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1 Introduction

1.1 Integrability in AdS3

String theory in AdS3 × S3 × T 4 [1], see also the reviews [2], continues to be a very fertile playground
in which to test unconventional ideas in integrability [3]. A large body of work is by now available [4, 5,
6, 7, 8]. The important novel feature of this system, as opposed to the higher-dimensional counterparts
AdS5,4, is given by the presence of massless modes [9] which activate the machinery of massless S-matrices
[10, 11]. Various aspects of the massless sector have been explored, see for instance [12] and [13]. More



recently, the Quantum Spectral Curve (QSC) method has been formulated for massive AdS3 × S3 × T 4

in [14], see also [15]. A massless version is however still missing. A recent body of work [16], see also
[17], has revisited the problem AdS3 × S3 × T 4 and obtained a new dressing phase and the formulation
of the mirror TBA. Very recent exciting new developments can now be found in [18].

In this paper, we will study the boundary scattering theory [19] of the massless modes in AdS3 ×S3 ×
T 4. The massive version of the boundary integrability programme was developed in [20], which provides
guidance for our massless analysis. We refer to [20] for a list of references on the boundary scattering
literature which is relevant to AdS3 and to AdS5 string theory.

When dealing with the case of AdS3, [21, 22] showed the existence of a change of variables which
displays the complete difference-form of the massless S-matrix, a form which is retained in the non-
trivial BMN limit [11]. A massive version of this variable was introduced in [16] where it is used to
rewrite portions of the massive S-matrix in difference form.

The paper is organized as follows: in the rest of this introductory section 1, we setup the notations
and conventions, and provide the bulk R-matrices for the symmetric co-product considered in this paper.
In section 2, we solve for the reflection matrices of a right wall, in the case in which the boundary carries
a trivial representation with respect to the preserved boundary subalgebra, i.e. the singlet boundary,
and also in the case where it carries a non-trivial representation, i.e. the vector boundary. Subalgebras
which are preserved by the boundary need to satisfy the coideal subalgebra condition, which imposes
non-trivial constraints and forces us to choose a different basis on the boundary. In section 3, we
repeat the calculations for the case of a left wall. In section 4, we consider again a right wall and
compute the reflection matrices for the massive excitations using the symmetric coproduct, so as to
make comparisons with the massless case by taking appropriate limits. In section 5, we reverse our point
of view, constructing an ansatz that generalises the vector boundary reflection matrices of the previous
sections and exploiting it to build new vector boundary representations.

1.2 AdS3 massless conventions

In the bulk the massless modes are characterised by the following dispersion relation:

right movers Ei = 2h sin pi

2 > 0, pi ∈ (0, π), x±
i = e± ipi

2 ,

left movers Ei = −2h sin pi

2 > 0, pi ∈ (−π, 0), x±
i = −e± ipi

2 , (1.1)

with i = 1, 2 denoting the scattering particles. In these formulae h > 0 is the coupling constant of the
theory. The right and left nature of a massless particle is referred to as chirality, and one sets

right movers ↔ chirality +, left movers ↔ chirality -. (1.2)

The scattering matrices are of difference form if one uses the pseudo-relativistic variable, which was
introduced in [21, 22] and further extended in [23, 16]:

γi = log tan pi

4 < 0, pi ∈ (0, π),

γi = log cot −pi

4 > 0, pi ∈ (−π, 0). (1.3)

The basic representation for a single particle is always based on a supersymmetric (boson,fermion)
doublet ordered as {|ϕ⟩, |ψ⟩}, carrying various representations of the superalgebra psu(1|1)2 which we
subsequently define in the paper.
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The bulk scattering can occur in a number of ways, according to the particles’ chirality. We list here
the R-matrices in all the different cases, as presented in [16]. The basis is always ordered as {|ϕ⟩, |ψ⟩},
with |ϕ⟩ a boson and |ψ⟩ a fermion: for the scattering one orders according to {|ϕ⟩ ⊗ |ϕ⟩, |ϕ⟩ ⊗ |ψ⟩, |ψ⟩ ⊗
|ϕ⟩, |ψ⟩ ⊗ |ψ⟩}:

R++ = Σ++(γ)


1 0 0 0
0 − tanh γ

2 sech γ
2 0

0 sech γ
2 tanh γ

2 0
0 0 0 −1

 , γ1, γ2 < 0

R−− = Σ−−(γ)


1 0 0 0
0 tanh γ

2 sech γ
2 0

0 sech γ
2 − tanh γ

2 0
0 0 0 −1

 , γ1, γ2 > 0,

R+− = Σ+−(γ)


1 0 0 0
0 − tanh γ

2 −isech γ
2 0

0 −isech γ
2 − tanh γ

2 0
0 0 0 1

 , γ1 < 0, γ2 > 0,

R−+ = Σ−+(γ)


1 0 0 0
0 tanh γ

2 isech γ
2 0

0 isech γ
2 tanh γ

2 0
0 0 0 1

 , γ1 > 0, γ2 < 0, (1.4)

where

γ := γ1 − γ2, (1.5)

and γ1 and γ2 go according to (1.3) in the various cases. The S-matrices are easily obtained from the
R-matrices by the formula

S = Π ◦R, (1.6)

where Π is the graded permutation on states. Because of this relationship, we will often colloquially
speak of attributes of the S-matrix even when we are expressing a property of the R-matrix - with the
understanding that the formulae will instead be precise and always technically distinguish between the
two.

1.3 Symmetries

The symmetry algebra underlying the scattering theory is a Yangian-type quantum group based on the
centrally-extended psu(1|1)2 Lie superalgebra ∗

{QL,GL} = HL, {QR,GR} = HR, {QL,QR} = P, {GL,GR} = K. (1.7)

The generators HL,HR,P,K are central. We use conventions inspired by [24] for the fundamental rep-
resentation. Let us focus for a moment on the right movers, which have pi ∈ (0, π) (with i being either

∗The complete algebra is psu(1|1)4, but in this paper it will be sufficient to focus on one copy of psu(1|1)2 and ignore
in the first instance the additional so-called su(2)◦ index.
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1 or 2, depending on the scattering particle), so that we get

πL+
pi

(QL) = −πL+
pi

(GR) =
√
h

2

√
sin pi

2

(
0 0
1 0

)

πL+
pi

(GL) = −πL+
pi

(QR) =
√
h

2

√
sin pi

2

(
0 1
0 0

)
, pi ∈ (0, π). (1.8)

Here, L in the superscript denotes the L−representation of psu(1|1)2 algebra (more on this in Sec. 1.6)
while + denotes the right movers.

In this representation all the central charges HL,HR are equal to the same matrix h
2 sin pi

2 1, while
P,K are equal to − h

2 sin pi

2 1. The dispersion relation is given by

E(pi) = 2(hL + hR), (1.9)

where hL is the eigenvalue of HL and hR is the eigenvalue of HR. We also adopt what is dubbed the old
coproduct structure in [24], see [4, 6]:

∆(QL) = QL ⊗ e−i p
4 + ei p

4 ⊗ QL, ∆(GL) = GL ⊗ ei p
4 + e−i p

4 ⊗ GL,

∆(QR) = QR ⊗ e−i p
4 + ei p

4 ⊗ QR, ∆(GR) = GR ⊗ ei p
4 + e−i p

4 ⊗ GR. (1.10)

The momentum generator p takes the value p1 when it is in the first space, p2 when in the second space
of the tensor product. The coproducts of the central charges can be obtained from the commutation
relations (1.7) using the homomorphism property. In Appendix C we see how this symmetric co-product
is related to the one used in [20]. The symmetry condition reads

∆op(x)R++ = R++∆(x) (1.11)

for any generator x in the Lie superalgebra. We then say that the R-matrix intertwines (is an intertwiner
for) the given coproduct.

The structure which we have just outlined can be considered as the level-0 of the Yangian. To these
charges we can associate level-1 corresponding charges (in the so-called Drinfeld’s first realisation):

Q̂L = ui QL, ĜL = ui GL, Q̂R = ui QR, ĜR = ui GR, ui = i cos pi

2 (1.12)

(again with i = 1, 2 depending on the scattering particle) with coproducts

∆(Q̂L) = Q̂L ⊗ e−i p
4 + ei p

4 ⊗ Q̂L + QL ⊗ e−i p
4 HL − ei p

4 HL ⊗ QL,

∆(ĜL) = ĜL ⊗ ei p
4 + e−i p

4 ⊗ ĜL − GL ⊗ ei p
4 HL + e−i p

4 HL ⊗ GL,

∆(Q̂R) = Q̂R ⊗ e−i p
4 + ei p

4 ⊗ Q̂R + QR ⊗ e−i p
4 HR − ei p

4 HR ⊗ QR,

∆(ĜR) = ĜR ⊗ ei p
4 + e−i p

4 ⊗ ĜR − GR ⊗ ei p
4 HR + e−i p

4 HR ⊗ GR. (1.13)

One can once again check using (1.13) that

∆op(x̂)R++ = R++∆(x̂) (1.14)

for any level-1 x̂ in the Lie superalgebra. The coproduct of the level-1 central charges ĤL, ĤR, P̂, K̂ can
be obtained from the homomorphism property by recalling that

[x̂a, xb} = ifab
c x̂c (1.15)
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for any generator xa of the Lie superalgebra. The representation (1.12) is called evaluation representation,
with evaluation parameter ui.

When considering the left moving chirality, we need to change the representation: the change is
actually minimal, since everything remains the same except that one needs to replace

πL−
pi

(QL) = +πL−
pi

(GR) =
√
h

2

√
sin −pi

2

(
0 0
1 0

)
,

πL−
pi

(GL) = +πL−
pi

(QR) =
√
h

2

√
sin −pi

2

(
0 1
0 0

)
, pi ∈ (−π, 0) (1.16)

with − in the superscript denoting the left movers (the central charges again being obtained using the
commutation relations). The coproducts remain the same, and one can make mixed representations
where different chiralities are in the first, resp. second space of the tensor product, and one needs to
adjust the representations everywhere accordingly. When considering the level-1 Yangian charges, we
have systematically checked that the coproducts can again be taken as previously - that is (1.13) - and the
representation to be used for left movers will now be (1.16). In addition, the evaluation representation
for left movers has to be set to

Q̂L = −ui QL, ĜL = −ui GL, Q̂R = −ui QR, ĜR = −ui GR, ui = i cos −pi

2 . (1.17)

1.4 Boost symmetry

In the paper [24] a boost symmetry was shown to complement the level-0 Lie superalgebra into a super-
Poincaré algebra. For a right moving representation with pi ∈ (0, π) the one-particle representation of
the boost generator is given by

J = i sin pi

2
∂

∂pi
, i = 1, 2, (1.18)

with coproduct

∆(J) = J ⊗ ei p
2 + e−i p

2 ⊗ J + 1
2QLe

−i p
4 ⊗ GLe

i p
4 + 1

2GLe
−i p

4 ⊗ QLe
i p

4 . (1.19)

The complete study of the boost superalgebra and of how to achieve a covariant formulation of the
commutation relations is presented in [25]. The coproduct is a homomorphism only if one adopts a
different (and equally valid) coproduct as opposed to the one which we have adopted in section 1.3. The
coproduct which is suitable to the boost is what is called the new coproduct in [24], which only works
thanks to the very special properties of the massless case.

The boost coproduct is not strictly speaking an intertwiner of the S-matrix, but it was shown in [26]
that it annihilates it†:

∆(J)Ř++ = 0 = ∆op(J)Ř++, (1.20)

having defined

Ř++ := R++

Σ++
(1.21)

†Because of the tail in the boost coproduct, annihilating the S matrix is not exactly equivalent to the ordinary condition
one has in relativistic theories, namely that the boost commutes with the S-matrix. We thank Niklas Beisert and Ben
Hoare for discussions on this point.
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(the dressing phase can be incorporated by adding a constant term to the differential operator, as further
elaborated in [27] and in [11], see also [28]). This translates into a differential constraint which the matrix
R++ can be seen to solve, and which can be recast as a differential-geometric condition:

DiŘ++ =
[
∂

∂pi
+ Γi

]
Ř++ = 0, i = 1, 2, (1.22)

where

Γ1 = −1
4

√
sin p2

2
sin p1

2

E12 ⊗ E21 + E21 ⊗ E12

sin p1+p2
4

, Γ2 = 1
4

√
sin p1

2
sin p2

2

E12 ⊗ E21 + E21 ⊗ E12

sin p1+p2
4

, (1.23)

Eij being the matrix with all zeroes except 1 in row i, column j. By making use of the difference form
one can further reduce the system (1.22) to a matrix-valued ordinary differential equation:[

d

dγ
− 1

2(E12 ⊗ E21 + E21 ⊗ E12) sechγ2

]
Ř++ = 0. (1.24)

The solution to this equation can be expressed as

Ř++ = Π ◦ e−(E12⊗E21+E21⊗E12) gd
(

γ
2

)
, (1.25)

where the Gudermannian function is defined as

gd(x) =
∫ x

0
dy sechy = 2 arctanh tanh x2 . (1.26)

Of course one has also extracted the condition [21]( ∂

∂γ1
+ ∂

∂γ2

)
Ř++ = 0, (1.27)

which states the difference-form of the S-matrix.
The introduction of the super-Poincaré picture of massless AdS3 scattering is amenable to a delightful

physical analogy [24]. A phonon excitation of momentum pi in a one-dimensional harmonic chain of
lattice spacing h−1 (in suitable conventions) has a dispersion relation

E(pi) = 2h
∣∣∣ sin pi

2

∣∣∣, (1.28)

where pi ∈ (−π, π) defines the Brillouin zone. This is identical to the dispersion relation (1.1) of our
massless particles. The new coproduct found in [24] is very peculiar, in that it implies that the generators
HL and HR have a non-trivial coproduct. However, since they are central, they are still forced by the
intertwining equation with the R-matrix to be cocommutative. Indeed, by a special property of the
trigonometric functions, one can check that the new coproduct satisfies (if we focus on right movers)

∆(HL) = sin p1 + p2

2 1⊗ 1 = ∆(HR), (1.29)

which is clearly cocommutative. As demonstrated in [29], this is the way a three-phonon process works
on the harmonic chain: two phonons come in (assuming for simplicity both momenta in (0, π

2 )), one
with dispersion 2h sin p1

2 and the other with dispersion 2h sin p2
2 , and a third emerges with dispersion

2h sin p1+p2
2 . The difference in our case is that no single particle emerges from the scattering, but always

two, as dictated by integrability. The analogy is therefore only mathematical. We have also neglected
the velocity parameter of the phonon scattering, which is inserted to ensure energy conservation. For
recent algebraic developments see also [30].
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In the case of the harmonic chain, the presence of a Brillouin zone is at the origin of the so-called
umklapp scattering: if we instead assume that p1 and p2 are both close to and slightly less than π, then
the emerging third phonon can be assigned a momentum (p1 + p2)mod 2π which is much smaller in
absolute value than each individual p1 and p2, and negative:

p1,2 = π − ϵ, p1 + p2 = 2π − 2ϵ ∼ −2ϵ. (1.30)

1.5 Relativistic limit

If one takes the following limit:

h → +∞, pi → 0, hpi = cqi finite, c > 0, (1.31)

one obtains a relativistic scattering theory. The limit should be understood as 0+ (such that qi > 0) for
right movers, 0− for left movers (such that qi < 0). All the S-matrices trivialise except those of massless
right with right, and left with left, movers, and the theory is projected to a critical point in this limit -
the scattering theory describes a 2D CFT [11]. The particles have dispersion relation

Ei → ±cqi, (1.32)

where the sign is + for right movers and − for left movers. It is customary to set

qi = ±e±θi (1.33)

(again + for right and − for left movers). The pseudo-relativistic variable γi diverges, but thanks to
the difference form the constant divergence cancels out in the S-matrix and one is left with a genuinely
relativistic rapidity θi:

γi → ± log c

4h + θi, h → +∞ (1.34)

once again + being for right and − for left movers. The divergent constant offsets cancel out in right-
right and left-left kinematics, and the two S-matrices (equivalently, the two R-matrices R++ and R−−)
therefore retain the exact same functional form as in (1.4), just with θ = θ1 − θ2 replacing γ. On the
other hand, the mixed right-left and left-right kinematics S-matrices trivialise: the divergent offsets add
up in such a way that the sech function of a large argument goes to 0, and the tanh function goes to ∓1
(for right-left, resp. left-right chiralities). The limits can then be seen to produce

R+−, R−+ → 1⊗ 1. (1.35)

This means that the theory has been pushed towards a critical point - right and left modes are decoupeld,
and the purely right-right and left-left scattering describes a conformal field theory [11].

In the relativistic limit the level-0 symmetry algebra (after a rescaling of the generators by appropriate
powers of h to ensure they remain finite) can be seen to become the ordinary N = 2 relativistic massless
supersymmetry: for right movers we have

QL = −GR = e
θi
2

(
0 0
1 0

)
, GL = −QR = e

θi
2

(
0 1
0 0

)
. (1.36)

The level-0 coproducts are all local in the same limit, since the braiding factors (which generate a
non-locality) e±i

pi
4 → 1 and the action of two-particle symmetries becomes the simple Leibniz rule
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∆(x) = x⊗ 1+ 1⊗ x. A very interesting observation, which was made in [31] in a different but related
context, is that the level-1 Yangian charges in Drinfeld’s first realisation are given by

Q̂L = ui QL, ĜL = ui GL, Q̂R = ui QR, ĜR = ui GR, ui = 0. (1.37)

The vanishing of the charge does not mean that the coproduct vanishes, but only that the coproduct
is entirely tail: one can explicitly verify that the limiting R++ intertwines the coproducts (1.13) in the
representation (1.36), and with all the hatted generators set to 0 (only the tails survive). This is rather
a signature of a conformal field theory, as further elaborated in [31].

For left movers one has instead

QL = +GR = e
−θi

2

(
0 0
1 0

)
, GL = +QR = e

−θi
2

(
0 1
0 0

)
, (1.38)

and again a vanishing evaluation parameter at level 1, with the tails being exactly as in the non-relativistic
case but taken in the representation (1.38). This can be directly checked by brute-force computation in
the case of R−−. In the case of R+− and R−+ they are trivial in the relativistic limit; hence it becomes
quite pointless to discuss their symmetries.

