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Abstract. The subject of the present paper are stability properties of the solution set to set-

valued inclusions. The latter are problems emerging in robust optimization and mathematical

economics, which can not be cast in traditional generalized equations. The analysis here reported
focuses on several quantitative forms of semicontinuity for set-valued mappings, widely investi-

gated in variational analysis, which include, among others, calmness. Sufficient conditions for the

occurrence of these properties in the case of the solution mapping to a parameterized set-valued
inclusion are established. Consequences on the calmness of the optimal value function, in the con-

text of parametric optimization, are explored. Some specific tools for the analysis of the sufficient
conditions, in the case of set-valued inclusion with concave multifunction term, are provided in a

Banach space setting.

In fond and respectful memory of

Diethard Pallaschke (1940-2020)

1. Introduction

Let F : P ×X ⇒ Y be a given set-valued mapping and let C ⊂ Y be a (nonempty) closed and
proper subset of Y , where P , X and Y are metric spaces. Fixed any p ∈ P , the problem:

(SVIp) find x ∈ X such that F (p, x) ⊆ C
is called parameterized set-valued inclusion. As P plays the role of parameter space, (SVIp) is the
parameterized form of a class of problems, which recently emerged in optimization and variational
analysis. More precisely, they arise in the context of robust and vector optimization, in mathematical
economics (see [3, 34, 35]), while it seems to be reasonable that they may be of interest also in set-
valued optimization, where partial orders over sets are formalized in terms of set inclusions (see
[15]). Such kind of problems can not be cast in traditional generalized equations. In the terminology
of set-valued analysis, the former ones correspond to determining the upper inverse image of a set
through a multifunction, in contrast to the latter ones, which are somehow related to the lower
inverse image.

The specific feature making a problem (SVIp) essentially different from traditional generalized
equations is that the term F is a multi-valued mapping, whose values must be included in another
object (set C). It is clear that, whenever F is single-valued, problem (SVIp) can be easily embedded
in the format

(GEp) find x ∈ X such that 0 ∈ f(p, x) +G(p, x),

by setting f(p, x) = −F (p, x) and G(p, x) = C, provided that f and G take values in a vector
space Y , having 0 as a null element. After the pioneering work of S.M. Robinson (see [27]), in the
last decades the literature devoted to parameterized generalized equations mainly concentrated on
the format (GEp), being guided by applications to the theory of variational inequalities, constraint
systems, optimality conditions, fixed and coincidence points, while it has left problem (SVIp) so
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far little explored (see [9, 16, 20, 27] and references therein). It must be noted that, in the format
(GEp), the set-valued term f(p, x) + G(p, x) is requested to include another term, not be included
in it. Consequently, it presents a different perspective with respect to (SVIp). Thus, the kind of
relation evoked in the above formats appear hardly compatible with each other. It seems that the
only framework able to subsume both, (SVIp) and (GEp), is the one considered in [32, Section 3],
in connection with the so-called set-inclusion problems, which in its parameterized version can be
formulated as

(SIp) find x ∈ X such that F (p, x) ⊆ Ψ(p, x),

where Ψ : P ×X ⇒ Y is another set-valued mapping between metric spaces. Nevertheless, the anal-
ysis approach proposed in [32] seems not be effective in the particular case of set-valued inclusions.
Indeed, it heavily relies on the assumption that Ψ is a set-covering mapping (see [32, Definiton 2.1]),
which is never fulfilled if setting Ψ to be a constant set-valued mapping, i.e. Ψ ≡ C, as one has to
do in order to embed (SVIp) in (SIp).

To the best of the author’s knowledge, set-valued inclusion problems were firstly studied in [6],
where an error bound is obtained by tools of convex analysis. Subsequently, several topics related to
their solution set have started being systematically investigated in some more recent works: solution
existence and error bounds via a different approach have been established in [34]; primal and dual
elements for the tangential approximation of the solution set have been provided in [35]. Following
this line of research, the present paper aims at beginning a perturbation analysis for the problem
at the issue, by considering a parameter dependence as in (SVIp). Such a perspective leads to
undertake a study of the stability properties of the solution set. A way to do this “quantitatively”
consists in investigating Lipschitz semicontinuity properties of the solution mapping associated with
the parameterized class of set-valued inclusions, i.e. the (generally multi-valued, with possibly empty
values) mapping S : P ⇒ X, defined by

(1.1) S(p) = {x ∈ X : F (p, x) ⊆ C}.

These well-known properties found manifold relevant employments in variational analysis as gen-
eralization of the notion of Lipschitz continuity. While investigations on Lipschitz semicontinuity
properties for the solution mapping associated to traditional generalized equations have been already
carried out (see, for instance, [16, 30, 31]), they appear to be new in the context of set-valued inclu-
sions. In the present analysis, they turn out to afford fruitful insights on the behaviour of S, such
as nonemptiness, linear dependence on the parameter perturbations near a reference value p̄ ∈ P of
the distance of its values from an element x̄ ∈ S(p̄), or from the whole set S(p̄). A key aspect of
the issue is that all these features are measured by a suitable modulus associated with each of the
Lipschitz semicontinuity properties.

The main achievements exposed in the paper are obtained by an approach widely employed in
variational analysis. According to it, a property for set-valued mappings under investigation and
an estimate of the relative modulus are established by proving the existence of minimizers (in fact,
zeroes) of an excess function associated to (SVIp), called ϕF , a sort of merit function measuring the
violation of the inclusion in (SVIp). Conditions for the existence of those minimizers are formulated
in terms of differential constructions, which are variants of the notion of strong slope. Such an
approach thus reveals a relation of the properties under consideration with the validity of error
bounds for proper inequalities, the latter being a topic extensively investigated for several decades,
after the seminal work [11] by A.J. Hoffman (see, among others, [2, 10, 14, 18, 19, 23, 26, 36]).
Nevertheless, existent results on error bounds seem not be suitable for application in the present
context because of the peculiar form of the function ϕF .

The contents of the paper are arranged in the subsequent sections according to the following
synopsis. In Section 2, several Lipschitz semicontinuity properties for set-valued mappings acting
between metric spaces, along with their moduli, are presented, connections with other continuity
and Lipschitzian type properties of large employment in variational analysis are discussed, and the
basic tools of analysis are laid down. In Section 3, a sufficient condition for each of the Lipschitz
semicontinuity properties presented in the previous section is established in terms of differential



ON THE QUANTITATIVE SOLUTION STABILITY OF PARAMETERIZED SET-VALUED INCLUSIONS 3

conditions valid in a metric space setting. Each of them is complemented with a quantitative
estimate of the respective modulus. Section 4 explores some consequence of the aforementioned
findings on the optimal value analysis in the context of parametric optimization, for problems whose
feasible region is defined by a set-valued inclusion. In Section 5, the analysis of the differential
conditions introduced in Section 3 is deepened in a Banach space setting. More precisely, under a
concavity assumption on the set-valued term defining an inclusion problem (SVIp), the fulfilment
of the above conditions is shown to be guaranteed, and somehow measured, by the occurrence of
the metric C-increase property. In Section 6, conclusions and directions for expanding the present
analysis, in the light of the reported achievements, are briefly indicated.

The notation in use throughout the paper is standard. If A is a subset of a metric space (X, d), and
x ∈ X, dist (x,A) = infa∈A d(x, a) denotes the distance of x from A. The closed ball centered at x
with radius r ≥ 0 is indicated with B (x, r), whereas B (A, r) = {x ∈ X : dist (x,A) ≤ r} denotes the
r-enlargement of the set A ⊆ X. Given a function ψ : X −→ R∪{±∞}, by [ψ ≤ 0] = ψ−1((−∞, 0])
the 0-sublevel set of ψ is denoted, whereas [ψ > 0] = ψ−1((0,+∞)) stands for the 0-superlevel
set of ψ. Given a set-valued mapping Φ : X ⇒ Y , dom Φ = {x ∈ X : Φ(x) 6= ∅} indicates the
domain of Φ, while, given C ⊆ Y , Φ+1(C) = {x ∈ X : Φ(x) ⊆ C} indicates the upper inverse
(image) of C through Φ. The acronyms l.s.c. and u.s.c. stand for lower semicontinuous and upper
semicontinuous, respectively.

2. Lipschitz semicontinuity and calmness properties

Before any discussion, it is proper to recall the quantitative semicontinuity properties that will
be considered in the present work, along with their respective moduli.

Definition 2.1 (Lipschitz semicontinuities). Let Φ : X ⇒ Y be a set-valued mapping between
metric spaces. Φ is said to be:

(i) Lipschitz lower semicontinuous at (x̄, ȳ) ∈ graph Φ if there exist positive constants δ and `
such that

(2.1) Φ(x) ∩ B (ȳ, `d(x, x̄)) 6= ∅, ∀x ∈ B (x̄, δ) ;

the value

Liplsc Φ(x̄, ȳ) = inf{` > 0 : ∃δ > 0 for which (2.1) holds}

is called modulus of Lipschitz lower semicontinuity of Φ at (x̄, ȳ).
(ii) calm at (x̄, ȳ) ∈ graph Φ if there exist positive constants δ, ζ and ` such that

(2.2) Φ(x) ∩ B (ȳ, ζ) ⊆ B (Φ(x̄), `d(x, x̄)) , ∀x ∈ B (x̄, δ) ;

the value

clm Φ(x̄, ȳ) = inf{` > 0 : ∃δ, ζ > 0 for which (2.2) holds}

is called modulus of calmness of Φ at (x̄, ȳ).
(iii) Lipschitz upper semicontinuous1 at x̄ ∈ X if there exist positive constants δ and ` such that

(2.3) Φ(x) ⊆ B (Φ(x̄), `d(x, x̄)) , ∀x ∈ B (x̄, δ) ;

the value

Lipusc Φ(x̄) = inf{` > 0 : ∃δ > 0 for which (2.3) holds}
is called modulus of Lipschitz upper semicontinuity of Φ at x̄.

The next example shows that the phenomena described by the notions in Definition 2.1 are widely
spread in nature.

