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We study the renormalization group (RG) running of the nonsinglet tensor operator, for Nf ¼ 3 QCD
with Wilson fermions in a mixed action setup, with standard Schrödinger functional (SF) boundary
conditions for sea quarks and chirally rotated Schrödinger functional (χSF) boundary conditions for
valence quarks. Based on a recursive finite-size scaling technique we compute nonperturbatively the tensor
step-scaling function for an energy range between a hadronic scale and an electroweak scale, above which
perturbation theory may be safely applied. Our result is expressed as the RG-running factor
TRGI=½TðμhadÞ�R, where the numerator is the scale independent (renormalization group invariant—RGI)
tensor operator and the denominator is its renormalized counterpart at a hadronic scale μhad ¼ 233ð8Þ MeV
in a given scheme. We determine the step-scaling function in four distinct renormalization schemes.
We also compute the renormalization parameters of these schemes at μhad which, combined with the
RG-running factor, gives the scheme-independent quantity ZRGI

T ðg20Þ in four schemes and for a range of bare
gauge couplings in which large volume hadronic matrix element simulations are performed by the CLS
consortium in Nf ¼ 2þ 1 QCD. All four results are compatible and also agree with a recent determination
based on a unitary setup for Wilson quarks with Schrödinger functional boundary conditions
[arXiv:2309.04314]. This provides a strong universality test.

DOI: 10.1103/PhysRevD.109.054511

I. INTRODUCTION

The hadronic matrix elements of the nonsinglet tensor
bilinear quark operator are an essential ingredient to several
processes, such as rare heavy meson and β-decays and
quantities like the neutron electric dipole moment; see e.g.
Refs. [1–6].
In the present work we concentrate on the nonperturbative

renormalization and renormalization group (RG) running of
the tensor composite field. As in our previous publication on

the RG-running of the pseudoscalar density [7], we follow
the ALPHA finite size scaling approach, applied in Nf ¼ 3
massless QCD. We compute the step scaling function (SSF)
of the tensor composite field for renormalization scales μ
which cover a wide energy range ΛQCD ⪅ μ≡ 1=L ⪅ MW.
Here L denotes the lattice physical extension; note that it
ranges from very small values of about L ≈ 10−3 fm to
L ⪅ 1 fm.Weuse thegauge ensembles ofRef. [8], generated
for the nonperturbative determination of the RG-running of
the quarkmass inNf ¼ 3masslessQCDwith SF boundaries.
On these ensembles we compute correlation functions with
the dimension-3 tensor composite field in the bulk and
chirally rotated boundary conditions [9]. This is known as the
χSF renormalization scheme. So we have a mixed action
approach, as sea and valence quarks have different regula-
rizations (SF and χSF respectively).
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Our setup is similar to the traditional SF scheme used
in Ref. [10] (for Nf ¼ 0, 2) and more recently in Ref. [11]
(for Nf ¼ 3), but has certain advantages related to the
property of “automatic” improvement of χSF, as discussed
in Sec. II. Our main result consists of estimates of the ratio
TRGI=½TðμhadÞ�R, where TRGI is the scale independent
(renormalization group invariant—RGI) tensor operator
and ½TðμhadÞ�R is its renormalized counterpart, computed
at a hadronic scale μhad ¼ 233ð8Þ MeV in a given scheme.
We have obtained four such estimates for four renormal-
ization schemes of the χSF variety. A second result, again
obtained for the four schemes in question, is the tensor
renormalization parameter ZTðg20; aμhadÞ, computed in the
range of bare gauge couplings where CLS simulations of
low-energy hadronic matrix elements in Nf ¼ 2þ 1 QCD
are performed [12–16].
This paper is organized as follows: Sec. II is an overview

of the fundamental properties of the χSF lattice regulari-
zation with Wilson quarks and the basic definitions and
properties of the quantities of interest. Section III describes
the details of our numerical simulations. In this section we
also show results for the ratio of correlation functions with
different tensor components in the bulk which goes to unity
in the continuum limit. This is in agreement with theoretical
expectations, confirming restoration of chiral symmetry in
the continuum limit of the χSF setup. For reasons explained
in Sec. III, computations are split in two energy ranges, a
high one ΛQCD ⪅ μ ⪅ μ0=2 (with μ0=2 ∼ 2 GeV) and a low
one μ0=2 ⪅ μ ⪅ 100 GeV. In Sec. IV we collect our results
of the high-energy RG running factor TRGI=½Tðμ0=2Þ�R. In
Sec. V we collect our results of the low-energy one
½Tðμ0=2Þ�R=½TðμhadÞ�R. These are combined in Sec. VII,
in order to obtain the total running factor TRGI=½TðμhadÞ�R.
Finally, in Sec. VII we compute the renormalization
parameter ZTðg20; aμhadÞ for a range of bare gauge cou-
plings. Several details of our analysis are treated separately
in the Appendices. In Appendix G we compare our results
to those of Ref. [11].
Our work has been presented in preliminary form in

Refs. [17,18]. For the determination of the renormalization
parameter of the tensor in the RI’/(S)MOM scheme in
three-flavor QCD, see Ref. [19].

II. THEORETICAL CONSIDERATIONS

We cover briefly those aspects of the χSF regularization
of Refs. [9,20] which are most relevant to our work. At the
formal level, the massless QCD action is invariant under
general flavor and chiral transformations. In particular, it is
invariant under the change of variables,

ψ ¼ Rðπ=2Þψ 0; ψ̄ ¼ ψ̄ 0Rðπ=2Þ; ð1Þ

where ψ ; ψ̄ and ψ 0; ψ̄ 0 are doublets in isospin space (e.g.
ψ ¼ ðψuψdÞT), related through the above chiral nonsinglet

transformations with RðαÞ ¼ expðiαγ5τ3=2Þ. In the SF-
QCD setup, lattices have finite physical volume L3 × T (in
the present work T ¼ L), with fields obeying Dirichlet
(periodic) boundary conditions in time (space). The former
are defined at x0 ¼ 0 and x0 ¼ T as follows:

PþψðxÞjx0¼0 ¼ 0; P−ψðxÞjx0¼T ¼ 0;

ψ̄ðxÞP−jx0¼0 ¼ 0; ψ̄ðxÞPþjx0¼T ¼ 0; ð2Þ

with projectors P� ¼ ð1� γ0Þ=2. The chiral rotations (1)
map the above conditions onto the χSF boundary con-
ditions

Q̃þψ 0ðxÞjx0¼0 ¼ 0; Q̃−ψ
0ðxÞjx0¼T ¼ 0;

ψ̄ 0ðxÞQ̃þjx0¼0 ¼ 0; ψ̄ 0ðxÞQ̃−jx0¼T ¼ 0; ð3Þ

with projectors Q̃� ¼ ð1� iγ0γ5τ3Þ=2. Thus SF-QCD and
χSF-QCD are equivalent theories, since one is obtained
from the other by the redefinition of fermionic fields (1).
Given the equivalence of the two theories, it is hardly

surprising that they share all symmetries: the well-known
SF-QCD symmetries, once transcribed in terms of fields ψ 0
and ψ̄ 0, are those of χSF-QCD. Flavor symmetry in its
standard SF-QCD version (e.g. Eq. (2.15) of Ref. [20])
takes the form of Eqs. (2.16) and (2.17) of [20]; parity P
(Eq. (2.18) of [20]) becomes P5 (Eq. (2.19) of [20]) in
χSF-QCD. Charge conjugation is form-invariant in the two
versions. We note in passing that the parity operator P5

commutes with the boundary projectors Q̃�.
Similar considerations apply to correlation functions.

Following Ref. [20], we introduce, in χSF-QCD, a second
flavor doublet ðψu0ψd0 ÞT , with exactly the same properties
as the original one. In Table I we gather all pertinent
definitions of correlation functions, operators defined on
time-boundaries, and projectors. We are specifically inter-
ested in correlation functions with antisymmetric tensor
operators in the bulk:

Tf1f2
k0 ðxÞ≡ iψ̄f1ðxÞσk0ψf2ðxÞ ð4Þ

T̃f1f2
k0 ≡ −

1

2
ϵk0ijT

f1f2
ij ; ð5Þ

with σk0 ≡ i
2
½γk; γ0� and k ¼ 1, 2, 3. The allowed combi-

nations of flavor indices are ðf1; f2Þ ¼ ðu; u0Þ; ðd; d0Þ;
ðu; dÞ; ðd; uÞ (so that no disconnected diagrams arise).
See Ref. [20] for more detailed explanations. The present
work is based on the formal (continuum) relations between
the following correlation functions:

kT ¼ iluu
0

T̃
¼ −ildd0

T̃
¼ ludT ¼ lduT ; ð6aÞ

fA ¼ guu
0

A ¼ gdd
0

A ¼ −igudV ¼ igduV ; ð6bÞ
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kV ¼ luu
0

V ¼ ldd
0

V ¼ −iludA ¼ ilduA : ð6cÞ

k1 ¼ luu
0

1 ¼ ldd
0

1 ¼ lud1 ¼ ldu1 ; ð6dÞ

f1 ¼ guu
0

1 ¼ gdd
0

1 ¼ gud1 ¼ gdu1 : ð6eÞ

The above properties, though trivial at the formal level,
have nontrivial consequences once the lattice regularization
with Wilson fermions (χSF-LQCD) is introduced. (Of the
three lattice χSF-QCD versions proposed in Ref. [9], we use
that of Ref. [20]; see Sec. III.1 of the latter work for the
definition of the action etc.). TheWilson term and boundary
terms in χSF-LQCD induce the breaking of the rotated flavor
symmetry (i.e. Eqs. (2.16) and (2.17) of [20]) and parity P5

(i.e. Eq. (2.19) of [20]). However, a symmetry argument
analogous to that introduced in twisted-massQCD [21] holds
in the present case [9,22], with the result that P5-even
correlation functions of the χSF-LQCD theory, once renor-
malized, are OðaÞ-improved in the bulk. An important
additional ingredient of the lattice formulation consists in
the introduction of boundary terms in the action. One such
term is an improvement counterterm, which cancels boun-
dary OðaÞ-effects, once its coefficient dsðg20Þ is properly
tuned. Moreover, the aforementioned symmetry-breaking
pattern of χSF-LQCD necessitates the introduction of an
additional Oða0Þ boundary operator with coefficient zfðg20Þ,
which must be appropriately tuned, in order for the rotated
flavor and P5 symmetries to be recovered in the continuum.
In Sec. III we discuss the zf and ds valueswe have used in the
present work and the pertinent subtleties associated with
these choices.
Symanzik OðaÞ improvement is achieved in χSF

[9,23,24]: the P5-even correlation functions (generically
denoted as geven) receive corrections only at second order in

the lattice spacing, whereas the P5-odd ones (denoted as
godd) are pure lattice artefacts:

geven ¼ gcontinuumeven þOða2Þ; ð7Þ
godd ¼ OðaÞ: ð8Þ

This property turns out to be advantageous for the tensor
operator, as we will se below [cf. Eq. (11)].
Before applying this property to the tensor operator, we

recall that in a standard Wilson fermion setup Tμν is OðaÞ-
improved by the addition of the following Symanzik
counterterm [25]:

T I;f1f2
μν ¼ Tf1f2

μν þ cTðg20Þaðe∂μVf1f2
ν − e∂νVf1f2

μ Þ; ð9Þ

where e∂μ denotes the symmetric lattice derivative.
(Obviously, the above equation, combined with Eq. (5),
gives T̃ I;f1f2

μν ¼ T̃f1f2
μν − cTðg20Þaϵμνρσe∂ρVf1f2

σ .) The insertion
of this counterterm in kT gives rise to

kI
T ¼ kT þ cTðg20Þae∂0kV: ð10Þ

Note that the term involving a e∂jV0ðxÞ insertion in the
correlation function vanishes under the summation over all
space points x. The coefficient cT is known to 1-loop in
perturbation theory [26]. It has been used in a study of SF
step-scaling functions of the tensor operator in Nf ¼ 2
QCD [10]. Using a Ward identity, nonperturbative esti-
mates of cT in a SF setup for Nf ¼ 3 QCD have recently
appeared for a range of bare couplings relevant to large
volume simulations [11].
In a χSF setup, cT is irrelevant for the improvement of

ludT , since the vector correlation function ludV is OðaÞ, being

TABLE I. List of correlation functions, some operators defined on time-boundaries, and projectors in SF and χSF
setups. Operators Oud

5 ;Oud
k ;Qf1f2

5 ;Qf1f2
k are defined at x0 ¼ 0, while O0ud

5 ;O0ud
k ;Q0f1f2

5 ;Q0f1f2
k (not listed here) are

defined at x0 ¼ T. A complete list of SF and χSF time-boundary operators is provided in Appendix A of Ref. [20].
Quantities specific to the χSF setup are highlighted in red. As explained in the text, it is sufficient to define SF
operators with physical indices u and d, while for χSF operators we introduce the extra flavors u0 and d0.

Bulk operators X ¼ V0; A0; S; P Yk ¼ Vk; Ak; Tk0; T̃k0
SF χSF
flavors ðu; dÞ flavors ðf1; f2Þ ¼ ðu; u0Þ; ðd; d0Þ; ðu; dÞ; ðd; uÞ
fXðx0Þ ¼ − 1

2
a3

L3

P
xhXudðxÞOdu

5 i gXðx0Þ ¼ − 1
2
a3

L3

P
xhXf1f2ðxÞQf2f1

5 i
kYðx0Þ ¼ − 1

6
a3

L3

P
3
k¼1

P
xhYud

k ðxÞOdu
k i lYðx0Þ ¼ − 1

6
a3

L3

P
3
k¼1

P
xhYf1f2

k ðxÞQf2f1
k i

f1 ¼ − 1
2
hOud

5 O0du
5 i g1 ¼ − 1

2
hQf1f2

5 Q0f2f1
5 i

k1 ¼ − 1
6

P
3
k¼1hOud

k O0du
k i l1 ¼ − 1

6

P
3
k¼1hQf1f2

k Q0f2f1
k i

Odu
5 ¼ a6

P
y;z ζ̄dðyÞPþγ5ζuðzÞ Quu0

5 ¼ a6
P

y;z ζ̄uðyÞγ0γ5Q−ζu0 ðzÞ
Odu

k ¼ a6
P

y;z ζ̄dðyÞPþγkζuðzÞ Quu0
k ¼ a6

P
y;z ζ̄uðyÞγkQ−ζu0 ðzÞ

..

. ..
.

P� ≡ 1
2
ð1� γ0Þ Q� ≡ 1

2
ð1� iγ0γ5Þ
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P5-odd; cf. Eqs. (7), (8). Therefore the Symanzik correc-
tion, being Oða2Þ, may be dropped:

lI;udT ¼ ludT þ cTðg20Þa∂̃0ludV ; ð11Þ

lI;uu
0

T̃
¼ luu

0
T̃
: ð12Þ

In the second equation, the cT counterterm drops out, being
the integral of functions of the form ∂iVj over a spatial
volume with periodic boundaries.
The same argument holds for all other correlation

functions lf1f2T and lf1f2
T̃

appearing in Eq. (6a). As a side
remark we point out that standard parity P, combined with
flavor exchanges u ↔ d and u0 ↔ d0 is an exact symmetry
of χSF-LQCD [9,20]. This ensures that ludT ¼ lduT and luu

0
T̃

¼
−ldd0

T̃
are exact lattice relations. For this reason we have not

used the correlation functions lduT and ldd
0

T̃
, as they do not

convey any new information.
In Refs. [10,11], two SF renormalization conditions for

the tensor operator are imposed by generalizing in analogy
to those of Ref. [27]:

ZSF−f
T ðg20; L=aÞkTðT=2Þffiffiffiffiffi

f1
p ¼

�
kTðT=2Þffiffiffiffiffi

f1
p

�
t:l:
; ð13Þ

ZSF−f
T ðg20; L=aÞkTðT=2Þffiffiffiffiffi

k1
p ¼

�
kTðT=2Þffiffiffiffiffi

k1
p

�
t:l:
; ð14Þ

where the superscripts t:l. on the right-hand side (rhs) stand
for “tree level.” These tree level quantities are computed at
nonvanishing a=L and vanishing bare quark mass (i.e. the
hopping parameter κ ¼ 1=8). The denominators cancel
the renormalization of the boundary fields contained
in the numerators. From the above renormalization con-
ditions the renormalization constants ZSF−f

T ; ZSF−f
T are deter-

mined in two SF renormalization schemes [10,11].
So far we have discussed the SF renormalization

schemes (13), (14); we now generalize these even further.
Based on the formal (continuum) relations (6a)–(6e), we
can impose the χSF renormalization conditions

ZχSF;ud
T ðg20; L=aÞludT ðT=2Þ

½gud1 �α½lud1 �β½−igud
Ṽ
�γ½luu0

Ṽ
�δ ¼

�
ludT ðT=2Þ

½gud1 �α½lud1 �β½−igud
Ṽ
�γ½luu0

Ṽ
�δ
�
t:l:
;

ð15Þ

ZχSF;uu0
T ðg20;L=aÞiluu

0
T̃
ðT=2Þ

½guu01 �α½luu01 �β½−igud
Ṽ
�γ½luu0

Ṽ
�δ ¼

�
iluu

0
T̃
ðT=2Þ

½guu01 �α½luu01 �β½−igud
Ṽ
�γ½luu0

Ṽ
�δ
�
t:l:
:

ð16Þ
The correlation functions guu

0
Ṽ
; luu

0
Ṽ

are as defined in Table I,

with the operator insertionsXf1f2 ¼ Ṽf1f2
0 and Yf1f2 ¼ Ṽf1f2

k ,

where Ṽf1f2
μ is the conserved current (point-split for Wilson

fermions) with ZṼ ¼ 1. The exponents α, β, γ, δ are real
numbers satisfying 2ðαþ βÞ þ γ þ δ ¼ 1. This ensures that
the renormalization factors of the boundary fields cancel in
the ratios (15) and (16). For fixed ðα; β; γ; δÞ the above
equations correspond to the samecontinuumrenormalization
condition, with different lattice realizations, from which the
same continuum step-scaling function is obtained. Each
choice of ðα; β; γ; δÞ defines a different scheme, if only by
modifying the denominator of the ratios of correlation
functions. The introduction of products of boundary-to-
boundary and boundary-to-bulk correlation function in
χSF renormalization schemes was introduced in the context
of four-fermion operators in Ref. [28].
To simplify matters we only obtain results for the

following four schemes:

ðα; β; γ; δÞ ¼ ð1=2; 0; 0; 0Þ; ð0; 1=2; 0; 0Þ;
ð0; 0; 1; 0Þ; ð0; 0; 0; 1Þ: ð17Þ

Henceforth, we will refer to these schemes by the Greek
letter corresponding to the nonzero entry of each of the
above rows; e.g. scheme-α, scheme-γ etc. Schemes-α and
-β are defined by imposing the same renormalization
conditions as those of Eqs. (13) and (14) respectively;
these are the f- and k-schemes of Ref. [11]. The difference
lies in the lattice setup: Whereas in the f- and k- schemes of
Ref. [11] the bare correlation functions are defined on
lattices with SF boundary conditions, in this work we use
χSF boundaries for the valence quarks (see Sec. III for
details). Thus the anomalous dimensions of our schemes-α
and -β are respectively equal to those of the f- and
k-schemes of Ref. [11], up to discretization effects. The
introduction of schemes-γ and -δ is appealing only in a χSF
setup, since in the SF setup fV ¼ 0, while kṼ requires the
extra counterterm cV.
It is well known that the anomalous dimension γT of the

tensor operator is scheme dependent; in perturbation theory
this dependence sets in at NLO. Thus at high energies some
schemes convergence better to their perturbative behavior
than others. Moreover, both the statistical accuracy and the
size of the discretization errors afflicting our nonperturba-
tive results depend on the renormalization scheme. Having
more schemes at our disposal may potentially provides
extra handles for a better control of these effects.
By definition T̃μν is proportional to Tρσ (with indices ρ, σ

complementary to μ, ν). Therefore a common renormali-
zation factor ZT renormalizes both operators. Moreover, the
ratios (15)–(16) are related in the continuum limit through
Eqs. (6a)–(6e). From these considerations we deduce that
the renormalization constants thus defined only differ by
discretization effects and hence

Rl
TT̃
≡ iluu

0
T̃
ðx0Þ

ludT ðx0Þ
¼ 1þOða2Þ: ð18Þ
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As shown in Fig. 1, the ratio Rl
TT̃

is numerically different
from unity by a small deviation of per thousand, and
extrapolates to 1 with an accuracy of ∼0.1‰. This shows
that the correlation function luu

0
T is numerically extremely

close to lud
T̃

and that it provides redundant information
within our statistical errors. In this article we have therefore
chosen to present only the results derived from ludT and the
renormalization scheme (15); the renormalization condition
(16) will not be used.
The definition of the lattice step-scaling function (SSF)

is fairly standard:

ΣχSF;ud
T ðg20; a=LÞ ¼

ZχSF;ud
T ðg20; 2L=aÞ
ZχSF;ud

T ðg20; L=aÞ
; ð19Þ

Henceforth the superscripts χSF,ud will be dropped;
instead indices -α, β, -γ, and -δ will be introduced where
necessary, in order to indicate the scheme we are referring
to. The above SSF has a well defined continuum limit:

σTðuÞ ¼ lim
a→0

ΣTðg20; a=LÞjḡ2ðLÞ¼u: ð20Þ

The squared renormalized finite-volume coupling
ḡ2ðLÞ ¼ u is meant to be held fixed while the continuum
limit is taken. Although ΣTðg20; a=LÞ is computed at specific
values of the bare coupling and lattice volume, we are
interested in its behavior with varying renormalized cou-
pling; hence we will also use the notation ΣTðu; a=LÞ. In
terms of the renormalized continuum tensor operator
½Tud

μνðμÞ�R, defined at a scale μ ¼ 1=L, which corresponds
to a renormalized coupling ḡ2ðμÞ ¼ u, the continuum step-
scaling function is given by the ratio

σTðuÞ ¼
½Tud

μνðμ=2Þ�R
½Tud

μνðμÞ�R

����
ḡ2ðμÞ¼u

: ð21Þ

In what follows, we will simplify the notation by dropping
subscripts (μ, ν) and superscripts (u, d) in Tud

μν ; cf. Eq. (31).
The continuum SSF can also be expressed in terms of the
tensor anomalous dimension γT and the Callan-Symanzik
β-function as

σTðuÞ ¼ exp

�Z ffiffiffiffiffiffiffi
σðuÞ

p
ffiffi
u

p dx
γTðxÞ
βðxÞ

�
; ð22Þ

where σðuÞ ¼ ḡ2ðμ=2Þjḡ2ðμÞ¼u. For the series expansions of
β; γT, and σT see Appendix A.

III. NUMERICAL SIMULATIONS

Our numerical setup has been detailed in Ref. [7]. For
completeness, we make a résumé of the most important
points. The lattice volumes L4 in which simulations are
performed define the range of accessible energy scales
μ ¼ 1=L. We distinguish two energy regimes [29–31]. In
the high-energy range (μ0=2 ∼ 2 GeV ⪅ μ ⪅ MW) the
renormalized squared coupling ḡ2SF is the nonperturbative
Schrödinger functional (SF) coupling first introduced in
Ref. [32,33]. In the low-energy one (ΛQCD ⪅ μ ⪅ μ0=2) ḡ2GF
is the squared gradient flow (GF) coupling defined in
Ref. [30,34]. This allows for a very precise computation of
the Callan-Symanzik β-function and ultimately ofΛQCD; see
Ref. [35]. In Refs. [29–31], the switching scale μ0=2 is
implicitly defined by the value of the coupling ḡ2SFðμ0Þ; see
Eqs. (30)–(32) below. The matching between schemes was
subsequently specified by determining the value of the GF
coupling at the same scale; see Eq. (44) below. In physical
units this corresponds to a switching scale μ0=2 ∼ 2 GeV;
see Ref. [35].
Our gauge ensembles are practically those described in

Ref. [8]: different lattice regularizations were adopted in
each energy regime. At high energies, simulations were
carried out using the plaquette gauge action [36] and the
clover fermion action [37] with the nonperturbative value of
csw [38] and the one- [39] and two-loop [40] values of c̃t

and ct respectively. At low energies the tree-level
Symanzik-improved (Lüscher-Weisz) gauge action was
used [41]. The fermion action was the OðaÞ-improved
clover [37], with the nonperturbative value of the improve-
ment coefficient csw [42] and one-loop values of c̃t [30,43]
and ct [44].
The simulations and bare parameter tunings have been

described in Ref. [8]: At high energies (SF range) we have
the 8 values of the squared renormalized coupling uSF listed
in Appendix B. For each of these couplings, corresponding
to a fixed renormalization scale μ ¼ 1=L, the inverse bare
coupling β ¼ 6=g20 was tuned appropriately for L=a ¼ 6, 8,
12. At the strongest coupling uSF ¼ 2.012 an extra finer

FIG. 1. Ratio Rl
TT̃

as function of the squared lattice spacing.
Data of the same color refers to the same renormalized coupling
value u, with open circles indicating couplings in the high energy
region (SF) and filled circles those at low energies (GF). The
diamond symbols show the results of the linear continuum
extrapolation at fixed values of the coupling u.
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lattice with L=a ¼ 16 was simulated. At low energies (GF
range), simulations were carried out for the 7 values of the
squared renormalized coupling uGF listed in Appendix E.
The inverse bare coupling β ¼ 6=g20 was chosen so that

uGF remains approximately constant for the three lattice
volumes L=a ¼ 8, 12, 16. In both the high- and the low-
energy ranges, gauge ensembles were generated at each
ðβ; L=aÞ and ðβ; 2L=aÞ combination. At fixed ðβ; L=aÞ the
hopping parameter κ was tuned to its critical value κc in
standard Alpha fashion [8]. Note that fermion fields have
SF boundary conditions in space-time with a periodicity
angle θ ¼ 1=2. All correlation functions were computed in
the Q ¼ 0 topological sector of the theory. (These choices
were also tacitly adopted in our previous paper [7],
concerning the RG-running of the quark mass.)
This concludes the recapitulation of the simulations

generating Nf ¼ 3 sea quark ensembles. In Ref. [11] these
ensembles were combined with the SF renormalization
conditions (13) and (14) in order to determine the non-
perturbative renormalization and RG-running of the tensor
composite field in a unitary setup. We adopt a different
approach: As in Ref. [7], valence quark propagators are
obtained in a mixed-action framework by inverting the
Dirac-Wilson operator with a Clover term in the bulk and
χSF boundary conditions in the whole energy range. As
mentioned earlier, an important ingredient of the χSF lattice
formulation [9] consists in the introduction of two boun-
dary terms in the action, namely zf and ds. In Ref. [7] zf was
determined as a function of β, so as to ensure that chiral and
flavor symmetries are recovered in the continuum and thus
the theory belongs to the same universality class as other
lattice regularizations.
Concerning the second boundary term ds, we had argued

in Ref. [7] that it is safe to use the tree-level value dð0Þs ¼
0.5 for the SSF ΣP. We use the same tree-level estimate here
for ΣT. It is worth recalling that in some sense the χSF
counter-term ds “replaces” the SF one c̃t. The latter
counterterm, known at one-loop in PT [39], introduces
barely noticeable systematic effects in the pseudoscalar
renormalization parameter ZP [8], but is a measurable
source of systematic uncertainty for the tensor parameter
ZT; see Ref. [11]. An explanation for this is provided by
perturbation theory: The dependence of ZP on c̃t is of higher
order in the coupling than naively expected due to some
“accidental” cancellation between different terms, only
valid at one-loop. Such a cancellation is absent in the
perturbative estimate of ZT. It is plausible that this is the
reason for the stronger dependence of the nonperturbative
SF results of ZT on c̃t, seen in Ref. [11]. A similar situation
also characterizes the perturbative ZP and ZT results in χSF,
obtained in Ref. [20]: Due to accidental cancellations,
dependence of ZP on ds is absent at one-loop order, while
being present in ZT. However, the one-loop dependence of
ZT on ds is very weak. Given this last property, we have
used the tree-level value for ds in our analysis.

In this work we always use the Γ-method error analysis
of Refs. [45,46]. The Γ-method-based package used for the
error propagation was developed in Refs. [47,48]. The code
to compute the χSF correlation functions is built on
openQCD 1.0 and previously used in Ref. [24].

IV. TENSOR RUNNING AT HIGH ENERGIES

We now turn to the computation of the step-scaling
functions themselves, which are the main input for the
determination of the nonperturbative running of the tensor
operator. On each pair of (L, 2L) ensembles, and for each
scheme-α, -β, -γ, -δ, we compute ΣχSF;ud

T , defined in
Eq. (19); henceforth the superscripts χSF and ud will be
dropped:

ΣTðu; a=LÞ ¼
ZTðu; 2L=aÞ
ZTðu; L=aÞ

: ð23Þ

Occasionally a superscript α, β, γ, δ will indicate the
relevant χSF-scheme.
In both the high energy and low energy regimes we work

at three different lattice spacings, except for the largest
coupling in the high energy range (the switching point,
u ¼ 2.0120) where we use four lattice spacings. We note
here that the values of ΣT at different couplings are
statistically uncorrelated. In the spirit of Ref. [33] and as
done in Refs. [7,8], we also define the ratio of the lattice
SSF ΣTðu; a=LÞ, computed in 1-loop lattice perturbation
theory, to the 1-loop quantity in the L=a ¼ ∞ limit, in
order to determine the numerical effect of the lattice
artefacts appearing at this order:

Σ1-loop
T ðu; a=LÞ
σ1-loopT ðuÞ ¼ 1þ uδTða=LÞ; ð24Þ

δTða=LÞ ¼ γð0ÞT lnð2ÞϵTða=LÞ: ð25Þ

In the above, γð0ÞT is the universal anomalous dimension
coefficient for the tensor field; see Eq. (A4). The lattice
artefacts of Oðg20anÞ may be subtracted from ΣT, computed
nonperturbatively, according to

Σsub
T ðu; a=LÞ≡ ΣTðu; a=LÞ

1þ uδTða=LÞ
: ð26Þ

The remaining discretization errors in Σsub
T are Oðg40a2Þ.

However there is a subtlety in the present work, where
we use the subtraction coefficients ϵTða=LÞ obtained in
[20,43] and quoted in Table II. These have been calculated
perturbatively using the asymptotic values of the critical
quark mass mcrða=L ¼ 0Þ and zfða=L ¼ 0Þ, rather than the
mcrða=LÞ and zfða=LÞ corresponding to a finite a=L. Thus
in practice an Oðg20a2Þ effect could be present, which will
be discussed below.
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Our results for the ZT’s, ΣT’s, and Σsub
T ’s for all values of

u, L=a, β and κc, in all four schemes, are gathered in
Appendix B (Tables IX–XII).
As in Ref. [7], the ΣT dependence on the gauge coupling

and number of lattice sites may be expressed as a double
power series:

ΣTðu; a=LÞ ¼ 1þ
X

i¼1;j¼0

bijuiða=LÞj: ð27Þ

The continuum step-scaling function σT is then given by
σTðuÞ¼ lima→0ΣTðu;a=LÞ. Note that upon subtracting lead-
ingOðuÞ discretization errors fromour data [cf. Eq. (26)], we
could also set the terms b1j>0 to zero. For the reasons
explained above (possible residual Oðg20a2Þ due to ϵT), we
will refrain from setting b1j>0 ¼ 0. We exclude the OðaÞ
contributions from Eq. (27) (i.e. bi1 ¼ 0) because of the
presence of a Clover term in the action(s) and the fact that the
boundary improvement described at the end of Sec. III is
deemed adequate. Powers of ða=LÞ3 and higher cannot be
excluded. Such odd powers are present both in the SF sea-
quarks and in the χSF valence quarks. Moreover, we have
ignored the presence of powers of lnða=LÞ and their
resummation, resulting to discretization effects of the form
a2½αMS

s ð1=aÞ�γ, with γ generically indicating the anomalous
dimension of a Symanzik counterterm; cf. Refs. [49–51].
In Ref. [8] several fit and extrapolationmethods have been

proposed in order to compute the continuum SSF σPðuÞ and
the anomalous dimension γPðuÞ of the pseudoscalar density
from the lattice SSFΣPðuÞ.We apply similarmethods in order
to obtain σTðuÞ and γTðuÞ as continuum functions from the
ΣTðuÞ data. The ultimate goal is the computation of the
running factor TRGI=½Tðμ0=2Þ�R, i.e. the ratio of the renorm-
alization group invariant (RGI) tensor TRGI to the renormal-
ized tensor field ½Tðμ0=2Þ�R in a χSF scheme.

A. u-by-u fits

The first method, denoted here as σT:u-by-u, is the
original Alpha proposal [33], in which ΣT is written as a
linear function in ða=LÞ2:

ΣTðu; a=LÞ ¼ σTðuÞ þ ρTðuÞða=LÞ2: ð28Þ
With u held constant, σT and ρT are linear fit parameters.
We show results from these fits in Appendix C

(Tables XIII–XVI), both for ΣTðu; a=LÞ and Σsub
T ðu; a=LÞ.

The quality of the fits is satisfactory, in that χ2=d:o:f: ⪅ 1 in
most of the 32 cases analyzed (8 couplings for each of 4
schemes). For the ΣT fits, χ2=d:o:f: is substantially greater
than 1 only for three u’s; two in scheme-γ and one in
scheme-δ. For the Σsub

T fits, χ2=d:o:f: is substantially greater
than 1 only for three u’s; one in scheme-β and two in
scheme-γ. Comparing χ2=d:o:f: from fitting ΣT to that from
Σsub

T , we see that the former is almost always bigger, with
only a handful of exceptions: u ¼ 1.11 (schemes − α, β, γ)

and u ¼ 1.2656 (schemes − γ;−δ). As seen in the Tables of
Appendix C, the dependence of ΣT on ða=LÞ2 [i.e. the
various slopes ρTðuÞ] is quite varied for each u and for each
scheme, with ρsubT ðuÞ < ρTðuÞ. Nevertheless, the extrapo-
lated σTðuÞ’s are compatible to the σsubT ðuÞ’s. Henceforth we
will only analyze and quote results from the Σsub

T data,
dropping the subscript “sub” from now on.
The next step in this procedure consists in fitting the

eight extrapolated σTðuÞ results by the polynomial

σTðuÞ ¼ 1þ
Xnσ
i¼1

bi0ui; ð29Þ

with b10 and b20 fixed by perturbation theory; cf. Eqs. (A16).
We perform fits with nσ ¼ 3 (one fitting parameter b30),
nσ ¼ 4 (two fitting parameters, b30 and b40) and nσ ¼ 5
(three fitting parameters, b30, b40, and b50). For schemes-α
and -β, χ2=d:o:f: increases as nσ grows, from ∼1.1 to a
maximum of ∼2.3. The situation improves for schemes-γ
and -δ, with χ2=d:o:f: ⪅ 0.9 (except for the χ2=d:o:f: of
scheme-γ,∼1.3 fornσ ¼ 3). As the errors of the fit parameter
b30 grows by about an order ofmagnitudewhen nσ ¼ 5 in all
schemes, this fit is discarded. The b30 results for nσ ¼ 4 are
shown in Eq. (A17).
The resulting continuous function for σTðuÞ is readily

calculated for the coupling values provided by the recursion

ḡ2SFðμ0Þ ¼ 2.012; uk ¼ ḡ2SFð2kμ0Þ; ð30Þ

and the RG evolution can be determined by the renormal-
ized operator ratios at different scales

RðkÞ ¼ ½Tð2kμ0Þ�R
½Tðμ0=2Þ�R

¼
Yk
n¼0

½σTðunÞ�−1: ð31Þ

Recall that [30]

uSFðμ0=2Þ ¼ ḡ2SFðμ0=2Þ ¼ σð2.012Þ ¼ 2.452ð11Þ: ð32Þ

Finally, we can construct the running factor that takes a
renormalized tensor composite field in our chosen χSF
scheme at the scale μ0=2 to the renormalization group
invariant tensor TRGI:

TRGI

½Tðμ0=2Þ�R
¼ TRGI

½Tð2kμ0Þ�R
½Tð2kμ0Þ�R
½Tðμ0=2Þ�R

: ð33Þ

The first factor on the rhs can be calculated in perturbation
theory from

TRGI

½Tð2kμ0Þ�R
¼
�
ḡ2SFð2kμ0Þ

4π

�
−γð0ÞT =2b0

× exp

�
−
Z

ḡSFð2kμ0Þ

0

dx

�
γTðxÞ
βðxÞ −

γð0ÞT

b0x

��
; ð34Þ
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with γT and β given by Eqs. (A1)–(A5). The second factor
on the rhs of Eq. (33) is given in Eq. (31). In Ref. [7],
we had verified that the analogous factor for the running of
the quark mass can be reliably computed for very high
k-values, which surpass the high-end of the energy range
covered by our simulations. We have checked that the same
stability is displayed in the case at hand.
A second procedure, labeled as γT:u-by-u, starts off

just like σT:u-by-u; at constant u, we fit the data points
ΣTðu; a=LÞ with Eq. (28), obtaining σTðuÞ. Then the
continuum values σTðuÞ are fitted with

σTðuÞ ¼ exp

�Z ffiffiffiffiffiffiffi
σðuÞ

p
ffiffi
u

p dx
γTðxÞ
βðxÞ

�
; ð35Þ

where in the integrand we use Eqs. (A1), (A2a)–(A2d) for
the Callan-Symanzik β-function and Eqs. (36), (A4), (A5)
for the anomalous dimension γT. The series

γTðgÞ ¼ −g2
Xnγ
n¼0

γðnÞT g2n; ð36Þ

is truncated at nγ ∈ ½2;…; 5�, with γðkÞT for k ≥ 2 free fit
parameter(s). The fits have χ2=d:o:f: < 0.5. These are
significantly smaller values that those obtained when fitting
σTðuÞ with the σT:u-by-u procedure. The nγ ¼ 2 results

(one fitting parameter γð2ÞT ) have very small errors, while

nγ ¼ 3 results (two fitting parameters γð2ÞT and γð3ÞT ) are
predictably larger. For nγ ¼ 4, 5 the errors increase
overwhelmingly, so these cases are discarded. As an

example, the fit parameter γð2ÞT for all four schemes is
given in Eq. (A18).
Having thus obtained an estimate for the anomalous

dimension γTðuÞ, we arrive at another determination of the
renormalized tensor ratios, using the expression

RðkÞ ¼ ½Tð2kμ0Þ�R
½Tðμ0=2Þ�R

¼ exp

�
−
Z ffiffiffiffiffi

u−1
p

ffiffiffiffi
uk

p dx
γTðxÞ
βðxÞ

�
; ð37Þ

with the couplings determined through Eq. (30).
Since our fit functions have the correct asymptotic

behavior built in for g2 → 0, the running factor of
Eq. (33) can now be computed directly from

TRGI

½Tðμ0=2Þ�R
¼

�
ḡ2SFðμ0=2Þ

4π

�
−γð0ÞT =2b0

× exp

�
−
Z

ḡSFðμ0=2Þ

0

dx

�
γTðxÞ
βðxÞ −

γð0ÞT

b0x

��
: ð38Þ

B. Global fits

A third procedure is a variant of the method σP: global,
applied in Ref. [8], which we here denote as σT: global.

