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a b s t r a c t 

Diagnostic errors impact patient health and healthcare costs. Artificial Intelligence (AI) shows promise 

in mitigating this burden by supporting Medical Doctors in decision-making. However, the mere display 

of excellent or even superhuman performance by AI in specific tasks does not guarantee a positive im- 

pact on medical practice. Effective AI assistance should target the primary causes of human errors and 

foster effective collaborative decision-making with human experts who remain the ultimate decision- 

makers. In this narrative review, we apply these principles to the specific scenario of AI assistance dur- 

ing colonoscopy. By unraveling the neurocognitive foundations of the colonoscopy procedure, we iden- 

tify multiple bottlenecks in perception, attention, and decision-making that contribute to diagnostic er- 

rors, shedding light on potential interventions to mitigate them. Furthermore, we explored how existing 

AI devices fare in clinical practice and whether they achieved an optimal integration with the human 

decision-maker. We argue that to foster optimal Human-AI collaboration, future research should expand 

our knowledge of factors influencing AI’s impact, establish evidence-based cognitive models, and develop 

training programs based on them. These efforts will enhance human-AI collaboration, ultimately improv- 

ing diagnostic accuracy and patient outcomes. The principles illuminated in this review hold more general 

value, extending their relevance to a wide array of medical procedures and beyond. 

© 2023 The Author(s). Published by Elsevier Ltd on behalf of Editrice Gastroenterologica Italiana S.r.l. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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As with any other experts, Medical Doctors (MDs) do err. Esti- 

ates evaluate diagnostic errors as high as 10–15%, impacting pa- 

ient health and system costs [1–3] . A promising avenue to reduce 

uch a burden on patients and society is supporting the decision 

rocess of MDs with Artificial Intelligence (AI). Here, we evalu- 

te how and why AI may be helpful for the informative setting of 

olonoscopy, grounding our general conclusions on the fundamen- 

al features of human perception and decision-making. 

Colonoscopy is at the core of prevention and treatment strate- 

ies for colorectal cancer. Ideally, any risky lesion should be re- 

oved or reported after a colonoscopy. We know this is not the 

ase: studies using tandem colonoscopies showed that about 25% 

f adenomas were missed, and 12% of index colonoscopies (the 

rst performed in the tandem procedure) were false negatives. 

igher adenoma missing rates are associated with an increased 

robability of interval cancer [4 , 5] . 
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Addressing this situation requires systematically examining the 

reventable causes of diagnostic errors, particularly those related to 

issed detections [6] . Some contributing factors may extend be- 

ond the direct responsibility of MDs, such as organizational con- 

traints (e.g., insufficient procedure time) or patient-related issues 

e.g., inadequate preparation). Nonetheless, certain causes are di- 

ectly linked to the behavior of the MD during the procedure [7 , 8] .

hy may an endoscopist fail to detect a target lesion even in the 

est conditions? Cognitive Science comes to the rescue to answer 

his question. 

. Cognitive determinants of errors during colonoscopy 

The human brain’s processing of sensory information and hu- 

an decision-making did not evolve to detect lesions flawlessly 

uring standard endoscopy conditions [9] . Human visual search is 

ighly effective when seeking a target stimulus that differs from an 

rrelevant background based on a single, perceptually salient fea- 

ure. For example, a red apple in a basket of green apples would 

e immediately noticed and visually pop out . However, the perfor- 

ance drastically changes when the difference between the tar- 
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Fig. 1. Peripheral perception and visual crowding. Focusing on the central fixation 

cross reveals an intriguing phenomenon: the square on the right side becomes re- 

markably challenging to perceive. This phenomenon stems from the diminished res- 

olution within the peripheral visual field and the disruptive impact of crowding 

effects. In stark contrast, the presence of a distinct reddish object on the left imme- 

diately captures attention, even under otherwise identical conditions. As an endo- 

scopist’s attentional focus is drawn towards the reddish entity, effortless, successful 

identification of its relevance ensues. 
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et and background extends over multiple perceptual dimensions 

hat only collectively allow to discriminate the objects. Red apples 

o not pop out in a basket with red peppers and green apples: 

ou must pay attention to both color and shape because no sin- 

le property separates the targets from the irrelevant stimuli. In 

uch scenarios, we engage in an intentional exploration of each 

mage patch, patiently searching for one or a few target stimuli. 

ur search becomes guided by a target template: Targets are de- 

ned by a multidimensional combination of features that segre- 

ate them from irrelevant stimuli or the background [10] . Iden- 

ifying lesions amidst healthy mucosa is an excellent example of 

 guided search. Guided search enables us to search for complex 

atterns at the expense of drastic decreases in speed and accu- 

acy. The guided search can even overlook relevant but untargeted 

bjects, producing astonishing phenomena like inattentional blind- 

ess [11 , 12] . Guided search is also more vulnerable to vigilance 

ecrements and attentional lapses, which tend to occur with in- 

reasing time on task, the number of simultaneous tasks, and the 

perator’s mental and physical fatigue [9 , 13–18] . 

