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A B S T R A C T   

This paper empirically explores the extent to which European cities are on track to sustainable development by 
examining the environmental performance of a large sample of cities observed during the last two decades. The 
paper builds on the Environmental Kuznets Curve framework and leverages satellite data to build a set of 
environmental indicators as varied and as granular as possible. Evidence suggests that European cities are, on 
average, on track to sustainable development, meaning that the contribution of their economic growth to 
environmental degradation is already negative or close to becoming so. The paper also examines Transnational 
City Networks as accelerators of environmental transition. The results suggest that cities participating in such 
networks anticipate the transition with respect to their peers.   

1. Introduction 

Cities are hotspots of economic, social, and human development. 
People and firms choose to locate in dense urban areas to benefit from 
reduced commuting costs (Krugman, 1991), labour pooling opportu
nities (Overman and Puga, 2010), and knowledge transmission (Jacobs, 
1969). Not surprisingly, in 2019, cities accounted for more than 80% of 
global GDP (WEF, 2022) and are projected to contribute to over 60% of 
global GDP growth between 2012 and 2030 (Floater et al., 2014). 
However, accelerated demand for housing, well-connected transport 
systems, infrastructure, and jobs may spur critical environmental 
degradation in multiple dimensions, especially air pollution, land use, 
biodiversity loss, and greenhouse gas (GHG) emissions. According to the 
United Nations Environmental Program report “Cities and Climate 
Change” (UNEP, n.d.), cities contribute to 75% of global carbon emis
sions (Dent et al., 2016), and it is estimated that they will account for 
over half of global energy-related emission growth between 2012 and 
2030 (Floater et al., 2014). In addition, cities will add 1.2 million km2 of 
new urban built-up areas around the globe in the next three decades 
(World Bank, 2022). 

Cities and their policies are crucial to achieving the sustainability 
transition, but the empirical analysis of their environmental progress is 
still underdeveloped. The Environmental Kuznets Curve hypothesis 
(EKC), which predicts an inverse U-shaped relationship between envi
ronmental degradation and economic development, suggests that 

economies at advanced development stages naturally begin reducing 
their environmental footprint and even invest in environmental resto
ration. Despite the relevance of cities in the sustainability transition, few 
studies have examined cities and metropolitan areas as a unit of refer
ence (Fujii et al., 2018; Wang et al., 2022) for the empirical estimation of 
the EKC relationship. In Europe, such studies have considered subna
tional units in a single country (Germani et al., 2020; Pontarollo and 
Serpieri, 2020) and, to the authors’ knowledge, no research has focused 
on a multi-country set of cities. Overall, the existing literature provides 
an incomplete picture of how European cities, on the whole, are pro
gressing with the multiple environmental aspects related to the sus
tainability transition. For this reason, it is crucial to expand the EKC 
analysis’ scope beyond a single environmental degradation indicator 
and consider all the cities in Europe rather than a single country. 

In light of the urgency of environmental action-taking at the city 
level, multiple Transnational City Networks (TCNs) have developed in 
the past few decades. These are intended to provide international plat
forms, allowing local governments to share best practices and generate 
political momentum around their environmental agenda. For instance, 
in relation to climate mitigation, member cities follow common pro
tocols for monitoring emissions (Kona et al., 2021) and are encouraged 
to enforce more stringent environmental targets than non-members 
(Kona et al., 2018). If effective, the participation of cities in such net
works is expected to change their environmental recovery pattern, 
arguably improving the sustainability of these cities (Labaeye and Sauer, 
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2013). Rashidi and Patt (2018) reported evidence that TCNs have 
effectively pushed global cities to take environmental action, but the 
extent to which these actions effectively improve the environmental 
performance of cities remains uncertain. TCNs are a relatively recent 
phenomenon, but a few have strong historical roots and are now being 
institutionalised (Acuto and Leffel, 2021). For that reason, it is impor
tant to understand whether a relationship exists between TCN partici
pation and the environmental performance of cities. 

This paper combines the EKC framework with the evidence of TCNs 
to empirically investigate the extent to which European cities effectively 
join the sustainability transition pathway by improving their environ
mental quality at certain stages of development and what the TCN’s 
contribution is in this process. Europe represents an ideal setting for this 
study for multiple reasons. The first is the significant urban population 
exposure to air pollution (EEA, 2022). The second is a documented 
urban spatial expansion almost decoupled from population dynamics 
(Guastella et al., 2019). The third is the broad European representa
tiveness in TCNs (Acuto and Leffel, 2021). The fourth is European cities’ 
strong political mandate on environmental and climate action. 
Compared to Chinese or American counterparts, European cities have 
been given a central role in the low-carbon transition by their central 
governments in the framework of the Green Deals (UN-Habitat, 2020). 

This work contributes to two different strands of literature. Firstly, it 
expands the EKC research stream by bringing novel evidence and testing 
the hypothesis using satellite imagery of environmental degradation in 
European cities. While the use of satellite imagery in the EKC framework 
is not new (Wang and Ye, 2017; Zheng and Kahn, 2017), these existing 
analyses are limited to Chinese cities. To the authors’ knowledge, only 
one European study has used satellite imagery data to test the EKC 
(Altıntaş and Kassouri, 2020), but it looked at aggregate country-level 
indicators and missed both the spatial dimension and the granularity 
of the data. A few other studies have used lower administrative levels 
and spatial techniques, but these focused only on land use, neglecting 
the air pollution and emission-related aspects of environmental perfor
mance. Furthermore, they focused only on one country, namely Italy 
(Bimonte and Stabile, 2017) and Romania (Pontarollo and Serpieri, 
2020). In both cases, the spatial unit of observation is the region, not the 
city. 

Secondly, this paper contributes to the literature on TCNs, being the 
first study of its kind to measure the actual environmental benefits of 
participating in a network. The only comparable paper in the TCN 
literature is that by Hsu et al. (2020) who estimated that members of the 
EU Covenant of Mayors outperform non-members in their emission 
reduction targets. Other studies, such as Rashidi and Patt (Rashidi and 
Patt, 2018), used TCN information to explain policy action-taking 
without linking it to environmental performance directly. This study 
uses TCN information in a novel way, examining not only if TCN 
participation has a relationship with overall environmental degradation, 
but also the extent to which participation affects the recovery trajectory 
of European cities. 

The paper has the following structure. Firstly, Section 2 expands on 
the reasons for the focus on several indicators of environmental degra
dation, the use of satellite imagery, and consideration of the TCN’s role. 
Furthermore, the methodology is outlined, and the data is presented in 
Section 3. After showing the estimations and commenting on the results 
in Section 4, the results are discussed in Section 5. 

2. Motivation 

With a sound theoretical framework and a ready-to-test reduced- 
form equation, the EKC has been one of the most successful and debated 
topics in applied environmental economics. Grossman and Krueger 
(1995) first verified the predicted inverse U-shaped relationship be
tween income and environmental degradation for sulphur dioxide (SO2) 
concentration, suggesting that countries might be able to reduce pollu
tion at a particular stage of development and decouple economic growth 

from environmental degradation. Empirical evidence supporting the 
EKC hypothesis has been subject to criticism for issues related to the 
GDP normality assumption and heteroscedasticity (Stern et al., 1996), 
omitted variable bias (Cole, 2003), and cointegration (Galeotti et al., 
2009), but recent evidence from a meta-analysis (Sarkodie and Strezov, 
2019) suggested that the hypothesis has survived the test of time. 

2.1. Environmental degradation 

One challenge in obtaining consistent cross-study estimates of the 
EKC hypothesis is the choice of the environmental degradation indica
tor. Greenhouse gas (GHG) emissions are probably the most investi
gated. Galeotti and Lanza (1999) found evidence of an inverted U- 
shaped curve for carbon dioxide (CO2) using a quadratic panel regres
sion on a dataset of 110 countries in the period 1960–1996. Their 
findings were later confirmed by several works, for example, Galeotti 
et al. (2006) for OECD countries and Wang and Ye, (2017) for 30 Chi
nese provinces. However, some studies concluded that the relationship 
between income and CO2 emissions was monotonically increasing 
(Shafiei and Salim, 2014). Others discovered alternative cubic config
urations, such as N-shaped curves (Sinha and Bhattacharya, 2017), 
while others discovered no EKC relationship at all (Acaravci and Ozturk, 
2010; Zoundi, 2017). Sometimes, income has been substituted by 
alternative controls, such as urban form (Makido et al., 2012), urbani
sation rate (Fang et al., 2021), and education (Maranzano et al., 2022). 

Air pollutants are not climate warmers, but their effects on human 
health are severe and diverse, stemming from sub-clinical effects, 
ranging from inflammation to premature deaths. Selden and Song 
(1994) were the first to find evidence of an inverse U-curve for SO2.

1 In a 
recent meta-analysis, Sarkodie and Strezov (2019) reviewed all the 
empirical papers that attempted to estimate the EKC and the relative 
turning point. Most papers, in their review, used atmospheric indicators 
to track pollution levels, and evidence supports the EKC hypothesis, 
although with substantial differences due to the varying period of study 
and econometric methods used in model estimation. More recently, the 
EKC has been tested for particulate matter in China (Zheng and Kahn, 
2017; Ding et al., 2019). 

