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The inner ear is the organ responsible for hearing and balance. Inner ear
dysfunction can be the result of infection, trauma, ototoxic drugs, genetic
mutation or predisposition. Often, like for Ménière disease, the cause is
unknown. Due to the complex access to the inner ear as a fluid-filled cavity
within the temporal bone of the skull, effective diagnosis of inner ear pathologies
and targeted drug delivery pose significant challenges. Samples of inner ear fluids
can only be collected during surgery because the available procedures damage
the tiny and fragile structures of the inner ear. Concerning drug administration,
the final dose, kinetics, and targets cannot be controlled. Overcoming these
limitations is crucial for successful inner ear precisionmedicine. Recently, notable
advancements in microneedle technologies offer the potential for safe sampling
of inner ear fluids and local treatment. Ultrasharp microneedles can reach the
inner ear fluids with minimal damage to the organ, collect μl amounts of
perilymph, and deliver therapeutic agents in loco. This review highlights the
potential of ultrasharp microneedles, combined with nano vectors and gene
therapy, to effectively treat inner ear diseases of different etiology on an individual
basis. Though further research is necessary to translate these innovative
approaches into clinical practice, these technologies may represent a true
breakthrough in the clinical approach to inner ear diseases, ushering in a new
era of personalized medicine.
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1 Background

The ear is anatomically subdivided into three parts: outer, middle, and inner ear
(Figure 1). The outer part includes the auricle and the external auditory canal, and its
function is to convey the acoustic vibrations to the 105 µm-thick tympanic membrane
(Hentzer, 1969; Hayes et al., 2013; Dsouza et al., 2018). The middle ear transmits the
vibration of the tympanic membrane to the oval window membrane of the inner ear via the
malleus, incus and stapes. Like the outer ear, the middle ear contains air since it is connected
to the nasopharynx by the Eustachian tube. In contrast, the inner ear is filled with fluids and
houses the cochlea, the auditory organ, and the vestibular system, the equilibrium organ.
Within the cochlea, the scala tympani and scala vestibuli are connected to each other
through the helicotrema at the apex of the cochlea and are filled with perilymph, a standard
Na+-based extracellular solution; the scala media, or the middle chamber contains
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endolymph, a unique extracellular solution characterized by high K+

and low Ca2+ and Na+ concentration (Wangemann et al., 2017). The
scala media is connected to the vestibular system via the ductus
reuniens. Additionally, near the round window membrane (RWM),
the scala tympani is connected to the cochlear aqueduct, which is
connected to the subarachnoid space filled with cerebrospinal fluid.
The sensory function in the inner ear is carried out by sophisticated
sensory cells: the hair cells (HCs), which are equipped with a tuft of
long microvilli at their apical surface, called stereocilia. The apical
region of the HCs is bathed by the endolymph, while their
basolateral region is bathed by the perilymph. Endolymph
motion induced by acoustic vibrations or head movements
deflects the stereocilia of cochlear or vestibular HCs, thereby
opening mechanosensitive cation channels. The resulting
depolarization opens voltage-gated Ca2+ and K+ channels
expressed in the HC basolateral membrane. Ca2+ inflow triggers
glutamate exocytosis onto the afferent nerve fibers, while K+ outflow
repolarizes the HC. Signals are then transmitted by the primary
neurons to the central nervous system for processing.

Inner ear disorders are the most common sensory pathologies
worldwide and include deafness, sensorineural hearing loss,
Ménière’s disease, benign paroxysmal positional vertigo,
labyrinthitis, secondary endolymphatic hydrops, and
perilymphatic fistula. The World Health Organization estimates
that 5.5% of the world’s population experiences moderate or high
hearing loss and that by 2050, 1 in 10 people will have a disabling
hearing deficit (World Health Organization, 2021). Additionally, the