1A terminological warning is due: Lipschitz upper semicontinuity was introduced in [28] under the name of “upper

Lipschitz continuity”, but later popularized as “outer Lipschitz continuity”, which is the name now prevailing in the
literature.
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Example 2.2. (i) (Bundles of linear operators) Let (L(X,Y), ‖ · ‖L) denote the Banach space of all
linear bounded operators between a normed space (X, ‖ · ‖) and a Banach space (Y, ‖ · ‖), equipped
with the operator norm ‖ · ‖L. Given a nonempty subset G ⊆ L(X,Y), define a set-valued mapping
Φ : X⇒ Y as

Φ(x) = {Λx : Λ ∈ G}.
Then, Φ is Lipschitz l.s.c. at (0,0) ∈ graph Φ, with Liplsc Φ(0,0) ≤ infΛ∈G ‖Λ‖L, where 0 stands
for the null element in any normed space. Indeed, fixed an arbitrary ` > infΛ∈G ‖Λ‖L, one has

dist (0,Φ(x)) = inf
Λ∈G

dist (0,Λx) = inf
Λ∈G
‖Λx‖ ≤ inf

Λ∈G
‖Λ‖L · ‖x‖ < `‖x‖, ∀x ∈ X,

which implies

Φ(x) ∩ B (0, `‖x‖) 6= ∅, ∀x ∈ X.
(ii) Any element Λ ∈ L(X,Y) is calm at every point (x̄,Λx̄) ∈ graph Λ, with clm Λ(x̄,Λx̄) = ‖Λ‖L.
(iii) (Polyhedral finite-dimensional set-valued mappings) A set-valued mapping Φ : Rn ⇒ Rm is

said to be polyhedral if graph Φ is the union of finitely many polyhedral convex subsets of Rn×Rm.
It has been proved in [28] that any polyhedral mapping Φ, with dom Φ = Rn, is Lipschitz u.s.c.
at every point of Rn. A remarkable consequence of the above result is that the solution mapping
to any finite-dimensional parameterized linear variational inequality (and, in particular, to any
complementarity problem) turns out to be Lipschitz u.s.c. (see [9, Exercise 3D.2]).

(iv) (Reachable state mapping) Let (X, d) and (Y, d) be metric spaces, let Ω be a nonempty set
and let f : X × Ω −→ Y be a single-valued mapping. Fixed x̄ ∈ X, define

Ωx̄ = {ω ∈ Ω : f(·, ω) is Lipschitz u.s.c. at x̄}.

Then, the set-valued mapping Φ : X ⇒ Y defined by

Φ(x) = f(x,Ω) = {f(x, ω) : ω ∈ Ω}

is Lipschitz l.s.c. at every (x̄, ȳ), with ȳ = f(x̄, ω̄) such that ω̄ ∈ Ωx̄ (ȳ exists provided that Ωx̄ 6= ∅).
Indeed, by virtue of the Lipschitz upper semicontinuity of f(·, ω̄) at x̄, there exist positive κ and δ
such that

d(f(x, ω̄), f(x̄, ω̄)) ≤ κd(x, x̄), ∀x ∈ B (x̄, δ) .

Therefore, one finds

f(x, ω̄) ∈ Φ(x) ∩ B (ȳ, κd(x, x̄)) 6= ∅, ∀x ∈ B (x̄, δ) ,

so it is Liplsc Φ(x̄, ȳ) ≤ κ. Notice that this example can be viewed as a generalization of example
(i).

For the purposes of the present analysis, the following well-known facts, concerning the properties
presented in Definition 2.1, are worth being mentioned. The resulting scheme should help a reader
to assess the impact of the subsequent investigations and to catch connections with several recent
lines of development within variational analysis. For the reader’s convenience, it is proper to recall
that a set-valued mapping Φ : X ⇒ Y between metric spaces is said to have the Aubin property (or
to be Lipschitz-like) at (x̄, ȳ) ∈ graph Φ if there exist positive constants δ, ζ and κ such that

Φ(x1) ∩ B (ȳ, ζ) ⊆ B (Φ(x2), κd(x1, x2)) , ∀x1, x2 ∈ B (x̄, δ) .

• Fact 1. By elementary examples, one can show that Lipschitz lower semicontinuity and
calmness are properties independent of each other (see, for instance, [31, Example 1 and 2]).

• Fact 2. The Lipschitz upper semicontinuity of Φ at x̄ implies calmness of Φ at each point
(x̄, y), with y ∈ Φ(x̄), and the inequality clm Φ(x̄, y) ≤ Lipusc Φ(x̄) holds for every y ∈ Φ(x̄),
as an immediate consequence of the involved definitions (see [9, Chapter 3H]).

• Fact 3. Whenever Φ happens to be single-valued in a neighbourhood of x̄, Lipschitz lower
semicontinuity at (x̄,Φ(x̄)) and Lipschitz upper semicontinuity at x̄ collapse to the same
property, postulating the existence of positive δ and ` such that

(2.4) d(Φ(x),Φ(x̄)) ≤ `d(x, x̄), ∀x ∈ B (x̄, δ) .
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The above property is called calmness in [9, Chapter 1C]. Such a choice of terminology
is consistent with a certain trend in the literature, but yields a shortcoming: the notion
of calmness for set-valued mapping as given in Definition 2.1(ii) does not reduce to the
property defined by inequality (2.4) in the special case of single-valued mappings (in contrast
with what stated in [9, Chapter 3H]). Indeed, if a single-valued mapping Φ : X −→ Y
is not continuous at x̄, one sees that it is possible to choose ζ > 0 in such a way that
Φ(x) ∩B (Φ(x̄), ζ) = ∅, so the inclusion in (2.2) is trivially satisfied, whereas the inequality
in (2.4) can not be.

In the special case in which Φ is a single-real-valued function, the notion of calmness as
defined in (2.4) can be split, by considering calmness from above and calmness from below.
More precisely, Φ : X −→ R ∪ {±∞} is said to be calm from above at x̄ ∈ dom Φ provided
that there exist positive δ and ` such that

(2.5) Φ(x)− Φ(x̄) ≤ `d(x, x̄), ∀x ∈ B (x̄, δ) .

The value

clm Φ(x̄) = inf{` > 0 : ∃δ > 0 for which (2.5) holds}
is called modulus of calmness from above of Φ at x̄ (see [29, Chapter 8.F]). The version from
below of calmness, along with its modulus denoted by clm Φ(x̄), is defined in an analogous
way. Note that, as far as working with single-valued mappings, calmness as defined in
(2.4) implies continuity, as well as calmness from above/below implies the corresponding
(topological) semicontinuity property at the same point. The reader should be warned
that for the aforementioned one-side versions of calmness the terminology usage is not yet
standardized. It is worth mentioning that properties very close to calmness emerged under
various names in connection with the study of stability in parametric optimization. More
precisely, in [24] the term calm is used for meaning what is called here calm from below, the
term quiet for what is called here calm from above, and the term stable for meaning calmness
in the sense of (2.4). The varying terminology reflects the long and nonlinear history of the
concepts behind, but also the spread interest in them.

• Fact 4. If Φ : X ⇒ Y is Lipschitz l.s.c. at (x̄, ȳ), then its inverse mapping Φ−1 : Y ⇒ X is
hemiregular (alias, semiregular) at (ȳ, x̄), as understood in [7, 17, 21, 33].

• Fact 5. If Φ : X ⇒ Y is calm at (x̄, ȳ), then its inverse mapping Φ−1 : Y ⇒ X is metrically
subregular at (ȳ, x̄) (see [9, Theorem 3H.3], [14, Proposition 2.65]).

• Fact 6. A set-valued mapping Φ : X ⇒ Y between metric spaces is called locally Lipschitz
near x̄ ∈ X, provided that there exist positive constant δ and `, such that

haus (Φ(x1),Φ(x2)) = max{exc (Φ(x1),Φ(x2)) , exc (Φ(x2),Φ(x1))}
≤ `d(x1, x2), ∀x1, x2 ∈ B (x̄, δ) ,(2.6)

where exc (A,B) = supa∈A dist (a,B) stands for the excess of the set A beyond the set B,
with A and B being subsets of the same metric space. The value

Lip Φ(x̄) = inf{` > 0 : ∃δ > 0 for which (2.6) holds}

is called modulus of local Lipschitz continuity of Φ around x̄. It is clear that any mapping Φ,
which is locally Lipschitz near x̄, is also Lipschitz u.s.c. at x̄, with Lipusc Φ(x̄) ≤ Lip Φ(x̄).
This implication can not be reversed (see Example 2.3(ii)).

Whenever inequality in (2.6) remains true with the same ` > 0 for every δ > 0, Φ is said
to be Lipschitz continuous on X, and the related modulus is denoted by Lip Φ(X).

• Fact 7. Calmness for set-valued mappings is always implied by Aubin property (a.k.a.
Lipschitz-likeness), which is a manifestation of the phenomenon of metric regularity playing
a fundamental role in modern variational analysis (see [9, Chapter 3E]).

Valuable historical comments on the genesis, the development and the successful applications of
all the notions in Definition 2.1, from the viewpoint of some among the major contributors to the
existing theory, can be found in [5, 9, 14, 16, 20, 22, 25, 29].
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An aspect that makes impossible any direct comparison of the properties in Definition 2.1(i) and
(ii) with purely topological semicontinuity properties and with the properties based on the Painlevé-
Kuratowski convergence (see [9, Chapter 3A]), when revisited in metric spaces, is the reference to a
point of the graph, instead of to a point in the definition space. The next example reveals that the
notion in Definition 2.1(iii) and the Pompeiu-Hausdorff continuity are independent of each other, as
one expects. According to [9, Chapter 3B] a set-valued mapping between metric spaces Φ : X ⇒ Y
is said to be Pompeiu-Hausdorff continuous at x̄ ∈ dom Φ if

lim
x→x̄

haus (Φ(x),Φ(x̄)) = 0.

