, particularly domain-specific knowledge.
In the context of search, it has the potential to constrain the information space to find
relevant documents more effectively than in open-domain applications.

Neural networks (NN) represent a tool for learning text representations, defining
ranking models capable of handling different kinds of documents, and even introduc-
ing additional elements in the retrieval process. Models using NN offer the flexibility
for adapting models based on domain-specific features, including those related to
contextual factors.
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NN in IR has produced a family of Neural-enhanced retrieval models currently
shaping state-of-the-art in multiple retrieval tasks: neural ranking models use neural
methods for relevance classification, dense retrieval models generate optimized
embeddings for scoring, learned sparse retrieval models employ learned weights
instead of bag-of-words, and generative retrieval embeds documents into sequence-
to-sequence model parameters (see Section 2.2 for details).

We explore concepts from neural-enhanced retrieval models such as neural ranking
for tailoring the relevance estimation to our study cases; generative retrieval for
embedding domain-knowledge, and Learned sparse retrieval incorporating domain-
specific information into the document scoring process.

1.1 Research Outline and Questions

As mentioned above, this thesis has explored the properties of recent NN models
to define IR models in specific domains and for specific tasks. We focus on two
research objectives: (1) Effective Clinical Trials Search: An Application of Neural
Information Retrieval in the Medical Domain, and (2) Enhancing the Retrievability
of Domain-specific Documents with Neural models at different levels.

Below, we describe the main research questions for each chapter. In each chapter, we
describe more fine-grained subquestions that we ask to answer each main research
questions.

1.1.1 Effective Clinical Trials Search: An Application of Neural Infor-
mation Retrieval in the Medical Domain

The general retrieval model design is focused on general signals of relevance. For
domain-specific search tasks, the effectiveness-efficiency trade-off in performance
can be sorted with a task-oriented model design, which considers more specific
signals. A particularly challenging task in the medical domain is CT recruitment.
From the IR perspective, it has been framed as a search task under the patients-to-
trials evaluation paradigm. In our first study, we approach the problem of finding
eligible trials given patient description using a neural-enhanced IR model:

RQ1 Given the clinical trials IR problem, can we optimize a model upon different
signals of relevance?
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We propose splitting the problem based on two objectives considered for defin-
ing the relevance of CTR: (i) the semantic relationship between texts and (ii)
the eligibility criteria. We optimize a model based on these two objectives
and evaluate the contribution to the performance of selected trials. However,
splitting the problem into granular problems does not help to increase the per-
formance of a general-purpose model. To address this limitation, in our study,
we consider an integrated approach:

RQ2 Given the multitask nature of CTR, can we design a task-oriented model under
a reasonable effectiveness-efficiency trade-off?

Curriculum learning is the approach to design a curriculum for learning concepts
from simple to complex when a task can be decomposed. We proposed a
curriculum learning approach to address the CTR problem in which the model
is first optimized based on topical relevance and then on eligibility classification.

1.1.2 Enhancing the Retrievability of Domain-specific Documents with
Neural Models

Classifying research papers according to their research themes is an important task to
improve their retrievability and, in general, to support approaches for analyzing and
making sense of the research environment. Identifying research themes for a given
scholarly document poses a challenging task due to the lack of large, high-quality
labeled data. This made it difficult both to train high-performance classification
models as well as to compare models’ performance across studies.

RQ3 Can academic publications be effectively discriminated into broad themes when
high-quality data is provided?

To establish a benchmark for research theme classification, we present exper-
iments and evaluation results with traditional machine learning models and
compare them to a more sophisticated ensemble with state-of-the-art models.
A clear limitation is the overlap between disciplines that leads to incorrect
predictions when considering mutually exclusive categories. We consider, then,
a fine-grained Themes distribution:

RQ4 Can fine-grained themes be embedded into model parameters for annotating
documents?
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We study how distributions of more fine-grained themes can be embedded into
model parameters for performing the classification of different types of hierar-
chically arranged categories, as usually defined for large-scale classification.
We leverage the capabilities of large pre-trained Transformer models in an
architecture that uses a sequence-to-sequence (seq2seq) learning system [101]
to directly map text to labels. Drawing on the recent advances in generative
language models. By harnessing the context understanding of the Transformer
architecture, our proposed method enables robust integration of semantic in-
formation into the text-to-label mapping process. Although it was previously
stated that topic modeling has potential use in retrieval, a clear pipeline needs
to be defined to implement an IR model that integrates these two tasks:

RQ5 How can fine-grained document annotations be used in a neural-enhanced
retrieval scenario?

We evaluate an analogous scenario to Learned Sparse Retrieval as a way of
directly introducing theme annotations to the retrieval model. We propose a
hybrid model that expands documents using a generative model that predicts
fine-grained annotations and expands queries using expansions of the feedback
from retrieved documents. Then, modify the sparse retrieval scoring formula to
allow expansions and their importance to tailor results.

1.2 Thesis Contributions

In this section, we summarize the main contributions of this thesis into three cate-
gories: methodological contributions regarding theoretical and algorithmic insights,
empirical contributions regarding experimentation and analysis, and resources we
released throughout developing this thesis.

Methodological contributions

1. Effective training strategy for CTR, a method that applies the idea of curriculum
learning with diverse matching signals to estimate relevance (Chapter 3).

2. Establishing a benchmark for scholarly document classification (Chapter 4).

3. A method for generating granular themes annotations as an application of
large-scale classification (Chapter 5).
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4. A method to introduce domain context into the retrieval model to improve
first-stage retrieval (Chapter 6).

Empirical contributions

5. Effective retrieval model for CT (Chapter 3).

a. Empirical comparison of our proposed training strategy and other retrieval
models.

b. Empirical ablation study, breaking down our multistage ranking pipeline.

6. Classification model for scholarly documents (Chapter 4).

a. Empirical comparison of our proposed ensemble model and multiple
traditional models.

b. Empirical evaluation of the contribution of multiple sources of information
for classification performance.

c. Error analysis of common errors made by our ensemble.

7. Annotating text with hierarchically arranged sets of labels (Chapter 5).

a. Empirical comparison of our proposed strategy with state-of-the-art ap-
proaches.

b. Empirical evaluation of the approach in multiple scenarios with varying
domains/hierarchies.

8. Leveraging context trough LSR (Chapter 5).

a. Empirical evaluation of the model with multiple experiments.

b. Empirical evaluation of the approach in multiple scenarios: in comparison
with alternative baselines and analysis of multiple parameters.

Resources

9. Open source implementations.1,2

10. Wide range of baselines for establishing a new benchmark for text classification.
1 https://github.com/ProjectDossier/sdp2022
2 https://github.com/ProjectDossier/patient-trial-matching

https://github.com/ProjectDossier/sdp2022
https://github.com/ProjectDossier/patient-trial-matching
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11. Neural Models survey.3

12. Neural Models tutorial.4

1.3 Definition and Scope Clarification:

Even though they are related concepts, in the context of this thesis, “themes” and
“topics” hold distinct roles, each serving a specific purpose in the framework of our
research.

Themes, as used within the scope of research theme classification (chapters 4
and 5), denote the fundamental conceptual categories. These themes represent
the fundamental ideas or concepts that recur throughout datasets, aiding in the
interpretation and understanding of the underlying patterns or principles that
characterize the subject matters under investigation.

Topics, on the other hand, are used in the context of IR (chapters 3 and 6) to
refer to the contextual elements provided for a query in an evaluation setting.
This is also related to topical relevance, a concept discussed later in Chapter 2.
These topics serve as the key points or subject areas that define the information
needs of the user. They are usually given to human assessors for facilitating
judgments and are relevant to the development of IR models for considering
the definition of relevance inside certain contexts.

Although this thesis delineates the specific applications of these terms within their
respective analytical frameworks, we find it useful for the reader to establish a clear
distinction between the use of “themes” in research theme classification and “topics”
in the domain of Information Retrieval.

1.4 Overview

The thesis is organized in three parts: Part I discusses background and state-of-the-art,
and Parts II and III describe the contributions of this work.
3D. Alexander, O. E. Mendoza, Y. Ghafourian, K. Pathak, G. Peikos, L. Azzopardi, G. Pasi. State of the Art
Models Survey. Deliverable for Marie Sklodowska-Curie Actions project DoSSIER.

4D. Alexander, O. E. Mendoza, Y. Ghafourian, K. Pathak, G. Peikos, L. Azzopardi, G. Pasi. Models Tutorial.
Deliverable for Marie Sklodowska-Curie Actions project DoSSIER.
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Specifically, in the first part, we discuss the context of our contributions. We introduce
our motivations and how neural models are used to enhance IR (Chapter 2).

In the second part, we study the effectiveness-efficiency trade-off with NIR models
for CTR (Chapter 3).

In the third part, we study how to enhance the retrievability of documents in domain-
specific search by classifying documents into themes (Chapters 4 and 5) and by
evaluating the effect of considering classification in the first-stage retrieval model (6)

In Chapter 7, we conclude the thesis and discuss directions for future work.
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1.5 Origins

Below, we list the publications and resources that contributed to this thesis:

• W. Kusa, O. E. Mendoza, P. Knoth, G. Pasi, A. Hanbury. Effective Matching
of Patients to Clinical Trials using Entity Ex-traction and Neural Re-ranking.
Journal of Biomedical Informatics. 2023. (Chapter 3)

OEM designed the Neural methods and ran the experiments. WK designed non
neural methods ran the experiments. All authors conributed to the text, OEM
and WK did most of the writing.

• O. E. Mendoza, W. Kusa, P. Knoth, F. Piroi, and G. Pasi, A. Hanbury. Bench-
mark for Research Theme Classification of Scholarly Documents. Workshop
on Scholarly Document Processing. Coling. Korea. 2022. (Chapter 4)

OEM designed the Neural methods and ran the experiments. WK helped
with algorithmic design and non neural methods and ran the experiments. PK
provided dataset and descriptions. All authors contributed to the text, OEM did
most of the writing.

• O. E. Mendoza, G. Pasi. Domain Context-centered Retrieval for the Content
Selection task in the Simplification of Scientific Literature. Conference and
Labs of the Evaluation Forum - CLEF. Greece. 2023. (Appendix B.5–Chapter
6)

The thesis also benefited from insights gained from the following publications:

• W. Kusa, O. E. Mendoza, M. Samwald, P. Knoth, G. Pasi, A. Hanbury. CSMED:
Bridging the Dataset Gap in Automated Citation Screening for Systematic
Literature Reviews. NeurIPS. New Orleans - USA. 2023. (Not part of the
thesis)

• O. Espitia, and G. Pasi. Neural IR for Domain-Specific Tasks. Italian Informa-
tion Retrieval Workshop - IIR. 2021. Italy. (Not part of the thesis)

• G. Peikos, O. Espitia, and G. Pasi. UNIMIB at TREC 2021 Clinical Trials
Track, TREC. 2021. (Not part of the thesis)





2
Background

IR is the process of getting information items relevant to an information need from
within collections of some sort. IR has an essential role in many scenarios nowadays,
for instance, navigating digital libraries of different kinds of data, finding experts, and
Web search overall. As there might be a number of candidate results, the outcome
of this process is typically given as a ranked list. The rank is achieved with respect
to some notion or signal of relevance. Defining ranking models is one of the most
studied research problems in IR.

A significant textual IR application is ad-hoc retrieval, which is the classic retrieval
task where users specify their information needs through queries. Submitting a query
to an information system initiates searching for likely relevant items to those users.
The term ad-hoc refers to the scenario where documents in the collection remain
relatively static while new queries are submitted to the system continually [7].

Relevance in many applications is situated in the user and task context and is an
important consideration in the design of IR models. The concept of relevance has
been extensively studied [10], and although it has many more nuances, we focus on
the definition of the various criteria or features users may evaluate in the process of
judging retrieved information objects. One of the main features used for designing
IR systems is topical relevance, i.e., the relationship between the topic of a request
and the information objects retrieved about that topic. Standardized approaches
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to relevance classification in IR use statistical models to identify the presence or
absence of specific topics that might make a document relevant to the searcher.
These approaches have been used to predict better relevance on the basis of what the
document is about [68].

Many different ranking models for ad-hoc retrieval have been proposed over the
past decades, including vector space models [94], probabilistic models [89], and
learning to rank (LTR) models [59], and more recently neural-enhanced models. In
this chapter, we discuss the latter, which is the basis of our contributions.

2.1 The Retrieval Problem

A generalized IR problem is focused on finding the optimal scoring function f (q,dk),
such that

f (q,dk) = F
(
Φ(q)︸ ︷︷ ︸
query

representation

, Θ(dk)
)︸ ︷︷ ︸

document
representation

, (2.1)

where F is the interaction function computing interactions between query q and
document dk representations (Φ(q) and Θ(dk), respectively). For convenience, we
omit the subscript k ∈ [1, · · · , |D|] referring to the k-th document d in a collection D.
Different retrieval models arise depending on whether the approach to the problem
is defining an interaction function F or the representation functions Φ(·) and Θ(·).
Part of the research in IR focuses on developing encoders whilst the scoring function
remains as a simple dot product operation, such that

f (q,d)≜
N

∑
j=1

Φ(q) j ×Θ(d) j, (2.2)

where N is the size of the vector representation. A well-known example of this
formulation is the efficient sparse model BM25 [29],1 in which N = |V | is equivalent
to the size of the vocabulary V = {v1, · · ·vN}, thus,
1BM25 is a parameterized model (with parameter values b and k1) that uses term frequency (TF) and inverse
document frequency (IDF); it also takes into account the averaged document length (avgdl).
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f (q,d)≜ BM25(q,d)

=
|q∩d|

∑
i=1

IDF(qi)×
TF(qi,d)× (k1 +1)

TF(qi,d)+ k1 ·
(

1−b+b · |d|
avgdl

) ,
=

N

∑
j=1

1q(v j)IDF(v j)︸ ︷︷ ︸
query encoder

×1d(v j)
TF(v j,d)× (k1 +1)

TF(v j,d)+ k1 ·
(

1−b+b · |d|
avgdl

) ,
︸ ︷︷ ︸

document encoder

(2.3)

where qi ∈ q is the i-th token of q, and 1 is an indicator function.2

2.2 Neural-enhanced Retrieval Models

The introduction of pre-trained language models substantially impacted the effective-
ness of retrieval approaches, as witnessed at the largest-scale evaluation of retrieval
techniques [15]. Transformers-based approaches in IR not only enabled significant im-
provements [116] but also influenced the development of a wide variety of advanced
models specialized in different problems in the IR ground. Before Transformers,
NN were used in IR also within the main two model variants: representation-based,
focused on optimizing encoders, and interactions-based models, focused on scor-
ing functions taking into account interactions between query and documents. We
illustrate both architectures at a high level in Figure 2.1.

These two branches shaped the principles of neural architectures that later would
influence, for instance, the widely used Transformers-based dual-encoders3 and
cross-encoders4. From this point, neural approaches have been studied mainly in four
categories: neural ranking models, dense retrieval models, learned sparse retrieval
models, and the most recent generative retrieval models.

21A(x) :=

{
1 if x ∈ A ,

0 if x /∈ A .
3Dual-encoders (also known as bi-encoders) usually refer to a siamese representation-based model which
optimizes embeddings from pre-trained transformers.

4Cross-encoders (also known as mono-encoders) usually refer to pre-trained transformers used to classify
query-document pairs in terms of the binary relevance.
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F(⋅)

Score

ΘΦ

query document

...

(a) Representation-based

Score

F(⋅)
query

document

...

(b) Interaction-based

Fig. 2.1 Representation and interaction-based scoring. (a) Representation-based
models focus on optimizing text representations, while the score is usually computed
as a simple similarity operation. (b) Interaction-based models focus on studying
interactions between queries and documents that can bring relevance signals that
contribute to the final score while the representations remain static.