Terrestrial and marine ecosystems have received relatively less 
attention in the EKC literature, and existing studies have focused pri
marily on land use. Liu and Guo (2015) estimated the EKC in Chinese 
provinces; Pontarollo and Serpieri (2020) for Romanian counties; 
Bimonte and Stabile (2017) for Italian NUTS-2 regions; Pontarollo and 
Muñoz (2020) for cantons in Ecuador. Alternative ecosystem-related 
indicators considered in the literature are the ecological footprint 
(Altıntaş and Kassouri, 2020), deforestation (Cuaresma et al., 2017), 
coal consumption (Hao et al., 2016), environmental crimes (Germani 
et al., 2020), e-waste (Boubellouta and Kusch-Brandt, 2020), and noise 
(Xu et al., 2020). 

2.2. The spatial dimension 

Some scholars have highlighted that many ecological metrics are not 
randomly distributed in space, and that ignoring the spatial dimension 
may lead to inaccurate results (Rupasingha et al., 2004). Before the 
diffusion of satellite imagery, the data were not sufficiently granular to 
allow spatial analysis of the EKC below the national state unit. Only 
recently have data on anthropogenic emissions become available at the 
metropolitan or city scale.Kang et al. (2019) and Wang et al. (2019) 
attempted to quantify them following international protocols for emis
sion inventories. Other studies have relied on data scraping techniques 
to retrieve self-declared emissions at a municipal level (Hsu et al., 2020), 
and others have used concentration data for other pollutants instead of 
emissions (Ding et al., 2019). The sparser precision of these estimation 

1 See also Kaufmann et al. (1998). 
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methods and the short spatio-temporal coverage of municipal bottom-up 
recordings (Gurney et al., 2019) pushes the researcher to find higher 
quality information. 

Satellite imagery can provide spatially explicit and highly dis
aggregated observations, as well as independent data sources at various 
geographical scales. Direct satellite monitoring has the highest precision 
but has substantial limitations in detecting anthropogenic sources (Pan 
et al., 2021). Proxy satellite monitoring disaggregates national emission 
inventories using spatially distributed proxies like population density 
and night-time light data (Gurney et al., 2019; Oda et al., 2019). 

Due to the granularity of its environmental data, proxy monitoring 
proves more reliable than self-reported data (Lauvaux et al., 2020);2 

enabling the use of spatial econometrics to estimate the EKC. For 
example, Wang and Ye (2017) interpolated the provincial CO2 emissions 
in China with a combination of the areal interpolation method and 
night-time light data and tested the EKC hypothesis on a spatial data
frame. Ding et al. (2019) based their calculations on global satellite 
observation of PM2.5 concentrations in the Beijing-Tianjin-Hebei area 
and found evidence of the existence of the EKC using multiple spatial 
econometric models.3 

Another advantage provided by the combination of satellite imagery 
and spatial econometric methodology is the replicability of the analysis. 

Firstly, global emission inventories, such as the Open-source Data In
ventory for Anthropogenic CO2 (ODIAC) and the Emission Database for 
Global Atmospheric Research (EDGAR), have global coverage and pro
vide comparable information for every location in the world, regardless 
of the level of development.4 For example, Maddison (2006) used 
EDGAR data to test the EKC for 180 world countries (Wang et al., 2013). 
Despite its potential, to the authors’ knowledge, no study has estimated 
the urban EKC in Europe with satellite imagery. 

2.3. Cities and networks 

Urbanisation is often linked to pollution (Wu et al., 2020) via mul
tiple factors, including urban spatial expansion (Fragkias et al., 2013), 
traffic and congestion (Gately et al., 2015), and population growth 
(Ribeiro et al., 2019). In 2011, UN-Habitat released a debated report 
indicating that urban settlements were responsible for 40% to 70% of 
global GHG while occupying only 2% of land. In Europe, cities take up 
only 4% of total land (European Environment Agency, 2019) , but the 10 
top emitter cities drive 33.4% of the total European carbon emissions 
Moran et al. (2022). If the EU is to deliver on the European Green Deal,5 

cities will have to be intimately involved in the climate mitigation effort. 
On their part, European cities are demonstrating an increasing po

litical will to be the vanguard of the efforts to achieve climate neutrality 

Fig. 1. Spatial structure of the sample. On the left: Fig. 1a, administrative boundaries of the 922 cities in the sample. On the right: Fig. 1b, detail of the BENELUX area with 
total CO2 emissions in 2018. 

Table 1 
Description of the dependent variables.  

Variable Metric Symbol Description Source 

CO2 Emissions23 tonne 
carbon/cell 

CO2 CO2 emissions with a spatial resolution of approximately 1 × 1 km and a 
time resolution at the month level. 

ODIAC (Oda et al., 2019) 

O3 

Concentrations 
μg/m3 O3 Ozone concentrations in AOT40 (Accumulated dose of ozone over a 

threshold of 40 ppb). 
(EEA, 2018) 

PM2.5 

Concentrations 
μg/m3 PM2.5 Annual average concentrations global annual PM2.5 Grids from MODIS, 

MISR and SeaWiFS Aerosol Optical Depth (AOD) with GWR, v1 
(1998 – 2016). 

van Donkelaar et al. (2018) 

Artificial area Km2 AA Aggregated artificial surface codes in square kilometres. Copernicus Corine Land Cover (CLC) dataset (European 
Union Copernicus Land Monitoring Service, 2000- 
2018) 

SO2 Mg/year SO2 Annual emission gridmaps at 0.1x0.1 degree resolution averaged per city. Emissions Database for Global Atmospheric Research 
(EDGAR) (Crippa et al.,2022) 

In this analysis, CO2 emissions per capita was used as the dependent variable. For each city, the yearly total CO2 emissions were divided by the urban population.  

2 Satellite imagery is also comparable to bottom-up emission measurements 
at the city scale (Gurney et al., 2019).  

3 Other studies that used a spatial econometric methodology to test the EKC 
are Maddison (2006) and Wang et al. (2013) at the global level; Hao et al. 
(2016) and Kang et al. (2016) for China’s regions; Pontarollo and Serpieri 
(2020) and Pontarollo and Munoz (2020) at the regional level for Romania and 
Ecuador. 

4 ODIAC was selected as the CO2 emission data source for this work, as it 
provides better emission estimates and has a larger temporal resolution than 
EDGAR (Yang et al., 2020).  

5 According to the European Green Deal, the EU is to become climate neutral 
by 2050 and to reduce GHG emissions by 55% by 2030. 
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Fig. 2. Average trend of environmental indicators. Yearly averages for the five environmental indicators over the whole sample. CO2 Emissions are in tonnes per 
capita. Standard deviation is in blue. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Diagnostic tests: results for serial autocorrelation and spatial correlation.  

Test CO2 O3 PM2.5 Landuse SO2 

Breusch-Pagan 
Test 

<2.2e- 
16 

<2.2e- 
16 

<2.2e- 
16 

<2.2e-16 <2.2e- 
16 

Pesaran Test 1.509e- 
07 

<2.2e- 
16 

3.775e- 
04 

<2.2e-16 <2.2e- 
16 

Breusch-Godfrey/ 
Wooldrdige 

<2.2e- 
16 

<2.2e- 
16 

<2.2e- 
16 

<2.2e-16 <2.2e- 
16 

Baltagi, Song and 
Koh (marginal) 

<2.2e- 
16 

<2.2e- 
16 

<2.2e- 
16 

<2.2e-16 <2.2e- 
16 

Baltagi, Song and 
Koh 
(conditional) 

<2.2e- 
16 

<2.2e- 
16 

<2.2e- 
16 

<2.2e-16 <2.2e- 
16 

Moran I statistic 
t = 1 (p-value) 

0.062 
(0.000) 

0.360 
(0.000) 

0.121 
(0.000) 

0.063 
(0.000) 

0.006 
(0.312) 

Moran I statistic 
t = T (p-value) 

0.070 
(0.000) 

0.433 
(0.000) 

0.280 
(0.000) 

0.038 
(0.001) 

0.006 
(0.305)  

Table 3 
Estimation of the benchmark model. Estimation results for CO2 emissions, O3 

and PM2.5 concentrations, artificial land use (AA) and SO2 emissions. Standard 
Errors in parenthesis. The model for PM2.5 is fitted with GMM estimation.   

CO2 O3 PM2.5 AA SO2 

logGDP 1.631*** − 9.621** 2.853*** − 3.116*** − 9.590*** 

(1.842) (3.516) (0.613) (0.534) (1.937) 
logGDP2 − 0.058*** 0.896** − 0.272*** 0.326*** 0.860*** 

(0.008) (0.326) (0.060) (0.052) (0.191) 
logGDP3 – − 0.028** 0.008*** − 0.011*** − 0.024***  

(0.010) (0.001) (0.001) (0.006) 
logD − 0.310*** − 0.003 0.058* 0.131*** 0.111** 

(0.005) (0.007) (0.012) (0.013) (0.037) 
logT 5.321*** 31.725*** − 9.978*** 4.010*** − 11.814*** 

(0.790) (0.960) (0.744) (0.827) (0.037) 
CN 0.050*** − 0.024 0.027*** 0.016 − 0.083*** 

(0.013) (0.015) (0.003) (0.003) (0.010) 
Time dummy included  
ρ(spatial 

error 
parameter) 

0.495*** 0.532*** 0.523*** 0.408*** 0.225*** 

(0.011) (0.013) (0.011) (0.028) (0.015) 

Observations 17,518 11,986 15,674 3688 16,596 
R2 0.329 0.532 0.939 0.994 0.944  
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with the rise of TCNs. These are membership-based alliances between 
local governments that provide a platform for implementing common 
policies and developing joint initiatives.6 For example, the European 
members of the Covenant of Mayors signed an overall commitment to 
reduce emissions by 27% by 2020 (Kona et al., 2018), well above the 
minimum requested EU target of 20%. In addition, 64% of Eurocities 
members have already committed to becoming climate neutral by 2050. 
In 2016, the C40 Cities Climate Leadership Group (C40), the Global 
Covenant of Mayors for Climate & Energy, and the International Council 
for Local Environmental Initiatives (ICLEI) joined forces with the World 

Resources Institute (WRI) to develop the Global Protocol for 
Community-Scale Greenhouse Gas Emissions Inventories. 