Example 2.3. (i) (Pompeiu-Hausdorff continuity without Lipschitz upper semicontinuity) Let X =
Y = R be equipped with its Euclidean metric structure. Define a set-valued mapping Φ : R⇒ R as

Φ(x) = [−
√
|x|,
√
|x|],

and take x̄ = 0. Since it is Φ(0) = {0}, so Φ(0) ⊆ Φ(x) for every x ∈ R, and hence

exc (Φ(0),Φ(x)) = 0, ∀x ∈ R,
whereas it is

exc (Φ(x),Φ(0)) =
√
|x|, ∀x ∈ R,

clearly it holds limx→0 haus (Φ(x),Φ(0)) = 0. Nevertheless, since for any ` > 0 there is no δ > 0
such that the inequality √

|x| ≤ `|x|, ∀x ∈ B (0, δ)

takes place, the inclusion

Φ(x) ⊆ B ({0}, `|x|) = [−`|x|, `|x|], ∀x ∈ B (0, δ) ,

fails to be true.
(ii) (Lipschitz upper semicontinuity without Pompeiu-Hausdorff continuity and local Lipschitz

continuity) Let X and Y be as in the previous case. Define a set-valued mapping Φ : R ⇒ R by
setting

Φ(x) =

 (−∞, 0], if x < 0,
R, if x = 0,
[0,+∞) if x > 0,

and take x̄ = 0. Since B (Φ(0), `|x|) = R for every x ∈ R and ` > 0, the inclusion

Φ(x) ⊆ B (Φ(0), `|x|) = R, ∀x ∈ B (0, δ)

is evidently satisfied for every `, δ > 0. Nonetheless, since it is exc (Φ(0),Φ(x)) = +∞ for every
x ∈ R\{0}, one has limx→0 haus (Φ(x),Φ(0)) = +∞ 6= 0.

Since, whenever x1, x2 ∈ R are such that x1 < 0 < x2, one finds

haus (Φ(x1),Φ(x2)) ≥ sup
y∈(−∞,0]

dist (y, [0,+∞)) = +∞,

note that Φ fails also to be locally Lipschitz near 0.

The analysis of the properties recalled in Definition 2.1 will be performed in the case of the set-
valued mapping S : P ⇒ X, describing the solution stability of problems (SVIp) under parameter
perturbation. Since all of them have a purely metric nature, it seems to be natural, at a first step,
to approach this question “iuxta propria principia”, namely in a metric space setting. A way to
accomplish such a task relies on the excess function that can be associated to a problem (SVIp),
i.e. the functional ϕF : X −→ R ∪ {±∞}, defined as

ϕF (p, x) = exc (F (p, x), C) .

Such an approach enables one to characterize the solution of a (SVIp) problem as a zero of ϕF (p, ·),
according to a successful strategy in addressing different variational problems, even in their metric
space formulation. In fact, modern variational analysis offers a well developed apparatus of tools and
techniques for carrying out a quantitative study of the stability properties of zeroes of functionals.
The remaining part of the present section is devoted to gather all those elements of set-valued and
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variational analysis, which are needed to implement this approach in the subsequent sections. Let
us start with a lemma that links semicontinuity properties of a set-valued mapping Φ : X ⇒ Y with
those of the related excess function ϕΦ : X −→ R ∪ {±∞}.

Lemma 2.4. Let Φ : X ⇒ Y be a set-valued mapping between metric spaces and let C ⊆ Y be a
nonempty closed set. Define ϕΦ : X −→ R ∪ {±∞} as ϕΦ(x) = exc (Φ(x), C).

(i) If Φ is l.s.c. at x̄, then ϕΦ is l.s.c. at the same point.
(ii) If Φ is Lipschitz u.s.c. at x̄, then ϕΦ is calm from above at the same point and

(2.7) clmϕΦ(x̄) ≤ Lipusc Φ(x̄).

In particular, if Φ is Lipschitz u.s.c. at x̄, then ϕΦ is u.s.c. at x̄.

Proof. (i) The proof is given in full detail in [34, Lemma 2.3], upon the assumptions that Y is a
normed space and C is a closed, convex cone of it. A perusal of the argument employed there reveals
that neither the convexity of C nor the linear structure of C are actually exploited in the proof,
relying instead on basic definitions and inequalities valid in any metric space.

(ii) Take an arbitrary ` > Lipusc Φ(x̄). Then, there exists δ > 0 such that inclusion (2.3) holds.
Consequently, by using the triangular inequality for the excess, one obtains

ϕΦ(x) = exc (Φ(x), C) ≤ exc (Φ(x),Φ(x̄)) + exc (Φ(x̄), C) ≤ `d(x, x̄) + ϕΦ(x̄), ∀x ∈ B (x̄, δ) .

This shows that ϕΦ is calm from above at x̄ and that clmϕΦ(x̄) ≤ `. The estimate in (2.7) is true
because of the arbitrariness of ` > Lipusc Φ(x̄).

The last statement in the thesis is a consequence of fact that, as remarked in Fact 3, calmness
from above for a single-real-valued function implies upper semicontinuity. Indeed, passing to the
lim sup in the above inequality, one finds

lim sup
x→x̄

ϕΦ(x) ≤ lim sup
x→x̄

[`d(x, x̄) + ϕΦ(x̄)] = ϕΦ(x̄).

This completes the proof. �

Remark 2.5. In several circumstances, it will be proper to work with an excess function ϕΦ, which
is real valued on X. It is readily seen that this happens if the two following assumptions are taken
on Φ:

(i) dom Φ = X (so that ϕΦ(X) ⊆ [0,+∞]);
(ii) the set-valued mapping Φ is bounded-valued away from the set C, meaning that for every

x ∈ X the set Φ(x)\C is bounded as a subset of a metric space (so that ϕΦ(x) < +∞, for every
x ∈ X).

In order to formalize the differential conditions, upon which Lipschitz semicontinuity properties
of S will be established, the notion of strict outer slope plays a crucial role. Such tool of analysis in
metric spaces can be presented as a regularization of the well-known notion of (strong) slope, which
was introduced in [8]. Given a function ψ : X −→ R∪ {±∞}, defined on a metric space (X, d), and
x̄ ∈ ψ−1(R), the real-extended value

|∇ψ|(x̄) =

 0, if x̄ is a local minimizer for ψ,

lim sup
x→x̄

ψ(x̄)− ψ(x)

d(x, x̄)
, otherwise,

is called (strong) slope of ψ at x̄. The real-extended value

|∇ψ|>(x̄) = lim
ε→0+

inf{|∇ψ|(x) : x ∈ B (x̄, ε) , ψ(x̄) < ψ(x) < ψ(x̄) + ε}

= lim inf
x→x̄

ψ(x)↓ψ(x̄)

|∇ψ|(x)

is called strict outer slope of ψ at x̄.

Example 2.6. (i) It is well known that, whenever a function ψ : X −→ R ∪ {±∞}, defined on a
Banach space, is Fréchet differentiable at x ∈ ψ−1(R), with Fréchet derivative Dψ(x), then its strong
slope at x can be readily calculated as |∇ψ|(x) = ‖Dψ(x)‖ (see, for instance, [13, Chapter 1.2]).
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(ii) In view of the analysis exposed in Section 5, it is useful to mention that for a function
ψ : X −→ R ∪ {±∞} defined in a Banach space, which is l.s.c. and convex, it holds

|∇ψ|(x) = dist (0∗, ∂ψ(x)) , ∀x ∈ ψ−1(R),

where ∂ψ(x) denotes the subdifferential of ψ at x, in the sense of convex analysis, and 0∗ stands for
the null element of the dual space X∗ to X. In such case, the value dist (0∗, ∂ψ(x)) is often referred
to as the subdifferential slope of ψ at x (see, for instance, [10, Theorem 5]).

For further reading on the theme of strong slope and its several variations the reader is refereed
to [14, Chapter 3.1.2], [10] and [25, Chapter 1.6].

3. Conditions for Lipschitz semicontinuity of S

Throughout the current section, the equality domF = P ×X will be kept in force as a standing
assumption on the set-valued mapping F , which will be supposed also to take closed values. Before
discussing the Lipschitz semicontinuity properties of S, it is worthwhile to come back to the equality

(3.1) S(p) = [ϕF (p, ·) ≤ 0] = F (p, ·)+1(C).

A topological consequence of it is that, whenever the set-valued mapping F (p, ·) : X ⇒ Y is supposed
to be l.s.c. on X for every fixed p ∈ P , the set S(p) = X\[ϕF (p, ·) > 0] is closed (possibly, empty),
by virtue of the lower semicontinuity of the functional ϕF (p, ·) (remember Lemma 2.4(i)). Thus,
upon the above condition, S turns out to be closed-valued.

In the statement of the next result, the following partial version of the strict outer slope will be
employed:

|∇xϕF |>(p̄, x̄) = lim
ε→0+

inf{|∇ϕF (p, ·)|(x) : (p, x) ∈ B (p̄, ε)× B (x̄, ε) ,(3.2)

ϕF (p̄, x̄) < ϕF (p, x) < ϕF (p̄, x̄) + ε}
= lim inf

(p,x)→(p̄,x̄)
ϕF (p,x)↓ϕF (p̄,x̄)

|∇ϕF (p, ·)|(x).

Theorem 3.1 (Lipschitz lower semicontinuity of S). With reference to a parameterized set-valued
inclusion (SVIp), let p̄ ∈ P and let x̄ ∈ S(p̄). Suppose that:

(i) (X, d) is metrically complete;
(ii) the mapping F (·, x̄) : P ⇒ Y is Lipschitz u.s.c. at p̄;
(iii) there exists δ > 0 such that, for every p ∈ B (p̄, δ), each mapping F (p, ·) : X ⇒ Y is l.s.c. on

X;
(iv) it holds |∇xϕF |>(p̄, x̄) > 0.

Then, the solution mapping S : P ⇒ X is Lipschitz l.s.c. at (p̄, x̄) and the following estimate holds

(3.3) LiplscS(p̄, x̄) ≤ LipuscF (·, x̄)(p̄)

|∇xϕF |>(p̄, x̄)
.

Proof. By hypothesis (iv), it is possible to fix the value of σ in such a way that

|∇xϕF |>(p̄, x̄) > σ > 0.

According to the definition of strict outer slope, the above inequality means that there exists η > 0
such that for every ε ∈ (0, η) it holds

(3.4) |∇ϕF (p, ·)|(x) > σ, ∀(p, x) ∈ B (p̄, ε)× B (x̄, ε) : 0 < ϕF (p, x) < ε.