incidence of balance disorders of peripheral vestibular origin
increases after the age of 40 and exceeds 80% of people over
80 years of age (Agrawal et al., 2009). Ménière’s disease alone
affects 2 over 1,000 people (Alexander and Harris, 2010; Koenen
and Andaloro, 2021). This pathology causes devastating vertigo
attacks (Yardley et al., 2003) and standard treatment with
gentamicin leaves patients with permanent cochlear deficits
(Blakley, 2000; Harner et al., 2001). Impairment of inner ear
function severely affects work and social life (Quaranta et al.,
2015). The importance of auditory and vestibular functions in
daily activities, the widespread incidence of hearing loss and
vestibular dysfunction, and the lack of selective inner ear
sampling for accurate diagnosis and therapies provide a strong
clinical and ethical motivation to expand the research in this field.

2Major gaps in diagnosis and therapy of
inner ear diseases

The location of the inner ear in the osseous labyrinth, the densest
and hardest human bone (Frisch et al., 1998), greatly complicates
perilymph sampling, which is required for a timely and precise
diagnosis, and local drug delivery.

When a patient has an acute or chronic illness of the inner ear, it
is likely to be reflected by abnormalities in the presence or
concentration of various ions, proteins, bacteria, or viruses when
compared to healthy perilymph. Clinically, this limitation results in

FIGURE 1
Essential features for precision medicine in inner ear. (A) Current gaps, goals to reach in the near future, and future aims. (B) Schematic drawing of
the human ear showing the RWM approach for two types of microneedles (ultrasharp and PLGA). The RWM separates the middle ear from the inner ear.
The inner ear contains the cochlea, the auditory organ, and the vestibular system, the balance organ. This is composed of the utricle and saccule, which
detect head position and linear acceleration, and the three semicircular canals, which detect head angular accelerations. (C) The most common
types of nanocarriers andmicroneedles that can be used for drug delivery in the inner ear. (D) Roadmap to precisionmedicine in the inner ear. The panels
B and C were created with BioRender 2024. Licence numbers: TP26BU1SAY, SR26BU1Z32.
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a frequent diagnosis of idiopathic hearing/vestibular disease, leaving
the patient and physician with no clear prognosis and general, and
often ineffective, treatment options.

Current procedures for inner ear fluid sampling use glass
capillaries, which do not perforate the RWM and therefore can
only be used in patients already under surgery, e.g., for removal of
acoustic neuromas or cochlear implantation (Lysaght et al., 2011).

Concerning treatment, the main routes of drug administration
to the inner ear are oral, intravenous, intracochlear and
intratympanic.

Oral is the simplest way, while intravenous requires medical
staff. Both allow for only small lipophilic drugs to be administered
because the blood-labyrinth barrier precludes the passage of high-
molecular-weight drugs. As a result, only a very low fraction reaches
the inner ear (Parnes et al., 1999; Bird et al., 2007). Therefore, either
a relatively large amount of drug is needed, which increases the
importance of side effects, or the treatment is only minimally
effective (Nakashima et al., 2003; Ishiyama et al., 2017).

Intracochlear administration is used in preclinical studies to test
the safety of drug candidates and has been adapted to different
formulations: liquid, suspension, gel (De Ceulaer et al., 2003;
Paasche et al., 2006; Braun et al., 2011). It has the advantage of
achieving long-term local drug delivery (weeks or even years). The
drawback is the low injectable volume, few µL (Braun et al., 2011),
because even slight volume and pressure changes can harm the
fragile inner ear organs (Jaudoin et al., 2021). Moreover, it requires
surgery under general anesthesia performed by highly specialized
personnel (El Kechai et al., 2015a). For these reasons, the
intracochlear route is not generally used in humans.