It is amusing to notice that, by virtue of the fact that R++ and R−− maintain the same functional
form in the non-relativistic as in the relativistic case, it follows that the unbraided N = 2 supersymmetry
intertwines the non-relativistic version of those two S-matrices, this time with γ replacing θ everywhere.
This can also be proven by showing that the non-relativistic braided symmetry can be written in terms
of the unbraided (in right-right and left-left kinematics), which has been explicitly demonstrated using
the free-fermion language in [32].

Based on the above consideration, it will not be surprising that, when expressed in the γ variable
and for right moving particles, all the expressions involving the boost which we wrote in the previous
subsection are exactly preserved by the BMN limit, just with θ replacing γ everywhere.

1.6 L and L̃ representations

Even if we have not specified it explicitly, all we have said so far was in the so-called “L” representation.
This is only half of the story, since one also has to consider an “L̃” representation (using the naming of
representations in [7]). From the point of view of the scattering theory which we are concerned with,
these L and L̃ modes are just an additional distinction between possible representations - a sort of flavour
degree of freedom. Each of the L and L̃ modes separately have either right or left moving chirality. Each
of the L and L̃ representations is a representation of centrally-extended psu(1|1)2, and therefore displays
a matrix form for all four supercharges QL, GL, QR and GR. We can say that the matrices which
we have shown in (1.8) and (1.16) were πL±(QL), πL±(GL), πL±(QR) and πL±(GR) for right and left
movers respctively, while now we will display πL̃± of all the four supercharges - π denoting the act of
taking a representation of the abstract algebra generators.

The L̃ representation for right movers is given by

πL̃+
pi

(QL) = −πL̃+
pi

(GR) =
√
h

2

√
sin pi

2

(
0 1
0 0

)
,

πL̃+
pi

(GL) = −πL̃+
pi

(QR) =
√
h

2

√
sin pi

2

(
0 0
1 0

)
. pi ∈ (0, π) (1.39)
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To distinguish the states from the L representation, we can call them {|ϕ̄⟩, |ψ̄⟩}, and the ordering of
the basis in which we write our formulae is the same as before, just understanding a corresponding bar
whenever there is an L̃ state.

The L̃ representation for left movers is given by

πL̃−
pi

(QL) = πL̃−
pi

(GR) =
√
h

2

√
sin −pi

2

(
0 1
0 0

)
,

πL̃−
pi

(GL) = πL̃−
pi

(QR) =
√
h

2

√
sin −pi

2

(
0 0
1 0

)
. pi ∈ (−π, 0) (1.40)

Likewise, the R-matrices (1.4) are in the LL representation, that is to say that they intertwine the
coproducts in the representation πL ⊗ πL(with additional ± indices for right and left movers which we
omit here):

πL ⊗ πL
(
∆(QL)

)
, πL ⊗ πL

(
∆(GL)

)
, πL ⊗ πL

(
∆(QR)

)
, πL ⊗ πL

(
∆(GR)

)
, (1.41)

and they could be called RLL. The mix-representation R-matrices RLL̃ intertwine instead the (very
same abstract) coproducts taken in the representation πL ⊗ πL̃:

πL ⊗ πL̃
(
∆(QL)

)
, πL ⊗ πL̃

(
∆(GL)

)
, πL ⊗ πL̃

(
∆(QR)

)
, πL ⊗ πL̃

(
∆(GR)

)
. (1.42)

Such R-matrices read (in the various combinations of chiralities):

RLL̃
++ = Σ̃++(γ)


− tanh γ

2 0 0 sech γ
2

0 1 0 0
0 0 −1 0

sech γ
2 0 0 tanh γ

2

 , γ1, γ2 < 0,

RLL̃
−− = Σ̃−−(γ)


− tanh γ

2 0 0 −sech γ
2

0 −1 0 0
0 0 1 0

−sech γ
2 0 0 tanh γ

2

 , γ1, γ2 > 0,

RLL̃
+− = Σ̃+−(γ)


− tanh γ

2 0 0 −isech γ
2

0 1 0 0
0 0 1 0

−isech γ
2 0 0 − tanh γ

2

 , γ1 < 0, γ2 > 0,

RLL̃
−+ = Σ̃−+(γ)


tanh γ

2 0 0 isech γ
2

0 1 0 0
0 0 1 0

isech γ
2 0 0 tanh γ

2

 , γ1 > 0, γ2 < 0, (1.43)

and again γ = γ1 − γ2.
We have verified that the R-matrices in the πL̃ ⊗ πL̃ representation - which we call RL̃L̃ - and the

ones in the πL̃ ⊗ πL representation - which we call RL̃L - satisfy the following relations (ignoring the
dressing factors for the moment):

RL̃L̃
++(γ) = R++(γ), RL̃L̃

−−(γ) = R−−(γ),

RL̃L̃
+−(γ) = R−+(−γ), RL̃L̃

−+(γ) = R+−(−γ),

RL̃L
++(γ) = RLL̃

++(γ), RL̃L
−−(γ) = RLL̃

−−(γ),

RL̃L
+−(γ) = RLL̃

−+(−γ), RL̃L
−+(γ) = RLL̃

+−(−γ).

(1.44)
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Figure 1: The Boundary Yang-Baxter Equation (BYBE) for a right wall (hence all the incoming particles
are right movers, and all the outgoing particles after reflection are left movers).

We refer to [7] for comparison - in particular formulae (5.9) - (5.12) in that paper. After converting
S- to R-matrices we have the exact same matrix entries as in [7] except for an overall minus in RLL̃

−−(γ).
We have checked all the 8 mixed Yang-Baxter equations with any assortment of L and L̃ representa-

tions in right-right moving kinematics. For instance, just to show two of them, we have

RL̃L̃
12 (γ1 − γ2)RL̃L

13 (γ1 − γ3)RL̃L
23 (γ2 − γ3) = RL̃L

23 (γ2 − γ3)RL̃L
13 (γ1 − γ3)RL̃L̃

12 (γ1 − γ2),

RL̃L
12 (γ1 − γ2)RL̃L

13 (γ1 − γ3)RLL
23 (γ2 − γ3) = RLL

23 (γ2 − γ3)RL̃L
13 (γ1 − γ3)RL̃L

12 (γ1 − γ2), etc.
(1.45)

We trust that the remaining Yang-Baxter equations will be satisfied since we are using the same conven-
tions as [7]. We have also checked that all the unitarity conditions can be satisfied with an appropriate
choice of dressing factors, something which again must follow from [7].

Notice that again the BMN limit, where γi are sent to ±∞ according to their domain of definition
(1.45), trivialises the mixed-chirality scattering (1.45), while maintaining a non-trivial scattering between
the same chiralities. The left and right movers decouple, which is a the hallmark of a conformal field
theory.

2 Right wall reflection matrices

Let us write the Boundary Yang-Baxter Equation (BYBE), considering a right wall, namely one where
all the dynamics happen to its left, as in figure 1.

In the case of massless scattering, we need to keep in mind that a particle coming towards the wall
has chirality + (right mover), while after reflection it has chirality − (left mover). This influences which
bulk S-matrices appear in the various parts of the BYBE. First, we can see that changing from a right
to a left mover inverts the sign of γ. In fact, one can interpret (1.3) as defining the variable γ piece-wise,
and so, if pi ∈ (0, π), we have

γ(−pi) = log cot pi

4 = − log tan pi

4 = −γ(pi). (2.1)

At this point, if we look at figure 1 and read it from top to bottom on both sides, we can write the
BYBE for two particles in the L-representation:

KL
2 (γ2)[RLL

+−]op
(
γ2 − (−γ1)

)
KL

1 (γ1)RLL
++

(
γ1 − γ2

)
=

[RLL
−−]op

(
(−γ2) − (−γ1)

)
KL

1 (γ1)RLL
+−

(
γ1 − (−γ2)

)
KL

2 (γ2). (2.2)
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Notice that, for clarity, we made explicit the representation index in both K and R matrices and from
now on we shall continue doing so. Since we make use of (2.1), then in (2.2) we should think everywhere

γ1 = log tan p1

4 , γ2 = log tan p2

4 , p1, p2 ∈ (0, π), γ1, γ2 < 0. (2.3)

We also recall that KL
1 := KL ⊗ 1, while KL

2 := 1⊗KL. Furthermore, if one defines

R(γ) = rabcd(γ)Eab ⊗ Ecd, (2.4)

then

Rop(γ) = rabcd(γ) (−1)
(

deg(a)+deg(b)
)(

deg(c)+deg(d)
)
Ecd ⊗ Eab, (2.5)

where |1⟩ = |ϕ⟩ has deg(1) = 0 and |2⟩ = |ψ⟩ has deg(2) = 1.

2.1 Singlet boundary

Let us first focus on the case in which the boundary is in a singlet representation.
Forgetting, for the moment, about dressing factors, we have found by brute force computation a family

of solutions to (2.2) (in the ordered basis {|ϕ⟩, |ψ⟩})

KL(γi) =
(

1 0
0 fL(γi)

)
, fL(γi) = −i tanh

(
arccoth(eγi) + icL

)
, γi < 0 , (2.6)

with cL any complex constant. Two particularly interesting choices of cL are cL
± = π

(
m ± 1

4
)
, with

m ∈ Z, which produce, upon using γi(pi) = log tan pi

4 , the result

KL
(
γi(pi)

)∣∣∣
cL

+

=
(

1 0
0 −e

ipi
2

)
and KL

(
γi(pi)

)∣∣∣
cL

−

=
(

1 0
0 e− ipi

2

)
. (2.7)

If we do the same now when the two bulk particles are in the L̃ representation, we find the L̃ reflection
matrix - which we shall denote by KL̃. Explicitly, we solve the boundary Yang-Baxter equation with
two L̃ bulk particles - which is obtained from (2.2) by replacing L with L̃ everywhere and using the L̃L̃
bulk R-matrices accordingly, i.e.

KL̃
2 (γ2)

[
RL̃L̃

+−
]op
(
γ2 − (−γ1)

)
KL̃

1 (γ1)RL̃L̃
++

(
γ1 − γ2

)
=[

RL̃L̃
−−
]op
(

(−γ2) − (−γ1)
)
KL̃

1 (γ1)RL̃L̃
+−

(
γ1 − (−γ2)

)
KL̃

2 (γ2). (2.8)

We find

KL̃(γi) =
(

1 0
0 f L̃(γi)

)
, f L̃(γi) = i tanh

(
arccoth(eγi) − icL̃

)
, (2.9)

with cL̃ any complex constant. Also in this case there are two particularly interesting choices of cL̃,
namely cL̃

± = π
(
n± 1

4
)
, with n ∈ Z, leading to

KL̃
(
γi(pi)

)∣∣∣
cL̃

+

=
(

1 0
0 −e− ipi

2

)
and KL̃

(
γi(pi)

)∣∣∣
cL̃

−

=
(

1 0
0 e

ipi
2

)
. (2.10)

Now we need to see whether this consistently solves the boundary Yang-Baxter equation for one bulk
L particle and one bulk L̃ particle. In such equations both L and L̃ reflection matrices appear. For
instance, if particle 1 is L and particle 2 is L̃, we write

KL̃
2 (γ2)

[
RL̃L

+−
]op
(
γ2 − (−γ1)

)
KL

1 (γ1)RLL̃
++

(
γ1 − γ2

)
=[

RL̃L
−−
]op
(

(−γ2) − (−γ1)
)
KL

1 (γ1)RLL̃
+−

(
γ1 − (−γ2)

)
KL̃

2 (γ2), (2.11)
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while if particle 1 is L̃ and particle 2 is L, we write

KL
2 (γ2)

[
RLL̃

+−
]op
(
γ2 − (−γ1)

)
KL̃

1 (γ1)RL̃L
++

(
γ1 − γ2

)
=[

RLL̃
−−
]op
(

(−γ2) − (−γ1)
)
KL̃

1 (γ1)RL̃L
+−

(
γ1 − (−γ2)

)
KL

2 (γ2). (2.12)

Interestingly, one finds that to solve (2.11) and (2.12) it is sufficient to impose the following relation
between the constants cL and cL̃

cL̃ = −cL + π
(
s+ 1

2
)

with s ∈ Z. (2.13)

Throughout the rest of this section we shall assume this relation holds true, and work with the following
rewriting of the above K-matrices ‡

KL(γi) =
(

1 0
0 tan (cL + χ(γi))

)
KL̃(γi) =

(
1 0
0 cot (cL + χ(γi))

)

with χ(γi) := i

2

(
i (π + 2πk) + log tanh −γi

2

)
γi < 0, k ∈ Z .

(2.14)

So far we have solved the boundary Yang-Baxter equations disregarding the bulk dressing factors. This
means that the dressing factors will have to satisfy the properties which effectively allow them to cancel
out in all the boundary Yang-Baxter equations. These conditions are:

ΣLL
++(γ) = ΣLL

−−(γ), ΣL̃L̃
++(γ) = ΣL̃L̃

−−(γ), (2.15)

and

ΣLL̃
++(γ) = ΣL̃L

−−(γ), ΣLL̃
−−(γ) = ΣL̃L

++(γ) ΣL̃L
+−(γ) = ΣLL̃

+−(γ). (2.16)

The conditions (2.15) should be compared with what is known in the literature [16]. In particular, we
ought to consider that we should construct physical excitations. As explained in [7], the massless physical
excitations are obtained by taking tensor product of a single particle state in the L-representation with
another single particle state in L̃-representation, i.e. the physical massless state is of the form πL ⊗ πL̃.
As a consequence, in the massless sector we must only allow boundary scattering which does not alter
the L, L̃ flavour, in such a way that the physical excitations are maintained after reflection. This means
that even for the singlet boundary, achiral reflections which change the representation of the reflecting
bulk particle are prohibited, which is in contrast with the massive case considered in [20]. This should
also make the difference in minus sign mentioned below (1.44) - which allows us to solve (2.11) and (2.12)
- inconsequential. This means that (2.11) and (2.12) would actually never appear, and we would only
need the processes analogue to formula (N.5) in [7].

Boundary subalgebras. Having solved the BYBE for the scattering of particles in the L and L̃

representations off a right wall, it is natural to wonder about the number of symmetries that can be
preserved by such a boundary. This means finding which generators (if any) of the bulk symmetry
algebra A are not broken by the presence of the boundary, and are also symmetries of the K-matrix.
These generators will constitute the boundary subalgebra B. This amounts to searching for solutions of
the intertwining equations (4.17) in [20],

πa−
−p(b)Ka

(
γ(p)

)
= Ka

(
γ(p)

)
πa+

p (b) ∀ b ∈ B and a ∈ {L, L̃}, γ < 0, p ∈ (0, π) . (2.17)

‡While such rewriting is always possible for KL, since tan (cL + χ(γi)) = fL(γi) ∀ cL, for KL̃ one needs to impose
the relation (2.13) to make sure that cot (cL + χ(γi)) = f L̃(γi).
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In the above equation, superscript a refers to L and L̃ representations, while ± following it refers to
either right (+) or left (-) movers respectively. The subscripts p refers to the momentum of the bulk
particle which is taken to be positive i.e. p ∈ (0, π), and hence the momentum for the left movers, which
is negative and between (−π, 0), is denoted by −p.

A brute force approach to the above task leads to the following results:

• The intertwining equations for the generators HL,HR in the L and L̃ representations are solved by
the K-matrices KL(γ) and KL̃(γ), given in (2.14), for any choice of constants cL.

• The intertwining equations for the generators P,K in the L and L̃ representations cannot be solved
by the K-matrices KL(γ) and KL̃(γ) for any choice of cL.

• The intertwining equations for the generators QL,GL admit simultaneous solutions in either the
L or L̃ representations only if the constant cL is allowed to depend on the momenta. This implies
that no allowed solution exists.

• The intertwining equations for the generators QR,GR admit simultaneous solutions in either the L
and L̃ representations provided that the constant cL is allowed to depend on the momenta. Hence,
also in this case one finds no consistent solutions.

These findings seem to be in contrast with the results of [20] for the massive case: it was there shown
that a right boundary always preserves HL,HR and that this boundary symmetry can be enhanced to
two possible supersymmetric subalgebras, namely

BL = ⟨HL,HR,QL,GL⟩ and BR = ⟨HL,HR,QR,GR⟩. (2.18)

Given this premise, to get a better grasp on the massless case it is then useful to take a step back
and look at the problem from an algebraic perspective [34]. A right boundary symmetry algebra B with
elements b ∈ B should be a subalgebra B ⊂ A of the full bulk symmetry Hopf algebra A, but not a Hopf
subalgebra of the latter. Integrability rather requires it to be a coideal subalgebra, which translates into
the condition

∆(b) ∈ A ⊗ B ∀ b ∈ B, (2.19)

and, at the Lie algebra level, bulk and boundary should form a symmetric pair (g, h) - g corresponding
to the bulk A and h to the boundary B, such that g ≃ h⊕m, with h a subalgebra of g and commutation
relations restricted to

[h, h] ⊂ h, [h,m] ⊂ m, [m,m] ⊂ h. (2.20)

In light of these requirements it is not hard to realise that while the conditions (2.19) and (2.20) are
satisfied for the above two subalgebras BL and BR given the choice of coproducts in [20], the same is
not true for the case under consideration: the right-coideal subalgebra condition is indeed spoiled by the
choice of a symmetric coproduct (1.10), due to the presence of the central group-like generator U = ei

p
2 ,

introduced in [20] via its action on single-magnon states

U |φr
p⟩ = ei

p
2 |φr

p⟩ and U |φ̄r
p⟩ = ei

p
2 |φ̄r

p⟩. (2.21)

Rewriting (1.10) as

∆(Qa) = Qa⊗U− 1
2 +U

1
2 ⊗Qa and ∆(Ga) = Ga⊗U

1
2 +U− 1

2 ⊗Ga with a ∈ {L,R}, (2.22)

14



and adopting from [20] the coproduct

∆(Uα) = Uα ⊗ Uα, ∀ α ∈ R, (2.23)

it is then possible to realise that a more convenient choice of basis for the bulk symmetry algebra A is §

AU = ⟨HL, HR, U
1
2QL, U

1
2QR, U

− 1
2GL, U

− 1
2GR, UP, U

−1K, p⟩ with Uα = ei α
2 p ∀α ∈ R. (2.24)

In this basis, one can find two subalgebras equivalent to (2.18) satisfying conditions (2.19) and (2.20)

BU
L = ⟨HL, HR, U

1
2QL, U

− 1
2GL⟩ and BU

R = ⟨HL, HR, U
1
2QR, U

− 1
2GR⟩. (2.25)

One can then go back to the search for solutions to the intertwining equations (2.17), which in the new
basis leads to the following results:

• Nothing changes for HL,HR, which are always preserved by the right wall in both the L and L̃

representations for any choice of constant cL appearing in the K-matrices (2.6) and (2.9).