Without any loss of generality, it is possible to assume that η < δ, where δ is as in hypothesis (iii).
In the light of Lemma 2.4(ii), from the hypothesis (ii) one deduces that the function p 7→ ϕF (p, x̄)
is calm from above at p̄, with clmϕF (·, x̄)(p̄) ≤ LipuscF (·, x̄)(p̄). Thus, taken an arbitrary ` >
LipuscF (·, x̄)(p̄), there exists δ` > 0 such that

(3.5) ϕF (p, x̄) ≤ ϕF (p̄, x̄) + `d(p, p̄) = `d(p, p̄), ∀p ∈ B (p̄, δ`) .
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Notice that, by reducing its value if needed, it is possible to pick δ` in such a way that

(3.6) δ` < min

{
ση

2(`+ 1)
,

η

2(`+ 1)

}
.

With such a choice, one has, in particular, δ` <
η
2 . Now, fix an arbitrary p ∈ B (p̄, δ`) \{p̄} and

consider the function ϕF (p, ·) : X −→ [0,+∞]. Since it is δ` < η < δ, then by virtue of Lemma
2.4(i) and the hypothesis (iii), this function is l.s.c. on X. It is clearly bounded from below.
Moreover, by taking into account inequality (3.5), one has

ϕF (p, x̄) ≤ inf
x∈X

ϕF (p, x) + `d(p, p̄).

By the Ekeland variational principle, corresponding to

λ =
`d(p, p̄)

σ
,

there exists xλ ∈ X with the following properties:

(3.7) ϕF (p, xλ) ≤ ϕF (p, x̄) ≤ `d(p, p̄),

(3.8) d(xλ, x̄) ≤ λ,

and

(3.9) ϕF (p, xλ) < ϕF (p, x) + σd(x, xλ), ∀x ∈ X\{xλ}.

Under the current assumptions, the above properties allow one to show that it is ϕF (p, xλ) = 0.
Indeed, suppose, ab absurdo, that it is ϕF (p, xλ) > 0. As a consequence of inequality (3.9), one has

ϕF (p, xλ)− ϕF (p, x)

d(x, xλ)
< σ, ∀x ∈ X\{xλ},

whence one obtains

(3.10) |∇ϕF (p, ·)|(xλ) = lim
r→0+

sup
x∈B(xλ,r)\{xλ}

ϕF (p, xλ)− ϕF (p, x)

d(x, xλ)
≤ σ.

On the other hand, by recalling inequality (3.6), one sees that

(3.11) d(p, p̄) ≤ δ` <
η

2
,

and, on account of inequality (3.8),

(3.12) d(xλ, x̄) ≤ `d(p, p̄)

σ
<
`

σ
· ση

2(`+ 1)
<
η

2
.

Besides, because of inequalities (3.6) and (3.7), it is true that

(3.13) ϕF (p, xλ) ≤ `δ` < `
η

2(`+ 1)
<
η

2
.

Inequality (3.10), along with inequalities (3.11), (3.12), and (3.13), contradicts (3.4) if taking ε = η/2.
The above argument proves that it is actually ϕF (p, xλ) = 0, which means that F (p, xλ) ⊆ C, and

hence xλ ∈ S(p). Since it is d(xλ, x̄) ≤ `d(p,p̄)
σ , it results in

S(p) ∩ B

(
x̄,
`d(p, p̄)

σ

)
6= ∅.

By arbitrariness of p ∈ B (p̄, δ`) \{p̄}, the last relation amounts to say that S is Lipschitz l.s.c. at
(p̄, x̄), and it holds

LiplscS(p̄, x̄) ≤ `

σ
.

The arbitrariness of ` > LipuscF (·, x̄)(p̄) and of σ < |∇xϕF |>(p̄, x̄) enables one to achieve the
estimate in the thesis, thereby completing the proof. �
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The reader should notice that Theorem 3.1 provides a condition for the local solvability of prob-
lems (SVIp) under parameter perturbation. Furthermore, through the estimate (3.3), it affords
quantitative information on the stability of the solution mapping. Unfortunately, as happens for
many implicit function theorems, the differential condition upon which it can be established (hy-
pothesis (iv) in Theorem 3.1) is only sufficient. This fact is illustrated by the next example.

Example 3.2. Let P = X = Y = R be endowed with its usual Euclidean metric structure, let
C = [0,+∞) and let F : R× R⇒ R be defined by

F (p, x) = [p3 + x3,+∞).

Since F (p, x) ⊆ C iff p3 +x3 = (p+x)(p2−px+x2) ≥ 0, in this case the solution mapping S : R⇒ R
associated with the inclusion problem takes the simple form

S(p) = [−p,+∞), ∀p ∈ R.

In particular, one sees that, letting p̄ = x̄ = 0, it is 0 ∈ S(0). Since F is the epigraphical set-
valued mapping related to the continuous function (p, x) 7→ p3 + x3, it is l.s.c. on R × R. As
a consequence, there exists δ > 0 such that each set-valued mapping x  F (p, x) is l.s.c. on
R, for every p ∈ B (0, δ). To check the Lipschitz lower semicontinuity of the set-valued mapping
p F (p, 0) = [p3,+∞) mentioned in the hypothesis (ii) of Theorem 3.1, observe that

F (p, 0) ⊆ F (0, 0) = [0,+∞), ∀p ≥ 0.

For any p ∈ (0, 1), as it is p3 > −|p|, one finds

F (p, 0) = [p3,+∞) ⊆ [−|p|,+∞) = B (F (0, 0), |p|) .

Thus, the set-valued mapping p F (p, 0) = [p3,+∞) is Lipschitz u.s.c. at 0, with LipuscF (·, 0)(0) ≤
1. It is readily seen that the function ϕF : R× R −→ R is given in the present circumstance by

ϕF (p, x) = exc
(
[p3 + x3,+∞), [0,+∞)

)
=

{
0, if (p, x) ∈ R× R : p+ x ≥ 0,
−(p3 + x3), if (p, x) ∈ R× R : p+ x < 0.

Recalling the strong slope estimate remarked in Example 2.6(i), one has

|∇ϕF (p, ·)|(x) =

∣∣∣∣ ∂∂xϕF (p, x)

∣∣∣∣ =

{
0, if (p, x) ∈ R× R : p+ x > 0,
3x2, if (p, x) ∈ R× R : p+ x < 0.

Consequently, according to the definition of strict outer slope, one finds

|∇xϕF |>(0, 0) = 0,

because points (p, x) such that p+ x < 0 and x = 0 (hence such that |∇ϕF |(p, x) = 0) can be found
in each set ((−ε, ε) × (−ε, ε)) ∩ {(p, x) ∈ R × R : 0 < −(p3 + x3) < ε}, with ε > 0. This shows
that hypothesis (iv) of Theorem 3.1 is not satisfied. Nonetheless, the mapping S turns out to be
Lipschitz l.s.c. at (0, 0). Indeed, directly from the expression of S, one sees that

S(p) ∩ B (0, |p|) 6= ∅, ∀p ∈ R,

so LiplscS(0, 0) ≤ 1.

Theorem 3.3 (Calmness of S). With reference to a parameterized set-valued inclusion (SVIp), let
p̄ ∈ P and let x̄ ∈ S(p̄). Suppose that:

(i) (X, d) is metrically complete;
(ii) the set-valued mapping F (p̄, ·) : X ⇒ Y is l.s.c. on X;
(iii) the mapping F is locally Lipschitz near (p̄, x̄);

(iv) it holds |∇ϕF (p̄, ·)|>(x̄) > 0.
Then, the solution mapping S : P ⇒ X is calm at (p̄, x̄) and the following estimate holds

clmS(p̄, x̄) ≤ LipF (p̄, x̄)

|∇ϕF (p̄, ·)|>(x̄)
.
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Proof. According to hypothesis (iii), taken an arbitrary ` > LipF (p̄, x̄) there must exist δ > 0 such
that

haus (F (p1, x1), F (p2, x2)) ≤ `max{d(p1, p2), d(x1, x2)},(3.14)

∀(p1, x1), (p2, x2) ∈ B (p̄, δ)× B (x̄, δ) .

According to hypothesis (iv), taken any σ > 0 such that

|∇ϕF (p̄, ·)|>(x̄) > σ > 0,

there exists η > 0 such that, for every ε ∈ (0, η), it holds

(3.15) |∇ϕF (p̄, ·)|(x) > σ, ∀x ∈ B (x̄, ε) , 0 < ϕF (p̄, x) < ε.

Let us take positive reals δ∗ and ζ in such a way that

(3.16) δ∗ < min

{
δ,

η

2(`+ 1)
,

ησ

4(`+ 1)

}
and ζ < min

{
δ,
η

4

}
.

Now, fix an arbitrary p ∈ B (p̄, δ∗) \{p̄}. If S(p) ∩ B (x̄, ζ) = ∅, then nothing is left to prove.
Otherwise, take an arbitrary xp ∈ S(p)∩B (x̄, ζ). Consider the function ϕ(p̄, ·) : X −→ [0,+∞]. By
virtue of hypothesis (ii), Lemma 2.4(i) ensures that this function is l.s.c. on X. It is clearly bounded
from below. Since d(xp, x̄) ≤ ζ < δ and d(p, p̄) ≤ δ∗ < δ, from inequality (3.14) and the triangular
inequality for the excess, it follows

ϕF (p̄, xp) = exc (F (p̄, xp), C) ≤ exc (F (p̄, xp), F (p, xp)) + exc (F (p, xp), C) ≤ `d(p, p̄).

Thus, it is
ϕF (p̄, xp) ≤ inf

x∈X
ϕF (p̄, x) + `d(p, p̄) = `d(p, p̄).

By applying the Ekeland variational principle, one can assert that, corresponding to the value

λ =
`d(p, p̄)

σ
,

there exists xλ ∈ X, satisfying the below properties:

(3.17) ϕF (p̄, xλ) ≤ ϕF (p̄, xp),

(3.18) d(xλ, xp) ≤ λ,
and

(3.19) ϕF (p̄, xλ) < ϕF (p̄, x) + σd(x, xλ), ∀x ∈ X\{xλ}.
The inequality (3.19) implies

ϕF (p̄, xλ)− ϕF (p̄, x)

d(x, xλ)
< σ, ∀x ∈ X\{xλ},

wherefrom it follows
|∇ϕF (p̄, ·)|(xλ) ≤ σ.