The fourth route, intratympanic administration, is widely used
for pharmacological treatment inMénière’s disease (Patel, 2017) due
to its minimal invasiveness and compatibility with repeated
injections of liquid, suspension, or hydrogel formulations.
Intratympanic administration uses a long and fine needle, spinal
puncture needles from 22 to 25 G in human (Herraiz et al., 2010)
and from 27 to 30 G in animals (Wang et al., 2009; Salt et al., 2011).
Then, a volume of 0.4–0.6 mL in humans (Herraiz et al., 2010) or
50–200 μL in animals (Wang et al., 2009) of drug solution is injected,
filling the middle ear cavity and ensuring that the drug is in contact
with the RWM (El Kechai et al., 2015b). One problem with this
approach is that the hole produced in the tympanic membrane is a
potential entry point for pathogens. The drug is absorbed into the
inner ear perilymph primarily through the semi-permeable RWM,
but also via the oval window annular (Phillips and Westerberg,
2011). Since the injected drug must diffuse through the middle ear to
reach the RWM, some loss of the medicine occurs through the
Eustachian tube (Ramaswamy et al., 2017), resulting in highly
variable medication levels among patients. Direct placement of
therapeutic agents on the RWM in a biodegradable carrier
substance, such as gelatin, hydrogel, or nanoparticles, may
overcome some of these limitations (Paulson et al., 2008; Li
et al., 2012; Zhang et al., 2018). However, the rate of drug
delivery to the inner ear is inevitably limited by molecular
diffusion across the RWM. In summary, the reliability of
intratympanic administration is severely impacted by the variable
diffusion of the drug through the middle ear and the RWM.

Given the above, it is evident the need for safe and reliable access
to the inner ear for both diagnosis and treatment purposes.

3 Microneedles may help filling
the gaps

Without a means to sample inner ear fluid for electrochemical,
genetic, or proteomic analysis, precise intervention is not possible.
Furthermore, current options for drug delivery, including systemic
administration and intratympanic injection, are imprecise. The only
access from the middle ear to the inner ear that does not require
perforation of bone is through the RWM. The human RWM has a
surface area of 2.3 mm2 (Okuno and Sando, 1988) and a thickness of
70 µm (Goycoolea and Lundman, 1997). The distance between the
human RWM and the basilar membrane—the nearest structure
within the inner ear—is approximately 1.2 mm (Paprocki et al.,
2004; Watanabe et al., 2016). The primary risks associated with
RWM perforation concern damage to the fragile structures of the
inner ear, homeostasis impairment due to perilymph leakage and
external contamination. Fortunately, recent technical advances in
microneedle architecture and manufacturing have minimized the
negative consequences of RWM perforation, also reviewed in Leong
et al. (2022). Chiang et al. (2020), manufactured 3D-printed
microneedles able to create small (μm scale) holes in cadaveric
human RWMwithout damaging the cochlea. 3D printing relies on a
technology called two-photon polymerization lithography, an
additive manufacturing process that can produce highly complex
geometries out of hard polymers with sub-micrometer precision and
accuracy. Fully-metallic (copper) ultra-sharp microneedles were
conversely developed by Aksit and colleagues (Aksit et al., 2021),
which were gold-coated to ensure biocompatibility. Minimal trauma
was observed in both guinea pig and human cadaveric RWMs. Thus,
microneedle RWM perforation might be performed prior to
intratympanic delivery to overcome variable diffusion of the
therapeutic agent through the RWM (Szeto et al., 2019).
Concerning perilymph sampling, Early and colleagues (Early
et al., 2019) developed a silver-plated hollow microneedle device
for trans-RWM liquid biopsy, by which 1 μL of perilymph from
post-mortem human temporal bones could be obtained without
damaging the inner ear structures. This is a notable result when
considering that the whole perilymph per ear is about 150 μL (Leong
et al., 2023a). By the same strategy, Leong and colleagues (Leong
et al., 2023a) very recently developed a 3D-printed hollow
microneedle for diagnostic aspiration of perilymph and
intracochlear delivery of therapeutic agents in living guinea pigs.
Perforation did not cause hearing loss, healed within 48–72 h, and
yielded sufficient perilymph for proteomic analysis. A slightly
different approach has been used by Pawley and colleagues
(Pawley et al., 2021), who developed a drug-infused polymeric
microneedle designed for penetrating the RWM and resting in
the base of the scala tympany of the rat cochlea, to deliver a
uniform dose of the drug over an extended period (about 50% of
drug was released in 1 month). Microneedles were made of poly
(lactic-co-glycolic acid); (PLGA), a biodegradable polymeric
nanoparticle (see next section) approved by the Food and Drug
Administration. Their microneedles had over ~4,000× the
mechanical strength required to puncture rodent RWM and are
therefore suitable for human use. This is the only study reporting
delivery of therapeutic agents by microneedles so far.