2.2.1 Neural Ranking

Neural retrieval models (usually referred to as Neural IR or NIR) have been widely
studied in the past few years, leading to considerable improvements in retrieval
effectiveness [37]. NIR models are mostly oriented to re-rank a small subset of
documents ranked by more efficient models, such as sparse retrieval (SR) models.
Notable models of this category include DRMM [36], Duet [67], KNRM [18], and
BERT [21] used for re-ranking [17, 63]. These models fall into the pipeline-based
architectures, which comprehend settings with a stack of multiple models, refining
the outcome as it progresses in the pipeline; thus, the performance of these models is
bounded by the quality of the early-stage retrieval models. The summarized score for
a given query from such models can be formulated as follows:

f (q,d)≜ α ·SR(q,d)+(1−α) · fNN(q,d), (2.4)

where α ∈ [0 · · ·1], SR(q,d) is usually set as the normalized BM25 scores and
fNN(q,d) is a neural ranker, e.g., BERT re-ranker (cross-encoder):
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fNN(q,d)≜ fBERT ([CLS]⊕q⊕ [SEP]⊕d ⊕ [SEP]) ,

= Softmax(h[CLS]W +b)1 ,
(2.5)

where [CLS] and [SEP] are BERT reserved tokens5, ⊕ denotes text concatenation,
the representation of the [CLS] token h[CLS] ∈ RN is passed through a single-layer
fully-connected NN, W ∈ RN×2 is a weight matrix and b ∈ R2 is a bias term. In this
case, N is the model embedding dimension, and Softmax(·)i denotes the i-th element
of the Softmax output. BERT follows the Transformers architecture using stacked
self-attention and point-wise, fully connected layers [21]. Analogous to interaction-
based models (see Figure 2.1b), BERT’s all-to-all attention, at each Transformer layer,
captures interactions between and within terms from the query and the document.
We illustrate this approach at a high level in Figure 2.2.

… … … … … … … …… …

h[CLS]

[CLS] [SEP]

Score

BERT

query document

...

...

... [SEP]

Fig. 2.2 Bert-based scoring. Analogous to interaction-based models, BERT’s attention
layers capture interactions between text inputs. The Last hidden state of the [CLS]
token is used as input for a traditional classifier to perform relevance classification.

2.2.2 Dense Retrieval

Models involving nearest neighbor search are investigated in the lookup for alternative
approaches to the traditional SR models. Aligned with representation-based models
and dual-encoders, dense retrieval models (usually referred to as dense passage
retrieval or DPR) learn dense vector representations as in equation (2.1), optimized
5CLS stands for classification and SEP stands for separator.
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upon retrieval objectives, enabling dense indexing and vector search, thus, following
the formulation (2.2). Models within this category have been widely studied and cited
in the literature as part of the state-of-the-art in many scenarios [48, 115, 81, 46].
However, it is uncertain to what extent this paradigm can replace the established and
robust SR models that use inverted indexes for efficient retrieval [39].

2.2.3 Learned Sparse Retrieval

Learned sparse retrieval (LSR) is another category of retrieval methods that use
encoders to project queries and documents to sparse vectors with the size of the
vocabulary for creating inverted indexes [30, 118, 64]. The way document scoring is
performed follows the traditional formulation of SR methods, such as in equation
(2.3). As BM25 uses TF and IDF components, LSR models use term weights
predicted by neural models optimized upon retrieval objectives (see Figure 2.3 for an
overview of an LSR scoring). As different models based on Transformers, LSR has
the limitation of reduced input size.

| |

F(⋅)

query document

Score

Fig. 2.3 Learned sparse scoring. An example of a model that replaces TF values with
predicted weights for indexing documents.

2.2.4 Generative Retrieval

With the large language models (LLMs) hype, generative retrieval (GenIR) has
emerged as the most recent retrieval paradigm [104, 113]. GenIR focuses on model-
based approaches, alternatively to pipeline-based approaches. In this case, indexing
and retrieval are performed with a single encoder-decoder transformer model. During
training time, the model learns to index documents by memorizing the association
between documents and identifiers; during inference time, it is supposed to generate
relevant document identifiers in response to a query. This relatively recent family of
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models has shown promising results; however, it faces challenges with updating the
index and scaling to large collections [77]. For this family of models, the document
ranking scores are computed as

f (q,d)≜ f (q,D) = Softmax
(

W⊤
D hq

)
, (2.6)

where WD = [hd1,hd2, · · · ,hd|D|]
⊤ and hq/dk

are the output vectors, i.e., last hidden
state, of the encoder-decoder for the q or a document dk.6

2.3 Neural-enhanced Retrieval Models in Domain-specific
tasks

Task context is another feature that can affect relevance estimation. It has been
brought up in many context taxonomies and frameworks for designing search systems
[66]. We focus on the concept related to search tasks without disregarding a broader
definition related to work tasks that also contribute to search behavior overall. There
are different criteria to consider depending on work tasks. Searchers in different
domains usually have specific patterns of search behavior and information needs,
e.g., in the academic patent and legal domains, users are usually required to find
very specific or gather information for the topic being searched. Users in the medical
domain might have complex and unusual medical cases where they need to find
specific and potentially rare information that supports decision-making.

Nested with the work task, the domain is a criterion that seems to play an important
role in search scenarios. However, most of the research on IR is focused on developing
ad-hoc open-domain models. There is a rising interest in domain-specific search tasks
in the main IR venues and with different initiatives. For instance, TREC Clinical
Trials Track7, the CLEF SimpleText Track8, focused on medical and academic IR
problems, respectively.

CTR, specifically, aims to search for CT documents for recruiting candidates for a
trial. SDR, with mainly an informational intent, aims to gather all related information
about certain topic being searched.
6Notice that the notation here uses the subscript k because the model considers the whole set of documents D
instead of individual documents.

7 http://www.trec-cds.org/2022.html
8 http://simpletext-project.com/2023/clef/

http://www.trec-cds.org/2022.html
http://simpletext-project.com/2023/clef/
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According to results reported for these tasks by the different initiatives, several
approaches using Transformer-based architectures and pre-trained models, such as
BERT, have achieved state-of-the-art effectiveness in some biomedical information
processing applications.

In CT retrieval, there have been multiple attempts to use BERT embeddings in
both dual-encoders and cross-encoders retrieval setups with different pre-trained
models such as BioBERT or ClinicalBERT [43, 91, 90]. These results correspond to
implementations of methods applied to traditional ad-hoc retrieval tasks and have not
outperformed multiple experiments under traditional retrieval models [85, 86]. On the
contrary, Pradeep et al. [78] applied a pipeline-based neural ranking system for the
CTs matching problem, relying on T5-based models, currently with state-of-the-art
results in multiple retrieval tasks, including CT.

NIR settings have also been exploited in the context of academic search, approaches
well known for their effectiveness in ad-hoc scenarios, and then fine-tuned on domain-
specific corpus [25, 26].

These set of Domain-specific tasks have relevant nuances that might come from
the broader context of the task, as information needs or intents could have different
motivations to open domain retrieval or might come from the context of the search
tasks, which gives the opportunity to exploit domain-based information sources (e.g.,
domain knowledge) or domain adaptation. In this thesis, we aim to explore those
contextual factors, how they can be incorporated better into the retrieval scenario, or
how they can be taken into account for the adaptation of suitable Neural-enhanced
retrieval models relative to each task.



Part II

Effective CT Search: An Application of
NIR on the Medical Domain





3
Curriculum Learning for Neural

Information Retrieval in Clinical Trials
Retrieval

In the first part of this thesis, we study Domain-specific retrieval from the nuances of
the CTR. In this chapter, we aim to answer RQ1: Given the clinical trials IR problem,
can we optimize a model upon different signals of relevance?, and RQ2: Given the
multitask nature of CTR, can we design a task-oriented model under a reasonable
effectiveness-efficiency trade-off?

3.1 Introduction

Clinical trials are crucial to the progress of medical science, specifically in developing
new treatments, drugs, or medical devices [79]. Awareness and access to these studies
are still challenging both for patients and physicians, making the recruitment of
patients a significant obstacle to the success of trials [70, 79].

Even if a sufficient number of participants is found, the recruitment process requires
screening the patients for eligibility, which is a labor-intensive task [24]. Automated
identification of eligible participants not only promises great benefits for translational
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science [70] but also aids patients by allowing them to be included in specific
trials [52].

In recent years, several initiatives have been proposed to build automatic systems for
matching patients to CTs [99, 52, 87, 85]. The task has been defined as an IR problem
under the patient-to-trials evaluation paradigm [88]. Here, the query is constituted by
patient-related information, either in the form of electronic health records (EHRs) or
ad-hoc queries, and the documents are the CTs [52].

This retrieval task involves the semantic complexity of matching the patients’ infor-
mation with heterogenous, multi-fielded CT documents [90]. The existing approaches
have revealed a significant lack of an efficiency-effectiveness trade-off to date. While
pipeline-based models showcase promising performance, the substantial model sizes
required to achieve competitive results raise concerns regarding costly deployment
and limitations on reproducibility.

This chapter presents a system for CT matching that uses a pipeline-based model
with a Transformer network with a moderate size. We define a training strategy
for re-ranking trials using a pre-trained language model in a two-step schema that
leverages the structure of CT by considering not only the traditional topical relevance
objective but also the eligibility criteria. Taking the result from our first stage retrieval
process, we then match the patient’s information with descriptive sections of the
trials for re-ranking based on topical relevance. Later, we further train this model
by matching patient data with trial eligibility criteria in an attempt to discriminate
documents as eligible or excluded.

We break down RQ1 into two research sub-questions. First, we ask how we can
effectively split the CTR into multiple tasks (RQ1.1). Second, we consider whether
we can cast CTR models in a curriculum learning framework (RQ1.2). We then break
down the RQ2 into two research sub-questions, where first, we examine if we can
improve the performance by using cascade models instead of independent purpose
models (RQ2.1). Second, what’s the effectiveness-efficiency trade-off compared with
the state-of-the-art models (RQ2.2).

We perform experiments using TREC CT track 2021 and 2022 collections and
show that our method improves finding relevant trials under a reasonable efficiency-
effectiveness trade-off.
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3.2 Related Work

In this section, we discuss the background of the task we intend to tackle and related
approaches proposed in the same context.

The TREC CTs track focuses on the task of matching single patients to CT documents.
Related tasks to CT matching, which also involve handling CT documents, are, e.g.,
cohort-based retrieval [53], trial-to-trial retrieval [114] and other healthcare-related
TREC tracks.

Traditional SR models may exhibit low performance in CTR as both the patient’s
description and the CTs contain many irrelevant terms, thereby introducing noise.
Additionally, SR may not be suitable for CTR since both topics and documents
contain negated key terms (e.g., the exclusion criteria), which are essential for
deciding eligibility [34, 102]. Besides, the sections of queries and documents may
have different importance because of their time dependency (i.e., past or present
conditions) and because they can refer to either patients or patients’ family medical
history.

Using a simple SR model to tackle CTR may pose difficulties as both the patient’s
description and the CTs contain many irrelevant terms, thereby introducing noise.
Moreover, both can contain negated key terms (for instance, the exclusion criteria),
which are essential for deciding eligibility but may not be trivial even when using SR
or NN-based models [34, 102]. Additionally, the sections of queries and documents
may have different importance because of their time dependency (i.e., past or present
conditions) and because they can refer to either patients or patients’ family medical
history.

Many systems reported in the TREC CT used variants of BM25 or the Divergence
from Randomness (DFR) model [4] that has demonstrated potential in the biomedical
IR field. Leveling [58] annotated a corpus with terms from medical dictionaries
and with negations for retrieving trials for the TREC Precision Medicine track. In
previous works, the CT matching task was also approached by using various lexical
and neural models.

Several approaches using Transformer-based architectures and pre-trained models,
such as BERT [21], have achieved state-of-the-art effectiveness in some biomedical in-
formation processing applications. In CT retrieval, there have been multiple attempts
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to use BERT embeddings in both dual-encoder and cross-encoder retrieval setups
with different pre-trained models such as BioBERT or ClinicalBERT [43, 91, 90].

These results correspond to implementations of methods applied to traditional ad-hoc
retrieval tasks and have not outperformed multiple experiments under traditional SR
models [85, 86]. On the other hand, Pradeep et al. [78] proposed a multi-stage neural
ranking system for the CTs matching problem, relying on T5-based models, currently
with state-of-the-art results in multiple retrieval tasks, including CT.

According to the findings presented in TREC CT 2021 [85], T5-based models cur-
rently outperform smaller Transformers models in CT retrieval. In this chapter, we
propose an effective training strategy that takes into account various aspects of clinical
trial retrieval, including topical relevance and eligibility criteria, as separate learning
objectives. We evaluate its quality both on the general, pre-trained BERT model
as well as biomedical domain-focused versions. Our approach results in a strong
competitor to T5-based models with a much simpler architecture, as demonstrated by
the official results reported in TREC CT 2022 [86]. Specifically, our model performs
second-best overall, outperformed only by the model proposed by Pradeep et al. [78].
These findings suggest that BERT-based models with our proposed training strategy
can provide a viable alternative to T5-based models in CTR.

3.3 Problem Statement

In the TREC CT track context, patient-related information is written as free text,
whereas the document collection consists of a snapshot of the ClinicalTrials.gov
database.1 Each clinical trial contains multiple fields, including two titles (brief
and official), conditions, summary, detailed description, and eligibility criteria. The
content of these fields can range from structured (e.g., gender and age of eligible
patients) through semi-structured (e.g., eligibility criteria section) to unstructured
(e.g., description and summary). The eligibility criteria field contains inclusion and
exclusion criteria, a core aspect of the CT matching task. Trials were judged using a
graded relevance scale of three points: 0 if the patient is not relevant to the CT, 1 if
the patient is topically relevant but excluded based on the eligibility criteria, and 2
when the patient fulfills the eligibility criteria.
1 https://clinicaltrials.gov

https://clinicaltrials.gov
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Drug

A 39-year-old man came to the clinic with cough 
and shortness of breath that was not relieved by his 
inhaler. He had these symptoms for 5 days during 
the past 2 weeks. He doubled his oral 
corticosteroids in the past week. He is a chef with a 
history of asthma for 3 years, suffering from 
frequent cough... His past medical history is 
significant for seasonal allergic rhinitis in the 
summer. He doesn't smoke or use illicit drugs. His 
family history is significant for asthma in his father 
and sister. He currently uses inhaled corticosteroid 
(ICS) and fluticasone 500 mcg/salmeterol 50 mcg, 
one puff twice daily.

Patient description example

Title: Salmeterol/Fluticasone Easyhaler in the Treatment of 
Asthma and COPD
Eligibility:
Main Inclusion Criteria:
• Male or female patients with asthma or COPD who have been 
using salmeterol/fluticasone propionate combination treatment 
for at least 3 monthsbefore the study
• Age ≥ 18 years
• Written informed consent obtained.
Main Exclusion Criteria:
• Pregnant or lactating female patients
Participation in other clinical studies during the study.
• Known hypersensitivity (allergy) to salmeterol, fluticasone 
propionate or the excipient lactose.
Description: A prospective, open-label, non-interventional, 
multicentre study in adult patients with asthma or COPD who are 

Clinical Trial example

Current medical condition Past medical condition Family medical history Negated statementDisease

Fig. 3.1 Patient to CT matching problem: (left) Patient record: free text similar to
an EHR with demographics and medical history of the patient ; (right) CT exam-
ple: Structured multi-fielded document from ClinicalTrials.gov database with trial
description in different levels and criteria for eligibility.

Formally, given a patient q, and a collection of trials D = {d1,d2, · · · ,d|D|}, the task is
to identify and rank the trials D′= {d′

l | d′
l ∈D ∧ eligible(q,d′

l)}, where eligible(q,d′
l)

denotes that d′
l should be a trial for which the given patient q is eligible. A CT

document d can be described by the set of CT components {ddescription, dconditions,
dofficial title, dbrief title, dbrief summary, ddetailed description, dcriteria}, whereas a patient q is
represented by an unstructured set of descriptors, e.g., {qage, qgender, qdescription}.

3.4 Curriculum Learning for NIR in CT

This section presents our approach to CTR, specifically how we optimize a model
upon different signals of relevance and how we design a task-oriented model for
CTR.

In identifying the ranked set D′ of eligible trials, we look at two aspects: first, that the
trial and the patient are actually related, which is aligned with the notion of topical
relevance in IR, and second, that the patient meets the eligibility criteria. This follows
the definition of the TREC CT track and the way results are evaluated.
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Based on this idea, we split the task into two: retrieval and eligibility classification.
Then, taking advantage of the structure of the documents, we define a training
schema with two objectives. For that, we follow the notion of curriculum learning:
the approach aimed at decomposing complex knowledge and designing a curriculum
for learning concepts from simple to hard [117].