The last inequality entails that it must be ϕF (p̄, xλ) = 0. Indeed, if supposing ϕF (p̄, xλ) > 0, by
recalling the choice of δ∗ and ζ in (3.16), along with inequality (3.17), one obtains

ϕF (p̄, xλ) ≤ `d(p, p̄) <
η

2
and

d(xλ, x̄) ≤ d(xλ, xp) + d(xp, x̄) ≤ λ+ ζ ≤ `d(p, p̄)

σ
+ ζ <

η

4
+
η

4
=
η

2
.

Thus, inequality (3.15) turns out to be contradicted with ε = η/2. The fact that it is ϕF (p̄, xλ) = 0
implies xλ ∈ S(p̄). By taking into account inequality (3.18), one finds

dist (xp,S(p̄)) ≤ d(xp, xλ) ≤ `d(p, p̄)

σ
,

which amounts to say that xp ∈ B (S(p̄), `d(p, p̄)/σ). By arbitrariness of xp ∈ S(p) ∩ B (x̄, ζ) and
p̄ ∈ B (p̄, δ∗) \{p̄}, the above argument shows that S is calm at (p̄, x̄), with clmS(p̄, x̄) ≤ `/σ. The
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arbitrariness of ` > LipF (p̄, x̄) and of σ < |∇ϕF (p̄, ·)|>(x̄) leads to achieve the estimate in the
thesis, thereby completing the proof. �

In the same vein of Example 3.2, the next counterexample shows that condition (iv) in Theorem
3.3 is far from being necessary.

Example 3.4. Let us consider the same inclusion problem introduced in Example 3.2. As a contin-
uously differentiable function, (p, x) 7→ p3 + x3 is strictly differentiable at (p̄, x̄) = (0, 0), and hence
locally Lipschitz near that point. Consequently, F is locally Lipschitz near (0, 0). Since it is

ϕF (0, x) =

{
0, if x ≥ 0,
−x3, if x < 0,

it results in

|∇ϕF (0, ·)|>(0) = lim
ε→0+

inf{|∇ϕF (0, ·)|(x) : x ∈ [−ε, ε], 0 < ϕF (0, x) < ε}

= lim
ε→0+

inf{3x2 : x ∈ [−ε, 0)} = 0.

Thus, hypothesis (iv) of Theorem 3.3 fails to be fulfilled. In spite of such a failure, the solution
mapping S : R ⇒ R associated with the inclusion problem is not only calm at (0, 0), but even
Lipschitz continuous on R.

As a further comment to the so far exposed results, it is to be noted that the differential conditions
appearing in Theorem 3.1 and in Theorem 3.3 are different. Indeed, whereas both of them are built
by means of the partial strong slope with respect to the variable x, the condition (iv) in Theorem
3.1 considers the lim infε→0+ regularization, with both p and x varying near p̄ and x̄, respectively.
In contrast to this, condition (iv) in Theorem 3.3 requires only x to vary near x̄, while it is kept
p = p̄.

In view of the formulation of the last result of this section, given F : P ×X ⇒ Y and p̄ ∈ P , let
us define the values

τp̄ = inf{|∇ϕF (p̄, ·)|(x) : x ∈ X\S(p̄)}
and

Lipp F (p̄, X) = inf{` > 0 : ∃δ > 0 : sup
x∈X

haus (F (p1, x), F (p1, x)) ≤ `d(p1, p2),

∀p1, p2 ∈ B (p̄, δ)}.

Theorem 3.5 (Lipschitz upper semicontinuity of S). With reference to a parameterized set-valued
inclusion (SVIp), let p̄ ∈ P , with S(p̄) 6= ∅. Suppose that:

(i) (X, d) is metrically complete;
(ii) the set-valued mapping F (p̄, ·) : X ⇒ Y is l.s.c. on X;
(iii) the mapping F is locally Lipschitz near p̄ with respect to p, uniformly in x ∈ X;
(iv) it is τp̄ > 0.

Then, the solution mapping S : P ⇒ X is Lipschitz u.s.c. at p̄ and the following estimate holds

LipuscS(p̄) ≤ Lipp F (p̄, X)

τp̄
.

Proof. By virtue of hypothesis (iv), it is possible to pick any τ ∈ (0, τp̄). According to hypothesis
(iii), taken any positive ` > Lipp F (p̄, X), there exists δ > 0 such that

haus (F (p1, x), F (p2, x)) ≤ `d(p1, p2), ∀p1, p2 ∈ B (p̄, δ) , ∀x ∈ X.(3.20)

Fix an arbitrary p ∈ B (p̄, δ) \{p̄}. If S(p) = ∅, the inclusion

S(p) ⊆ B

(
S(p̄),

`

τ
d(p, p̄)

)
is trivially satisfied. Otherwise, take an arbitrary xp ∈ S(p). Consider the function ϕF (p̄, ·) : X −→
[0,+∞]. By virtue of hypothesis (ii), Lemma 2.4(i) ensures that this function is l.s.c. on X. It is
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clearly bounded from below. Besides, since it is F (p, xp) ⊆ C, on account of inequality (3.20) one
obtains

ϕF (p̄, xp) = exc (F (p̄, xp), C) ≤ exc (F (p̄, xp), F (p, xp)) + exc (F (p, xp), C) ≤ `d(p, p̄),

so that ϕF (p̄, xp) ≤ infx∈X ϕF (p̄, x) + `d(p, p̄). By applying the Ekeland variational principle, with

λ =
`d(p, p̄)

τ

and proceeding along the same lines as in the proof of Theorem 3.3 with obvious adaptations, one
can reach immediately all assertions in the thesis. �

As a comment to Theorem 3.5, let us note that, since it is

|∇ϕF (p̄, ·)|>(x̄) ≥ τp̄,
then condition τp̄ > 0 is stricter than condition (iv) in Theorem 3.3. Consistently, the thesis of
Theorem 3.5 guarantees a stronger property for S than that of Theorem 3.3, in consideration of
Fact 2.

Remark 3.6. As mentioned, the analysis approach pursued for achieving the results in this section
reveals connections with the study of local error bound properties. Let us recall that, for an extended
real-valued function ψ : X −→ R ∪ {+∞} defined on a metric space, the error bound property is
defined by the inequality

(3.21) dist (x, [ψ ≤ 0]) ≤ γ[ψ(x)]+,

where [r]+ = max{r, 0}, with r ∈ R ∪ {+∞}. More precisely, ψ is said to admit a local error bound
at x̄ ∈ ψ−1(0) if there exist γ ≥ 0 and δ > 0 such that inequality (3.21) holds for every x ∈ B (x̄, δ).
Since the values taken by S are reformulated as sublevel sets of ϕF in (3.1), the excess function ϕF is
the key element to catch the aforementioned connection, playing the role of ψ in (3.21). While this
connection leaves open the possibility of mutual benefits for both the topics in future investigations,
to the best of the author’s knowledge none of the existing error bound conditions can be applied
in the current context, because of the peculiar form taken by ϕF . Indeed, if it is true that a well
developed theory of error bounds for function of the form

ψ(x) = sup
t∈T

ψt(x)

already exists (see, for instance, [18]), it requires the index set T to be a fixed, compact Hausdorff
space, whereas in the definition of ϕF the supremum must be taken over a set not necessarily compact
and depending on x.

4. Consequences on the value analysis in parametric optimization

Let ϑ : P ×X −→ R be a given function defined on the Cartesian product of two metric spaces
P and X, and let (SVIp) be a given parameterized class of set-valued inclusions. In the current
section, some consequences of the findings exposed in Section 3 will be presented, with reference to
the analysis of the parametric class of constrained optimization problems defined by the aforegiven
data, namely

(Pp) minϑ(p, x) with x ∈ X subject to F (p, x) ⊆ C.
The feasible region of each problem (Pp) is given by the set-valued mapping S : P ⇒ X, defined
as in (1.1). More precisely, the investigations will focus on the calmness properties of the optimal
value (alias, performance) function valP : P −→ R ∪ {±∞}, which can be associated with (Pp), i.e.

valP(p) = inf
x∈S(p)

ϑ(p, x).

A further element appearing in what follows is the solution mapping Argmin : P ⇒ X associated
with (Pp), i.e.

Argmin(p) = {x ∈ S(p) : ϑ(p, x) ≤ valP(p)}.
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As one expects, in consideration of the broad spectrum of applications promised by a similar topic,
a wide literature flourished on that subject, yielding a large amount of results, often tailored on the
base of the problem format. One of the key reference in the value analysis, for optimization problems
with an abstract feasible region formalized by a set-valued mapping depending on a parameter, is the
so-called maximum Berge’s theorem (see [1, Theorem 17.31]), which provides a sufficient condition
for the continuity of the optimal value function in a pure topological setting. Advances in this
direction were obtained with [9, Theorem 3B.5]. Here a result about calmness of valP is proposed,
which is specific for the problem format (Pp).

As in Section 3, throughout the current section it is assumed that domF = P ×X. Besides, as a
Cartesian product metric space, P ×X will be supposed to be equipped with the max distance. By
exploiting the same arguments as in the proof of [30, Proposition 3.2] (which makes only assumptions
on ϑ and S, independently of how the constraints defining S are formalized), one can establish the
following result, where Lipschitz lower semicontinuity plays a crucial role.

Proposition 4.1 (Calmness from above of valP). With reference to a parametric class of problem
(Pp), let p̄ ∈ P and let x̄ ∈ Argmin(p̄). Suppose that:

(i) (X, d) is metrically complete;
(ii) the mapping F (·, x̄) : P ⇒ Y is Lipschitz u.s.c. at p̄;
(iii) there exists δ > 0 such that, for every p ∈ B (p̄, δ), each set-valued mapping F (p, ·) : X ⇒ Y

is l.s.c. on X;
(iv) it holds |∇xϕF |>(p̄, x̄) > 0;
(v) function ϑ : P ×X −→ R is calm from above at (p̄, x̄).

Then, function valP : P −→ R ∪ {±∞} is calm from above at p̄ and

(4.1) clm valP(p̄) ≤ clmϑ(p̄, x̄) ·max

{
1,

LipuscF (·, x̄)(p̄)

|∇xϕF |>(p̄, x̄)

}
.