In summary, microneedle-mediated perforation of the RWM is
a novel means of achieving access to the inner ear with minimal
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anatomic and functional damage. Microneedles are designed to
aspirate fluids for diagnosis and to deliver therapeutic agents.
Using microneedles, drug concentrations within the inner ear
may be controlled with a precision that intratympanic injections
cannot provide. Microneedle’s properties are summarized in
Table 1. In vivo, microneedles have only been tested in rodents
so far, although perforation of human RWM has been accomplished
postmortem. It should be noted that RWM perforation requires
surgery of the temporal bone and therefore cannot be considered as
a simple routine procedure.

4 Nanocarriers for drug delivery to the
inner ear

The treatment of inner ear disorders may soon benefit from the
rapid development of nanocarriers to deliver drugs and genetic
material. The obstacles to overcome, besides access to the inner ear
as discussed above, are: a) the control for long-term release of the
drug; b) the development of side effects; c) the degradation of the
carrier/carried agent. The biocompatibility, biodegradability, size,
volume, composition, shape and chargeable surface of nanocarriers,
their bio-distribution in the target and off-target organs, metabolism
and elimination are all important features to be addressed.

The main nanoparticles (NPs) so far considered for inner ear
therapy are listed below, categorized for their molecular
nature (Figure 1C):

A) Lipid-Based Nanocarriers: Liposomes, Solid Lipid
Nanoparticles (SLNs), Nanostructured Lipid Carriers (NLCs).

Liposomes, the first phospholipid vesicle system developed in
the 1960s, are composed of phospholipid bilayer similar to the
plasma membrane of human cells. They have good biocompatibility
and promote drug diffusion across the plasma membrane.
Liposomes, with sizes ranging from 20 nm to over 1 μm, typically
consist of a hydrophobic bilayer that encapsulates lipophilic drugs

and a hydrophilic core for holding and stabilizing hydrophilic drugs.
Such features make liposomes a versatile vehicle to carry both
hydrophilic and hydrophobic drugs in the aqueous lumen and
lipid bilayer respectively. In addition, the liposome system offers
the advantage of easy modification and targeting potential.
Liposomes can be constructed with their surfaces modified using
appropriate molecules or ligands to actively bind a target molecule
within specific cells, systems, or tissues (Lu et al., 2021). Recently,
liposomes have been used to treat autosomal dominant hearing loss
by in vivo delivery, through a cannula following cochleostomy, of
genome editing agents in transgenic mice (Gao et al., 2018).

SLNs combine the advantages of polymer nanocarriers,
including a high drug loading capacity, controllable drug
delivery, and good biocompatibility with lipid emulsions, thereby
improving drug bioavailability. SLNs can be prepared by using a
variety of technologies including heat or cold homogenization,
making them easily scalable for production. Due to their small
sizes and large surface area, SLNs are suitable to be covered with
functionalized ligands moieties, antibodies, and other functional
groups (Lu et al., 2021).

NLCs, also known as lipid-based formulations, have been broadly
studied as drug delivery systems due to their enhanced physical
stability, improved drug loading capacity, and biocompatibility
(Haider et al., 2020). Unlike SLNs, the lipid matrix of NLCs
consists of a mixture of solid and liquid lipids with controlled
levels that have an improved capacity for bioactive retention along
with controlled release attributes (Akhavan et al., 2018).

