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Abstract
The goal of the paper is to sharpen and generalise bounds involving Cheeger’s isoperi-
metric constant h and the first eigenvalue λ1 of the Laplacian. A celebrated lower
bound of λ1 in terms of h, λ1 ≥ h2/4, was proved by Cheeger in 1970 for smooth
Riemannian manifolds. An upper bound on λ1 in terms of h was established by Buser
in 1982 (with dimensional constants) and improved (to a dimension-free estimate)
by Ledoux in 2004 for smooth Riemannian manifolds with Ricci curvature bounded
below. The goal of the paper is twofold. First: we sharpen the inequalities obtained by
Buser and Ledoux obtaining a dimension-free sharp Buser inequality for spaces with
(Bakry–Émery weighted) Ricci curvature bounded below by K ∈ R (the inequality
is sharp for K > 0 as equality is obtained on the Gaussian space). Second: all of our
results hold in the higher generality of (possibly non-smooth) metric measure spaces
with Ricci curvature bounded below in synthetic sense, the so-called RCD(K ,∞)

spaces.

Keywords Ricci curvature · Metric measure spaces · First eigenvalue laplace
operator · Cheeger inequality · Buser inequality

1 Introduction

Throughout the paper (X ,d) will be a complete metric space and m will be a non-
negative Borel measure on X , finite on bounded subsets. The triple (X ,d,m) is called
metric measure space, m.m.s. for short. We denote by Lip(X) the space of real-valued
Lipschitz functions over X and we write f ∈ Lipb(X) if f ∈ Lip(X) and f is bounded
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with bounded support. Given f ∈ Lip(X) its slope |∇ f |(x) at x ∈ X is defined by

|∇ f |(x) := lim sup
y→x

| f (y) − f (x)|
d(y, x)

, (1)

with the convention |∇ f |(x) = 0 if x is an isolated point. The first non-trivial eigen-
value of the Laplacian is characterized as follows:

• If m(X) < ∞, the non-zero constant functions are in L2(X ,m) and are eigen-
functions of the Laplacian with eigenvalue 0. In this case, we set

λ1 = inf

{∫
X |∇ f |2dm∫
X | f |2dm : 0 �≡ f ∈ Lipb(X),

∫
X
f dm = 0

}
. (2)

• When m(X) = ∞, 0 may not be an eigenvalue of the Laplacian. Thus, we set

λ0 = inf

{∫
X |∇ f |2dm∫
X | f |2dm : 0 �≡ f ∈ Lipb(X)

}
. (3)

At this level of generality, the spectrum of the Laplacian may not be discrete (see
Remark 1.3 for more details); in any case the definitions (2) and (3) make sense, and
one can investigate bounds on λ1 and λ0.

Note that λ0 may be zero (for instance ifm(X) < ∞ or if (X ,d,m) is the Euclidean
spaceRd with theLebesguemeasure) but there are exampleswhenλ0 > 0: for instance
in the Hyperbolic plane λ0 = 1/4 and more generally on an n-dimensional simply
connected Riemannian manifold with sectional curvatures bounded above by k < 0
it holds λ0 ≥ (n − 1)2|k|/4 (see [27]).

Given a Borel subset A ⊂ X with m(A) < ∞, the perimeter Per(A) is defined as
follows (see for instance [28]):

Per(A) := inf

{
lim inf
n→∞

∫
X

|∇ fn|dm : fn ∈ Lipb(X), fn → χA in L1(X ,m)

}
.

In 1970, Cheeger [17] introduced an isoperimetric constant, now known as Cheeger
constant, to bound from below the first eigenvalue of the Laplacian. The Cheeger
constant of the metric measure space (X ,d,m) is defined by

h(X) :=
⎧⎨
⎩
inf

{
Per(A)
m(A)

: A ⊂ X Borel subset with m(A) ≤ m(X)/2
}

if m(X) < ∞
inf

{
Per(A)
m(A)

: A ⊂ X Borel subset with m(A) < ∞
}

if m(X) = ∞.
(4)

The lower bound obtained in [17] for compact Riemannian manifolds, now known as
Cheeger inequality, reads as

λ1 ≥ 1

4
h(X)2. (5)
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2418 N. De Ponti

As proved by Buser [11], the constant 1/4 in (5) is optimal in the following sense:
for any h > 0 and ε > 0, there exists a closed (i.e. compact without boundary)
two-dimensional Riemannian manifold (M, g) with h(M) = h and such that λ1 ≤
1
4h(M)2 + ε.

The paper [17] is in the framework of smooth Riemannian manifolds; however,
the stream of arguments (with some care) extends to general metric measure spaces.
For the reader’s convenience, we give a self-contained proof of (5) for m.m.s. in the
Appendix (see Theorem 3.6).

Cheeger’s inequality (5) revealed to be extremely useful in proving lower bounds
on the first eigenvalue of the Laplacian in terms of the isoperimetric constant h. It was
thus an important discovery by Buser [12] that also an upper bound for λ1 in terms
of h holds, where the inequality explicitly depends on the lower bound on the Ricci
curvature of the smooth Riemannian manifold. More precisely, Buser [12] proved that
for any compact Riemannian manifold of dimension n and Ric ≥ K , K ≤ 0 it holds

λ1 ≤ 2
√−(n − 1)Kh + 10h2. (6)

Note that the constant here is dimension-dependent. For a complete connected Rie-
mannian manifold with Ric ≥ K , K ≤ 0, Ledoux [24] remarkably showed that the
constant can be chosen to be independent of the dimension:

λ1 ≤ max{6√−Kh, 36h2}. (7)

The goal of the present work is twofold:

(1) The main results of the paper (Theorem 1.1 and Corollary 1.2) improve the con-
stants in both the Buser-type inequalities (6)-(7) in a way that now the inequality
is sharp for K > 0 (as equality is attained on the Gaussian space).

(2) The inequalities are established in the higher generality of (possibly non-smooth)
metric measure spaces satisfying Ricci curvature lower bounds in synthetic sense,
the so-called RCD(K ,∞) spaces.