Proof. By hypothesis (v), fixed any κ > clmϑ(p̄, x̄), there exists δ > 0 such that

(4.2) ϑ(p, x)− ϑ(p̄, x̄) ≤ κmax{d(p, p̄), d(x, x̄)}, ∀(p, x) ∈ B (p̄, δ)× B (x̄, δ) .

Under hypotheses (i)-(iv), Theorem 3.1 ensures that S is Lipschitz l.s.c. at (p̄, x̄), with modulus

satisfying inequality (3.3). Therefore, fixed any ` > LipuscF (·, x̄)(p̄)/|∇xϕF |>(p̄, x̄), there exists
ζ > 0 such that

S(p) ∩ B (x̄, `d(p, p̄)) 6= ∅, ∀p ∈ B (p̄, ζ) .

This means that, for any p ∈ B (p̄, ζ), there must exist xp ∈ S(p) such that d(xp, x̄) ≤ `d(p, p̄).
Without loss of generality, one can assume ζ < min{δ, δ/`}. Consequently, one has xp ∈ B (x̄, δ),
and hence (p, xp) ∈ B (p̄, δ)× B (x̄, δ). This fact allows one to invoke inequality (4.2). Therefore, it
follows

valP(p)− valP(p̄)

d(p, p̄)
≤ ϑ(p, xp)− ϑ(p̄, x̄)

d(p, p̄)
≤ κ · max{d(p, p̄), d(xp, x̄)}

d(p, p̄)

≤ κ ·max{1, `}, ∀p ∈ B (p̄, ζ) \{p̄}.

The above inequality chain allows one to obtain

lim sup
p→p̄

valP(p)− valP(p̄)

d(p, p̄)
≤ κ ·max{1, `} < +∞.

This shows that the function valP is calm from above at p̄, with clm valP(p̄) ≤ κ · max{1, `}. To
conclude the proof, the inequality (4.1) can be achieved by arbitrariness of κ > clmϑ(p̄, x̄) and of

` > LipuscF (·, x̄)(p̄)/|∇xϕF |>(p̄, x̄). �

The counterpart of the above result for the calmness from below of valP is established next by
exploiting the Lipschitz upper semicontinuity property of S.
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Proposition 4.2 (Calmness from below of valP). With reference to a parametric class of problem
(Pp), let p̄ ∈ P and let x̄ ∈ Argmin(p̄). Suppose that:

(i) (X, d) is metrically complete;
(ii) the set-valued mapping F (p̄, ·) : X ⇒ Y is l.s.c. on X;
(iii) the mapping F is locally Lipschitz near p̄ with respect to p, uniformly in x ∈ X;
(iv) it is τp̄ > 0;
(v) function ϑ : P ×X −→ R is Lipschitz continuous on P ×X.

Then, function valP : P −→ R ∪ {±∞} is calm from below at p̄ and

(4.3) clm valP(p̄) ≤ Lipϑ(P,X) ·max

{
1,

Lipp F (p̄, X)

τp̄

}
.

Proof. By hypothesis (v), fixed any κ > Lipϑ(P,X), one has

(4.4) |ϑ(p1, x1)− ϑ(p2, x2)| ≤ κ ·max{d(p1, p2), d(x1, x2)}, ∀(p1, x1), (p2, x2) ∈ P ×X.
Since under hypotheses (i)-(iv) one can invoke Theorem 3.5, the set-valued mapping S turns out
to be Lipschitz u.s.c. at p̄, with LipuscS(p̄) ≤ Lipp F (p̄, X)/τp̄. Accordingly, fixed an arbitrary
` > Lipp F (p̄, X)/τp̄, there exists δ > 0 such that

dist (x,S(p̄)) ≤ `d(p, p̄), ∀p ∈ B (p̄, δ) .

The last inequality means that fixed ε > 0, for every x ∈ S(p) there exists zx ∈ S(p̄) such that

d(zx, x) ≤ (`+ ε)d(p, p̄), ∀p ∈ B (p̄, δ) .

By using inequality (4.4), one finds

ϑ(p, x) ≥ ϑ(p̄, zx)− κ ·max{d(p, p̄), d(x, zx)}
≥ ϑ(p̄, x̄)− κ ·max{1, (`+ ε)}d(p, p̄), ∀x ∈ S(p), ∀p ∈ B (p̄, δ) ,

whence it follows

valP(p)− valP(p̄)

d(p, p̄)
=

infx∈S(p) ϑ(p, x)− ϑ(p̄, x̄)

d(p, p̄)

≥ −κ ·max{1, (`+ ε)} > −∞, ∀p ∈ B (p̄, δ) \{p̄}.
By passing to the lim inf as p→ p̄, the last inequality shows that function valP is calm from below
at p̄ and clm valP(p̄) ≤ κ ·max{1, (`+ ε)}. The arbitrariness of `, ε > 0 and κ > Lipϑ(P,X) allows
one to achieve the estimate in (4.3), thereby completing the proof. �

By combining the previous results of this section, the following condition ensuring the calmness
of valP can be achieved.

Theorem 4.3 (Calmness of valP). With reference to a parametric class of problem (Pp), let p̄ ∈ P
and let x̄ ∈ Argmin(p̄). Suppose that:

(i) (X, d) is metrically complete;
(ii) F is locally Lipschitz near p̄ with respect to p, uniformly in x ∈ X;
(iii) there exists δ > 0 such that, for every p ∈ B (p̄, δ), each F (p, ·) : X ⇒ Y is l.s.c. on X;

(iv) it is min{|∇xϕF |>(p̄, x̄), τp̄} > 0;
(v) function ϑ : P ×X −→ R is Lipschitz continuous on P ×X.

Then, function valP : P −→ R ∪ {±∞} is calm at p̄ and it holds

(4.5) clm valP(p̄) ≤ Lipϑ(P,X) ·max

{
1,

Lipp F (p̄, X)

min{|∇xϕF |>(p̄, x̄), τp̄}

}
.

Proof. In order to prove that valP is calm at p̄ within the proposed approach, one needs to check that,
under the current hypotheses (i)-(v), it is possible to apply both Proposition 4.2 and Proposition
4.1. To this aim, let us start with observing that, if the set-valued mapping F is locally Lipschitz
near p̄ with respect to p,uniformly in x ∈ X, then, in particular, the set-valued mapping p F (p, x̄)
is Lipschitz u.s.c. at p̄, with LipuscF (·, x̄)(p̄) ≤ Lipp F (p̄, X) (remember Fact 6). Secondly, observe
that hypothesis (iii) entails, in particular, that the set-valued mapping x  F (p̄, x) is l.s.c. on X.
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Hypothesis (iv) clearly implies that the condition (iv) of both Proposition 4.2 and Proposition 4.1
is fulfilled. Finally, the Lipschitz continuity of ϑ on P ×X evidently forces the calmness from above
of ϑ at (p̄, x̄), with clmϑ(p̄, x̄) ≤ Lipϑ(P,X). Thus, according to Proposition 4.1, corresponding to

(4.6) `1 > Lipϑ(P,X) ·max

{
1,

Lipp F (p̄, X)

|∇xϕF |>(p̄, x̄)

}
,

there exists δ1 > 0 such that

valP(p)− valP(p̄) ≤ `1d(p, p̄), ∀p ∈ B (p̄, δ1) .

According to Proposition 4.2, corresponding to

(4.7) `2 > Lipϑ(P,X) ·max

{
1,

Lipp F (p̄, X)

τp̄

}
there exists δ2 > 0 such that

valP(p)− valP(p̄) ≥ −`2d(p, p̄), ∀p ∈ B (p̄, δ2) .

Therefore, by setting δ0 = min{δ1, δ2} and `0 = max{`1, `2}, one can assert that

|valP(p)− valP(p̄)| ≤ `0d(p, p̄), ∀p ∈ B (p̄, δ0) .

This shows that valP is calm at p̄ and that clm valP(p̄) ≤ `0. Since `1 and `2 can be chosen to be
arbitrarily closed to the right term in inequalities (4.6) and (4.7), respectively, one can conclude that
inequality (4.5) holds. �

5. Some special conditions in Banach spaces

Even though the differential conditions appearing in Theorem 3.1, Theorem 3.3 and Theorem 3.5
have a transparent meaning in metric spaces, they need to be further worked in view of effective
employments in more structured settings. The aim of the present section is therefore to provide
useful (that is, from below) estimates for the three constants

(5.1) |∇xϕF |>(p̄, x̄), |∇ϕF (p̄, ·)|>(x̄), and τp̄,

which are directly based on the problem data (F and C). A similar question already arose in the
study of quantitative stability properties of the solution set to traditional generalized equations
and has been solved with the aid of (sometimes, ad hoc) involved constructions of nonsmooth
analysis, such as graphical derivatives, prederivatives, coderivatives, estimators (see, for instance,
[4, 5, 9, 12, 14, 16, 20, 22]). Because of the expression of ϕF , existing results suitable for traditional
generalized equations seem not be immediately exploitable within the proposed approach to the
problem at the issue. What follows must be regarded as a first attempt to address the question,
starting with basic tools of convex analysis. It is reasonable to believe that the employment of more
involved constructions of nonsmooth analysis, already available, might enlarge the class of set-valued
inclusions, for which useful estimates can be established, and afford deeper insights into this topic.

Definition 5.1 (Concave mapping). A set-valued mapping Φ : X ⇒ Y between Banach spaces is
said to be concave on X if it holds

(5.2) Φ(tx1 + (1− t)x2) ⊆ tΦ(x1) + (1− t)Φ(x2), ∀x1, x2 ∈ X, ∀t ∈ [0, 1].

A generalization of the notion of concavity for set-valued mappings introduced in Definition 5.1
has been already considered, in connection with set-valued inclusions, in [6].

Example 5.2 (Fan). After [12], a set-valued mapping Φ : X⇒ Y between Banach spaces is said to
be a fan if all the following conditions are fulfilled:

(i) 0 ∈ Φ(0);
(ii) Φ(tx) = tΦ(x), ∀x ∈ X and ∀t > 0;
(iii) Φ takes convex values;
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(iv) Φ(x1 + x2) ⊆ Φ(x1) + Φ(x2), ∀x1, x2 ∈ X.
By virtue of conditions (ii) and (iv), it is clear that any fan is a positively homogeneous concave
set-valued mapping. As a particular example of fan, one can consider set-valued mappings which
are generated by families of linear bounded operators. More precisely, let G ⊆ L(X,Y) be a convex
set weakly closed with respect to the weak topology on L(X,Y). Define

ΦG(x) = {y ∈ Y : y = Λx, Λ ∈ G}.