We start by rewriting Eq. (27) as a more general, if
truncated, power series

ΣTðu; a=LÞ ¼ 1þ
Xnσ
i¼1

Xjmax

j¼0

bijuiða=LÞj; ð39Þ

with bi1 ¼ 0, so as to exclude linear discretization effects.
As previously discussed at the beginning of Sec. IV, we also
allow for the possibility bi3 ≠ 0, in order to check for
Oða=LÞ3 contaminations. The coefficients b10, b20 are
fixed by perturbation theory; cf. Eq. (A16). The complete
dataset is globally fit by the above expression and σT is
obtained by the bi0 terms of the above series. These σT

results are then used as in Eqs. (31), (33), and (34). We
investigate the stability of TRGI=½Tðμ0=2Þ�R [cf. Eq. (33)]
and its errors for various choices of nσ and jmax in the
fit (39).
We denote by ½nσ; jmax; ðL=aÞmin� a fit in which series

(39) is truncated at nσ, jmax and the data corresponding to
ðL=aÞmin are included in the fit. In practice we will consider
two cases: ðL=aÞmin ¼ 6 (i.e. all datapoints included) and
ðL=aÞmin ¼ 8 (i.e. L=a ¼ 6 datapoints excluded). In the
σT:u-by-u analysis, nσ ¼ 5 fits were discarded. Also here
we only analyse nσ ¼ 3, 4. Fits with [3, 3, 8], [4, 3, 8] are
immediately discarded, as their errors increase beyond
control. The same is observed for [3, 4, 8], [4, 4, 8]; note
that for the last two fits we allow for jmax ¼ 4 (i.e. an
Oðða=LÞ4Þ discretization effect), while suppressing the
Oðða=LÞ3Þ term (i.e. we set bi3 ¼ 0). In conclusion, the
σT: global procedure is applied with the following
parameters:

(i) with jmax ¼ 2, wevarynσ ¼ 3, 4 and ðL=aÞmin ¼ 6, 8;
(ii) with jmax ¼ 3, we vary nσ ¼ 3, 4 and fix

ðL=aÞmin ¼ 6;
(iii) with jmax ¼ 4 (and no ða=LÞ3 allowed), we vary

nσ ¼ 3, 4 and fix ðL=aÞmin ¼ 6.
In all these cases, χ2=d:o:f: is much smaller than 1. We will
discuss these results below.
Finally, our fourth procedure, denoted as γT: global, is a

variant of γP: global of Ref. [8]. It is based on a combination
of Eqs. (35) and (39):

ΣT ¼ exp

�Z ffiffiffiffiffiffiffi
σðuÞ

p
ffiffi
u

p dx
γTðxÞ
βðxÞ

�
þ
Xn0σ
i¼1

Xjmax

j¼2

bijuiða=LÞj: ð40Þ

The Callan-Symanzik coefficients bjði ¼ 0;…; 3Þ, and

the anomalous dimension coefficients γðjÞT (j ¼ 0, 1) are
fixed as discussed in the γT:u-by-u procedure. The
power series of γT terminates at g2nγ . Each fit is now
labeled by ½nγ; n0σ; jmax; ðL=aÞmin�.
In the γT:u-by-u analysis, nγ ¼ 4, 5 fits were discarded.

For this reason, also here we only analyse nγ ¼ 2, 3. We
vary n0σ in the range [2, 4], finding that its value has no
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impact on the results. Moreover, when jmax ¼ 3 or jmax ¼ 4
(with the cubic power again excluded in the presence of the
quartic one) and ðL=aÞmin ¼ 8, the errors increase beyond
control and these fits are discarded. In conclusion, the third
procedure will be applied with the following parameters:

(i) with jmax¼2, we vary nγ ¼2, 3 and ðL=aÞmin ¼ 6, 8;
(ii) with jmax ¼ 3, we vary nγ ¼ 2, 3 and fix

ðL=aÞmin ¼ 6;
(iii) with jmax ¼ 4 (and no ða=LÞ3 allowed), we vary

nγ ¼ 2, 3 and fix ðL=aÞmin ¼ 6.
In all these cases, χ2=d:o:f: is much smaller than 1.
Similarly to what we did in the γT:u-by-u case, also here
we determine the running factor TRGI=½Tðμ0=2Þ�R from
Eq. (38). The fit results are collected in Appendix D
(Table XVII) (also the discarded ones, shown for com-
parison). Those of scheme-γ tend to be the least stable as
we change fitting procedure and/or number of fitting
parameters. Henceforth we concentrate on the other three
schemes, showing results for the γ-fit only occasionally for

comparison. The results of scheme-δ tend to have the
smallest relative errors. The σT:u-by-u and γT:u-by-u results
are not sensitive to the choice of nσ and nγ . In the two
u-by-u procedures we have allowed for discretization
effects which are at most ða=LÞ2. Comparing these results
with the ones from the two global fit procedures with
jmax ¼ 2, we find that they are always compatible for
schemes-α, β, δ. For this reason, we will concentrate on the
global fits only. When jmax ¼ 2, it is preferable to discard
the fits with ðL=aÞmin ¼ 6 (i.e. the fits that include also
points at the largest lattice spacing). An example of the
fit quality is shown in Fig. 2, for γT: global fits with
½nγ; n0σ; jmax; ðL=aÞmin� ¼ ½2; 2; 4; 6�.
The bottom line is that, for each scheme, we prefer

results from the two global procedures, obtained with
½jmax; ðL=aÞmin� ¼ ½2; 8� and ½jmax; ðL=aÞmin� ¼ ½3 or 4; 6�.
The power series truncations nσ; n0σ, and nγ vary as shown
in Appendix D (Table XVII). We also display the fit results
in Fig. 3. The comparison of the plots shows that:

FIG. 2. Example of the γT: global fit of the step-scaling data ΣTðu; a=LÞ, with ½nγ; n0σ ; jmax; ðL=aÞmin� ¼ ½2; 2; 4; 6�, in the high-energy
regime (see Sec. IV for fit details). The filled circles give the raw data while the bands are the results returned from the fit at the respective
u values. The data points of the same color are at a fixed value of the renormalized squared coupling u, indicated in the inset. Some
points are slightly shifted in x for better readability.
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(i) Results in scheme-α tend to be stable as we vary the
number of the fit parameters, with errors that tend to
be larger than those in the other schemes.

(ii) Results in the scheme-β are the most stable as we
vary the number of the fit parameters, with errors
that are smaller that those in scheme-α, comparable
to those in scheme-γ, and larger that those in
scheme-δ.

(iii) Results in scheme-γ show the largest spread of the
mean values; we point out that the spread would
appear even bigger had we included the previously
discarded fits. Errors are comparable to those
in scheme-β.

(iv) Results in scheme-δ have the smallest errors.
Although the mean values from different fits are
compatible within errors, results which include
L=a ¼ 6 datapoints tend to be systematically lower
than those which do not. In scheme-γ, results which
include L=a ¼ 6 datapoints tend to be systemati-
cally higher than those which do not; however in this
case this systematic effect is less prominent.

C. Final values

The correlated results of each scheme are model-
averaged according to AIC (Aikake Information
Criterion); see Ref. [52]. Given Nfits results hOin from
several fits (n ¼ 1; � � �Nfits), the AIC average of an
observable O is given by

hOi ¼
XNfits

n¼1

wAIC
n hOin; ð41Þ

where for the nth fit the AIC weight is

wAIC
n ∼ N exp

�
−
1

2
ðχ2n þ 2Nparam

n þ 2Ncut
n Þ

�
; ð42Þ

with Nparam the number of fit parameters and Ncut the
number of datapoints excluded in the fit. Inverse-variance
weighted averaging produces similar results with slightly
smaller errors. The AIC results from the 24 datapoints of
Fig. 3 are

FIG. 3. Comparison of different fit results for TRGI=½Tðμ0=2Þ�R. The open circles stand for γT: global fits; the close circles for σT:
global. The fit parameters for each point, explained in the plot insets, are shown in the abscissa. The filled square is the average of all
data by the AIC method [52].
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TRGI

½Tðμ0=2Þ�R
¼

8>>><
>>>:

1.1325ð117Þ scheme-α

1.1671ð102Þ scheme-β

1.2952ð90Þ scheme-γ

1.2194ð65Þ scheme-δ

ð43Þ

In conclusion our favorite choice in the high energy range is
scheme-β because of its stability. Second acceptable
options are scheme-α, with larger, more conservative
errors, and scheme-δ, with smaller errors. At this stage
of the analysis, scheme-γ appears to behave worse than the
others, on account of the larger spread of results displayed
in Fig. 3. Among the undiscarded fits, those that tend to
deviate more from the average are those with jmax ¼ 2 and
a higher number of parameters: nγ ¼ 3 for the γT fits and
nσ ¼ 4 for the σT fits. However, as can be seen from
Table XVII, all these fits have very small AIC weights and
they are of little significance for the average.

V. TENSOR RUNNING AT LOW ENERGIES

Having computed the running factor to convert the
renormalized mass at the scale μ0=2 to the renormalization
group invariant mass, we now turn to the computation of
the running factor in the low-energy (GF) regime. Recall
that [30]

uGFðμ0=2Þ ¼ g2GFðμ0=2Þ ¼ 2.6723ð64Þ: ð44Þ

Whereas in the high-energy (SF) regime, we had lattices
of extent L=a ¼ 6, 8, 12 (and L=a ¼ 16 at u ¼ 2.0120), in
the low-energy (GF) regime our lattices have extentL=a¼8,
12, 16. Our full results for the ZT’s and ΣT’s, for all values of
u, L=a, β and κc, in all four schemes, are gathered in
Appendix E (Tables XVIII–XXI). Note that Σsub

T ’s are not
useful in the nonperturbative energy range under consid-
eration. The values of ḡ2GFðg20; a=LÞ have been computed
following the procedure described in Ref. [30]. Since ḡ2GF
and ΣT are computed on the same ensembles, they are corre-
lated observables. Correlations have been taken into account
employing the methods and package of Refs. [47,48]. The
low energy hadronic scale μhad is defined by

uðμhadÞ ¼ 9.25; ð45Þ

corresponding to a physical scale μhad ¼ 233ð8Þ MeV [35].
Since the ratio of the switching scale μ0=2 ∼ 2 GeV to the
hadronic scale μhad is not a power of two, it is inconvenient
to carry out the analysis in terms of the step scaling function
σTðuÞ, which only expresses the tensor running between
consecutive scales μ and μ=2. Thus, we rule out σT:u-by-u
and σT: global fits. Moreover, in the GF regime the bare
couplings g20 have not been precisely tuned to a fixed value
ḡ2GFðg20; a=LÞ, as a=L is varied. This implies that γT:u-by-u
fits are also not to be implemented. It is therefore preferable

to apply the process γT: global, adapted to the current low-
energy regime; i.e. without input from perturbation theory.
This means that now Eq. (40) is written as

ΣTðu; a=LÞ ¼ exp

�Z ffiffiffiffiffiffiffi
σðuÞ

p
ffiffi
u

p dxfðxÞ
�

þ
Xn0σ
i¼1

Xjmax

j¼2

cijuiða=LÞj: ð46Þ

where fðgÞ≡ γTðgÞ=βðgÞ is expressed as a truncated series

fðgÞ ¼ 1

g

Xnf
k¼0

fkg2k: ð47Þ

The coefficients fk are determined by fitting all datapoints
ΣTðu; a=LÞ with Eq. (46). The RG-running for the tensor in
the low-energy range is then given by

½Tðμ0=2Þ�R
½TðμhadÞ�R

¼ exp

�Z
ḡðμhadÞ

ḡðμ0=2Þ
dxfðxÞ

�
: ð48Þ

The tensor anomalous dimension is obtained as the product
γTðgÞ ¼ fðgÞβGFðgÞ, with fðgÞ known from the fit (46),
(47) and the Callan-Symanzik function in the low-energy
(GF) regime, parametrized as in Ref. [30]:

βGFðgÞ ¼ −
g3P

2
k¼0 pkg2k

; ð49Þ

with

p0 ¼ 16.63� 0.61;

p1 ¼ −0.05� 0.20;

p2 ¼ 0.008� 0.016: ð50Þ

(The results for p0, p1, and p2, having been computed
afresh on configuration ensembles which differ—by a few
configurations—from those of Ref. [30], are compatible but
not identical to those of Refs. [8,30].)
We denote by ½nf ; n0σ; jmax; ðL=aÞmin� a fit in which

series (47) is truncated at nf , the double series of
Eq. (46) is truncated at n0σ; jmax and the data correspon-
ding to ðL=aÞmin are included in the fit. In practice we will
consider two cases: ðL=aÞmin ¼ 8 (i.e. all datapoints
included) and ðL=aÞmin ¼ 12 (i.e. L=a ¼ 8 datapoints
excluded). Whenever we allow for jmax ¼ 4 (i.e. an
Oðða=LÞ4Þ discretization effect), we suppress the
Oðða=LÞ3Þ term (i.e. we set bi3 ¼ 0). In conclusion, fits
are performed with the following parameters:

(i) with jmax ¼ 2, we vary nf ¼ 2, 3, n0σ ¼ 2, 3, 4 and
ðL=aÞmin ¼ 8, 12;

(ii) with jmax ¼ 3, we vary nf ¼ 2, 3, n0σ ¼ 2, 3, 4 and
fix ðL=aÞmin ¼ 8;
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(iii) with jmax ¼ 4 (and ða=LÞ3 not allowed), we vary
nf ¼ 2, 3, n0σ ¼ 2, 3, 4 and fix ðL=aÞmin ¼ 8.

All α-scheme results have χ2=d:o:f:∈ ½0.3; 0.4�. For the
β-scheme, χ2=d:o:f:∈ ½0.4; 0.6�. For the γ-scheme,
χ2=d:o:f:∈ ½0.2; 0.5�, while for the δ-scheme, χ2=d:o:f:∈
½0.1; 0.3�. An example of the fit quality is shown in Fig. 4,
for ½nγ; n0σ; jmax; ðL=aÞmin� ¼ ½2; 2; 2; 12�. It is a represen-
tative choice, since this fit has a big weight on the final
average proposed at the end of this section; see Table XXII
of Appendix F. More details about this fit will be given in
Appendix A.
The results for ½Tðμ0=2Þ�R=½TðμhadÞ�R are summarized in

Appendix F and Fig. 5. We see that:
(i) For each scheme, when only ða=LÞ2 discretization

effects are allowed in Eq. (46), results are stable
as we vary nf and n0σ. Unsurprisingly, the errors
for ðL=aÞmin ¼ 12 fits are larger than those for
ðL=aÞmin ¼ 8 fits.

(ii) Predictably, the introduction of either ða=LÞ3 or
ða=LÞ4 discretization effects also results in an
increase of the error in all schemes.

(iii) Upon comparing results across schemes, we see that
scheme-δ is the most accurate and scheme-α is the
least accurate, in the sense that they have the
smallest and biggest errors respectively.

(iv) Similarly to what happens in the high-energy regime,
schemes-α, -β, and -δ show remarkable stability
with the variation of the fit parameters ½nf ; n0σ;
jmax; ðL=aÞmin�. For what concerns scheme-γ, we find
that results with ½nf ; n0σ; jmax; ðL=aÞmin� ¼ ½�; �; 2; 8�
are systematically shifted toward the top end of the
error bars of all other results. For this reason, these
scheme-γ results are excluded for the final average.
They are not shown in Fig. 5 but they can be found in
Appendix F. For the other schemes all the fits are
included in the final estimate.