For the precise definition of RCD(K ,∞) space, we refer the reader to Section 2. Here,
let us just recall that the RCD(K ,∞) condition was introduced by Ambrosio-Gigli-
Savaré [6] (see also [4]) as a refinement of the CD(K ,∞) condition of Lott-Villani
[26] and Sturm [33]. Roughly, a CD(K ,∞) space is a (possibly infinite-dimensional,
possibly non-smooth) metric measure space with Ricci curvature bounded from below
by K , in a synthetic sense. While the CD(K ,∞) condition allows Finsler structures,
the main point of RCD is to reinforce the axiomatization (by asking linearity of the
heat flow) to rule out Finsler structures and thus isolate the “possibly non-smooth Rie-
mannian structures with Ricci curvature bounded below”. It is out of the scopes of this
introduction to survey the long list of achievements and results proved for CD and RCD
spaces (to this aim, see the Bourbaki seminar [34] and the recent ICM-Proceeding [1]).
Let us just mention that a key property of both CD and RCD is the stability under mea-
sured Gromov–Hausdorff convergence (or more generally D-convergence of Sturm
[6,33], or even more generally pointed measured Gromov convergence [20]) of metric
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measure spaces. In particular pointed measured Gromov–Hausdorff limits of Rieman-
nian manifolds with Ricci bounded below, the so-called Ricci limits, are examples of
(possibly non-smooth) RCD spaces. Let us also recall that weighted Riemannian mani-
folds with Bakry-Émery Ricci tensor bounded below are also examples of RCD spaces;
for instance the Gaussian space (Rd , | · |, (2π)−d/2e−|x |2/2dLd(x)), 1 ≤ d ∈ N, satis-
fies RCD(1,∞). It is also worth recalling that if (X ,d,m) is an RCD(K ,∞) space for
some K > 0, thenm(X) < ∞; since scaling the measure by a constant does not affect
the synthetic Ricci curvature lower bounds, when K > 0, without loss of generality
one can then assume m(X) = 1.

To state our main result, it is convenient to set

JK (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
2

πK arctan
(√

e2Kt − 1
)

if K > 0,
2√
π

√
t if K = 0,√

− 2
πK arctanh

(√
1 − e2Kt

)
if K < 0.

∀t > 0 (8)

The aim of the paper is to prove the following theorem.

Theorem 1.1 (Sharp implicit Buser-type inequality for RCD(K ,∞) spaces) Let
(X , d,m) be an RCD(K ,∞) space, for some K ∈ R.

• In case m(X) = 1, then

h(X) ≥ sup
t>0

1 − e−λ1t

JK (t)
. (9)

The inequality is sharp for K > 0, as equality is achieved for the Gaussian space
(Rd , | · |, (2π)−d/2e−|x |2/2dLd(x)), 1 ≤ d ∈ N.

• In case m(X) = ∞, then

h(X) ≥ 2 sup
t>0

1 − e−λ0t

JK (t)
. (10)

Using the expression (8) of JK , in the next corollary we obtain more explicit bounds.

Corollary 1.2 (Explicit Buser inequality for RCD(K ,∞) spaces) Let (X , d,m) be an
RCD(K ,∞) space, for some K ∈ R.

• Case K > 0. If K
λ1

≥ c > 0, then

λ1 ≤ π

2c
h(X)2. (11)

The estimate is sharp, as equality is attained on the Gaussian space (Rd , | ·
|, (2π)−d/2e−|x |2/2dLd(x)), 1 ≤ d ∈ N, for which K = 1, λ1 = 1, h(X) =
(2/π)1/2.
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• Case K = 0, m(X) = 1. It holds

λ1 ≤ 4

π
h(X)2 inf

T>0

T

(1 − e−T )2
< πh(X)2. (12)

In case m(X) = ∞, the estimate (12) holds replacing λ1 with λ0 and h(X) with
h(X)/2.

• Case K < 0, m(X) = 1. It holds

λ1 ≤ max

{√−K

√
2 log

(
e + √

e2 − 1
)

√
π(1 − 1

e )
h(X),

2
(
log

(
e + √

e2 − 1
))2

π
(
1 − 1

e

)2 h(X)2
}

< max

{
21

10

√−Kh(X),
22

5
h(X)2

}
. (13)

In case m(X) = ∞, the estimate (13) holds replacing λ1 with λ0 and h(X) with
h(X)/2.

Remark 1.3 Even if the definitions of λ0 and λ1 as in (2) and (3) make sense regardless
of the discreteness of the spectrum of the Laplacian (as well as the proofs of the above
results), it is worth to mention some cases of interest where the Laplacian has discrete
spectrum.

It was proved in [20] that anRCD(K ,∞) space,with K > 0 (orwith finite diameter)
has discrete spectrum (as the Sobolev imbeddingV into L2 is compact). Even in case of
infinite measure the embedding ofV in L2 may be compact. An example is given byR
with the Euclidean distance d(x, y) = |x − y| and the measurem := 1√

2π
ex

2/2dL1. It

is a RCD(−1,∞) space and a result ofWang [35] ensures that the spectrum is discrete.

Comparison with Previous Results in the Literature

Theorem 1.1 and Corollary 1.2 improve the known results about Buser-type inequal-
ities in several aspects. First of all, the best results obtained before this paper are
the aforementioned estimates (6)-(7) due to Buser [12] and Ledoux [24] for smooth
complete Riemannian manifolds satisfying Ric ≥ K , K ≤ 0. Let us stress that the
constants in Corollary 1.2 improve the ones in both (6)-(7) and are dimension-free as
well. In addition, the improvements of the present paper are:

• In case K > 0, the inequalities (9) and (11) are sharp (as equality is attained on
the Gaussian space).

• The results hold in the higher generality of (possibly non-smooth) RCD(K ,∞)

spaces.

The proof of Theorem 1.1 is inspired by the semi-group approach of Ledoux [23,24],
but it improves upon using Proposition 3.1 in place of:

• A dimension-dependent Li-Yau inequality, in [23].
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• A weaker version of Proposition 3.1 (see [24, Lemma 5.1]) analyzed only in case
K ≤ 0, in [24].