As momentum for TCNs’ involvement in global mitigation efforts is 
growing, it is crucial to evaluate whether their participation effectively 
translates into better environmental performance. So far, the TCN 
literature has not produced a quantitative assessment on this specific 
point.7 To the authors’ knowledge, the only paper that evaluates cities’ 
GHG emissions mitigation performance in the context of some trans
national climate initiative is Hsu et al (2020), which calculated that 60% 
of more than 1,000 EU Covenant of Mayors’ cities are on track to achieve 
their 2020 emission reduction targets. 

Fig. 3. Marginal effects – aggregate. Marginal effects of the selected environmental variables plotted against log(GDP).  

6 According to Acuto and Leffel (2021), globally TCNs number more than 200 
and most of them (29%) are centred on environmental concerns. Nonetheless, 
the membership of networks shows a “Euro-centric bias”. 

7 Most of the literature is focused on knowledge transfers and experimenta
tion like Nguyen et al. (2020). 

M.C.P. Rizzati et al.                                                                                                                                                                                                                            



Ecological Indicators 148 (2023) 110143

6

Fig. 4. Localisation of member and non-member cities. Member cities are in green (4 7 7), while non-member cities are in red (4 4 4). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Marginal effects of the selected environmental variables plotted against in GDP, after the sample split.  
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3. Methodological approach and data 

3.1. Methodology 

Considering the different environmental degradation indicators, the 
EKC curve shape can be inferred by testing the signs of the coefficients of 
GDP per capita (Liu and Guo, 2015). Including a squared term and a 
cubic term of the latter allows the functional form and shape of the curve 
to be checked. 

The EKC curve parameters are first estimated with standard panel 
data models (pooled OLS, random effects, and fixed effects). In the 

context of EKC estimation, this provides more comprehensive informa
tion and weakens the impact of multicollinearity, which could be pre
sent in time-series data (Ding et al., 2019). Moreover, since this study’s 
data presents a micro-panel structure (N > T) the use of methods such as 
Autoregressive Distributed Lags (ARDL) is not recommended, and, 
overall, the issue of stationarity is mitigated by the inclusion of time 
effects (Baltagi, 2021).8 As data from more years will become available 
in future, the analysis should also be reconsidered in the light of the 
effects of possible time distortions, for instance, with techniques such as 
panel cointegration (Cho et al., 2014) and non-stationary spatial panel 
data (Beenstock and Felsenstein, 2019). 

The chosen EKC specification follows equation (1): 

Ei,t =∝+β1GDPpci,t+β2
(
GDPpci,t

)2
+β3

(
GDPpci,t

)3
+γXi,t +δNi,t+τt +εi,t

(1)  

Here, Ei,t is the environmental indicator observed in city i at year t. 
GDPpci,t is the per-capita GDP, including its quadratic and cubic terms to 
capture potential non-linear relationships. X is a matrix of time-varying 
control variables, including population density and the average tem
perature; N is a dynamic dummy that is equal to 1 in the years when the 
city is part of a city network and 0 otherwise; τ is the time-specific effect, 
and ε the error term. 

To account for the potential spatial dependence among the city-level 
environmental targets (Ding et al., 2019; Kang et al., 2016), a global 
Moran’s I test and two Lagrange Multiplier diagnostics for spatial panel 
data were performed (Baltagi et al., 2007). The first LM diagnostic is a 
joint statistic that simultaneously tests for spatial error correlations and 

Fig. 6. Spatial distribution of decoupling cities.  

Fig. A1. Spatial weight matrix, selecting the 10 nearest neighbours each city.  

8 All of the series of indicators and time-varying variables were tested for 
non-stationarity with an IPS test with different combinations of lags, trends, 
and demean (Im et al., 2003), the Harris and Tsivalis test (Harris and Tzavalis, 
1999) and the Pesaran test in the presence of cross-section dependence 
(Pesaran, 2007). The only variable series with unambiguous evidence of non- 
stationarity was population density, which becomes stationary in the first dif
ferences. As a robustness test, the estimation of Table 3 was carried out again 
with population density as a first difference, finding no qualitative change in 
the EKC shape parameters for all indicators. 
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random individual effects. The second is a marginal statistic that tests 
the existence of spatial error correlations, assuming the presence of 
random individual effects. The selected benchmark was the Spatial Error 
Model (SEM), which was estimated with pooling, fixed effects, and 
random effects methods. With a spatial error structure, the EKC-SEM 
becomes: 

Ei,t =∝+β1GDPpci,t +β2
(
GDPpci,t

)2
+β3

(
GDPpci,t

)3
+ γXi,t +δNi,t + τt +ui

(2)  

ui = λWui,t + εi,t  

Where the error ui includes a spatial component modelled through the 
spatial error term λWui,t, with λ being the autoregressive factor and W 
the spatial weight matrix. As the cities in the sample are, in the majority 
of cases, not contiguous, W was built by selecting a number of the 
nearest neighbours by distance. 

Alternative spatial panel econometrics specifications, such as a 
spatial autoregressive model (SAR) or Spatial Durbin Model (SDM), are 
usually preferred to the SEM because they allow decomposing the 
marginal effect in a direct and an indirect – spatial spillover – effect. In 
contrast, the advantage of SEM over SAR and SDM is the more 
straightforward interpretation of coefficients and inference (Bivand 
et al., 2021). This advantage becomes determinant in the model choice 
when the model specification is non-linear and includes polynomial 
terms (or interaction terms), as in the EKC case, because the SEM mar
ginal effects do not depend on the spatial parameters. 

3.2. Data 

This study adopted the definition of “city” from the GISCO Eurostat: 
“A city is a local administrative unit (LAU) where the majority of the 

population lives in an urban centre of at least 50 000 inhabitants”.9 The 
cities’ shapefiles were recovered from GISCO Eurostat.10 To avoid dis
tortions and missing matches in the spatial weight matrix, outlier cities 
in the Azores, Canary Islands, and French overseas were excluded. This 
resulted in 922 cities from 20 countries, representing a collection of 
relevant urban centres that included wide and densely populated 
metropolitan areas and relatively smaller towns (Fig. 1a). It must be 
noted that some of the cities are located in the same administrative areas 
(NUTS-3). 

Table 1 presents the selected environmental indicators. The in
dicators’ grids are intersected with each urban administrative boundary 
and aggregated at the year level as spatial sums (emission, land cover) or 
averages (concentrations). In this way, a spatially distributed panel 
dataset was created (Fig. 1b). By observing the dataset, the best and the 
worst performers among the sample in terms of absolute values and 
reduction achievements can be extrapolated.11 Notably, these rankings 
show some evidence of spatial dependence. For example, most of the top 
five cities with the highest concentrations of fine particulate matter 
(PM2.5) and ozone (O3) in 2018 are located in the Po Valley (Italy). On 
the contrary, the cities with the best performance in the reduction of the 
former are all located in Galicia (Spain) (Table A1). 

Fig. 2 shows the evolution of the sample averages over time for the 
five environmental indicators. Overall, there has been a substantial 
reduction in environmental degradation from 2000 to 2018, in partic
ular following the great financial crisis (2006–2008). On average, CO2 
per capita emissions have decreased by 18.4% in the sample period and 

Table A1 
Top five cities for each indicator in the initial and final year of the sample, as well as the top five cities ranked for overall reduction in the indicator.   