FIG. 4. Example of the γT: global fit of the step-scaling data ΣTðu; a=LÞ, with ½nγ; n0σ ; jmax; ðL=aÞmin� ¼ ½2; 2; 2; 12�, in the low-energy
regime (see Sec. V for fit details). The filled circles give the raw data while the bands are the results returned from the fit at the respective
u values. The data points of the same color are at approximately the values of u ¼ ḡ2ðL=a ¼ 16Þ indicated in the inset. Some points are
slightly shifted in x for better readability.
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Combining the above considerations we conclude that our
preferred scheme is β, with γ and δ second best. On account
of its relatively bigger errors, scheme-α is also an accept-
able conservative option.
The correlated results of each scheme are model-

averaged according to AIC [52]. Inverse-variance weighted
averaging produces similar results with slightly smaller
errors. The AIC results are

½Tðμ0=2Þ�R
½TðμhadÞ�R

¼

8>>><
>>>:

0.648ð14Þ scheme-α

0.752ð11Þ scheme-β

0.754ð16Þ scheme-γ

0.7825ð96Þ scheme-δ

ð51Þ

VI. TENSOR RUNNING AT ALL ENERGY SCALES

We can now obtain TRGI=½TðμhadÞ�R from the product of
the high-energy factor TRGI=½Tðμ0=2Þ�R and the low-energy
one ½Tðμ0=2Þ�R=½TðμhadÞ�R, computed in Secs. IV and V
respectively. Before computing it in Sec. VII, we display in

the present section some graphic examples of the quality
of the RG-running we have achieved for the tensor com-
posite field. In Fig. 6 we show an example of TRGI=½TðμÞ�R
for the four schemes α, β, γ, δ, as a function of the
energy scale μ in physical units. It is obtained by using the
results of Ref. [35]: in the notation of that work, a reference
scale μ�ref ¼ 478ð7Þ MeV is related to a hadronic scale
μhad;1 ¼ μ�ref=2.428ð18Þ, which corresponds to uhad;1 ≡
ḡ2GFðμhad;1Þ ¼ 11.31. From the pair ½μhad;1; uhad;1� and the
Callan-Symanzik β-function of our Eqs. (49), (50) we
obtain μ in physical units for any other ḡ2GFðμÞ. For
example, from Eq. (44) we have μ0=2 ¼ 2.109ð57Þ GeV.
Finally, Eq. (32) for ḡ2SFðμ0=2Þ and the RG-running of the
β-function of Eqs. (A1), (A2a)–(A2d) gives us μ in physical
units in the high-energy range. These are the values of the
abscissae of Figs. 6.
In the high-energy (SF) range, the curve and datapoints of

Fig. 6 correspond to fit parameters ½nγ; n0σ; jmax; ðL=aÞmin� ¼
½2; 2; 3; 6�, while in the low-energy (GF) range they
correspond to fit parameters ½nf ; n0σ; jmax; ðL=aÞmin� ¼
½2; 2; 2; 12�. The continuum extrapolation of these fits has

FIG. 5. Comparison of different fit results for ½Tðμ0=2Þ�R=½TðμhadÞ�R. The fit parameters for each point are shown in the abscissa. The
filled square is the average of all data by the AIC method [52]. For each scheme we show only the fits that are included in the averages.
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been shown in Figs. 2 and 4. They are good representatives
of the final results: as seen from the relevant entries of
TablesXVII (AppendixD) andXXII (Appendix F), these fits
have high AIC weights and the results they produce for the
running factors agreewith those from all-fit-averages, both in
the values and in the entity of the errors.
For high energies, once γT=β is extracted from the fit, the

quantity TRGI=½Tðμ0=2Þ�R is known from Eq. (38), while
½TðμÞ�R=½Tðμ0=2Þ�R is known from Eq. (37), computed at
any scale μ, rather than at 2kμ0. These two ratios are
combined to give the nonperturbative continuous band with
errors, shown in Fig. 6 for scales μ ≥ μ0=2. In the low-
energy range, again γT=β is extracted from the fit and the
ratio ½Tðμ0=2Þ�R=½TðμÞ�R can be worked out as in Eq. (48),
for all scales μ, rather than just for μhad. This ratio,
multiplied by the high-energy factor TRGI=½Tðμ0=2Þ�R,
gives the nonperturbative continuous band with errors at

low energies μ < μ0=2. We have also plotted solid points
on top of the fit bands at regular intervals of scales differing
by a factor of 2; they are computed in equivalent fashion.
The universal LO perturbative prediction, shown as a

dotted line in Fig. 6 and denoted as “1-loop”, is obtained

from the coefficients b0, b1 and γ
ð0Þ
T . The NLO perturbative

prediction in the SF scheme, shown as a dashed line and
denoted as “2-loop SF”, is obtained from the coefficients

b0; b1; b2; beff3 and γð0ÞT ; γð1ÞT . See Eqs. (A2a)–(A2d), (A4),
(A5) for the values of the perturbative coefficients. We see
that for schemes-α, -β and −δ the 1-loop perturbative
prediction clearly deviates from the nonperturbative results,
while the 2-loop one follows them quite closely at high
energies. In scheme-γ, while the 1-loop curve stays close
to the nonperturbative band down to energies μ=Λ ∼ 1, the
2-loop one deviates halfway down the high-energy range.

FIG. 6. Example of the running of the tensor current TRGI=½TðμÞ�R in the four schemes, as a function of μ. In the high energy
regime we show the γT: global fit with ½nγ; n0σ ; jmax; ðL=aÞmin� ¼ ½2; 2; 4; 6�; in the low energy one, the γT: global fit with
½nγ; n0σ ; jmax; ðL=aÞmin� ¼ ½2; 2; 2; 12�. The nonperturbative results are shown by a continuous band and datapoints. The vertical dotted
line indicates the switching scale μ0=2 ∼ 2 GeV, which separates the high- and low-energy ranges. The universal LO perturbative
prediction (“1-loop“) is shown as a dotted line. The NLO perturbative prediction in the SF scheme (“2-loop SF”) is shown as a dashed
line. See main text for details.
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The impression is that perturbation theory performs poorly
for this scheme and this is enforced by the fact that b30 for
scheme-γ is bigger than the others [cf. Eq. (A17)]. Also

note that in scheme-γ the coefficient γð1ÞT is much smaller
than those of the other schemes and of the opposite sign
[cf. Eq. (A5)].
A similar study for Nf ¼ 0, 2 is presented in Figs. 6 and

10 of Ref. [10].
In Fig. 7 we show the variation of the tensor anomalous

dimension with the renormalized coupling squared, for the
same fit parameters as those used in Fig. 6. The bands,
datapoints and perturbative curves have also been obtained
like those of Fig. 6. The insets in Fig. 7 show that at scale
μ0=2 [which corresponds to different u values in the SF and
GF schemes; see Eqs. (32) and (44)] the SF and GF
estimates of γTðuÞ agree within errors, in accordance to

theoretical expectations. Figure 8 of Ref. [11] is a similar
plot for the Nf ¼ 3 unitary setup.

VII. SWITCHING SCHEMES AND FINAL
RG-RUNNING RESULTS

The final step of our analysis is the combination of the
high- and low-energy running factors computed in Secs. IV
and V in order to obtain TRGI=½TðμhadÞ�R. As discussed in
the previous section, this is apparently a straightforward
product of the high-energy factor TRGI=½Tðμ0=2Þ�R and the
low-energy one ½Tðμ0=2Þ�R=½TðμhadÞ�R, both computed in
the same renormalization scheme. (Recall that at the
switching scale the renormalization condition of the cou-
pling is changed from SF to GF, but the condition for the
tensor operator remains the same). We have seen however

FIG. 7. Example of the tensor anomalous dimension γT in the four schemes, as a function of the squared renormalized coupling u. In
the high energy regime we show the γT: global fit with ½nγ; n0σ ; jmax; ðL=aÞmin� ¼ ½2; 2; 4; 6�; in the low energy one, the γT: global fit with
½nγ; n0σ ; jmax; ðL=aÞmin� ¼ ½2; 2; 2; 12�. The nonperturbative results are shown as bands and datapoints (dots for high-energies (SF) and
crosses for low-energies (GF)). The LO perturbative prediction (“1-loop“) is shown as a dotted line and the NLO one (“2-loop”) as a
dashed line in the high-energy range. The insets zoom on the discontinuity in the bands, due to the fact that in the high- and low-energy
ranges different definitions are used for the renormalized coupling (SF and GF respectively). The vertical dotted lines in the insets
correspond to uðμ0=2Þ in the SF and GF schemes (left and right line respectively). See main text for details.
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that the four renormalization schemes employed have not
given equally reliable results in both energy ranges. Thus it
may be advantageous to combine high- and low-energy
results in different schemes, for better accuracy. This is
possible once we have computed the switching factor
between two schemes at energy μ0=2. It is defined and
computed as follows:

χs1;s2T ðμ0=2Þ≡ ½Tðμ0=2; ḡ2SFðμ0=2ÞÞ�s1R
½Tðμ0=2; ḡ2SFðμ0=2ÞÞ�s2R

¼ lim
a=ð2LÞ→0

Zs1
T ðg20; 2L=aÞ

Zs2
T ðg20; 2L=aÞ

����
ḡ2ðLÞ¼u

; ð52Þ

where s1; s2 are two renormalization schemes, e.g.
½s1; s2� ¼ ½α; δ�. Once the above factor is known, it can
be combined with the running factor of the high-energy
region in scheme s1 and the one of the low-energy region in
scheme s2, giving the total running factor in scheme s2:

TRGI

½TðμhadÞ�s2R
¼ TRGI

½Tðμ0=2Þ�s1R
χs1;s2T ðμ0=2Þ

½Tðμ0=2Þ�s2R
½TðμhadÞ�s2R

: ð53Þ

The first and third factor in the above expression
are given in Eqs. (43) and (51) respectively. The second
factor is computed from Eq. (52), in the high-energy (SF)
range: for the bare couplings corresponding to ḡ2ðLÞ ¼
u ¼ 2.012 (i.e. at energy μ0 ¼ 1=L ≃ 4 GeV), we know
the renormalization parameters ZTðg20; 2L=aÞ at the
“doubled” lattices 2L=a ¼ 12, 16, 24, 32 (i.e. at energy
μ0=2 ¼ 1=ð2LÞ ≃ 2 GeV). The ratios of these ZT computed
in two different schemes, extrapolated to the continuum
limit, give us the desired switching factor.
The datapoints are fit by the expression

χs1;s2T ðμ0=2Þ¼1þa0þa2

�
a
2L

	
2

þanmax

�
a
2L

	
nmax

; ð54Þ

with nmax ¼ 2, 3, 4. By this we mean that when nmax ¼ 2
the expression contains neither cubic nor quartic terms;
when nmax ¼ 3 or nmax ¼ 4, then either the cubic or the
quartic term is added to the quadratic one. The continuum
limit of the switching factor is given by χs1;s2T ¼ 1þ a0. The
results of our fits are collected in Table III. We see that
they are insensitive to the choice of nmax. Moreover,
χ2=d:o:f:≲ 1 in all but a couple of cases (where it is less
than 1.5, anyway). For each pair of schemes ½s1; s2� we
average with AIC weights the results from the three fits
shown in Table III for varying nmax and ð2L=aÞmin. This
gives our final estimate of χs1;s2T , also displayed in Table III.
A crosscheck of the above result consists in computing

the switching factor from the ratio of ratios

χ̄s1;s2T ðμ0=2Þ≡
TRGI

½Tðμ0=2Þ�s2R
TRGI

½Tðμ0=2Þ�s1R
: ð55Þ

Each ratio in the fraction on the rhs is known for each
scheme; cf. Eq. (43). Since the scheme-independent quan-
tity TRGI cancels, χ̄s1;s2T ðμ0=2Þ is another estimate of the
switching factor. Our results for χ̄s1;s2T ðμ0=2Þ are also shown
in Table III. Compared to the “direct” determination χs1;s2T ,
the errors are bigger. This is not surprising, as χ̄s1;s2T is a
ratio of two factors, each computed iteratively, with
accumulated error after each iteration. The agreement with
the “direct” determination χs1;s2T is within 1 or 1.5σ for the
majority of results; only in a couple of cases there is a 2σ
agreement. We therefore consider this comparison as a raw
crosscheck.
We can combine the results of Eqs. (43) and (51) with the

switching factors χs1;s2T for various scheme pairings ½s1; s2�,

TABLE II. Subtraction coefficients ϵTða=LÞ for the four
schemes α, β, γ, δ, used to remove discretization effects from
the nonperturbative step scaling functions ΣT up toOðg20Þ as given
in Eqs. (24) and (25).

L=a ϵαT ϵβT ϵγT ϵδT

6 −0.2594 −0.2024 −0.5377 0.1544
8 −0.1112 −0.0928 −0.2572 0.0682
10 −0.0576 −0.0515 −0.1475 0.0423
12 −0.0337 −0.0322 −0.0945 0.0296
14 −0.0215 −0.0218 −0.0652 0.0220
16 −0.0145 −0.0156 −0.0473 0.0170
18 −0.0102 −0.0116 −0.0358 0.0135
20 −0.0074 −0.0089 −0.0278 0.0110
22 −0.0055 −0.0070 −0.0222 0.0091
24 −0.0042 −0.0056 −0.0181 0.0077

TABLE III. Continuum limit of χs1;s2T for various combinations
of renormalization schemes ½s1; s2�. Results from three fits,
differing by the choice of ½nmax; ð2L=aÞmin� are shown, together
with their weighted average χs1;s2T ðμ0=2Þ. The cross-checking
estimate χ̄s1;s2T ðμ0=2Þ is also shown.

nmax ð2L=aÞmin ½α; β� ½α; γ� ½α; δ�
3 12 1.03524(93) 1.1297(60) 1.0865(36)
4 12 1.03522(80) 1.1287(51) 1.0867(31)
2 16 1.03519(61) 1.1270(37) 1.0870(23)

χs1;s2T ðμ0=2Þ 1.03522(77) 1.1285(49) 1.0867(30)

χ̄s1;s2T ðμ0=2Þ 1.0305(23) 1.144(16) 1.0767(94)

nmax ð2L=aÞmin ½β; γ� ½β; δ� ½γ; δ�
3 12 1.0915(53) 1.0496(29) 0.9618(44)
4 12 1.0905(45) 1.0498(25) 0.9628(37)
2 16 1.0889(32) 1.0501(18) 0.9645(27)

χs1;s2T ðμ0=2Þ 1.0903(43) 1.0498(24) 0.9630(36)

χ̄s1;s2T ðμ0=2Þ 1.110(14) 1.0448(77) 0.941(11)
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in order to obtain the overall running factorTRGI=½TðμhadÞ�s2R ,
which in principle is independent of scheme-s1. Results
are collected in Table IV. Moreover, there seems to be no
substantial difference between results obtained in the
same scheme throughout the whole energy range (i.e. with
s1 ¼ s2 ¼ α, β, γ, δ and χs1;s2T ¼ 1) and those obtained
by combining different schemes (i.e. with s1 ≠ s2 and
χs1;s2T ≠ 1).
The weighted average of the four results in each column

of Table IV, with correlations properly taken into account,
is our final estimate of TRGI=½TðμhadÞ�sR for each scheme s
(previously denoted as s2):

TRGI

½TðμhadÞ�sR
¼

8>>><
>>>:

0.734ð17Þ scheme-α

0.882ð14Þ scheme-β

0.964ð21Þ scheme-γ

0.963ð12Þ scheme-δ

ð56Þ

We draw the reader’s attention to Appendix G, where
we compare our scheme-α and -β results to the ones
obtained in a unitary SF setup [11], using the same gauge
ensembles.

VIII. RENORMALIZATION
AT A HADRONIC SCALE

So far we have computed the RG-running factor
TRGI=½TðμhadÞ�sR for four schemes s ¼ α, β, γ, δ. In order
for the renormalization programme to be complete, we
must still provide our estimates for the tensor renormaliza-
tion parameter Zs

Tðg20; aμhadÞ, computed at fixed hadronic
scale μhad for varying bare couplings g20.

Following Ref. [27] (see also the more recent
Refs. [8,11]), we define the so-called renormalization
group invariant parameter ZRGIðg20Þ

ZRGI
T ðg20Þ≡ TRGI

½TðμhadÞ�sR
Zs
Tðg20; aμhadÞ: ð57Þ

On the rhs, the ratio TRGI=½TðμhadÞ�sR is a scheme and
scale dependent continuum quantity, independent of the
lattice regularization, while Zs

Tðg20; aμhadÞ depends on
scheme and scale as well as on the details of the lattice
formulation. The scheme&scale dependence cancels out
in the product ZRGI

T , which relates the bare tensor
composite field Tðg20Þ to its RGI counterpart and depends
only on the lattice regularization. Schematically we write
this as:

TRGI ¼ lim
g2
0
→0
½ZRGI

T ðg20ÞTðg20Þ� ð58aÞ

¼ TRGI

½TðμhadÞ�sR
lim
g2
0
→0
½Zs

Tðg20; aμhadÞTðg20Þ�: ð58bÞ

In principle the value of μhad could be chosen arbitrarily.
In practice it is chosen in a range where large-volume
simulations of the bare matrix element hfjTðg20Þjii are
performed, with jii and jfi some initial and final
hadronic states.
Following for example Refs. [8,53], the bare couplings

are tuned so as to span the interval β ¼ 6=g20 ∈ ½3.40; 3.85�
of the CLS ensembles [12,15]. The renormalized coupling
is set to uhad ¼ ḡ2GFðμhadÞ ¼ 9.25, which corresponds to the
energy value μhad ¼ 233ð8Þ MeV, once the scale of the
lattices is fixed by the method of Ref. [13].
The details and the results of the simulations at the

hadronic scale are collected in Table XXIII of Appendix H.
As in Ref. [11], the data are well represented by a
polynomial fit

ZTðg20; u; LmÞ ¼ ZTðg20; aμhadÞ þ t10ðu − uhadÞ þ t01Lm;

ð59aÞ

ZTðg20; aμhadÞ ¼ z0 þ z1ðβ − β0Þ þ z2ðβ − β0Þ2; ð59bÞ

where β≡ 6=g20, β0 ¼ 3.79, and m is the residual PCAC
quark mass computed in the SF setup. The terms with the
parameters t10, t01 take into account deviations of the
coupling and the mass from their reference values
ðuhad; mLÞ ¼ ð9.25; 0Þ. We checked that higher powers
in ðu − uhadÞ and Lm are of hardly any consequence. The fit
results of the zi parameters and their covariances can be
found in Appendix H, for all four schemes.
Once the fit parameters t10 and t01 have been determined,

we can subtract the correction ½t10ðu − uhadÞ þ t01Lm� from

TABLE IV. The upper part of the table displays the overall
running factors TRGI=½TðμhadÞ�s2R . Each result has been obtained
as the product of the three factors in the rhs of Eq. (53): The third
factor is computed in scheme-s2, indicated by the first row of the
table; the first factor is computed in scheme-s1, indicated by the
first column; the second factor is listed in the χs1;s2T ðμ0=2Þ row of
Table III for different schemes and is 1 for the same scheme. The
lower part of the table (bottom line) shows the weighted average
of the four results above it.

s2

s1 α β γ δ

α 0.734(18) 0.882(16) 0.964(22) 0.963(15)
β 0.731(18) 0.878(15) 0.960(21) 0.959(14)
γ 0.744(17) 0.893(14) 0.977(21) 0.976(13)
δ 0.727(17) 0.873(14) 0.955(20) 0.954(13)

s2

s1–averages 0.734(17) 0.882(14) 0.964(21) 0.963(12)
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the data points of ZTðg20; u; LmÞ, obtaining estimates of
ZTðg20; aμhadÞ at each β; cf. Eq. (59a). These points,
together with the fit function of Eq. (59b), are shown in
Fig. 8 (left panel). In the same figure we also plot the results
of Ref. [11], obtained with SF boundary conditions in the
f- and k-schemes, which correspond to our schemes-α
and -β in the continuum. These data have been obtained
from the same gauge ensembles, with the exception of
those with L=a ¼ 12, 16, which could not be recovered and
had to be generated afresh. Our ZTðg20; aμhadÞ results with
their statistical errors are listed in Table V. These results,
not being in the continuum limit, can only be compared
with SF determinations up to the discretization effects. The
statistical error of our data is slightly smaller, although
comparable, to that quoted in Ref. [11]. Table 5 of Ref. [11]
also includes the systematic error due to the improvement
coefficient c̃t, relevant in the SF formulation.
From Eq. (56) and Table V, we see that the most accurate

results are those of schemes − β and −δ, with scheme-δ
having slightly smaller errors.