• The rescaled generators UP, U−1K are still never preserved in either the L or L̃ representation.

• The intertwining equations for U
1
2QL,U

− 1
2GL admit simultaneous solutions in both the L and L̃

representations provided one chooses cL = cL
− = π

(
m− 1

4
)

with m ∈ Z. For these values of cL, the
intertwining equations for U

1
2QR,U

− 1
2GR are not satisfied and preservation of HL,HR is enhanced

to the supersymmetric boundary subalgebra BU
L defined in (2.25).

• The intertwining equations for U
1
2QR,U

− 1
2GR admit simultaneous solutions in both the L and L̃

representations provided one chooses cL = cL
+ = π

(
m+ 1

4
)

with m ∈ Z. For these values of cL, the
intertwining equations for U

1
2QL,U

− 1
2GL are not satisfied and preservation of HL,HR is enhanced

to the supersymmetric boundary subalgebra BU
R defined in (2.25).

Notice that in obtaining the above results we represented, for any a ∈ AU, the generator Uα ∀α ∈ R as

πa±
±p(Uαa) = πa±

±p(Uα)πa±
±p(a) with πa±

±p(Uα) = e±iα
p
2 1 for p ∈ (0, π) , a ∈ {L, L̃} (2.26)

We must at this stage make some further comparison with the results obtained for the massive case in
[20]. The first thing to notice is that the massive K-matrices found to solve the BYBE and preserving the
Abelian subalgebra ⟨HL,HR⟩ (see eq. 4.22 in [20]) exhibit dependence on the momenta p and a constant
c which is different from the one found in the massless case (2.6) and (2.9) (for the different constant
cL) and there exists no choice of cL which allows one to recast (2.14) in the form found for the massive
case in terms of the constant c. A second important difference lies then in the K-matrices preserving
the enhanced symmetry superalgebras BU

L and BU
R at the special values cL = cL

± in (2.14). While the
massive K-matrices exhibiting symmetry enhancement are characterised by the presence of −eip factors
only (see eq. 4.18, 4.19 in [20]), the respective massless K-matrices (2.14) reduce to the form (2.7) and
(2.10) at c = c±, and hence depend on ±e±i

p
2 . These differences should be expected, as a result of

the representations involved in the analysis: while in the massive case the relevant representations are
L and R, in the massless one are L and L̃, which then further split depending on the chirality of the
excitations, leading to the four cases described above. Additionally, one should take into account that
the L representation considered in this work is not the same as the massless limit of the one considered

§The Hopf algebra AU = A but, due to the different basis choice, there are different (isomorphic) Lie algebras associated
with AU and A respectively. The same will be true for ÃU in (3.15).
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in [20] - which we briefly discuss in Appendix A. Altogether, this accounts for the differences encountered
above and the ones that we shall find in the next paragraph.

Hidden symmetry. In further analogy with the massive scenario, it is natural to wonder about the
existence of some (hidden) larger supersymmetric subalgebra of AU solving the intertwining equations
for the K-matrices (2.14), preserving ⟨HL,HR⟩ for generic cL. In [20], the authors managed to provide
a positive answer to such question (see around equation 4.23) upon identifying a new set of generators,
constructed as non-linear combinations of the original ones and satisfying an isomorphic set of commu-
tation relations as well as various symmetric pair decompositions (2.20). Satisfaction of the right coideal
subalgebra condition (2.19) remained more misterious, for technical reasons we shall comment on at the
end of this paragraph.

For the massless excitations considered in this work, the choice of new basis (2.24) turned out to be
fundamental in showing symmetry preservation of the right wall. Hence one should reasonably expect
this to play a role in the existence of a hidden symmetry algebra and the intuitive guess would be defining
the new generators as in [20], after taking into account the modified basis (2.24). Due to the different
dependences exhibited by the massive and massless K-matrices on the respective constants c and cL,
such guess would however not be sufficient to show satisfaction of the intertwining equations. This means
one should not expect to be able to solve them by simply replacing c → cL in the definition of hidden
generators given in [20]: some more general dependence on cL should be considered.

A natural way of taking into account these aspects is looking for solutions of the intertwining equations
(2.17) for the following set of hidden generators

q+ := U−1/2KQL + ie(cL)U1/2PGR d := (HL − e(cL)2 HR + ie(cL) (UP + U−1K))PK

q− := U1/2PGL + ie(cL)U−1/2KQR d̃ := (HL − e(cL)2 HR − ie(cL) (UP + U−1K))PK

s+ := U−1/2KQL − ie(cL)U1/2PGR n := (HL + e(cL)2 HR + ie(cL) (UP − U−1K))PK

s− := U1/2PGL − ie(cL)U−1/2KQR ñ := (HL + e(cL)2 HR − ie(cL) (UP − U−1K))PK .

(2.27)

which closely resemble the ones defined in [20] while accounting for the new basis (2.24) and the different
dependence on the integration constant. These satisfy the commutation relations

{q+, q−} = d {q+, s−} = n {q+, s+} = 0

{s+, s−} = d̃ {q−, s+} = ñ {q−, s−} = 0 ,
(2.28)

and studying the intertwining conditions one can observe the followings:

• The hidden generators n, ñ are always preserved by the right wall in both the L and L̃ representa-
tions, for any choice of function e(cL) ̸= 0.

• Generators d, d̃ are never preserved by the right wall, in either the L or L̃ representation, for any
non-zero choice of e(cL).

• The intertwining equations for q+, s− admit simultaneous solutions in both the L and L̃ repre-
sentations provided one chooses e(cL) = e−(cL) = −i cos (cL)−sin (cL)

cos (cL)+sin (cL) . For such choice of e(cL)
the intertwining equations for q−, s+ are never satisfied, unless one further specifies cL such that
cos (cL) = sin (cL). This would precisely correspond to choosing cL = cL

+ = π(m+ 1
4 ) with m ∈ Z,

namely the cL leading to preservation of BU
R defined in (2.25). However, this is obviously forbidden

by the fact that would imply e(cL) = 0 and thus trivialisation of the hidden generators. The value
cL = cL

− is also forbidden, as it leads to vanishing denominator in e−(cL).
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• The intertwining equations for q−, s+ admit simultaneous solutions in both the L and L̃ rep-
resentations provided one chooses e(cL) = e+(cL) = i cos (cL)−sin (cL)

cos (cL)+sin (cL) . For such choice of e(cL)
the intertwining equations for q+, s− are never satisfied, unless one further specifies cL such that
cos (cL) = sin (cL). Again, this would correspond to choosing cL = cL

+ = π(m + 1
4 ) with m ∈ Z,

which is forbidden by the fact that e(cL) = 0 for such values. Also in this case one needs cL ̸= cL
−.

We further notice that, as expected, defining the hidden symmetry generators without making use of the
basis (2.24) leads to no solution of the intertwining equations, i.e. no hidden symmetry being preserved
by the boundary. Moreover, one may wonder whether the dependence on cL might be generalised by
including arbitrary rescaling functions in each of the terms which define the generators (2.27) and whether
this may lead to different sets of preserved symmetries: it seems that a more general dependence on cL

may always be brought back to the form (2.27) upon requiring the generators and their coproducts to
satisfy the commutation relations (2.28).

It is then necessary to highlight that as a result of (2.28), the symmetric pair condition (2.20) are still
respected by the sets of generators preserved by the right boundary for any choice of cL ̸= cL

±, namely

h± = ⟨q±, s∓, n, ñ⟩ with m± = ⟨q∓, s±, d, d̃⟩ . (2.29)

This translates into preservation of the following hidden symmetry subalgebras

BU±
D = ⟨q±, s∓, n, ñ⟩ for e(cL) = e∓(cL) . (2.30)

At this point, the right coideal subalgebra condition (2.19) remains the final ingredient to be considered,
and in this respect an important comment is in order. An explicit check of the latter property would
require computing the coproduct of the hidden symmetry generators (2.27) by using the coproduct
homomorphism property and applying the relations (2.22) and (2.23). This way, the coproducts for
the hidden symmetry generators would be written as tensor products of the original generators and the
non-trivial step would correspond to re-expressing such results into the form

∆(b) =
∑

ai∈A, bj∈B

cij a
i ⊗ bj ∈ A ⊗ B ∀ b ∈ B , (2.31)

by inverting the relations (2.27). In the latter expression cij denote some arbitrary coefficients to be
determined, A = ⟨q+, q−, s+, s−, d, d̃, n, ñ, p⟩ and B is either ⟨q−, s+, n, ñ⟩ or ⟨q+, s−, n, ñ⟩. Performing
such inverse computation turns out to be impossible in both the massless case considered here and in
the massive case considered in [20], but the possibility of constructing a coproduct of hidden generators
compatible with the coideal subalgebra condition should be ensured by the symmetric pair decomposi-
tons (2.29), and their massive analogue, as discussed in [33]¶. Strictly speaking, the construction of
[33] applies to complex simple Lie algebras, but the very non-trivial fact of being able to determine
a K-matrix preserving (part of) the hidden generators (2.27) for the massless case - and similarly for
the massive case of [20] - suggests it should be extendable to the case under consideration. Applying
this, would ensure the possibility of finding coproducts for the hidden symmetry generators with the
right structure (2.31), and would in turn induce a set of coproducts on the original generators by direct
application of the relations (2.27). The latter coproducts would however be not guaranteed to take the
original form (2.22) and (2.23), as the procedure would generally lead to more complicated expressions.

¶We thank Vidas Regelskis for very helpful discussion on this point.
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Short summary of the right wall singlet boundary. Solving the four BYB equations (2.2),(2.8),
(2.11),(2.12) leads to the K-matrices (2.14), which we report here for self consistency of the recap

KL(γi) =
(

1 0
0 tan (cL + χ(γi))

)
KL̃(γi) =

(
1 0
0 cot (cL + χ(γi))

)

with χ(γi) := i

2

(
i (π + 2πk) + log tanh −γi

2

)
and γi < 0, k ∈ Z, cL ∈ C .

(2.32)

Satisfying the right coideal subalgebra condition (2.19) without breaking the symmetric pair decompo-
sition (2.20) then requires choosing the following basis for the bulk symmetry algebra

AU = ⟨HL, HR, U
1
2QL, U

1
2QR, U

− 1
2GL, U

− 1
2GR, UP, U

−1K, p⟩ with Uα = ei α
2 p ∀α ∈ R. (2.33)

The central generators HL,HR, p are then preserved by the right wall in both the L and L̃ representations,
i.e. they satisfy the intertwining equations (2.17), for any choice of the constant cL, while the generators
UP and U−1K are never preserved in either the L or L̃ representation. The fermionic generators U

1
2 Qa

and U− 1
2 Ga are generally not preserved, unless one sits at the special values cL = cL

± = π(m± 1
4 ), with

m ∈ Z, where the following supersymmetry enhanced subalgebras are preserved

cL
+ : BU

R = ⟨HL,HR,U
1
2 QR,U

− 1
2 GR⟩ and cL

− : BU
L = ⟨HL,HR,U

1
2 QL,U

− 1
2 GL⟩ . (2.34)

The two K-matrices then take the following very simple form

cL
+ : KL

BU
R

(p) =
(

1 0
0 −ei p

2

)
and KL̃

BU
R

(p) =
(

1 0
0 −e−i p

2

)

cL
− : KL

BU
L

(p) =
(

1 0
0 e−i p

2

)
and KL̃

BU
L

(p) =
(

1 0
0 ei p

2

)
.

(2.35)

It is finally possible to define, in terms of a ∈ AU, a set of new generators (2.27) depending on some
arbitrary function e(cL) of the constant which appears in the K-matrices, and exhibiting commutation
relations (2.28) with the same structure as (1.7). This complicated and non-linear basis redefinition
allows to uncover the presence of two hidden symmetry boundary superalgebras BU±

D = ⟨q±, s∓, n, ñ⟩,
which respectively solve the boundary intertwining equations (2.17) for any cL ̸= cL

± upon choosing

e∓(cL) = ∓i cos (cL) − sin (cL)
cos (cL) + sin (cL) . (2.36)

Unitarity. In analogy with S-matrices, physically relevant K-matrices should satisfy the following
unitarity relations

Physical Unitarity K(γ)K†(γ) = 1

Braiding Unitarity K(γ)K(−γ) = 1

(2.37)

with † denoting Hermitean conjugation (See figure 2 for a pictorial view on braiding unitarity). It is
straightforward to check that the K-matrices summarised in (2.35) for the case of a right wall singlet
boundary indeed satisfy the physical unitarity relations, provided the associated dressing factors also
satisfy

kL(γ)
[
kL(γ)

]∗ = 1 = kL̃(γ)
[
kL̃(γ)

]∗ with γ < 0 (2.38)

However, due to the presence of different representations for left and right moving particles in the
massless limit, the naive braiding unitarity relation (2.37) - which holds in the massive case discussed
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Figure 2: The unitarity condition for the right wall. One has to analytically continue the expression for
the reflection matrix (which is defined for positive incoming momentum) to negative incoming momentum
(a left mover is fed back into the right wall).

in Sec. 4 - is not satisfied by the above K-matrices. As indicated in figure 2, taking the analytical
continuation of the K-matrix to −p turns a right moving particle into a left moving particle, which
in the massless limit has a different bulk representation. Hence, one needs to introduce a new matrix,
denoted K ′, which is obtained by solving the boundary intertwining equation (2.39) for the opposite
particle momentum, i.e. symbolically a left moving particle reflecting off a right wall,

πa+
p (b)K ′(−γ) = K ′(−γ)πa−

−p(b) ∀ b ∈ B, (2.39)

where B is the corresponding boundary subalgebra. Coincidentally, solving (2.39) in the singlet boundary
case gives us the same K-matrices as before i.e. K ′(γ) = K(γ). This is however not always the case as
we shall see for the vector boundary in the next subsection. The braiding unitarity leads to the following
constraint on the dressing factors,

kL(γ)
[
k′L(−γ)

]
= 1 = kL̃(γ)

[
k′L̃(−γ)

]
(2.40)

Note, however, that the matrix K ′(γ) can also be obtained by taking the massless limit of the massive
BYBE solutions carefully. So while a priori there is no reason why the dressing factors for K(γ) and
K ′(γ) must be the same, they are not entirely independent either.

2.2 Vector boundary

Let us consider now a boundary which itself carries a two-dimensional representation‖. In this case the
reflection matrix is a 4 × 4 matrix acting on the tensor product of a bulk and a boundary representation.
The boundary Yang-Baxter equation still reads as in (2.2), without the L superscripts, however it is now
an equation on three two-dimensional spaces V1 ⊗ V2 ⊗ VB , where B denotes the boundary space:

K2B(γ2, γB)Rop
+−

(
γ2 − (−γ1)

)
K1B(γ1, γB)R++

(
γ1 − γ2

)
= Rop

−−

(
(−γ2) − (−γ1)

)
K1B(γ1, γB)R+−

(
γ1 − (−γ2)

)
K2B(γ2, γB). (2.41)

The R-matrices always act in spaces V1 ⊗V2 which represent the two bulk particles. Here K1B(γ, γB) =
(1⊗P)(K(γ, γB)⊗1)(1⊗P) and K2B(γ, γB) = 1⊗K(γ, γB) denote the reflection of the first and second

‖This akin to [35], see also [36].
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particle with the boundary, with P being the graded permutation and K(γ, γB) being the complete vector
boundary reflection matrix. In this setting it is clear that, contrarily to the singlet case, the presence of a
non-trivial boundary representation increases considerably the complexity of the boundary Yang-Baxter
equation. It is thus useful to recall the result of [20], stating that for vector boundaries the K-matrix
must factorise as

K(γ, γB) = KLL(γ, γB) ⊕KL̃L̃(γ, γB) ⊕KLL̃(γ, γB) ⊕KL̃L(γ, γB) (2.42)

and consequently the BYBE (2.41) can be rewritten as a set of eight equations of the form

Kbc
2B(γ2, γB)[Rba

+−]op
(
γ2 − (−γ1)

)
Kac

1B(γ1, γB)Rab
++

(
γ1 − γ2

)
= [Rba

−−]op
(

(−γ2) − (−γ1)
)
Kac

1B(γ1, γB)Rab
+−

(
γ1 − (−γ2)

)
Kbc

2B(γ2, γB) (2.43)

with a, b, c ∈ {L, L̃}. This certainly helps in decreasing the complexity of BYBE, but unfortunately
is still not enough to ensure the possibility of solving it in full generality, as we have done in the
singlet case. For this reason, we shall start by following a slightly different logic, i.e. first analysing the
intertwining equations, which are equations on the tensor product of two vector spaces rather than three,
and successively checking the BYBE is satisfied. As for the case of the singlet boundary, the use of a
symmetric coproduct forces us to consider the new choice of basis (2.24) for the bulk symmetry algebra,
while searching for a subalgebra B preserved by the vector boundary. In this setting, the boundary
intertwining equations are given by

(πa−
−p ⊗ πb

B)∆(b)Kab(γ(p)) = Kab(γ(p)) (πa+
p ⊗ πb

B)∆(b) ∀ b ∈ B, (2.44)

where a, b ∈ {L, L̃} denote the representations, ± in the superscript denote right and left mover respec-
tively, and Kab denotes the partial reflection matrix with a (the first index) being the representation
of the particle and b (the second index) being the representation of the boundary. p ∈ (0, π) in the
subscript is the momentum of the particle and B denotes the boundary representation.