The set-valued mapping ΦG : X ⇒ Y is known to be a particular example of fan. Note, however,
that there are fans, which can not be generated by any family of linear bounded operators. The
set-valued mapping Φ considered in Example 2.3(ii) provides an instance of such a circumstance.

For other examples of concave set-valued mappings see [35].
The next lemma shows that the assumption of concavity on a set-valued mapping Φ entails

convenient properties of the related excess function ϕΦ, which allow one to carry out the approach
here proposed by tools of convex analysis.

Lemma 5.3. Let Φ : X⇒ Y be a set-valued mapping between Banach spaces and let C ⊆ Y a closed,
convex cone. Then,

(i) if Φ is positively homogeneous on X, so is ϕΦ;
(ii) if Φ is concave on X, ϕΦ is convex;
(iii) if Φ is superlinear (positively homogeneous and concave) on X, ϕΦ is sublinear.

Proof. First of all, recall that the function y 7→ dist (y, C), as a distance function from a convex
cone, is sublinear on Y.

(i) One has

ϕΦ(tx) = sup
y∈Φ(tx)

dist (y, C) = sup
y∈Φ(x)

dist (ty, C) = sup
y∈Φ(x)

tdist (y, C)

= tϕΦ(x), ∀t > 0, ∀x ∈ dom Φ.

(ii) Fix x1, x2 ∈ dom Φ and t ∈ [0, 1]. By using the concavity of Φ and the sublinearity of function
y 7→ dist (y, C), one obtains

ϕΦ(tx1 + (1− t)x2) = sup
y∈Φ(tx1+(1−t)x2)

dist (y, C) ≤ sup
y∈tΦ(x1)+(1−t)Φ(x2)

dist (y, C)

= sup
y1∈Φ(x1), y2∈Φ(x2)

dist (ty1 + (1− t)y2, C)

≤ sup
y1∈Φ(x1), y2∈Φ(x2)

[tdist (y1, C) + (1− t)dist (y2, C)]

= t sup
y1∈Φ(x1)

dist (y1, C) + (1− t) sup
y2∈Φ(x2)

dist (y2, C)

= tϕΦ(x1) + (1− t)ϕΦ(x2).

(iii) This assertion is a straightforward consequence of the above assertions (i) and (ii). �

A quantitative behaviour, which can be regarded as a counterpart of the metric decrease property
for set-valued mappings taking values in a partially ordered Banach space, is captured by the next
definition.

Definition 5.4 (Metric C-increase). Given a closed, convex cone C ⊆ Y, a set-valued mapping
Φ : X⇒ Y between Banach spaces is said to be

(i) metrically C-increasing on X if there exists a constant α > 1 such that

(5.3) ∀x ∈ X, ∀r > 0, ∃u ∈ B (x, r) : B (Φ(u), αr) ⊆ B (Φ(x) + C, r) ;

the quantity

inc Φ = sup{α > 1 : inclusion (5.3) holds}
is called exact bound of metric C-increase of Φ on X.
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(ii) metrically C-increasing around x̄ ∈ dom Φ if there exist δ > 0 and α > 1 such that

(5.4) ∀x ∈ B (x̄, δ) , ∀r ∈ (0, δ), ∃u ∈ B (x, r) : B (Φ(u), αr) ⊆ B (Φ(x) + C, r) ;

the quantity

inc Φ(x̄) = sup{α > 1 : ∃δ > 0 such that inclusion (5.4) holds}
is called exact bound of metric C-increase of Φ around x̄.

Let Φ : P × X ⇒ Y be a set-valued mapping, defined on the product of a metric space P with a
Banach space X, and taking values in a Banach space Y, and let (p̄, x̄) ∈ P × X. Φ is said to be

(iii) metrically C-increasing with respect to x around (p̄, x̄), uniformly in p, if there exist δ > 0
and α > 1 such that

(5.5) ∀(p, x) ∈ B (p̄, δ)× B (x̄, δ) , ∀r ∈ (0, δ), ∃u ∈ B (x, r) : B (Φ(p, u), αr) ⊆ B (Φ(p, x) + C, r) ;

the quantity

inc Φx(p̄, x̄) = sup{α > 1 : inclusion (5.5) holds}
is called exact uniform bound of metric C-increase of Φ near (p̄, x̄).

The above properties have been already used in connection with the study of error bounds for set-
valued inclusions in [34], where several examples of the occurrence of the metric C-increase property
in global and local form can be found.

Remark 5.5. In the proof of the next proposition, the following facts concerning properties of the
excess and the support function will be employed. Let S ⊆ Y be a nonempty subset, let C ⊆ Y be
a closed, convex cone, and let r > 0. Then, the following equalities hold:

(i) exc (S + C,C) = exc (S,C) (see [34, Remark 2.1]);
(ii) if exc (S,C) > 0, then exc (B (S, r) , C) = exc (S,C) + r (see [34, Lemma 2.2]).

Let S ⊆ X∗ be a closed, convex set, and let ς(·, S) : X −→ R ∪ {±∞} denote its support function,
i.e. ς(x, S) = supx∗∈S〈x∗, x〉, where 〈·, ·〉 denotes the duality pairing the space X and its dual X∗.
Then, 0∗ ∈ S iff [ς(·, S) ≥ 0] = X and, more precisely, the following distance estimate holds

(5.6) dist (0∗, S) ≥ − inf
u∈B

ς(u, S)

(see, for instance, [35, Remark 2.1]).

The next proposition explains the role of the property introduced in Definition 5.4 within the
present approach. Roughly speaking, it provides a method for measuring the violation of the set-
valued inclusion Φ(x) ⊆ C near a solution x̄ ∈ Φ+1(C). This is done by tools of convex analysis both
in the primal space (via the directional derivative of ϕΦ) and in the dual space (via the subdifferential
of ϕΦ). Recall that, given a convex function ψ : X −→ R∪ {±∞} and a point x ∈ ψ−1(R) the value

ψ′(x; v) = lim
t→0+

ψ(x+ tv)− ψ(x)

t
,

is called directional derivative of ψ at x, in the direction v ∈ X.

Proposition 5.6. Let Φ : X ⇒ Y be a set-valued mapping between Banach spaces, let C ⊆ Y a
closed, convex cone and let x̄ ∈ X such that Φ(x̄) ⊆ C. Suppose that:

(i) Φ is l.s.c., concave and bounded-valued away from C on X;
(ii) Φ is metrically C-increasing around x̄, with exact bound inc Φ(x̄).

Then, there exists η > 0 such that

(5.7) inf
u∈B

ϕ′Φ(x;u) ≤ 1− inc Φ(x̄), ∀x ∈ B (x̄, η) ∩ [ϕΦ > 0],

and hence

(5.8) dist (0∗, ∂ϕΦ(x)) ≥ inc Φ(x̄)− 1 > 0, ∀x ∈ B (x̄, η) ∩ [ϕΦ > 0].

If hypothesis (ii) is replaced with
(ii)’ Φ is metrically C-increasing on X, with exact bound inc Φ,
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then, one has

(5.9) inf
u∈B

ϕ′Φ(x;u) ≤ 1− inc Φ, ∀x ∈ [ϕΦ > 0],

and hence

(5.10) dist (0∗, ∂ϕΦ(x)) ≥ inc Φ− 1 > 0, ∀x ∈ [ϕΦ > 0].

Proof. First of all observe that, on account of Lemma 2.4(i), Lemma 5.3(ii), and Remark 2.5, by
hypothesis (i) the function ϕΦ : X −→ R is l.s.c., convex and ϕ−1

Φ (R) = X.
Fix an arbitrary α ∈ (1, inc Φ(x̄)) and let δ > 0 be as in Definition 5.4(ii). Take an arbitrary

x0 ∈ B (x̄, δ) ∩ [ϕΦ > 0]. Since it is ϕΦ(x0) > ϕΦ(x̄) = 0, the point x0 can not be a (global)
minimizer of ϕΦ. Consequently, as the inclusion 0∗ ∈ ∂ϕΦ(x0) characterizes the minimality for a
convex function, it must be 0∗ 6∈ ∂ϕΦ(x0). Since function ϕΦ is l.s.c. on X, the superlevel set
[ϕΦ > 0] turns out to be open, so there exists δ0 > 0 such that B (x0, δ0) ⊆ [ϕΦ > 0], what means
that

Φ(x) 6⊆ C, ∀x ∈ B (x0, δ0) .

Now, according to hypothesis (ii), for every t ∈ (0, δ0) there exists ut ∈ B such that

B (Φ(x0 + tut), αt) ⊆ B (Φ(x0) + C, t) ,

while Φ(x0 + tut) 6⊆ C. By taking into account the equalities in Remark 5.5(i) and (ii), one obtains

exc (B (Φ(x0 + tut), αt) , C) ≤ exc (B (Φ(x0) + C, t) , C) = exc (Φ(x0) + C,C) + t(5.11)

= exc (Φ(x0), C) + t = ϕΦ(x0) + t.

On the other hand, one has

(5.12) exc (B (Φ(x0 + tut), αt) , C) = exc (Φ(x0 + tut), C) + αt = ϕΦ(x0 + tut) + αt.

From equality (5.12) and the relations in (5.11), one deduces

inf
u∈B

ϕΦ(x0 + tu)− ϕΦ(x0)

t
≤ ϕΦ(x0 + tut)− ϕ(x0)

t
≤ 1− α, ∀t ∈ (0, δ0).

Therefore, it results in

inf
u∈B

ϕ′Φ(x0;u) = inf
u∈B

inf
t∈(0,δ0)

ϕΦ(x0 + tu)− ϕΦ(x0)

t
= inf
t∈(0,δ0)

inf
u∈B

ϕΦ(x0 + tu)− ϕΦ(x0)

t
≤ 1− α.