2000 2018 2000–2018 

Indicator City Country Value City Country Value City Country % 
reduction 

City 
Network 

CO2 Tonne per 
capita 

M. Konin PL 62.8 M. Konin PL 74.4 Westminster UK 72.7% N 
M. Rybnik PL 23.1 M. Rybnik PL 25.6 Camden UK 72.4% N 
Greater 
Middelburg 

NL 23.0 Greater 
Middelburg 

NL 19.3 City of London UK 71.9% Y 

Warrington UK 20.8 Heilbronn DE 16.3 Tower Hamlets UK 70.2% N 
Heilbronn DE 20.0 M. Opole PL 15.9 Islington UK 69.3% N 

PM2.5 μg/m3 Radom PL 28.5 Padova IT 31.7 Lugo ES 61,55% Y 
Tomaszów 
Mazowieck 

PL 28.4 Venezia IT 30.5 Santiago de 
Compostela 

ES 59,82% Y 

Piotrków 
Trybunalski 

PL 28.1 Treviso IT 30.1 Pontevedra ES 57,89% Y 

Sosnowiec PL 28.1 Vicenza IT 29.9 Ourense ES 51,60% N 
Krakow PL 27.9 Krakow PL 28.5 Cuenca ES 50,22% Y 

O3 μg/m3 Cremona IT 64228.4 Chania EL 67518.5 Avilés ES 85,57% Y 
L’Aquila IT 63806.6 Lecco IT 65829.8 Coruña, A ES 80,41% Y 
Massa IT 63723.5 Como IT 64986.1 Gijón ES 69,96% Y 
Piacenza IT 62460.6 Busto Arsizio IT 63397.2 Lugo ES 69,24% Y 
Saronno IT 62158.9 Saronno IT 63344.1 Oviedo ES 67,70% N 

AA Km2 City of Paris FR 700.9 City of Paris FR 704.3 Ferrol ES 27,58% N 
Berlin DE 574.0 Berlin DE 562.9 Wigan UK 26,82% N 
Hamburg DE 407.1 Hamburg DE 401.2 Most CZ 22,06% N 
Roma IT 365.2 Roma IT 395.8 Görlitz DE 15,68% N 
Budapest HU 330.9 Budapest HU 348.5 Dessau-Roßlau DE 15,29% N 

SO2 Mg/year Drobeta-Turnu 
Sever 

RO 48696.7 Aviles ES 8416.5 Tatabánya HU 99,75% N 

Craiova RO 32809.9 Plock PL 8132.0 Drobeta-Turnu 
Sever 

RO 99,68% N 

Konin PL 32398.4 Linea de la 
Concepcion 

ES 6667.8 Cannock Chase UK 99,65% N 

Linea de la 
Concepcion 

ES 24289.6 Most CZ 5712.7 Pecs HU 99,44% Y 

A Coruna ES 21724.3 Duisburg DE 4400.6 Serres EL 98,79% Y  

9 See Eurostat (n.d.). “What is a city? Spatial units”. Link: https://ec.europa. 
eu/eurostat/web/cities/spatial-units.  
10 © EuroGeographics for the administrative boundaries.  
11 For reference, see Table A1 in the Appendix. 
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have been steadily declining since 2006 (-29.3%). O3 concentrations 
shrunk by 41.7% from 2006 to 2014 and, notwithstanding their rebound 
in 2018, they are still 11.3% below their starting level. PM2.5 concen
trations showed some volatility over the years but altogether fell by 
10.4% over the whole period. SO2 emissions have constantly decreased 
since 2000 and registered the most significant downfall among the in
dicators (-73%). On the contrary, the artificial area surged by 9.4%.12 

The sampled cities are diverse. Some are megacities placed in an 
industrial area, and some are small rural towns. Different demographic 
and geographical factors are considered to account for differences in 
size, population, and location. Controls included both time-varying and 
time-constant effects, presented in Table A2.13 The study also consid
ered the hypothesis that a city may participate in one or more TCNs 
dedicated to sustainable growth and climate change mitigation. Partic
ipation in these climate initiatives may be a symptom of environmental 
awareness and omitting this information may bias the estimates.14 

4. Results 

After running the set of non-spatial linear regressions,15 the first 
evidence of cross-sectional dependence was collected with the Pesaran 
test (Table 2). In addition, the Breusch-Godfrey/Wooldridge test for 
panel models showed the presence of serial correlation. This issue was 
explored further by testing each variable for spatial correlation, using 
the Global Moran’s I and the Lagrangian Multiplier tests from Baltagi 
et al. (2007). All the tests confirmed the presence of spatial correlation in 
the model (except for Moran’s I for SO2), providing a case for the use of 
spatial econometric techniques. Consequently, the EKC was estimated 
with an SEM.16 In order to dispel any doubts about the chosen model, a 
specification that included both spatial lags and spatial errors was run 
and revealed that spatial errors were always more statistically signifi
cant than lags.17 Then, the in-sample income turning points were 
bootstrapped. Finally, the results are discussed below. 

4.1. Estimation results 

Table 3 presents the results for the benchmark model. Following the 
related literature, the model variables are taken in logs. Time effects 
results are omitted to save space but are available in Table A12 of the 
Appendix. The spatial matrix W was built by considering the ten nearest 
neighbours. Although the structure of a spatial weight matrix could be 
less relevant to the estimation results than having a well-specified model 
(LeSage and Pace, 2014), the number of selected neighbours might 
affect them due to the large distances possible in the sample. A robust
ness exercise was conducted with varying neighbours’ numbers to check 
that the signs of the coefficients were not affected.18 

The estimation results confirm two main findings: the existence of 
spatial dependence19 and the variety of EKC shapes. CO2 emissions 
display the usual inverted U-shape, in line with Bölük and Mert (2014) 
and Kasman and Duman (2015) but in contrast with Acaravci and 
Ozturk (2010) and Altıntaş and Kassouri (2020). With regards to other 
geographical areas, Aldy (2005) finds the same inverted-U relation for 
U.S. states. An N-shaped relationship was found for PM2.5; in contrast to 
Zheng and Kahn (2017) and Ding et al. (2019), who found an inverse 

Table A2 
Description and sources of the independent and control variables.  

Variable Metric Symbol Description Source 

Income per 
capita 

USD GDP Provincial Gross 
Domestic 
Product per 
capita in 
Purchasing 
Power Standard 
(PPS) in 
2000–2018 

(OECD, 2018) 

Population 
density 

Inhabitants/ 
km2 

PD Population 
counts divided 
by the city area 
in square 
kilometres 

Eurostat 

Average 
temperature 

◦C T Annual average 
of the ERA5- 
Land 
temperature 
weighted for the 
city area in 
Celsius degrees 

Muñoz Sabater 
(2019) 

City Network 0–1 CN Dummy 
variable. 0 =
not in a city 
network; 1 = in 
a city network 

Elaboration on 
considered city 
networks data 
(ICLEI – Local 
Governments for 
Sustainability, 
C40, Global 
Covenant of 
Mayors for 
Climate and 
Energy, 100 
Resilient Cities) 

Committment 
to a city 
network 

Number of 
years 

CCN Commitment to 
a city network 
and numbers of 
years since 
joining one. 

Elaboration on 
considered city 
networks data 
(ICLEI – Local 
Governments for 
Sustainability, 
C40, Global 
Covenant of 
Mayors for 
Climate and 
Energy, 100 
Resilient Cities) 

Mountain zone 
category  

MZC Category for 
mountain area 
type (0–6) 

Kapos (2000) 

Average 
Elevation 

meters E Average 
elevation in the 
city area in 
meters over the 
sea 

Eurostat, GISCO 

Distances from 
borders 

kilometers B Distance in Km 
from the closest 
other country 
border 

Eurostat, GISCO 

Distances from 
sea 

kilometers S Distance in Km 
from the closest 
sea shore 

Eurostat, GISCO  

12 These trends are in line with observations by EEA (2021). Discrepancies in 
these estimates may be due to the use of different satellite data sources and to 
the different spatial nature of the sample. 

13 Most of these controls are constant in time, so they do not appear in the 
benchmark fixed-effects model. However, they can still be observed in the 
nonspatial estimations. For the descriptive statistics of control variables, see 
Table A3 in the Appendix.  
14 Additional details of the selected city networks are included in Table A4 in 

the Appendix.  
15 See the estimation results from Table A5 to Table A9 in the Appendix.  
16 Estimations were performed on R through the packages plm (Croissant and 

Millo, 2008) for panel models and splm (Millo and Piras, 2012) for spatial panel 
models and the related statistics.  
17 This approach was proposed by Bivand et al. (2021) and the results can be 

found in the Appendix in Table A10.  
18 The spatial weight matrix W was constructed with the functions included in 

the R package spdep (Bivand et al., 2015).Visualisation of the spatial weight 
matrix can be found in Figure A1 of the Appendix. As a robustness check, W was 
also considered with K=5, K= 20, K=50. Results are listed in Table A11 of the 
Appendix.  
19 ρ has a significant and positive value in each specification. 
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U-shaped relationship between particulate matter and GDP in Chinese 
cities. For the remaining environmental indicators, there was an inverse 
N-shaped function. To the authors’ knowledge, this paper is the first to 
find evidence of an EKC for ozone. With regard to SO2, the only paper 
focused on Europe found an inverted U-shaped relationship (Rafaj et al., 
2014)for 13 EU countries. Finally, the results on land use are in contrast 
to those of Bimonte and Stabile (2017), who rejected the EKC hypothesis 
for land consumption in Italian regions, and Pontarollo and Serpieri 
(2020), who found an inverted U-shape for 42 Romanian counties. 

With regard to the control variables, the study estimates a significant 
and negative contribution of population density to CO2 emissions, while 
the contribution to O3 is statistically non-significant. Population density 
also shows significant and positive coefficients for PM2.5, SO2 and arti
ficial area (AA). These results can be interpreted in light of recent data 
on emissions by source in Europe, in which road transport is the second 
most important contributor to CO2, while residential and commercial 
activities are the main sources of PM2.5 (Tiseo, 2022; EEA, 2022). Ozone 
precursors are mainly produced by agriculture and the residential 
sector, while energy supply is the biggest producer of SO2 (EEA, 2022) . 
Thus, assuming that population density is positively correlated with the 
level of urban agglomeration, low CO2 emissions can be expected in 
densely populated cities due to limited car usage. At the same time, 
densely populated areas are characterised by a high concentration of 
residential and commercial areas, leading to high levels of PM2.5 and 
SO2. Population density is also strictly linked to high shares of built-up 
areas in city centres. Finally, temperatures have a negative effect on 
PM2.5 and SO2, while they contribute to the increase in CO2 emissions 
and O3 and AA. 

