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A B S T R A C T

This paper proposes a user study aimed at evaluating the impact of Class Activation Maps (CAMs) as an
eXplainable AI (XAI) method in a radiological diagnostic task, the detection of thoracolumbar (TL) fractures
from vertebral X-rays. In particular, we focus on two oft-neglected features of CAMs, that is granularity
and coloring, in terms of what features, lower-level vs higher-level, should the maps highlight and adopting
which coloring scheme, to bring better impact to the decision-making process, both in terms of diagnostic
accuracy (that is effectiveness) and of user-centered dimensions, such as perceived confidence and utility (that
is satisfaction), depending on case complexity, AI accuracy, and user expertise. Our findings show that lower-
level features CAMs, which highlight more focused anatomical landmarks, are associated with higher diagnostic
accuracy than higher-level features CAMs, particularly among experienced physicians. Moreover, despite the
intuitive appeal of semantic CAMs, traditionally colored CAMs consistently yielded higher diagnostic accuracy
across all groups. Our results challenge some prevalent assumptions in the XAI field and emphasize the
importance of adopting an evidence-based and human-centered approach to design and evaluate AI- and XAI-
assisted diagnostic tools. To this aim, the paper also proposes a hierarchy of evidence framework to help
designers and practitioners choose the XAI solutions that optimize performance and satisfaction on the basis
of the strongest evidence available or to focus on the gaps in the literature that need to be filled to move from
opinionated and eminence-based research to one more based on empirical evidence and end-user work and
preferences.
1. Introduction

In the age of AI-assisted decision-making, it has become imperative
to design systems that not only excel in performance but also consider
the human-in-the-loop aspect [1,2] and have been developed with a
human-centered approach [3]. This approach requires acknowledging
how such systems may impact the community of practice into which
they are deployed [4] in terms of either individual or collective perfor-
mance [3]. The increasing interest in the development of eXplainable
AI (XAI) solutions reflects the requirement to make AI systems capable
of helping users understand their output and why they produced it [5].
Yet, despite the proliferation of XAI methods and techniques, the de-
velopment of the XAI discipline has so far been mostly technologically
driven, with less attention devoted to user-centric design practices and
evaluation techniques that employ user studies [3,6,7].
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In this paper, we will first present a simple framework for the
interpretation of the strength of the evidence backing a specific design
choice, or feature or method, in regard to XAI support, from the low-
est level (i.e., the informed opinion of some expert or panel) to the
highest one (i.e., the statistical analysis of the data from independent
studies focused on the evaluation of the same method), inspired by the
composite research regarding evidence-based design in healthcare [8]
and health informatics [9]. Then, we will present a user study that
we undertook to compare different design choices, in regard to how to
generate activation maps and how to color them, and to collect strong
evidence about what solution is better (if any) to inform the design of
explainable AI aids, especially in settings that apply such systems in the
same diagnostic task: in our case, the detection of vertebral fractures
from X-rays.
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Table 1
Hierarchy of evidence for AI and XAI empirical studies.
Level 1 (strongest) Meta-analyses and systematic reviews of randomized controlled trials or experimental studies involving real

practitioners

Level 2 Single experimental study (randomized, controlled) with prospective real-world cases considered by real
practitioners in real-world settings.

Level 3 Single quasi-experimental study (e.g., nonrandomized, with concurrent or historical controls) involving prospective
real-world cases considered by real practitioners in real-world settings.

Level 4 Single experimental study (randomized, controlled) with retrospective real-world cases considered by real
practitioners in simulated/laboratory settings.

Level 5 Single quasi-experimental study (e.g., nonrandomized, with concurrent or historical controls) involving retrospective
real-world (or simulated) cases considered by real practitioners in simulated/laboratory settings

Level 6 Single quasi-experimental study (e.g., nonrandomized, with concurrent or historical controls) involving simulated
cases considered by human participants but not real practitioners in laboratory settings

Level 7 Supervised machine learning train/test studies with external validation (multiple datasets in longitudinal or
cross-section/multi-site settings)

Level 8 Supervised machine learning train/test studies with internal validation

Level 9 Consensus opinions of authoritative bodies (e.g., nationally recognized guideline groups with robust peer review
processes, notified bodies, standardization organizations)

Level 10 (weakest) Opinions of recognized experts and case studies
In what follows, we will introduce our main contribution, that is the
oncept of evidence-based design for the XAI field, and a framework to
valuate XAI solutions along a hierarchy of evidence that we will then
pply to interpret the findings of the user study that we will describe in
he following sections. Thus, while the user study is a contribution that
dds to the growing literature regarding the multiplicity of methods
hat have been developed and validated regarding activation maps in
I-supported radiology, it can also be seen as an exemplification of how
esearchers can apply our XAI evaluation framework.

. Evidence-based XAI and AI design

The hierarchy of evidence (see Table 1) is a design-oriented con-
truct to interpret and rank the relative strength of claims about the
ffectiveness of design solutions and their superiority with respect to
ther possible alternatives. Most of the times, presenting an evidence
eans to give proof that a specific design solution works; or, more

pecifically, that a system implementing a specific solution works better
han other systems that do not feature it: a similar definition, although
n the more abstract level of design principle, is given by [10]. Most
f the times, this is achieved by showing the apparent relationship
etween adopting a solution (which often instantiates a specific de-
ign principle), and some desired effect or positive outcome, such as
ncreased decision accuracy, efficiency or satisfaction.

