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ON KERNEL BUNDLES OVER REDUCIBLE CURVES WITH A NODE

SONIA BRIVIO AND FILIPPO F. FAVALE

Abstract. Given a vector bundle E on a complex reduced curve C and a subspace

V of H0(E) which generates E, one can consider the kernel of the evaluation map

evV : V ⊗OC → E, i.e. the kernel bundle ME,V associated to the pair (E, V ). Motivated

by a well known conjecture of Butler about the semistability of ME,V and by the results

obtained by several authors when the ambient space is a smooth curve, we investigate

the case of a reducible curve with one node. Unexpectedly, we are able to prove results

which goes in the opposite direction with respect to what is known in the smooth case.

For example, ME,H0(E) is actually quite never w-semistable. Conditions which gives the

w-semistability of ME,V when V ⊂ H0(E) or when E is a line bundle are then given.

Introduction

Let C be a complex reduced projective curve. Let (E, V ) be a pair on C given by a

vector bundle E of rank r and a vector space V ⊆ H0(E) of dimension k ≥ r + 1. These

pairs have been studied extensively by many authors, in particular when C is smooth,

and are called coherent systems. For example, one can see [8] and [22]. In this paper we

will be interested in pairs where E is generated by the global sections of V , i.e. when the

evaluation map evV : V ⊗OC → E is surjective: we will call these pairs generated pairs.

In these case, the kernel ME,V of the evaluation map evV is a vector bundle of rank k− r

on C which fits into the following exact sequence

(0.1) 0 // ME,V
// V ⊗OC

evV
// E // 0

and it is called the kernel bundle (or the Lazarfeld bundle) of the pair (E, V ). When

V = H0(E), then it is denoted by ME and this case is said the complete case.

Generated pairs encode a lot of the geometry of the curve as well as a lot of interesting

informations about it. For example, a generated pair (E, V ) defines a morphism

ϕE,V : C → G(k − r, V ), x → Ker(evV,x),

whereG(k−r, V ) denotes the Grassmannian variety of (k−r)-dimensional linear subspaces

of V . Then, the exact sequence 0.1 is actually the pull back by ϕE,V of the following exact
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sequence on G(k − r, V ):

(0.2) 0 // U // V ⊗OG(k−r,V )
// Q // 0

where U and Q are respectively the universal and quotient bundle on G(k − r, V ).

Kernel bundles have been studied by many authors when the curve C is smooth and irre-

ducible, because of their rich applications (see [23] for an overview). In particular, their

stability properties, which have been studied with respect to different point of view (see,

for instance, [19, 24]) are closely related to higher rank Brill-Noether theory and moduli

spaces of coherent systems (see [3, 5, 8] for example). Finally, they have been useful in

studying theta divisors and the geometry of moduli space of vector bundles on curves (see

[2, 9–12, 14, 26], for example).

In the complete case, Butler, in his seminal work [15], proved that on a smooth irreducible

curve of genus g the kernel bundleME is semistable for any semistable E of degree d ≥ 2rg

and it is actually stable if E is stable of degree d > 2gr. In the case of line bundles, this

result has been improved in several works by taking into consideration the Clifford index

of the curve. For example, see [6, 16, 17, 25].

For the general case, in [16] Butler made the following conjecture:

Conjecture. For a general smooth curve of genus g ≥ 3 and a general choice of a

generated pair (E, V ), where E is a semistable vector bundle, the kernel bundle ME,V is

semistable.

Much work has been done in the direction of solving this conjecture. In particular it has

been completely proved in [4] in the case of line bundles. Moreover, many conditions for

stability are given (see also [3]).

It seems natural to ask whether similar results hold in the case of singular curves. The

aim of this paper is to investigate stability properties for kernel bundles on a nodal re-

ducible curve. More precisely, we will consider a complex reducible projective curve C

with two smooth irreducible components Ci, of genus gi ≥ 2, i = 1, 2, and a single node p.

Some modifications to the environment are required, obviously. For example, the notion

of semistability needs to be replaced with the notion of w-semistability for a given polar-

ization w (see Definition 1.3). We will say that a vector bundle on C is strongly unstable

if it is w-unstable for any polarization on the curve (see Definition 1.4). The theory and

the results that we will need are summarized in Section 1.