It follows from the way the screening of trials is performed, i.e. finding related
trials/patients and then assessing eligibility criteria, eligibility classification is a
harder task than retrieval. We also consider this heuristic in our approach.

With the heuristic that the CT retrieval task can be decomposed into two sub-tasks,
first, we set the retrieval objective, which simply relies on discriminating topical
relevance (both eligible and excluded documents are relevant). Second, we set the
objective of eligibility classification (only eligible documents are relevant).

We use the pre-trained language model BERT [21] with the standard cross-encoder
NIR approach. For ranking, a linear combination layer is stacked atop the Transformer
network, whose parameters are tuned with a ranking loss function. We use a pairwise
loss function and train the model for re-ranking outputs of the SR model.

Thus, the model is trained for these two objectives consecutively, such that there are
two instances of the same model that we optimize first upon the retrieval objective,
with the loss given by:

L (q,d+
T ,d

−
T ;W ) = max(0,1− s(q,d+

T ;W )+ s(q,d−
T ;W )), (3.1)

and then upon the criteria classification objective, with the loss:

L (q,d+
C ,d

−
C ;W ) = max(0,1− s(q,d+

C ;W )+ s(q,d−
C ;W )), (3.2)

where dT = [ ddescription, dconditions, dofficial title, dbrief title, dbrief summary, ddetailed description],
dC = [dcriteria] the superscript +/− denotes the condition of relevant or non-relevant
items to the query q, W represents the model’s parameters with the final linear layer,
and s is the predicted score.

As shown in Figure 3.2, we match patient information with descriptive sections of the
trials for re-ranking based on topical relevance ((d+)- corresponds to the descriptive
sections of relevant trials). We consider the eligibility classification a harder task



3.4 Curriculum Learning for NIR in CT 29

than traditional retrieval, and we hypothesize that a model for criteria classification
could benefit from the knowledge that it already has from the previous on retrieval.
We further train this model by matching patients’ information with criteria in an
attempt to discriminate documents as eligible or excluded ((d+)- corresponds to trials
categorized as eligible, and (d−)- corresponds to trials categorized as relevant but
discarded).

qdescription

1st Learning objective: 
topical relevance

2nd Learning objective: 
eligibility classification

Patient
[
  dconditions,
  dbrief title,
  dofficial title,
  dbrief summary,
  ddetailed description
]

Trial
qdescription

Patient Trial

Training samples:
  (d+) eligible and excluded
  (d-) not relevant 

Training

Training samples:
  (d+) eligible
  (d-) excluded

Epoch 1 Epoch i Epoch n

Inference

fNNT
(·)

Top-k
ranked CTs

Final
rank

 

. . .

dcriteria

SR(·)

fNNC
(·)

Ranked
CTs

Fig. 3.2 Neural re-ranking setup TCRR. Training system for CT retrieval based
on two objectives: topical relevance and eligibility. The model is first trained for
discriminating relevant and irrelevant trials given a patient and then for classifying
their eligibility for the relevant trial.

This process results in two different models. During inference time, we follow a
similar schema: we take the SR rank and re-rank twice the top-k ranked trials using
the two resulting models, respectively, such that our ranking function then follows
the pipeline:

f (q,d)≜ β · (α ·SR(q,d)+(1−α) · fNNT(q,d))+(1−β ) · fNNC(q,d))

= γ ·SR(q,d)+(β − γ) · fNNT(q,d)+(1−β ) · fNNC(q,d),
(3.3)
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where γ = α ·β , α and β ∈ [0 · · ·1], SR(q,d) is the normalized BM25 scores and
fNNT/C is the neural ranker. When referring to this re-ranking procedure, we refer to
it as TCRR: Topical and Criteria Re-Ranking.

3.5 Experiments

This section details the experimental setting implemented for evaluating our approach.
Specifically, we discuss the dataset, the evaluation setup, algorithm implementation
details, and the baselines we compared our system with.

3.5.1 Dataset

The corpus released by TREC contains 375,580 clinical trials. The train data available
(2021) consists of 75 topics (patient notes), while the test data available (2022)
comprehends 50 topics. There are 35,832 relevance judgments in 2021 and 35,394
in 2022. More details of these datasets can be found in Section A.1 of A. Clinical
trial documents released by TREC are in XML format and consist of several sections.
In our experiments, we consider the following sections: brief title, official title,
description, summary, conditions, and criteria.

For our experiments, we use the sets of topics as they were provided. For neural
re-ranking, we present results on the test set of 2022. Additional splitting for training
and development for neural models is described in Section 3.5.4.

3.5.2 Evaluation

We follow the evaluation procedure from the TREC Clinical Trials track, which is
the standard evaluation procedure for ad-hoc retrieval tasks. As the relevance assess-
ment is given in a graded relevance scale (eligible, excluded, or not relevant), the
performance of the models is measured using normalized discounted cumulative gain
(nDCG). We present results as reported by TREC, using nDCG@5 and nDCG@10,
Precision (P@10), and Reciprocal Rank (RR). We treat unjudged documents as
non-relevant, ensuring that our results are not biased towards models that retrieve a
large number of unjudged documents. Furthermore, we focus on Precision as the
primary metric for optimizing retrieval models. Our goal is to identify eligible trials,
and Precision provides strict feedback to achieve this aim.



3.5 Experiments 31

3.5.3 Baselines

As discussed in Section 3.4, we train two different models for our custom re-ranking:
Topical and Criteria re-ranking. When used separately, we consider them as baselines:

TopicalRR: the model trained for re-ranking based on the topical objective
is initialized with the weights of bert-base-uncased2 (as well as other three
domain-specific trained models: BioBERT3, Clinical-BERT4 Blue-BERT5).

CriteriaRR: the model trained for re-ranking based on the eligibility criteria
classification objective is initialized with the weights of the TopicalRR. We
further train this model.

Additionally, we consider the following two neural models as baselines:

TraditionalRR: the cross-encoder we use to compare our proposed training
procedure with the traditional training, we train the model from the same
checkpoint bert-base-uncased.

MonoBERT: one of the comparable models implemented from the TREC CT
track. It is based on the cross-encoder architecture and trained on data drawn
from the corpus in a weakly supervised fashion6

We also consider different BM25 implementations from [56] corresponding to en-
hanced query representations and document representations, specifically BM25_14
indexes all descriptive trial fields and the inclusion criteria, and BM25_14d does the
same but enhances the query representations by adding current and family medical
conditions to the query representation.

3.5.4 Implementation details

As a main lexical retrieval model, we use the BM25 [109] “out-of-the-box”, i.e.,
without parameter optimization.
2 https://huggingface.co/bert-base-uncased
3 https://huggingface.co/seiya/oubiobert-base-uncased
4 https://huggingface.co/Tsubasaz/clinical-pubmed-bert-base-512
5 https://huggingface.co/bionlp/bluebert_pubmed_uncased_L-24_H-1024_A-16
6Notice that ‘weakly supervised fashion’ refers to a machine learning approach where the training data is
labeled only partially or with noisy labels, as an alternative to supervised learning that uses gold standards
with high-quality labeled data.

https://huggingface.co/bert-base-uncased
https://huggingface.co/seiya/oubiobert-base-uncased
https://huggingface.co/Tsubasaz/clinical-pubmed-bert-base-512
https://huggingface.co/bionlp/bluebert_pubmed_uncased_L-24_H-1024_A-16
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On the other hand, we use PyTorch Lightning [28] and Transformers7 to implement
the neural re-ranking pipeline. As discussed in Section 3.4, we train different models
for re-ranking with different configurations (see Section 3.5.3). The TopicalRR,
after splitting the datasets into train (60%), development (10%), and test (30%), is
trained on 8192 samples from the training set per epoch divided into batches of 16
samples. We further train this model on 1024 samples with batches of 16 to get to
the CriteriaRR. Samples for these two models were selected as described in Section
3.4 and as shown in Figure 3.2. We pick positive samples only present in BM25
rankings as well as hard negatives from ranked-irrelevant or unlabeled documents.
We re-rank top-50 trials from the BM25 experiment.8 As for the α and β parameters,
we set them to .7, which was found by exhaustive search. Finally, to compare our
proposed training procedure with the traditional training of a cross-encoder, we train
the TraditionalRR from the same checkpoint bert-base-uncased on 2048 samples,
where relevant documents are only those categorized as eligible.

All neural models are trained for ten epochs, with early stopping based on Precision.
Our training was performed on an Nvidia Quadro RTX 8000 GPU.

3.6 Results

In this section, we present the results of our curriculum learning approach to CTR. We
show comparisons with different baselines and models aimed at showing an ablation
study. Supplementary results can be found in Appendix B.1 and Appendix B.2.

Table 3.1 shows the results of the re-ranking procedure discussed in Section 3.4. We
used the different models for re-ranking the results of a BM25 rank. We report the
evaluations on the 2022 data. Models were trained on the 2021 data. The result of
the TCRR model corresponds to the official TREC CT 2022 evaluation [86].

As we hypothesize, in the context of CTs, the model benefits from the decomposition
of the retrieval problem into two objectives, as it is experienced by TCRR (see Section
3.4), the model exposed to the two learning objectives and best performing. We also
provide results for TopicalRR and CriteriaRR, independently, which are the models
exposed only to the first (topical relevance) and second (eligibility classification)
learning objectives. Additionally, we present results for the regular re-ranking setup
TraditionalRR.
7 https://github.com/huggingface/transformers
8We ran experiments changing the cutoff from 20 to 100 with a step of 10 to find 50 as the optimal cutoff.

https://github.com/huggingface/transformers
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Table 3.1 Neural re-ranking evaluation results on TREC test set. Underlined values
indicate the highest score among general models. Bold values indicate the highest
score achieved by our approach. †-marked models indicate that there is a significant
improvement over the BM25 baseline using the Student’s paired t-test with a 95%
confidence level.

Model nDCG@5 nDCG@10 P@10 RR
TREC median — 0.392 0.258 0.411

TREC best — 0.612 0.508 0.726
BM25_14 0.464 0.437 0.312 0.520

BM25_14d 0.502 0.460 0.328 0.521
TopicalRR 0.558 0.529 0.414 0.630
CriteriaRR 0.382 0.387 0.294 0.428
Fused_TC 0.559 0.548 0,438 0.645

TraditionalRR 0.453 0.437 0.364 0.508
MonoBERT 0.509 0.491 0.362 0.527

TCRR† 0.573 0.557 0.456 0.619
CTRR 0,562 0,545 0,426 0,628

TCRR†
Bio 0.627 0.604 0.482 0.672

TCRRClinical 0.425 0.423 0.358 0.492
TCRRBlue 0.631 0.583 0.452 0.691

Furthermore, we present results of a dummy experiment fusing scores from the Topi-
calRR, CriteriaRR with the average (see Fused_TC in Table 3.1); and an experiment
in which we change the order of objectives in our pipeline, then, the model is first
trained for eligibility classification and then for topical discrimination (see CTRR in
Table 3.1). These results are in accordance with our hypothesis about the curriculum
design – The strategy that benefits the most from the performance of the model is
TCRR.

For this set of experiments, we are mainly interested in the evaluation in terms of
Precision since, in a real scenario, only eligible trials are considered. Given that, on
average, other proposed systems perform poorly, as shown by the TREC CT median
results [85, 86], precision (P@10) anywhere near 50% is regarded as a good result
for this task. We report results also obtained by the best-performing model at TREC,
corresponding to the system by Pradeep et al. [78]. We analyze results from the
proposed approach and find a significant improvement between the performance
of TCRR models (TCRR and TCRRBio) and BM25 at a 95% confidence level. On
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average, this approach allows Bert-based models to gather more relevant documents
than the selected baselines in the top 10.

We report results on different domain-specific pre-trained models we trained fol-
lowing our proposed approach. Again, we evaluated our best-performing model,
TCRRBio, in terms of Precision and found the improvement statistically significant.
For additional results on query analysis, see Section B.1 of Appendix B. Section B.2
of Appendix B shows results comparing TCRR with other baselines.

3.7 Discussion

RQ1.1 In this chapter, we revisit the pipeline-based model for patient-to-CT matching.
We propose an adaptation of training a cross-encoder to the CT problem, taking
advantage of the structured nature of the documents and the task considered. We find
that the inclusion criteria section has a considerable impact on the retrieval score and
exploit that independently from the traditional signal of relevance in our re-ranking
setup.

RQ1.2 Our re-ranking formula, based on curriculum learning concerning eligibility,
shows additional improvement for this task. It explicitly models the eligibility
decisions instead of using only the topical relevance. This distinguishes our study
from the previous works concerning clinical trial re-ranking [90].

RQ2.1 We show results for experiments on different configurations of our pipeline
and compare our approach with different models previously used for the task. We
focus on BERT-based models, which so far have not necessarily outperformed sparse
models for the clinical trial matching task.

RQ2.2 Even though the results in Table 3.1 also show how changing the initial weights
of the model can affect the overall performance (i.e., by choosing a domain-specific
model like BioBERT), we show that the improvements of our proposed approach are
not due to the selection of a domain-specific pre-trained model, which is the case of
the TCRR. These results also provide an idea of which pre-trained model fits the task
best. Overall, the TCRR initialized with BioBERT weights shows promising results,
while ClinicalBERT weights were not the best choice in this scenario. Our results are
comparable to the more expensive approach using the T5 architecture [78].

Although this work focused on CT retrieval, we believe the approach can also be
applied to other IR tasks where first, they involve ranking documents based on topics,
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and, in a second instance, the retrieval results are tailored by considering more
specific criteria or constraints. One example of such a task is the selection of primary
studies (citation screening) for the systematic literature reviews [55].

This study has several limitations, both related to the dataset and the models. The
TREC CT collection usage implies that the patient descriptions are relatively short,
i.e., EHR admission note-style documents. We acknowledge that our approaches
could have problems handling longer sequences.

Additional limitations are related to the amount of data available for training and
evaluating systems on the CT retrieval task. This issue, in our study, explicitly affects
the curriculum learning scenario in the eligibility determination objective. It may
limit the model in learning relevant patterns needed to scale to different clinical
settings or patient populations.

Furthermore, the topics are written only in English. This does not concern CT, for
which the ClinicalTrials.gov database is the leading international source. Never-
theless, multilingual medical retrieval may present challenges for both lexical and
neural models, as the nuances and complexities of medical terminology can vary
significantly across languages. Addressing these limitations and developing strategies
for multilingual medical retrieval is an essential area for future research.
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4
Broad Theme Classification

In the second part of this thesis, we move to the research theme of enhancing the
retrievability of documents, especially scholarly documents, with neural models.
In this Chapter, we aim to answer RQ3 Can academic publications be effectively
discriminated into broad themes when high-quality data is provided?

4.1 Introduction

With the recent demise of the widely used Microsoft Academic Graph (MAG) [100],
the scholarly document processing community is facing a pressing need to replace
MAG with an open-source community-supported service. In order to create a compre-
hensive scholarly graph, it is necessary to represent each paper as a node on the graph
correctly. This requires condensing meta-information, such as authorship, research
organizations, research themes, etc., of research papers to one node.

In general, classifying scholarly documents is important, whether for understanding
scientific fields’ dynamics or organizing scientific literature more effectively for
retrieval purposes. So far, identifying research themes for a given scholarly document
has been challenging due to the lack of large-quality labeled data. This made it
difficult both to train high-performance classification models as well as to compare
models’ performance across studies.
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To establish a benchmark for research theme classification, we present experiments
and evaluation results with traditional machine learning models and compare them to
a more sophisticated Transformer-based ensemble model. The data we used is based
on a large human-annotated corpus of scholarly papers across 36 themes defined by
the UK Research Excellence Framework, the largest overall assessment of university
research outputs ever undertaken globally (the Research Excellence Framework -
2014)1 [16]. We started with a labeled dataset containing publications and subjects
to which they belong, which contains descriptions or abstracts, the first author, DOI,
and year of publication.

Our ensemble model exploits all these textual fields for each scholarly document and
maps these documents to CORE and Semantic Scholar [32] to gather further external
information. Thus, the ensemble consists of a Transformer-based classifier used to
produce multiple predictions for individual publications (split into multiple textual
fields) that are aggregated to produce a single final prediction. When available, we
aggregate predictions from titles, abstracts, references, citations, and related titles for
every publication. Furthermore, we use abstracts, PDFs, and full texts available to
identify argumentative zones [106] to use them as additional fields. We report on the
results of using aggregation for different combinations of these predictions.