Theorem1.1 andCorollary 1.2 are also the first upper bounds in the literature ofRCD
spaces for the first eigenvalue of the Laplacian. On the other hand, lower bounds on the
first eigenvalue of the Laplacian have been thoroughly analyzed in both CD and RCD
spaces: the sharp Lichnerowitz spectral gap λ1 ≥ K N/(N − 1) was proved under the
(non-branching)CD(K , N ) conditionbyLott-Villani [25], under theRCD∗(K , N ) con-
dition by Erbar-Kuwada-Sturm [18], and generalized by Cavalletti and Mondino [14]
to a sharp spectral gap for the p-Laplacian for essentially non-branching CD∗(K , N )

spaces involving also an upper bound on the diameter (togetherwith rigidity and almost
rigidity statements). Jiang-Zhang [21] independently showed, for p = 2, that the
improved version under an upper diameter bound holds for RCD∗(K , N ). The rigidity
of the Lichnerowitz spectral gap for RCD∗(K , N ) spaces, K > 0, N ∈ (1,∞), known
as Obata’s Theoremwas first proved by Ketterer [22]. The rigidity in the Lichnerowitz
spectral gap for RCD(K ,∞) spaces, K > 0, was recently proved by Gigli-Ketterer-
Kuwada-Ohta [19]. Local Poincaré inequalities in the framework of CD(K , N ) and
CD(K ,∞) spaces were proved by Rajala [30]. Finally various lower bounds, together
with rigidity and almost rigidity statements for the Dirichlet first eigenvalue of the
Laplacian, have been proved by Mondino-Semola [29] in the framework of CD and
RCD spaces. Lower bounds onCheeger’s isoperimetric constant have been obtained for
(essentially non-branching)CD∗(K , N ) spaces byCavalletti-Mondino [13–15] and for
RCD(K ,∞) spaces (K > 0) by Ambrosio-Mondino [7]. The local and global stability
properties of eigenvalues and eigenfunctions in the framework of RCD spaces have
been investigated by Gigli-Mondino-Savaré in [20], and by Ambrosio-Honda in [2,3].

2 Preliminaries

Throughout the paper, unless otherwise stated, we assume (X ,d) is a complete and
separable metric space. We endow (X ,d) with a reference σ -finite non-negative mea-
sure m over the Borel σ -algebra B, with supp(m) = X and satisfying an exponential
growth condition, namely that there exist x0 ∈ X , M > 0 and c ≥ 0 such that

m(Br (x0)) ≤ M exp(cr2) for every r ≥ 0.

Possibly enlarging B and extending m, we assume that B is m-complete. The triple
(X ,d,m) is called metric measure space, m.m.s for short.
Wedenote byP2(X) the space of probabilitymeasures on X with finite secondmoment
and we endow this space with the Kantorovich–Wasserstein distance W2 defined as
follows: for μ0, μ1 ∈ P2(X) we set

W 2
2 (μ0, μ1) := inf

π

∫
X×X

d2(x, y) dπ, (14)

where the infimum is taken over all π ∈ P(X × X) with μ0 and μ1 as the first and
the second marginal.
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2422 N. De Ponti

The relative entropy functional Entm : P2(X) → R ∪ {∞} is defined as

Entm(μ) :=
{∫

ρ log ρ dm if μ = ρm,

∞ otherwise.
(15)

A curve γ : [0, 1] → X is a geodesic if

d(γs, γt ) = |t − s|d(γ0, γ1) ∀s, t ∈ [0, 1]. (16)

In the sequel we use the notation:

D(Entm) := {μ ∈ P2(X) : Entm(μ) ∈ R}.

We now define the CD(K ,∞) condition, coming from the seminal works of Lott-
Villani [26] and Sturm [33].

Definition 2.1 (CD(K ,∞) condition) Let K ∈ R. We say that (X ,d,m) is a
CD(K ,∞) space provided that for any μ0, μ1 ∈ D(Entm) there exists aW2-geodesic
(μt ) such that μ0 = μ0, μ1 = μ1 and

Entm(μt ) ≤ (1 − t)Entm(μ0) + tEntm(μ1) − K

2
t(1 − t)W 2

2 (μ0, μ1). (17)

The space of continuous function f : X → R is denoted by C(X) and the Lebesgue
space by L p(X ,m), 1 ≤ p ≤ ∞.

The Cheeger energy (introduced in [16] and further studied in [5]) is defined as the
L2-lower semicontinuous envelope of the functional f �→ 1

2

∫
X |∇ f |2dm, i.e.:

Chm( f ) := inf

{
lim inf
n→∞

1

2

∫
X

|∇ fn |2dm : fn ∈ Lipb(X), fn → f in L2(X ,m)

}
. (18)

If Chm( f ) < ∞, it was proved in [5,16] that the set

G( f ) := {g ∈ L2(X ,m) : ∃( fn)n ⊂ Lipb(X), fn → f , |∇ fn|⇀h ≤ g in L2(X ,m)}

is closed and convex, therefore, it admits a unique element of minimal norm called
minimal weak upper gradient and denoted by |Df |w. The Cheeger energy can be then
represented by integration as

Chm( f ) = 1

2

∫
X

|Df |2wdm.

We recall that the minimal weak upper gradient satisfies the following property (see
e.g. [6, equation (2.18)]):

|Df |w = 0 m-a.e. on the set{ f = 0}. (19)
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One can show that Chm is a 2-homogeneous, lower semicontinuous, convex functional
on L2(X ,m) whose proper domain

V := { f ∈ L2(X ,m) : Chm( f ) < ∞}

is a dense linear subspace of L2(X ,m). It then admits an L2 gradient flow which
is a continuous semi-group of contractions (Ht )t≥0 in L2(X ,m), whose continuous
trajectories t �→ Ht f , for f ∈ L2(X ,m), are locally Lipschitz curves from (0,∞)

with values into L2(X ,m) that satisfy

d

dt
Ht f ∈ −∂Chm(Ht f ) for a.e. t ∈ (0,∞). (20)

Here, ∂ denotes the subdifferential of convex analysis, namely for every f ∈ V we
have � ∈ ∂Chm( f ) if and only if

∫
X

�(g − f )dm ≤ Chm(g) − Chm( f ), for every g ∈ L2(X ,m). (21)

We now define the RCD(K ,∞) condition, introduced and throughly analyzed in [6]
(see also [4] for the present simplified axiomatization and the extension to the σ -finite
case).