Our first result is Theorem 2.4, which is proved in Section 2.
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Theorem. Let C be a nodal curve as above. Let (E, V ) be a generated pair on the

curve C and let Ei be the restriction of E to the component Ci. If Ei is semistable and

dim(V ∩H0(Ei(−p))) ≥ 1, then ME,V is strongly unstable and both its restrictions to the

components are unstable.

As a corollary of this result, we have that the kernel bundle ME is strongly unstable for

any globally generated vector bundle E whose restrictions Ei are semistable and not triv-

ial (see Corollary 2.6). This is a somewhat unexpected result as in the smooth case, by

the result of Butler, ME is always semistable for any semistable E with degree sufficiently

big. This impressive difference shows that it is worth going on this kind of problems.

It is natural to consider the restrictions of a generated pair (E, V ) to the component Ci.

In this way, we show that we get again a generated pair (Ei, Vi). Nevertheless, it is not

always true that the kernel bundle associated to (Ei, Vi) is the restriction of ME,V to Ci.

Indeed in the case of Theorem 2.4, we have that MEi,Vi
is a destabilizing quotient for the

restriction of ME,V to Ci.

In section 3 we study the stability of ME,V when ME,V |Ci

≃ MEi,Vi
. We first show that

this is equivalent to the following condition:

(⋆) V ∩H0(E1(−p)) = V ∩H0(E2(−p)) = {0}.

Then, we prove Theorem 3.2:

Theorem. Let C be a nodal curve as above. Let (E, V ) be a generated pair on the curve

C satisfying condition (⋆). If both ME1,V1
and ME2,V2

are semistable then there exists a

polarization w such that ME,V is w-semistable.

We conclude Section 3 by applying the above theorem to special cases where we know

semistability of the kernel bundles MEi,Vi
. The results are stated in Theorem 3.3 and 3.5.

Acknowledgements. The authors want to express their gratitude to the anonymous

referee for helpful remarks and to Prof. P.E. Newstead for his keen suggestions which

contributed to the final version of this paper.

1. Vector bundles on nodal reducible curves

Let C be a complex projective curve with two smooth irreducible components and one

single node p, i.e. p is an ordinary double point. Assume that

ν : C1 ⊔ C2 → C
3



is a normalization map for C, where Ci is a smooth irreducible projective curve of genus

gi ≥ 2. Then ν−1(x) is a single point except when x is the node, in the latter case we

have: ν−1(p) = {q1, q2} with qi ∈ Ci. Since for i = 1, 2 the restriction

ν|Ci
: Ci → ν(Ci)

is an isomorphism, we will call as well C1 and C2 the components of C. As C is of

compact type, i.e. every node of C disconnects the curve, the pull back map ν∗ induces

an isomorphism

Pic(C) ≃ Pic(C1 ⊔ C2) ≃ Pic(C1)× Pic(C2).

Moreover, the curve C is contained in a smooth irreducible projective surface X . On it,

C, C1 and C2 are effective divisors and we have: C = C1 + C2 with C1 · C2 = 1. In

particular C is 1-connected, so the sheaf ωC = ωX ⊗OC(C) is a dualizing sheaf for C and

we have h1(C, ωC) = 1, see [20].

Moreover, for i, j ∈ {1, 2} with i 6= j, we have an exact sequence

(1.1) 0 // OCi
(−Cj) // OC

// OCj
// 0

from which we get

χ(OC) = χ(OCi
(−Cj)) + χ(OCj

) = χ(OCi
(−p)) + χ(OCj

).

Let pa(C) = 1− χ(OC) be the arithmetic genus of C, then we have:

pa(C) = g1 + g2.

Let Mg be the moduli space of stable curves of arithmetic genus g, it is a projective inte-

gral scheme containing as a dense subset the moduli space Mg of smooth curves of genus

g. The closure in Mg of the locus of curves with a single node has codimension 1 and

is the union of finitely many irreducible divisors ∆i, where ∆0 parametrizes irreducible

nodal curves whereas, for 0 < i ≤ [g/2], ∆i parametrizes reducible nodal curves with two

smooth irreducible components of genus i and g − i, see [18] and [21]. Let C be a nodal

curve as above with pa(C) = g1 + g2 and assume g1 ≤ g2. We will say that C is a general

reducible nodal curve if it is a general element of the divisor ∆g1 . In this case, both of its

components are general in their moduli spaces.