Given the quality of the data and the multiple sources available, we focus on the RQ3.

4.2 Related work

In this section, we describe the relevant background and related approaches to
scholarly document classification.

In previous literature, classifying scholarly documents typically relies on textual
features such as titles, author keywords, and abstracts, as well as the interrelationships
between the documents (i.e., citations and co-authorship). Full texts are frequently
not available, and processing a large amount of text can be computationally expensive.

A wide variety of classification features have been proposed at different levels of
granularity, e.g., disciplines, themes, and subjects. A large proportion of classifi-
cation methods rely on semantic similarity [112, 96, 92, 38, 11]. Others include
approaches for clustering documents based on keyword co-occurrence [110, 49].
1https://ref.ac.uk/2014/

https://ref.ac.uk/2014/
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Further approaches leverage the relationship graph representation built from citations
and co-authorship [103, 98, 41].

One promising but unexplored approach to theme classification is using information
about argumentative zoning (AZ) [106]. AZ refers to the examination of the argu-
mentative status of sentences in scientific articles and their assignment to specific
argumentative zones. Its main goal is to collect sentences that belong to predefined
zones, such as “claim” or “method”. Annotated AZ corpora have been created by
Teufel et al. [105, 106], Teufel and Moens [107], Teufel et al. [108] with approaches
to AZ identification reported by Liu [60]. Given that for some cases in the dataset,
full-text is available, we evaluate to what extent can the AZ signal support the
classification of scholarly documents into research themes.

Classification models previously applied to this task include traditional machine
learning models, such as k-Nearest Neighbours [111, 62], K-means [49] and Naïve
Bayes [27]. These models have been reported to encounter performance challenges
related to overly coarse classifications and low accuracy [19]. There are applications
of deep NN models as well, such as convolutional NN [84, 19] and recurrent NN [96,
41]. More recent deep learning approaches take advantage of pre-trained language
models [45, 38].

One of the common practices to evaluate approaches for classifying scientific text is
to use classification systems from digital libraries [45, 33, 103, 35], such as the ACM
Computing Classification System,2 the Web of Science Categories3 and Science-
Metrix.4 Other practices involve generating automatic annotations for scientific
collections that can be completely synthetic [111] or curated by experts [92, 27, 19,
38, 74]. However, to date, there has been no established benchmark to evaluate
these approaches. With access to a high-quality dataset used for the first time, we
established the baseline experiments on evaluating research theme classification.

4.3 Ensemble Model for Theme Classification

This section depicts the approach we used to estimate probabilities of academic publi-
cations belonging to a specific theme and the heuristics we follow for classification. In
general, we want to exploit all the information available for the scholarly documents
2ACM Computing Classification System
3Web of Science Categories
4Science-Metrix

https://dl.acm.org/ccs 
https://images.webofknowledge.com/images/help/WOS/hp_subject_category_terms_tasca.html
https://www.science-metrix.com/classification/
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that need to be classified. Academic publications are typically well-structured docu-
ments with multiple textual fields and metadata. We rely on open-access platforms to
enrich the data with additional information (Section 4.3.2).

Currently, Transformer-based contextual language models like ELMo [76] or BERT [20]
outperform most feature-based representation methods. We use a classifier based on
contextual word embeddings to evaluate the utility of individual textual fields in the
classification of academic publications.

4.3.1 Transformer-based Classifier

We rely on the pre-trained general language model BERT [20], which achieves out-
standing performance on different NLP tasks through fine-tuning for the downstream
tasks [2], in this case, multiclass classification.

It is to be noted that the BERT model was already referred to in Section 2.2.1 and in
Section 3.4 and used in the architecture known as cross-encoder, which is focused on
the task of next sentence prediction, we further explain the alternative way in which
the model was used in this case next.

We allow all layers of BERT to be updated as we are learning the relevant context
from the training data. A custom operation is added on top of the model, which takes
the last hidden state tensor from the encoder and then passes it to a linear layer. At
the end of the linear layer, we have a vector with a size equal to the number of classes,
and each element corresponds to a category of the provided labels. Specifically, we
use the following setting to build the model base:

Input layer. It builds the model’s input sequence. The input sequence is seg-
mented according to the WordPiece embeddings and the token vocabulary. The
final input representations are then produced by adding each token’s position
embeddings, word embeddings, and segmentation embeddings.

BERT encoder. It consists of multiple Transformer blocks and multiple self-
attention heads that take an input of a sequence of a limited number of tokens
and output the representations of the sequence. The representation can be a
specific hidden state vector or a time-step sequence of hidden state vectors.

Output layer. It consists of a simple linear layer with a Softmax classifier on
top of the encoder for computing the conditional probability distributions over
predefined categorical labels.



4.3 Ensemble Model for Theme Classification 43

The cross-entropy loss is used to optimize the model with the Adam optimizer.

4.3.2 Data Enrichment

Taking advantage of the open-access libraries available for scientific publications, we
search for complementary data for each example provided for the task. Specifically,
we use the CORE [50] and the Semantic Scholar [5] APIs to map publication titles to
the various fields available for each publication.

The original Theme classification dataset (A.2) includes mainly titles with metadata.
Our goal with the enrichment is to collect more information related to the publication
to match the themes better. After mapping the papers to results from the search using
the APIs, we add a list of references and citations, full papers, abstracts, and PDFs
for the cases when they are available. Moreover, we searched for five recommended
papers using the title of every publication using the CORE API.

We believe that regardless of the performance of the classification model if there is
enough evidence for a publication to belong to a specific theme, we should be able to
classify it with enough certainty. For instance, given a publication title, which can be
ambiguous, we hypothesize that considering the multiple references or citations leads
to disambiguation and deciding effectively to which theme this publication should
belong. The list of references or citations can be classified the same way as single
inputs, and the classification result can consider the multiple corresponding outputs
for the final decision.

Since this data is not guaranteed to be available for all the original samples, we exploit
all available sections, including the full text and PDFs. However, since processing
such an amount of text is expensive, we use AZ [106]. Here, we define four zones
that cover the main components of scientific articles, namely: Claim, Method, Result,
and Conclusion.

In order to extract sentences that cover the four zones from the available PDF scientific
articles, we follow an approach similar to a previously proposed approach by El-
Ebshihy et al. [23], which generates an article summary by expanding the article
abstract. To sum up, the sentence selection and labeling with zones process goes as
follows: (1) we convert the PDF papers to an XML format using the GROBID PDF
parser [61], which identifies the paragraphs of the article, (2) the paragraphs are fed
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into a Solr5 index, (3) the sentences in the article’s abstract are passed as queries
to the Solr index in order to find the top most similar paragraphs to the abstract
sentences, (4) sentences of the retrieved paragraphs, as well as the sentences of the
abstract, are labeled to zones using a pre-trained BERT model based on the approach
proposed by Accuosto et al. [1], and (5) we use the labeled sentences to extend our
training data with four extra text fields that represent the Claim, the Method, the
Result and the Conclusion — we refer to these extra fields as Argumentative Zones.
In case we cannot find the PDF source of the article, we use the article abstract, if
found, to generate these fields.

4.3.3 Extending Labels to Enriched Data

During training, the model takes text examples and the associated labels. Since
examples for this task are academic publications, and we want to use different
sections independently, we rebuild the dataset considering each section as a single
sample but associated with the same publication, and we use the same label for all
samples of the same publication.

In this way, we end up with an extended version of the initial dataset, in which new
samples are created for titles, abstracts, citations, references, and recommendations.

4.3.4 Aggregating Predictions from Enriched Data

During inference time, we compute multiple predictions associated with the same
publication. These predictions can either agree or disagree, so we formulate the
final prediction as the aggregation of the different predictions. Figure 4.1 illustrates
the prediction procedure used to obtain the final theme prediction for a publication
in which various sections are evaluated as independent samples with the classifier.
Section 4.4 describes how this aggregation is parameterized for the experiments.

4.4 Experiments

This section describes the implementation details of our study, including evaluation
metrics and baseline models. As for the benchmark used for evaluation, we dedicate
Appendix A.2 to it.
5https://lucene.apache.org/solr/

https://lucene.apache.org/solr/
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Fig. 4.1 Ensemble for research theme classification. CLS stands for classifier. For a
publication, various sections are evaluated as independent samples with the classifier;
the final prediction is achieved by aggregating sections’ predictions.

4.4.1 Training Settings

Given the labeled training samples, we train the model using two different sets.
The first training set consists of the list of titles, while the second takes both titles
and available abstracts. We argue that although more information can be available
per publication, the labels provided match only titles and abstracts, and further
assumptions can hurt the model’s performance. However, we define an additional
training set under our data enrichment procedure. We refer to the first model as
BERTT and to the second one as BERTT+A.

We train the model for ten epochs, with early stopping based on the performance
measured using the evaluation metric (see Section 4.4.3) and patience of 3 epochs.
The training samples are picked randomly, searching for a uniform distribution over
the classes per batch. To prevent overfitting in the case of unbalanced batches, we use
the weighted cross-entropy loss and assign the weights dynamically according to the
result of the random selection of samples in the batch. We use 16,384 samples from
the training set per epoch divided into batches of 64 samples and train the models on
an Nvidia Quadro RTX 8000 GPU.

4.4.2 Prediction Settings

As well as the training strategy, we evaluate the utility of having multiple predictions
per publication in the test set compared to a single prediction. To do so, we prepare
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different evaluation sets, following the same training set schema. Thus, we evaluate
the model using only titles, then using titles and abstracts, and finally, using the set
created under our data enrichment procedure.

Since we have to produce a single prediction per publication, and the sets are not
uniform, in the sense that certain publications may not have extra fields (see Table A.2,
for instance, abstracts are available for only 32% of publications), we parameterize
the prediction aggregation based on the different sets of fields. We consider the
aggregation to be a weighted sum. The motivation for selecting a weighted sum,
instead of just summing up the outputs, is that we can introduce offsetting through
the weights. Thus, we give an advantage to the labeled fields in the original dataset
over the extended data.

For our experiments, in the case of the set with titles and abstracts, we use uniform
weighting. In the case of the extended set, we assign weights such that 0.5 is
distributed uniformly between title and abstract, and 0.5 is uniformly distributed
between all the additional fields available per publication. This setting is compared
experimentally to a uniform weighting across all the fields.

4.4.3 Evaluation metrics

The evaluation metric used for evaluating classification results is micro F1-Score. The
F1 score, commonly used in machine learning, measures accuracy using precision,
and recall.

The F1 metric weighs recall and precision equally, and a good classification algorithm
will maximize both precision and recall simultaneously. Thus, moderately good
performance on both will be favored over extremely good performance on one and
poor performance on the other.

4.4.4 Baseline Models

We implement several baseline models for comparison to the ensemble described in
Section 4.3:

K-nearest neighbours classifier with TF-IDF representation

Logistic Regression classifier with TF-IDF representation

Naïve Bayes classifier with TF-IDF representation
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Support Vector Machine classifier with TF-IDF representation

fastText classifier [44] with word vectors pretrained on wikipedia6

We also present scores using two dummy classifiers: selecting the most frequent
category and sampling from a multinomial distribution parameterized by prior proba-
bilities. All classifiers except for fastText are implemented using scikit-learn [75].

4.5 Results

This section presents the results and comparisons for our approach. We offer results
on a validation set we sample from the training set as well as on the original test set.

4.5.1 Validation Results

Given the provided training data, we create balanced splits such that 60% is used
for train, 10% for early stopping, and 30% for validation. All the sets are enriched
following the process described earlier. Table 4.1 shows some preliminary results for
experiments we performed to select the model and the training setup. We compare
the two different BERT models with traditional models. The performance of the
model trained using titles and abstracts is slightly better, and we use it for further
experiments.

Furthermore, we evaluated the utility of enriching the dataset by comparing pre-
dictions from titles only with aggregated predictions using titles and additional
available fields. Table 4.2 shows that adding information improves the classification
for all three experiments. Notice that the experiments are not comparable to each
other because the dataset samples are different. Subsamples are selected such that
corresponding sections are available for all documents.

Table 4.3 shows the results obtained for the validation set using different variants
of the ensemble. In general, we can improve the classification performance while
adding more data, although the difference between the experiments is small. The best
score reached is 0.526, using titles, abstracts, citations, references, and argumentative
zones.

For the best configuration, Figure 4.2 shows the confusion matrix for a sample of
classes (see section B.3 of Appendix B for a complete picture of the results). It should
6https://dl.fbaipublicfiles.com/fasttext

https://dl.fbaipublicfiles.com/fasttext/vectors-english/wiki-news-300d-1M-subword.vec.zip
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Table 4.1 Micro F1-score results form the comparison using different input features
for prediction. BERTT stands for BERT model trained on titles only, BERTT+A
means model trained on both titles and abstracts.

Model name Titles Titles and
abstracts

Dummy: most frequent — 0.095 —
Dummy: stratified random — 0.048 —

K-nearest Neighbours 0.132 0.468
Logistic Regression 0.457 0.498

Naïve Bayes 0.460 0.493
Support Vector Machine 0.474 0.506

fastText 0.454 0.473

BERTT 0.498 –
BERTT+A 0.500 0.512

Table 4.2 Three experiments testing the utility of individual sections on BERTT+A.
The augmentation is evaluated by independent sections combined with titles. Samples
are selected such that corresponding sections are available for all documents.

Sections Sample
size

F1-score
(title)

F1-score
(all sections)

Title + Abs. 31.3% 0.503 0.539
Title + Cit. + Refs 25.4% 0.492 0.541

Title + AZ 1.6% 0.548 0.552

be noted that for Clinical Medicine, most examples where the model’s prediction
is incorrect are classified as Allied Health Professions, Nursing and Pharmacy, and
Biological Sciences. Similar behavior can be observed with related fields of study.
Further analysis must be done to evaluate overlapping between disciplines.



4.5 Results 49

Table 4.3 Validation results using different fields for BERTT+A. The experiments
vary in the prediction and aggregation settings. The aggregations we use are simply
weighted sums with uniform weights and assigned arbitrarily according to Section
4.4.2.

Title Abs. Cit. Refs AZ Recs. F1
× – – – – – 0.500
× × – – – – 0.512
× × × × – – 0.523
× × × × × – 0.526
× × × × × × 0.525
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S
oc

ia
l W

or
k

 a
n

d
 S

oc
ia

l P
ol

ic
y

A
ll

ie
d

 H
ea

lt
h

 P
ro

fe
ss

io
n

s,
 D

en
ti

st
ry

, N
u

rs
in

g 
an

d
 P

h
ar

m
ac

y

A
gr

ic
u

lt
u

re
, V

et
er

in
ar

y 
an

d
 F

oo
d

 S
ci

en
ce

E
ar

th
 S

ys
te

m
s 

an
d

 E
n

vi
ro

n
m

en
ta

l S
ci

en
ce

s

B
io

lo
gi

ca
l S

ci
en

ce
s

P
sy

ch
ol

og
y,

 P
sy

ch
ia

tr
y 

an
d

 N
eu

ro
sc

ie
n

ce

L
aw

M
at

h
em

at
ic

al
 S

ci
en

ce
s

P
u

b
li

c 
H

ea
lt

h
, H

ea
lt

h
 S

er
vi

ce
s 

an
d

 P
ri

m
ar

y 
C

ar
e

S
p

or
t 

an
d

 E
xe

rc
is

e 
S

ci
en

ce
s,

 L
ei

su
re

 a
n

d
 T

ou
ri

sm

B
u

si
n

es
s 

an
d

 M
an

ag
em

en
t 

S
tu

d
ie

s

C
li

n
ic

al
 M

ed
ic

in
e

3 7 4 3 5 6 9 2 1 2 7 6 7 2 5 5 4 4 2 4 1 7 9

3 9 1 6 0 1 0 0 6 1 4 0 9 2 1 0 0

1 6 0 2 5 8 8 4 6 7 1 2 6 7 2 2 9

2 1 5 3 2 8 6 3 4 2 0 5 1 0 0 1

3 0 0 1 0 6 3 2 5 1 2 2 0 1 7 1 6 2 1 2 8

9 1 1 4 8 0 7 7 5 6 6 2 1 2 3 1 3 1 1 3 9

5 3 6 0 0 0 3 1 4 4 0 0 0 1 4 0

0 0 7 6 1 0 2 0 4 8 2 2 0 1 5 5

9 4 1 2 1 5 0 2 2 5 1 8 2 1 2 6 5 8 1

2 6 1 2 1 1 1 1 1 0 2 1 6 6 9 1 4

2 4 3 8 8 1 0 2 5 8 1 4 7 9 8 1 0 1

1 2 4 3 5 2 1 2 4 2 2 1 0 2 5 0 1 4 2 9 2 5

Fig. 4.2 Confusion Matrix for validation results for a sample of classes. For Clinical
Medicine, most examples where the model’s incorrect prediction are classified as
Allied Health Professions, Nursing and Pharmacy, and Biological Sciences. Similar
behavior can be observed with related fields of study; see Appendix B for an extended
analysis.
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4.5.2 Test Results

In this section, we show the results for the test set (see Table 4.4). In general, our
approach has a positive impact, considering we could not get additional information
for all the items in the original dataset.