Combining the running factor TRGI=½TðμhadÞ�sR of
Eq. (56) with the renormalization constant ZTðg20; aμhadÞ
of Table V, we can now compute ZRGI

T ðg20Þ; see Eq. (57).
Errors are added in quadrature. Determinations from differ-
ent schemes are expected to agree up to cutoff effects. This
is confirmed in Fig. 8 (right panel) for all four schemes α, β,
γ, δ. In particular, we note the excellent agreement between
schemes − β and −δ, which are superimposed over the
whole range of bare couplings.
We do not show our ZRGI

T ðg20Þ results in a table because
the continuum extrapolation of the lattice data of the tensor
matrix elements [i.e. the term ½Zs

Tðg20; aμhadÞTðg20Þ� on the
rhs of Eq. (58b)] must not include the error of the running
factor TRGI=½TðμhadÞ�sR [i.e. the first term on the rhs of
Eq. (58b)]. The latter factor can be taken into account after
the continuum limit extrapolation has been performed,
with its error safely added in quadrature. This was first
pointed out in Ref. [27] for the quark mass renormalization
factor ZM.
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at the β values of the CLS Nf ¼ 2þ 1 simulations.

β Zα
T Zβ

T Zγ
T Zδ

T

3.40 1.1925(29) 1.0185(18) 0.9415(14) 0.9364(15)
3.46 1.2327(20) 1.0463(13) 0.9575(10) 0.9615(10)
3.55 1.2870(26) 1.0834(16) 0.9803(14) 0.9950(12)
3.70 1.3613(32) 1.1328(20) 1.0148(17) 1.0396(15)
3.85 1.4156(41) 1.1669(28) 1.0451(21) 1.0702(20)

ISABEL CAMPOS PLASENCIA et al. PHYS. REV. D 109, 054511 (2024)

054511-18



the Santander Supercomputacion support group at the
University of Cantabria which provided access to the
supercomputer Altamira Supercomputer at the Institute
of Physics of Cantabria (IFCA-CSIC). We also acknowl-
edge the access granted by the Galician Supercomputing
Center (CESGA) to the supercomputer FinisTerrae-III,
and the support by the Poznan Supercomputing and
Networking Center (PSNC) under the project with
Grant No. 466. A. L. acknowledges support by the
U.S. Department of Energy under Grant No. DE-
SC0015655.

APPENDIX A: SERIES EXPANSIONS

In this Appendix we gather the polynomial expansions
we use in our fits and list the coefficients known from
perturbative calculations. We also report as an example two
results from the u-by-u procedures.
In the SF scheme the Callan-Symanzik β function is

expressed as a truncated power series

βðgÞ ¼ −g3
X3
n¼0

bng2n; ðA1Þ

with

b0 ¼
1

ð4πÞ2
�
11 −

2

3
Nf

	
; ðA2aÞ

b1 ¼
1

ð4πÞ4
�
102 −

38

3
Nf

	
; ðA2bÞ

bSF2 ¼ 1

ð4πÞ3 ð0.483 − 0.275Nf þ 0.0361N2
f − 0.00175N3

f Þ;

ðA2cÞ

bSF;eff3 ¼Nf¼3 1

ð4πÞ4 × 4ð3Þ: ðA2dÞ

The first three coefficients are calculated in perturbation
theory; b0 and b1 are universal; b2 is given in the
Schrödinger functional scheme [54] and b3 is a fit param-
eter obtained in Refs. [8,31].
The truncated power series for the tensor operator is

given by Eq. (36), repeated here for convenience,

γTðgÞ ¼ −g2
Xnγ
n¼0

γðnÞT g2n; ðA3Þ

with the perturbative universal coefficient

γð0ÞT ¼ 2CF

ð4πÞ2 ¼ 0.016887 ðA4Þ

and the scheme dependent one(s) given in χSF by

γð1ÞT ¼

8>>><
>>>:

0.0062755ð11Þ scheme-α;

0.0057956ð11Þ scheme-β;

−0.0007746ð11Þ scheme-γ;

0.0032320ð11Þ scheme-δ:

ðA5Þ

Analogously to Ref. [10], the above values are obtained by

matching to the MS renormalization scheme, in which γð1ÞT is
known. The starting point are the relations between two
mass independent renormalization schemes [55]:

ḡ0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
χgðḡÞ

q
ḡ;

T 0
R ¼ χTðḡÞTR: ðA6Þ

(N.B. We simplify the notation in the last equation by
writing as χT what had been defined as χs1;s2T in Eq. (52).)
The matching functions χ can be expanded as:

χ ∼
g→0

1þ
X
k

χðkÞḡ2k ∼ ð1þ ḡ2χð1Þ þ ḡ4χð2Þ þ � � �Þ: ðA7Þ

Plugging Eqs. (A6), (A7) in the Callan-Symanzik equa-
tions, we find

γ0ð1ÞT ¼ γð1ÞT þ 2b0χ
ð1Þ
T − γð0ÞT χð1Þg ; ðA8Þ

where γð1ÞMS
T ¼ − 1

ð16π2Þ2
4
27
ð26Nf − 543Þ was computed in

Ref. [56] and χð1Þg in Refs. [33,57]. The matching factor χð1ÞT

is determined from the difference χð1ÞT ¼ χð1ÞTfSF;latg −

χð1ÞTfMS;latg, with χð1ÞTfMS;latg ¼ −0.0939960952ð3Þ from

Ref. [58], while χð1ÞTfSF;latg is to be extracted from the

1-loop expansion of our ZT definitions:

ZTðg20; L=aÞ ¼ 1þ g20Z
ð1Þ
T ðL=aÞ þ � � � : ðA9Þ

Zð1Þ
T expected to have the following asymptotic behavior

for a=L → 0:

Zð1Þ
T ðL=aÞ ∼

Xnmax

n¼0

½rn þ sn lnðL=aÞ�
�
a
L

	
n
; ðA10Þ

where s0 corresponds to LO term γð0ÞT , while

r0 ¼ χð1ÞTfSF;latg. In our setup, we expect r1, s1 ∼ 0. The

perturbative computations of the two-point χSF correla-
tion functions have been obtained in Ref. [20] for a range
of L=a∈ ½6; 48�. We used these results in order to
perform two independent analyses to extract r0. Both
exploited a variety of fits of the type (A10), varying
nmax ∈ ½1; 2; 3�, the range of data that were used for the fit
ðL=aÞmin ∈ ½6; 26�, ðL=aÞmax ∈ ½38; 48� and the number of
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fixed terms in the fits (s0, r1, s1). One analysis made a
average of the best fit results, for which the expected
values of s0, r1 and s1 where obtained with a certain
precision. The second analysis chose, independently, a
single fit. Both agree on the following estimates for r0:

r0 ¼

8>>><
>>>:

−0.07939ð1Þ scheme-α

−0.08360ð1Þ scheme-β

−0.14124ð1Þ scheme-γ

−0.10609ð1Þ scheme-δ:

ðA11Þ

For scheme-α and -β our results are comparable with
those of Refs. [10,20]:

rα;½11�0 ¼ −0.05963ð4Þ × CF ¼ −0.07951ð5Þ; ðA12Þ

rβ;½11�0 ¼ −0.06279ð4Þ × CF ¼ −0.08372ð5Þ; ðA13Þ

rβ;½20�∶0 ¼ −0.06270ð1Þ × CF ¼ −0.08360ð1Þ: ðA14Þ

Finally, for the tensor SSF we have Eq. (29), repeated
here for convenience:

σTðuÞ ¼ 1þ
Xnσ
i¼1

bi0ui: ðA15Þ

The coefficients bi0 are defined in Eq. (27) for the ΣT

double power series. The universal coefficient b10 and the
perturbative one b20 in χSF are

b10 ¼ γð0ÞT lnð2Þ;

b20 ¼ γð1ÞT lnð2Þ þ
�ðγð0ÞT Þ2

2
þ b0γ

ð0Þ
T

�
ðlnð2ÞÞ2: ðA16Þ

As an example, we quote b30, obtained by fitting our σsubT

data with nσ ¼ 4 (σT:u-by-u procedure, described in
Sec. IV):

b30 ¼

8>>><
>>>:

0.0016ð10Þ α-scheme

0.0004ð09Þ β-scheme

0.0022ð07Þ γ-scheme

−0.0007ð05Þ δ-scheme

: ðA17Þ

Similarly, fitting our σsubT data with nγ ¼ 3 (γT:u-by-u
procedure, described in Sec. IV), we obtain:

γð2ÞT ¼Nf¼3

8>>><
>>>:

0.0014ð10Þ α-scheme

−0.0002ð09Þ β-scheme

0.0027ð07Þ γ-scheme

−0.0011ð06Þ δ-scheme

ðA18Þ

We also quote the results from a σT-global high-energy
fit, ½nσ; jmax; ðL=aÞmin� ¼ ½3; 4; 6� in Appendix VIII.
We conclude this Appendix by giving the fit coefficients

for the anomalous dimension γT displayed in Fig. 6. Recall
that in the high-energy region, the result in the figure
was obtained with a fit having ½nγ; n0σ; jmax; ðL=aÞmin� ¼
½2; 2; 4; 6�, whereas in the low-energy region, the result
was obtained with a fit having ½nγ; n0σ; jmax; ðL=aÞmin� ¼
½2; 2; 2; 12�. The coefficients γðnÞT ðgSFÞ and γðnÞT ðḡGFÞ for
n ¼ 0, 1, 2 are shown in Tables VI and VII respectively.

TABLE VI. Results of the γðnÞT ðḡSFÞ coefficients in the high-
energy region for the four renormalization schemes for the fit
½nγ; n0σ ; jmax; ðL=aÞmin� ¼ ½2; 2; 4; 6�. The n ¼ 0, 1 results are the
perturbative ones of Eqs. (A4) and (A5) respectively.

n α β γ δ

0 0.0168869 0.0168869 0.0168869 0.0168869
1 0.0062755(11) 0.0057956(11) −0.00077460ð11Þ 0.0032320(11)
2 0.00022(37) −0.00056ð32Þ 0.00062(25) −0.00020ð19Þ

TABLE VII. Results of the γðnÞT ðḡGFÞ coefficients in the low-
energy region for the four renormalization schemes for the fit
½nγ; n0σ ; jmax; ðL=aÞmin� ¼ ½2; 2; 2; 12�.
n α β γ δ

0 0.23(18) 0.21(14) 0.20(12) 0.24(11)
1 0.076(65) 0.069(48) 0.042(42) 0.023(38)
2 0.0021(52) −0.0035ð38Þ 0.0006(33) 0.0012(28)

TABLE VIII. Results of the bi0 coefficients in the ðui; ða=LÞjÞ
double series expansion of ΣTðu; a=LÞ in the high-energy
region for the four renormalization schemes for the fit
½nσ ;jmax;ðL=aÞmin�¼½3;4;6�. The i ¼ 1, 2 results are perturbative.

bi0 bαi0 bβi0 bγi0 bδi0

b10 0.011705082 0.011705082 0.011705082 0.011705082
b20 0.004880755 0.004548113 −6.00213E-06 0.002771161
b30 0.00093(37) 0.00010(31) 0.00066(24) 0.00012(19)
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APPENDIX B: RESULTS FOR RENORMALIZATION PARAMETERS
AND SSF’S IN THE HIGH-ENERGY REGIME

TABLE IX. Results for the renormalization parameters ZT and the SSFs ΣT and Σsub
T in the α-scheme, for all squared couplings uSF,

lattice resolutions L=a, inverse bare couplings β, and critical hopping parameters κc.

uSF L=a β κc zf ZTðg20; L=aÞ ZTðg20; 2L=aÞ ΣTðg20; L=aÞ Σsub
T ðg20; L=aÞ

1.11 6 8.5403 0.1323361 1.185887 0.97242(37) 0.98797(47) 1.01599(62) 1.01942(62)
1.11 8 8.7325 0.1321338 1.183747 0.97722(34) 0.99397(82) 1.01715(91) 1.01862(91)
1.11 12 8.995 0.1318621 1.176246 0.98610(62) 1.00593(87) 1.0201(11) 1.0206(11)

1.1844 6 8.217 0.1326903 1.194279 0.97307(40) 0.98713(47) 1.01445(64) 1.01811(64)
1.1844 8 8.4044 0.1324767 1.192242 0.97760(38) 0.9970(11) 1.0199(12) 1.0214(12)
1.1844 12 8.6769 0.13217153 1.184179 0.98701(60) 1.00865(89) 1.0219(11) 1.0224(11)

1.2656 6 7.9091 0.1330572 1.202121 0.97286(38) 0.98877(54) 1.01636(68) 1.02028(69)
1.2656 8 8.0929 0.1328312 1.200268 0.97706(45) 0.99671(88) 1.0201(10) 1.0218(10)
1.2656 12 8.373 0.13249231 1.191639 0.98931(65) 1.0111(12) 1.0220(14) 1.0225(14)

1.3627 6 7.5909 0.1334693 1.211572 0.97239(40) 0.99185(62) 1.02002(76) 1.02426(76)
1.3627 8 7.7723 0.1332283 1.210094 0.97753(42) 1.0022(14) 1.0253(15) 1.0271(15)
1.3627 12 8.0578 0.13285365 1.201006 0.98769(75) 1.0153(14) 1.0280(16) 1.0285(16)

1.4808 6 7.2618 0.1339337 1.221192 0.97183(47) 0.99367(71) 1.02247(88) 1.02709(89)
1.4808 8 7.4424 0.1336745 1.220256 0.97797(45) 1.00578(78) 1.02844(93) 1.03042(93)
1.4808 12 7.7299 0.13326353 1.210493 0.99004(89) 1.0205(11) 1.0307(15) 1.0313(15)

1.6173 6 6.9433 0.134422 1.231196 0.97337(51) 0.99863(73) 1.02595(92) 1.03102(93)
1.6173 8 7.1254 0.1341418 1.230529 0.97862(48) 1.0088(14) 1.0308(15) 1.0330(15)
1.6173 12 7.4107 0.13369922 1.220678 0.99398(92) 1.0254(18) 1.0316(21) 1.0323(21)

1.7943 6 6.605 0.1349829 1.241693 0.97368(58) 1.00215(91) 1.0292(11) 1.0349(11)
1.7943 8 6.7915 0.1346765 1.242185 0.98107(57) 1.0167(20) 1.0363(21) 1.0388(21)
1.7943 12 7.0688 0.13420891 1.231700 0.9966(11) 1.0360(17) 1.0394(20) 1.0402(20)

2.012 6 6.2735 0.13565774 1.264242 0.97543(64) 1.0100(12) 1.0354(14) 1.0418(14)
2.012 8 6.468 0.13521177 1.248867 0.98442(66) 1.0280(13) 1.0443(15) 1.0470(15)
2.012 12 6.72995 0.13474560 1.240103 1.0003(10) 1.0500(18) 1.0497(21) 1.0505(21)
2.012 16 6.9346 0.13440568 1.232916 1.01572(97) 1.0661(31) 1.0496(32) 1.0500(32)

TABLE X. Results for the renormalization parameters ZT and the SSFs ΣT and Σsub
T in the β-scheme, for all squared couplings uSF,

lattice resolutions L=a, inverse bare couplings β, and critical hopping parameters κc.

uSF L=a β κc zf ZTðg20; L=aÞ ZTðg20; 2L=aÞ ΣTðg20; L=aÞ Σsub
T ðg20; L=aÞ

1.11 6 8.5403 0.1323361 1.185887 0.95937(34) 0.97429(42) 1.01555(56) 1.01823(56)
1.11 8 8.7325 0.1321338 1.183747 0.96504(30) 0.98055(70) 1.01607(79) 1.01730(79)
1.11 12 8.995 0.1318621 1.176246 0.97437(55) 0.99246(74) 1.01856(96) 1.01899(96)

1.1844 6 8.217 0.1326903 1.194279 0.95860(36) 0.97219(41) 1.01418(57) 1.01704(58)
1.1844 8 8.4044 0.1324767 1.192242 0.96424(34) 0.98215(91) 1.0186(10) 1.0199(10)
1.1844 12 8.6769 0.13217153 1.184179 0.97420(51) 0.99343(76) 1.01974(94) 1.02019(95)

1.2656 6 7.9091 0.1330572 1.202121 0.95696(35) 0.97224(47) 1.01596(62) 1.01902(62)
1.2656 8 8.0929 0.1328312 1.200268 0.96235(40) 0.98050(77) 1.01886(90) 1.02026(90)
1.2656 12 8.373 0.13249231 1.191639 0.97475(57) 0.9944(11) 1.0202(13) 1.0207(13)

1.3627 6 7.5909 0.1334693 1.211572 0.95469(36) 0.97317(53) 1.01935(68) 1.02265(68)
1.3627 8 7.7723 0.1332283 1.210094 0.96115(37) 0.9832(13) 1.0230(14) 1.0245(14)
1.3627 12 8.0578 0.13285365 1.201006 0.97224(63) 0.9965(11) 1.0249(14) 1.0254(14)

(Table continued)
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TABLE X. (Continued)

uSF L=a β κc zf ZTðg20; L=aÞ ZTðg20; 2L=aÞ ΣTðg20; L=aÞ Σsub
T ðg20; L=aÞ

1.4808 6 7.2618 0.1339337 1.221192 0.95218(42) 0.97252(61) 1.02136(78) 1.02496(78)
1.4808 8 7.4424 0.1336745 1.220256 0.95960(39) 0.98420(66) 1.02563(81) 1.02728(81)
1.4808 12 7.7299 0.13326353 1.210493 0.97255(72) 0.99894(94) 1.0271(12) 1.0277(12)

1.6173 6 6.9433 0.134422 1.231196 0.95080(46) 0.97400(62) 1.02440(82) 1.02834(82)
1.6173 8 7.1254 0.1341418 1.230529 0.95785(42) 0.9840(12) 1.0273(13) 1.0291(13)
1.6173 12 7.4107 0.13369922 1.220678 0.97361(78) 1.0008(15) 1.0279(17) 1.0285(17)

1.7943 6 6.605 0.1349829 1.241693 0.94772(51) 0.97331(75) 1.02700(96) 1.03139(97)
1.7943 8 6.7915 0.1346765 1.242185 0.95688(50) 0.9876(16) 1.0321(17) 1.0341(17)
1.7943 12 7.0688 0.13420891 1.231700 0.97355(90) 1.0069(14) 1.0342(17) 1.0349(17)

2.012 6 6.2735 0.13565774 1.264242 0.94448(55) 0.97465(97) 1.0319(12) 1.0369(12)
2.012 8 6.468 0.13521177 1.248867 0.95630(56) 0.9925(11) 1.0378(13) 1.0401(13)
2.012 12 6.72995 0.13474560 1.240103 0.97329(86) 1.0142(14) 1.0421(17) 1.0429(17)
2.012 16 6.9346 0.13440568 1.232916 0.98839(80) 1.0296(25) 1.0417(26) 1.0421(26)