To talk about semistability for vector bundles on a reducible curve, we first need to

introduce the notions of depth one sheaves following [27].

Definition 1.1. A coherent sheaf E on C is of depth one if for any point x ∈ C the stalk

Ex is a OC,x-module of depth one, i.e. there exists an element in the maximal ideal mx

of OC,x which is not a zero divisor for Ex.
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Any vector bundle on C is a sheaf of depth one, any subsheaf of a vector bundle too. If

E is a sheaf of depth one, then its restriction to Ci is a torsion free sheaf on Ci \ p. In

particular, let ji : Ci →֒ C be the natural inclusion, if Fi is a vector bundle on Ci, then the

sheaf (ji)∗(Fi) is a depth one sheaf on C and χ(Ci, Fi) = χ(C, (ji)∗(Fi)). In the sequel,

when no confusion arises we will denote with Fi on C the sheaf (ji)∗(Fi).

Let E be a depth one sheaf on C, let Ei denote the restriction on the component Ci

modulo torsion. We define the relative rank and the relative degree of E with respect to

the component Ci as follows:

ri = Rk(Ei), di = deg(Ei) = χ(Ei)− riχ(OCi
),

where χ(Ei) is the Euler characteristic of Ei. We say that E has multirank (r1, r2) and

multidegree (d1, d2). For a vector bundle E, the restriction Ei is a vector bundles too and

we have r1 = r2 = r, we denote r as the rank of E.

Definition 1.2. A polarization w of C is given by a pair of rational weights (w1, w2) such

that 0 < wi < 1 and w1+w2 = 1. For any sheaf E of depth one on C of multirank (r1, r2)

we define the polarized slope as

µw(E) =
χ(E)

w1r1 + w2r2
.

Definition 1.3. A vector bundle E on C is called w-semistable if for any proper subsheaf

F ⊂ E we have µw(F ) ≤ µw(E); it is said to be w-stable if µw(F ) < µw(E).

If w and w′ are two polarizations, it can happen that a depth one sheaf E is w-semistable

and it is not w′-semistable.

Definition 1.4. Let C be as above. We will say that a vector bundle E on C is strongly

unstable if it is w-unstable with respect to any polarization on C.

We will need the following result, see [28, 29].

Theorem 1.1. Let C be a nodal curve with two smooth irreducible components Ci and a

single node. Let E be a vector bundle on C of rank r ≥ 1 with restrictions Ei, i = 1, 2

and w a polarization. Then we have the following properties:

(1) if E is w−semistable then:

(1.2) wiχ(E) ≤ χ(Ei) ≤ wiχ(E) + r;

(2) if E1 and E2 are semistable and E satisfies the above condition, then E is w-

semistable. Moreover, if at least one of the restrictions is stable, then E is w-stable

too.
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2. Strongly unstable kernel bundles

Let C be a nodal reducible curve with two smooth irreducible components Ci of genus

gi ≥ 2 and a single node p as in Section 1. Let (E, V ) be a generated pair on C, with E a

vector bundle of rank r ≥ 1 on C and V ⊆ H0(E) of dimension k ≥ r + 1. Consider the

kernel bundle ME,V associated to the pair (E, V ). It is a vector bundle of rank k− r ≥ 1

and Euler-characteristic

χ(ME,V ) = k(1− pa(C))− χ(E).

Let Ei be the restriction of E to the component Ci and let di be the degree of Ei. Let

(2.1) ρi : H
0(E) → H0(Ei)

be the restriction map of global sections of E to the component Ci and let’s consider its

image

Vi = ρi(V ).

We have a pair (Ei, Vi) on the curve Ci. This pair is said to be of type (r, di, ki) as

r = Rk(Ei), di is the degree of Ei and ki = dimVi. We will denote (Ei, Vi) as the restric-

tion of the pair (E, V ) to the curve Ci.

We have the following lemmas:

Lemma 2.1. Let C be a nodal reducible curve as in Section 1. Let (E, V ) be a generated

pair on C. Then

(1) (Ei, Vi) is a generated pair on the curve Ci and ki ≥ r, i = 1, 2;

(2) h0(E) = h0(E1) + h0(E2)− r;

(3) the restriction map ρi : H
0(E) → H0(Ei) is surjective, for i = 1, 2.