B) Polymeric Nanoparticles: Polymersomes may pass the RWM
without toxic effects (Buckiova et al., 2012; Roy et al., 2012);
Chitosan is a natural biodegradable and biocompatible
polymer with antifungal and antibacterial properties
deliverable in the inner ear (No et al., 2002; Saber et al.,
2010; Lajud et al., 2015; Khanna et al., 2023; Rezaei Abbas
Abad et al., 2023); PLGANPs are suitable for the treatments of
inner ear diseases for their tunable degradation, mechanical
properties, drug-infused microneedle fabrication (Lehner

TABLE 1 Main properties of microneedles.

Microneedles’ properties

1. The materials used for the fabrication (metals, polymers) are hard and resistant enough to perforate the RWM in both animal models and humans (Early et al., 2019; Szeto et al.,
2019; Chiang et al., 2020; Yu et al., 2020; Aksit et al., 2021; Pawley et al., 2021)

2. The manufacturing techniques are highly versatile, allowing for different shapes and diameters of the microneedle tips (Watanabe et al., 2016; Early et al., 2019; Szeto et al., 2019;
Yu et al., 2020; Aksit et al., 2021; Leong et al., 2022)

3. The same microneedle can be luminized and used to perforate the RWM and sample or/and deliver therapeutic agents, streamlining the procedure. This eliminates the need for
the double procedure involving RWM perforation first, and sampling/delivery by a second device (Szeto et al., 2019; Chiang et al., 2020; Yu et al., 2020; Aksit et al., 2021; Pawley
et al., 2021; Leong et al., 2022)

4. The materials employed for the microneedles are biocompatible (Aksit et al., 2021; Pawley et al., 2021; Leong et al., 2023b)

5. The architecture enables control of perforation by detecting the reaching of the perilymph (Wazen et al., 2017; Early et al., 2019)

6. The tip of the microneedles can be designed to smoothly cross the RWM, minimizing damage (reducing healing time) and perilymph leakage in the middle ear (Early et al.,
2019; Aksit et al., 2021; Leong et al., 2023a; Feng et al., 2023)

7. The new microneedles can be used for sampling or acute delivering (ultra-sharp microneedle) or implanted for long-term delivery (PLGA microneedles) due to their
biodegradable nature (Aksit et al., 2021; Pawley et al., 2021; Leong et al., 2023b; Feng et al., 2023)

8. The tiny dimensions of the microneedles tips allow for sampling/delivering small (μl scale) volumes (Aksit et al., 2021; Leong et al., 2023a; Feng et al., 2023)
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et al., 2019; Pawley et al., 2021), and gene therapy (Du
et al., 2018).

C) Metallic NPs: Superparamagnetic Iron Oxide Nanoparticles
permit a precise drug delivery in the inner ear by magnetic
forces (Kopke et al., 2006); Silver Nanoparticles have
antifungal, antibacterial, antiviral properties and are
suitable in otitis treatment (Zou et al., 2014); Gold
Nanoparticles are chemically stable and biocompatible
(Blebea et al., 2022); Silica Nanoparticles may serve as a
nonviral delivery system to the sensory HCs (Praetorius
et al., 2007).

D) Nanocarrier Systems: Nanoparticle-Hydrogel Systems are
thermosensitive solidifying in the middle ear for a
sustained dose release (Lambert et al., 2016); Cell
Penetrating Peptides can be used to deliver cargo into the
developing inner ear (Miwa et al., 2011).

For comprehensive reviews classifying nanocarrier
biodistribution, pathway mechanisms and drug pharmacokinetics
see: Jaudoin et al., 2021; Dindelegan et al., 2022.