We shall begin by studying the above intertwining equation using the representations (1.8, 1.16) for L
and (1.39, 1.40) for L̃, not only for the bulk excitations but also for the boundary itself. The boundary
representation will simply be chosen to be πa

B(b) = πa+
p (b)|p=π,h→h/2 for all generators b of the boundary

subalgebra B and a ∈ {L, L̃}. Such a choice of vector boundary representation allows us to keep contact
with [20] and enjoys a simple physical interpretation in terms of the bulk representations, since it just
requires a fixing of its parameters. To further motivate this choice of boundary representation, if we
focus on non-vanishing momentum, we note that the modulus of the group velocity of the wave packet
|∂E/∂p| = h cos p

2 vanishes at p = ±π, hence giving us a stationary wave packet corresponding to the
boundary. The rescaling h → h/2 can be interpreted as arising from the Z2 orbifolding of the bulk
line to the half-line with boundary. This does not represent the only possible choice of vector boundary
representation. We can also consider other more generic choices for this boundary representation, albeit
without clear physical interpretations. We refer to Sec. 5 for an attempt at such a generalisation.

Analysing (2.44) starting from a general unconstrainedK-matrix, it is possible to fix its free coefficients
in such a way that the following boundary algebra is preserved

BU
V = ⟨HL, HR, U

1
2QL, U

1
2QR, U

− 1
2GL, U

− 1
2GR, UP, U

−1K⟩. (2.45)

It is not hard to realise that it correctly satisfies both the coideal subalgebra condition (2.19) and the
symmetric pair condition (2.20) together with AU given in (2.24). Notably, in this case, the amount
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of supersymmetry in the boundary algebra BU
V is enough to fully constrain all the coefficients of the

reflection matrix in the boundary intertwining equations, which in terms of the rapidity γ takes the form

KLL(γ, γB) = kLL(γ, γB)
[
E11 ⊗ E11 + (1 − 2sech γ) (E11 ⊗ E22 + iE22 ⊗ E11) + iE22 ⊗ E22

+2
√

2 sinh γ2 sech γ (E12 ⊗ E21 + i E21 ⊗ E12)
]

(2.46)

KL̃L̃(γ, γB) = kL̃L̃(γ, γB)
[
E11 ⊗ E11 + (1 − 2sech γ) (E11 ⊗ E22 − iE22 ⊗ E11) − iE22 ⊗ E22

+2
√

2 sinh γ2 sech γ (E12 ⊗ E21 − i E21 ⊗ E12)
]

(2.47)

KLL̃(γ, γB) = kLL̃(γ, γB)
[
E11 ⊗ E11 +

(
1

1 − 2sech γ

)
(E11 ⊗ E22 + i E22 ⊗ E11) + i E22 ⊗ E22

+
(

2
√

2 sinh γ
2

cosh γ − 2

)
(E12 ⊗ E12 + iE21 ⊗ E21)

]
(2.48)

KL̃L(γ, γB) = kL̃L(γ, γB)
[
E11 ⊗ E11 +

(
1

1 − 2sech γ

)
(E11 ⊗ E22 − i E22 ⊗ E11) − i E22 ⊗ E22

+
(

2
√

2 sinh γ
2

cosh γ − 2

)
(E12 ⊗ E12 − iE21 ⊗ E21)

]
(2.49)

Here γB = γ|p→π.
The partial reflection matrices stated above correctly satisfy the BYBE and hence BU

V represents a
consistent reflection algebra for the vector boundary. The dressing phases kab(γ, γB), for a, b ∈ {L, L̃},
can be determined by the unitarity relations (2.37) as well as the boundary crossing equations.

Unitarity. It is finally important to look again at the unitarity conditions (2.37), that physically
relevant K-matrices should satisfy. For the case at hand it is useful to rewrite the physical unitarity
condition as

Kab(γ, γB)
[
Kab(γ, γB)

]† = 1 ∀ a, b ∈ {L, L̃} . (2.50)

Imposition of (2.50) on theK-matrices leads to the following constraints on the dressing factors kab(γ, γB),

kab(γ, γB)
[
kab(γ, γB)

]∗ = 1 for ab = {LL, L̃L̃}

kab(γ, γB)
[
kab(γ, γB)

]∗ = (cosh γ − 2)2

(cosh γ)2 for ab = {LL̃, L̃L}
(2.51)

As for the singlet case, the naive braiding unitarity relation (2.37) needs to be modified. Taking the
analytical continuation of the K-matrix to −p gives us the following boundary intertwining equation.

(πa+
p ⊗ πb

B)∆(a)K ′ab(−γ, γB) = K ′ab(−γ, γB) (πa−
−p ⊗ πb

B)∆(a), (2.52)

Braiding unitarity, in case of the vector boundary, then takes the following form,

K(γ, γB)K ′(−γ, γB) = 1 , (2.53)

and constrains the dressing factors of the K-matrices to satisfy,

kab(γ, γB)
[
k′ab(−γ, γB)

]
= 1 for ab = {LL, L̃L̃}

kab(γ, γB)
[
k′ab(−γ, γB)

]
= (cosh γ − 2)2

(cosh γ)2 for ab = {LL̃, L̃L}
(2.54)
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Figure 3: The Boundary Yang-Baxter Equation (BYBE) for a left wall (hence all the incoming particles
are left movers, and all the outgoing particles after reflection are right movers).

3 Left wall reflection matrices

3.1 Singlet boundary

We shall now repeat the analysis for a left wall. By observing figure 3 we can again write

K̃L
2 (−γ2)RLL

+−

(
γ1 − (−γ2)

)
K̃L

1 (−γ1)[RLL
−−]op

(
− γ2 − (−γ1)

)
=

RLL
++

(
γ1 − γ2

)
K̃L

1 (−γ1)[RLL
+−]op

(
γ2 − (−γ1)

)
K̃L

2 (−γ2), (3.1)

where K̃L(x) represents, for x > 0, the left wall K-matrix for particles in the L representation and again
we pull out minus signs from negative momenta and make use of

γ1 = log tan p1

4 , γ2 = log tan p2

4 , p1, p2 ∈ (0, π), such that γ1, γ2 < 0 (3.2)

It turns out that the equation which this produces for the singlet boundary is the exact same equation
as we encountered for the right wall, except that now we consider the left wall reflection matrix K̃L. In
turn, the equation has the same solution as for the right wall, while exhibiting dependence on some new
integration constant ∗∗,

K̃L(γi) =
(

1 0
0 f̃L(γi)

)
, f̃L(γi) = −i tanh

(
arccoth(eγi) + ic̃L

)
, γi > 0 , (3.3)

with c̃L any constant. This similarity is not really a surprise, once we consider that the bulk R-matrices
also coincide term by term with the previous case, thanks to

Raa
+−(γ) = [Raa

+−]op(γ), Raa
++(γ) = [Raa

−−]op(γ), for a = {L, L̃} (3.4)

which is consistent with the requirements (2.15) and (2.16), and which makes the BYBE to exactly
coincide for right and left wall. Let us point out that this is another convenient feature of the most
symmetric frame, and it will not be true in generic frames (such as the frame discussed in Appendix A).

∗∗The integration constants in the left and right wall cases must be related to each other via parity and crossing
symmetries. However, we treat both walls independently and deal with the relation between left and right wall reflection
matrices and fixing the dressing phases in future work.
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As for the right wall, the above K-matrix enjoys two particularly interesting choices of c̃L, namely
c̃L

± = π
(
m̃± 1

4
)
, with m̃ ∈ Z, which produce, upon using γi(pi) = log cot −pi

4 , the results

K̃L
(
γi(pi)

)∣∣∣
c̃L

+

=
(

1 0
0 e

ipi
2

)
and K̃L

(
γi(pi)

)∣∣∣
c̃L

−

=
(

1 0
0 −e− ipi

2

)
p ∈ (−π, 0). (3.5)

If we then scatter two particles in the L̃ representation against the left wall, we can write the associated
boundary Yang-Baxter equation as

K̃L̃
2 (−γ2)RL̃L̃

+−

(
γ1 − (−γ2)

)
K̃L̃

1 (−γ1)
[
RL̃L̃

−−
]op
(

− γ2 − (−γ1)
)

=

RL̃L̃
++

(
γ1 − γ2

)
K̃L̃

1 (−γ1)
[
RL̃L̃

+−
]op
(
γ2 − (−γ1)

)
K̃L̃

2 (−γ2) . (3.6)

Again, this has the same solution as the right wall,

K̃L̃(γi) =
(

1 0
0 f̃ L̃(γi)

)
, f̃ L̃(γi) = i tanh

(
arccoth(eγi) − ic̃L̃

)
, γ > 0 , (3.7)

with c̃L̃ a new constant, allowing the two interesting choices c̃L̃
± = π

(
ñ± 1

4
)
, with ñ ∈ Z. These lead to

K̃L̃
(
γi(pi)

)∣∣∣
c̃L̃

+

=
(

1 0
0 e− ipi

2

)
and K̃L̃

(
γi(pi)

)∣∣∣
c̃L̃

−

=
(

1 0
0 −e

ipi
2

)
p ∈ (−π, 0). (3.8)

The mixed boundary Yang-Baxter equations for one L and one L̃ (resp., one L̃ and one L) particle read

K̃L̃
2 (−γ2)RLL̃

+−

(
γ1 − (−γ2)

)
K̃L

1 (−γ1)
[
RL̃L

−−
]op
(

− γ2 − (−γ1)
)

=

RLL̃
++

(
γ1 − γ2

)
K̃L

1 (−γ1)
[
RL̃L

+−
]op
(
γ2 − (−γ1)

)
K̃L̃

2 (−γ2) , (3.9)

and

K̃L
2 (−γ2)RL̃L

+−

(
γ1 − (−γ2)

)
K̃L̃

1 (−γ1)
[
RLL̃

−−
]op
(

− γ2 − (−γ1)
)

=

RL̃L
++

(
γ1 − γ2

)
K̃L̃

1 (−γ1)
[
RLL̃

+−
]op
(
γ2 − (−γ1)

)
K̃L

2 (−γ2) . (3.10)

Both are solved provided that

c̃L̃ = −c̃L + 2πs̃± π
2 with s̃ ∈ Z. (3.11)

As for the right wall, we shall proceed assuming the latter relation to hold true, and work with

K̃L(γi) =
(

1 0
0 tan (c̃L + χ̃(γi))

)
K̃L̃(γi) =

(
1 0
0 cot (c̃L + χ̃(γi))

)

with χ̃(γi) := − i

2

(
i (2π + 4πk) + log coth γi

2

)
γi > 0, k ∈ Z.

(3.12)

Boundary subalgebras. The next step is understanding which bulk symmetries are preserved by
the left wall for a singlet boundary. With this aim, the intertwining equations to be solved read

πa+
p (b) K̃a

(
−γ(p)

)
= K̃a

(
−γ(p)

)
πa−

−p(b) ∀ b ∈ B and a ∈ {L, L̃} , γ < 0, p ∈ (0, π) (3.13)

with subscripts and superscripts following the same logic as (2.17) and B the boundary subalgebra. As
for the right wall, trying to solve it brute force in the original bulk symmetry basis produces incorrect
results, due to the incompatibility of the symmetric coproduct (1.10) and the boundary coideal subalgebra
requirement. Since for a left wall the condition (2.19) becomes

∆(b) ∈ B ⊗ A ∀ b ∈ B , (3.14)
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it is clear that the two boundary subalgebras (2.18), identified in the massive case with the non-symmetric
coproduct, do not satisfy the latter condition and a more suitable choice of basis is needed. However,
this cannot be the same as for the right wall, since the exchange of A and B in the tensor product (3.14),
with respect to (2.19), would not be respected. Inspecting (2.22) and (2.23) it is not hard to recognise
that a natural left-analogue of (2.24) is given by

ÃU = ⟨HL, HR, U
− 1

2QL, U
− 1

2QR, U
1
2GL, U

1
2GR, U

−1P, UK, p⟩ with Uα = ei α
2 p ∀α ∈ R, (3.15)

which allows us to identify two subalgebras satisfying conditions (3.14) and (2.20)

B̃U
L = ⟨HL, HR, U

− 1
2QL, U

1
2GL⟩ and B̃U

R = ⟨HL, HR, U
− 1

2QR, U
1
2GR⟩ . (3.16)

From this it is clear that the left wall rescaling factors can be obtained by letting p → −p in those found
for the right wall. One can now go back to the intertwining equation (3.13) and using (2.26) check that

• The generators HL,HR are preserved by the left wall in both L and L̃ representations for any choice
of constant c̃L appearing in the K-matrices (3.12).

• The rescaled generators U−1P, UK are never preserved in either the L or L̃ representation.

• The intertwining equations for U− 1
2QL,U

1
2GL admit simultaneous solutions in both the L and L̃

representations provided one chooses c̃L = c̃L
+ = π

(
m̃+ 1

4
)

with m̃ ∈ Z. For these values of c̃L, the
intertwining equations for U− 1

2QR,U
1
2GR are not satisfied and preservation of HL,HR is enhanced

to the supersymmetric boundary subalgebra B̃U
L defined in (3.16).

• The intertwining equations for U− 1
2QR,U

1
2GR admit simultaneous solutions in both the L and L̃

representations provided one chooses c̃L = c̃L
− = π

(
m̃− 1

4
)

with m̃ ∈ Z. For these values of c̃L, the
intertwining equations for U− 1

2QL,U
1
2GL are not satisfied and preservation of HL,HR is enhanced

to the supersymmetric boundary subalgebra B̃U
R defined in (3.16).

Hidden symmetry. To conclude our analysis of the singlet left wall, we should now look for the
existence of a hidden symmetry algebra, in analogy with the results obtained for the right wall. The latter
taught us that we should keep using the convenient basis (3.15) while including a generic dependence
of the hidden generators on the constant c̃L, which appears in the K-matrices (3.12). Taking this into
account, the hidden symmetry generators defined in [20] for the massive case generalise to

q+ := U1/2KQL + iẽ(c̃L)U−1/2PGR d := (HL − ẽ(c̃L)2 HR + iẽ(c̃L) (U−1P + UK))PK

q− := U−1/2PGL + iẽ(c̃L)U1/2KQR d̃ := (HL − ẽ(c̃L)2 HR − iẽ(c̃L) (U−1P + UK))PK

s+ := U1/2KQL − iẽ(c̃L)U−1/2PGR n := (HL + ẽ(c̃L)2 HR + iẽ(c̃L) (U−1P − UK))PK

s− := U−1/2PGL − iẽ(c̃L)U1/2KQR ñ := (HL + ẽ(c̃L)2 HR − iẽ(c̃L) (U−1P − UK))PK ,

(3.17)

with the function ẽ(c̃L) to be determined by solving the intertwining equations (3.13) for the hidden-
symmetry generators. This leads to the following results:

• The generators n, ñ are always preserved by the left wall in both the L and L̃ representations, for
any choice of function ẽ(c̃L).

• The generators d, d̃ are never preserved by the left wall in either the L or L̃ representation for any
non-zero choice of ẽ(c̃L).
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• The intertwining equations for q+, s− admit simultaneous solutions in both the L and L̃ repre-
sentations provided one chooses ẽ(c̃L) = ẽ−(c̃L) = −i cos (c̃L)+sin (c̃L)

cos (c̃L)−sin (c̃L) . For such choice of ẽ(c̃L)
the intertwining equations for q−, s+ are never satisfied, unless one further specifies c̃L such that
cos (c̃L) = − sin (c̃L). This would precisely correspond to choosing c̃L = c̃L

− = π(m̃ − 1
4 ) with

m̃ ∈ Z, namely the c̃L leading to preservation of B̃U
R defined in (3.16). However, this is obviously

forbidden by the fact that would imply ẽ(c̃L) = 0 and thus trivialisation of the hidden generators.
The value c̃L = c̃L

+ is also forbidden, due to the vanishing of the denominator in ẽ−(c̃L).

• The intertwining equations for q−, s+ admit simultaneous solutions in both the L and L̃ rep-
resentations provided one chooses ẽ(c̃L) = ẽ+(c̃L) = i cos (c̃L)+sin (c̃L)

cos (c̃L)−sin (c̃L) . For such choice of ẽ(c̃L)
the intertwining equations for q+, s− are never satisfied, unless one further specifies c̃L such that
cos (c̃L) = − sin (c̃L). This corresponds to choosing c̃L = c̃L

− = π(m̃ − 1
4 ) with m̃ ∈ Z, which is

forbidden by the fact that ẽ(c̃L) = 0 for such values. Once again one also needs c̃L ̸= c̃L
+.

The hidden symmetry algebras ⟨q−, s+, n, ñ⟩ and ⟨q+, s−, n, ñ⟩, found to be preserved by the left wall for
any choice of c̃L ̸= c̃L

∓, turn out to be of exactly the same form as the ones preserved by the right wall

B̃U±
D = ⟨q±, s∓, n, ñ⟩ for ẽ(c̃L) = ẽ∓(c̃L) , (3.18)

and considerations similar to those highlighted after equation (2.29) also apply to this case.

Short summary of the left wall singlet boundary. Solving the four BYB equations (3.1),(3.6),
(3.9),(3.10) leads to the K-matrices (3.12), which we also report here

K̃(γi) =
(

1 0
0 tan (c̃L + χ̃(γi))

)
K̃L̃(γi) =

(
1 0
0 cot (c̃L + χ̃(γi))

)

with χ̃(γi) := − i

2

(
i (2π + 4πk) + log coth γi

2

)
and γi > 0, k ∈ Z, c̃L ∈ C .