TABLE XI. Results for the renormalization parameters ZT and the SSFs ΣT and Σsub
T in the γ-scheme, for all squared couplings uSF,

lattice resolutions L=a, inverse bare couplings β, and critical hopping parameters κc.

uSF L=a β κc zf ZTðg20; L=aÞ ZTðg20; 2L=aÞ ΣTðg20; L=aÞ Σsub
T ðg20; L=aÞ

1.11 6 8.5403 0.1323361 1.185887 0.91668(24) 0.92419(31) 1.00819(42) 1.01528(43)
1.11 8 8.7325 0.1321338 1.183747 0.92091(26) 0.93113(49) 1.01110(61) 1.01449(61)
1.11 12 8.995 0.1318621 1.176246 0.92856(36) 0.94074(64) 1.01312(79) 1.01437(79)

1.1844 6 8.217 0.1326903 1.194279 0.91306(26) 0.92174(32) 1.00951(45) 1.01710(45)
1.1844 8 8.4044 0.1324767 1.192242 0.91786(23) 0.92956(58) 1.01275(68) 1.01638(68)
1.1844 12 8.6769 0.13217153 1.184179 0.92653(46) 0.94013(75) 1.01468(96) 1.01601(96)

1.2656 6 7.9091 0.1330572 1.202121 0.90930(26) 0.91835(31) 1.00995(45) 1.01806(46)
1.2656 8 8.0929 0.1328312 1.200268 0.91338(26) 0.92609(66) 1.01391(78) 1.01779(78)
1.2656 12 8.373 0.13249231 1.191639 0.92407(42) 0.93955(92) 1.0168(11) 1.0182(11)

1.3627 6 7.5909 0.1334693 1.211572 0.90547(27) 0.91514(38) 1.01068(52) 1.01942(52)
1.3627 8 7.7723 0.1332283 1.210094 0.91005(29) 0.92410(74) 1.01543(88) 1.01961(88)
1.3627 12 8.0578 0.13285365 1.201006 0.92049(46) 0.93718(93) 1.0181(11) 1.0197(11)

1.4808 6 7.2618 0.1339337 1.221192 0.90066(27) 0.91178(46) 1.01234(60) 1.02186(61)
1.4808 8 7.4424 0.1336745 1.220256 0.90508(30) 0.92149(54) 1.01813(69) 1.02269(69)
1.4808 12 7.7299 0.13326353 1.210493 0.91829(43) 0.93585(65) 1.01913(85) 1.02080(85)

1.6173 6 6.9433 0.134422 1.231196 0.89568(32) 0.90857(44) 1.01439(61) 1.02482(61)
1.6173 8 7.1254 0.1341418 1.230529 0.90159(32) 0.92030(87) 1.0207(10) 1.0257(10)
1.6173 12 7.4107 0.13369922 1.220678 0.91461(63) 0.9339(10) 1.0211(13) 1.0229(13)

1.7943 6 6.605 0.1349829 1.241693 0.89087(34) 0.90437(52) 1.01516(70) 1.02675(71)
1.7943 8 6.7915 0.1346765 1.242185 0.89678(36) 0.9175(14) 1.0231(16) 1.0286(16)
1.7943 12 7.0688 0.13420891 1.231700 0.90991(59) 0.9331(10) 1.0255(13) 1.0275(13)

2.012 6 6.2735 0.13565774 1.264242 0.88202(39) 0.90048(72) 1.02093(93) 1.03402(95)
2.012 8 6.468 0.13521177 1.248867 0.89297(38) 0.91615(74) 1.02596(94) 1.03221(94)
2.012 12 6.72995 0.13474560 1.240103 0.90845(60) 0.9347(10) 1.0289(13) 1.0312(13)
2.012 16 6.9346 0.13440568 1.232916 0.91842(48) 0.9445(17) 1.0284(19) 1.0295(19)
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APPENDIX C: CONTINUUM EXTRAPOLATION RESULTS
FROM THE σT∶u-BY-u AND γT∶u-BY-u METHODS

TABLE XII. Results for the renormalization parameters ZT and the SSFs ΣT and Σsub
T in the δ-scheme, for all squared couplings uSF,

lattice resolutions L=a, inverse bare couplings β, and critical hopping parameters κc.

uSF L=a β κc zf ZTðg20; L=aÞ ZTðg20; 2L=aÞ ΣTðg20; L=aÞ Σsub
T ðg20; L=aÞ

1.11 6 8.5403 0.1323361 1.185887 0.93231(20) 0.94927(24) 1.01820(34) 1.01616(34)
1.11 8 8.7325 0.1321338 1.183747 0.94077(21) 0.95690(42) 1.01715(50) 1.01625(50)
1.11 12 8.995 0.1318621 1.176246 0.95173(31) 0.96792(51) 1.01701(63) 1.01662(63)

1.1844 6 8.217 0.1326903 1.194279 0.92919(21) 0.94653(25) 1.01866(36) 1.01649(36)
1.1844 8 8.4044 0.1324767 1.192242 0.93780(19) 0.95451(53) 1.01782(60) 1.01686(60)
1.1844 12 8.6769 0.13217153 1.184179 0.94947(37) 0.96642(59) 1.01785(74) 1.01743(74)

1.2656 6 7.9091 0.1330572 1.202121 0.92578(21) 0.94449(26) 1.02020(37) 1.01788(37)
1.2656 8 8.0929 0.1328312 1.200268 0.93546(21) 0.95345(51) 1.01923(59) 1.01820(59)
1.2656 12 8.373 0.13249231 1.191639 0.94770(35) 0.96493(70) 1.01818(83) 1.01773(83)

1.3627 6 7.5909 0.1334693 1.211572 0.92136(21) 0.94234(31) 1.02277(41) 1.02026(41)
1.3627 8 7.7723 0.1332283 1.210094 0.93210(23) 0.95210(70) 1.02145(79) 1.02034(79)
1.3627 12 8.0578 0.13285365 1.201006 0.94533(37) 0.96490(72) 1.02071(86) 1.02022(86)

1.4808 6 7.2618 0.1339337 1.221192 0.91677(22) 0.93959(39) 1.02490(50) 1.02216(50)
1.4808 8 7.4424 0.1336745 1.220256 0.92888(25) 0.95038(40) 1.02314(51) 1.02193(51)
1.4808 12 7.7299 0.13326353 1.210493 0.94204(33) 0.96434(53) 1.02367(67) 1.02315(66)

1.6173 6 6.9433 0.134422 1.231196 0.91215(25) 0.93691(35) 1.02715(47) 1.02416(47)
1.6173 8 7.1254 0.1341418 1.230529 0.92436(25) 0.94771(75) 1.02526(86) 1.02394(86)
1.6173 12 7.4107 0.13369922 1.220678 0.94041(49) 0.96508(86) 1.0262(11) 1.0257(11)

1.7943 6 6.605 0.1349829 1.241693 0.90559(26) 0.93479(42) 1.03224(55) 1.02890(55)
1.7943 8 6.7915 0.1346765 1.242185 0.92030(29) 0.9469(11) 1.0289(12) 1.0275(12)
1.7943 12 7.0688 0.13420891 1.231700 0.93825(48) 0.96545(81) 1.0290(10) 1.0283(10)

2.012 6 6.2735 0.13565774 1.264242 0.89982(30) 0.93153(55) 1.03524(70) 1.03149(70)
2.012 8 6.468 0.13521177 1.248867 0.91525(30) 0.94670(55) 1.03436(69) 1.03270(69)
2.012 12 6.72995 0.13474560 1.240103 0.93368(47) 0.96626(77) 1.03489(98) 1.03417(98)
2.012 16 6.9346 0.13440568 1.232916 0.94802(39) 0.9813(15) 1.0351(16) 1.0347(16)

TABLE XIII. Results of the fit parameters σT and ρT (both nonsubtracted and subtracted) in the α-scheme.

u σT ρT
χ2

d:o:f: σsubT ρsubT
χ2

d:o:f:

1.11 1.0206(13) −0.173ð56Þ 1.2 1.0200(13) −0.026ð56Þ 1.65
1.1844 1.0249(13) −0.374ð58Þ 0.62 1.0242(13) −0.217ð58Þ 0.38
1.2656 1.0243(15) −0.282ð66Þ 0.13 1.0234(15) −0.113ð66Þ 0.03
1.3627 1.0310(19) −0.392ð78Þ 0.11 1.0301(19) −0.210ð79Þ 0.04
1.4808 1.0345(16) −0.426ð75Þ 0.77 1.0335(16) −0.226ð75Þ 0.43
1.6173 1.0348(23) −0.313ð96Þ 0.62 1.0337(23) −0.093ð96Þ 0.39
1.7943 1.0434(24) −0.51ð10Þ 0.22 1.0423(24) −0.27ð11Þ 0.1
2.012 1.0540(20) −0.66ð10Þ 0.26 1.0529(20) −0.40ð10Þ 0.14
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APPENDIX D: RESULTS FOR THE TENSOR RG EVOLUTION IN THE HIGH-ENERGY REGIME

TABLE XV. Results of the fit parameters σT and ρT (both nonsubtracted and subtracted) in the γ-scheme.

u σT ρT
χ2

d:o:f: σsubT ρsubT
χ2

d:o:f:

1.11 1.01479(89) −0.238ð39Þ 0.0 1.01387(89) 0.050(39) 0.11
1.1844 1.0166(10) −0.254ð45Þ 0.06 1.0156(10) 0.054(45) 0.01
1.2656 1.0190(12) −0.326ð49Þ 0.0 1.0179(12) 0.004(49) 0.11
1.3627 1.0209(13) −0.368ð53Þ 0.13 1.0198(13) −0.013ð53Þ 0.0
1.4808 1.02260(100) −0.357ð48Þ 4.28 1.02139(100) 0.027(48) 2.65
1.6173 1.0252(15) −0.380ð63Þ 3.49 1.0238(15) 0.043(63) 2.39
1.7943 1.0297(16) −0.519ð68Þ 1.12 1.0284(16) −0.055ð68Þ 0.63
2.012 1.0311(13) −0.359ð65Þ 0.4 1.0297(13) 0.157(65) 0.12

TABLE XVI. Results of the fit parameters σT and ρT (both nonsubtracted and subtracted) in the δ-scheme.

u σT ρT
χ2

d:o:f: σsubT ρsubT
χ2

d:o:f:

1.11 1.01635(71) 0.065(31) 0.31 1.01664(71) −0.018ð31Þ 0.08
1.1844 1.01731(83) 0.047(36) 0.24 1.01762(83) −0.041ð36Þ 0.06
1.2656 1.01768(89) 0.092(38) 0.07 1.01803(89) −0.004ð38Þ 0.28
1.3627 1.01995(100) 0.101(42) 0.01 1.02028(100) −0.000ð42Þ 0.01
1.4808 1.02255(78) 0.076(38) 2.4 1.02293(78) −0.034ð38Þ 1.43
1.6173 1.0249(12) 0.075(50) 1.57 1.0254(12) −0.047ð50Þ 1.03
1.7943 1.0273(12) 0.173(53) 1.04 1.0277(12) 0.040(53) 0.66
2.012 1.03448(97) 0.020(50) 0.34 1.03491(97) −0.127ð49Þ 0.09

TABLE XIV. Results of the fit parameters σT and ρT (both nonsubtracted and subtracted) in the β-scheme.

u σT ρT
χ2

d:o:f: σsubT ρsubT
χ2

d:o:f:

1.11 1.0187(11) −0.121ð49Þ 1.55 1.0183(11) −0.010ð50Þ 1.91
1.1844 1.0221(11) −0.282ð51Þ 0.98 1.0217(11) −0.165ð51Þ 0.75
1.2656 1.0220(14) −0.214ð60Þ 0.13 1.0215(14) −0.087ð60Þ 0.06
1.3627 1.0270(16) −0.273ð68Þ 0.06 1.0265(16) −0.137ð68Þ 0.02
1.4808 1.0298(13) −0.299ð65Þ 0.64 1.0292(13) −0.149ð65Þ 0.4
1.6173 1.0297(19) −0.189ð81Þ 0.26 1.0291(19) −0.026ð81Þ 0.15
1.7943 1.0371(21) −0.361ð90Þ 0.19 1.0365(21) −0.181ð90Þ 0.11
2.012 1.0448(17) −0.459ð84Þ 0.18 1.0442(17) −0.260ð85Þ 0.13

TABLE XVII. Fit results for TRGI=½Tðμ0=2Þ�R for the four schemes α;…; δ in the high-energy (SF) range. The fit procedures are, from
top to bottom: γT:u-by-u, σT:u-by-u, γT:global, σT:global. The fit parameters are shown in the second column. When the AIC weights are
missing, the corresponding fit is not included in the final average of Eq. (43).h

TRGI

½Tðμ0=2Þ�R

i
α

wα
AIC

h
TRGI

½Tðμ0=2Þ�R

i
β

wβ
AIC

h
TRGI

½Tðμ0=2Þ�R

i
γ

wγ
AIC

h
TRGI

½Tðμ0=2Þ�R

i
δ

wδ
AIC

½nγ� [2] 1.1248(50) 1.1623(44) 1.2823(38) 1.2283(29)
[3] 1.1210(69) 1.1614(62) 1.2731(55) 1.2319(42)

½nσ � [3] 1.1270(53) 1.1658(47) 1.2845(40) 1.2325(31)
[4] 1.1251(72) 1.1652(65) 1.2775(57) 1.2358(44)

(Table continued)
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APPENDIX E: RESULTS FOR RENORMALIZATION PARAMETERS AND SSF’S
IN THE LOW-ENERGY REGIME

TABLE XVII. (Continued) h
TRGI

½Tðμ0=2Þ�R

i
α

wα
AIC

h
TRGI

½Tðμ0=2Þ�R

i
β

wβ
AIC

h
TRGI

½Tðμ0=2Þ�R

i
γ

wγ
AIC

h
TRGI

½Tðμ0=2Þ�R

i
δ

wδ
AIC

½nγ; n0σ ; jmax; ðL=aÞmin� [2,2,3,6] 1.138(12) 0.2212 1.170(11) 0.2321 1.3005(92) 0.1722 1.2177(68) 0.232
[2,2,4,6] 1.135(10) 0.214 1.1681(90) 0.2302 1.2967(78) 0.1566 1.2198(58) 0.2264
[2,2,2,8] 1.1305(77) 0.0141 1.1655(67) 0.0172 1.2910(57) 0.0012 1.2231(43) 0.0052
[3,2,3,6] 1.129(16) 0.1116 1.165(14) 0.1055 1.293(12) 0.0862 1.2195(88) 0.0969
[3,2,4,6] 1.127(14) 0.1124 1.164(12) 0.106 1.289(10) 0.0854 1.2219(76) 0.0964
[3,2,2,8] 1.123(10) 0.0072 1.1622(93) 0.0072 1.2773(80) 0.0017 1.2281(60) 0.0028
[2,3,3,6] 1.134(13) 0.0473 1.167(11) 0.0457 1.2963(96) 0.0868 1.2191(71) 0.054
[2,3,4,6] 1.132(11) 0.0476 1.1664(95) 0.0462 1.2937(81) 0.0906 1.2208(60) 0.0547
[2,3,2,8] 1.1291(78) 0.0073 1.1646(67) 0.0079 1.2892(57) 0.002 1.2237(43) 0.0031
[3,3,3,6] 1.128(20) 0.0214 1.167(18) 0.0199 1.299(16) 0.0344 1.214(12) 0.0233
[3,3,4,6] 1.126(17) 0.0217 1.165(15) 0.0201 1.293(13) 0.0356 1.2180(98) 0.0229
[3,3,2,8] 1.126(12) 0.0031 1.165(10) 0.0031 1.2831(92) 0.0009 1.2255(69) 0.0012
[2,4,3,6] 1.134(13) 0.017 1.168(11) 0.0149 1.2960(96) 0.0182 1.2195(71) 0.0184
[2,4,4,6] 1.132(11) 0.017 1.1664(95) 0.015 1.2936(81) 0.0191 1.2210(60) 0.0188
[2,4,2,8] 1.1290(78) 0.0032 1.1645(67) 0.0034 1.2892(57) 0.0008 1.2237(43) 0.0012
[3,4,3,6] 1.131(21) 0.0074 1.169(19) 0.0064 1.295(17) 0.0071 1.219(12) 0.0074
[3,4,4,6] 1.129(17) 0.0075 1.167(15) 0.0065 1.290(14) 0.0076 1.221(10) 0.0075
[3,4,2,8] 1.125(12) 0.0013 1.164(10) 0.0014 1.2831(93) 0.0003 1.2254(69) 0.0005
[2,2,2,6] 1.1254(49) 1.1626(43) 1.2821(37) 1.2284(28)
[3,2,2,6] 1.1198(64) 1.1598(58) 1.2750(51) 1.2309(39)
[2,3,2,6] 1.1245(50) 1.1621(44) 1.2816(38) 1.2287(29)
[3,3,2,6] 1.1199(69) 1.1603(62) 1.2734(55) 1.2312(42)
[2,4,2,6] 1.1241(50) 1.1618(44) 1.2819(38) 1.2283(29)
[3,4,2,6] 1.1204(69) 1.1608(62) 1.2728(55) 1.2317(42)

½nσ ; jmax; ðL=aÞmin� [3,3,6] 1.132(14) 0.0481 1.167(12) 0.0458 1.295(10) 0.0858 1.2185(75) 0.0546
[3,4,6] 1.130(11) 0.0488 1.1660(100) 0.0463 1.2926(85) 0.0905 1.2204(63) 0.0551
[3,2,8] 1.1273(82) 0.0049 1.1642(71) 0.0055 1.2877(60) 0.0019 1.2237(45) 0.0025
[4,3,6] 1.129(21) 0.0075 1.167(19) 0.0064 1.294(17) 0.0071 1.219(13) 0.0074
[4,4,6] 1.127(18) 0.0076 1.166(16) 0.0065 1.290(14) 0.0076 1.221(10) 0.0075
[4,2,8] 1.125(12) 0.0008 1.164(11) 0.0009 1.2831(96) 0.0003 1.2254(72) 0.0004
[3,2,6] 1.1227(53) 1.1615(46) 1.2798(39) 1.2289(30)
[4,2,6] 1.1204(71) 1.1605(64) 1.2732(57) 1.2315(44)

TABLE XVIII. Results for the renormalization parameters ZT and the SSFs ΣT in the α-scheme, for all squared couplings uGF, lattice
resolutions L=a, inverse bare couplings β, and critical hopping parameters κc.

uGF L=a β κc zf ZTðg20; L=aÞ ZTðg20; 2L=aÞ ΣTðg20; L=aÞ
2.1275(15) 8 5.3715 0.13362120 1.226543 0.99567(59) 1.0352(19) 1.0397(20)
2.1231(12) 12 5.54307 0.13331407 1.219858 1.01342(69) 1.0592(41) 1.0452(42)
2.1257(25) 16 5.7 0.13304840 1.213896 1.02623(87) 1.0710(60) 1.0436(59)