In addition, without us noticing, detection ability degrades on 

he periphery of the visual field ( Fig. 1 ) because of reduced visual

cuity and crowding [19 , 20] . Complex objects can only be identi- 

ed within the useful field of view , which is roughly 2.5 ° centered 

n the fovea [9 , 19] , equivalent to a 4.4 cm width when looking

t a screen 1 m away. To compensate for this limitation, individu- 

ls may systematically scan through the image, moving their useful 

eld of view around to cover all locations. However, human mem- 

ry for already sampled locations proved to be poor, resulting in 

oth less efficient and defective search behavior: less efficient be- 

ause they may look multiple times at the same location, defec- 

ive because they may miss a significant proportion of the image 

19 , 21 , 22] . 

Higher-order cognitive tendencies, such as the ones involved in 

isjudgments of probabilities (miscalibration [23 , 24] ), can also im- 

act detection. For instance, the over-alternation bias leads us to 

elieve that if something has just occurred, it is less likely to oc- 

ur again [25 , 26] . This tendency may contribute to the observed 

ncrease in misses following detecting the first polyp during a 

olonoscopy [7 , 27–29] . 

Taken together, these perceptual and cognitive bottlenecks in- 

icate that human experts may face challenges in detecting cer- 

ain endoscopic targets, even in high-resolution still images ( Fig. 2 ) 

 11,30 ]. Live endoscopy adds further difficulties to the examination 

f still images. Endoscopists not only need to visually search for le- 

ions but also navigate while keeping track of the probe’s position 

nd ensuring adequate mucosa exposure. These tasks are challeng- 

ng on their own and become even more arduous when performed 

imultaneously. Dual-task conditions are known to decrease perfor- 
2 
ance in both laboratory settings [31] and medical settings [32–

5] . Although training can reduce interference between the tasks, 

he implementation of non-standard procedures, such as demand- 

ng maneuvers, can lead to detrimental dual-task interactions and 

ompromise lesion detection abilities [36] . 

Finally, once a suspicious lesion is detected, the endoscopist 

ust make an optical diagnosis to determine its nature. While the 

uman brain excels at pattern recognition (especially after train- 

ng), this task can sometimes overwhelm our capacities. Unfortu- 

ately, humans often underestimate the susceptibility to errors in 

ertain tasks and tend to be overconfident, reporting higher accu- 

acy estimates than they actually achieve. For example, in a clas- 

ic study before right heart catheterization, physicians estimated 

alues for pulmonary capillary wedge pressure, cardiac index, and 

ystemic vascular resistance while stating their confidence in their 

stimates. Accuracy was generally low and did not increase with 

xperience. However, confidence increased with experience [37] . 

verconfidence has been documented among MDs (and other ex- 

erts), and it is a common occurrence. Overconfidence may cause 

xation [38] and hinder learning and correction, particularly when 

hysicians do not receive systematic feedback on highly confident 

et incorrect judgments [39] . For example, an endoscopist highly 

onfident that a removed polyp is an adenoma may decide not to 

ccess the histology that shows it was not. 

. The role of AI tools in colonoscopy: promises and dangers 

Following the analysis of the cognitive intricacies of endo- 

copists’ performance, it becomes evident that they could benefit 

rom assistance. An ideal candidate for support should address, if 

ot all, at least some of the aforementioned cognitive bottlenecks. 

Modern AI tools based on, e.g., deep convolutional neural net- 

orks, emerge as a promising option on paper. These tools can 

earch for multiple complex visual targets without succumbing 

o attentional bottlenecks and without experiencing performance 

egradation in the periphery of the visual field. Moreover, AI ex- 

ibits strong pattern recognition capabilities, relying on different 

eatures and mechanisms than humans, thereby likely failing for 

easons distinct from those affecting human performance [40] . 

uch partial divergence further improves the utility of AI, reduc- 

ng the chances that both humans and AI fail on the same item. 

verall, AI performance in lesion detection has been reported as 

imilar to the best human experts [41 , 42] . Leveraging its capacities, 

I can be harnessed to assist MDs in detecting lesions, thus trans- 

orming potentially missable lesions (e.g., a small flat lesion briefly 

limpsed in the periphery of the visual field) into unmistakable vi- 

ual targets. For example, AI could surround the lesion with a color 

bsent from the colon color palette, making it pop out ( Fig. 2 ). 

The potential benefits of AI assistance in endoscopy extend be- 

ond the detection of exposed lesions. By partially relieving endo- 

copists from the burden of visual search, AI could liberate cog- 

itive resources for other human-exclusive tasks, such as naviga- 

ion, framing optimization, and tracking mucosa exploration. This, 

n turn, can further enhance the overall procedure’s efficiency and 

ccuracy. After detection, AI can assist the endoscopist in the op- 

ical diagnosis of lesions by providing an additional online opinion 

n the nature of the lesion. Importantly, the AI opinion is not in- 

allible but would provide a further source of evidence for the final 

ecision of the MD, as in double-reading or second-opinion scenar- 

os. 