(3.19)

Satisfying the left coideal subalgebra condition (3.14) without breaking the symmetric pair decomposition
(2.20) then requires choosing the following basis for the bulk symmetry algebra

ÃU = ⟨HL, HR, U
− 1

2QL, U
− 1

2QR, U
1
2GL, U

1
2GR, U

−1P, UK, p⟩ with Uα = ei α
2 p ∀α ∈ R. (3.20)

The central generators HL,HR, p are preserved by the left wall in both the L and L̃ representations, i.e.
they satisfy the intertwining equations (3.13), for any choice of the constant c̃L, while the generators
U−1P and UK are never preserved in either the L or L̃ representation. The fermionic generators U− 1

2 Qa

and U
1
2 Ga are generally not preserved, unless one sits at the special values c̃L = c̃L

± = π(m̃ ± 1
4 ), with

m̃ ∈ Z, where the following supersymmetry enhanced subalgebras are preserved

c̃L
+ : B̃U

L = ⟨HL,HR,U
− 1

2 QL,U
1
2 GL⟩ and c̃L

− : B̃U
R = ⟨HL,HR,U

− 1
2 QR,U

1
2 GR⟩ . (3.21)

The two K-matrices then take the following very simple form

c̃L
+ : K̃L

B̃U
L

(p) =
(

1 0
0 ei p

2

)
and K̃L̃

B̃U
L

(p) =
(

1 0
0 e−i p

2

)

c̃L
− : K̃L

B̃U
R

(p) =
(

1 0
0 −e−i p

2

)
and K̃L̃

B̃U
R

(p) =
(

1 0
0 −ei p

2

)
,

(3.22)

where p ∈ (−π, 0). Once again one can finally define, in terms of a ∈ ÃU, a set of new generators
(3.17) depending on some arbitrary function ẽ(c̃L) of the constant which appears in the K-matrices, and
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exhibiting commutation relations (2.28) with the same structure as (1.7). This change of basis allows
to uncover the presence of two hidden symmetry boundary superalgebras B̃U±

D = ⟨q±, s∓, n, ñ⟩, which
respectively solve the boundary intertwining equations (2.17) for any c̃L ̸= c̃L

∓ upon choosing

ẽ∓(c̃L) = ∓i cos (c̃L) + sin (c̃L)
cos (c̃L) − sin (c̃L) . (3.23)

We conclude by noting that going from the right to the left wall the form of the K-matrices formally
remains unchanged and the preserved symmetry algebras are mapped onto each other by simply letting
U ↔ U−1, which corresponds to p ↔ −p, and swapping the labels L ↔ R on the fermionic genera-
tors. For what concerns the hidden symmetry sector, the same subalgebras are preserved by the two
walls (keeping in mind they differ by U ↔ U−1 in the definition of hidden generators) and upon setting
cL = c̃L ̸= cL

± one can readily notice that ẽ± = e−1
∓ = −e−1

± . This makes clear that B̃U±
D and BU±

D are
mapped onto each other by the simple rules U ↔ U−1 and ẽ± ↔ −e−1

± .

Unitarity. Similar to the right wall singlet boundary, given the simple structure (3.22) for the left
wall K-matrices, it is straightforward to check that both physical and braiding unitarity relations (2.37)
are satisfied (after careful consideration of the subtlety involving massless representations), provided the
associated dressing factors also respect the relations

k̃L(γ)
[
k̃L(γ)

]∗ = 1 = k̃L(γ)k̃′L(−γ) k̃L̃(γ)
[
k̃L̃(γ)

]∗ = 1 = k̃L̃(γ)k̃′L̃(−γ) γ > 0 . (3.24)

3.2 Vector boundary

The case in which the left boundary carries a two dimensional representation is very similar to the one
for the right wall. The boundary Yang-Baxter equation can be read off figure 3 and exhibits the same
structure as (3.1), with the main difference being that it is now an equation on three two-dimensional
spaces VB ⊗ V1 ⊗ V2. Once again, B denotes the boundary space and one should note the swap in its
position, as compared to the right wall of section 2.2, where we had V1 ⊗V2 ⊗VB . The BYBE then reads

K̃B2(−γ2, γB)R+−

(
γ1 − (−γ2)

)
K̃B1(−γ1, γB)Rop

−−

(
− γ2 − (−γ1)

)
= R++

(
γ1 − γ2

)
K̃B1(−γ1, γB)Rop

+−

(
γ2 − (−γ1)

)
K̃B2(−γ2, γB). (3.25)

The R-matrices always act in spaces V1 ⊗V2 which represent the two bulk particles. Here K̃B2(γ, γB) =
(1⊗P)(K̃(γ, γB)⊗1)(1⊗P) and K̃B1(γ, γB) = K̃(γ, γB)⊗1 denote the reflection of the second and first
particle with the boundary, with P the graded permutation and K̃(γ, γB) the complete vector boundary
reflection matrix for the left wall. Thanks to the factorisation (2.42), the above BYBE can again be
rewritten as a set eight equations

K̃cb
B2(−γ2, γB)Rab

+−

(
γ1 − (−γ2)

)
K̃ca

B1(−γ1, γB)[Rba
−−]op

(
− γ2 − (−γ1)

)
= Rab

++

(
γ1 − γ2

)
K̃ca

B1(−γ1, γB)[Rba
+−]op

(
γ2 − (−γ1)

)
K̃cb

B2(−γ2, γB) (3.26)

with a, b, c ∈ {L, L̃}. We proceed, as for the right wall, by solving the boundary intertwining equations,
which for a left wall take the form(
πb

B ⊗ πa+
p

)
∆(b) K̃ba

(
−γ(p)

)
= K̃ba

(
−γ(p)

)
∆(b)

(
πb

B ⊗ πa−
−p) ∀ b ∈ B̃U

V and a, b ∈ {L, L̃} ,
(3.27)

for the generators of the boundary subalgebra

B̃U
V = ⟨HL, HR, U

− 1
2QL, U

− 1
2QR, U

1
2GL, U

1
2GR, U

−1P, UK⟩. (3.28)
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The two boundary representations are again chosen to be the same as the bulk ones, for a fixed value
of the momentum parameter: πb

B(b) = πb−
p (b)|p=−π,h→h/2 for all b ∈ B̃U

V and b ∈ {L, L̃}. These lead to
the following solutions

K̃LL(γ, γB) = k̃LL(γ, γB)
[
E11 ⊗ E11 + (1 + 2sech γ) (iE11 ⊗ E22 + E22 ⊗ E11) + iE22 ⊗ E22

−2
√

2 sinh γ2 sech γ (iE12 ⊗ E21 + E21 ⊗ E12)
]

(3.29)

K̃L̃L̃(γ, γB) = k̃L̃L̃(γ, γB)
[
E11 ⊗ E11 + (1 + 2sech γ) (−iE11 ⊗ E22 + E22 ⊗ E11) − iE22 ⊗ E22

+2
√

2 sinh γ2 sech γ (iE12 ⊗ E21 − E21 ⊗ E12)
]

(3.30)

K̃LL̃(γ, γB) = k̃LL̃(γ, γB)
[
E11 ⊗ E11 +

(
1

1 + 2sech γ

)
(−iE11 ⊗ E22 + E22 ⊗ E11) − i E22 ⊗ E22

+
(

2
√

2 sinh γ
2

cosh γ − 2

)
(E12 ⊗ E12 + iE21 ⊗ E21)

]
(3.31)

K̃L̃L(γ, γB) = k̃L̃L(γ, γB)
[
E11 ⊗ E11 +

(
1

1 + 2sech γ

)
(iE11 ⊗ E22 + E22 ⊗ E11) + i E22 ⊗ E22

+
(

2
√

2 sinh γ
2

cosh γ − 2

)
(E12 ⊗ E12 + iE21 ⊗ E21)

]
(3.32)

with γB = γ|p→−π. We have verified that all of the equations summarised in (3.26) are satisfied by this
set of matrices.

Unitarity. The results for both physical and braiding unitarity are identical to the results for the right
wall. In particular, the physical unitarity condition (2.50) imposes the constraint (2.51) to the dressing
factors of K̃. To satisfy braiding unitarity (2.53), a matrix K̃ ′ needs to be introduced as a solution to
the equations obtained by replacing p → −p in (3.27) and using the appropriate bulk representations.
The constraint on the dressing factors of K̃ and K̃ ′ is identical to (2.54).

4 The massive case with the symmetric coproduct

In this section we summarise the bulk scattering theory, in the most symmetric frame which we have
been using so far. The representation L̃ while physical for the massless case, is unphysical for the massive
one [7]. In this section, we will confine ourselves to the unphysical representations for the purpose of
comparison with the massless case. In Appendix B, we study the physical massive representations and
as an example compute the K-matrices for the singlet supersymmetric boundary. For massive particles
we do not need to distinguish between right and left movers, so we can simply provide four R-matrices
as the complete bulk information.

We define

ηp =
√
i
(
x−

p − x+
p

)
, (4.1)

where the Zhukovsky variables x±
p are constrained to satisfy

x+
p + 1

x+
p

− x−
p − 1

x−
p

= 2i
h
. (4.2)
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This constraint can be solved by setting

x±
p = e± ip

2
1 +

√
1 + 4h2 sin2 p

2

2h sin p
2

. (4.3)

The L representation reads

πL
p (GL) =

√
h

2 ηp

(
0 1
0 0

)
, πL

p (QL) =
√
h

2 ηp

(
0 0
1 0

)
,

πL
p (GR) = −

√
h

2
ηp e

−i p
2

x−
p

(
0 0
1 0

)
, πL

p (QR) = −
√
h

2
ηp e

i p
2

x+
p

(
0 1
0 0

)
. (4.4)

The L̃ representation reads

πL̃
p (GL) =

√
h

2 ηp

(
0 0
1 0

)
, πL̃

p (QL) =
√
h

2 ηp

(
0 1
0 0

)
,

πL̃
p (GR) = −

√
h

2
ηp e

−i p
2

x−
p

(
0 1
0 0

)
, πL̃

p (QR) = −
√
h

2
ηp e

i p
2

x+
p

(
0 0
1 0

)
. (4.5)

The coproduct is always the same as (1.10) but now with the different possible choices of (massive)
representations. We have four possible combinations (ignoring the dressing factors which are denoted
here by Φm for “massive”):

• L− L

RLL = ΦLL
m



e
i
4 (p−q)(x+

q −x−
p )

(x−
q −x+

p ) 0 0 0

0 e− i
4 (p+q)(x+

q −x+
p )

(x−
q −x+

p )
iηpηq

(x−
q −x+

p ) 0

0 iηpηq

(x−
q −x+

p )
e

i
4 (p+q)(x−

q −x−
p )

(x−
q −x+

p ) 0

0 0 0 e
i
4 (q−p)


. (4.6)

• L̃− L̃

RL̃L̃ = ΦL̃L̃
m



e
i
4 (q−p) 0 0 0

0 e
i
4 (p+q)(x−

q −x−
p )

(x−
q −x+

p ) − iηpηq

(x−
q −x+

p ) 0

0 − iηpηq

(x−
q −x+

p )
e− i

4 (p+q)(x+
q −x+

p )
(x−

q −x+
p ) 0

0 0 0 e
i
4 (p−q)(x+

q −x−
p )

(x−
q −x+

p )


. (4.7)

• L− L̃

RLL̃ = ΦLL̃
m



e− i
4 (p+q)(x+

q −x+
p )

(x−
q −x+

p ) 0 0 iηpηq

(x−
q −x+

p )

0 e
i
4 (p−q)(x+

q −x−
p )

(x−
q −x+

p ) 0 0

0 0 e
i
4 (q−p) 0

iηpηq

(x−
q −x+

p ) 0 0 e
i
4 (p+q)(x−

q −x−
p )

(x−
q −x+

p )


. (4.8)
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• L̃− L

RL̃L = ΦL̃L
m



e
i
4 (p+q)(x−

q −x−
p )

(x−
q −x+

p ) 0 0 − iηpηq

(x−
q −x+

p )

0 e
i
4 (q−p) 0 0

0 0 e
i
4 (p−q)(x+

q −x−
p )

(x−
q −x+

p ) 0

− iηpηq

(x−
q −x+

p ) 0 0 e− i
4 (p+q)(x+

q −x+
p )

(x−
q −x+

p )


. (4.9)

We have checked that in the massless right-right moving limit, namely when x±
p → e±i p

2 and x±
q →

e±i q
2 , and when adequately normalised, the four R matrices above reduce exactly to the four Rab

++

(a, b ∈ {L, L̃}) R-matrices which we have displayed in the previous sections, upon using the variables
γp = log tan p

4 and γq = log tan q
4 , respectively, with p, q ∈ (0, π).

4.1 Singlet boundary

In this section we calculate the boundary reflection matrices for the massive particles using the symmetric
co-product (1.10). We use the representation L (4.4) and the fictitious representation L̃ (4.5). In the
massive case, we do not have the added complication of decoupled left and right moving modes. However,
we do not have the luxury of a difference form either. The boundary Yang-Baxter equation is given as

K2(q)Rop(q,−p)K1(p)R(p, q) = Rop(−q,−p)K1(p)R(p,−q)K2(q). (4.10)

where K1(p) = K(p) ⊗1 and K2(p) = 1⊗K(p) with K(p) = KL(p) ⊕KL̃(p) being the complete singlet
reflection matrix.

As in the case of the massless particles, we have the bulk algebra AU given by (2.24) and two boundary
subalgebras BU

L and BU
R given by (2.25) satisfying the coideal condition (2.19) and the symmetric pair

condition (2.20). The boundary intertwining equation for the massive case is

πL
−p(b)KL(p) = KL(p)πL

p (b) and πL̃
−p(b)KL̃(p) = KL̃(p)πL̃

p (b) ∀ b ∈ B (4.11)

with the representations πL and πL̃ in (4.4) and (4.5) respectively. We consider the boundary subalgebra
B either BU

L or BU
R. Solving the boundary intertwining equations for the rescaled generators, we find the

following consistent solutions,

KL
BU

L
(p) =

(
1 0
0 e− ip

2

)
and KL

BU
R

(p) =
(

1 0
0 −e

ip
2

)
(4.12)

for the particle in the L representation, and

KL̃
BU

L
(p) =

(
1 0
0 e

ip
2

)
and KL̃

BU
R

(p) =
(

1 0
0 −e− ip

2

)
(4.13)

for the particle in the L̃ representation. We have verified that these satisfy the BYBE (4.10). Note that
these are the same solutions that we obtained for the supersymmetric singlet boundaries in the massless
case. Both of these solutions satisfy the braiding and physical unitarity described in (2.37) without the
subtleties that plague the massless braiding unitarity case.

29



4.2 Vector boundary

As was the case with massless vector boundaries, the boundary subalgebra for the right wall is given by
BU

V = ⟨HL, HR, U
1
2QL, U

1
2QR, U

− 1
2GL, U

− 1
2GR, UP, U

−1K⟩. Once again, there is enough supersym-
metry in the boundary subalgebra that the boundary intertwining equations constrain all the coefficients
of the reflection matrices (apart from the dressing factor). The intertwining equations for the massive
case are given as

(πa
−p ⊗ πb

B)∆(b)Kab(p) = Kab(p) (πa
p ⊗ πb

B)∆(b) ∀ b ∈ BU
V and a, b ∈ {L, L̃} . (4.14)

Kab again denote the partial reflection matrices with a being the representation of the particle and b

being the representation of the boundary. As mentioned earlier, we are using the fictitious representation
L̃ instead of the physical massive representations given in Appendix B, so as to be able to compare with
the massless case.

In analogy with the massless case, we solve the above intertwining equation for a specific choice of
the boundary representation: πa

B(b) = πa
p(b)|p=π,h→h/2 for all b ∈ BU

V and a ∈ {L, L̃} as used in [20].
The partial reflection matrices obtained are given as follows,

KLL(p) = kLL(p)
[
E11 ⊗ E11 +

x+
p − e−ipxB

x−
p − xB

E11 ⊗ E22 +
e−ip/2x−

p + eip/2xB

x−
p − xB

E22 ⊗ E11

+e
−ip

2
x+

p + xB

x−
p − xB

E22 ⊗ E22 +
√

2e−i p−π
4
ηpηB cos p

2
x−

p − xB

(i E12 ⊗ E21 − E21 ⊗ E12)
]

(4.15)

KL̃L̃(p) = kL̃L̃(p)
[
E11 ⊗ E11 +

(
x−

p + eipxB

x+
p + xB

)
E11 ⊗ E22 +

(
ei p

2 x+
p − e−i p

2 xB

x+
p + xB

)
E22 ⊗ E11

+
(
ei p

2
x−

p − xB

x+
p + xB

)
E22 ⊗ E22 −

(√
2 cos p

2e
i p−π

4 ηpηB

x+
p + xB

)
(i E12 ⊗ E21 + E21 ⊗ E12)

]
(4.16)

KLL̃(p) = kLL̃(p)
[
E11 ⊗ E11 +

e−i p
2 x+

p − ei p
2 xB

ei p
2 x+

p − e−i p
2 xB

E11 ⊗ E22 +
x+

p + xB

ei p
2 x+

p − e−i p
2 xB

E22 ⊗ E11

+
x−

p + eipxB

ei p
2 x+

p − e−i p
2 xB

E22 ⊗ E22 +
(√

2ei p+π
4 ηpηB cos p

2
ei p

2 x+
p − e−i p

2 xB

)
(i E12 ⊗ E12 − E21 ⊗ E21)

]
(4.17)

KL̃L(p) = kL̃L(p)
[
E11 ⊗ E11 +

(
ei p

2 x−
p + e−i p

2 xB

e−i p
2 x−

p + ei p
2 xB

)
E11 ⊗ E22 +

(
x−

p − xB

e−i p
2 x−

p + ei p
2 xB

)
E22 ⊗ E11

+
(

x+
p − e−ipxB

e−i p
2 x−

p + ei p
2 xB

)
E22 ⊗ E22 −

(√
2e−i p+π

4 ηpηB cos p
2

e−i p
2 x−

p + ei p
2 xB

)
(i E12 ⊗ E12 + E21 ⊗ E21)

]
(4.18)

Here xB = x+
p |p=π,h→h/2 = i

2η
2
B . The reflection matrices found above satisfy the braiding unitarity

condition K(p)K(−p) = 1 subjected to the following constraints on the dressing factors,

kab(p)kab(−p) = 1 for ab = {LL, L̃L̃}

kab(p)kab(−p) = 1 +
4ixBη

2
p cos2 p

2
x+

p x
−
p − x2

B − ixBη2
p

for ab = {LL̃, L̃L}
(4.19)
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They also satisfy the physical unitarity condition K(p)K†(p) = 1 subjected to the following constraints
on the dressing factors,

kab(p)[kab(p)]∗ = 1 for ab = {LL, L̃L̃}

kab(p)[kab(p)]∗ = 1 +
4ixBη

2
p cos2 p

2
x+

p x
−
p − x2

B − ixBη2
p

for ab = {LL̃, L̃L}
(4.20)

5 Generalised vector boundary representations

In previous sections, specifically 2.2 and 3.2, we studied the case of right and left boundaries carrying
vector representations of the coideal subalgebras (2.45) and (3.28). In analogy with [20] we have exploited
the physical representations of the bulk also for the boundaries, fixing the parameters to some constant
values and solving the boundary intertwining equations. This allowed us to fully determine the K-
matrices, checking a posteriori the satisfaction of the BYBE. As anticipated at the beginning of section
2.2, the choice of starting from the boundary intertwining equations rather than the BYBE - as done
for the singlet case - is due to the complexity of the latter. However, while being much simpler than
the BYBE, the intertwining equations have the feature of being strongly dependent on the choice of
representation. Hence, in spite of their convenience, solving them naturally raises an important question:
does the vector boundary need to be in the same representation as the bulk particles?