Finally, the relationships between environmental indicators and TCN 
participation are largely heterogeneous. Participating in a city network 
seems to be beneficial for the reduction of O3 concentrations and SO2 
emissions. However, participation appears to be associated with higher 
CO2 emissions, PM2.5 concentrations, and AA. As a result, the role of city 

networks in the mitigation of environmental degradation is ambiguous. 
For this reason, it is explored in depth in Section 4.3. 

4.2. Turning points 

Turning points have been calculated in virtually every work on the 
EKC, but consensus on their entity has never been reached (Sarkodie and 
Strezov, 2019). Narrowing the focus to Europe, the estimated turning 
points for CO2 emissions move in a wide range from 3,630 USD to 
83,973.75 USD (Shahbaz and Sinha, 2019). For land use, the range is 
smaller, from 993 USD to 3,451 USD (Pontarollo and Serpieri, 2020). 
Rafaj et al. (2014) found the inflection point of their curve at around 
13,000 USD for SO2. Estimates of the turning point for PM2.5 concen
trations are not available for Europe, but Ding et al. (2019) located it 
between 80,508 and 106,903 yuan (from circa 11,000 USD to 14,000 
USD) in Chinese NUTS-3 regions, in line with Zheng and Kahn (2017) 
who calculated the turning point at around 100,000 yuan. Finally, to the 
authors’ knowledge, estimates for the turning point of O3 concentrations 
are absent from the literature. 

The turning point is the income level at which the marginal effect, 
supposed to be initially positive and decreasing, equals zero and later 
becomes negative. It is computed using the coefficient point estimates. 
While computationally straightforward, the approach does not allow 
any inference of the turning point. The confidence interval for marginal 
effects estimated in Section 4.1 was computed via bootstrap on sub- 
samples. In detail, the model was re-estimated 1,000 times using a 
random sub-sample of 600 units20 and the marginal effect and confi
dence intervals at each level of GDP in the sample were computed. Fig. 3 
presents the marginal effects plotted against the actual series of 
log(GDP) for all the selected indicators.  

• The marginal effect of CO2 is linearly decreasing, as expected, but the 
value of log (GDP) at which the effect becomes zero, and later 
negative, is out-of-sample. Although the inverse U-shape is correctly 
predicted by the model, a more accurate inference suggests that the 
EKC hypothesis is not verified in EU cities. In contrast, evidence in
dicates that emissions continue to grow as GDP increases, although at 
a decreasing pace. 

• The PM2.5 results return more EKC-consistent evidence. The mar
ginal effect is positive and decreasing up to an approximate income 
level of 6,600 USD,21 above which it turns negative. Notably, the 

Table A3 
Summary statistics of all the variables considered in the study.  

Statistics  Mean St. Dev. Min 1st qrtl. 3rd qrtl. Max 

Environmental degradation        
CO2 emissions Tonne per cell 1.57 3.11 0.08 0.63 1.44 74.37 
PM2.5 Concentrations μg/m3 13.340 5.36 1.02 9.54 15.78 45.44 
O3 Concentrations μg/m3 23,580.08 14,726.21 0.00 10,956.02 34,193.10 85880 
Artificial areas (AA) Km2 45.74 51.32 1.26 19.72 53.45 704.29 
SO2 emissions Mg/year 700.13 2088.487 2.04 74.74 487.42 48696.76  

Controls        
Income per capita USD 34305.34 28388.48 2167 22648 40002 638193 
Population density Inhabitants/km2 2039.219 2174.81 22.23 782.69 2508.73 32868.77 
Average temperature ◦C 11.35 2.89 − 1.67 9.52 13.04 20.99 
Mountain zone category 1-7 0.54 1.35 0 0 0.08 6.33 
Average elevation M 174.50 194.40 − 3.77 42.01 239.36 1298.61 
Distance from closest border Km 146.30 121.67 48.02 219.75 0.71 1283.07 
Distance from closest sea km 134 151.30 0.01 6.57 238.72 627.60 
City network 0-1 0.52 0.50 0 0 1 1 
Commitment to a city network years 5.97 7 0 0 11 30  

Table A4 
Detail on the city networks considered; (1) source: City networks’ websites, 
Wikipedia; (2) authors’ calculation of the sample considered.  

Name Year of 
foundation1 

Participants2 

ICLEI – Local Governments for Sustainability 1990 83 
C40 2005 16 
Global Covenant of Mayors for Climate and 

Energy 
2016 471 

100 Resilient Cities 2013 11  

20 The spatial weight matrix used in every run changes accordingly.  
21 Notably, this threshold for European cities is lower than those found by 

Zheng and Kahn (2017) and Ding et al. (2019) for Chinese cities. 

M.C.P. Rizzati et al.                                                                                                                                                                                                                            



Ecological Indicators 148 (2023) 110143

11

marginal effect becomes positive again after the threshold of 
442,000 USD, suggesting there are a few outlier cities in the sample 
with very high income and also very high concentration levels.  

• The O3 marginal effect is negative at every GDP level, indicating that 
ozone concentration contracts as income rises in a non-monotonic 

fashion, showing a complete decoupling with economic develop
ment. The evidence clearly suggests that there is no support of the 
EKC hypothesis but, on the other hand, it also shows that there is no 
environmental issue with O3 concentration being related to eco
nomic development.  

• The SO2 emissions results do not confirm the EKC hypothesis. On the 
one hand, the estimated marginal effect is initially lower than zero 
and later becomes positive after the approximate income threshold 

Table A5 
Panel estimation, full model for CO2.   

Pooled FE RE 

log_G 9.502* − 4.086 − 4.700* 
(5.188) (2.865) (2.677) 

log_G_2 − 0.741 0.485* 0.554** 

(0.498) (0.284) (0.264) 
log_G_3 0.020 − 0.018* − 0.020** 

(0.016) (0.009) (0.009) 
log_D − 0.334*** − 1.040*** − 0.833*** 

(0.021) (0.033) (0.033) 
log_Temp − 5.497** − 8.099*** − 7.505*** 

(2.203) (0.805) (0.786) 
Avg_MNT − 0.035**  − 0.048** 

(0.014)  (0.023) 
Avg_elevation − 0.001***  − 0.001*** 

(0.000)  (0.000) 
D_Bord_m − 0.000  − 0.000 

(0.000)  (0.000) 
D_Sea_m 0.000**  0.000 

(0.000)  (0.000) 
N 0.001 0.021** 0.022** 

(0.040) (0.010) (0.010) 
time2001 − 0.023*** − 0.009*** − 0.011*** 

(0.005) (0.003) (0.003) 
time2002 0.009 0.046*** 0.040*** 

(0.007) (0.007) (0.007) 
time2003 0.006 0.056*** 0.048*** 

(0.008) (0.008) (0.008) 
time2004 − 0.010 0.056*** 0.046*** 

(0.010) (0.009) (0.009) 
time2005 0.020* 0.099*** 0.086*** 

(0.012) (0.011) (0.010) 
time2006 − 0.018 0.090*** 0.071*** 

(0.014) (0.012) (0.012) 
time2007 − 0.065*** 0.061*** 0.039*** 

(0.017) (0.014) (0.014) 
time2008 − 0.121*** 0.015 − 0.009 

(0.019) (0.016) (0.015) 
time2009 − 0.195*** − 0.062*** − 0.086*** 

(0.020) (0.015) (0.015) 
time2010 − 0.279*** − 0.163*** − 0.183*** 

(0.024) (0.016) (0.016) 
time2011 − 0.308*** − 0.172*** − 0.196*** 

(0.026) (0.017) (0.017) 
time2012 − 0.335*** − 0.200*** − 0.224*** 

(0.027) (0.018) (0.018) 
time2013 − 0.380*** − 0.240*** − 0.265*** 

(0.029) (0.019) (0.019) 
time2014 − 0.426*** − 0.269*** − 0.298*** 

(0.032) (0.020) (0.020) 
time2015 − 0.430*** − 0.268*** − 0.298*** 

(0.033) (0.021) (0.021) 
time2016 − 0.469*** − 0.294*** − 0.327*** 

(0.036) (0.023) (0.023) 
time2017 − 0.482*** − 0.296*** − 0.332*** 

(0.038) (0.025) (0.025) 
time2018 − 0.514*** − 0.315*** − 0.354*** 

(0.041) (0.026) (0.026) 
Constant − 6.805  60.294*** 

(20.027)  (9.978) 
Observations 17,518 17,518 17,518 
R2 0.278 0.559 0.528 
Adjusted R2 0.277 0.534 0.528  

***Significant at the 1 percent level.     

Notes: ***Significant at the 1 percent level. 
**Significant at the 5 percent level. 
*Significant at the 10 percent level. 

Table A6 
Panel estimation, full model for O3.   