Proof. (1) Consider the exact sequence 0.1 defining ME,V . Since Tor1OC
(OCi

, E) = 0 by

tensoring the exact sequence with OCi
we get the following exact sequence of locally free

sheaves on Ci:

0 // ME,V ⊗ OCi
// V ⊗OCi

evV |Ci
// Ei

// 0.

We have the following commutative diagram

(2.2) 0 // ME,V ⊗OCi
// V ⊗OCi

evV |Ci
//

ρi|V

��

Ei
// 0

Vi ⊗OCi evVi

// Ei
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From it we deduce that evVi
is surjective and thus, (Ei, Vi) is a generated pair. In partic-

ular, ki = dim(Vi) ≥ r.

(2) Following [27], the vector bundle E on the curve C is obtained by gluing the vector

bundles E1 and E2 along the fibers at the node. More precisely E is determined by the

triple (E1, E2, σ), where σ ∈ GL(E1,p, E2,p) is an isomorphism. In particular, σ induces

the following commutative diagram, (see [13] for more details)

(2.3) 0 // E // E1 ⊕ E2
//

ρ1,p⊕ρ2,p

��

E2,p
// 0

E1,p ⊕ E2,p
δ

// E2,p
// 0

where ρi,p is the restriction map to the fiber at p and δ(u, v) = σ(u)− v. Since by (1) Ei

is globally generated, passing to cohomology we obtain the exact sequence

0 → H0(E) → H0(E1)⊕H0(E2) → E2,p → 0,

which proves (2).

(3) Let i, j ∈ {1, 2} with i 6= j. If we tensor the exact sequence 1.1 with E, we obtain

0 → Ej(−p) → E → Ei → 0.

Passing to cohomology we have:

0 // H0(Ej(−p)) // H0(E)
ρi

//// H0(Ei) // ...

from which we deduce that Ker ρi ≃ H0(Ej(−p)). Since Ej is globally generated we have:

Rk ρi = h0(E)− h0(Ej(−p)) = h0(E)− h0(Ej) + r = h0(Ei).

�

Lemma 2.2. Let C be a nodal reducible curve as in Section 1. Let (E, V ) be a generated

pair on C. If Ei is semistable and dim(V ∩H0(Ei(−p))) ≥ 1, i = 1, 2, then we have:

(1) (Ei, Vi) is of type (r, di, ki), with di ≥ r and ki ≤ k − 1;

(2) the kernel bundle MEi,Vi
is a non trivial quotient of the restriction ME,V ⊗OCi

;

(3) the restriction ME,V ⊗OCi
is an unstable vector bundle on Ci.

Proof. (1)-(2) First of all note that the assumption dim(V ∩ H0(Ei(−p))) ≥ 1 implies

di ≥ r. Indeed, as Ei(−p) has a non zero global section si, the zero locus of si is an

effective divisor Z0(si) on Ci of degree at least 1 and we have an inclusion of sheaves

OCi
(Z0(si)) ⊂ Ei. Since Ei is semistable, we must have

1 ≤ deg(Z0(si)) = µ(OCi
(Z0(si))) ≤ µ(Ei) = di/r,
7



which gives di ≥ r.

Let Sj = V ∩ H0(Ej(−p)). By Lemma 2.1 and its proof, Ker(ρi) ≃ H0(Ej(−p)) and

Imρi ≃ H0(Ei). Hence we have the following exact sequence:

0 // Sj
// V

ρi|V
// // Vi

// 0,

where dimSj ≥ 1 and dimVi ≤ k − 1.

We can then complete diagram 2.2 obtaining the following one:

(2.4) 0

��

0

��

0 // Sj ⊗OCi

��

Sj ⊗OCi
//

��

0

��

0 // ME,V ⊗OCi
//

ρi|V

��

V ⊗OCi

evV |Ci
//

ρi|V

��

Ei
// 0

0 // MEi,Vi
//

��

Vi ⊗OCi evVi

//

��

Ei
//

��

0

0 0 0

By definition the kernel of evVi
is the kernel bundle MEi,Vi

, which turns out to be a non

trivial quotient of ME,V ⊗OCi
.