In principle, following the logic of singlet boundaries, given a K-matrix which solves the BYBE and
a choice of bulk representations, one may use any boundary representation - including ones differing
from those of the bulk - to study the intertwining equations (2.44) and (3.27). Asking for a solution
of the latter equations - after knowing, from previous sections, that certainly there exists one - would
however constrain the boundary representations to be somewhat compatible with both the K-matrix
and the bulk representations. Upon choosing a bulk representation and a K-matrix which solves the
BYBE, in the next two subsections we shall try to use the above logic to answer the question what is
an appropriate boundary representation for the coideal subalgebras (2.45) and (3.28)? To this aim, we
shall take inspiration from the results of previous sections, carefully analysing the BYBE and finding
generalised K-matrices which solve them.

5.1 Right wall

Having determined the specific solution (2.46) for the K-matrix, which given a choice of bulk and
boundary representations satisfies both BYBE and the intertwining equations for the subalgebra (2.45),
we are in a somewhat good position to perform a step backward and try analysing the problem in a
more systematic way, following the logic highlighted above, in analogy with the singlet case.

Ideally, after specifying the bulk R-matrices and the representations of the bulk excitations, consistent
boundary representations could be determined by first finding the most general K-matrix satisfying the
BYBE and successively determining what constraints this imposes, via the intertwining equations, on
some arbitrary unconstrained boundary representation. Due to the complexity of the BYBE, it is
extremely hard to find the most general K-matrix solving it. However the above specific K-matrix can
be taken as a source of inspiration and used to construct a subset of solutions to the BYBE which
might then be exploited to constrain an arbitrarily chosen boundary representation by means of the
intertwining condition. Carefully inspecting the structure of the specific K-matrix (2.46), leads us to
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consider the following generalised ansatz:

KLL(γ) = kLL(γ)
[
E11 ⊗ E11 + a1E22 ⊗ E22+ (5.1)

+ κ(γ)(E11 ⊗ E22 + a2E22 ⊗ E11) + η(γ)(E12 ⊗ E21 + a3E21 ⊗ E12)
]

KL̃L̃(γ) = kL̃L̃(γ)
[
E11 ⊗ E11 + b1E22 ⊗ E22+ (5.2)

+ b4κ(γ)(E11 ⊗ E22 + b2E22 ⊗ E11) + b5η(γ)(E12 ⊗ E21 + b3E21 ⊗ E12)
]

KLL̃(γ) = kLL̃(γ)
[
E11 ⊗ E11 + c1E22 ⊗ E22+ (5.3)

+ c4

κ(γ) (E11 ⊗ E22 + c2E22 ⊗ E11) + c5η(γ)
κ(γ) (E12 ⊗ E12 + c3E21 ⊗ E21)

]

KL̃L(γ) = kL̃L(γ)
[
E11 ⊗ E11 + d1E22 ⊗ E22+ (5.4)

+ d4

κ(γ) (E11 ⊗ E22 + d2E22 ⊗ E11) + d5η(γ)
κ(γ) (E12 ⊗ E12 + d3E21 ⊗ E21)

]
which depends on 2 functions, κ(γ) and η(γ), and 18 constant coefficients ai with i = 1, ..., 3 and bi, ci, di

with i = 1, ..., 5. Already at this level, with limited freedom in terms of functions of the rapidity γ, the
BYBE (2.43) turns out to exhibit quite an intricate structure, and even small generalisations of the above
ansatz lead to significantly more complicated equations to solve. Starting from the above expressions it
is however still possible to carefully inspect the explicit equations - in this case each BYB equation is
an 8 × 8 matrix equation - and find two families of parametric solutions, distinguished by a sign factor
s1 = ±1, and characterised by two unconstrained integration constants k1, k2 and the parameter b5

introduced above, which remains completely free. The solutions can be written as follows:

κ(γ) = −1 + 2(s1 + cosh γ)
s1 + 2e2k1 + cosh γ η(γ) = k2(e γ

2 + s1e
− γ

2 )
s1 + 2e2k1 + cosh γ

a1 = a2 = −s1i b1 = b2 = s1i c1 = c2 = −s1i d1 = d2 = s1i

b4 = c4 = d4 = 1 a3 = −is1
4e2k1

k2
2

b3 = −a3

b2
5

d3 = 1
a3

c3 = − b2
5
a3

c5 = is1
a3

b5
d5 = is1a3

(5.5)

Notice that the specific K-matrices (2.46), found above by solving the intertwining equations, can be
recovered by setting

s1 = −1 k1 = − 1
2 log 2 k2 =

√
2 b5 = 1 . (5.6)

Having found two families of solutions to the BYBE, we are in a position to try exploiting the available
parameters to learn about boundary representations which are consistent with the physically relevant
bulk representations. As highlighted above, the strategy is to consider an unconstrained boundary rep-
resentation and to use the intertwining equations for the generators (2.45) to determine which boundary
structures they are compatible with. Keeping this objective in mind, we consider the following gen-
eral structure for two boundary representations, labelled as L and L̃ for consistency with the bulk, but
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otherwise based on arbitrary functions to be determined:

πL
B(U

1
2QL) = fQLL(h)

(
0 qLL

12

qLL
21 0

)
πL

B(U
1
2QR) = fQRL(h)

(
0 qRL

12

qRL
21 0

)

πL
B(U− 1

2GL) = fGLL(h)
(

0 gLL
12

gLL
21 0

)
πL

B(U− 1
2GR) = fGRL(h)

(
0 gRL

12

gRL
21 0

) (5.7)

πL̃
B(U

1
2QL) = fQLL̃(h)

(
0 qLL̃

12

qLL̃
21 0

)
πL̃

B(U
1
2QR) = fQRL̃(h)

(
0 qRL̃

12

qRL̃
21 0

)

πL̃
B(U− 1

2GL) = fGLL̃(h)
(

0 gLL̃
12

gLL̃
21 0

)
πL̃

B(U− 1
2GR) = fGRL̃(h)

(
0 gRL̃

12

gRL̃
21 0

) (5.8)

The representations of the central elements are then a result of the commutation relations. It is here
important to remark that intending to constrain the above functions by solving the intertwining equa-
tions (2.44) for the generators in the boundary algebra (2.45), one would naturally expect, at the end of
the procedure, a dependence of the boundary representation on both the parameters of the K-matrices
and the parameters which characterise the bulk representations - namely the momentum p (or rapidity
γ) and the coupling h. However, while it seems reasonable, if not natural, to characterise the boundary
representations in terms of the K-matrix parameters and the h-coupling, finding a non-trivial depen-
dence on the bulk momentum certainly looks more unphysical - since the boundaries should carry no
information about motion. For this reason, a trivial bulk momentum dependence will be imposed on the
boundary representations, and this will turn out to be crucial for our purposes.

One can now start studying the intertwining equations (2.44) for the generators (2.45). Even without
specifying the functions and parameters (5.5), which characterise the ansatz for the K-matrix, it is
possible to partially constrain the boundary representations by simply exploiting the matrix structure
of the bulk representations. Solving (part of) the intertwining equations indeed requires that

qLL
12 = qRL

21 = qLL̃
21 = qRL̃

12 = 0

gLL
21 = gRL

12 = gLL̃
12 = gRL̃

21 = 0
(5.9)

which in turn imply

qRL
12 = − i

4n1qLL
21

qLL̃
12 = − i

4n3qRL̃
21

gRL
21 = i

4n2gLL
12

gLL̃
21 = i

4n4gLL̃
12

(5.10)

and

fQRL(h) = n1h

fQLL(h) fGRL(h) = n2h

fGLL(h) fQLL̃(h) = n3h

fQRL̃(h) fGLL̃(h) = n4h

fGRL̃(h) (5.11)

with n1, ..., n4 undetermined proportionality constants. Given the above constraints, the remaining
equations only have a chance of being solved provided that

fQLL(h) = m1
√
h fGLL(h) = m2

√
h fQRL̃(h) = m3

√
h fGRL̃(h) = m4

√
h (5.12)

with m1, ...,m4 other constants to be determined. The resulting boundary representations then read

πL
B(U

1
2QL) = m1

√
hqLL

21

(
0 0
1 0

)
πL

B(U
1
2QR) = −

√
h

4m1

i

qLL
21

(
0 1
0 0

)

πL
B(U− 1

2GL) = m2
√
hgLL

12

(
0 1
0 0

)
πL

B(U− 1
2GR) =

√
h

4m2

i

gLL
12

(
0 0
1 0

) (5.13)
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πL̃
B(U

1
2QL) = −

√
h

4m3

i

qRL̃
21

(
0 1
0 0

)
πL̃

B(U
1
2QR) = m3

√
hqRL̃

21

(
0 0
1 0

)

πL̃
B(U− 1

2GL) =
√
h

4m4

i

gRL̃
12

(
0 0
1 0

)
πL̃

B(U− 1
2GR) = m4

√
hgRL̃

12

(
0 1
0 0

) (5.14)

At this point one has found the boundary representations whose matrix structure is compatible with those
of the bulk representations and of the ansatz for the K-matrix. However, this does not entirely solve the
intertwining equations, which still exhibit non-vanishing entries depending on the unspecified functions
and the parameters appearing in the K-matrix ansatz, as well as on those characterising the boundary.
To proceed further it is necessary to make explicit use of the solutions (5.5), so that the intertwining
equations only depend on the truly free parameters s1, k1, k2, b5, the bulk rapidity γ and coupling h and
the above undetermined functions. The hope, at this stage, is that one might be able to fix the free
functions and the free parameters of the K-matrix so as to solve all the intertwining equations. While
the latter exhibit non-trivial dependence on the above quantities, which make it non straightforward to
find a solution, the physical intuition - that the boundary should not carry information about motion in
the bulk - will turn out to be extremely powerful in revealing a special choice of parameters.

Having specified the solution (5.5) to the BYBE, we proceed with our program by sampling a random
subset of non-vanishing entries in the intertwining equations, so as to study them in detail. After
solving four of the sampled equations in terms of the remaining functions qLL

21 , q
RL̃
21 , g

LL
12 , g

RL̃
12 one finds,

as expected, complicated expressions depending on the constant parameters of the K-matrix and the
bulk rapidity γ. We shall here display one such function, to better convey the idea

qRL̃
21 = b5k2e

−2k1+ γ
2 −i arctan eγ

[(s1 + cosh γ)(1 − e4i arctan eγ ) − 2e2k1(1 + e4i arctan eγ )]
8
√

2m3s1(s1 + eγ)
√

sin (2 arctan eγ)
. (5.15)

In light of our physical intuition, if the solutions found for qLL
21 , q

RL̃
21 , g

LL
12 , g

RL̃
12 make any sense, it should

now be possible to find a convenient choice of constant parameters which removes their dependence on
γ. To search for these, it is natural to look for values of the free parameters which solve df/dγ = 0 for
f any of the above four functions. For the example displayed above one should solve the condition

dqRL̃
21
dγ

∝
(
−i+2[1+ is1]eγ + i[1− is1]e2γ +s1[1+2is1]+4e2k1+γ [i(1− is1)+(1+ is1) cosh γ]

)
= 0 . (5.16)

By recalling that s1 = ±1 is just a sign distinguishing between the two families of K-matrices, it is then
straightforward to find the following two cases

s1 = +1 : dqRL̃
21
dγ

∝ (1 + 2e2k1) = 0 ⇒ k1 = iπz − 1
2 log 2 + i

2π z ∈ Z

s1 = −1 : dqRL̃
21
dγ

∝ (1 − 2e2k1) = 0 ⇒ k1 = iπz − 1
2 log 2 z ∈ Z

(5.17)

Remarkably, similar factorisations with the exact same solutions for s1 and k1 take place in all the four
functions above: these not only allow us to get rid of the γ-dependence, as desired, but also to completely
solve all the remaining intertwining equations with no need to tune further parameters. At the end of
the story, one finds two families of parametric representations, distinguished by the sign factor s1 = ±1
and characterised by the free constants k2 and b5. The boundary representation for the supercharges
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take the explicit form

πL
B(U

1
2QL) = (1 − is1)k2

4
√
h

(
0 0
1 0

)
πL

B(U
1
2QR) = s1

2k2
(1 − is1)

√
h

(
0 1
0 0

)

πL
B(U− 1

2GL) = − s1

2k2
(1 + is1)

√
h

(
0 1
0 0

)
πL

B(U− 1
2GR) = −(1 + is1)k2

4
√
h

(
0 0
1 0

)
(5.18)

πL̃
B(U

1
2QL) = − s1

2b5k2
(1 − is1)

√
h

(
0 1
0 0

)
πL̃

B(U
1
2QR) = −b5k2

4 (1 − is1)
√
h

(
0 0
1 0

)

πL̃
B(U− 1

2GL) = b5k2

4 (1 + is1)
√
h

(
0 0
1 0

)
πL̃

B(U− 1
2GR) = s1

2b5k2
(1 + is1)

√
h

(
0 1
0 0

)

and in turn lead to the following central elements, for both a = L and a = L̃

πa
B(HL) = −s1

h

4

(
1 0
0 1

)
πa

B(HR) = −s1
h

4

(
1 0
0 1

)

πa
B(UP) = − i

4h
(

1 0
0 1

)
πa

B(U−1K) = i

4h
(

1 0
0 1

) (5.19)

We conclude the analysis by noting that

• Different families of K-matrices solving the BYBE determine different boundary representations
in terms of the sign factor s1 = ±1. Additionally, each K-matrix in the families is parametrised
by two parameters, k2 and b5, the choice of which also affect the boundary representations.

• Setting s1 = −1, k2 =
√

2, b5 = 1 one correctly recovers the representations used to derive the K-
matrices (2.46), namely πa

B(b) = πa+
p (b)|p=π,h→h/2 for all generators b in the boundary subalgebra

(2.45) and a ∈ {L, L̃}, using (1.8) for L and (1.39) for L̃.

• Identifying, in analogy with equation (1.9) for the bulk, the energy of the boundary with the sum
of eigenvalues of the generators HL and HR one finds EB = −s1h. This seems to suggest that the
physically relevant family of K-matrices should be the one characterised by s1 = −1, and is indeed
in agreement with the solution found using the same representations for bulk and boundary.

• Demanding independence of the boundary representation on the bulk momentum was crucial in
finding the values of k1 that solve the intertwining equations. While in principle there might be
other choices of free parameters solving such equations, none of these would lead to momentum-
independent boundary representations and even assuming to know all the possible choices of pa-
rameters solving the intertwining equations, the momentum-independent one would single out as
a very special case, signaling an intrinsic need for the boundary to enjoy such a property.

Unitarity and other relations. It is important to look again at the unitarity conditions (2.37),
that physically relevant K-matrices should satisfy, using the rewriting (2.50), reported here for clarity

Kab(γ)
[
Kab(γ)

]† = 1 ∀ a, b ∈ {L, L̃} . (5.20)

Exploiting the solution (5.5) to the BYBE and recalling that the intertwining relations are satisfied
provided one chooses s1 = +1 and k1 = iπz− 1

2 log 2+ i
2π, or alternatively s1 = −1 and k1 = iπz− 1

2 log 2,
with the parameters k2, b5 remaining free, it is easy to verify that:

35



• For s1 = +1 and k1 = iπz − 1
2 log 2 + i

2π there exists no choice of the free parameters k2, b5 which
makes the relation (5.20) satisfied for any of the Kab(γ) matrices.

• For s1 = −1 and k1 = iπz − 1
2 log 2 the relation (5.20) requires the free parameters to satisfy

|k2|2 = 2 for ab = {LL, L̃L} and |k2|2|b5|2 = 2 for ab = {L̃L̃, LL̃} (5.21)

and at the same time enforces the following conditions on the unconstrained dressing factors

kab(γ)
[
kab(γ)

]∗ = 1 for ab = {LL, L̃L̃}

kab(γ)
[
kab(γ)

]∗ = (cosh γ − 2)2

(cosh γ)2 for ab = {LL̃, L̃L}
(5.22)

Hence, while the BYBE and intertwining equations are consistent with two families of K-matrices, each
depending on two parameters, physical unitarity completely rules out one of the two families, and at
the same time fixes the free parameters almost entirely. Once again, the K-matrices (2.46) found at the
beginning of the section respect all the above conditions and thus satisfy physical unitarity provided the
dressing factors satisfy (2.51), which is the same as (5.22). This result is also in agreement with the
above statement regarding the positivity of the boundary energy for the family with s1 = −1.

As we discussed in the unitarity paragraph of section 2.2, due to the presence of different represen-
tations for left and right moving particles the braiding unitarity relation (2.37) is not satisfied by the
above K-matrices. To overcome this problem one needs to introduce a new matrix, denoted K ′, solving
the right wall vector boundary intertwining equation (2.44) for opposite particle momentum, namely

(πa+
+p ⊗ πb

B)∆(b)K ′ab(−γ(p)) = K ′ab(−γ(p)) (πa−
−p ⊗ πb

B)∆(b) . (5.23)

In the spirit of this section, the latter equation should be solved for K ′ using the generalised bound-
ary representations (5.18). The resulting K ′ matrices consequently depend on the parameters (5.5),
characterising the families of K-matrices solving BYBE, and correctly satisfy the braiding unitarity
relations

Kab(γ)K ′ab(−γ) = 1 ∀ a, b ∈ {L, L̃} . (5.24)

In addition to the above unitarity conditions, there are some other interesting relations that the
generalised K-matrices seem to satisfy. To begin, one can notice that

KLL(γ)KL̃L̃(−γ)T = 1 and KLL̃(γ)KL̃L(−γ)T = 1 (5.25)

hold for both families of K-matrices, provided one fixes the parameter b5 as

b5 = − 2
k2

2
(5.26)

and imposes the following relations on the dressing factors

kLL(γ)kL̃L̃(−γ) = 1 and kLL̃(γ)kL̃L(−γ) = (cosh γ + 2s1)2

(cosh γ)2 . (5.27)

Notice how the above condition on b5 is consistent with the requirements (5.21) of physical unitarity.
Finally, both families of K-matrices satisfy the following mixed braiding-like unitarity relations

KLL(γ)KL̃L̃(−γ) = 1 and KLL̃(γ)KL̃L(−γ) = 1 , (5.28)
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provided that
b5 = −i (5.29)

and (5.27) hold true for the dressing factors. The latter condition on b5 is again consistent with (5.21).