Thus, by arbitrariness of α ∈ (1, inc Φ) and x0 ∈ B (x̄, δ) ∩ [ϕΦ > 0], it suffices to set η = δ to
obtain inequality (5.7). The estimate in (5.8) can be established by exploiting the inequality (5.6)
in Remark 5.5 and by recalling the Moreau-Rockafellar representation formula for the directional
derivative of a l.s.c. convex function

ϕ′Φ(x;u) = ς(u, ∂ϕΦ(x)), ∀u ∈ X,
which is valid for every x ∈ int (domϕΦ) = X (see, for instance, [5, Theorem 4.2.7]). Here intS
denotes the (topological) interior of a set S. Take into account that for a l.s.c. convex function the
interior of its domain coincides with the core of the domain (see, for instance, [5, Theorem 4.1.8]).

The second part of the thesis, upon hypothesis (ii)’, can be proved in a similar manner, with
plane adaptations. �

Let us come back now to the context of parameterized set-valued inclusions (SVIp). It will be
assumed henceforth that for any p ∈ P near p̄, the set-valued mapping x F (p, x) is concave. Notice
that, upon such an assumption, an appreciable consequence of equality (3.1) is that S : P ⇒ X is
convex-valued, in the light of Lemma 5.3(ii). Moreover, some estimates of the constants in (5.1) can
be obtained via exact bounds of metric C-increase, as stated below.

Theorem 5.7. Let F : P × X ⇒ Y be a set-valued mapping, defined on the product of a metric
space P with a Banach space X, and taking values in a Banach space Y. Let C ⊆ Y be a closed,
convex cone, let p̄ ∈ P and let x̄ ∈ S(p̄). Suppose that each set-valued mapping F (p, ·) : X ⇒ Y is
l.s.c., concave and bounded-valued away from C on X, for every p ∈ B (p̄, δ), for some δ > 0.
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(i) If F is metrically C-increasing with respect to x around (p̄, x̄), uniformly in p with exact
uniform bound incFx(p̄, x̄), then it holds

|∇xϕF |>(p̄, x̄) ≥ incFx(p̄, x̄)− 1 > 0.

(ii) If F (p̄, ·) is metrically C-increasing around x̄, with exact bound incF (p̄, ·)(x̄), then

|∇ϕF (p̄, ·)|>(x̄) ≥ incF (p̄, ·)(x̄)− 1 > 0.

(iii) If F (p̄, ·) is metrically C-increasing on X, with exact bound incF (p̄, ·), then

τp̄ ≥ incF (p̄, ·)− 1 > 0.

Proof. (i) Under the current assumptions, it is possible to apply Proposition 5.6 to each function
F (p, ·) : X⇒ Y, with p ∈ B (p̄, δ). As a consequence, there exists η > 0 such that

dist (0∗, ∂ϕF (p, ·)(x)) ≥ incFx(p̄, x̄)− 1, ∀x ∈ B (x̄, η) ∩ [ϕF (p, ·) > 0].

Without loss of generality, one can assume η < δ. It is to be noticed that the value of η is the same
for each p ∈ B (p̄, δ), by virtue of the unifom version of the metric C-increase property postulated
in hypothesis (i). Thus, in the light of Example 2.6(ii), it results in

|∇ϕF (p, ·)|(x̄) = dist (0∗, ∂ϕF (p, ·)(x)) ≥ incFx(p̄, x̄)−1, ∀(p, x) ∈ B (p̄, η)×B (x̄, η) : ϕF (p, x) > 0.

By recalling the definition in (3.2), one immediately obtains

|∇xϕF |>(p̄, x̄) = lim
ε→0+

inf{|∇ϕF (p, ·)|(x) : (p, x) ∈ B (p̄, ε)× B (x̄, ε) ,

ϕF (p̄, x̄) < ϕF (p, x) < ϕF (p̄, x̄) + ε}
≥ inf{dist (0∗, ∂ϕF (p, ·)(x)) : (p, x) ∈ B (p̄, η)× B (x̄, η) , ϕF (p, x) > 0}
≥ incFx(p̄, x̄)− 1 > 0.

In the case of assertions (ii) and (iii), it suffices to apply Proposition 5.6 with Φ = F (p̄, ·) and to
recall that

|∇ϕF (p̄, ·)|(x) = dist (0∗, ∂ϕF (p̄, ·)(x)) .

This completes the proof. �

As an application of Theorem 5.7, concretely computable estimates for some of the constants in
(5.1) are provided in the next example, in the special case of fans generated by linear operators
between finite-dimensional Euclidean spaces.

Example 5.8. Let X = Rn and Y = Rm be equipped with their usual Euclidean space structure
and let (P, d) be a metric space. Let G : P ⇒ L(Rn,Rm) be a set-valued mapping with convex
and compact values, and with domG = P . According to Example 5.2, G defines a mapping HG :
P × Rn ⇒ Rm as follows

HG(p, x) = {Λx : Λ ∈ G(p)}.
Observe that for any p ∈ P the set-valued mapping x  HG(p, x) is a fan, so it is concave on Rn,
and it is also bounded-valued on Rn, as G(p) is a compact set. Moreover, it is l.s.c. at every point
x̄ ∈ Rn. Indeed, for every open set O ⊆ Rm such that HG(p, x̄)∩O 6= ∅, there must exist ΛO ∈ G(p)
such that ΛOx̄ ∈ O. Therefore, it suffices to consider Λ−1

O (O) to get a neighbourhood U of x̄ such
that HG(p, x) ∩O 6= ∅, for every x ∈ U . Fix p̄ ∈ P and, taken any Λ ∈ G(p̄), define

cov Λ = inf
‖y‖=1

‖Λ>y‖,

where Λ> stands for the adjoint operator to Λ (thereby represented by the transpose to the matrix
representing Λ). It is well known in variational analysis that

cov Λ = sup{η > 0 : ΛB ⊇ ηB},



ON THE QUANTITATIVE SOLUTION STABILITY OF PARAMETERIZED SET-VALUED INCLUSIONS 21

where B denotes the closed unit ball centered at 0 (see, for instance, [20, Corollary 1.58]). Let
C ⊆ Rm be a closed, convex and pointed cone, such that {0} 6= C 6= Rm and intC 6= ∅. Let us
show that, if

η̄ = inf
Λ∈G(p̄)

cov Λ > 0

and

(5.13) int

 ⋂
Λ∈G(p̄)

Λ−1(C)

 6= ∅,

then the set-valued mappingHG(p̄, ·) is metrically C-increasing on X, with exact bound incHG(p̄, ·) ≥
η̄ + 1. According to condition (5.13), there exist u ∈ Rn and ε ∈ (0, 1) such that

u+ εB ⊆
⋂

Λ∈G(p̄)

Λ−1(C).

Actually, it is possible to assume u 6= 0. Indeed, if it is u = 0 so that

εB ⊆
⋂

Λ∈G(p̄)

Λ−1(C),

for some v ∈ εB\{0}, it is true that

Λv ∈ C, Λ(−v) = −Λv ∈ C, ∀Λ ∈ G(p̄).

Since C is a pointed cone, the above two inclusions imply that Λv = 0, for every Λ ∈ G(p̄), whence

Λ(v + εB) = Λ(εB) ⊆ C, ∀Λ ∈ G(p̄).

This inclusion means that

v + εB ⊆
⋂

Λ∈G(p̄)

Λ−1(C).

So one can take u = v 6= 0. Furthermore, since the set ∩Λ∈G(p̄)Λ
−1(C) is a cone as an intersection

of cones, it is also possible to assume that u ∈ B\{0}.
Take an arbitrary η ∈ (0, η̄). Since η < infΛ∈G(p̄) cov Λ, so η < cov Λ for every Λ ∈ G(p̄), it holds

Λ(εB) ⊇ εηB, ∀Λ ∈ G(p̄).

Consequently, it results in

Λu+ εηB ⊆ Λ(u+ εB) ⊆ C, ∀Λ ∈ G(p̄).

By definition of HG , one has

HG(p̄, u) + εηB ⊆ C,
wherefrom, as the set-valued mapping HG(p̄, ·) is positively homogeneous, it follows

HG(p̄, ε−1u) + ηB ⊆ ε−1C = C.

Now, take arbitrary x ∈ Rn and r > 0. By the last inclusion, setting z = x + rε−1u, one has that
z ∈ B (x, r) and

B (HG(p̄, z), (η + 1)r) = HG(p̄, z) + (η + 1)rB ⊆ HG(p̄, x) + rHG(p̄, ε−1u) + ηrB + rB
= HG(p̄, x) + r(HG(p̄, ε−1u) + ηB) + rB
⊆ HG(p̄, x) + rC + rB = HG(p̄, x) + C + rB
= B (HG(p̄, x) + C, r) .

The above inclusion chain shows that HG(p̄, ·) is metrically C-increasing on X, with exact bound
incHG(p̄, ·) ≥ η + 1. By arbitrariness of η ∈ (0, η̄), it results in

incHG(p̄, ·) ≥
(

inf
Λ∈G(p̄)

cov Λ

)
+ 1.
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Thus, by applying Theorem 5.7(iii), one can achieve the estimates

|∇ϕHG (p̄, ·)|>(x̄) ≥ τp̄ ≥ inf
Λ∈G(p̄)

cov Λ = inf
Λ∈G(p̄)

inf
‖y‖=1

‖Λ>y‖.

6. Conclusions

This paper contains a study on several quantitative semicontinuity properties of the solution
mapping to parameterized set-valued inclusions, which are problems of interest in robust optimiza-
tion and related fields, where set-valuedness enters as a key feature. The findings of the exposed
investigations show that, by following a variational approach already adopted for similar properties,
even thought in the context of different problems (traditional generalized equations), it is possible
to perform an effective analysis in metric spaces. As a result of this analysis, mainly focused on
sufficient conditions for the occurrence of the aforementioned properties, the problem of estimating
certain slope constants emerges, in the perspective of deriving verifiable conditions in more struc-
tured settings. A first solution to this question is obtained by tools of convex analysis. Moreover, the
achievements reported seem to afford suggestions for a more general solution, able to embed broader
class of set-valued inclusions, which consist in adapting already existent tools of nonsmooth analysis
(specific nonconvex subdifferential and related coderivatives, with a suitable calculus). Further de-
velopment directions of the present study relate to the analysis of other Lipschitz-type properties for
the solution mapping to parameterized set-valued inclusions, such as Aubin property and isolated
calmness, following the approach proposed in Section 3.
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