Finally, AI assistance may provide a valuable feedback tool for 

unior endoscopists. The availability of feedback across multiple ex- 

minations plays a pivotal role in fostering a successful learning 

rocess. By receiving AI-supported feedback, junior endoscopists 

an gain valuable insights, learn from their mistakes, and refine 
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Fig. 2. Pop-out effect during colonoscopy. Left panel: Colonoscopy requires a visual search of lesions while navigating the colon. In this example, we assume that the 

endoscopist is fixating at the center of the lumen (fixation cross) while scanning the mucosa. In typical endoscopic conditions (80 cm large display, 1 m away from the 

endoscopist), a lesion similar to the surrounding mucosa and 17 ° away from the fixation point might be easily missed. Right panel: AI can assist detection by making an 

object with low visual salience into a highly distinctive green square. This effectively changes the visual search required: from a slow error-prone serial search to a fast, 

effortless, highly accurate parallel search. Once the endoscopist’s attention has been attracted to the suspect lesion, she can proceed with an optical diagnosis. 
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heir skills, ultimately leading to enhanced performance and diag- 

ostic accuracy over time [43] . 

So, all set? Is the use of AI in colonoscopies already an obvious 

hoice today that would certainly improve the procedure? Should 

he technical improvement of AI performance be considered the 

nly remaining concern? Not so fast. While AI holds great promise, 

t is important to recognize that the final performance of a human 

xpert assisted by AI depends not only on the competence of the 

I and the human but also, critically, on the quality of the interac- 

ion between the two. 

To better understand this, we can conceptualize AI assistance 

s that of a human expert who evaluates similar evidence and 

rovides advice but leaves the final decision to the collaborator. 

ptimal integration of opinions, whether from human or artifi- 

ial agents, should consider the following factors: their judgments, 

heir confidence in the correctness of their opinions, and the av- 

rage objective accuracy of the agents in similar situations in the 

ast. Having this information, one could appropriately weigh the 

wo agents’ opinions, crediting more influence to the most reliable 

ne [44–48] . If both opinions appear equally reliable, a rational de- 

ision would be to integrate them with equal weight, based on the 

tatistical principle that aggregating imperfect judgments reduces 

rror [49] . For instance, consider a scenario where you and your 

riend attended a ceremony and are now estimating the number 

f people present. You estimate “about 50” and your friend says 

about 70”. If you trust her judgment as much as yours, the most 

ikely count would be an integrated estimate of “about 60”. How- 

ver, if she adds, “I am pretty sure! I counted them, by and large”,

hile you did not, you should trust her judgment on this specific 

ccasion more than yours, leading to a final best guess closer to 

0 than 50. Even in these ideal conditions, where all relevant in- 

ormation is available, humans deviate from an optimal integration 

f opinions [50 , 51] . 

Deviations from optimal integration become even more com- 

on when some information is missing. For instance, one may not 

now how accurate collaborators are on average, or collaborators 

ay communicate their opinions but not their confidence level in 

he advice. In such cases, decision-makers must rely on estimates, 

ssessing whether the collaborator is more or less accurate in gen- 

ral and how confident she appears in the specific case. Unfortu- 

ately, humans tend to err in these estimates, often overestimating 

heir chance of being correct, leading to an implicit, unwarranted 

reference for their own opinions, an ego bias [52–57] . In the ear- 
3 
ier example, each friend may systematically trust their judgment 

 little more than the other, resulting in two distinct opinions: “No 

atter what she says, I know better: they were close to 50 ′′ , and

No matter what he says, they were close to 70 ′′ . The ego bias can

nhibit a calibrated use of others’ advice, generating negative im- 

acts on collective decisions: extensive evidence has shown that 

ggregating informed opinions improves effectiveness [50 , 58] , pro- 

oting the wisdom of crowds [59 , 60] . The ego bias can be reduced

y providing additional information on the competence and exper- 

ise of the collaborator (i.e., the advisor), which can signal an in- 

reased probability of high-quality advice [52] . 

When the partner is an AI, we witness the same biases ob- 

erved in the interaction with a human collaborator (e.g., ego bias), 

ossibly exacerbated by the specificities of the human-AI interac- 

ion ( Table 2 ). The communication layer between AI and humans 

ay be suboptimal due to design flaws. More interestingly, com- 

unication failure can also stem from a deeper inability to under- 

tand how AI makes decisions and how likely AI may err in specific 

onditions [61] . Humans spontaneously use introspection and intu- 

tive knowledge of how the human mind feels and reason, building 

 naive “theory of (human) mind” [62] . This theory of mind makes 

t easier to infer how other human experts might have reached a 

ifferent conclusion and weigh the likelihood that they are correct. 

y contrast, modern AI learns and reaches conclusions in a differ- 

nt, non-human way. Critically, the opaqueness of the AI’s internal 

omputational processes may decrease calibrated reliance on the 

ystem [63 , 64] . The lack of transparency (i.e., intelligibility and ex- 

lainability) of AI may lead to different suboptimal outcomes. First, 

t may prevent the formation of reliable case-by-case expectations 

f AI accuracy [65 , 66] . For example, a human operator may be un-

ble to understand why an AI assistant made a mistake, hindering 

he ability to predict when errors are more likely to occur in the 

uture. Second, it can induce high variability in the a-priori ten- 

encies toward the evaluation of AI competence, leading to general 

rust (algorithm appreciation) or general mistrust (algorithm aver- 

ion) towards AI technology [67–70] . Both these tendencies may 

esult in suboptimal exploitation of information provided by AI, 

iving too much or too little weight to AI’s outputs. Third, the lack 

f transparency may lead humans to overreact to AI errors: if hu- 

ans cannot understand the cause of an AI error or if they con- 

ider it anomalous compared to typical human errors, they may be 

empted to infer that the AI is generally unreliable and incompe- 

ent, leading to mistrust and misuse of the AI system itself [71 , 72] .
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Table 1 

Cognitive bottlenecks that can hinder the endoscopist’s performance in a colonoscopy and how AI could help overcome them. The first four rows refer to features of the 

attentional processes, mainly relevant for detection. The last two rows refer to judgment and decision-making processes, which are more relevant for optical diagnosis. 