Short summary of the generalised right wall vector boundary. Boundaries carrying non-
trivial representations of the symmetry algebra exhibit a quite complicated structure of the BYBE and
for this reason it is very hard to find the most general K-matrix solving it, as done for the singlet case.
While in sections 2.2 and 3.2 - after deciding to use for the boundary the same representations as for the
bulk - we determined the K-matrices starting from the simpler boundary intertwining equations, in 5.1
we changed our perspective. Upon constructing the K-matrix ansatz (5.1), which generalises the result
(2.46), we solved the BYBE determining two families of parametric solutions, distinguished by a sign
factor s1 = ±1 and characterised by the three free parameters k1, k2, b5, as given in (5.5). We then chose
not to use for the boundary the same representation as for the bulk: considering an arbitrary boundary
representation of the form (5.7) for the boundary coideal subalgebra (2.45), we constrained its structure
by solving the intertwining equations (2.44) and demanding independence on the bulk momentum -
which require fixing k1 as in (5.17) - thus obtaining the generalised vector boundary representations
(5.18). While the intertwining and boundary Yang-Baxter equations turn out to be compatible with
any K-matrix and boundary representation depending on the sign s1 and the free parameters k2, b5,
physical unitarity (5.20) rules out the s1 = +1 family, further constraining |k2|2 = 2 and |b5|2 = 1.
This restriction also leads to a positive boundary energy EB = h, identified with the bulk energy as in
(1.9). In conclusion, the K-matrices (5.1) respect intertwining and BYB equations, as well as physical
unitarity, provided the free parameters s1, k1, k2, b5 in (5.5) are chosen as

s1 = −1 k1 = iπz − 1
2 log 2 k2 =

√
2eiα b5 = eiβ with z ∈ Z, α, β ∈ R (5.30)

where α, β are free phases.

5.2 Left wall

Let us finally try to generalise the vector boundary representations for the case of a left wall, repeating
the analysis performed in the previous subsection. Also in this case we begin by considering an ansatz
for the K-matrices, inspired by the results (3.29), found by adopting the bulk representations also for
the boundary. The ansatz has formally the same structure as the one used for the right wall

K̃LL(γ) = k̃LL(γ)
[
E11 ⊗ E11 + ã1E22 ⊗ E22+ (5.31)

+ κ̃(γ)(E11 ⊗ E22 + ã2E22 ⊗ E11) + η̃(γ)(E12 ⊗ E21 + ã3E21 ⊗ E12)
]

K̃L̃L̃(γ) = k̃L̃L̃(γ)
[
E11 ⊗ E11 + b̃1E22 ⊗ E22+ (5.32)

+ b̃4κ̃(γ)(E11 ⊗ E22 + b̃2E22 ⊗ E11) + b̃5η̃(γ)(E12 ⊗ E21 + b̃3E21 ⊗ E12)
]

K̃LL̃(γ) = k̃LL̃(γ)
[
E11 ⊗ E11 + c̃1E22 ⊗ E22+ (5.33)

+ c̃4

κ̃(γ) (E11 ⊗ E22 + c̃2E22 ⊗ E11) + c̃5η̃(γ)
κ̃(γ) (E12 ⊗ E12 + c̃3E21 ⊗ E21)

]
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K̃L̃L(γ) = k̃L̃L(γ)
[
E11 ⊗ E11 + d̃1E22 ⊗ E22+ (5.34)

+ d̃4

κ̃(γ) (E11 ⊗ E22 + d̃2E22 ⊗ E11) + d̃5η̃(γ)
κ̃(γ) (E12 ⊗ E12 + d̃3E21 ⊗ E21)

]
and hence depends on 2 functions, κ̃(γ) and η̃(γ), and 18 constant coefficients ãi with i = 1, ..., 3 and
b̃i, c̃i, d̃i with i = 1, ..., 5. This leads again to two families of parametric solutions to the BYBE (3.26),
distinguished by a sign factor s̃1 = ±1, and characterised by two unconstrained integration constants
k̃1, k̃2 and the parameter b̃5, which remains free. The solutions can be written as follows:

κ̃(γ) = −s̃1i

(
−1 + 2(s̃1 + cosh γ)

s̃1 + 2e2k̃1 + cosh γ

)
η̃(γ) = k̃2(e γ

2 + s̃1e
− γ

2 )
s̃1 + 2e2k̃1 + cosh γ

ã1 = b̃2 = −s̃1i ã2 = b̃1 = s̃1i c̃2 = d̃1 = −s̃1i c̃1 = d̃2 = s̃1i (5.35)

ã3 = c̃3 = −s̃1
4ie2k̃1

k̃2
2

b̃3 = d̃3 = − ã3

b̃2
5

b̃4 = d̃4 = −1 c̃4 = c̃5 = 1 d̃5 = −b̃5

We then proceed as in section 5.1, by considering an unconstrained boundary representation and looking
for the constraints that the left wall vector boundary intertwining equation (3.27) imposes on this. We
recall that for a left wall one should use the convenient basis ÃU in (3.15), while the general form of the
boundary representation can again be taken as (5.7), with all functions appropriately dressed by a tilde,
which characterise the left wall quantities. The intertwining equation then imposes constraints similar
to (5.9), (5.10) and (5.11), leading to:

π̃L
B(U− 1

2QL) = m̃1
√
hq̃LL

21

(
0 0
1 0

)
π̃L

B(U− 1
2QR) =

√
h

4m̃1

i

q̃LL
21

(
0 1
0 0

)

π̃L
B(U

1
2GL) = m̃2

√
hg̃LL

12

(
0 1
0 0

)
π̃L

B(U
1
2GR) = −

√
h

4m̃2

i

g̃LL
12

(
0 0
1 0

) (5.36)

π̃L̃
B(U− 1

2QL) =
√
h

4m̃3

i

q̃RL̃
21

(
0 1
0 0

)
π̃L̃

B(U− 1
2QR) = m̃3

√
hq̃RL̃

21

(
0 0
1 0

)

π̃L̃
B(U

1
2GL) = −

√
h

4m̃4

i

g̃RL̃
12

(
0 0
1 0

)
π̃L̃

B(U
1
2GR) = m̃4

√
hg̃RL̃

12

(
0 1
0 0

) (5.37)

The latter provides the form of left boundary representations whose matrix structure is compatible with
those of the bulk representations and of the ansatz for the K-matrix. As already happened for the
right wall, at this point it is necessary to characterise the ansatz for the K-matrices using the solutions
(5.35), so that the intertwining equations exhibit dependence on the free parameters s̃1, k̃1, k̃2, b̃5 and
one may search for special values which would solve them. We thus proceed by sampling a subset of
non-vanishing entries in the intertwining equation (which is again an 8 × 8 matrix equation) and solving
them for the functions q̃LL

21 , q̃
RL̃
21 , g̃

LL
12 , g̃

RL̃
12 . This leads to expressions which depend on the parameters

introduced above, as well as the coupling h and bulk rapidity γ. The latter dependence should however
disappear and it is indeed possible to find a convenient choice of parameters which completely gets rid
of it. Enforcing df/dγ = 0 for f any of the above four functions and specifying a family of K-matrices
in terms of s̃1 = ±1, one finds that all of the four functions lose the γ dependence provided that

s̃1 = +1 : df

dγ
∝ (1 + 2e2k̃1) = 0 ⇒ k̃1 = iπz̃ − 1

2 log 2 + i
2π z̃ ∈ Z

s̃1 = −1 : df

dγ
∝ (1 − 2e2k̃1) = 0 ⇒ k̃1 = iπz̃ − 1

2 log 2 z̃ ∈ Z
(5.38)
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As for the right wall, the above conditions not only allow us to get rid of the γ-dependence, as desired,
but also to completely solve all the remaining intertwining equations with no need to tune further
parameters. In conclusion, after performing calculations along the lines of section 5.1 one finds two
families of parametric representations, distinguished by the sign factor s̃1 = ±1 and characterised by the
free constants k̃2 and b̃5. The boundary representation for the supercharges takes the explicit form

π̃L
B(U− 1

2QL) = −(1 + is̃1) 1
2k̃2

√
h

(
0 0
1 0

)
π̃L

B(U− 1
2QR) = −s̃1(1 + is̃1) k̃2

4
√
h

(
0 1
0 0

)

π̃L
B(U

1
2GL) = s̃1(1 − is̃1) k̃2

4
√
h

(
0 1
0 0

)
π̃L

B(U
1
2GR) = (1 − is̃1) 1

2k̃2

√
h

(
0 0
1 0

)
(5.39)

π̃L̃
B(U− 1

2QL) = s̃1(1 + is̃1) b̃5k̃2

4
√
h

(
0 1
0 0

)
π̃L̃

B(U− 1
2QR) = (1 + is̃1) 1

2b̃5k̃2

√
h

(
0 0
1 0

)

π̃L̃
B(U

1
2GL) = −(1 − is̃1) 1

2b̃5k̃2

√
h

(
0 0
1 0

)
π̃L̃

B(U
1
2GR) = −s̃1(1 − is̃1) b̃5k̃2

4
√
h

(
0 1
0 0

)

and in turn leads to the following central elements, for a ∈ {L, L̃}

π̃a
B(HL) = −s̃1

h

4

(
1 0
0 1

)
π̃a

B(HR) = −s̃1
h

4

(
1 0
0 1

)

π̃a
B(U−1P) = i

4h
(

1 0
0 1

)
π̃a

B(UK) = − i

4h
(

1 0
0 1

) (5.40)

Comments similar to those below equation (5.19) hold at this stage.

Unitarity and other relations. We can now look at unitarity (2.37), starting from the physical one

K̃ab(γ)
[
K̃ab(γ)

]† = 1 ∀ a, b ∈ {L, L̃} . (5.41)

Exploiting the solution (5.35) to the BYBE and recalling that the intertwining relations are satisfied
provided one chooses s̃1 = +1 and k̃1 = iπz̃− 1

2 log 2+ i
2π, or alternatively s̃1 = −1 and k̃1 = iπz̃− 1

2 log 2,
with the parameters k̃2, b̃5 remaining free, it is easy to verify that:

• For s̃1 = +1 and k̃1 = iπz̃ − 1
2 log 2 + i

2π there exists no choice of the free parameters k̃2, b̃5 which
makes the relation (5.41) satisfied for any of the K̃ab(γ) matrices.

• For s̃1 = −1 and k̃1 = iπz̃ − 1
2 log 2 the relation (5.41) requires the free parameters to satisfy

|k̃2|2 = 2 for ab = {LL,LL̃} and |k̃2|2|b̃5|2 = 2 for ab = {L̃L̃, L̃L} (5.42)

and at the same time enforces the following conditions on the unconstrained dressing factors

k̃ab(γ)
[
k̃ab(γ)

]∗ = 1 for ab = {LL, L̃L̃}

k̃ab(γ)
[
k̃ab(γ)

]∗ = (cosh γ − 2)2

(cosh γ)2 for ab = {LL̃, L̃L}
(5.43)

Hence, as for the right wall, while the BYBE and intertwining relations are consistent with both families
of K-matrices, the physical unitarity requirement rules out one of them and almost completely fixes
the remaining free parameters. This is again in agreement with positivity of the energy under the
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identification (1.9). Concerning braiding unitarity, one encounters the same problems as for the right
wall and these can be overcome by introducing a new matrix K̃ ′, determined by solving the left wall
intertwining equation (3.27) with the opposite momentum(

πb
B ⊗ πa−

−p

)
∆(b)K̃ ′ba

(
γ(p)

)
= K̃ ′ba

(
γ(p)

)
∆(b)

(
πb

B ⊗ πa+
+p) ∀ b ∈ B̃U

V and a, b ∈ {L, L̃} .
(5.44)

This matrix then satisfies the braiding unitarity relations

K̃ab(γ)K̃ ′ab(−γ) = 1 ∀ a, b ∈ {L, L̃} . (5.45)

Also for the left wall one then observes that the K-matrices satisfy extra relations similar to those found
for the right wall. Indeed it can be checked that

K̃LL(γ)K̃L̃L̃(−γ)T = 1 and K̃LL̃(γ)K̃L̃L(−γ)T = 1 (5.46)

provided the parameter b̃5 is fixed to be
b̃5 = − 2

k̃2
2
, (5.47)

and the dressing factors satisfy

k̃LL(γ)k̃L̃L̃(−γ) = 1 and k̃LL̃(γ)k̃L̃L(−γ) = (cosh γ + 2s̃1)2

(cosh γ)2 . (5.48)

The condition (5.47) on b̃5 is consistent with the requirements of physical unitarity (5.42). One can then
also check the satisfaction, for both families of K-matrices, of mixed braiding-like unitarity relations

K̃LL(γ)K̃L̃L̃(−γ) = 1 and K̃LL̃(γ)K̃L̃L(−γ) = 1 , (5.49)

provided that
b̃5 = −i (5.50)

and the dressing factors satisfy (5.48). The latter condition on b̃5 is again consistent with (5.42).
We conclude by noting that, given the ansatze for the right and left wall K-matrices and the choice

of parameters (5.5), (5.35) which solve the BYBE for respectively the right and left walls, setting

s̃1 = s1 k̃1 = k1 k̃2 = s1i
4e2k1

k2
b̃5 = − 1

b5
(5.51)

one obtains the following relations between left and right wall K-matrices

K̃aa(γ) =
[
Kaa(γ)

]op iff k̃aa(γ) = kaa(γ) for a = {L, L̃}

K̃ab(γ) =
[
Kba(γ)

]op iff k̃ab(γ) = kba(γ) for ab = {LL̃, L̃L}
(5.52)

The above conditions are also consistent with physical unitarity and energy positivity under the iden-
tification (1.9), as for both the left and right walls the unitary family of K-matrices has s̃1 = s1 = −1
and using (5.51) it is not hard to verify that

|k̃2|2 = 2 ⇔ |k2|2 = 2 and |k̃2|2|b̃5|2 = 2 ⇔ |k2|2|b5|2 = 2 . (5.53)

In light of (5.51), the condition (5.47) then imposes, on both families of K-matrices

b5 = −8e4k1

k2
2

= − 2
k2

2
for s1 = ±1 (5.54)
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which is again, in both cases, compatible with the unitarity conditions |k2|2 = 2 and |b5|2 = 1. Finally,
the restriction (5.50) on b̃5 is also consistent with the relation (5.51) between b̃5 and b5, since for the
right wall we obtained b5 = −i as well.

Short summary of the generalised left wall vector boundary. For a short summary of the
approach used to construct generalised left wall vector boundary representations, we refer to the right
wall summary above subsection 5.2. We highlight here that left wall K-matrices satisfying intertwining
and BYB equations, as well as physical unitarity, can be obtained starting from the ansatz (5.31) and
requiring the unfixed parameters s̃1, k̃1, k̃2, b̃5 in the solution (5.35) to take the form

s̃1 = −1 k̃1 = iπz̃ − 1
2 log 2 k̃2 =

√
2eiα̃ b̃5 = eiβ̃ with z̃ ∈ Z, α̃, β̃ ∈ R (5.55)

where α̃, β̃ are free phases. We remark again that such restrictions also lead to a positive boundary
energy ẼB = h, identified with the bulk energy as in (1.9).

6 Conclusions

In this paper we have extended the study of reflection matrices and boundary scattering to the massless
sector of AdS3 ×S3 ×T 4 string theory. This is a first study of this kind in AdS/CFT integrability, since
all the earlier treatments necessarily focused on massive excitations - see for instance the vast literature
following from [37], and the literature cited in [20]. We analyse the new setup offered by massless modes
and their supersymmetric representations, and explore it extensively finding a huge wealth of boundary
reflection K-matrices. These correspond to different boundary co-ideal subalgebras, which we specify in
detail.

Throughout the paper we worked with a symmetric co-product in which the bulk R-matrices can
be expressed in terms of the difference in the rapidity variables of the two scattering magnons. The
co-ideal subalgebra condition, (2.19) and (3.14) for right and left boundaries respectively, coupled with
the symmetric co-product, forces us to rescale the generators of the Hopf algebra to construct the
boundary subalgebras. We computed the reflection matrices for both the singlet and vector boundaries
which satisfy the Boundary Yang-Baxter Equations. Furthermore, we specified the boundary coideal
subalgebra intertwined by each K-matrix. For the case of the singlet boundaries, we found a hidden
symmetry while solving the BYBE for non-supersymmetric chiral boundaries which, while not coideal
in our symmetric coproduct, we expect should form an enhanced boundary coideal subalgebra in some
co-product as was the case for the massive sector discussed in [20]. We verified that the K-matrices
satisfy physical unitarity as well as braiding unitarity modulo a subtlety arising from having a different
bulk representation for right and left moving particles in the massless limit.

For the vector boundary, for comparison with [20], we initially fixed the boundary representation to be
the bulk representation with a particular value for the momentum p = ±π (for right and left boundary
respectively) and a rescaling h → h/2. This choice of boundary representation is physically motivated as
the group velocity of the wavepacket for this choice of representation vanishes, and hence the boundary
wavepacket is stationary. However, we can consider a more generic choice for the boundary representation
which may or may not have a physical interpretation. Hence in section 5, we generalize our boundary
representations which gives slightly more generic K-matrices that satisfy the BYBE. For this generic
class of K-matrices, we see some interesting relations obeyed by the different partial K-matrices.

This work is the first step in a series of studies which we intend to carry out, including a derivation
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of the boundary Bethe ansatz and boundary thermodynamic Bethe ansatz. The next step would be
to compute the dressing factors for the K-matrices using crossing symmetry. The massless sector has
extremely rich physics, particularly in conjunction with boundary massless flows and boundary conformal
field theory. We plan to investigate these connections in future work.