(3) We claim that Sj ⊗OCi
is a non trivial destabilizing subsheaf of ME,V ⊗OCi

. In fact

we have:

0 = µ(Sj ⊗OCi
) > µ(ME,V ⊗OCi

) =
−di
k − r

< 0,

since as we have seen di ≥ r. �

Remark 2.2.1. Note that, under the assumption of Lemma 2.2, MEi,Vi
is actually a

destabilizing quotient for ME,V ⊗OCi
.

Remark 2.2.2. Let (E, V ) be a generated pair with Ei semistable and not trivial. Then

(1) h0(Ei(−p)) ≥ 1.

Indeed, the restriction (Ei, Vi) of (E, V ) is a generated pair and dim(Vi) ≥ r by

Lemma 2.1. Equality holds if and only if Ei ≃ Vi ⊗ OCi
which is impossible by

assumption. Hence h0(Ei) ≥ dim(Vi) ≥ r + 1 and then h0(Ei(−p)) ≥ 1.

8



(2) If, moreover, dim(V ) > h0(Ei) then V ∩H0(Ej(−p)) 6= {0}.

It is enough to notice that the restriction ρi|V : V → H0(Ei) cannot be injective

in this case. Hence V ∩Ker(ρi) = V ∩H0(Ej(−p)) 6= {0}.

In the sequel we will need the following result of Xiao which generalizes Clifford’s Theorem

to semistable vector bundles of rank r ≥ 2 on smooth curves.

Theorem 2.3. Let E be a semistable vector bundle of rank r ≥ 1 on a smooth irreducible

complex projective curve C of genus g ≥ 2. If we assume that 0 ≤ µ(E) ≤ 2g − 2, then

h0(E) ≤ deg(E)/2 + r.

For the proof see [7].

Our first result is the following condition for strongly unstable kernel bundles:

Theorem 2.4. Let C be a reducible nodal curve as in Section 1. Let (E, V ) be a generated

pair on C. If Ei is semistable and dim(V ∩ H0(Ei(−p))) ≥ 1, i = 1, 2, then the kernel

bundle ME,V is strongly unstable.

Proof. We have to prove that ME,V is w-unstable with respect to any polarization w

on C. Assume on the contrary, that there exists a polarization w = (w1, w2) such that

ME,V is w-semistable. As in the proof of Lemma 2.2, let Sj = V ∩ H0(Ej(−p)) and

sj = dimSj ≥ 1, j = 1, 2. As we have proved in Lemma 2.2, for i 6= j, the sheaf Sj ⊗OCi

is a subsheaf of ME,V ⊗ OCi
. Hence we also have the following inclusion of locally free

sheaves on Ci:

Sj ⊗OCi
(−p) �

�

// ME,V ⊗OCi
(−p).

If we tensor with ME,V the exact sequence 1.1 we obtain

0 → ME,V ⊗OCi
(−p) → ME,V → ME,V ⊗OCj

→ 0,

from which we deduce the following inclusion of sheaves of depth one on C:

Sj ⊗OCi
(−p) �

�

// ME,V .

Since we are assuming that ME,V is w-semistable, we have

(2.5) µw(Sj ⊗OCi
(−p)) ≤ µw(ME,V ).

As

µw(Sj ⊗OCi
(−p)) =

χ(Sj ⊗OCi
(−p))

wisj
=

−gi
wi

,

and

µw(ME,V ) =
χ(ME,V )

k − r
= −

(d1 + d2) + (k − r)(pa(C)− 1)

k − r
,

9



from the inequality 2.5 we obtain

(2.6) wi ≤
gi(k − r)

d1 + d2 + (k − r)(pa(C)− 1)
, i = 1, 2.

Now recall that (w1, w2) is a polarization so w1 + w2 = 1. Hence,

(2.7) 1 = w1 + w2 ≤
pa(C)(k − r)

d1 + d2 + (k − r)(pa(C)− 1)
=

pa(C)(k − r)

pa(C)(k − r) + (d1 + d2 − k + r)
.

Claim: k < d1 + d2 + r.

First of all, by Lemma 2.1 we have:

(2.8) k ≤ h0(E) = h0(E1) + h0(E2)− r.

In order to prove the claim, we can consider the following cases:

Case 1: µ(Ei) > 2gi − 2 for i = 1, 2. Since Ei are semistable this implies that

h1(Ei) = 0. So, by Riemann-Roch theorem,

k ≤ h0(E) = h0(E1) + h0(E2)− r = d1 + d2 + r(1− g1 − g2) < d1 + d2 + r

as g1 + g2 ≥ 2.