Table 4.4 Test results with different experimental (Run) settings. The experiments
vary in the training (T), prediction (P), and aggregation (Agg.) settings. The aggrega-
tions we use are simply weighted sums with uniform weights (U) and compensation
weights (C) assigned according to section 4.4.2.

Experiment Title Abs. Cit. Refs AZ Recs. Agg. F1
1 T+P T+P – – – – U 0.569
2 T+P T+P P P P – C 0.575
3 T+P T+P P P P P C 0.571
4 T+P T+P P P P P U 0.577
5 T+P T+P T+P T+P – T+P C 0.556

In this set of experiments, we evaluate a different aggregation setting: uniform
weighting through all the fields (experiment 4), and the result is the best score for the
set of runs. Furthermore, we also evaluate an additional model trained with all the
fields available (experiment 5), and we see no improvements.

4.6 Discussion

In this chapter, we use for the first time the new gold-standard human-annotated
dataset of over 60k papers complete with paper metadata, research themes, and
additional textual information, including the papers’ abstract and full-text where
available (see Appendix A.2). To our knowledge, our work was the first to utilize
REF research evaluation for the purposes of building machine learning models
for theme classification and highlighted the significant potential of this dataset for
developing state-of-the-art models.

We use a high-quality dataset to establish a new benchmark for research theme
classification, testing a range of classic machine-learning models under the same
laboratory conditions. Unsurprisingly, our results confirm that models trained with
both titles and abstracts as input features consistently achieve higher results than when
using titles alone. These results hold for baseline models and our newly introduced
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ensemble BERT model. While the results confirm that the BERT-based ensemble
model outperforms traditional models, the performance of SVMs is only marginally
worse.

Interestingly, using all available features for training (experiment 5 in Table 4.4)
decreases the score compared to the model trained on titles and abstracts only. We
hypothesize that a large proportion of false negatives can be attributed to noise
introduced by reference sections within the full texts, especially for closely aligned
domains. The confusion matrix (Figure B.2) shows that many of the incorrect
classifications happened in closely related disciplines (Clinical Medicine / Biological
Science, for example).

Regarding RQ3, this behavior is indicative of the difficulty of this task, mainly when
presented with closely matched or overlapping domains. Indeed, one limitation of our
approach may be the classification of each paper into a single research field. In real-
world examples, a document could often be classified into multiple domains. Another
limitation is that our ensemble model requires both title and abstract availability,
which are necessary for the AZ approach, which we have seen contributes to the
performance.

Assigning research themes to scholarly documents has wide-ranging applications.
These include enhanced domain-specific search; for instance, search in Chemistry is a
complex task due to the need to index chemical compounds and identify emerging re-
search trends. Further, a significant problem with current bibliometric methodologies
is accounting for cross-disciplinary differences in both publishing and citation prac-
tices. Identifying the research theme enables accounting for disciplinary differences
by, for instance, calculating normalized citation counts.





5
Large-Scale Hierarchical Classification

Analysis

In the previous chapter, we studied how to classify scholarly documents into a
set of broad research themes. Advances in classification contribute to handling
digital libraries. However, broad themes provide limited insights to establish how
classification can contribute to the definition of relevance in the context of an IR
model. Therefore, in this chapter, we aim to answer RQ4 Can fine-grained themes be
embedded into model parameters for annotating documents?

5.1 Introduction

Large-scale classification is a multi-label text classification problem that can include
hierarchically related categories. Multiple real-life applications can be framed as hier-
archical classification: labeling scientific publications with concepts from ontologies,
annotating documents for legal document management systems, and assigning labels
to medical records.

From task to task, it varies how relationships between categories need to be considered
to some extent. This is due to different factors; one, for instance, is related to
ambiguity between overlapping or closely related categories. It can lead to the
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propagation of errors. Another example is related to the granularity of the hierarchy,
which may affect how the texts’ semantics interact with the categories’ semantics.

In general, classification systems assign a set of labels to a given text snipped. The
creation of such systems has been driven by the need to process increasingly large
document collections. Novel approaches provide specialized understanding at each
level of the hierarchies through stacks of deep learning architectures [54]. This shows
a particular emphasis on hierarchy-aware models [14]. However, models focused on
text semantics are still explored, especially with Transformers models, which also
have gained prominence in this field [13].

In terms of training strategies, unsupervised approaches, and multi-task setups have
been explored, demonstrating improved performance compared to alternative meth-
ods [93]. These advancements highlight the growing focus on leveraging hierarchical
structures and semantic relationships to address the complexities of hierarchical text
classification tasks.

This chapter presents an architecture leveraging the capabilities of large pre-trained
Transformer models. It employs a seq2seq learning system [101] to directly map text
to categories. Taking advantage of the recent advancements in generative LM, we
investigate the possibility of implicitly learning hierarchy information with the model,
resulting in an effective approach. By harnessing the context understanding of the
architecture, we enable a robust integration of the categories’ and texts’ semantics
into the text-to-category mapping process.

During inference time, the trained model takes as input a text snipped and outputs
categories from a hierarchically arranged set of categories using beam search. As we
show, this process can work consistently well on different classification tasks. In our
experiments, it was tested on different types of hierarchies.

In this chapter, we focus on the RQ4 and evaluate another approach to theme classifi-
cation in a rather more fine-grained distribution of themes for scholarly documents
and other domains.

5.2 Related Work

In this section, we describe recent methods used to tackle the large-scale classification
task with hierarchically arranged categories.
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The research on large-scale hierarchical text classification has been focused on
increasing the precision of predictions at lower levels of the hierarchies [54, 93],
understanding hierarchical relationships [80], semantic alignment [14], and error
propagation [83].

Previously proposed solutions rely on contextual embeddings at different levels,
mainly for understanding text semantics. In contrast, the hierarchical information is
then processed through explicit hierarchical architectures [54], making predictions
along hierarchical structures [80, 93], optimizing multiple objectives [80, 14] or
tailoring the output space to models’ label dependencies [14, 83].

Enforcing a hierarchical structure may not benefit some applications where docu-
ments do not naturally belong to only one hierarchical organization or have a clear
hierarchical relationship between all categories assigned. The effectiveness of pre-
vious approaches may be limited in this case. It is a clear challenge to balance the
importance of text and label semantics.

As Risch et al. [83], we want to focus on the task as a seq2seq generation and benefit
from the strengths of Transformer models. However, we want to study how a pre-
trained model understands training samples given in a specific hierarchy and evaluate
the impact of training without specifically enforcing a particular structure.

5.3 Large Scale Classification as a Generation Task

In this section, we describe our formulation for large-scale classification as a genera-
tion task.

Figure 5.1 shows the core idea behind the approach we follow, which is to encode the
structure of categories within a neural model that will produce annotations to given
documents. The model should be trained to associate the content of documents with
a specific set of categories. Similar to Risch et al. [83], we model this as a seq2seq
approach. We expect then that given an input document, the model is able to produce
a list of labels, achieved with autoregressive generation.1

We train the model to predict categories given a sequence of document tokens so that
it learns the labels to be assigned to a document. We may consider different ways of
matching documents to labels, but since we want the model to predict directly those
1Autoregressive generation refers to generating sequential data by modeling the conditional probability distribu-
tion of each item generated given the previous one.
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Fig. 5.1 Large Scale Classification as a Generation Task. During training, the seq2seq
model takes documents and target labels to build an embedding space for a given set
of categories. During inference time, given a text snippet, it is supposed to generate a
set of labels matching the input.

categories, we used a straightforward inputs-to-targets strategy. In this way, we frame
the task such that the seq2seq is actually of doc_tokens-to-category. This directly
binds the categories to the document tokens by putting them in closer proximity,
according to the loss function.

For the document representation, we directly input the document to the model, taking
the first M tokens of a document with sequential order preserved and associating
them with the categories. We also treat categories directly as tokenizable strings
so that the annotation is accomplished by decoding a label string sequentially, one
token at a time. When decoding, beam search is used to obtain the predicted best
annotations. We use the partial beam search tree to construct the set of annotations.
Formally, the output probability over categories follows (6.1), i.e.,

L (d) = Softmax
(

W⊤
L hd

)
, (5.1)

where WL is the embedding matrix, where each row corresponds to the embeddings
of a category. Models we train are optimized for seq2seq cross-entropy loss and
trained with teacher forcing. We follow a straightforward strategy that consists of
training a model to learn the different categories. Here, we observe that our setup is
not looking at the specific hierarchy but trying to learn multiple relationships inside a
text snippet, which can easily mix multiple categories, as learned on our results from
Chapter 4.



5.4 Experiments 57

5.4 Experiments

This section presents details on the experimental implementation, datasets, and
baselines.

5.4.1 Datasets

To evaluate the effectiveness of our model, we conduct experiments on three widely-
studied datasets for hierarchical multi-label text classification (WOS [54] and EU-
RLEX [13]) and because we want to expand to more complex hierarchies, we also
include experiments on a small benchmark created to evaluate classification on a
large scale ontology (CSO [93]). Table 5.1 presents statistics on these datasets. Next,
we describe them in detail.

WOS is a collection of public papers available from the Web Of Science. It
contains the abstract, domain, and keywords of this set of published papers.
The text in the abstract is the input for classification, while the domain name
provides the label for the top level of the hierarchy. The keywords provide the
descriptors for the next level in the classification hierarchy.

EURLEX is a large hierarchical multi-label text classification dataset containing
English EU legislative documents tagged with European Vocabulary labels.

CSO provided a benchmark for evaluating text classification using members of
the CSO. It contains research abstracts and keywords annotated by experts. We
consider research abstracts from the Aminer collection annotated with the CSO
for training.

Table 5.1 Large scale classification benchmarks. Statistics of WOS, EURLEX-57K,
and CSO benchmarks for multi-label classification.

Dataset n-labels Train Dev. Test

WOS 141 30,070 7,518 9,397
EURLEX-57K 4,271 45,000 6,000 6,000

CSO >10k – – 70
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5.4.2 Baselines

We compared the performance of the generative model with state-of-the-art ap-
proaches for each benchmark we used:

WOS. We use results from [14], which proposed a model where both textual
and label semantics are projected to the same embedding space using BERT.

EURLEX. We use results from [13], which uses a similar approach to the one
used in Chapter 4 with an extra dense layer on top of BERT, with sigmoids,
that produces a logit per label, which is assumed to be correlated with class
probabilities.

CSO. We use results from [93], which shows results on a model using static
embeddings and lexical matches.

5.4.3 Implementation Details

All models are initialized using standard pre-trained T5-small [82] model configura-
tions. We use the Hugging Face implementation for our experiments. Models are
trained for a maximum of 200,000 steps using a batch size of 32. We pick the best
checkpoint based on the classification validation performance. Our training hardware
consists of an Nvidia Quadro RTX 8000 GPU.

Models are trained on the collections described in Section 5.4.2. The target vocabular-
ies are constrained to the different structures of categories for generating annotations.
We train using the sets reported on Table 5.1; for the CSO benchmark, we trained the
model in a weakly supervised fashion.

5.5 Results

In this section, we discuss the results and comparisons of our approach to the large-
scale classification task.

Table 5.2 reports classification results for the different benchmarks in terms of recall
(R) and f1 measure (F1). We compared our approach to other models that specialize
in the different tasks evaluated. Our model achieves slightly better results among
the various settings, especially regarding F1. We evaluate only results on labeling
documents rather than focus on different levels of hierarchies, as it is shown for all
the baselines.



5.6 Discussion 59

Table 5.2 Large scale classification results (R and F1). We show results for the
generative annotation compared with specific baselines on WOS, EURLEX-57K, and
CSO benchmarks. Underlined values are the best results.

Benchmark Model R F1

WOS
GenLSC 0.8639 0.870

Chen et al. [14] - 0.867

EURLEX57K
GenLSC 0.722 0.738

Chalkidis et al. [13] 0.796 0.732

CSO
GenLSC 0.599 0.669

Salatino et al. [93] 0.58 0.65

Overall, the results are comparable to previous results. It suggests that the generative
setting is a good alternative for large-scale classification.

5.6 Discussion

In this chapter, we discussed the alternative of large-scale classification as a generation
task. We specifically set the research question (RQ4) following the previous chapter,
where we evaluated different classification settings and found overlapping disciplines
the most concerning issue for increasing performance on classification.

We study how distributions of more fine-grained themes can be embedded into
model parameters for performing the classification of different types of hierarchically
arranged categories, as usually defined for large-scale classification. Our experiments
are indicative that a strong model such as T5 can be used in this task with competitive
performance, and the proposed setting could be used for annotating documents.

As discussed in Chapter 4, classification plays an important role in handling digital
libraries, and in the context of scholarly documents, it represents a tool for improving
the retrievability of documents. We extended our work on scientific document
classification to a more granular distribution of themes.

A clear limitation of this approach compared with other models is the specialization on
different levels of hierarchies in the case of strictly nested distributions of annotations.
We focus on annotating documents that can be classified as multiple overlapping
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themes but also possibly unrelated ones. Conversely, the work of Risch et al. [83]
focuses more on the nested annotation of documents.

We specifically aim to use annotations as a way of introducing context to the search
system, and this outcome provides a tool we further exploit in Chapter 6.



6
An Approximation to Learned Sparse

Retrieval for Domain-specific Documents

In this chapter, we study RQ5 How can fine-grained document annotations be used in
a neural-enhanced retrieval scenario? We specifically explore an analogous scenario
to Learned Sparse Retrieval to directly introduce theme annotations to the retrieval
model and evaluate the use of scores assigned from a decoder model to annotations
for scoring documents. Moreover, we use the model discussed in Chapter 5 for
bridging context and sparse retrieval.

6.1 Introduction

Contextualization is suitable in some specific scenarios where context-free IR sys-
tems have limitations. The constraints for providing models with some level of
customization have been discussed extensively during the past years [31, 73, 66].
More importantly, research interest in this direction has focused on the problem of
how to use context models to benefit from it when searching.

Overall, contextualization aims to improve the quality of search results by ranking
the candidate document list based on knowledge of contextual factors (as discussed
in Chapter 1). To this aim, two main research questions are usually investigated: how
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to model the information used as context and how to exploit such a model in the
search process [73].

Query reformulation techniques, such as query expansion, are ways of approaching
the issue of effectively exploiting context knowledge in search. In the field of
contextual search, methods for enhancing the query with contextual information have
been studied, besides the ones focused on combining scores from the contextual and
global features and re-ranking [73].

On the one hand, the expansion represents a way of mitigating the vocabulary
mismatch problem in IR tasks [42], which traditionally consists of reformulating the
original query with additional meaningful terms. Ideally, the terms for expanding
the query have a higher probability of matching relevant documents, leading to
improvements in the IR effectiveness.

Expansion methods are usually classified as local (based on documents retrieved by
the query) or global (using resources independent of the query) [6]. A key problem
in both cases is the identification of expansions to be added to a query. The selection
of possible expansions can be either automated or guided by the user through explicit
interactions, which involve real users, making it expensive in terms of financial and
time resources and less popular than the automated methods.

Global expansion methods rely on query and collection independent resources such
as thesauri [9], controlled vocabularies or ontologies [8], among others. Automated
global methods can increase query effectiveness as well as be harmed by adding
irrelevant terms to the query, which creates the need for methods to discriminate
expansions [12, 42].