Pooled FE RE 

log_G 9.502* − 4.086 − 4.700* 
(5.188) (2.865) (2.677) 

log_G_2 − 0.741 0.485* 0.554** 

(0.498) (0.284) (0.264) 
log_G_3 0.020 − 0.018* − 0.020** 

(0.016) (0.009) (0.009) 
log_D − 0.334*** − 1.040*** − 0.833*** 

(0.021) (0.033) (0.033) 
log_Temp − 5.497** − 8.099*** − 7.505*** 

(2.203) (0.805) (0.786) 
Avg_MNT − 0.035**  − 0.048** 

(0.014)  (0.023) 
Avg_elevation − 0.001***  − 0.001*** 

(0.000)  (0.000) 
D_Bord_m − 0.000  − 0.000 

(0.000)  (0.000) 
D_Sea_m 0.000**  0.000 

(0.000)  (0.000) 
N 0.001 0.021** 0.022** 

(0.040) (0.010) (0.010) 
time2001 − 0.023*** − 0.009*** − 0.011*** 

(0.005) (0.003) (0.003) 
time2002 0.009 0.046*** 0.040*** 

(0.007) (0.007) (0.007) 
time2003 0.006 0.056*** 0.048*** 

(0.008) (0.008) (0.008) 
time2004 − 0.010 0.056*** 0.046*** 

(0.010) (0.009) (0.009) 
time2005 0.020* 0.099*** 0.086*** 

(0.012) (0.011) (0.010) 
time2006 − 0.018 0.090*** 0.071*** 

(0.014) (0.012) (0.012) 
time2007 − 0.065*** 0.061*** 0.039*** 

(0.017) (0.014) (0.014) 
time2008 − 0.121*** 0.015 − 0.009 

(0.019) (0.016) (0.015) 
time2009 − 0.195*** − 0.062*** − 0.086*** 

(0.020) (0.015) (0.015) 
time2010 − 0.279*** − 0.163*** − 0.183*** 

(0.024) (0.016) (0.016) 
time2011 − 0.308*** − 0.172*** − 0.196*** 

(0.026) (0.017) (0.017) 
time2012 − 0.335*** − 0.200*** − 0.224*** 

(0.027) (0.018) (0.018) 
time2013 − 0.380*** − 0.240*** − 0.265*** 

(0.029) (0.019) (0.019) 
time2014 − 0.426*** − 0.269*** − 0.298*** 

(0.032) (0.020) (0.020) 
time2015 − 0.430*** − 0.268*** − 0.298*** 

(0.033) (0.021) (0.021) 
time2016 − 0.469*** − 0.294*** − 0.327*** 

(0.036) (0.023) (0.023) 
time2017 − 0.482*** − 0.296*** − 0.332*** 

(0.038) (0.025) (0.025) 
time2018 − 0.514*** − 0.315*** − 0.354*** 

(0.041) (0.026) (0.026) 
Constant − 6.805  60.294*** 

(20.027)  (9.978) 
Observations 17,518 17,518 17,518 
R2 0.278 0.559 0.528 
Adjusted R2 0.277 0.534 0.528 

Notes: ***Significant at the 1 percent level. 
**Significant at the 5 percent level. 
*Significant at the 10 percent level. 
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of 8,000 USD. This, however, must be considered at the light of the 
decrease in European trends (Rafaj et al., 2014) and the low values 
found in this work.  

• Finally, the land use results provide almost full support for the EKC 
hypothesis. This is defined as almost full because the AA’s marginal 
effect is initially negative, which is inconsistent with the hypothesis. 
However, after an approximate income value of 4,000 USD, the 
marginal effect becomes positive, indicating that the artificial urban 

area increases with income and does so at increasing rates, which is 
consistent with the existing empirical evidence about the urban 
sprawl and inefficient land use phenomena operating in small cities 
(Guastella et al., 2017). The marginal effect decreases and becomes 
negative above the 60,000 USD income threshold. Cities above the 
threshold stop expanding the urbanised area and invest in urban 
reconversion projects, for instance, re-naturalising abandoned areas 
or investing in green urban infrastructures. 

4.3. The role of city networks 

To explore the contribution of TCNs, the data were split into two sub- 
samples: cities that are members of at least one TCN and cities that are 
not. The spatial distribution of sample cities by the group to which they 
belong is displayed in Fig. 4. Interestingly, there are no signs of 
geographical concentration of member cities, while non-members 
appear to be particularly present in the United Kingdom, Germany, 
and Eastern Europe (mainly in the Czech Republic and Poland). In 
relative terms, Norway and Ireland are also predominantly represented 
by non-members. 

An SEM benchmark regression was run for each of the two groups of 
cities. The resulting marginal effects are shown in Fig. 5. The latter does 
not include SO2, as income loses statistical significance. 

Overall, the two sub-samples exhibit similar behaviours. For 
example, both member and non-member cities display decreasing 
marginal effects of income on CO2 emissions, with non-member cities 
reaching their turning point earlier (respectively at 60,000 versus 
270,000 USD). Viewed from another angle, the evidence shows that non- 
member cities have, other things being equal, lower emission growth 
and that urban economic development in Europe has been coupled to 
carbon use and emissions. This interpretation is line with Wang et al. 

Table A7 
Panel estimation, full model for.PM2.5.

Pooled FE RE 

log_G 2.494 2.379*** 2.606*** 

(1.670) (0.689) (0.607) 
log_G_2 − 0.258 − 0.224*** − 0.245*** 

(0.158) (0.068) (0.059) 
log_G_3 0.009* 0.007*** 0.007*** 

(0.005) (0.002) (0.002) 
log_D 0.104*** 0.016 0.082*** 

(0.010) (0.013) (0.009) 
log_Temp − 2.464** − 11.145*** − 7.677*** 

(1.219) (0.801) (0.793) 
Avg_MNT 0.022***  0.014** 

(0.007)  (0.007) 
Avg_elevation − 0.001***  − 0.001*** 

(0.000)  (0.000) 
D_Bord_m − 0.001***  − 0.001*** 

(0.000)  (0.000) 
D_Sea_m 0.001***  0.001*** 

(0.000)  (0.000) 
N − 0.075*** 0.037*** 0.034*** 

(0.016) (0.005) (0.005) 
time2001 − 0.005 − 0.020*** − 0.014*** 

(0.006) (0.005) (0.005) 
time2002 0.083*** 0.082*** 0.082*** 

(0.005) (0.005) (0.005) 
time2003 0.115*** 0.112*** 0.112*** 

(0.006) (0.006) (0.006) 
time2004 − 0.049*** − 0.063*** − 0.059*** 

(0.007) (0.006) (0.006) 
time2005 0.046*** 0.030*** 0.035*** 

(0.008) (0.006) (0.007) 
time2006 0.065*** 0.067*** 0.065*** 

(0.010) (0.009) (0.009) 
time2007 − 0.123*** − 0.117*** − 0.121*** 

(0.008) (0.007) (0.007) 
time2008 − 0.165*** − 0.178*** − 0.178*** 

(0.009) (0.008) (0.007) 
time2009 − 0.151*** − 0.174*** − 0.175*** 

(0.010) (0.008) (0.008) 
time2010 − 0.086*** − 0.150*** − 0.136*** 

(0.014) (0.011) (0.011) 
time2011 − 0.070*** − 0.098*** − 0.100*** 

(0.011) (0.008) (0.007) 
time2012 − 0.128*** − 0.174*** − 0.170*** 

(0.012) (0.009) (0.009) 
time2013 − 0.157*** − 0.213*** − 0.207*** 

(0.013) (0.010) (0.009) 
time2014 − 0.022 − 0.045*** − 0.052*** 

(0.015) (0.012) (0.012) 
time2015 − 0.072*** − 0.104*** − 0.109*** 

(0.014) (0.012) (0.011) 
time2016 − 0.061*** − 0.099*** − 0.102*** 

(0.014) (0.011) (0.009) 
time2017 0.010 − 0.025* − 0.029** 

(0.016) (0.013) (0.011) 
time2018 0.050*** 0.027** 0.018 

(0.017) (0.013) (0.012) 
Constant 8.049  36.513*** 

(8.682)  (4.829) 
Observations 17,518 17,518 17,518 
R2 0.526 0.389 0.396 
Adjusted R2 0.525 0.354 0.395 

Notes: ***Significant at the 1 percent level. 
**Significant at the 5 percent level. 
*Significant at the 10 percent level. 

Table A8 
Panel estimation, full model for Land use.   