Definition 2.2 (RCD(K ,∞) condition) Let K ∈ R. We say that the metric measure
space (X ,d,m) is RCD(K ,∞) if it satisfies the CD(K ,∞) condition and moreover
the Cheeger energy Chm is quadratic, i.e. it satisfies the parallelogram identity

Chm( f + g) + Chm( f − g) = 2Chm( f ) + 2Chm(g), ∀ f , g ∈ V. (22)

If (X ,d,m) is an RCD(K ,∞) space, then the Cheeger energy induces the Dirichlet
form E( f ) := 2Chm( f ) which is strongly local, symmetric and admits the Carré du
Champ

�( f ) := |Df |2w, ∀ f ∈ V.

The space V endowed with the norm ‖ f ‖2
V

:= ‖ f ‖2L2 + E( f ) is Hilbert. Moreover,
the sub-differential ∂Chm is single-valued and coincides with the linear generator −


of the heat flow semi-group (Ht )t≥0 defined above. In other terms, the semigroup
can be equivalently characterized by the fact that for any f ∈ L2(X ,m) the curve
t �→ Ht f ∈ L2(X ,m) is locally Lipschitz from (0,∞) to L2(X ,m) and satisfies

{
d
dt Ht f = 
Ht f for L1-a.e t ∈ (0,∞),

limt→0 Ht f = f ,
(23)

where the limit is in the strong L2(X ,m)-topology.

123
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The semigroup Ht extends uniquely to a strongly continuous semigroup of lin-
ear contractions in L p(X ,m), p ∈ [1,∞), for which we retain the same notation.
Regarding the case p = ∞, it was proved in [6, Theorem 6.1] that there exists a
version of the semigroup such that Ht f (x) belongs to C∩ L∞((0,∞)× X) whenever
f ∈ L∞(X ,m). We will implicitly refer to this version of Ht f when f is essen-
tially bounded. Moreover, for any f ∈ L2 ∩ L∞(X ,m) and for every t > 0 we have
Ht f ∈ V ∩ Lip(X) with the explicit bound (see [6, Theorem 6.5] for a proof)

‖|DHt f |w‖∞ ≤
√

K

e2Kt − 1
‖ f ‖∞ . (24)

Two crucial properties of the heat flow are the preservation of mass and the maximum
principle (see [5]):

∫
X
Ht f dm =

∫
X
f dm, for any f ∈ L1(X ,m), (25)

0 ≤ Ht f ≤ C, for any 0 ≤ f ≤ C m-a.e., C > 0. (26)

A result of Savaré [31, Corollary 3.5] ensures that, in the RCD(K ,∞) setting, for every
f ∈ V and α ∈ [ 12 , 1] we have

|DHt f |2αw ≤ e−2αKt Ht
(|Df |2αw

)
, m-a.e. . (27)

In particular,

|DHt f |w ≤ e−Kt Ht (|Df |w), m-a.e. . (28)

3 Proof of Theorem 1.1

We denote by I : [0, 1] → [0, 1√
2π

] the Gaussian isoperimetric function defined by

I := ϕ ◦ �−1 where

�(x) := 1√
2π

∫ x

−∞
e−u2/2 du, x ∈ R,

and ϕ = �′. The function I is concave, continuous, I (0) = I (1) := 0 and 0 ≤ I (x) ≤
I ( 12 ) = 1√

2π
, for all x ∈ [0, 1]. Moreover, I ∈ C∞((0, 1)), it satisfies the identity

I (x)I ′′(x) = −1, for every x ∈ (0, 1). (29)

and (see [10])

lim
x→0

I (x)

x
√
2 log 1

x

= 1. (30)
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Given K ∈ R, we define the function jK : (0,∞) → (0,∞) as

jK (t) :=
{

K
e2Kt−1

if K �= 0,
1
2t if K = 0.

(31)

Notice that jK is increasing as a function of K .
The next proposition was proved in the smooth setting by Bakry, Gentil and Ledoux

(see [8,10] and [9, Proposition 8.6.1]).

Proposition 3.1 (Bakry-Gentil-Ledoux Inequality in RCD(K ,∞) spaces) Let
(X , d,m) be an RCD(K ,∞) space, for some K ∈ R. Then, for every function
f ∈ L2(X ,m), f : X → [0, 1] it holds

|D(Ht f )|2w ≤ jK (t)
([

I (Ht f )
]2 − [

Ht (I ( f ))
]2)

, m-a.e., for every t > 0. (32)

In particular, for every f ∈ L2 ∩ L∞(X ,m), it holds

‖|D(Ht f )|w‖∞ ≤
√

2

π

√
jK (t) ‖ f ‖∞ , m-a.e., for every t > 0. (33)

Proof Given ε > 0, η > 2ε and δ > 0 sufficiently small, consider f ∈ L2(X ,m)

with values in [0, 1 − η]. We define

φε(x) := I (x + ε) − I (ε), (34)

�ε(s) :=
[
Hs(φε(Ht−s f ))

]2
, for every s ∈ (0, t). (35)

We notice that φε(0) = 0 and φε(x) ≥ 0 for every x ∈ [0, 1 − η]. Moreover,
using the property (26), φε is Lipschitz in the range of Ht−s f . Since t �→ Ht f is a
locally Lipschitz map with values in L p(X ,m) for 1 < p < ∞ ( [32, Theorem 1,
Section III]), we have that �ε is a locally Lipschitz map with values in L1(X ,m).
Let ψ ∈ L1 ∩ L∞(X ,m) be a non-negative function. By the chain rule for locally
Lipschitz maps, the fundamental theorem of calculus for the Bochner integral and the
properties of the semigroup Ht we have that for any ε > 0 and 0 < δ < t it holds

∫
X

([
Hδ(φε(Ht−δ f ))

]2 −
[
Ht−δ(φε(Hδ f ))

]2)
ψ dm

=
∫ t−δ

δ

(
− d

ds

∫
X

[
Hs(φε(Ht−s f ))

]2
ψ dm

)
ds

= −2
∫ t−δ

δ

( ∫
X
Hs

(
φε(Ht−s f )