2.3898(15) 8 5.071 0.13421678 1.242454 0.99924(68) 1.0463(22) 1.0470(24)
2.3913(10) 12 5.242465 0.13387635 1.234761 1.01865(86) 1.0770(44) 1.0573(44)
2.3900(31) 16 5.4 0.13357851 1.227585 1.0343(12) 1.0904(29) 1.0542(31)

2.7363(14) 8 4.7649 0.13488555 1.259474 1.00326(66) 1.0608(25) 1.0573(26)
2.7389(14) 12 4.938726 0.13450761 1.251937 1.0277(14) 1.0941(35) 1.0646(37)
2.7359(36) 16 5.1 0.13416889 1.243518 1.0447(12) 1.1180(72) 1.0702(70)

(Table continued)
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TABLE XIX. Results for the renormalization parameters ZT and the SSFs ΣT in the β-scheme, for all squared couplings uGF, lattice
resolutions L=a, inverse bare couplings β, and critical hopping parameters κc.

uGF L=a β κc zf ZTðg20; L=aÞ ZTðg20; 2L=aÞ ΣTðg20; L=aÞ
2.1275(15) 8 5.3715 0.13362120 1.226543 0.97229(50) 1.0050(16) 1.0336(17)
2.1231(12) 12 5.54307 0.13331407 1.219858 0.98920(56) 1.0263(34) 1.0375(35)
2.1257(25) 16 5.7 0.13304840 1.213896 1.00112(72) 1.0393(45) 1.0381(46)

2.3898(15) 8 5.071 0.13421678 1.242454 0.97216(56) 1.0101(18) 1.0390(20)
2.3913(10) 12 5.242465 0.13387635 1.234761 0.99001(70) 1.0369(33) 1.0473(35)
2.3900(31) 16 5.4 0.13357851 1.227585 1.0050(10) 1.0486(28) 1.0434(30)

2.7363(14) 8 4.7649 0.13488555 1.259474 0.97111(56) 1.0158(19) 1.0461(20)
2.7389(14) 12 4.938726 0.13450761 1.251937 0.9938(11) 1.0455(31) 1.0519(33)
2.7359(36) 16 5.1 0.13416889 1.243518 1.00949(93) 1.0661(60) 1.0560(61)

3.2040(18) 8 4.4576 0.13560675 1.278015 0.97085(66) 1.0301(37) 1.0610(39)
3.2051(17) 12 4.634654 0.13519986 1.270631 0.9956(11) 1.0617(38) 1.0663(40)
3.2029(51) 16 4.8 0.13482139 1.261490 1.0175(12) 1.0797(34) 1.0612(36)

3.8636(21) 8 4.1519 0.13632589 1.297229 0.96983(84) 1.0487(34) 1.0814(37)
3.8633(21) 12 4.33166 0.13592664 1.291442 1.0015(15) 1.0801(62) 1.0785(64)
3.8643(66) 16 4.5 0.13552582 1.281991 1.0252(14) 1.1293(56) 1.1015(57)

4.4848(24) 8 3.9479 0.13674684 1.307866 0.97209(93) 1.0650(39) 1.0956(41)
4.4864(27) 12 4.128217 0.13640300 1.305825 1.0093(16) 1.1230(60) 1.1126(62)
4.4901(75) 16 4.3 0.13600821 1.296227 1.0389(15) 1.1486(72) 1.1056(72)

5.3009(32) 8 3.75489 0.13701929 1.314612 0.9742(13) 1.1099(73) 1.1393(76)
5.2970(36) 12 3.936816 0.13679805 1.317703 1.0219(19) 1.1599(94) 1.1351(95)
5.301(14) 16 4.1 0.13647301 1.310054 1.0523(29) 1.2066(95) 1.1466(96)

TABLE XVIII. (Continued)

uGF L=a β κc zf ZTðg20; L=aÞ ZTðg20; 2L=aÞ ΣTðg20; L=aÞ
3.2040(18) 8 4.4576 0.13560675 1.278015 1.01044(82) 1.0880(47) 1.0767(48)
3.2051(17) 12 4.634654 0.13519986 1.270631 1.0364(14) 1.1265(53) 1.0869(53)
3.2029(51) 16 4.8 0.13482139 1.261490 1.0609(15) 1.1470(45) 1.0812(45)

3.8636(21) 8 4.1519 0.13632589 1.297229 1.0188(10) 1.1291(53) 1.1083(53)
3.8633(21) 12 4.33166 0.13592664 1.291442 1.0542(20) 1.1743(79) 1.1139(77)
3.8643(66) 16 4.5 0.13552582 1.281991 1.0804(18) 1.2309(91) 1.1393(86)

4.4848(24) 8 3.9479 0.13674684 1.307866 1.0315(12) 1.1744(56) 1.1385(56)
4.4864(27) 12 4.128217 0.13640300 1.305825 1.0738(22) 1.2575(83) 1.1710(81)
4.4901(75) 16 4.3 0.13600821 1.296227 1.1074(20) 1.289(12) 1.164(11)

5.3009(32) 8 3.75489 0.13701929 1.314612 1.0474(17) 1.277(14) 1.220(13)
5.2970(36) 12 3.936816 0.13679805 1.317703 1.1036(26) 1.371(16) 1.242(15)
5.301(14) 16 4.1 0.13647301 1.310054 1.1402(40) 1.456(25) 1.277(22)
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TABLE XX. Results for the renormalization parameters ZT and the SSFs ΣT in the γ-scheme, for all squared couplings uGF, lattice
resolutions L=a, inverse bare couplings β, and critical hopping parameters κc.

uGF L=a β κc zf ZTðg20; L=aÞ ZTðg20; 2L=aÞ ΣTðg20; L=aÞ
2.1275(15) 8 5.3715 0.13362120 1.226543 0.91090(36) 0.9336(12) 1.0249(14)
2.1231(12) 12 5.54307 0.13331407 1.219858 0.92346(49) 0.9472(16) 1.0257(19)
2.1257(25) 16 5.7 0.13304840 1.213896 0.93489(48) 0.9555(31) 1.0221(33)

2.3898(15) 8 5.071 0.13421678 1.242454 0.90554(39) 0.9296(12) 1.0266(14)
2.3913(10) 12 5.242465 0.13387635 1.234761 0.92133(54) 0.9496(17) 1.0307(19)
2.3900(31) 16 5.4 0.13357851 1.227585 0.93178(66) 0.9656(34) 1.0363(37)

2.7363(14) 8 4.7649 0.13488555 1.259474 0.90010(42) 0.9309(13) 1.0342(15)
2.7389(14) 12 4.938726 0.13450761 1.251937 0.91617(69) 0.9489(19) 1.0357(23)
2.7359(36) 16 5.1 0.13416889 1.243518 0.92979(79) 0.9701(34) 1.0433(38)

3.2040(18) 8 4.4576 0.13560675 1.278015 0.89580(49) 0.9309(16) 1.0391(19)
3.2051(17) 12 4.634654 0.13519986 1.270631 0.91371(88) 0.9601(31) 1.0508(35)
3.2029(51) 16 4.8 0.13482139 1.261490 0.9293(10) 0.9799(35) 1.0545(39)

3.8636(21) 8 4.1519 0.13632589 1.297229 0.89176(59) 0.9423(21) 1.0567(24)
3.8633(21) 12 4.33166 0.13592664 1.291442 0.91488(90) 0.9771(42) 1.0680(47)
3.8643(66) 16 4.5 0.13552582 1.281991 0.9320(11) 0.9973(35) 1.0701(40)

4.4848(24) 8 3.9479 0.13674684 1.307866 0.88812(63) 0.9540(28) 1.0742(33)
4.4864(27) 12 4.128217 0.13640300 1.305825 0.9177(14) 0.9947(55) 1.0839(62)
4.4901(75) 16 4.3 0.13600821 1.296227 0.9349(12) 1.0215(62) 1.0926(68)

5.3009(32) 8 3.75489 0.13701929 1.314612 0.88951(88) 0.9772(42) 1.0986(48)
5.2970(36) 12 3.936816 0.13679805 1.317703 0.9195(15) 1.0366(75) 1.1273(84)
5.301(14) 16 4.1 0.13647301 1.310054 0.9431(17) 1.089(10) 1.155(11)

TABLE XXI. Results for the renormalization parameters ZT and the SSFs ΣT in the δ-scheme, for all squared couplings uGF, lattice
resolutions L=a, inverse bare couplings β, and critical hopping parameters κc.

uGF L=a β κc zf ZTðg20; L=aÞ ZTðg20; 2L=aÞ ΣTðg20; L=aÞ
2.1275(15) 8 5.3715 0.13362120 1.226543 0.93304(28) 0.96117(97) 1.0302(11)
2.1231(12) 12 5.54307 0.13331407 1.219858 0.95047(38) 0.9821(12) 1.0332(13)
2.1257(25) 16 5.7 0.13304840 1.213896 0.96205(39) 0.9961(39) 1.0353(41)

2.3898(15) 8 5.071 0.13421678 1.242454 0.92894(32) 0.9625(10) 1.0361(12)
2.3913(10) 12 5.242465 0.13387635 1.234761 0.94741(44) 0.9831(14) 1.0376(15)
2.3900(31) 16 5.4 0.13357851 1.227585 0.96173(54) 0.9965(32) 1.0362(33)

2.7363(14) 8 4.7649 0.13488555 1.259474 0.92404(33) 0.9620(11) 1.0411(12)
2.7389(14) 12 4.938726 0.13450761 1.251937 0.94664(54) 0.9893(15) 1.0451(17)
2.7359(36) 16 5.1 0.13416889 1.243518 0.96195(60) 1.0032(27) 1.0429(29)

3.2040(18) 8 4.4576 0.13560675 1.278015 0.91818(37) 0.9663(17) 1.0524(19)
3.2051(17) 12 4.634654 0.13519986 1.270631 0.94398(74) 0.9939(25) 1.0529(28)
3.2029(51) 16 4.8 0.13482139 1.261490 0.96276(75) 1.0140(23) 1.0532(25)

3.8636(21) 8 4.1519 0.13632589 1.297229 0.91183(43) 0.9716(15) 1.0655(17)
3.8633(21) 12 4.33166 0.13592664 1.291442 0.94292(82) 1.0096(32) 1.0708(35)
3.8643(66) 16 4.5 0.13552582 1.281991 0.96436(79) 1.0367(30) 1.0750(32)

4.4848(24) 8 3.9479 0.13674684 1.307866 0.91011(50) 0.9857(24) 1.0830(27)
4.4864(27) 12 4.128217 0.13640300 1.305825 0.9429(11) 1.0356(39) 1.0983(43)
4.4901(75) 16 4.3 0.13600821 1.296227 0.96971(93) 1.0605(57) 1.0936(60)

5.3009(32) 8 3.75489 0.13701929 1.314612 0.90681(74) 1.0098(55) 1.1136(61)
5.2970(36) 12 3.936816 0.13679805 1.317703 0.9490(11) 1.0674(61) 1.1247(66)
5.301(14) 16 4.1 0.13647301 1.310054 0.9757(13) 1.1054(91) 1.1329(95)
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APPENDIX F: RESULTS FOR THE TENSOR RG EVOLUTION IN THE LOW-ENERGY REGIME

APPENDIX G: COMPARISON
OF OUR RG-RUNNING RESULTS

AND THOSE OF REF. [11]

In this Appendix we compare our results to those of
Ref. [11], which have been obtained on practically the same
gauge ensembles used by us. The principal difference is
that Ref. [11] uses f- and k-schemes with SF boundary
conditions [see Eqs. (13) and (14)], whereas our schemes-α
and -β involve χSF boundary conditions (see Eqs. (13) and
(14)). Otherwise, the renormalized continuum ratios of
correlation functions defining the f− and k-schemes are the
same as those defining schemes-α and -β respectively.
Another important difference is that the authors of
Ref. [11], having tried out several fit Ansätze, single out
the result of one given Ansatz, while we prefer to quote as
best result the average a several fit Ansätze.
We discuss results in the high-energy range first. The raw

data for ZTðg20; L=aÞ; ZTðg20; 2L=aÞ, and ΣTðg20; L=aÞ in
Tables 8 and 9 of Ref. [11] are very similar to the ones
in Tables IX and X of our Appendix B; also the errors are
comparable. The best result of Ref. [11] is reportedly
obtained from fitting all datapoints (i.e. including resolu-
tion L=a ¼ 6) with the tensor anomalous dimension

approximated by γTðxÞ ¼ −x2½t0 þ t1x2 þ t2x4�. The cutoff
effects are only quadratic in this fit and have the form
½ρ2u2 þ ρ3u3�ða=LÞ2. They find [see their Eq. (4.15)]:

TRGI

½Tðμ0=2Þ�R
¼ 1.1213ð74Þ f-scheme; ðG1aÞ

TRGI

½Tðμ0=2Þ�R
¼ 1.1586ð63Þ k-scheme: ðG1bÞ

This closely corresponds to our result from
½nγ; n0σ; jmax; ðL=aÞmin� ¼ ½2; 3; 2; 6� which we may read
off from Table XVII of Appendix D:

TRGI

½Tðμ0=2Þ�R
¼ 1.1245ð50Þ scheme-α; ðG2aÞ

TRGI

½Tðμ0=2Þ�R
¼ 1.1621ð44Þ scheme-β: ðG2bÞ

Results are compatible pairwise (f-scheme with scheme-α;
k-scheme with scheme-β), with those of the present
work having somewhat smaller errors. Note that in
our case, we have allowed for a contribution to the

TABLE XXII. Fit results for ½Tðμ0=2Þ�R=½TðμhadÞ�R for the four schemes α;…; δ in the low-energy (GF) range. First column: fit
parameters. When the AIC weights are missing, the corresponding fit is not included in the final average of Eq. (51).

½nf ; n0σ ; jmax; ðL=aÞmin�
h
½Tðμ0=2Þ�R
½TðμhadÞ�R

i
α

wα
AIC

h
½Tðμ0=2Þ�R
½TðμhadÞ�R

i
β

wβ
AIC

h
½Tðμ0=2Þ�R
½TðμhadÞ�R

i
γ

wγ
AIC

h
½Tðμ0=2Þ�R
½TðμhadÞ�R

i
δ

wδ
AIC

[2,2,2,12] 0.647(20) 0.1975 0.750(15) 0.1757 0.761(15) 0.2125 0.782(12) 0.188
[2,2,2,8] 0.6488(82) 0.1813 0.7528(65) 0.1842 0.7741(61) 0.7791(50) 0.1623
[2,2,3,8] 0.663(33) 0.0377 0.755(26) 0.042 0.758(24) 0.0346 0.791(21) 0.0355
[2,2,4,8] 0.658(27) 0.0376 0.753(22) 0.0422 0.760(20) 0.0351 0.788(17) 0.0351
[2,3,2,12] 0.647(22) 0.078 0.752(16) 0.078 0.753(16) 0.1369 0.787(14) 0.0885
[2,3,2,8] 0.6459(90) 0.084 0.7535(68) 0.0823 0.7734(66) 0.7773(55) 0.0713
[2,3,3,8] 0.654(35) 0.0074 0.755(27) 0.0084 0.755(26) 0.0066 0.792(23) 0.0064
[2,3,4,8] 0.651(30) 0.0074 0.753(23) 0.0084 0.757(22) 0.0067 0.789(19) 0.0063
[2,4,2,12] 0.643(23) 0.0328 0.751(16) 0.0324 0.754(16) 0.056 0.782(15) 0.0464
[2,4,2,8] 0.6458(93) 0.0349 0.7539(69) 0.0368 0.7724(67) 0.7766(57) 0.0297
[2,4,3,8] 0.638(42) 0.0015 0.754(29) 0.0019 0.742(28) 0.0023 0.787(26) 0.0013
[2,4,4,8] 0.641(35) 0.0014 0.753(24) 0.0019 0.747(23) 0.0022 0.785(21) 0.0012
[3,2,2,12] 0.647(20) 0.0781 0.750(15) 0.0747 0.754(15) 0.2454 0.785(13) 0.1181
[3,2,2,8] 0.6475(84) 0.0815 0.7524(67) 0.0812 0.7736(63) 0.7795(51) 0.0671
[3,2,3,8] 0.657(34) 0.0173 0.753(27) 0.0192 0.756(25) 0.0153 0.792(21) 0.0141
[3,2,4,8] 0.654(28) 0.0172 0.752(22) 0.0192 0.758(21) 0.0156 0.789(18) 0.014
[3,3,2,12] 0.646(22) 0.0312 0.752(16) 0.032 0.754(16) 0.0959 0.785(14) 0.0449
[3,3,2,8] 0.6459(90) 0.0355 0.7533(69) 0.0378 0.7733(66) 0.7772(55) 0.0326
[3,3,3,8] 0.660(37) 0.0032 0.758(28) 0.0044 0.756(26) 0.0029 0.793(24) 0.0025
[3,3,4,8] 0.655(31) 0.0032 0.756(23) 0.0043 0.758(22) 0.0029 0.790(20) 0.0025
[3,4,2,12] 0.639(24) 0.014 0.750(17) 0.0136 0.741(17) 0.1258 0.783(15) 0.0177
[3,4,2,8] 0.643(10) 0.0156 0.7528(74) 0.0167 0.7658(72) 0.7785(62) 0.0134
[3,4,3,8] 0.630(38) 0.0009 0.741(28) 0.0015 0.732(27) 0.0016 0.783(25) 0.0005
[3,4,4,8] 0.630(31) 0.0009 0.742(23) 0.0014 0.737(22) 0.0017 0.782(21) 0.0005
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quadratic discretization effects which is linear in u (i.e.
½b12uþ b22u2 þ b32u3�ða=LÞ2), in order to account for the
effects discussed right after Eq. (26).
Next we compare results in the low-energy region.