Cognitive process (domain) Bottleneck AI support 

Visual search (orienting of 

visual attention) 

Targets defined by a combination of more than one 

perceptual feature shared by other objects in the scene 

require lengthy serial search. 

Framing potential polyps with a distinctive color turns a 

serial search into an easy “pop-out” search. 

Inhibition of return (orienting 

of visual attention) 

When a location in space is explored (even for a very short 

period of time: 0.3 s is enough), and no targets are found, 

that location gets an automatic “inhibitory tag”: gaze is 

impeded from spontaneously returning there. 

AI is not affected by IOR. If a human fails to detect a 

polyp in a location, the appearance of a distinctive-color 

frame in that location automatically returns attention 

there, overcoming IOR and allowing for a “second guess”

before the lesion disappears from view. 

Cognitive overload, dual task, 

multi-tasking (mental 

workload) 

When two or more non-automatized tasks are performed 

simultaneously, they interfere even if they do not require the 

same effectors (e.g., one task requires moving hands, the 

other requires looking): performance in one or both tasks 

deteriorates. 

Colonoscopy is a multitasking procedure: navigation, 

detection, and categorization. Each task, if not fully 

automatic, drains cognitive resources, increasing the 

chances of errors in other tasks. AI, by supporting 

detection and categorization, frees resources for 

navigation. 

Vigilance decrement, attention 

lapses, fatigue (sustained 

attention) 

For all tasks involving attention, the number of errors 

increases with time-on-task. This is unavoidable and includes 

both perceptual errors (misses) and cognitive errors (wrong 

decisions). The attention lapses are even more probable 

when the rate of true targets is low: e.g., the fewer polyps to 

be detected there are in a long colonoscopy, the more 

probable is that one of them is missed 

AI support can shorten the overall time-on-task, 

decreasing the risk of attention lapses. Furthermore, 

target-framing captures human attention even if the 

operator is momentarily in a lapse. 

Miscalibration of diagnostic 

probability (judgment and 

decision-making) 

Even expert judgments may overestimate or underestimate 

diagnostic probabilities. These effects can decrease human 

accuracy in optical diagnosis. This miscalibration is decreased 

by increased information, and spending more time thinking 

about a judgment 

AI diagnosis, even if not faultless, is a “second opinion”

that forces the human to compare and weigh the two 

diagnoses, possibly reducing the adverse effects of 

miscalibration. 

Overconfidence or illusion of 

validity (judgment and 

decision-making) 

People overestimate the probability that their judgments are 

correct. 

AI diagnosis, when not convergent with the human 

diagnosis, can induce second thoughts and possibly 

reduce the effects of overconfidence 

Table 2 

How much to trust a message from an agent that has not perfect reliability (i.e., accuracy) depends on the agent’s reliability (which can be further specified into sensitivity 

and specificity) and on how much the agent is confident (how much the agent is calibrated in its informed guesses about the correctness of its messages). Information about 

AI confidence and reliability is needed, but humans should also be trained on how to use it appropriately. 

How much should I trust the AI opinion? 

Problem Solution 

Human lacks info on AI Confidence & Reliability (C&R) Provide high-quality information on AI C&R 

AI C&R is available but not used Improve AI design: Develop human-friendly formats for embedding info on 

AI C&R into the current stimulus response output 

AI C&R available in the appropriate format, but human is overconfident (e.g., 

ego bias, algorithm aversion, fixation) Structured training. Better human-AI collaboration protocols. Humans must be 

able to build a mental model of how AI works. AI C&R is available in the appropriate format, but human is underconfident 

(e.g., automation bias) 
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ne of the possible solutions to mitigate under-reliance on AI due 

o lack of transparency is allowing an AI to communicate its con- 

dence in the current response output, which has been shown to 

elp the calibration of trust in the system and reliance on its ad- 

ice [73–75] . 

. Human-AI interaction in colonoscopy: empirical evidence 

The previous section elucidated general principles and chal- 

enges related to achieving an effective human-AI interaction. 

olonoscopy presents an intriguing setting for applying these prin- 

iples. 