)
Hs

(

φε(Ht−s f ) − φ′

ε(Ht−s f )
Ht−s f
)
ψ dm

)
ds

= 2
∫ t−δ

δ

( ∫
X
Hs

(
φε(Ht−s f )

)
Hs

( − φ′′
ε (Ht−s f )|DHt−s f |2w

)
ψ dm

)
ds. (36)
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Applying the Cauchy–Schwarz inequality

Hs(X)Hs(Y ) ≥ [
Hs

(√
XY

)]2
,

and the identity I (x)I ′′(x) = −1, for all x ∈ (0, 1), we get that the right-hand side of
(36) is bounded below by

2
∫ t−δ

δ

( ∫
X

[
Hs

(√(
1 − I (ε)

I (Ht−s f + ε)

)
|DHt−s f |2w

)]2
ψ dm

)
ds. (37)

Noticing that

∫
X

[
Hs

(√(
1 − I (ε)

I (Ht−s f + ε)

)
|DHt−s f |2w

)]2
ψ dm ≤

∫
X

[
Hs

(|DHt−s f |w
)]2

ψ dm

and that, for any fixed δ > 0,

∫ t−δ

δ

(∫
X

[
Hs

(|DHt−s f |w
)]2

ψ dm

)
ds < ∞

thanks to the bound (24), we can pass to the limit as ε → 0 in (37) using Dominated
Convergence Theorem.

Since I is continuous, I (0) = 0 and I (x) > 0 for every x ∈ (0, 1), using the
locality property (19), the Dominated Convergence Theorem yields

∫
X

([
Hδ(I (Ht−δ f ))

]2 −
[
Ht−δ(I (Hδ f ))

]2)
ψdm

≥ 2
∫ t−δ

δ

(∫
X

[
Hs

(|DHt−s f |w
)]2

ψdm

)
ds, (38)

for every δ ∈ (0, t). Now,we can bound the right-hand side of (38) using the inequality
(28) to obtain

2
∫ t−δ

δ

( ∫
X

[
Hs

(|DHt−s f |w
)]2

ψdm

)
ds

≥ 2
∫
X

( ∫ t−δ

δ

e2Ksds

)
|DHt f |2wψ dm. (39)

From (30) it follows that for every 0 < a < 1 there exists C = C(a) > 0 and x̄ =
x̄(a) ∈ (0, 1) such that I (x) ≤ Cxa for all x ∈ (0, x̄). In particular, if g ∈ L2(X ,m),
g : X → [0, 1 − η], then I (g) ∈ L p(X ,m) for every p > 2. We now apply this
argument for p = 4, so that we can take advantage of the continuity of I and the
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continuity of the semigroup and pass to the limit as δ ↓ 0. We obtain

∫
X

([
I (Ht f )

]2 −
[
Ht (I ( f ))

]2)
ψ dm ≥ 1

jK (t)

∫
X

|DHt f |2wψ dm, (40)

for every η > 0 sufficiently small, every f ∈ L2(X ,m), f : X → [0, 1 − η].
Now, for f ∈ L2(X ,m), f : X → [0, 1], consider the truncation fη := min{ f , 1−

η}. Applying (40) to fη, we have

∫
X

([
I (Ht fη)

]2 −
[
Ht (I ( fη))

]2)
ψ dm ≥ 1

jK (t)

∫
X

|DHt fη|2wψ dm. (41)

From fη → f in L2 ∩ L∞(X ,m) as η ↓ 0, we get that Ht fη → Ht f in V for every
t > 0; we can then pass to the limit as η ↓ 0 in (41) and obtain

∫
X

([
I (Ht f )

]2 −
[
Ht (I ( f ))

]2)
ψ dm ≥ 1

jK (t)

∫
X

|DHt f |2wψ dm.

Since ψ ∈ L1 ∩ L∞(X ,m), ψ ≥ 0 is arbitrary, the desired estimate (32) follows.
Recalling that 0 ≤ I ≤ 1√

2π
, the inequality (32) yields

|D(Ht f )|w ≤
√

jK (t)

2π
, m-a.e., for every t > 0, (42)

for any f ∈ L2(X ,m), f : X → [0, 1]. For any f ∈ L2 ∩ L∞(X ,m), write
f = f + − f − with f + = max{ f , 0}, f − = max{− f , 0}. Applying (42) to
f +/‖ f ‖∞, f −/‖ f ‖∞ and summing up we obtain

‖|DHt f |w‖∞ ≤ ∥∥|DHt f
+|w

∥∥∞ + ∥∥|DHt f
−|w

∥∥∞

≤
√

2

π

√
jK (t) ‖ f ‖∞ , m-a.e., ∀t > 0. ��

We next recall the definition of the first non-trivial eigenvalue of the laplacian −
.
First of all, if m(X) < ∞, the non-zero constant functions are in L2(X ,m) and are
eigenfunctions of −
 with eigenvalue 0. In this case, the first non-trivial eigenvalue
is given by λ1

λ1 = inf

{∫
X |Df |2wdm∫
X | f |2dm : 0 �≡ f ∈ V,

∫
X
f dm = 0

}
. (43)

When m(X) = ∞, 0 may not be an eigenvalue of −
 and the first eigenvalue is
characterized by

λ0 = inf

{∫
X |Df |2wdm∫
X | f |2dm : 0 �≡ f ∈ V

}
. (44)
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Observe that, by the very definition of Cheeger energy (18), the definition (2) of λ1
(resp. (3) of λ0) given in the Introduction in terms of slope of Lipschitz functions, is
equivalent to (43) (resp. (44)).

It is also convenient to set

JK (t) :=
√

2

π

∫ t

0

√
jK (s) ds, (45)

where jK was defined in (31).