Case 2: µ(Ei) > 2gi − 2 and µ(Ej) ≤ 2gj − 2 for i 6= j. We have h1(Ei) = 0 so by

Riemann-Roch we can computer h0(Ei). On the other hand, we can use Clifford’s

inequality in order to give a bound on h0(Ej). Then we get

k ≤ h0(E) = h0(Ei) + h0(Ej)− r ≤ di + r(1− gi) +
dj
2

+ r − r < d1 + d2 + r

as gi ≥ 2 and dj > 0.

Case 3: µ(Ei) ≤ 2gi − 2 for i = 1, 2. We use Clifford’s inequality for a bound on

both vector bundles:

k ≤ h0(E) = h0(E1) + h0(E2)− r ≤
d1
2

+ r +
d2
2

+ r − r < d1 + d2 + r.

Note that the last inequality holds since di ≥ 1 for i = 1, 2. This follows since Ei

is semistable and h0(Ei(−p)) ≥ 1 by assumption.

From the claim and inequality 2.7 we obtain 1 = w1 + w2 < 1 which is a contradiction.

Hence ME,V is actually w-unstable for all polarizations w. �

Let E be a globally generated vector bundle of rank r on the curve C. Then we can apply

Lemma 2.2, Remark 2.2.2 and Theorem 2.4 to the generated pair (E,H0(E)), in order to

obtain the following result on its kernel bundle ME :
10



Corollary 2.5. Let C be a reducible nodal curve as in Section 1. Let E be a globally

generated vector bundle on C. If E1 and E2 are semistable and not trivial, then the

restriction of ME to each component Ci is unstable and ME is strongly unstable.

In particular, for line bundles we obtain the following:

Corollary 2.6. Let C be a reducible nodal curve as in Section 1. Let L be a globally

generated line bundle on C with non trivial restrictions. Then the restriction of ML to

each component Ci is unstable and ML is strongly unstable.

3. w-semistable kernel bundles

Let C be a nodal reducible curve with two smooth irreducible components Ci of genus

gi ≥ 2 and a single node p as in Section 1. Let (E, V ) be a generated pair on C, where E is

a vector bundle of rank r ≥ 1 on C and V ⊂ H0(E) of dimension k ≥ r+1. Let Ei be the

restriction of E to the component Ci and assume that E1 and E2 are both semistable. As

we have seen in the previous section, when V ∩H0(Ej(−p)) 6= {0} for j = 1, 2, the kernel

bundle of the pair (E, V ) is strongly unstable and both restrictions are unstable. In this

section we would like to study generated pairs (E, V ) defining w-semistable kernel bundles

with semistable restrictions. Hence it is natural to assume the following condition:

(⋆) V ∩H0(E1(−p)) = V ∩H0(E2(−p)) = {0}.

Let ME,V be the kernel bundle of the pair (E, V ) and (Ei, Vi) the restriction of the pair

(E, V ) to the component Ci. Then we have the following lemma:

Lemma 3.1. Let C be a reducible nodal curve as in Section 1. Let (E, V ) be a generated

pair, then we have the following properties:

(1) (E, V ) satifies (⋆) if and only if ME,V ⊗ OCi
≃ MEi,Vi

, i = 1, 2, where MEi,Vi
is

the kernel bundle of (Ei, Vi) on Ci;

(2) under the above assumption, there exists a polarization w = (w1, w2) such that

wiχ(ME,V ) ≤ χ(MEi,Vi
) ≤ wiχ(ME,V ) + Rk(ME,V ), i = 1, 2.

Proof. (1) As we have seen in the proof of Lemma 2.2, the kernel of ρi : H
0(E) → H0(Ei)

is H0(Ej(−p)). So, ρi|V : V → Vi is an isomorphism if and only if H0(Ej(−p))∩V = {0}.

From commutative diagramm 2.4 of Lemma 2.2, ME,V ⊗OCi
≃ MEi,Vi

, if and only if

Sj = V ∩H0(Ej(−p)) = {0}.