On the other hand, expansion methods have also demonstrated improvements by
enriching the document representation prior to indexing [71]. These methods aim to
model the importance of terms in the documents and propagate it through expansions,
i.e., identifying the most important terms to bias expansions towards them. A way of
predicting the importance of terms is by using LMs. Pipelines based on LMs are not
necessarily interpretable, and to achieve that, they usually require additional studies.
However, expansion models achieve interpretability by grounding the representations
in the original vocabulary (e.g., [64, 30]), i.e., the output of the expansions will be
terms that are part of the corpus, even though the channel for getting them involves
non-interpretable systems.
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In this chapter, we focus on RQ5 specifically by investigating the potential of an
automated global expansion method for introducing contextual information through
these expansion mechanisms. We closely follow the line of LSR model research,
which allows enriching sparse representations for first-stage retrieval. Specifically,
we used a hybrid setup where the vocabulary is extended by using the vocabulary
of a domain ontology. We consider concepts of the ontology as terms for which we
will measure importance using the model discussed in Chapter 5. When documents
are expanded, we consider then a local expansion method to extend queries based
on documents retrieved by the query. Instead of considering the document’s original
terms, we consider the document’s expansion terms.

6.2 Related Work

Context models are often used to influence the relevance estimation and tailor the
ranked list of documents. A way of exploiting additional information in the retrieval
process is through expansion, which, besides alleviating lexical mismatch between a
query and the documents, is a potential way of adding contextual information from
different levels of context (as the ones outlined in Section 2.3). There are expansion
models based on pseudo-relevance feedback (PRF) [119, 69], and others based on
external knowledge resources [72, 9], We discuss some examples below that are also
instances of NIR.

Zheng et al. [119] expand queries dynamically using chunks of text from the top
feedback documents in a ranked list produced by a lexical-neural re-ranking model.
Most relevant chunks are selected and combined with the original queries to compute
a new document score and create a refined list of ranked results.

Padaki et al. [72] explore methods of expanding original keyword queries in an
LM-based re-ranker. First, by adding structural words that help to create coherent
natural language sentences (synthetic questions). Second, by adding terms with new
concepts to the original queries through the classic PRF. It finds related concepts out
of the list of feedback documents from an initial ranking. As a signal for supervision,
the reformulated query is compared to Google’s query suggestions. If it is present
in the suggestions, the original query is replaced by the reformulation for the final
ranking. The combination of the two mechanisms benefits a re-ranking model.
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Naseri et al. [69] develop a feedback model for query expansion based on LM
representations. It builds the distribution of terms’ importance derived from the
representations of feedback documents. The model explicitly incorporates the query
focus based on its similarity to these documents, so the final representation depends on
the original query. The result is an updated query LM that can be used independently
or combined with other representations for re-ranking.

Blloshmi et al. [9] proposed a query expansion mechanism based on word sense
disambiguation that provides sense definitions as additional semantic information for
the query. The query representation combines the original keyword-based query and
the definitions, which add both structure and new concepts to the query formulation.
The enhanced version of the queries is used for re-ranking documents using a neural
model.

Overall, expansion methods can suffer from introducing non-relevant information
when expanding the query, regardless of the source of the expansion. Imani et al. [42]
discussed recent approaches that can have the same limitation.

Without the explicit aim of contextualizing search, document enhancing has also
been explored as a mechanism for improving ranking performance. One method that
has demonstrated effectiveness along different tasks is doc-to-query [71]. It predicts
a set of queries for which each document will be relevant. Given a dataset of (query,
relevant document) pairs, it uses a seq2seq Transformer model that takes as an input
the document terms and produces a query. Once the model is trained, it predicts a
number of queries using top-k random sampling and appends them to each document
in the corpus. The expanded documents are indexed, and the model retrieves a ranked
list of documents for each query using BM25.

Another line of research focused on expansion mechanisms is LSR. MacAvaney
et al. [64], which proposed the first method leveraging the masked language model
(MLM) encoder to aggregate term weights over the logits produced by BERT, and
expansions are selected as the highest-scored terms. In this case, the model is trained
to do document expansion and term scoring end-to-end at once. Formal et al. [30]
proposed the use of a shared MLM architecture on both the query and document
sides. The MLM enables end-to-end weighting and expansion for both query and
document. Instead of selecting top-k terms, a sparse regularizer is introduced during
training to guarantee sparse representations.
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In this Chapter, we focus on both (query and document) expansion mechanisms to
contextualize search with an external source of expansions. We explore PRF as a
way of expanding queries and document topic modeling to expand documents.

6.3 Problem Statement

We focus on an ad-hoc IR task for scholarly documents. Formally, given a query q
under a given narrative1 Q, and the collection of documents D = {d1,d2, · · · ,d|D|},
the task is to identify and rank the documents D′ = {d′

l | d′
l ∈ D ∧ relevant(Q,d′

l)},
where relevant(Q,d′

l) denotes that d′
l should have content relevant to the narrative Q.

Academic search tasks have relevant nuances that we aim to take into account. In
tasks involving exploratory search, queries are often given under an informational
intent [22], i.e., by submitting them to the search system, we want to obtain some
related information that is assumed to be available in the collection. Search tasks,
such as systematic literature reviews, are information-gathering tasks that involve
collecting information from multiple sources [47].

On a more global level, academic search tasks also have domain-specific properties,
and it gives the opportunity to explore domain-based information sources. In particu-
lar, domain-specific knowledge is often encoded in ontologies that can be used for
document annotation, and in the context of search, it has the potential to constrain the
information space to find relevant documents more effectively than in open-domain
applications.

6.4 Contextual Expansions for Retrieval

Because of the nature of the task, we focus on broadly analyzing document themes.
We introduce contextual knowledge to the task through a large-scale ontology of
research themes. This allows us to have feedback on how the information available
and presented as an answer to a query is distributed according to the themes and then
to constrain the results based on these distributions. In this section, we describe how
we use LSR to introduce contextual information to a first-stage retrieval model.
1In evaluation frameworks for IR, a narrative provides a complete description of the documents the searcher
would consider relevant. We make this difference because evaluation reports often include queries enriched by
using narratives or another context given to the queries.
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6.4.1 Overview

Similar to Formal et al. [30], we investigate how to take advantage of sparse mecha-
nisms, such as query or document expansion. However, we explore these mechanisms
specifically to bring context from knowledge resources. We aim to provide stronger-
interpretable first-stage retrieval with hybrid sparse representations.

Assume that queries and documents are composed of sequences of terms taken from
a vocabulary V . We also aim to represent any sequence of terms, either a query or a
document, by members of the vocabulary in the ontology Vont. More formally, let
f : V n → V m

ont denotes such a function associating an input sequence d of n terms
t1, · · · , tn to its m labels L ∈ Rm. Overall, given all possible labels, we first consider
expanding the original vocabulary V with the vocabulary Vont. The way we represent
an input query or document is illustrated in Figure 6.1. We use a hybrid representation
where a sequence is represented by terms of the original vocabulary, and the terms
form the ontology. The model mapping sequences to the ontology perform term
weighting for that representation.

. . . 

. . . 

digital

assistant

privacy

bias

driving

robot

light

character

Original
Vocabulary

. . . 

personal digital assistants

handheld

Expanded
Vocabulary

T01Q01. digital assistant

Fig. 6.1 Vocabulary expansion: Example of representing a query with the expanded
vocabulary. Here, the original vocabulary is extended with members of an ontology.
The example corresponds to the computer science field.

As shown in Figure 6.1 our approach also operates directly on sparse high-dimensional
vectors (in the vocabulary space) in two ways. First, adding new terms to the docu-
ment and estimating their term importance (term weighting), analogous to TF-IDF.
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We use a large-scale domain ontology to represent the retrieved documents and study
the concepts they are centered on. We specifically used the model discussed in
Chapter 5 for the computer science ontology. There, we trained a seq2seq model
to generate themes from the ontology in a weakly supervised fashion and then used
beam search to generate multiple concepts so that we could consider the distribution
themes in a retrieval scenario.

We now illustrate the process for constructing document representations, query
representations, and the final query-document similarity score.

6.4.2 Document representation and indexing

A document d is represented firstly as a sparse vector. To perform document expan-
sion, the document is projected into a |Vont|× e-dimensional space, i.e., g(d) : d →
W⊤

O hd , where WO = [hc1,hc2, · · · ,hc|O|]
⊤ ∈ R|Vont|×e and hd/ck

represents the ontology
embedding matrix, i.e., last hidden states of the encoder-decoder for the document d
or a concept ck.

Once the model learns model parameters, it can make estimates for any document.
The importance of a label is assumed as the generation probability. Formally, the
output probability over labels is generated as follows:

TFE = Softmax
(

W⊤
O hd

)
. (6.1)

For indexing, we use ontology members as additional terms to the documents, and
instead of the TF values, we store these scores.

6.4.3 Query representation

We focus on keyword queries. When documents are expanded, we consider then a
local expansion method to extend queries based on documents retrieved by the query.

This is an instance of PRF, which traditionally aims to leverage the most relevant
documents retrieved by the initial query to improve the subsequent query. Here, the
difference is that instead of considering the document’s original terms, we consider
the document expansion terms.
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6.4.4 Document scoring

The extended index will have postings of term t and extension E of the form
[docid(d), T F(t,d)] and [docid(d), T FE(d)]. It can be used with the mainstream
sparse model BM25. In order to use the same formula as equation 2.3 we scale and
round T FE , using a factor M which scales the predicted weights into the range of TF
values. The expansions are expected to bias the retrieval to central to more general
themes and improve the performance of the first stage retrieval model. We refer to
this model as contextual-enhanced SR (or CESR).

6.5 Experiments

This section presents experimental details on datasets, baselines, and implementation.
We first conduct a dummy experiment reported in Appendix B.4 as a qualitative
analysis of our approach.

6.5.1 Datasets

In particular, we evaluate our approach to the task proposed by SanJuan et al. [95]. It
consists of retrieving all documents from a large corpus of scholarly documents and
bibliographic metadata relevant to given queries. Relevant abstracts should be related
to specific topics of the narrative. The narratives for this task are described as finding
content related to a selection of press articles from a major international newspaper
for a general audience and from Tech Xplore. Queries are keyword-based, manually
extracted from articles based on the fact they allow retrieving some relevant passages
from the given collection that could be inserted as citations in the press article.

Statistics for the dataset are reported in Appendix A.3. It is based on the corpus
provided as the Citation Network Dataset: DBLP+Citation, ACM Citation network
(12th version), which is a source of scientific documents that can be used as references.
It contains more than four million documents.

Queries for this benchmark are manually extracted from a selection of 40 press
articles: 20 from The Guardian and 20 from Tech Xplore6, a website taking part
in the Science X Network to provide comprehensive coverage of engineering and
technology advances. Each article was selected in the computer science field to be in
accordance with the provided corpus. Queries were selected to provide an indication
of the essential technical concepts covered by the articles.
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6.5.2 Implementation Details

In this section, we present the experimental setups of the experiments described
previously. We are mainly interested in analyzing the distribution of themes in the
collection and understanding retrieval results and how to make them useful for the aim
of content selection. Some State-of-the-art retrieval models still rely on SR models
to limit the number of documents to be processed in later stages (pipeline-based
models). Thus, it makes sense to study the appropriateness of the set of documents
retrieved first to be processed and re-ranked in the later stages.

We use BM25 for retrieval, the CS ontology as domain knowledge, and the different
strategies described in section 6.4 for expansions. We found the value of the parameter
M = 10 after experiments ran with values in the interval [10,100] using a step of 10.

6.5.3 Baselines

We report results on different SR settings. We use BM25 as the base model with
multiple variations:

BM25: we use this model in the by-default setting, i.e., no parameter optimiza-
tion.

PRF: we refer as PRF to results form BM25 filtered by using annotations. In
this setting, the query expansions are used to exclude documents from BM25
retrieved documents, which are not annotated with those expansions of the
queries.

Dual-encoder-ST corresponds to the pre-trained Bert model in the dual-encoder
setup. Tuned on the train set.

PRF_doc2query we enhanced documents with the doc2query model and applied
PRF to enhance queries with expansions from the same model.

6.6 Results

This section presents the main results of various experiments we ran to test our LSR
approximation to SDR. Supplementary results are provided in Appendices B.4 and
B.5.
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In order to study how the information from the collection can meet the information
needs, we first retrieved the documents using BM25. We retrieve a number of docu-
ments from the collection using the given queries. Each set of retrieved documents
allows us to study the distribution of topics that the collection gathers, specifically
those selected as a response to a given query. As described in Section 6.4.3, we also
benefit from PRF to expand original queries. Table 6.1 shows a selection of examples
of expansions for the SDR task; strike-through items correspond to examples of
apparent bad expansion terms. We further discuss these results later in this chapter.
Specific extended examples are shown in Figure B.6 of Appendix B.5.

Table 6.1 Relevant expansions for a sample of queries. Strike-through items corre-
spond to examples of apparent bad expansion terms. Expansion terms are the result
of PRF on expanded documents.

Query Relevant themes
Digital assistant personal digital assistants, handheld

Biases correlation analysis, sensors
self driving vehicles, autonomous driving

humanoid robots robots, humanoid robot
online safety for children internet, education

cookies privacy, web content
light positioning positioning system, indoor positioning

intelligent parking vehicles, sensors
emotional robot robots, emotional expressions

empathy emotional expressions, affective state
text classification text classification, classification models

character relationship character recognition, computer games
gene editing http, database systems

conspiracy theories signature scheme, facebook
healthcare communication, information systems

We analyze retrieved sets of documents in terms of the diversity of themes and the
entropy of their distribution. Intuitively, a higher entropy, which directly indicates
more uncertainty, implies a broader range of possible themes [3]. From the size of the
ontology, we derived that the entropy of the distribution of themes in the collection
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is around 13. We limit the experiments to the top 200 retrieved documents, and the
average entropy of the distribution of themes is 6.83 on these sets.

As discussed before, in general, we are interested in concentrated results, implying
lower entropy values and lower diversity.

Table 6.2 Theme concentration analysis. Report on average Diversity and Entropy,
measured over the document expansions for retrieved documents. Underlined values
correspond to the best results.

Experiment Diversity Entropy
@20 @50 @20 @50

BM25 0.4740 0.3222 5.022 5.5152
Filtering PRF 0.4213 0.2812 4.7444 5.1556

CESR 0.4145 0.2791 4.6496 5.0942

Identifying the relevant themes seems to have a positive effect. There is a clear
difference between retrieving documents with the original queries (Retrieval in Table
6.2) and using extensions from relevant themes (PRF in Table 6.2). We can perceive
only slight change but positive when trying to constrain results by penalizing diversity
on documents (CESR in Table 6.2).

In terms of retrieval performance, analyzing themes also exhibits a positive impact.
Table 6.3 shows the retrieval evaluation in terms of multiple metrics. Specifically, we
report results on the test set for this experiment.

Table 6.3 Retrieval evaluation. Comparative results reported on retrieval metrics.
Underlined values correspond to the best results.

Experiment MRR P@10 NDCG Bpref MAP
BM25 0.4536 0.1912 0.2192 0.1384 0.0515
CESR 0.5201 0.2853 0.2980 0.1898 0.1141

Dual-encoder-ST2 (kwd) 0.3505 0.2000 0.2019 0.1956 0.0667
Dual-encoder-ST (kwd + narrative) 0.3655 0.1765 0.1912 0.2043 0.0591

Re-ranking with NIR or DPR models usually helps to refine the retrieval result, but
in this case, the training set is a fairly small set, and the quality of the predictions of
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the tuned models is limited. As wetness on the official evaluation for this task [95],
models trained on external data perform well in the re-ranking task.

We also show in Table 6.4 results at different levels of the rank to show how the
enriched model can perform as a first-stage retrieval. In this case, we present results
merging the train and test sets of the collection since they share the same queries.3

Table 6.4 Retrieval evaluation at different rank levels. Comparative results reported
on retrieval metrics at different levels of the rank. Underlined values correspond to
the best results, and the †-mark indicates statistically significant improvement.