Pooled FE RE 

log_G − 24.596*** − 4.046*** − 4.590*** 

(6.361) (0.946) (0.878) 
log_G_2 2.462*** 0.420*** 0.468*** 

(0.628) (0.094) (0.087) 
log_G_3 − 0.081*** − 0.014*** − 0.016*** 

(0.021) (0.003) (0.003) 
log_D − 0.067*** 0.146*** 0.077*** 

(0.024) (0.028) (0.020) 
log_Temp − 24.582*** 4.258*** 0.246 

(2.480) (0.633) (0.628) 
Avg_MNT − 0.030  − 0.007 

(0.021)  (0.023) 
Avg_elevation − 0.001***  − 0.001*** 

(0.000)  (0.000) 
D_Bord_m 0.001***  0.001*** 

(0.000)  (0.000) 
D_Sea_m 0.000**  0.001*** 

(0.000)  (0.000) 
N 0.369*** 0.021*** 0.023*** 

(0.043) (0.005) (0.005) 
time2006 0.001 0.058*** 0.057*** 

(0.014) (0.005) (0.005) 
time2012 − 0.172*** 0.084*** 0.074*** 

(0.029) (0.007) (0.007) 
time2018 − 0.187*** 0.065*** 0.066*** 

(0.043) (0.010) (0.010) 
Constant 223.519***  16.210*** 

(24.908)  (4.636) 
Observations 3,688 3,688 3,688 
R2 0.237 0.420 0.337 
Adjusted R2 0.234 0.224 0.335 

Notes: 
***Significant at the 1 percent level. 
**Significant at the 5 percent level. 
*Significant at the 10 percent level. 
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(2022), who investigated the EKC in 134 countries and found that ur
banisation diminishes the benefits of economic growth on emissions 
reduction. In response to this trend, cities with a higher emission growth 
are more likely to join TCNs. 

Regarding ozone, both member and non-member cities display 
negative marginal effects consistent with full sample estimates. 
Considering land use, both groups return evidence consistent with the 
EKC hypothesis, but member cities are characterised by a lower turning 

point (4,400 USD vs 6,000 USD and 40,100 USD vs 120,500 USD). The 
PM2.5 results deserve special attention. While member cities display an 
air pollution reduction trajectory similar to that displayed by the full 
sample, non-member cities’ trajectory is not even comparable. The non- 
member cities’ marginal effect is always positive, without a turning 
point. 

Fig. 6 depicts the spatial distribution of cities depending on their 
current decoupling stage. For CO2 emissions, most of the cities in the 

Table A9 
Panel estimation, full model for.SO2.

Pooled FE RE 

log_G 13.104*** − 9.936*** − 8.098*** 

(3.430) (1.991) (1.967) 
log_G_2 − 1.441*** 0.890*** 0.719*** 

(3.43) (0.196) (0.194) 
log_G_3 − 1.441*** − 0.025*** − 0.020** 

(0.327) (0.006) (0.006) 
log_D 0.594*** 0.099** 0.304*** 

(0.009) (0.038) (0.027) 
log_Temp 3.112** − 12.024*** − 6.559*** 

(1.031) (2.188) (1.941) 
Avg_MNT − 0.096*** – − 0.078* 

(0.009) – (0.039) 
Avg_elevation − 0.001*** – − 0.001** 

(0.000) – (0.000) 
D_Bord_m − 0.000 – − 0.000 

(0.000) – (0.000) 
D_Sea_m 0.001*** – 0.001*** 

(0.000) – (0.000) 
N 0.758** − 0.091*** − 0.094*** 

(0.025) (0.010) (0.010) 
time2001 − 0.008 − 0.070*** − 0.057*** 

(0.056) (0.016) (0.0168) 
time2002 − 0.075 − 0.144*** − 0.138*** 

(0.56) (0.016) (0.016) 
time2003 − 0.241*** − 0.332*** − 0.324*** 

(0.056) (0.016) (0.016) 
time2004 − 0.260*** − 0.405*** − 0.388*** 

(0.056) (0.017) (0.017) 
time2005 − 0.309*** − 0.482*** − 0.461*** 

(0.057) (0.018) (0.017) 
time2006 − 0.366*** − 0.571*** − 0.554*** 

(0.057) (0.018) (0.018) 
time2007 − 0.424*** − 0.668*** − 0.649*** 

(0.057) (0.019) (0.019) 
time2008 − 0.485*** − 0.767*** − 0.738*** 

(0.057) (0.020) (0.020) 
time2009 − 0.656*** − 0.897*** − 0.872*** 

(0.057) (0.020) (0.019) 
time2010 − 0.593*** − 0.914*** − 0.862*** 

(0.057) (0.023) (0.022) 
time2011 − 0.729*** − 0.996v − 0.966*** 

(0.058) (0.022) (0.021) 
time2012 − 0.724*** − 1.023*** − 0.983*** 

(0.058) (0.022) (0.021) 
time2013 − 0.781*** − 1.110*** − 1.063*** 

(0.058) (0.024) (0.022) 
time2014 − 0.857*** − 1.142*** − 1.115*** 

(0.058) (0.024) (0.023) 
time2015 − 0.871*** − 1.185*** − 1.151*** 

(0.058) (0.024) (0.023) 
time2016 − 0.902*** − 1.264*** − 1.222*** 

(0.059) (0.026) (0.025) 
time2017 − 0.904*** − 1.297*** − 1.252*** 

(0.059) (0.027) (0.026) 
Constant − 53.402*** – 70.194*** 

(12.654) – (12.754) 
Observations 16,596 16,596 16,596 
R2 0.287 0.548 0.533 
Adjusted R2 0.286 0.520 0.532 

Notes: 
***Significant at the 1 percent level. 
**Significant at the 5 percent level. 
*Significant at the 10 percent level. 

Table A10 
Test to evaluate the most relevant spatial model.  

CO2  

Estimate Std.error t-value Pr(>|t|) 

Lambda − 0.4417129 0.03344362 − 13.20769 7.922096e-40 
rho 0.7678899 0.01037133 74.03966 0.000000e+00  

PM2.5  

Estimate Std.error t-value Pr(>|t|) 

Lambda − 0.8483532 0.035445381 − 23.93410 1.353058e-126 
rho 0.7987469 0.008551844 93.40055 0.000000e+00  

O3  

Estimate Std.error t-value Pr(>|t|) 

Lambda − 0.5405122 0.035386664 − 15.27446 1.131591e-52 
rho 0.8796115 0.006179993 142.33214 0.000000e+00  

AA  

Estimate Std.error t-value Pr(>|t|) 

Lambda 0.6504746 0.03189511 20.394180 1.883472e-92 
rho − 0.5798640 0.08652545 − 6.701658 2.060678e-11  

SO2  

Estimate Std.error t-value Pr(>|t|) 

Lambda 0.457346 0.034096 13.414 0.000000e+00 
rho − 0.338973 0.060169 − 5.6337 1.764e-08  

Table A11 
Estimation results for the EKC shape coefficients values (log GDP, logGDP2, 
logGDP3) and the spatial error parameter rho for each indicator varying the 
number of neighbours in the spatial weight matrix.  

Indicator Coefficients K = 1 K = 5 K = 25 K = 50 

CO2 β1  1.400  1.427  1.515  1.501 
β2  − 0.056  − 0.058  − 0.060  − 0.063 
β3  –  –  –  – 
Rho  0.070  0.205  0.507  0.638 

O3 β1  − 43.500  − 21.600  − 12.7612  − 10.858 
β2  4.030  2.044  1.1920  1.001 
β3  − 0.1245  − 0.063  − 0.037  − 0.0313 
Rho  0.3000  0.561  0.797  0.870 

PM2.5 β1  1.732  2.312  2.543  2.416 
β2  − 0.163  − 0.220  − 0.245  − 0.235 
β3  0.005  0.006  0.008  0.007 
Rho  0.168  0.427  0.700  0.774 

AA β1  − 3.806  − 3.398  − 2.934  − 2.733 
β2  0.395  0.353  0.306  0.286 
β3  − 0.013  − 0.012  − 0.010  − 0.009 
Rho  0.059  0.254  0.536  0.685 

SO2 β1  − 9.807  − 9.890  − 9.859  − 9.678 
β2  0.876  0.886  0.890  0.871 
β3  − 0.0247  − 0.025  − 0.025  − 0.025 
Rho  0.0334  0.155  0.350  0.454  
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decoupling stage are non-members22 and concentrated in the United 
Kingdom and Germany. For PM2.5 concentrations, there is no spatial 
pattern, but the gap between members and non-members is clear: 
member cities are all in the decoupling stage, while the totality of non- 
members is still in the first stage. Finally, no spatial pattern can be found 
in the distribution of decoupling cities for AA. 

5. Discussion 

To make sense of these results, the average trends in environmental 
degradation in Fig. 2 can be compared with the distribution of 

decoupling cities in Fig. 6. European cities are largely on track in their 
decoupling efforts for PM2.5 and O3 concentrations, as most of them 
(respectively, 477 and 922 out of 922) have an average per capita in
come that is greater than that required to decouple environmental 
degradation from development. This conclusion is in line with the 
decreasing trends in environmental degradation at the aggregate Euro
pean level (see Fig. 2). In particular, the findings confirm that network 
participation is associated with improved urban air quality by facili
tating the decoupling of economic development from pollution. This is 
crucial for European cities, where the share of the population exposed to 
annual averages of PM2.5 and O3 concentration levels above 2021 WHO 
thresholds was about 96%–100% and 93%–98%, respectively (EEA, 
2022). 

European cities are also on track with reduction of soil sealing. 
However, there is strong evidence that sprawl is the predominant urban 
spatial expansion model in Europe, with 654 sample cities lagging 
behind the second turning point. Evidence suggests that TCNs appear to 
contribute in this context, promoting several initiatives to reduce arti
ficial areas in urban centres. For example, the C40 Land Use Planning 
Network provides a platform for cities to accelerate the development 
and implementation of sustainable and inclusive land-use policies, such 
as 15-minutes city policies and the preservation of green spaces. The 
European Covenant of Mayors considers land-use planning as one of the 
most vulnerable sectors on the adaptation side and prescribes a mini
mum share of green surface area among the policy instruments in cases 
of urban expansion (JRC, 2016). ICLEI-led INTERACT-Bio, although 
currently focused on the Global South, provides nature-based solutions 
to expanding urban communities and is designed to improve the man
agement of nature within cities. 