Acknowledgments

We very much thank Vidas Regelskis for illuminating discussions. AT thanks Bogdan Stefański for
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A Different frame factors

In this appendix, for the ease of comparison with [20], we report the calculation, for the singlet boundary,
in a different convention for the frame factors (equivalently, a different convention for the coproduct).
The L representation of the supercharges is slightly modified as well, it is taken to be the massless limit
of the L representation considered in [20].

πL+
pi

(QL) = −πL+
pi

(GR)ei
pi
2 =

√
h

2 sin pi

2

(
0 0
1 0

)
,

πL+
pi

(GL) = −πL+
pi

(QR)e−i
pi
2 =

√
h

2 sin pi

2

(
0 1
0 0

)
, pi ∈ (0, π), (A.1)

πL−
pi

(QL) = πL−
pi

(GR)ei
pi
2 =

√
h

2 sin −pi

2

(
0 0
1 0

)
,

πL−
pi

(GL) = πL−
pi

(QR)e−i
pi
2 =

√
h

2 sin −pi

2

(
0 1
0 0

)
, pi ∈ (−π, 0). (A.2)

We then change the coproduct assignment as follows:

∆(QL) = QL ⊗ 1+ ei p
2 ⊗ QL, ∆(GL) = GL ⊗ 1+ e−i p

2 ⊗ GL,

∆(QR) = QR ⊗ 1+ ei p
2 ⊗ QR, ∆(GR) = GR ⊗ 1+ e−i p

2 ⊗ GR. (A.3)
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This should ultimately not change the physics, meaning the energy spectrum of the theory obtained by
solving the Bethe ansatz equations. It has however the consequence that the S-matrix in the massless
sector ceases to be of manifest difference form, precisely because of the different frame factors which
spoil it. The use of the pseudo-relativistic variable γi becomes therefore less relevant and it is actually
simpler to use the individual momenta. Because of the lack of manifest difference form it is therefore
in general more desirable to adopt the conventions of the main text. We will only describe the level-0
coproducts and not the higher Yangian levels.

The R-matrices are modified as follows (ignoring the dressing phases):

R++ ∼



1 0 0 0

0 −csc p1+p2
4 sin p1−p2

4
ei

p1−p2
4

√
sin p1

2 sin p2
2

sin p1+p2
4

0

0 e−i
p1−p2

4
√

sin p1
2 sin p2

2
sin p1+p2

4
csc p1+p2

4 sin p1−p2
4 0

0 0 0 −1


, p1, p2 ∈ (0, π),

R−− ∼



1 0 0 0

0 −csc p1+p2
4 sin p1−p2

4
−ei

p1−p2
4

√
− sin p1

2

√
− sin p2

2
sin p1+p2

4
0

0 −e−i
p1−p2

4
√

− sin p1
2

√
− sin p2

2
sin p1+p2

4
csc p1+p2

4 sin p1−p2
4 0

0 0 0 −1


, p1, p2 ∈ (−π, 0),

R+− ∼



1 0 0 0

0 sec p1+p2
4 cos p1−p2

4
−iei

p1−p2
4

√
− sin p1

2 sin p2
2

cos p1+p2
4

0

0 −ie−i
p1−p2

4
√

− sin p1
2 sin p2

2
cos p1+p2

4
sec p1+p2

4 cos p1−p2
4 0

0 0 0 1


, p1 ∈ (0, π), p2 ∈ (−π, 0),

R−+ ∼



1 0 0 0

0 sec p1+p2
4 cos p1−p2

4
iei

p1−p2
4

√
− sin p1

2 sin p2
2

cos p1+p2
4

0

0 ie−i
p1−p2

4
√

− sin p1
2 sin p2

2
cos p1+p2

4
sec p1+p2

4 cos p1−p2
4 0

0 0 0 1


, p1 ∈ (−π, 0), p2 ∈ (0, π).

(A.4)

The frame factors all become equal to 1 in the BMN limit, therefore one can ignore the different con-
ventions in that case and recover the relativistic limit exactly as we did in the main text. When working
with the momentum variables it is easy to see that the BMN limit pi → 0± is indeed not trivial for R++

and R−− because of the ratio of sines, while it trivialises R+− and R−+ which instead have cosines in
various places.

A.1 Right wall singlet boundary

We have solved the boundary Yang-Baxter equation for the right wall in the case of a singlet boundary
in these conventions, and again we find a family of solutions parameterised by one complex constant.
The equation for complete K and R-matrices (K(p) = ⊕Ka(p) and R(p1, p2) = ⊕Rab(p1, p2) with
a, b ∈ {L,R}) reads

K2(p2)Rop
+−(p2,−p1)K1(p1)R++(p1, p2) = Rop

−−(−p2,−p1)K1(p1)R+−(p1,−p2)K2(p2), (A.5)
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where p1, p2 ∈ (0, π). The solution is given by

KL(pi) =
(

1 0
0 σ(pi)

)
, σ(pi) = eipi + 2c0 e

i
pi
2

−1 + 2c0 ei
pi
2
, i = 1, 2, (A.6)

with c0 any complex number. We can see that for c0 → ±∞ the reflection matrix becomes the identity.
Also, both for c0 → ±∞ and c0 = 0 it is unitary, with the condition on the reflection dressing factors
being kL(−pi)kL(pi) = 1.

The next step is to impose the boundary intertwining relations to fix the value of the constant c0.
For a generator b in the boundary algebra B these are of the form

πL−
−pi

(b)KL(pi) = KL(pi)πL+
pi

(b), (A.7)

with πL±
pi

(b) denoting the representation of b ∈ B.
For the singlet chiral boundary algebras presented in [20], we have

• Non-supersymmetric chiral, BNC = ⟨HL,HR⟩:
The relations impose no constraints on the K-matrix, because π±

pi
(HL,R) = π∓

−pi
(HL,R) ∝ I. This

seems to be in agreement with the massive case, where the solution also includes a free parameter.
Denoting by c̃0 the constant that appears in KL

BNC
(pi) of [20], our solution agrees with its massless

limit if c̃0 = −2c0.

• Left half-supersymmetric, BL = ⟨QL,GL,HL,HR⟩:
Satisfying the symmetry relations requires c0 → ∞, implying KL

BL
(pi) = I

• Right half-supersymmetric, BR = ⟨QR,GR,HL,HR⟩:
Satisfying the symmetry relations requires c0 = 0, implying

KL
BR

(p) =
(

1 0
0 −eipi

)
(A.8)

In the last two cases, the result agrees with the massless limit of the corresponding KL
B(pi) in [20]. These

solutions can also be obtained by imposing the intertwining relations on a generic diagonal K-matrix
K(pi) = E11 + σ(pi)E22 and solving for σ(pi) (without using the BYBE).

We have also computed all the R-matrices for the situation where either one or both particles are in
the massless limit of the R representation of [20], which reads

πR+
pi

(QL) = −πR+
pi

(GR)ei
pi
2 =

√
sin pi

2

(
0 1
0 0

)
,

πR+
pi

(GL) = −πR+
pi

(QR)e−i
pi
2 =

√
sin pi

2

(
0 0
1 0

)
, pi ∈ (0, π), (A.9)

πR−
pi

(QL) = πR−
pi

(GR)ei
pi
2 =

√
sin −pi

2

(
0 1
0 0

)
,

πR−
pi

(GL) = πR−
pi

(QR)e−i
pi
2 =

√
sin −pi

2

(
0 0
1 0

)
, pi ∈ (−π, 0). (A.10)

The coproduct is the one in (A.3). We do not report the R-matrices explicitly for brevity - with this
choice of coproduct all the 16 bulk R-matrices††, of which 4 are shown in (A.4) are different by some

††The total of 16 comes from L,R and +,− for either particle 1 or 2.
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frame factors, and we do not have simple relations as in (1.44). We have then computed the singlet-
boundary reflection matrix for R particles, checking the boundary Yang-Baxter equation when two bulk
particles are of type R. We obtain

KR(pi) =
(

1 0
0 σR(pi)

)
, σR(pi) = 1 −

2 cos pi

2

ei
pi
2 − 2cR

0
, i = 1, 2, (A.11)

with cR
0 any constant. Once again, both for cR

0 → ±∞ and cR
0 = 0 it is unitary, with the condition on

the reflection dressing factors being kR(−pi)kR(pi) = 1.
We find that we can solve the mixed boundary Yang-Baxter equations when one bulk particle is L

and one is R by specifying the values of the constants, and in particular

c0 = −cR
0 (A.12)

is a choice that works, under the analogue of the conditions (2.15) and (2.16) on the respective dressing
factors.

A.2 Left wall singlet boundary

We have also repeated the calculation for a left wall in the case of a singlet boundary in the same
conventions, and found that the L particle reflects of the left wall with

K̃L(pi) =
(

1 0
0 σ̃(pi)

)
, σ̃(pi) = e−i

pi
2 − c̃0

ei
pi
2 + c̃0

, i = 1, 2, (A.13)

with c̃0 any constant. One R particles instead reflects off the left wall with

K̃R(pi) =
(

1 0
0 σ̃R(pi)

)
, σ̃R(pi) = −ei

pi
2 + c̃R

0 e
ipi

ei
pi
2 − c̃R

0
, i = 1, 2, (A.14)

with c̃R
0 any constant. Unitarity works for both c̃0 equal to 0 or ±∞, and the same for c̃R

0 . This implies
the standard conditions

k̃L(−pi)k̃L(pi) = 1 = k̃R(−pi)k̃R(pi) (A.15)

on the reflection dressing.
To solve the mixed boundary Yang-Baxter equations with at least one L and one L̃ particle we need

to set

c̃0 = 1
c̃R

0
. (A.16)

We have also in this case the same conditions on the dressing factors as those coming from the right wall
analysis.

B Physical representations for the massive case: L and R

We now compute the bulk R-matrices for the physical massive representations L and R, with the sym-
metric coproduct.
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The massive L representation reads as before

πL
p (GL) =

√
h

2 ηp

(
0 1
0 0

)
, πL

p (QL) =
√
h

2 ηp

(
0 0
1 0

)
,

πL
p (GR) = −

√
h

2
ηp e

−i p
2

x−
p

(
0 0
1 0

)
, πL

p (QR) = −
√
h

2
ηp e

i p
2

x+
p

(
0 1
0 0

)
. (B.1)

The massive R representation reads

πR
p (GL) = −

√
h

2
ηp√
x+

p x
−
p

(
0 0
1 0

)
, πR

p (QL) = −
√
h

2
ηp√
x+

p x
−
p

(
0 1
0 0

)
,

πR
p (GR) =

√
h

2 ηp

(
0 1
0 0

)
, πR

p (QR) =
√
h

2 ηp

(
0 0
1 0

)
. (B.2)

Both the L and R representations coincide with the ρL, resp. R, rep of [7] modulo a different choice of
phases multiplying the supercharges - recalling that

(
x+

x−

)λ = eiλp.
We have already displayed in the main text the LL bulk R-matrix, but we repeat it here for com-

pleteness:

• L− L

RLL = ΦLL
m



e
i
4 (p−q)(x+

q −x−
p )

(x−
q −x+

p ) 0 0 0

0 e− i
4 (p+q)(x+

q −x+
p )

(x−
q −x+

p )
iηpηq

(x−
q −x+

p ) 0

0 iηpηq

(x−
q −x+

p )
e

i
4 (p+q)(x−

q −x−
p )

(x−
q −x+

p ) 0

0 0 0 e
i
4 (q−p)


. (B.3)

• R−R

RRR = ΦRR
m



e
3i
4 (p−q) x−

p −x+
q

x+
p −x−

q
0 0 0

0 e
i
4 (p−3q)(x+

q −x+
p )

(x−
q −x+

p )
ie

i
2 (p−q)ηpηq

(x−
q −x+

p ) 0

0 ie
i
2 (p−q)ηpηq

(x−
q −x+

p )
e

i
4 (3p−q)(x−

q −x−
p )

(x−
q −x+

p ) 0

0 0 0 e
i
4 (p−q)


. (B.4)

• L−R

RLR = ΦLR
m



1 0 0 e
i
4 (p−q)iηpηq

(x−
q x+

p −1)

0 e
ip
2 (x−

p x−
q −1)

(x−
q x+

p −1) 0 0

0 0 e− iq
2 (x+

p x+
q −1)

(x−
q x+

p −1) 0
e− i

4 (−p+q)iηpηq

(x−
q x+

p −1) 0 0 e− i
2 (−p+q)(x−

p x+
q −1)

(x−
q x+

p −1)


. (B.5)

• R− L
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RRL = ΦRL
m



1 0 0 e
i
4 (p−q)iηpηq

(x−
q x+

p −1)

0 e
ip
2 (x−

p x−
q −1)

(x−
q x+

p −1) 0 0

0 0 e
−iq

2 (x+
p x+

q −1)
(x−

q x+
p −1) 0

e
i
4 (p−q)iηpηq

(x−
q x+

p −1) 0 0 e− i
2 (−p+q)(x−

p x+
q −1)

(x−
q x+

p −1)


. (B.6)

In order to find the reflection matrices, we again take the boundary subalgebras BU
L and BU

R as given
in (2.25), and solve the boundary intertwining equations for the right wall:

πL
−p(b)KL(p) = KL(p)πL

p (b) and πR
−p(b)KR(p) = KR(p)πR

p (b) ∀ b ∈ B. (B.7)

Here we use the physical representations πL and πR in (B.1) and (B.2) respectively, and we consider
the boundary subalgebra B either BU

L or BU
R. Solving the boundary intertwining equations yields us the

following reflection matrices (upto an overall dressing factor):

KL
BU

L
(p) =

(
1 0
0 e− ip

2

)
and KL

BU
R

(p) =
(

1 0
0 −e

ip
2

)
. (B.8)

for the particle in L representation and

KR
BU

L
(p) =

(
1 0
0 e

ip
2

)
and KR

BU
R

(p) =
(

1 0
0 e− ip

2

)
. (B.9)

for the particle in the R representation. We have checked that this reflection matrix satisfies the massive
Boundary Yang-Baxter equation

K2(p2)Rop
(
p2,−p1

)
K1(p1)R(p1, p2) = Rop

(
− p2,−p1

)
K1(p1)R

(
p1,−p2

)
K2(p2), (B.10)

with the massive bulk R-matrices of this section.

C Twist

We can introduce a twist which connects the symmetric coproduct which we have been using so far, to
the one used in appendix A and in [20]. First, let us introduce an additional bosonic generator B, with
commutation relations

[B,QL] = QL, [B,GL] = −GL,

[B,QR] = −QR, [B,GR] = GR. (C.1)

We now define the twist as

TL = eτL , τL = i

4

[
p ⊗ B + B ⊗ p

]
,

TR = eτR , τR = − i

4

[
p ⊗ B + B ⊗ p

]
. (C.2)

We can easily calculate (only based on the commutation relations)

[τL,QL ⊗ 1] = i

4QL ⊗ p, [τL,GL ⊗ 1] = − i

4GL ⊗ p,

[τR,QR ⊗ 1] = i

4QR ⊗ p, [τR,GR ⊗ 1] = − i

4GR ⊗ p,

[τL,1⊗ QL] = i

4p ⊗ QL, [τL,1⊗ GL] = − i

4p ⊗ GL,

[τR,1⊗ QR] = i

4p ⊗ QR, [τR,1⊗ GR] = − i

4p ⊗ GR. (C.3)
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If c is any central element, and b, x are abstract generators satisfying

[b, x] = c x, (C.4)

then one deduces

ebx =
∞∑

n=0

1
n!b

n x =
∞∑

n=0

1
n! x (b + c)n = x eb ec. (C.5)

This means that

eτL [QL ⊗ 1] = [QL ⊗ 1]eτLe
i
41⊗p, eτL [GL ⊗ 1] = [GL ⊗ 1]eτLe− i

41⊗p,

eτR [QR ⊗ 1] = [QR ⊗ 1]eτRe
i
41⊗p, eτR [GR ⊗ 1] = [GR ⊗ 1]eτRe− i

41⊗p

eτL [1⊗ QL] = [1⊗ QL]eτLe
i
4p⊗1, eτL [1⊗ GL] = [1⊗ GL]eτLe− i

4p⊗1,

eτR [1⊗ QR] = [1⊗ QR]eτLe
i
4p⊗1, eτR [1⊗ GR] = [1⊗ GL]eτRe− i

4p⊗1. (C.6)

At this point we write the symmetric coproduct as

∆(QL) =
[
QL ⊗ 1

][
1⊗ e−i p

4

]
+
[
ei p

4 ⊗ 1

][
1⊗ QL

]
,

∆(GL) =
[
GL ⊗ 1

][
1⊗ ei p

4

]
+
[
e−i p

4 ⊗ 1

][
1⊗ GL

]
,

∆(QR) =
[
QR ⊗ 1

][
1⊗ e−i p

4

]
+
[
ei p

4 ⊗ 1

][
1⊗ QR

]
,

∆(GR) =
[
GR ⊗ 1

][
1⊗ ei p

4

]
+
[
e−i p

4 ⊗ 1

][
1⊗ GR

]
, (C.7)

and use the fact that any expression only involving the generator p will commute through everything.
We therefore write, using (C.6),

eτL∆(QL)e−τL = ∆(QL) =
[
QL ⊗ 1

][
1⊗ 1

]
+
[
ei p

2 ⊗ 1

][
1⊗ QL

]
,

eτL∆(GL)e−τL = ∆(GL) =
[
GL ⊗ 1

][
1⊗ 1

]
+
[
e−i p

2 ⊗ 1

][
1⊗ GL

]
,

eτR∆(QR)e−τR = ∆(QR) =
[
QR ⊗ 1

][
1⊗ 1

]
+
[
ei p

2 ⊗ 1

][
1⊗ QR

]
,

eτR∆(GR)e−τR = ∆(GR) =
[
GR ⊗ 1

][
1⊗ 1

]
+
[
e−i p

2 ⊗ 1

][
1⊗ GR

]
. (C.8)

We see that (C.8) is the coproduct used in appendix A and in [20]. Furthermore, since we never rely on
the dispersion relation for any of the arguments contained in this subsection, the twist which we have
found works for massive as well as massless representations.
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