Experiment
NDCG@ P@

50 40 20 50 40 20
CSR 0.2331 0.2261 0.2095 0.1670 0.1778 0.2063

BM25 0.6114 0.5814 0.4744 0.2993 0.3310 0.3879
(enhan. query) BM25 0,4395 0,4163 0,3531 0,3152 0,3298 0,3500

(enhan. doc.) BM25 0,4719 0,4479 0,4011 0,3114 0,3246 0,3603
PRF_doc2query 0,3176 0,2967 0,2502 0,2314 0,2381 0,2548

CESR 0.5280 0.5018 0.4442 0.3565† 0.3710† 0.4056†

We compare the results from BM25 with retrieving documents only using query
and document expansions (row 1–CSR (contextual SR)–of Table 6.4) and CESR.
Interestingly, using only expansions in CSR, we are still able to retrieve relevant
documents, which is indicative of the positive effect they may have. These results
show that while precision is increased when using the enhanced model while nDCG
drops, it implies that the model is favoring the retrieval of more relevant documents
(thus increasing precision) but possibly at the expense of the quality of the ordering
of these relevant documents in the retrieval list (resulting in a drop in nDCG). Which
overall is a desired outcome for a first-stage retrieval model.

Moreover, we enhanced documents and queries without custom weights and used
them independently to measure the effect. Expanding the vocabulary and using it in
an unbalanced way hurts the retrieval performance, as experienced with the results
in Table 6.4–(enhan. query) BM25 and (enhan. doc.) BM25. Our goal is mainly
to increase the probability of the query to match documents. Consequently, our
enhancement procedures do not work independently in this keyword query scenario.
On the other hand, It was expected that Doc2query without specific training to the task
3Traditional evaluation in IR uses disjoint sets of queries. Since we do not use the Train set, we simply merge it
to the Test set to extend our evaluation.
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would add miss-leading content to documents and queries, and this is experienced by
the lower performance of this model (PRF_doc2query).

6.7 Discussion

In this chapter, we focus on expansion mechanisms to introduce explicit domain
context by considering contextual expansions in the document scoring process. We
explore a hybrid global expansion approach with PRF as a way of expanding queries
and the model discussed in Chapter 5 for expanding documents.

A text collection can gather a wide variety of themes. It is clear that for specific
queries, retrieval can result in a very focused set of documents (see Figure B.7a in
Appendix B.5); whereas for other topics, the distribution does not exhibit a specific
theme concentration (see Figure B.7b in Appendix B.5). We also show sample
queries matching the themes found through the PRF. A qualitative evaluation shows
that, in general, the feedback from the collection is closely related to the queries with
some exceptions, such as “gene editing” and “healthcare” (see Table 6.1). This may
be due to the fact that these queries are out of the domain of the ontology.

As we hypothesized, constraining themes can contribute to the performance of the
retrieval system, as shown in Table 6.2, which is one of the effects that can be achieved
with the query’s expansion. Table 6.3 shows results on retrieval performance, which
is an instance of the interaction between query and document expansions.

Even though we closely follow the line of LSR model research, for answering
RQ5, we proposed a hybrid approach that allows bringing context to the search and
measures the importance of expansions to explicitly take them into account in the
document scoring process.

According to the results, our approach has the potential to be tailored to different
information needs; documents gather a wide variety of themes individually, and then
a more granular evaluation should be performed to decide how to incorporate the
information from the distribution of themes into a content selection process. Another
unexplored alternative would be passage retrieval, considering documents also in a
more granular way. We illustrate this idea in Figure B.5 of Appendix B.1.

A clear limitation of this work to extend to other domains is the need for domain-
specific resources. High-quality domain knowledge has limited availability overall.
Thus, replacements for such resources are part of our future research.





7
Discussion and Conclusions

7.1 Main Findings and Results

In this thesis, we studied multiple IR scenarios for adapting neural-enhanced IR
models to domain-specific tasks. We adopted a contextual approach, considering
tasks and domain contexts. Our main findings indicate that neural-enhanced models
for IR can be adapted to specific tasks considering different aspects of relevance
that users in that context may have and considering domain knowledge resources to
enhance content.

In Chapter 3, we revisit the pipeline-based model for patient-to-CT matching. We
propose an adaptation of training a cross-encoder to the CTR problem, taking advan-
tage of the structured nature of the considered documents and the task. We find that
the inclusion criteria section considerably impacts the retrieval score and exploits
that independently from the traditional signal of relevance in our re-ranking setup.
Our re-ranking formula, based on curriculum learning concerning eligibility, shows
additional improvement for this task. It explicitly models the eligibility decisions
instead of using only the topical relevance.

In Chapter 4, we use a high-quality dataset to establish a new benchmark for research
theme classification, testing a range of classic machine-learning models under the
same laboratory conditions. Unsurprisingly, our results confirm that models trained
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with lengthy sections of a document as input features consistently achieve higher
results than when using short document fields alone. These results hold for baseline
models and our newly introduced ensemble model. At the same time, the results
confirm that the BERT-based ensemble model outperforms traditional models. Our
error analysis shows the difficulty of this task, mainly when presented with closely
matched or overlapping domains.

Alternatively, in Chapters 5 and 6, we study how distributions of more fine-grained
themes can be embedded into model parameters for performing the classification to
different types of hierarchically arranged categories, as usually defined for large-scale
classification. We then used the model to perform annotation of documents in a
hybrid sparse retrieval approach. It allows us to bring context to the search and
explicitly consider it in the document scoring process for the first-stage retrieval.

7.2 Upsides Compared to Earlier Investigations

Our work differs from previous research in multiple instances we discuss separately.
Overall, we focus on designing document scoring functions from a contextual search
perspective with Neural-Enhanced models. Both context and neural models set a
different scenario from previous research on contextual search, neural-enhanced IR,
or ranking systems.

In Chapter 3, we present our re-ranking formula based on curriculum learning to
consider the traditional concept of relevance and eligibility. It explicitly models the
eligibility decisions instead of using only the topical relevance, as in previous works.

In Chapter 4, we use for the first time the new gold-standard human-annotated dataset
for text classification (Appendix A.1). We proposed an ensemble that allows multiple
sources of information to be exploited, including an approach to handling extensive
content. These factors distinguish our study from previous works.

Even though we closely follow the line of LSR model research in chapters 5 and 6,
we proposed a hybrid approach that allows bringing context to the search and to some
extent measure the importance of context for the scoring process, distinguishing our
study from previous works.
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7.3 Prospective Applications

Different outcomes of this research can be extended in different ways. We highlight
some insights we could take from our study.

Although our work in Chapter 3 is focused on CTR, we believe the approach can also
be applied to other tasks exhibiting multiple relevance constraints. One example of
such a task is citation screening for systematic literature reviews, which also involves
eligibility criteria after retrieving documents based on only topical relevance.

Besides presenting baselines for a high-quality text classification benchmark, our
work in Chapter 4 can be a platform for developing aggregation strategies for anal-
ogous tasks or tasks involving text classification. We give specific insights on how
to extend and enrich the data for multiple predictions and how to use inputs that are
considered lengthy (such as full scholarly documents).

The work presented in chapters 5 and 6 gives insights on introducing meaningful
information to the search systems from independent sources. We believe other
fields can also benefit from this tool. For example, data is often categorized using
hierarchies in the medical or patent domains.

7.4 Limitations

This study has several limitations, some related to scalability and some related to
models constraints.

CT data available may limit the model in learning relevant patterns needed to scale to
different clinical settings or patient populations. Specifically, the curriculum learning
scenario in the eligibility determination objective lacks fine-grained criteria, and
labels and decisions are not interpretable.

Broad themes classification, in general, has the limitation of strictly having to classify
documents into a single research field. A scholarly document actually could often
be classified into multiple domains. Even though we give a wide variety of sources
of information in this context, another limitation is the requirement of multiple
document fields, which, for example, are necessary for the AZ approach, which we
have seen contributes to the performance.
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Although we propose an alternative model for theme classification, scaling to fine-
grained themes, limitations arise, given the need for domain-specific resources. In
this way, an important limitation of this work to extend to other domains is the
need for domain-specific resources. High-quality domain knowledge has limited
availability overall.

7.5 Future Directions

Besides approaching the specific limitations of this work, we specifically draw
insights for future research.

On the one hand, in the short term, our curriculum learning approach for CTR is
aimed to be applied in the task of screening documents for systematic reviews. In [57],
we presented a high-quality benchmark for this task, which is a potential application
for exploring our contribution.

In terms of the theme classification tasks, we would like to measure the importance
of weight assignments for augmented predictions and consider the overlap between
disciplines to evaluate ways of disambiguating predictions falling into related themes.

As for the LSR variant, we proposed in Chapter 6, we would like to test it on some
other scenarios. In particular, in Chapter 5, a classification task in the legal domain
was evaluated. We intend to approach the legal case retrieval task as we did SDR.

On the other hand, in the long term, we aim to address limitations regarding resources
needed to scale our methods. We pointed out that a clear limitation of this work
to extend to other domains is the need for domain-specific resources. High-quality
domain knowledge has limited availability overall. Thus, replacements for such
resources are part of our future research.

We believe the setting we proposed for SDR will allow us to tailor search results
online. We refer specifically to Figure B.4 in Appendix B.4, where we can see anno-
tations ranked by their importance scores. We intend to propose a demo application
to evaluate tuning concepts’ importance interactively when searching.
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Appendix Overview

This section provides an overview of the supplementary materials. Appendix A
reports detailed descriptions of the datasets and benchmarks used in this thesis.
Appendix B presents supplementary results that provide important insights into the
main results presented in the thesis.





A
Datasets Descriptions

A.1 CTR Datasets

A summary of the CTR datasets is presented in Table A.1.

Table A.1 Statistics of TREC CT datasets from 2021 and 2022. The train set is from
the 2021 edition, and the test set is from the 2022 edition.

Train (2021) Test (2022)
Documents 375,580 375,580

Topics (patient notes) 75 50
Avg. topic length (tokens) 133.4 105.9

Avg. topic length (sentences) 11.2 9.4
Total judgements 35,832 35,394

– Eligible (2) 5,570 3,939
– Excluded (1) 6,019 3,036

– Not relevant (0) 24,243 28,419
Unique trials judged 26,162 26,585
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A.2 Theme Classification Dataset
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Fig. A.1 Breakdown of the research theme classification dataset by theme. About
60,000 records from the REF dataset were selected along 36 categories and enriched
for this dataset.

The dataset for research theme classification was proposed by people from CORE.1

As previously discussed, one of the significant challenges faced in the scholarly
domain is the lack of large-scale labeled data for research theme classification. For
the shared task, a completely new gold-standard dataset was compiled using data
drawn from the U.K.’s Research Excellence Framework (REF) 2014 exercise [16].
In total, 191,000 research outputs were submitted by 154 higher education and
research institutions and then peer-reviewed by experts from each domain. The
REF divided research outputs into 36 ‘Units of Assessment’ (UoA) or domain areas.
1https://core.ac.uk

https://core.ac.uk
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The institutions themselves selected to which Unit of Assessment each output was
submitted.

The data from the REF exercise, therefore, provides a near-perfect starting point for
the task of automatically identifying research themes, as the UoA labels were manu-
ally assigned to each output by the expert academics responsible for its production.

For each output, the following were available from the REF data: publication title,
publication year, publication venue, name of institution, and Unit of Assessment.
These fields were fully populated for 190,628 out of 190,963 submissions to the
outputs category of the REF process. We further enriched each record with the
DOI, CORE ID, and abstract (where available). The CORE ID is used to identify
the actual research article held by the CORE service. Not all papers in the dataset
are open-access; therefore, the full-text content of all papers is not available. For
non-open access papers, CORE often still has the metadata for these articles.

For the data used in this shared task, separate test and train datasets were generated.
From the full REF dataset, 51,560 randomly selected records were used for the train
set, and a separate 10,000 were selected for the test set. The datasets were then
verified to ensure that there was no overlap between the two sets. Figure A.1 shows
the cross-discipline (theme) breakdown of all records used for this task.

Statistics for the initial dataset are provided in Table A.2. Most of this dataset’s publi-
cations do not contain abstracts, additional metadata, or PDFs. Theme identification
algorithms should be robust to these missing features and work well when only titles
are available.

Table A.2 Statistics for the research theme classification dataset. Percentages of
information available for each record on both train and test sets.

Train Test
Size 51,560 10,000
% of Publications
– available via CORE API 91.6% 92.4%
– with abstract 31.8% 31.7%
– with PDF 24.6% 25.6%
– with full text 6.3% 6.4%
– with references 8.4% 7.6%
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A.3 SDR Dataset

Table A.3 shows statistics of the data available from SanJuan et al. [95] for the task
of SDR. In our experiments, we merge both sets since the traditional splinting for
IR comprehends disjoint sets of queries, which is not the case of the original task
proposed by SanJuan et al. [95].

Table A.3 SDR Dataset statistics. Queries and judgments available from the dataset
for SDR by SanJuan et al. [95].

Set Topics Queries Judgments
Train 15 29 1,303
Test 15 29 3,835

Corpus 4,232,520
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B.1 CTR Supplementary Results

Figure B.1 presents two plots with an average per patient count of relevant and
excluded trials depending on a cutoff point for the TREC CT 2022 collection. Both
versions of lexical models, considering different fields from documents, show a
positive impact of the field selection in finding more eligible trials. We can also see
that the TCRR neural re-ranking retrieves twice as many trials for which a patient
is eligible than excluded but helps in removing ineligible only for the first 15 trials.
One possible explanation is that we re-ranked only the top 50 trials retrieved by the
first-stage ranker.
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Fig. B.1 Averaged per patient count of relevant (top) and excluded (bottom) trials
depending on a cut-off of K trials retrieved (x-axis) for TREC CT 2022 collection.
Both versions of Bm25 show a positive impact of the field selection in finding more
eligible trials. The TCRR neural re-ranking retrieves twice as many trials for which
a patient is eligible than excluded; it helps to remove ineligible until the first 15
retrieved trials.
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B.2 CTR TREC Records

The DoSSIER group1 consisting of members of the IR group of TU Wien, the
University of Milano-Bicocca, and the University of Vienna participated in the
CT track at TREC 2022 [86]. We focus on effective and efficient approaches for
retrieval and consider domain-specific characteristics of the retrieval task as well as
information extraction methods.

As part of the systems used for approaching the CTR in TREC, TCRR was compared
with different models. We use different ranking and neural re-ranking models,
compare which parts of the text should be taken into account for ranking, and
investigate how to enhance the query and the documents with extracted information
in order to increase the ranking performance. For the first stage retrieval, we enrich
the textual representation of the clinical trial by extracting different elements such
as keywords, entities, and sections and compare BM25 retrieval based on different
input texts of the clinical trial. For re-ranking of the CT track we use a dense retrieval
model trained with knowledge distillation and topic-aware sampling of negatives
(TASB) [40]. We further fine-tune the TASB model on the clinical trial retrieval task
by using the first 50 queries of the CT 2021 test collection and their positive and
negative samples.

The evaluation results show that while the TCRR exhibits performance improvements
compared to the BM25 retrieval, the dense retrieval model used for re-ranking
decreases the effectiveness. Furthermore, we reach the highest effectiveness in terms
of nDCG@5 with BM25 by including the eligibility criteria to the query text and
enriching the textual representation with keywords extracted from the text. This
result is comparable to the one reached by the cross-encoder re-ranking, which, in
terms of nDCG@10 and P@10, is our best-performing approach.

BM25 (keywords query) queries are sets of keywords extracted from patients’ cases
using [97]. The index is created using trials’ summary, description, titles, conditions,
and criteria sections.

BM25 (Enriched query) run with input text summary, description, titles, conditions,
inclusion, lemmatized and enriched with keywords from eligibility criteria for affir-
mative and negative and family history entities. Query with current medical history
1Sophia Althammer, Sebastian Hofstätter, Oscar E. Mendoza, Wojciech Kusa, Vasiliki Kougia,
DoSSIER@TREC 2022 Deep Learning and Clinical Trials Track., TREC 2022.
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Table B.1 Official TREC CT 2022 evaluation results for TCRR. Comparative results
reported on retrieval metrics. Underlined values correspond to the best results.

Model nDCG@5 nDCG@10 Prec@10 RR

BM25 (keywords query) 0.4496 0.4477 0.3240 0.4482
BM25 (Enriched query) 0.5731 0.5280 0.3980 0.6607

TASB 0.4092 0.3954 0.2840 0.4076
TCRR 0.5734 0.5565 0.4560 0.6191

text enriched with all keywords and keywords from eligibility criteria for affirmative
and negative and family history entities. Post-retrieval filtering.