This study’s results point towards a novel city-based interpretation of 
the drivers of the EKC curvature: multi-lateral interaction. In fact, it 
found that cities achieve a balance between economic development and 
sustainability by participating in climate protection networks, benefit
ting from informal regulation and knowledge spill-overs from peers. 
This hypothesis is line with Hawkins et al. (2016), who used survey data 
of US state governments to conclude that network participation is a 
strong predictor of local policy decisions on environmental issues. One 
possible channel harnessing these dynamics is the so-called “networked 
experimentation” (Smeds and Acuto, 2018). For local governments, 
networking facilitates knowledge-sharing and learning, potentially 
giving policymakers ideas and confidence to conduct experiments. 
Another channel is enabled by the involvement of interest groups in city 
politics. In fact, multi-lateral networking can cause the birth of local 
environmental advocacy groups, whose inclusion in policymaking may 
spur a high number of programs aimed at achieving sustainability (Berry 
and Portney, 2013). 

To further corroborate this study’s hypothesis, another type of stra
tegic interaction between local governments that may help flatten the 
pollution curve was examined: Chinese intergovernmental competition 
(IGC). In 2007, the Chinese central government enforced an environ
mental target responsibility system (TRS) and introduced environmental 
indicators to an official ranking tournament. Following this scheme, 
local governments are ranked according to their environmental perfor
mance and laggards are economically sanctioned. Zhang and Yang 
(2022) found that local officials tailor their enforcement of top-down 
environmental policies to balance and align their environmental per
formance with that of their peer competitors. The authors highlighted 
the role of peer pressure between Chinese local authorities in pushing 
down the EKC for 84 cities, reflecting the same effect of TCNs on the EKC 
in Europe. 

The most straightforward policy implication ensuing from these re
sults would be that non-member cities should consider joining 
sustainability-related TCNs, in order to benefit from the positive exter
nalities such as knowledge spillovers. Moreover, member cities that are 
not yet in the decoupling stage of development could compare their 
degree of involvement and the selected actions and projects against the 

Table A12 
Full estimation results for CO2 emissions, O3 and PM2.5, concentrations, and 
artificial Land Use. Standard Error in parenthesis. The specification for CO2 does 
not include logGDP3 due to non significance. The model for PM2.5 is fitted with 
GMM estimation.   

CO2 O3 PM2.5 Land Use 

log_G 1.631*** − 9.621** 2.853*** − 3.116*** 

(1.842) (3.516) (0.613) (0.534) 
log_G_2 − 0.058*** 0.896** − 0.272*** 0.326*** 

(0.008) (0.326) (0.060) (0.052) 
log_G_3 – − 0.028** 0.008*** − 0.011***  

(0.010) (0.001) (0.001) 
log_D − 0.310*** − 0.003 0.058* 0.131*** 

(0.005) (0.007) (0.012) (0.013) 
log_Temp 5.321*** 31.725*** − 9.978*** 4.010*** 

(0.790) (0.960) (0.744) (0.827) 
City Network 0.050*** − 0.024 0.027*** 0.016 

(0.013) (0.015) (0.003) (0.003) 
time 2001 − 0.004 – − 0.018 – 

(0.027)  (0.010)  
time 2002 − 0.017 – 0.083*** – 

(0.027)  (0.010)  
time 2003 0.028 – 0.112*** – 

(0.027)  (0.010)  
time 2004 0.042 – − 0.060*** – 

(0.028)  (0.010)  
time 2005 0.071* – 0.033** – 

(0.028)  (0.010)  
time 2006 0.021 – 0.068*** 0.060*** 

(0.028)  (0.010) (0.005) 
time 2007 − 0.024 − 0.800*** − 0.112*** – 

(0.028) (0.030) (0.010)  
time 2008 − 0.084** − 0.317*** − 0.171*** – 

(0.028) (0.030) (0.011)  
time 2009 − 0.151*** − 0.408*** − 0.167*** – 

(0.028) (0.030) (0.010)  
time 2010 − 0.192*** − 0.355*** − 0.139*** – 

(0.028) (0.031) (0.011)  
time 2011 − 0.278*** − 0355*** − 0.088*** – 

(0.028) (0.030) (0.011)  
time 2012 − 0.289*** − 0.424*** − 0.161*** 0.090*** 

(0.028) (0.031) (0.011) (0.006) 
time 2013 − 0.312*** − 0.393*** − 0.200*** – 

(0.029) (0.031) (0.011)  
time 2014 − 0.408*** − 0.685*** − 0.037*** – 

(0.029) (0.031) (0.011)  
time 2015 − 0.410*** − 0.758*** − 0.092*** – 

(0.029) (0.031) (0.011)  
time 2016 − 0.447*** − 0.600*** − 0.085***  

(0.029) (0.031) (0.012)  
time 2017 − 0.457*** − 0.841*** − 0.011 – 

(0.029) (0–031) (0.012)  
time 2018 − 0.506** − 0.148*** 0.039** 0.071*** 

(0.029) (0.031) (0.012) (0.008) 
Rho (spatial error 

parameter) 
0.495*** 0.532*** 0.523*** 0.408*** 
(0.011) (0.013) (0.011) (0.028) 

Observations 17,518 11,986 15,674 3688 
R2 0.329 0.532 0.9391 0.9944  

22 There is only one member city in the decoupling stage for CO2 emissions: 
Southampton, UK. 
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ones of decoupled cities. 

6. Concluding remarks 

Urban growth has traditionally been the flywheel of economic 
development, and Europe is no exception. Too often and too greatly, this 
has come at the price of environmental degradation and natural re
sources’ depletion. The extent to which modern cities can reverse this 
course and enter the path of sustainable development is a crucial issue in 
light of climate change and biodiversity losses. City networks can guide 
towards this path by promoting best-practice sharing and delivering 
science-based policy guidance. 

This paper explores the issue in depth. It leverages satellite data 
availability to build a set of environmental indicators able to represent 
environmental degradation over time and at a high spatial resolution. 
This enables the urban scale to be viewed directly in the empirical 
investigation, considering the multiple faces of environmental degra
dation stemming from carbon emissions to pollutant concentration in 
the air and natural resources depletion, soil in particular. By doing so, it 
becomes possible to view cities as units in an environmental decoupling 
analysis, thus contributing to a literature that has primarily focused on 
country-level analyses. 

The study found evidence overall consistent with the EKC hypothe
sis, which predicts environmental degradation to increase during the 
developing stages and fall once wealthier conditions are achieved. 
Although this evidence is largely heterogeneous across the environ
mental degradation indicators considered, the general message is that 
European cities are on track to achieve sustainable development. The 
estimated income level at which environmental degradation starts to fall 
is relatively small, with many cities having already passed this threshold 
and even more being close to doing so. Carbon and sulphur dioxide 
emissions are exceptions. In the first case, evidence suggests that Eu
ropean cities have not been able to decouple their economic growth 
from carbon emissions, notwithstanding the general emission reduction 
trend in Europe. In the second case, there was less robust evidence 
because sulphur dioxide concentration has been steadily declining in 
European cities and is now well below the safe level. 

The second piece of evidence concerns the role of TCNs. Unfortu
nately, the empirical basis in this paper does not allow a conclusion 
based on causal inference, as it lacks a pure counter-factual approach. 
However, the paper has the merit of being the first to look at the issue, 
even if it does so by considering only potential correlation. The exciting 
evidence that emerges is that there is a connection between TCNs and 
the shape of the EKC. Participating cities are better on track to sus
tainability compared to their non-participating counterparts. A larger 
share of participating cities either have already crossed the critical 
threshold or are close to doing so. Of course, it must be acknowledged 
that participating cities are likely to be larger and more developed and, 
hence, more polluted and this may cause them to fall in the advanced 
stages of the EKC. This would cause a participation bias that is only 
possible to address with a serious counter-factual approach that is, as 
said before, outside the scope of this work. 

The findings of this study suggest that city governments should 
engage with TCNs and adopt common solutions for transitioning to a 
low-carbon economy. Multilateral interaction through city diplomacy 
and participation in networks can provide many benefits. For example, 
they facilitate informal regulation and promote knowledge sharing be
tween cities. Additionally, they can bolster the efforts of local environ
mental advocacy groups, which can help drive sustainable policy 
agendas. However, there are some caveats to this recommendation. 
According to Haupt and Coppola (2019), some studies suggest that the 
economic costs and technical expertise required to join these networks 
may outweigh the benefits. Therefore, city governments should carefully 
consider the trade-offs involved in joining a particular network. For 
instance, Cortes Berrueta and van der Heijden (2021) analyse these 
trade-offs and identify three key underlying factors: the clarity of the 

promised benefits, the combination of requirements and commitments, 
and the explicitness of the network’s targets. 

In conclusion, more research on environmental decoupling at the 
local level is needed. The latter can help local governments make 
informed policy decisions, such as the effectiveness involved in joining 
climate protection networks. 
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