(2) We want to prove the existence of w = (w1, w2) ∈ Q2 with 0 < wi < 1 and w1+w2 = 1

satisfying the conditions:

wiχ(ME,V ) ≤ χ(MEi,Vi
) ≤ wiχ(ME,V ) + Rk(ME,V ), i = 1, 2.

11



Since χ(ME,V ) = χ(ME1,V1
)+χ(ME2,V2

)−Rk(ME,V ), it is easy to verify that whenever w1

satisfies the above condition for i = 1, then w2 = 1 − w1 satisfies the condition for i = 2.

So it is enough to find w1 ∈ (0, 1) ∩Q satisfying the following system of inequalities:






χ(ME1,V1
) ≤ w1χ(ME,V ) + Rk(ME,V )

χ(ME1,V1
) ≥ w1χ(ME,V ).

From the exact sequences defining ME,V and ME1,V1
one can get

χ(ME,V ) = (k − r)(1− pa(C))− (d1 + d2), χ(ME1,V1
) = (k − r)(1− g1)− d1

and Rk(ME,V ) = k − r. By substituting in the above system we obtain:

(k − r)(g1 − 1) + d1
(k − r)(pa(C)− 1) + (d1 + d2)

≤ w1 ≤
(k − r)g1 + d1

(k − r)(pa(C)− 1) + (d1 + d2)
.

By denoting

a1 =
(k − r)(g1 − 1) + d1

(k − r)(pa(C)− 1) + (d1 + d2)
b1 =

(k − r)g1 + d1
(k − r)(pa(C)− 1) + (d1 + d2)

it is immediate to see that

0 < a1 < b1 < 1

under the hypothesis of the lemma. Hence, for any w1 ∈ (a1, b1)∩Q, we have that (w1, w2)

satisfies both the conditions of the lemma. �

Using Lemma 3.1 we get the first result of this section.

Theorem 3.2. Let C be a nodal reducible curve as in Section 1. Let (E, V ) be a generated

pair satisfying condition (⋆). If both ME1,V1
and ME2,V2

are semistable then there exists a

polarization w such that ME,V is w-semistable. Moreover, if MEi,Vi
is stable for at least

one i, then ME,V is w-stable.

Proof. We have to prove that ME,V is w-semistable for a suitable polarization. By Theo-

rem 1.1, it is enough to verify that both restrictions of ME,V to C1 and C2 are semistable

and to find a polarization w satisfying the conditions 1.2:

(3.1) wiχ(ME,V ) ≤ χ(ME,V ⊗OCi
) ≤ wiχ(ME,V ) + Rk(ME,V ), i = 1, 2.

By Lemma 3.1 we have that the restrictions of ME,V are MEi,Vi
, which are semistable by

assumption. Finally, conditions 3.1 are exactly the ones given in Lemma 3.1. The last

assertion follows from Theorem 1.1. �

Remark 3.2.1. Let C be a nodal reducible curve as in Section 1. Let E be a globally

generated vector bundle of rank r on the curve C. Assume that there exist k global sections

generating E, with r + 1 ≤ k ≤ min(h0(E1), h
0(E2)). Then a general pair (E, V ) with

dimV = k is generated and satisfies condition (⋆).
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Proof. For any k ≤ min(h0(E1, h
0(E2)), let G(k,H0(E)) denote the Grassmannian variety

parametrizing k-dimensional linear subspaces of H0(E). Under our hypothesis, the set

of linear subspaces V such that (E, V ) is generated is a non empty open subset. So it is

enough to show that a general pair (E, V ) satisfies (⋆). Let’s consider the Schubert cycle

σj = {V ∈ G(k,H0(E)) | V ∩H0(Ej(−p)) ≥ 1},

since k+ h0(Ej(−p)) ≤ h0(E), then it is a proper closed subvariety of G(k,H0(E)). This

concludes the proof. �

The first application of this Theorem deals with the case of line bundles. For each

smooth irreducible component Ci of the nodal curve C, we denote by Gk−1
di

(Ci) the variety

parametrizing linear series of degree di and dimension k− 1 on the curve Ci. An element

of Gk−1
di

(Ci) is given by a pair (Li, Vi) of type (1, di, k) on Ci. We recall that, if Ci is a

general curve, then Gk−1
di

(Ci) is non empty if and only if the Brill-Noether number

ρi = gi − k(gi − di + k − 1)

is non negative, hence if and only if di ≥ gi + k − 1− gi
k
. For details one can see [1].