TASB Re-ranking with the TASB model, which is trained for web search with knowl-
edge distillation on MS Marco V1 and then domain fine-tuned on the query-document
pairs of 2021 TREC Clinical Trials test collection of the first 50 queries.
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B.3 Supplementary Results on Broad Theme Classification

In this section, we extend the confusion matrix of the broad theme classification. For
convenience, we show the results for only the 25 most frequent classes, and we group
the rest of them in a single class.

3 7 4 3 5 6 9 2 1 2 7 6 7 2 5 5 4 4 2 4 1 7 9 6 1 5 3 7 4 1 1 0 2 7 1 1 2 4 2 6

3 9 1 6 0 1 0 0 6 1 4 0 9 2 1 0 0 3 2 1 2 1 0 9 0 2 1 4 0 0 2 4 1 4 2 2

1 6 0 2 5 8 8 4 6 7 1 2 6 7 2 2 9 0 1 0 1 2 1 0 0 0 5 1 0 1 4 3

2 1 5 3 2 8 6 3 4 2 0 5 1 0 0 1 0 7 9 1 1 0 5 1 3 1 1 1 5 9 2 6 1 1 5

3 0 0 1 0 6 3 2 5 1 2 2 0 1 7 1 6 2 1 2 8 1 1 5 6 1 6 0 4 1 0 8 1 0 2 0 6

9 1 1 4 8 0 7 7 5 6 6 2 1 2 3 1 3 1 1 3 9 1 3 1 1 3 0 0 1 0 3 1 9 0 3 4 4 3 1

5 3 6 0 0 0 3 1 4 4 0 0 0 1 4 0 2 2 2 0 2 0 2 1 6 0 0 6 0 2 1 6

0 0 7 6 1 0 2 0 4 8 2 2 0 1 5 5 1 1 3 5 8 2 3 7 0 0 2 9 2 4 1 8 6 5

9 4 1 2 1 5 0 2 2 5 1 8 2 1 2 6 5 8 1 4 3 0 0 2 0 0 1 0 2 0 0 1 1

2 6 1 2 1 1 1 1 1 0 2 1 6 6 9 1 4 4 0 2 0 2 0 2 0 4 1 3 0 0 4

2 4 3 8 8 1 0 2 5 8 1 4 7 9 8 1 0 1 1 6 1 8 3 0 0 3 5 0 3 1 4 4 1 1 1 8 2 7 2 5 0

1 2 4 3 5 2 1 2 4 2 2 1 0 2 5 0 1 4 2 9 2 5 1 2 5 3 0 2 0 0 2 8 1 0 1 0 1

2 3 1 6 1 1 0 1 3 2 0 2 3 1 0 0 2 6 6 2 3 0 2 0 1 1 0 1 3 1 6 2 0

1 1 5 2 9 6 0 1 2 3 4 2 2 3 1 2 0 7 1 9 6 5 0 3 1 1 1 1 6 2 2 1 4 0 4 3 9

1 5 1 3 2 2 2 1 8 5 5 4 1 2 2 8 2 1 0 1 4 0 3 2 7 7 0 0 6 0 1 4 0 7 1 5 2 7

1 3 0 7 7 5 0 0 0 5 0 0 0 6 0 2 3 2 9 3 0 2 6 0 0 2 9 1 0 0 2 4 0 1

0 8 5 2 0 1 2 2 2 3 1 8 0 5 1 5 2 0 1 3 2 1 1 3 1 3 3 0 2 4 2 7

0 0 3 1 0 5 1 1 6 0 0 0 0 0 0 0 3 4 8 0 4 6 3 0 0 3 1 7 0 5 5 0 1

1 3 0 1 1 0 5 0 0 0 7 0 1 4 1 0 5 1 1 4 1 1 9 0 0 6 0 3 4 4

0 1 3 0 1 0 0 1 1 0 1 0 1 4 0 1 6 4 0 3 0 1 1 1 5 1 1 0 1 5 0 8 3 8

2 3 1 9 1 3 1 9 1 2 0 2 8 1 4 1 0 1 3 1 1 5 3 0 2 9 2 0 1 9 0 0 2 1 8 1 5 9 0 1 3 5 0 4 4

4 0 1 5 8 5 1 0 9 0 2 1 1 4 0 0 1 4 3 1 5 3 0 0 8 6 1 3 8 0 4 4 0 9

1 0 3 2 2 3 2 9 6 1 4 2 1 9 0 7 1 1 0 0 9 0 5 1 1 0 0 4 4 0 2 3 8

6 1 4 2 3 1 0 1 1 0 1 3 2 0 0 1 2 3 9 2 3 5 0 0 7 6 2 6 0 1 7 8 0 2

5 1 1 1 0 8 3 2 2 2 0 8 2 1 2 8 1 0 0 6 0 3 3 1 2 4 0 8 6 1 0

1 9 3 4 1 2 9 8 2 6 1 6 1 5 5 7 5 4 0 3 2 3 3 3 0 2 3 4 1 5 7 3 6 2 9 1 3 3 8 3 1 2 7 4 4

A
ll

ie
d

 H
ea

lt
h

 P
ro

fe
ss

io
n

s,
 D

en
ti

st
ry

, N
u

rs
in

g 
an

d
 P

h
ar

m
ac

y

S
oc

ia
l W

or
k

 a
n

d
 S

oc
ia

l P
ol

ic
y

A
gr

ic
u

lt
u

re
, V

et
er

in
ar

y 
an

d
 F

oo
d

 S
ci

en
ce

E
ar

th
 S

ys
te

m
s 

an
d

 E
n

vi
ro

n
m

en
ta

l S
ci

en
ce

s

B
io

lo
gi

ca
l S

ci
en

ce
s

P
sy

ch
ol

og
y,

 P
sy

ch
ia

tr
y 

an
d

 N
eu

ro
sc

ie
n

ce

L
aw

M
at

h
em

at
ic

al
 S

ci
en

ce
s

P
u

b
li

c 
H

ea
lt

h
, H

ea
lt

h
 S

er
vi

ce
s 

an
d

 P
ri

m
ar

y 
C

ar
e

S
p

or
t 

an
d

 E
xe

rc
is

e 
S

ci
en

ce
s,

 L
ei

su
re

 a
n

d
 T

ou
ri

sm

B
u

si
n

es
s 

an
d

 M
an

ag
em

en
t 

S
tu

d
ie

s

C
li

n
ic

al
 M

ed
ic

in
e

E
d

u
ca

ti
on

G
eo

gr
ap

h
y,

 E
n

vi
ro

n
m

en
ta

l S
tu

d
ie

s 
an

d
 A

rc
h

ae
ol

og
y

C
om

p
u

te
r 

S
ci

en
ce

 a
n

d
 I

n
fo

rm
at

ic
s

C
h

em
is

tr
y

A
rc

h
it

ec
tu

re
, B

u
il

t 
E

n
vi

ro
n

m
en

t 
an

d
 P

la
n

n
in

g

P
h

ys
ic

s

H
is

to
ry

P
ol

it
ic

s 
an

d
 I

n
te

rn
at

io
n

al
 S

tu
d

ie
s

G
en

er
al

 E
n

gi
n

ee
ri

n
g

A
er

on
au

ti
ca

l, 
M

ec
h

an
ic

al
, C

h
em

ic
al

 a
n

d
 M

an
u

fa
ct

u
ri

n
g 

E
n

gi
n

ee
ri

n
g

S
oc

io
lo

gy

E
le

ct
ri

ca
l a

n
d

 E
le

ct
ro

n
ic

 E
n

gi
n

ee
ri

n
g,

 M
et

al
lu

rg
y 

an
d

 M
at

er
ia

ls

E
co

n
om

ic
s 

an
d

 E
co

n
om

et
ri

cs

ot
h

er
s

Predicted label

Allied Health Professions, Dentistry, Nursing and Pharmacy

Social Work and Social Policy

Agriculture, Veterinary and Food Science

Earth Systems and Environmental Sciences

Biological Sciences

Psychology, Psychiatry and Neuroscience

Law

Mathematical Sciences

Public Health, Health Services and Primary Care

Sport and Exercise Sciences, Leisure and Tourism

Business and Management Studies

Clinical Medicine

Education

Geography, Environmental Studies and Archaeology

Computer Science and Informatics

Chemistry

Architecture, Built Environment and Planning

Physics

History

Politics and International Studies

General Engineering

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Sociology

Electrical and Electronic Engineering, Metallurgy and Materials

Economics and Econometrics

others

T
ru

e 
la

be
l

0 200 400 600 800

Fig. B.2 Confusion Matrix for validation results for 25 most frequent classes. The
remaining 11 classes are grouped in the ‘others’ category. Notice that for Clinical
Medicine, most examples where the model’s incorrect prediction are classified as
Allied Health Professions, Nursing and Pharmacy, and Biological Sciences. Similar
behavior can be observed with other closely related disciplines.
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B.4 Qualitative analysis of context-enhanced SDR

We used the collection of academic documents from the computer science discipline
to annotate it with the CSO ontology. We evaluate the effectiveness of the approach
described in Chapter 6 on a set of expert-evaluated queries.

In order to test the model with a meaningful qualitative evaluation, we manually
prepare a set of 20 topics for the comparative performance measurement.

B.4.1 Expert Assessment

The topics for the experiments consist of information needs formulated by expert
researchers in the computer science field. These topics were tested in a demo search
engine, and the ten highest-ranked results for each topic were judged by the same
experts who proposed them. The topics were judged as either relevant or not relevant.
Because we evaluate the results using a binary relevance scale, the performance is
measured using P@10. However, we also present results in terms of nDCG@10.

B.4.2 Query Analysis

Fig. B.3 shows the difference in performance (measured by P@10 and nDCG@10)
between our approach and the baseline search for each of the 20 test queries. Overall,
there is an improvement achieved by our approach in the global comparison provided
by the histogram. We compute the same measures for the complete experiment.
Overall, the relative improvement of our approach over the baseline is of 21.5% in
terms of P@10, and of 20.7% in terms of nDCG@10. These results support our
expectations with respect to the precision increment.
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Fig. B.3 Qualitative performance report. Performance comparison (measured by
P@10 and nDCG@10) between our CESR and the BM25 for each of the 20 proposed
queries. Overall, there is an improvement achieved by CESR in the global comparison
provided by the histogram.
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Fig. B.4 Search result example in the qualitative analysis for CESR. Parallel between
CESR and BM25 for the proposed query T 06. A sample of the distribution of
expansions is also shown for each retrieved document (relevant expansions are
highlighted).

We report and discuss the observed results on three examples selected among those
20, showing different levels of performance for different characteristic cases.

T05 Frequency Recognition in steady state visually evoked potentials (SSVEPs)
based on brain-computer interface signals.
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Narrative: looking for the documents related to the latest techniques in fre-
quency recognition in the steady state visually evoked potentials collected
by brain computed interface. I expect statistical, optimization, and machine-
learning methods to improve detection time or accuracy.

As shown in figure B.3, the performance of both models for this query is the
same in terms of P@10. In general, we believe the performance, in this case,
is high for both models, which can be because it is an information need easy
to satisfy. However, in terms of nDCG@10, the baseline performs slightly
better than the proposed method. Paying attention to this, we analyze the re-
ranking in this case in terms of the diversity of the annotations and the document
frequencies. We found that the standard deviation between frequencies is 5.05,
which is indicative of a nonuniform distribution of frequencies and the presence
of outliers. In a sample of the top 20 documents, the most frequent concept is
present in 17 items. This concept is not characteristic of a specific group or
cluster of documents, and its presence can lead to erratic high scores in our
re-ranking method.

T06 data analytics in manufacturing.

Narrative: looking for reports that inform me about the use of data analytics
methods in the manufacturing sector. I expect particular machine learning or
data management tools, including predictive approaches or data storage, used
in manufacturing situations.

Figure B.4 shows an example using this query and the parallel between results
from the initial model and the results from the re-ranking process. It illustrates
the desired behavior from the re-ranking: documents annotated with various
relevant concepts are prioritized in the ranking.

T07 Outlier detection based on low-rank and sparse representations.

Narrative: looking for reports that classify signals based on features or elements
extracted from low-rank and sparse representations of them.

In this case, we observe a relative improvement in the precision of 30%, which
is not only due to the addition of new relevant documents to the top 10 but also
the re-ranking of documents that were originally part of it. Specifically, we are
bringing up five results that were outside the initial top-10 ranked documents.
On average, the number of documents shared by the two ranks is 5.65.
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Although these results are limited, they are indicative of the potential performance
improvement that can be achieved by enhancing queries and documents. The exam-
ples described are representative of the effect of this enhancement in characteristic
cases: scenarios like the one illustrated by topic T 05, where the approach does not
perform better than the baseline, and others where there is a clear difference between
the results.
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B.5 Supplementary results on SDR

To offer a description of our approach in Chapter 6, we will use two queries: “Digital
assistance” corresponding to press articles “Digital assistants like Siri and Alexa
entrench gender biases says UN”, and “privacy” corresponding to the topic titled
“Apple contractors ‘regularly hear confidential details’ on Siri recordings.”

The task proposed by SanJuan et al. [95] aims to gather references to concepts that are
mentioned in press articles. Figure B.5 shows two examples of queries corresponding
to press articles and candidate documents with the relevant content highlighted.

With our approach in Chapter 6, we aim to analyze the distribution of themes the
collection can provide for a given query and study the effect of tailoring the search
results according to specific patterns. Being able to assign granular topics to the
documents, we exploit this tool in further steps.

Figure B.5 is also an illustration of how documents are relevant according to concepts
that are used for annotation. In general, we hypothesize that by establishing relevant
themes to a given query, the task of content selection could benefit from trimming
down the retrieved documents to a more focused or concentrated set of documents.

Figure B.5 shows examples of content selection based on the diversity of themes.
For the example queries, we infer the topics highlighted are relevant from its themes
distribution feedback. Ideally, the selected content should focus on those topics since
dispersed content does not show a clear importance to the task.
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Candidate: Mobile devices are significantly changing the human–
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Query: Digital assistance
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Fig. B.5 Example of content selection for the SDR task. We highlight the relevant
content for two examples given query examples. Relevant document expansions are
also highlighted.
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Fig. B.6 Frequency of document expansions on retrieved documents by query ex-
amples. BM25 retrieves a set of documents for a given query; since we previously
expanded documents with concepts from an ontology, we can measure how frequent
expansion terms are in a retrieved set of documents.

Figure B.6 shows the frequency of themes given a set of retrieved documents with
the example queries mentioned previously. The query “privacy” matches documents
mostly about “personal digital assistants,” which is a potential keyword-based query
for searching within the collection.

Figure B.7 shows heat maps for the topic distribution of the first 30 ranked documents
retrieved using the examples queries (each row then shows how likely each document
is to be annotated with a theme). These two examples show the contrast of possible
results the collection can offer to specific queries.

We can see how documents are relatively diverse by looking at the distributions,
such as those described for the example queries. They are ranked around a specific
keyword but still exhibit diversity that does not necessarily help to achieve the task of
gathering supporting content. Considering this, we then look at themes at a different
level of granularity of the retrieved documents to decide whether specific snippets
are even more concentrated in the relevant themes.



B.5 Supplementary results on SDR 109

personal digital assistants
handheld

smart phones
communication

cell phone
user information

mobile users
wireless

mobile phones
cellular phone

multimedia contents
dialogue
privacy

text document
computer games
spoken dialogue

gameplay
feature space

29282726252423222120191817161514131211109876543210

0.0 0.5 1.0 1.5 2.0

(a) "Digital assistance"

privacy
individual privacy
privacy protection

privacy concerns
privacy preserving

privacy policies
user privacy
data privacy

privacy and security
differential privacies
information privacy

personal privacy
security and privacy

social networks
internet

privacy models
anonymity

personal data
database systems

communication
rfid

authentication
software

privacy problems
authentication protocols

rfid systems
rf-id tags

software developer

29282726252423222120191817161514131211109876543210

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

(b) "Privacy"

Fig. B.7 Expansions scores for documents retrieved with the query examples. Heat
maps for the topic distribution of the first 30 ranked retrieved documents
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