The raw data for ZTðg20; L=aÞ; ZTðg20; 2L=aÞ, and
ΣTðg20; L=aÞ are displayed in Tables 10 and 11 of Ref. [11].
Upon comparing them to the results in our Tables XVIII
and XIX of Appendix E, we see that the central values are
in the same ballpark and the errors of ZTðg20; L=aÞ are very
similar. However, the errors of ZTðg20; 2L=aÞ (and con-
sequently of ΣTðg20; L=aÞ) are significantly bigger in our
data for the bigger lattice resolutions. Given the fact that the
results of both groups were largely computed on the same
configuration ensembles, these differences can only be
explained by the fact that our choice of parameter for the
estimation of the autocorrelation times in the error analysis
lead to more conservative errors.
The authors of Ref. [11] approximate the anomalous

dimension ratio by the polynomial fðxÞ≡ γTðxÞ=βðxÞ ¼
ð1=xÞ½f0 þ f1x2 þ f2x4�. The cutoff effects are only quad-
ratic in this fit and have the form ½ρ1uþ ρ2u2�ða=LÞ2. They
find (see their Eq. (4.24)):

½Tðμ0=2Þ�R
½TðμhadÞ�R

¼ 0.6475ð59Þ f-scheme; ðG3aÞ

½Tðμ0=2Þ�R
½TðμhadÞ�R

¼ 0.7519ð45Þ k-scheme: ðG3bÞ

This corresponds to our result from ½nγ; n0σ; jmax; ðL=aÞmin� ¼
½2; 2; 2; 8� which we may read off from Table XXII of
Appendix F:

½Tðμ0=2Þ�R
½TðμhadÞ�R

¼ 0.6488ð82Þ scheme-α; ðG4aÞ

½Tðμ0=2Þ�R
½TðμhadÞ�R

¼ 0.7528ð65Þ scheme-β: ðG4bÞ

Once more the central values agree pairwise (f-scheme with
scheme-α; k-scheme with scheme-β), but the errors of the
present work are 30%-50% larger than those estimated
in Ref. [11].
Combining their high- and low-energy running factors,

the authors of Ref. [11] quote in their Eq. (4.31):

TRGI

½TðμhadÞ�R
¼ 0.7260ð81Þð14Þ f-scheme; ðG5aÞ

TRGI

½TðμhadÞ�R
¼ 0.8711ð70Þð11Þ k-scheme: ðG5bÞ

These are to be compared to the scheme-α and -β results of
Eq. (56). It is hardly surprising that our errors are twice
as big, since they incorporate the uncertainty arising from
the choice of fitting Ansatz. We consider this a more
conservative approach which properly takes into account a
significant, if habitually overlooked, source of system-
atic error.

APPENDIX H: DETAILS AND RESULTS OF THE
SIMULATIONS AT THE HADRONIC SCALE

Fit coefficients of Eq. (59b) and covariance matrices for
all four renormalization schemes.

zα0 ¼ þ1.396300; zα1 ¼ þ0.348406; zα2 ¼ −0.446360 χ2=d:o:f: ¼ 0.217;

covðzαi ; zαj Þ ¼

0
B@

þ1.359453 × 10−5 þ2.406576 × 10−5 −4.387235 × 10−5

þ2.406576 × 10−5 þ9.634172 × 10−4 þ2.458513 × 10−3

−4.387235 × 10−5 þ2.458513 × 10−3 þ7.515493 × 10−3

1
CA ðH1Þ

TABLE XXIII. Results for Zβ
Tðg20; u; LmÞ in the hadronic matching region for all four renormalization schemes.

L=a β κc zf u Lm Zα
Tðg20; u; LmÞ Zβ

Tðg20; u; LmÞ Zγ
Tðg20; u; LmÞ Zδ

Tðg20; u; LmÞ Nms

10 3.400000 0.136804 1.360627 9.282(39) −0.0237ð33Þ 1.1989(52) 1.0208(31) 0.9392(25) 0.9426(18) 2489
10 3.411000 0.136765 1.312881 9.290(32) þ0.0178ð23Þ 1.2010(37) 1.0235(20) 0.9472(18) 0.9400(14) 4624
12 3.480000 0.137039 1.356632 9.486(42) −0.0095ð26Þ 1.2695(70) 1.0645(39) 0.9631(33) 0.9852(28) 2400
12 3.488000 0.137021 1.334415 9.374(41) þ0.0018ð25Þ 1.2656(66) 1.0610(31) 0.9736(29) 0.9766(19) 3200
12 3.497000 0.137063 1.354166 9.171(40) −0.0106ð24Þ 1.2507(64) 1.0609(34) 0.9633(29) 0.9740(25) 2400
16 3.649000 0.137158 1.342554 9.368(32) −0.0041ð13Þ 1.3505(66) 1.1208(36) 1.0038(33) 1.0325(28) 4650
16 3.657600 0.137154 1.342971 9.163(33) −0.0042ð14Þ 1.3365(70) 1.1190(38) 1.0025(34) 1.0261(28) 3719
16 3.671000 0.137148 1.344328 8.940(42) −0.0078ð23Þ 1.3174(106) 1.1175(58) 0.9966(49) 1.0200(43) 1600
20 3.790000 0.137048 1.331205 9.256(41) þ0.0002ð11Þ 1.3898(83) 1.1529(48) 1.0377(39) 1.0573(35) 4305
24 3.893412 0.136894 1.325811 9.396(49) þ0.0008ð12Þ 1.4467(110) 1.1796(76) 1.0488(63) 1.0902(50) 3008
24 3.912248 0.136862 1.325102 9.176(37) þ0.0008ð8Þ 1.4257(85) 1.1747(50) 1.0564(39) 1.0729(33) 5086
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zβ0 ¼ þ1.155089; zβ1 ¼ þ0.216761; zβ2 ¼ −0.342213; χ2=d:o:f: ¼ 0.122;

covðzβi ; zβj Þ ¼

0
B@

þ4.677974 × 10−6 þ1.268042 × 10−5 −3.578771 × 10−6

þ1.268042 × 10−5 þ3.389808 × 10−4 þ8.367065 × 10−4

−3.578771 × 10−6 þ8.367065 × 10−4 þ2.472715 × 10−3

1
CA ðH2Þ

zγ0 ¼ þ1.033467; zγ1 ¼ þ0.198771; zγ2 ¼ −0.095224; χ2=d:o:f: ¼ 1.513;

covðzγi ; zγjÞ ¼

0
B@

þ3.204288 × 10−6 þ5.808756 × 10−6 −1.047494 × 10−5

þ5.808756 × 10−6 þ2.234198 × 10−4 þ5.695031 × 10−4

−1.047494 × 10−5 þ5.695031 × 10−4 þ1.752155 × 10−3

1
CA ðH3Þ

zδ0 ¼ þ1.059607; zδ1 ¼ þ0.194894; zδ2 ¼ −0.310301; χ2=d:o:f: ¼ 0.749;

covðzδi ; zδjÞ ¼

0
B@

þ2.244394 × 10−6 þ4.692534 × 10−6 −5.179732 × 10−6

þ4.692534 × 10−6 þ1.503983 × 10−4 þ3.742533 × 10−4

−5.179732 × 10−6 þ3.742533 × 10−4 þ1.118873 × 10−3

1
CA ðH4Þ

[1] G. Buchalla et al., Eur. Phys. J. C 57, 309 (2008).
[2] M. Antonelli et al., Phys. Rep. 494, 197 (2010).
[3] T. Blake, G. Lanfranchi, and D.M. Straub, Prog. Part. Nucl.

Phys. 92, 50 (2017).
[4] T. Bhattacharya, V. Cirigliano, R. Gupta, H.-W. Lin, and B.

Yoon, Phys. Rev. Lett. 115, 212002 (2015).
[5] T. Bhattacharya, V. Cirigliano, S. Cohen, R. Gupta,

H.-W. Lin, and B. Yoon, Phys. Rev. D 94, 054508
(2016).

[6] M. Abramczyk, S. Aoki, T. Blum, T. Izubuchi, H. Ohki, and
S. Syritsyn, Phys. Rev. D 96, 014501 (2017).

[7] I. C. Plasencia, M. Dalla Brida, G. M. de Divitiis, A. Lytle,
M. Papinutto, L. Pirelli, and A. Vladikas (ALPHA Col-
laboration), Phys. Rev. D 105, 054506 (2022).

[8] I. Campos, P. Fritzsch, C. Pena, D. Preti, A. Ramos, and A.
Vladikas, Eur. Phys. J. C 78, 387 (2018).

[9] S. Sint, Nucl. Phys. B847, 491 (2011).
[10] C. Pena and D. Preti, Eur. Phys. J. C 78, 575 (2018).
[11] L. Chimirri, P. Fritzsch, J. Heitger, F. Joswig, M. Panero, C.

Pena, and D. Preti, arXiv:2309.04314.
[12] M. Bruno et al., J. High Energy Phys. 02 (2015) 043.
[13] M. Bruno, T. Korzec, and S. Schaefer, Phys. Rev. D 95,

074504 (2017).
[14] G. S. Bali, E. E. Scholz, J. Simeth, and W. Söldner (RQCD

Collaboration), Phys. Rev. D 94, 074501 (2016).
[15] D. Mohler, S. Schaefer, and J. Simeth, EPJ Web Conf. 175,

02010 (2018).
[16] G. S. Bali, S. Collins, P. Georg, D. Jenkins, P. Korcyl, A.

Schäfer, E. E. Scholz, J. Simeth, W. Söldner, and S.
Weishäupl (RQCD Collaboration), J. High Energy Phys.
05 (2023) 035.

[17] G. M. de Divitiis, I. C. Plasencia, M. D. Brida, A. Lytle, M.
Papinutto, L. Pirelli, and A. Vladikas (Alpha Collaboration),
Proc. Sci.vLATTICE2021 (2022) 253.

[18] I. Campos Plasencia, M. Dalla Brida, G. M. de Divitiis, A.
Lytle, L. Pirelli, M. Papinutto, and A. Vladikas (Alpha
Collaboration), Proc. Sci. LATTICE2022, 356 (2023).

[19] G. S. Bali et al. (RQCD Collaboration), Phys. Rev. D 103,
094511 (2021); 107, 039901(E) (2023).

[20] M. Dalla Brida, S. Sint, and P. Vilaseca, J. High Energy
Phys. 08 (2016) 102.

[21] R. Frezzotti and G. Rossi, J. High Energy Phys. 08 (2004)
007.

[22] S. Sint, in Perspectives in Lattice QCD (World Scientific,
Singapore, 2007).

[23] S. Sint and B. Leder, Proc. Sci. LATTICE2010 (2010) 265.
[24] M. Dalla Brida, T. Korzec, S. Sint, and P. Vilaseca, Eur.

Phys. J. C 79, 23 (2019).
[25] T. Bhattacharya, R. Gupta, W. Lee, S. R. Sharpe, and J. M.

Wu, Phys. Rev. D 73, 034504 (2006).
[26] S. Sint and P. Weisz, Nucl. Phys. B, Proc. Suppl. 63, 856

(1998).
[27] S. Capitani, M. Lüscher, R. Sommer, and H. Wittig, Nucl.

Phys. B544, 669 (1999); B582, 762(E) (2000).
[28] P. V. Mainar, M. Dalla Brida, and M. Papinutto, Proc. Sci.

LATTICE2015 (2016) 252.
[29] M. Dalla Brida, P. Fritzsch, T. Korzec, A. Ramos, S. Sint,

and R. Sommer (ALPHA Collaboration), Phys. Rev. Lett.
117, 182001 (2016).

[30] M. Dalla Brida, P. Fritzsch, T. Korzec, A. Ramos, S. Sint,
and R. Sommer (ALPHA Collaboration), Phys. Rev. D 95,
014507 (2017).

ISABEL CAMPOS PLASENCIA et al. PHYS. REV. D 109, 054511 (2024)

054511-30

https://doi.org/10.1140/epjc/s10052-008-0716-1
https://doi.org/10.1016/j.physrep.2010.05.003
https://doi.org/10.1016/j.ppnp.2016.10.001
https://doi.org/10.1016/j.ppnp.2016.10.001
https://doi.org/10.1103/PhysRevLett.115.212002
https://doi.org/10.1103/PhysRevD.94.054508
https://doi.org/10.1103/PhysRevD.94.054508
https://doi.org/10.1103/PhysRevD.96.014501
https://doi.org/10.1103/PhysRevD.105.054506
https://doi.org/10.1140/epjc/s10052-018-5870-5
https://doi.org/10.1016/j.nuclphysb.2011.02.002
https://doi.org/10.1140/epjc/s10052-018-6022-7
https://arXiv.org/abs/2309.04314
https://doi.org/10.1007/JHEP02(2015)043
https://doi.org/10.1103/PhysRevD.95.074504
https://doi.org/10.1103/PhysRevD.95.074504
https://doi.org/10.1103/PhysRevD.94.074501
https://doi.org/10.1007/JHEP06(2018)015
https://doi.org/10.1007/JHEP06(2018)015
https://doi.org/10.1007/JHEP05(2023)035
https://doi.org/10.1007/JHEP05(2023)035
https://doi.org/10.1103/PhysRevD.103.094511
https://doi.org/10.1103/PhysRevD.103.094511
https://doi.org/10.1103/PhysRevD.107.039901
https://doi.org/10.1007/JHEP08(2016)102
https://doi.org/10.1007/JHEP08(2016)102
https://doi.org/10.1088/1126-6708/2004/08/007
https://doi.org/10.1088/1126-6708/2004/08/007
https://doi.org/10.1140/epjc/s10052-018-6514-5
https://doi.org/10.1140/epjc/s10052-018-6514-5
https://doi.org/10.1103/PhysRevD.73.034504
https://doi.org/10.1016/S0920-5632(97)00920-1
https://doi.org/10.1016/S0920-5632(97)00920-1
https://doi.org/10.1016/S0550-3213(98)00857-8
https://doi.org/10.1016/S0550-3213(98)00857-8
https://doi.org/10.1103/PhysRevLett.117.182001
https://doi.org/10.1103/PhysRevLett.117.182001
https://doi.org/10.1103/PhysRevD.95.014507
https://doi.org/10.1103/PhysRevD.95.014507


[31] M. Dalla Brida, P. Fritzsch, T. Korzec, A. Ramos, S. Sint,
and R. Sommer (ALPHACollaboration), Eur. Phys. J. C 78,
372 (2018).

[32] M. Lüscher, R. Narayanan, P. Weisz, and U. Wolff, Nucl.
Phys. B384, 168 (1992).

[33] M. Luscher, R. Sommer, P. Weisz, and U.Wolff, Nucl. Phys.
B413, 481 (1994).

[34] P. Fritzsch and A. Ramos, J. High Energy Phys. 10 (2013)
008.

[35] M. Bruno, M. Dalla Brida, P. Fritzsch, T. Korzec, A. Ramos,
S. Schaefer, H. Simma, S. Sint, and R. Sommer (ALPHA
Collaboration), Phys. Rev. Lett. 119, 102001 (2017).

[36] K. G. Wilson, Phys. Rev. D 10, 2445 (1974).
[37] B. Sheikholeslami and R. Wohlert, Nucl. Phys. B259, 572

(1985).
[38] N. Yamada et al. (JLQCD, CP-PACS Collaborations), Phys.

Rev. D 71, 054505 (2005).
[39] S. Sint and P. Weisz, Nucl. Phys. B502, 251 (1997).
[40] A. Bode, U. Wolff, and P. Weisz (Alpha Collaboration),

Nucl. Phys. B540, 491 (1999).
[41] M. Lüscher and P. Weisz, Phys. Lett. 158B, 250 (1985).
[42] J. Bulava and S. Schaefer, Nucl. Phys. B874, 188 (2013).
[43] P. Vilaseca (private communication).
[44] S. Aoki, R. Frezzotti, and P. Weisz, Nucl. Phys. B540, 501

(1999).

[45] U. Wolff, Comput. Phys. Commun. 156, 143 (2004); 176,
383(E) (2007).

[46] S. Schaefer, R. Sommer, and F. Virotta (ALPHA Collabo-
ration), Nucl. Phys. B845, 93 (2011).

[47] A. Ramos, Comput. Phys. Commun. 238, 19 (2019).
[48] A. Ramos, Proc. Sci. TOOLS2020 (2021) 045.
[49] N. Husung, P. Marquard, and R. Sommer, Eur. Phys. J. C 80,

200 (2020).
[50] N. Husung, Eur. Phys. J. C 83, 142 (2023).
[51] N. Husung, P. Marquard, and R. Sommer, Phys. Lett. B 829,

137069 (2022).
[52] W. I. Jay and E. T. Neil, Phys. Rev. D 103, 114502

(2021).
[53] M. Bruno, I. Campos, P. Fritzsch, J. Koponen, C. Pena, D.

Preti, A. Ramos, and A. Vladikas (ALPHA Collaboration),
Eur. Phys. J. C 80, 169 (2020).

[54] A. Bode, P. Weisz, and U. Wolff (ALPHA Collaboration),
Nucl. Phys. B576, 517 (2000); B608, 481(E) (2001); B600,
453(E) (2001).

[55] S. Sint and P. Weisz (ALPHA Collaboration), Nucl. Phys.
B545, 529 (1999).

[56] J. A. Gracey, Nucl. Phys. B662, 247 (2003).
[57] S. Sint and R. Sommer, Nucl. Phys. B465, 71 (1996).
[58] A. Skouroupathis and H. Panagopoulos, Phys. Rev. D 79,

094508 (2009).

NONPERTURBATIVE RUNNING OF THE TENSOR OPERATOR … PHYS. REV. D 109, 054511 (2024)

054511-31

https://doi.org/10.1140/epjc/s10052-018-5838-5
https://doi.org/10.1140/epjc/s10052-018-5838-5
https://doi.org/10.1016/0550-3213(92)90466-O
https://doi.org/10.1016/0550-3213(92)90466-O
https://doi.org/10.1016/0550-3213(94)90629-7
https://doi.org/10.1016/0550-3213(94)90629-7
https://doi.org/10.1007/JHEP10(2013)008
https://doi.org/10.1007/JHEP10(2013)008
https://doi.org/10.1103/PhysRevLett.119.102001
https://doi.org/10.1103/PhysRevD.10.2445
https://doi.org/10.1016/0550-3213(85)90002-1
https://doi.org/10.1016/0550-3213(85)90002-1
https://doi.org/10.1103/PhysRevD.71.054505
https://doi.org/10.1103/PhysRevD.71.054505
https://doi.org/10.1016/S0550-3213(97)00372-6
https://doi.org/10.1016/S0550-3213(98)00772-X
https://doi.org/10.1016/0370-2693(85)90966-9
https://doi.org/10.1016/j.nuclphysb.2013.05.019
https://doi.org/10.1016/S0550-3213(98)00742-1
https://doi.org/10.1016/S0550-3213(98)00742-1
https://doi.org/10.1016/S0010-4655(03)00467-3
https://doi.org/10.1016/j.cpc.2006.12.001
https://doi.org/10.1016/j.cpc.2006.12.001
https://doi.org/10.1016/j.nuclphysb.2010.11.020
https://doi.org/10.1016/j.cpc.2018.12.020
https://doi.org/10.1140/epjc/s10052-020-7685-4
https://doi.org/10.1140/epjc/s10052-020-7685-4
https://doi.org/10.1140/epjc/s10052-023-11258-8
https://doi.org/10.1016/j.physletb.2022.137069
https://doi.org/10.1016/j.physletb.2022.137069
https://doi.org/10.1103/PhysRevD.103.114502
https://doi.org/10.1103/PhysRevD.103.114502
https://doi.org/10.1140/epjc/s10052-020-7698-z
https://doi.org/10.1016/S0550-3213(00)00187-5
https://doi.org/10.1016/S0550-3213(98)00874-8
https://doi.org/10.1016/S0550-3213(98)00874-8
https://doi.org/10.1016/S0550-3213(03)00335-3
https://doi.org/10.1016/0550-3213%2896%2900020-X
https://doi.org/10.1103/PhysRevD.79.094508
https://doi.org/10.1103/PhysRevD.79.094508