Proof of Theorem 1.1 Step 1: Proof of (9), the case m(X) = 1.
First of all, we claim that for any f ∈ L2(X ,m) with zero mean it holds

‖Ht f ‖2 ≤ e−λ1t ‖ f ‖2 . (46)

To prove (46) let 0 �≡ f ∈ L2(X ,m) such that 0 = ∫
X f dm = ∫

X Ht f dm. Then

2λ1
∫
X |Ht f |2dm ≤ 2

∫
X |D(Ht f )|2wdm = −2

∫
X Ht f 
(Ht f )dm

= − d
dt

∫
X |Ht f |2dm, (47)

and the Gronwall’s inequality yields (46).
Next, we claim that, by duality, the bound (33) implies

‖ f − Ht f ‖1 ≤ JK (t) ‖|Df |w‖1 , for all f ∈ Lipb(X), (48)

where JK (t) was defined in (45).
To prove (48) we take a function g, ‖g‖∞ ≤ 1, and observe that

∫
X
g( f − Ht f )dm = −

∫ t

0

( ∫
X
g
Hs f dm

)
ds=

∫ t

0

( ∫
X
DHsg · Df dm

)
ds

≤ ‖|Df |w‖1
∫ t

0
‖|D(Hsg)|w‖∞ ds.

Since g is arbitrary, the claimed (48) follows from the last estimate combined with
(33).

We now combine the above claims to conclude the proof. Let A ⊂ X be a Borel
subset and let fn ∈ Lipb(X), fn → χA in L1(X ,m), be a recovery sequence for
the perimeter of the set A, i.e.:

Per(A) = lim
n→∞

∫
X

|∇ fn| dm ≥ lim sup
n→∞

∫
X

|Dfn|w dm.
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Inequality (48) passes to the limit since Ht is continuous in L1(X ,m) [5, Theorem
4.16] and we can write

JK (t)Per(A) ≥ ‖χA − Ht (χA)‖1 =
∫
A
[1 − Ht (χA)]dm +

∫
Ac

Ht (χA)dm

= 2
(
m(A) −

∫
A
Ht (χA)dm

)
= 2

(
m(A) −

∫
X

χAHt/2(Ht/2(χA))dm
)

= 2
(
m(A) −

∫
X
Ht/2(χA)Ht/2(χA)dm

)
= 2

(
m(A) − ∥∥Ht/2(χA)

∥∥2
2

)
, (49)

where we used properties (25), (26), together with the semigroup property and the
self-adjointness of the semigroup. We observe that

∫
X Ht/2(χA − m(A)) dm = 0

thanks to (25) and the fact that Ht1 = 1 whenm(X) = 1. We can thus apply (46)
in order to bound

∥∥Ht/2(χA)
∥∥2
2 in the following way

∥∥Ht/2(χA)
∥∥2
2 = m(A)2 + ∥∥Ht/2(χA − m(A))

∥∥2
2 ≤ m(A)2 + e−λ1t ‖χA − m(A)‖22 . (50)

A direct computation gives ‖χA − m(A)‖22 = m(A)(1 − m(A)), so that the com-
bination of (49) and (50) yields

JK (t)Per(A) ≥ 2m(A)(1 − m(A))(1 − e−λ1t ), for every t > 0. (51)

Recalling that in the definition of the Cheeger constant h(X) one considers only
Borel subsets A ⊂ X with m(A) ≤ 1/2, the last inequality (51) gives (9).

Step 2: Proof of (10), the case m(X) = ∞.
Arguing as in (47) using Gronwall Lemma, for any f ∈ L2(X ,m) it holds

‖Ht f ‖2 ≤ e−λ0t ‖ f ‖2 . (52)

Note that to establish (49), the finiteness of m(X) played no role. Now, we can
directly use (52) to bound the right-hand side of the equation (49) in order to
achieve

Per(A)

m(A)
≥ 2 sup

t>0

{1 − e−λ0t

JK (t)

}
,

for any Borel subset A ⊂ X with m(A) < ∞. The estimate (10) follows.
��

3.1 From the implicit to explicit bounds (and sharpness in case K > 0)

Proof of Corollary 1.2 In this section, we show how to derive explicit bounds for λ1
(resp. λ0) in term of the Cheeger constant h(X), starting from (9) (resp. (10)). We also
show that (9) is sharp, since equality is achieved on the Gaussian space. First of all,
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the expression of the function JK defined in (45) can be explicitly computed as:

JK (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
2

πK arctan
(√

e2Kt − 1
)

if K > 0,
2√
π

√
t if K = 0,√

− 2
πK arctanh

(√
1 − e2Kt

)
if K < 0.

∀t > 0 (53)

Case K = 0

When K = 0, the estimate (9) combined with (53) gives

h(X) ≥
√

π

2
sup
t>0

1 − e−λ1t

√
t

=
√

πλ1

2
sup
T>0

1 − e−T

√
T

, (54)

where we set T = λ1t in the last identity.
Let W−1 : [−1/e, 0) → (−∞,−1] be the lower branch of the Lambert function,

i.e. the inverse of the function x �→ xex in the interval (−∞,−1].An easy computation
yields

M := supT>0
1−e−T√

T
=

√
−4W−1

(
− 1

2
√
e

)
−2

2W−1

(
− 1

2
√
e

) ,

achieved at T = −W−1

(
− 1

2
√
e

)
− 1

2 . (55)

A good lower estimate of M is given by 2/π . Using this bound, we obtain

λ1 < πh2(X).

Case K > 0

We start with the following

Lemma 3.2 Let f1 : (0,∞) → (0,∞) be defined as

f1(x) :=
√
x

arctan
(√

eT x − 1
) , (56)

where T > 0 is a fixed number. Then f1 is an increasing function and f1(x) ≥ 1√
T
.

Proof The function f1 is differentiable and the derivative of f1 is non-negative if and
only if

√
eT x − 1 arctan

(√
eT x − 1

) − T x ≥ 0, x > 0.
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We put y := √
eT x − 1 so that we have to prove

y arctan(y) − log(y2 + 1) ≥ 0, y > 0. (57)

Called g1(y) the function g1(y) := y arctan(y)− log(y2 +1), we have that g1(0) = 0
and

g′
1(y) = arctan(y) − y

1 + y2
≥ 0,

so that the inequality (57) is proved and f1 is increasing for any T > 0. The proof is
finished since

lim
x↓0 f1(x) = 1√

T
.