.1. Human-AI interaction in lesion detection (CADe) 

Available AI devices exhibit very high sensitivity and overall 

erformance on par with or better than top human experts [42 , 76] .

upport from an AI tool with high sensitivity should alleviate the 

ognitive bottlenecks related to orienting attention, sustained at- 

ention, and dual-task workload ( Table 1 ). How could dysfunction- 
4 
lities and suboptimal outcomes show up in this context? A pri- 

ary source would likely stem from a suboptimal strategic deci- 

ion, i.e., MDs not delegating to the AI a substantial part of the de- 

ection task (i.e., under-use), thus not exploiting the potentialities 

f relieving dual-task cognitive requirements and freeing resources 

or other human-only tasks such as navigation. Besides, processing 

alse positives detected by AI may drain too much attention and 

ime if each triggers a thorough evaluation. It would be important 

o identify simple cues for swiftly segregating AI outputs into likely 

rue and likely false to counter this potential issue. The temporal 

ersistence of the AI signal [77] appears to be a promising can- 

idate, as a longer persistence (e.g., 200 ms) is associated with a 

igher likelihood of the AI signal corresponding to a true lesion. 

The characteristics of available AI tools for colonoscopy, the 

hallenges faced by endoscopists, and our understanding of human 

ognition collectively support strong expectations for a beneficial 

ole of AI. However, we also raised some cautionary notes on how 

uman-AI interaction could go wrong. Which side does the em- 

irical evidence favor? The randomized controlled trials conducted 

o date evaluate the effectiveness of CADe devices. Overall, the 
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Table 3 

Reviews with metanalysis on Randomized Controlled Trials in which AI-assisted colonoscopy has been compared to standard non-AI assisted colonoscopy. 

Authors Title Number of studies finally included Total number of participants 

Deliwala et al. (2021) 

[ 101 ] 

Artificial intelligence (AI) real-time detection vs. routine 

colonoscopy for colorectal neoplasia: a meta-analysis and 

trial sequential analysis 

6 4996 

Hassan et al. (2021) [ 102 ] Performance of artificial intelligence in colonoscopy for 

adenoma and polyp detection: a systematic review and 

meta-analysis 

5 4354 

Huang et al. (2022) [ 83 ] Effect of artificial intelligence-aided colonoscopy for adenoma 

and polyp detection: a meta-analysis of randomized clinical 

trials 

10 6629 

Mori et al. (2023) [ 103 ] Impact of Artificial Intelligence on Colonoscopy Surveillance 

After Polyp Removal: A Pooled Analysis of Randomized Trials 

9 5796 

Spadaccini et al. (2021) 

[ 104 ] 

Computer-aided detection versus advanced imaging for 

detection of colorectal neoplasia: a systematic review and 

network meta-analysis 

50 34,445 

Zhang et al. (2021) [ 105 ] Artificial Intelligence-Aided Colonoscopy for Polyp Detection: 

A Systematic Review and Meta-Analysis of Randomized 

Clinical Trials 

7 5427 
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vidence strongly supports the adoption of AI for improving lesion 

etection during colonoscopy ( Tables 3 and 4 ) [76 , 78–81] . Notably,

 recent review revealed that CADe systems reduced the adenoma 

iss rate by an impressive 65% in colonoscopies [76] . This means 

hat any potential factors in human-AI interaction that could be 

etrimental to CADe’s effectiveness, if present, have been largely 

urpassed by the advantages it offers. 

Evidence also suggests a potential differential impact of AI on 

esions based on their morphology and size, aligning with psycho- 

ogical expectations. Small and flat lesions, less visually salient, are 

xpected to result in a higher miss rate. Tandem studies have con- 

rmed these expectations, as small and flat morphology has nega- 

ively impacted on the detection rate [4] . CADe systems prove par- 

icularly beneficial in aiding the detection of these challenging le- 

ions [76 , 82 , 83] . Nevertheless, larger ( > 10 mm) or polypoid ade-

omas, which are more apparent, also benefit from CADe assis- 

ance, albeit possibly to a lesser extent [76 , 84] . If these patterns are

urther corroborated in future studies, they could shed light on the 

nderlying mechanisms behind CADe’s effectiveness. A specific ad- 

antage of CADe for perceptually “difficult” lesions could be asso- 

iated with relieving perceptual bottlenecks ( Table 1 ). In contrast, 

 more general benefit across lesion types might be attributed to 

mproved sustained attention and relief of dual-task burden, en- 

bling better navigation. The role of CADe assistance in mitigating 

ustained attention lapses is further underscored in a study consid- 

ring endoscopists’ performance during the day [85] . It was found 

hat the number of endoscopies performed in a day by an endo- 

copist negatively impacted performance [86–88] , but the use of 

ADe eliminates this adverse effect [85] . 

Finally, and importantly, a study evaluated the potentially dam- 

ging effect of AI false positives on endoscopists’ performance. 

hile false positives are not rare occurrences (e.g., ∼27 per 

olonoscopy), human experts can readily recognize them as such 

ithout any delay in the colonoscopic procedure in most cases. In 

ther words, human experts in the study applied effective rules 

f thumb for ignoring them without in-depth examination [77] . 

owever, mastering this remarkable ability may require appropri- 

te training. 

While reviews and meta-analyses provide robust support for 

he widespread adoption of AI in colonoscopy, a few studies have 

eported no improvement in quality metrics for in vivo endoscopy 

ith versus without AI assistance [89–91] . 