Theorem 3.3. Let C be a reducible nodal curve as in Section 1. Let (L, V ) be a generated

pair on C, where L is a line bundle and dimV = k. Let (Li, Vi) be its restriction to Ci.

If C is general and (Li, Vi) is general in Gk−1
di

(Ci), then there exists a polarization w such

that ML,V is w-semistable.

Proof. By Theorem 3.2 it is enough to show that (L, V ) satisfies condition (⋆) and that

MLi,Vi
is semistable for i = 1, 2.

Since C is general the same holds for its components. Note that Gk−1
di

(Ci) is non empty,

since we are assuming (Li, Vi) ∈ Gk−1
di

(Ci). Moreover, we have that

dim(Vi) = k = dim(V ),

which implies that the restriction map ρi induces an isomorphism of V into Vi. In partic-

ular, this gives us that V ∩H0(Lj(−p)) = {0}, i.e. condition (⋆) holds.

It remains to show that, under the assumptions of the Theorem, the vector bundle MLi,Vi

is semistable. This follows from [4, Theorem 5.1] since Ci is general and (Li, Vi) is general

in Gk−1
di

(Ci). �

Corollary 3.4. Under the hypothesis of Theorem 3.3, if we also require that a component

Ci is Petri-general, k ≥ 6 and gi ≥ 2k − 6, then ML,V is w-stable.

Proof. By Theorem 3.3 there exists a polarization w such that ML,V is w-semistable.

According to Theorem 1.1, it is enough to show that one of the restrictions of ML,V is
13



stable. Since Ci is Petri, k ≥ 6 and gi ≥ 2k − 6, then MLi,Vi
is stable, from [4, Theorem

6.1], so we can conclude that ML,V is w-stable too. �

The second application of Theorem 3.2 deals with generated pairs (E, V ) whose restric-

tions to each irreducible component Ci is the complete pair (Ei, H
0(Ei)). By Lemma

3.1, as we are requiring condition (⋆) to hold, this occurs when ρi|V : V → H0(Ei) is an

isomorphism. In particular, this implies that in this case, dim(V ) = h0(E1) = h0(E2).

Theorem 3.5. Let C be a reducible nodal curve as in Section 1. Let E be a vector bundle

on C of rank r ≥ 1. Assume that its restrictions Ei are semistable of degree di ≥ 2rgi and

satisfy d1 − d2 = r(g1− g2) so that h0(E1) = h0(E2) = k. Then there exists a polarization

w such that for a general V ∈ G(k,H0(E)) we have that ME,V is w-semistable. Moreover,

if di > 2rgi for i = 1, 2, then ME,V is w-stable.

Proof. Since di ≥ 2rgi and Ei is semistable we have that Ei is globally generated,

h1(Ei) = 0 and h0(Ei) = di + r(1 − gi). Using the same argument of the proof of

Lemma 2.1, we have that h0(E) = h0(E1) + h0(E2)− r (note that in the proof it is only

needed that Ei is globally generated). Hence we have h0(E) = 2k − r.

Now we will show that for general V ∈ G(k,H0(E)) we have that ρi|V is an isomorphism.

Assume that j ∈ {1, 2} with j 6= i. As Ej is globally generated we have h0(Ej(−p)) =

h0(Ej)− r = k − r. From the exact sequence

0 // H0(Ej(−p)) // H0(E)
ρi

// H0(Ei)

we have dim(ρi(H
0(E))) = 2k − r − (k − r) = k = h0(Ei) so ρi is surjective.

Notice that k+h0(Ej(−p)) = h0(E), hence, for a general subspace V of H0(E) of dimen-

sion k we have V ∩ H0(Ej(−p)) = {0}. This imply that ρi|V is injective and hence an

isomorphism as dim(V ) = h0(Ei). Moreover, since Ei is globally generated, for V general

in G(k,H0(E)), (E, V ) is a generated pair and satisfies condition (⋆).

By Theorem 3.2, in order to conclude it is enough to prove that bothMEi,Vi
are semistable.

By hypothesis, we have MEi,Vi
= MEi

. Hence, the result follows from [15], Theorem 1.2:

MEi
is semistable when di ≥ 2rgi and it is stable if di > 2rgi. �
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