��
Rewriting the estimate (9) using (53) in case K > 0, we obtain

√
2

π
h(X) ≥ √

K sup
t>0

1 − e−λ1t

arctan
(√

e2Kt − 1
)

= √
λ1 sup

T>0

√
K
λ1

arctan

(√
e
2 K

λ1
T − 1

)(
1 − e−T

)
. (58)

Thanks to the Lemma 3.2 it is clear that we can always obtain the same lower
bound of the case K = 0 (as expected), but this can be improved as soon as we have
a positive lower bound of the quotient K/λ1. Indeed, let us suppose K/λ1 ≥ c > 0.
Then, observing that

sup
T>0

1 − e−T

arctan(
√
e2cT − 1)

≥ lim
T→+∞

1 − e−T

arctan(
√
e2cT − 1)

= 2

π
,

from (58), we obtain

√
2

cπ
h(X) ≥ √

λ1 sup
T>0

1 − e−T

arctan(
√
e2cT − 1)

≥ 2

π

√
λ1. (59)

When X = R
d endowed with the Euclidean distance d(x, y) = |x − y| and the

Gaussian measure (2π)−d/2e−|x |2/2dLd , 1 ≤ d ∈ N, we have that h(X) =
√

2
π
,

K = 1 and λ1 = 1 (see [9, Section 4.1]). Thus, we can take c = 1 and the equality in
(59) is achieved, making sharp the lower bound.
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Case K < 0

We begin by noticing that

JK (t) =
√

− 2

πK
arctanh

(√
1 − e2Kt

)
=

√
− 2

πK
log

(
e−Kt +

√
e−2Kt − 1

)
. (60)

The following lemma holds:

Lemma 3.3 Let f2 : (0,∞) → (0,∞) be defined as

f2(x) :=
√
x

log
(
eT x + √

e2T x − 1
) , (61)

where T > 0 is a fixed number. Then, f2 is a decreasing function.

Proof A direct computation shows that the derivative of f2 is non-positive if and only
if

√
e2T x − 1 log

(
eT x +

√
e2T x − 1

)
≤ 2T xeT x , for all x > 0,

which is equivalent to

√
1 − e−2T x log

(
1 +

√
1 − e−2T x

)
≤

(
2 −

√
1 − e−2T x

)
T x, for all x > 0. (62)

We put y := √
1 − e−2T x , and we write (62) as

y log(1 + y) + 1

2
(2 − y) log(1 − y2) ≤ 0, for all 0 < y < 1,

which in turn is equivalent to

(
1 + y

2

)
log(1 + y) +

(
1 − y

2

)
log(1 − y) ≤ 0, for all 0 < y < 1. (63)

Now define g2 : (0, 1) → R as g2(y) := (1 + y
2 ) log(1 + y) + (1 − y

2 ) log(1 − y)
and observe that g2 is concave with g2(0) = 0, g′

2(0) = 0. Thus g2 is non-positive on
(0, 1) and the inequality (63) is proved. ��
The combination of (9), (53) and (60) implies that if (X ,d,m) is an RCD(K ,∞) space
with K < 0 and m(X) = 1 then

h(X) ≥
√

−πK

2
sup
t>0

1 − e−λ1t

log
(
e−Kt + √

e−2Kt − 1
) . (64)

We make two different choices:
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• When λ1 ≤ −K , we choose t = − 1
K in (64) so that

h(X) ≥
√

−πK

2

1 − e
λ1
K

log
(
e + √

e2 − 1
) ≥ λ1

√
− π

2K

1 − 1
e

log
(
e + √

e2 − 1
) , (65)

where we used the inequality

1 − e−x ≥
(
1 − 1

e

)
x, for all 0 ≤ x ≤ 1.

• When λ1 > −K , we choose t = 1
λ1

in (64) so that

h(X) ≥
√

π

2

√
λ1

(
1 − 1

e

) √
− K

λ1

log

(
e
− K

λ1 +
√
e
−2 K

λ1 − 1

) .

Applying now Lemma 3.3, we obtain

λ1 ≤
2
(
log

(
e + √

e2 − 1
))2

π
(
1 − 1

e

)2 h(X)2. (66)

The combination of (65) and (66) gives that, if (X ,d,m) is an RCD(K ,∞) space with
K < 0 and m(X) = 1

λ1 ≤ max

{√−K

√
2 log

(
e + √

e2 − 1
)

√
π(1 − 1

e )
h(X),

2
(
log

(
e + √

e2 − 1
))2

π
(
1 − 1

e

)2 h(X)2
}

< max

{
21

10

√−Kh(X),
22

5
h(X)2

}
. (67)

In case (X ,d,m) is an RCD(K ,∞) space with K < 0 and m(X) = ∞ then, using
(10) instead of (9), the estimates (64) and (67) hold with λ1 replaced by λ0 and h(X)

replaced by h(X)/2. Thus, in case m(X) = ∞, we obtain:

λ0 ≤ max

{√−K
log

(
e + √

e2 − 1
)

√
2π(1 − 1

e )
h(X),

(
log

(
e + √

e2 − 1
))2

2π
(
1 − 1

e

)2 h(X)2
}

< max

{
21

20

√−Kh(X),
11

10
h(X)2

}
. (68)

��
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Remark 3.4 Another bound, similar to the one obtained in the case K > 0, can be
achieved in the presence of a lower bound for K/λ1, if m(X) = 1 (resp. a lower
bound for K/λ0, ifm(X) = ∞). To see this, let us suppose K/λ1 ≥ −c, c > 0 (resp.
K/λ0 ≥ −c). Then, using (9) (resp. (10)), (53) and Lemma 3.3, we have that (resp.
the left-hand side can be improved to h(X)/

√
2π )

√
2

π
h(X) ≥ √

λ1 sup
T>0

√
− K

λ1

log

(
e
− K

λ1
T +

√
e
−2 K

λ1
T − 1

)(
1 − e−T

)

≥ √
cλ1 sup

T>0

1 − e−T

log
(
ecT + √

e2cT − 1
) . (69)
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Appendix A: Cheeger’s Inequality in General Metric Measure Spaces

The Buser-type inequalities of Theorem 1.1 and Corollary 1.2 give an upper bound on
λ1 (resp. on λ0, in casem(X) = ∞) in terms of the Cheeger constant h(X). It is natural
to ask if also a reverse inequality holds, namely if it possible to give a lower bound on
λ1 (resp. on λ0, in case m(X) = ∞) in terms of h(X). The answer is affirmative in
the higher generality of metric measure spaces with a non-negative locally bounded
measure without curvature conditions, see Theorem 3.6 below. This generalizes to
the metric measure setting a celebrated result by Cheeger [17], known as Cheeger’s
inequality. In contrast to the previous section, here we do not assume the separability
of the space.