Two of the studies were conducted in “real-world settings”, 

hich involved retrospective data analysis from medical centers 

hat introduced AI support tools [90 , 91] . Although this approach 
i

5 
acks the rigor of randomized controlled trials (RCTs), it could offer 

aluable insights. These negative results represent a precious op- 

ortunity for study, allowing us to understand what, in the human- 

achine interaction, turned a documented useful AI tool into a 

ailed assistant. 

A hypothesis shared by both studies refers to a strategic error 

n approaching AI. The studies report that MDs may have devel- 

ped “a sense of false confidence and overreliance on AI technol- 

gy”. In other words, they may have attributed unrealistic capa- 

ilities to the AI, leading to a misjudgment of the respective roles 

f the human and the artificial agent. This could have resulted in 

unconscious degradation in the quality of mucosal exposure” or a 

somewhat less scrupulous performance”. Consistent with this hy- 

othesis, Levy and collaborators report faster colonoscopic proce- 

ures in the CADe group [91] . This strategic error might have been 

acilitated by the limited training received on the optimal use of 

he new AI tool. For instance, Ladabaum and colleagues decided to 

ake “CADe available without any interventions beyond encour- 

gement and basic start-up training.”

These negative results offer im portant warnings regarding using 

I tools in clinical settings. Although AI tools demonstrated out- 

tanding standalone detection abilities, they might not necessar- 

ly provide a measurable advantage in real-world clinical scenar- 

os. The studies suggest that strategic misunderstandings, possibly 

ue to inadequate training and poor human-AI fit, could have con- 

ributed to this outcome. However, there are still many aspects to 

e comprehended fully. The raised hypotheses must be formally 

ested, and other factors should be explored, such as the base- 

ine performance of medical professionals, their attitude towards 

echnology, trust towards AI, understanding of AI operations, the 

nteraction protocols (e.g., either human-first or AI-first), and the 

pecific features of the tools available in the facility. Considering 

he key role of successful human-AI collaboration in delivering 

romised clinical outcomes, future studies should include incor- 

orating a more comprehensive set of measurements that capture 

oth the human and technological context in which AI is intro- 

uced [66 , 92 , 93] . 

.2. Human-AI interaction in lesion characterization (CADx) 

Unlike CADe, CADx advice is provided to endoscopists at a mo- 

ent during the colonoscopy when dual-task requirements are re- 

uced. Navigation and detection are paused, allowing endoscopists 

o concentrate solely on diagnosing the detected lesion, thus avoid- 

ng the potential dangers of a dual-task situation or attentional 
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Table 4 

Studies on AI-assisted colonoscopy for detection (CADe) and characterization (CADx) of colon lesions. 

Authors Title Sample size Study type Procedure 

Ahmad et al. (2022) [ 89 ] Evaluation of a real-time computer-aided polyp detection system during 

screening colonoscopy: AI-DETECT study 

658 RCT CADe 

Barua et al. (2022) [ 94 ] Real-Time Artificial Intelligence–Based Optical Diagnosis of Neoplastic Polyps 

during Colonoscopy 

518 clinical study CADx 

Gimeno-García et al. 

(2023) [ 82 ] 

Usefulness of a novel computer-aided detection system for colorectal neoplasia: 

a randomized controlled trial 

370 RCT CADe 

Glissen Brown et al. 

(2022) [ 106 ] 

Deep Learning Computer-aided Polyp Detection Reduces Adenoma Miss Rate: A 

United States Multi-center Randomized Tandem Colonoscopy Study (CADeT-CS 

Trial) 

232 RCT CADe 

Gong et al. (2020) [ 107 ] Detection of colorectal adenomas with a real-time computer-aided system 

ENDOANGEL): a randomised controlled study 

704 RCT CADe 

Hassan et al. (2023) [ 95 ] Comparative Performance of Artificial Intelligence Optical Diagnosis Systems for 

Leaving in Situ Colorectal Polyps 

176 Prospective 

comparison trial 

CADx 

Hüneburg et al. (2023) 

[ 108 ] 

Real-time use of artificial intelligence (CADEYE) in colorectal cancer surveillance 

of patients with Lynch syndrome-A randomized controlled pilot trial (CADLY) 

101 RCT CADe 

Kamba et al. (2021) [ 109 ] Reducing adenoma miss rate of colonoscopy assisted by artificial intelligence: a 

multicenter randomized controlled trial 

358 RCT CADe 

Karsenti et al. (2023) [ 110 ] Effect of real-time computer-aided detection of colorectal adenoma in routine 

colonoscopy (COLO-GENIUS): a single-center randomised controlled trial 

2592 RCT CADe 

Ladabaum et al. (2023) 

[ 90 ] 

Computer-aided Detection of Polyps Does Not Improve Colonoscopist 

Performance in a Pragmatic Implementation Trial 

1008 retrospective 

observational study 

CADe 

Levy et al. (2022) [ 91 ] Artificial Intelligence-Aided Colonoscopy Does Not Increase Adenoma Detection 