5 Inner ear and gene therapy

Thanks to recent advances in understanding the genetic basis
of several inner ear diseases, delivery of genetic material (DNA,
RNA, siRNA, microRNA, antisense oligonucleotides, or
CRISPR/Cas9) has emerged as a promising strategy for their
treatment (Lentz et al., 2020; Bankoti et al., 2021; Cui et al., 2022;
Nacher-Soler et al., 2022). This approach aims to control gene
replacement, silencing, augmentation, and editing and it could
be an option to treat hearing loss and vestibular disorders (Fukui
and Raphael, 2013; Geng et al., 2018; Lentz et al., 2020; Bankoti
et al., 2021; Cui et al., 2022; Nacher-Soler et al., 2022). The most
common and successful way of delivering genetic material to the
inner ear of rodents is through the RWM (Akil et al., 2012;
Askew et al., 2015; Pan et al., 2017a; Emptoz et al., 2017;
Landegger et al., 2017; Dulon et al., 2018) further
highlighting the importance of perfecting this route of
administration for future use in humans. Notably, György
and colleagues (Gyorgy et al., 2019) recently showed that the
RWM approach leads to efficient transgene transfer into the
cochlea of non-human primates (Gyorgy et al., 2019).
Alternative delivery routes to the inner ear, so far positively
tested in rodents, involve injection of agents into the posterior
semicircular canal (Okada et al., 2012; Suzuki et al., 2017; Isgrig
and Chien, 2018), or into the cerebrospinal fluid of the cisterna
magna, which is connected to the inner ear by the cochlear
aqueduct (Mathiesen et al., 2023). The combination of trans-
RWM injection and canalostomy in adult mice has recently been
shown to increase the efficiency of gene transduction in cochlear
inner HCs in all turns of the cochlea without impairing auditory
function or hearing (Yoshimura et al., 2018).

However, several questions need to be answered before gene
therapy translation to humans. Due to challenges in maintaining
inner ear tissues in vitro, tests in human tissues are still limited
(Kesser et al., 2007). Unresolved points include differences in
cell trophism and chronological maturation between humans

and animal models, and strategies to confine gene therapy to
target organs. Addressing issues such as negative consequences
of gene overexpression/silencing in target and off-target cells, as
well as evaluating the long-term safety of exogenous constructs,
immune response in case of multiple administrations, time
between doses, and risk of infection before and after gene
therapy is imperative (Wu et al., 2019).

Delivery routes and vectors depend on material size, cargo
capacity, pathogenicity, immunogenicity, and transduction
efficiency. There are two main delivery systems for gene
therapy: (i) viral vectors: viruses modified and attenuated to
create effective and specific tools for gene transfer, and (ii)
non-viral delivery/vectors: nanoparticles and microspheres
consisting of biodegradable polymers. Adeno-associated viral
vectors (AAVs) and synthetic viral vectors (Anc80L65 and
AAV2.7m8) are commonly chosen for their effectiveness in
the inner ear (Pan et al., 2017b; Isgrig et al., 2017). Non-viral
vectors (nanoligand drug carriers self-assembled from a phage
display peptide) (Delmaghani and El-Amraoui, 2020) avoiding
virus integration into human DNA, represent alternatives due to
their easy use, reduced toxicity and immunogenicity compared to
viral vectors. Careful consideration of these factors is essential for
successful gene therapy applications. For extensive reviews about
gene therapy in the inner ear see Delmaghani and El-Amraoui
and Chaves & Holt (Delmaghani and El-Amraoui, 2020; Chaves
and Holt, 2023). Gene therapy could also take advantage of
microneedles for delivery.

6 Discussion and future prospects

One of the critical determinants of the success of precision
medicine in the inner ear is to find safe and reliable access to
perilymph for personalized diagnosis and delivery of
pharmacological agents. The new ultrasharp microneedles meet
these requirements, and together with nano vectors and gene
therapy offer great promise as a potential treatment for human
inner ear disease of environmental or genetic cause. In perspective,
sampling of inner ear fluids could identify biomarkers of specific
diseases that might be also detected in routine blood test (Mahshid
et al., 2022), providing crucial information for therapy and
assessment of treatment efficacy. Safe delivery to the inner ear,
moreover, might allow the use of contrast agents for precise
visualization of inner ear disorder (e.g., endolymphatic hydrops)
by imaging. Guidelines will be necessary to establish shared
approaches concerning, for example, the optimal volume for
sampling/injection, the type of microneedle for a given
treatment, the follow-up. Strong collaborative efforts are
required between researchers, clinicians, companies, and
regulatory agencies to unlock the great potential of precision
medicine in the inner ear.
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