A key tool in the proof of Cheeger’s inequality is the co-area formula; more pre-
cisely, in the arguments it is enough to have an inequality in the co-area formula. For
the reader’s convenience, we give below the statement and a self-contained proof.

Proposition 3.5 (Coarea inequality) Let (X , d) be a complete metric space and let m
be a non-negative Borel measure finite on bounded subsets.
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Let u ∈ Lipb(X), u : X → [0,∞) and set M = supX u. Then for L1-a.e. t > 0 the
set {u > t} has finite perimeter and

∫ M

0
Per({u > t}) dt ≤

∫
X

|∇u| dm. (70)

Proof The proof is quite standard, but since we did not find it in the literature stated
at this level of generality (typically one assumes some extra condition like measure
doubling and gets a stronger statement, namely equality in the co-area formula; see
for instance [28]) we add it for the reader’s convenience.

Let Et := {u > t} and set V (t) := ∫
Et

|∇u| dm. The function t �→ V (t) is

non-increasing and bounded, thus differentiable for L1-a.e. t > 0.
Since

∫
X u dm < ∞, we also have that m({u = t}) = 0 for L1-a.e. t > 0.

Fix t > 0 a differentiability point for V for which m({u = t}) = 0, and define
ψ : (0, t) × (0,∞) → [0, 1] as

ψ(h, s) :=

⎧⎪⎨
⎪⎩
0 for s ≤ t − h
1
h (s − t) + 1 for t − h < s ≤ t

1 for s > t .

(71)

For h > 0 define uh(x) = ψ(h, u(x)) and observe that the sequence (uh)h ⊂ Lipb(X).
We first claim that

uh → χEt in L1(X ,m) as h ↓ 0. (72)

Indeed

∫
X

|uh − χEt | dm =
∫

{t−h<u≤t}
ψ(h, u) dm

≤ m ({t − h < u ≤ t}) → m({u = t}) = 0 as h ↓ 0,

by Dominated Convergence Theorem, since by assumption u has bounded support,m
is finite on bounded sets and χ{t−h<u≤t} → χ{u=t} pointwise as h ↓ 0.

In order to prove that Et is a set of finite perimeter it is then sufficient to show that
lim suph↓0

∫
X |∇uh | dm < ∞. To this aim observe that

∫
X

|∇uh | dm = 1

h

∫
{t−h<u≤t}

|∇u| dm = V (t − h) − V (t)

h
.

Since by assumption t > 0 is a differentiability point for V , we obtain that Et is a
finite perimeter set satisfying

Per(Et ) ≤ lim
h↓0

∫
X

|∇uh | dm = −V ′(t). (73)
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Using that (73) holds for L1-a.e. t > 0 and that V is non-increasing, we get

∫ M

0
Per(Et ) dt ≤ −

∫ M

0
V ′(t) dt ≤ V (0) − V (M) =

∫
X

|∇u| dm. (74)

��
Theorem 3.6 (Cheeger’s Inequality inmetricmeasure spaces)Let (X , d)be a complete
metric space and let m be a non-negative Borel measure finite on bounded subsets.

(1) If m(X) < ∞ then

λ1 ≥ 1

4
h(X)2. (75)

(2) If m(X) = ∞ then

λ0 ≥ 1

4
h(X)2. (76)

As proved by Buser [11], the constant 1/4 in (75) is optimal in the following sense:
for any h > 0 and ε > 0, there exists a closed (i.e. compact without boundary)
two-dimensional Riemannian manifold (M, g) with h(M) = h and such that λ1 ≤
1
4h(M)2 + ε.

Proof We give a proof of (75), the arguments for showing (76) being analogous (and
even simpler).

By the very definition of λ1 as in (2), for every ε > 0 there exists f ∈ Lipb(X)

with
∫
X f dm = 0, f �≡ 0 such that

λ1 ≥
∫
X |∇ f |2 dm∫
X f 2 dm

− ε. (77)

Let m be any median of the function f and set f + := max{ f − m, 0}, f − :=
−min{ f − m, 0}. Applying the co-area inequality (70) to u = ( f +)2 (respectively
( f −)2) and recalling the definition of Cheeger’s constant h(X) as in (4), we obtain

∫
X

|∇( f +)2| dm +
∫
X

|∇( f −)2| dm

≥
∫ sup{( f +)2}

0
Per({( f +)2 > t}) dt +

∫ sup{( f −)2}

0
Per({( f −)2 > t}) dt

≥ h(X)

∫ sup{( f +)2}

0
m({( f +)2 > t}) dt + h(X)

∫ sup{( f −)2}

0
m({( f −)2 > t}) dt

= h(X)

∫
X
( f +)2dm + h(X)

∫
X
( f −)2dm = h(X)

∫
X

| f − m|2 dm. (78)
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Since

|∇g2| ≤ 2|g| |∇g|,

and

|∇ f +| ≤ |∇ f |, |∇ f −| ≤ |∇ f |,
we can apply the Cauchy-Schwarz inequality and get

2

( ∫
X

|∇ f |2 dm
) 1

2
( ∫

X
| f − m|2 dm

) 1
2 ≥

∫
X

|∇( f +)2| dm +
∫
X

|∇( f −)2| dm, (79)

where we have used that | f +| + | f −| = | f − m|. It follows from (78) and (79) that
for every median m of f it holds

∫
X |∇ f |2 dm∫

X | f − m|2 dm ≥ h(X)2

4
. (80)

Finally, since
∫
X f dm = 0 and the mean minimises R � c �→ ∫

X | f − c|2dm, we
have

∫
X |∇ f |2 dm∫
X | f |2 dm ≥

∫
X |∇ f |2 dm∫

X | f − m|2 dm

and we can conclude thanks to (77) and the fact that ε > 0 is arbitrary. ��
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