Rate in Routine Clinical Practice 

4414 retrospective 

observational study 

CADe 

Liu et al. (2020) [ 111 ] Study on detection rate of polyps and adenomas in artificial-intelligence-aided 

colonoscopy 

1026 RCT CADe 

Lu et al. (2023) [ 85 ] Assessment of the Role of Artificial Intelligence in the Association Between Time 

of Day and Colonoscopy Quality 

1780 RCT CADe 

Luo et al. (2021) [ 112 ] Artificial Intelligence-Assisted Colonoscopy for Detection of Colon Polyps: a 

Prospective, Randomized Cohort Study 

150 RCT CADe 

Lux et al. (2022) [ 113 ] Pilot study of a new freely available computer-aided polyp detection system in 

clinical practice 

41 Pilot study CADe 

Nakashima et al. (2023) 

[ 114 ] 

Clinical Evaluation of Computer-Aided Colorectal Neoplasia Detection Using a 

Novel Endoscopic Artificial Intelligence: A Single-Center Randomized Controlled 

Trial 

415 RCT CADe 

Quan et al. (2022) [ 115 ] Clinical evaluation of a real-time artificial intelligence-based polyp detection 

system: a US multi-center pilot study 

600 Pilot study CADe 

Repici et al. (2020) [ 79 ] Efficacy of Real-Time Computer-Aided Detection of Colorectal Neoplasia in a 

Randomized Trial 

685 RCT CADe 

Repici et al. (2022)[ 116 ] Artificial intelligence and colonoscopy experience: lessons from two randomised 

trials 

660 RCT CADe 

Reverberi et al. (2022) [ 66 ] Experimental evidence of effective human-AI collaboration in medical 

decision-making 

504 Experimental study CADx 

Rondonotti et al. (2022) 

[ 96 ] 

Artificial intelligence-assisted optical diagnosis for the resect-and-discard 

strategy in clinical practice: The Artificial intelligence BLI Characterization (ABC) 

study 

389 Prospective cohort 

study 

CADx 

Shaukat et al. (2022) [ 117 ] Computer-Aided Detection Improves Adenomas per Colonoscopy for Screening 

and Surveillance Colonoscopy: A Randomized Trial 

1440 RCT CADe 

Su et al. (2020) [ 118 ] Impact of a real-time automatic quality control system on colorectal polyp and 

adenoma detection: a prospective randomized controlled study (with videos) 

659 RCT CADe 

Wallace et al. (2022) [ 84 ] Impact of Artificial Intelligence on Miss Rate of Colorectal Neoplasia 230 RCT CADe 

P. Wang, Liu, Berzin, et al. 

(2020) [ 80 ] 

Effect of a deep-learning computer-aided detection system on adenoma 

detection during colonoscopy (CADe-DB trial): a double-blind randomised study 

1046 RCT CADe 

P. Wang, Liu, Glissen 

Brown, et al. (2020) [ 119 ] 

Lower Adenoma Miss Rate of Computer-Aided Detection-Assisted Colonoscopy vs 

Routine White-Light Colonoscopy in a Prospective Tandem Study 

185 RCT CADe 

Wei et al. (2023) [ 120 ] Evaluation of Computer-Aided Detection During Colonoscopy in the Community 

(AI-SEE): A Multicenter Randomized Clinical Trial 

769 RCT CADe 

H. Xu et al. (2023) [ 81 ] Artificial Intelligence-Assisted Colonoscopy for Colorectal Cancer Screening: A 

Multicenter Randomized Controlled Trial 

2352 RCT CADe 

L. Xu et al. (2021) [ 121 ] Artificial intelligence-assisted colonoscopy: A prospective, multicenter, 

randomized controlled trial of polyp detection 

3059 RCT CADe 

Yamaguchi et al. (2023) 

[ 122 ] 

Impact of an artificial intelligence-aided endoscopic diagnosis system on 

improving endoscopy quality for trainees in colonoscopy: Prospective, 

randomized, multicenter study 

231 RCT CADe 

Yao et al. (2022) [ 123 ] Effect of an artificial intelligence-based quality improvement system on efficacy 

of a computer-aided detection system in colonoscopy: a four-group parallel study 

1076 RCT CADe 
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lips. Furthermore, the performance of available CADx systems is 

omparable, if not inferior, to that of experienced endoscopists 

66 , 94–96] . These facts raise the possibility that assistance would 

ven deteriorate the performance of the best endoscopists. In this 

ontext, potential sources of suboptimal human-AI collaboration 

ould include: 

• Overreliance: The MD relies too much on the AI’s opinion and 

does not critically evaluate its fallible output, thus exhibiting 

automation bias . 

• Underreliance: The MD underestimates the AI’s capabilities and 

does not take into consideration its informative suggestions, 

thus exhibiting algorithmic aversion . 

• Lack of transparency: When differing opinions emerge, the 

MD cannot determine who is most likely correct, indicating a 

failure to estimate the relative (human/AI) confidence in the 

judgment. 

Reverberi and collaborators [66] investigated the influence of 

I opinion on the optical diagnosis of both expert and non-expert 

ndoscopists using an offline repeated-judgment design. The study 

evealed that the AI output substantially influenced both groups of 

ndoscopists. Crucially, all endoscopists were more likely to accept 

I advice when it was correct than when it was wrong. This re- 

arkable ability to discern the quality of AI opinion significantly 

mproved the integrated human-AI decision accuracy, especially 

mong non-experts. The effect on experts was smaller, but it still 

eld significance thanks to the study’s high power. How could the 

ndoscopist tell that the advice of AI was better or worse than 

heir own? Endoscopists generated an intuitive assessment of AI 

pinion’s quality on a lesion-by-lesion basis, likely based on subtle 

eatures of the AI output like its temporal stability. Such intuitive 

ssessment predicted AI accuracy on the specific lesion, thus al- 

owing endoscopists to accept only good advice [66] . 

Initial studies evaluating the clinical utility of CADx during 

olonoscopy procedures largely support these conclusions (see 

able 4 for a list of significant CADx studies). Results show that 

xperienced endoscopists’ optical diagnosis performance did not 

ignificantly benefit from AI assistance, and no harmful effects oc- 

urred even when AI performance was inferior to human experts 

95 , 96] . However, one study could not demonstrate a significant in- 

rease in sensitivity and specificity, even among non-experienced 

ndoscopists [94] , underscoring the need for further research to 

nderstand the factors influencing CADx’s variable impact. 

. Enhancing human-AI collaboration 

Recognizing the critical importance of an effective human-AI 

ollaboration, we must address the question: How can we en- 

ance the interaction between medical professionals (MDs) and AI 

evices? Several key areas warrant attention to facilitate optimal 

uman-AI integration in medical settings. 

First and foremost, establishing an evidence-based cognitive 

odel for human-AI interaction is imperative, as this would al- 

ow for designing the most effective human-AI collaboration pro- 

ocols [68 , 97 , 98] . While existing insights provide valuable perspec- 

ives, they remain preliminary, and a comprehensive understanding 

f the cognitive bottlenecks ( Table 1 ) leading to performance dis- 

arities is lacking. Further in-depth research is needed to identify 

he most significant impediments, determine the effectiveness of 

arious improvement mechanisms, and ascertain the impact across 

ifferent contexts (e.g., hospital vs. community) and individuals. 

Second, developing short training programs is essential to help 

sers maximize the potential of new AI devices through appropri- 

te general strategies. Stimulating in users the build-up of an intu- 

tive “theory of the artificial mind” involving a rich internal model 

f its distinct workings compared to human cognition could enable 
7 
etter predictions of AI accuracy and reliability [65] . Such under- 

tanding will help identify situations where AI may be prone to 

rrors or exceptionally dependable and improve the human-AI fit. 

ore generally, the study of how machines interpret medical find- 

ngs and present them to the human interpreter, called machine 

emiotics , has been proposed as a core competence for future MDs 

eyond gastroenterology [99] . 

Third, continuous monitoring of outcomes in different settings 

s crucial, along with a quantitative assessment of performance be- 

ond mere accuracy [93] and the meticulous reporting of any AI 

ailures for subsequent adjustments in output design or for devis- 

ng targeted training. 

Fourth, human variability should be considered. Our perceptual, 

ttentional, and navigation skills or ability to detect patterns are 

nequal, as is our level of expertise in a procedure. Therefore, it 

s important to recognize that AI devices may benefit MDs dif- 

erently and should adapt to their attitudes, skills, and profiles. 

or some, AI could offer minor improvements, while for others, it 

ight be as invaluable as a pair of glasses: For example, we ob- 

erved that expert endoscopists benefit less from AI support for 

ptical diagnosis. Other individual parameters may be at play, such 

s susceptibility to dual-task performance. Additionally, individual 

ttitudes, like openness to technology and readiness to adoption, 

an influence the acceptance of AI. Some people may be biased 

gainst using relatively new technical solutions, even if proven 

dvantageous for a specific task, due to fears of long-term un- 

nown effects [100] . Recent discussions about the risks of AI may 

rive more people to close themselves off to AI support systems 

rejudicially. 

. Conclusions 

The use of colonoscopy for screening, diagnosis, and interven- 

ion has proven highly effective for colorectal cancer prevention. 

owever, the procedure remains susceptible to errors, prompting 

ignificant efforts to reduce them [7 , 8] . The introduction of AI- 

ased tools to assist MDs during this complex procedure has gar- 

ered considerable interest, even though some negative observa- 

ions also started to emerge [92] . 

In this context, cognitive science may provide an important 

ontribution, unraveling the neurocognitive foundations of diag- 

ostic errors observed in clinical practice and thus contributing to 

 theory-informed and evidence-based design of decision support 

ystems. By identifying the multiple bottlenecks in perception, at- 

ention, and decision-making that contribute to diagnostic errors, 

ognitive science provides crucial insights for designing effective 

nterventions, thus leading to the optimal integration of AI systems 

nto clinical practice. Moreover, it provides a conceptual framework 

or comprehending the potentialities and pitfalls of human-AI col- 

aboration, paving the way for its enhancement. 

Colonoscopy serves as an insightful application domain and 

linical setting due to a specific task situation in which a fruit- 

ul collaboration between MDs and AI can be easily envisaged and 

ue to the acute awareness of the medical community on the im- 

ortance of addressing diagnostic errors. However, the principles 

lluminated in this case hold a more general value, extending their 

elevance to a wide array of medical procedures and beyond. 
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