With design solution or design choice we mean any alternative
hat is available to the designer of an AI system and that requires
heir informed choice. As mentioned above, this choice among multiple
ptions can be posed at a high level of design principle or approach, or
t a more implementational level, that is, at the level of the individual
eature or solution to be integrated into the system, or technique and
ethod to be implemented. Examples of XAI solutions abound, depend-

ng on the context [5,11]. Obviously, the choice of which solutions are
etter, and hence not a waste of time and money (or, worse, potentially
armful) if implemented in some XAI setting, should be grounded
n the strongest evidence available; according to the hierarchy of
vidence (see Table 1) these come from empirically-grounded studies
nd well-designed user studies. The resulting evidence of such studies
hould have some desirable characteristics, reported by Wyatt in [10],
uch as being specific (i.e., testable), actionable (i.e., converted in
mplemented features), generic (widely applicable) and, to some extent,
ovel (i.e., still untested).

The idea of grounding design choices on good quality evidence,
nd therefore actively and programmatically pursuing this latter, comes
rom medicine and healthcare. In this broad domain, the need to base
2

ractices, interventions, and decisions on empirical research has long
been recognized as paramount [12]. To this aim, the responsible prac-
titioner must identify the most effective and appropriate interventions,
treatments, and solutions rather than relying on traditional practice
or the personal opinions of practitioners, i.e., the so-called eminence-
based practice [13]. The principles initially advocated by [14] for
medicine, in one of the seminal works where the expression Evidence-
Based Medicine (EBM) was adopted, were gradually extended to a wider
range of disciplines and services. Jeremy Hamilton, inspired by the core
tenets of EBM, adapted and proposed these principles for application
to all fields of design [15], and coined the expression Evidence-Based
Design (EBD) as an approach that utilizes empirical evidence derived
from the systematic collection and analysis of empirical data, research
findings, and best practices, to inform the design and development of
systems, products, or environments. This evidence is typically derived
from rigorous scientific research, which may include quantitative, qual-
itative, or mixed-methods studies, and which aims to provide a strong
foundation for making well-informed decisions throughout the design
process. The evidence-based design approach has been particularly
influential in fields such as planning, management, and architecture,
but its potential for application in computer science is just as promising.

Indeed, in [10], Wyatt introduced the concept of evidence-based
health informatics to advocate ‘‘that the people designing, developing
and implementing health information systems [. . . ] rely on an explicit
evidence base derived from rigorous studies on what makes systems
clinically acceptable, safe and effective – not on basic science or ex-
perts alone’’. In another piece [16], the same author also proposes
an evidence-strength hierarchy to classify the soundness of results
regarding the effectiveness of a ‘‘generalizable system design principle’’,
and therefore answer research questions like ‘‘Will systems based on
this generic design principle work better than other systems?’’. In our
contribution we ask the same question about how AI systems can
present their output and how they can make it more understandable
by providing additional pieces of information that would adequately
complement its predictions and advice, that is an XAI function. By
incorporating empirical evidence from user research into design, both
Hamilton and Wyatt emphasized the potential to create more effec-
tive, efficient, and user-centered solutions that reuse effective design
principles, and leverage previous user studies to adopt the related
best human–AI interaction protocols, to impact human satisfaction and
performance positively. As the principles of EBM and EBD continue to
gain traction in medicine and architecture, respectively, their potential
to shape other interventional disciplines (including IT design and AI
development) that can benefit from data-driven decision-making and
the rigorous application of research evidence, becomes increasingly

clear. This is especially true where those disciplines touch: for instance,
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Jin et al. have recently proposed an evidence-based design framework
with respect to medical image analysis [17]. Their framework chooses
an explanation form based on evaluations concerning understandability
and clinical relevance, and the explanation method is based on evalu-
ations of truthfulness and informative plausibility. Also Cabitza et al.
advocate for more empirical comparative research where the primary
object of study is not so much any vague design principle or the single
XAI technique, but rather the way the whole thing is put together to allow
he human to be supported by the technological system, that is to have
uman and AI team up, the so-called human–AI collaboration protocol
HAICP) [18].

It is in light of all the above contributions, both those established in
he medical and design science literature and the more pioneering ones
t the interface with medical AI, that we have produced the hierarchy
f evidence in Table 1. As such, this resource is proposed as a heuristic
or the designer to make informed and sound design choices, and turn
ts efforts to to-implement solutions for which there is some experimental
vidence that they work and that they have a significant and positive
ffect on the processes they want to improve. But it is also a resource
or the researcher, to understand which gaps in the literature exist to
ill in or to prove that certain particularly popular solutions actually
ork. Obviously, each ranking exercise expresses a set of assumptions
nd preferences of the proposer, and thus has elements of arbitrariness
hat are reflected in what is considered to be of higher level, that
s, to have greater persuasive power. In this sense, our hierarchy is
o exception. The relevant dimensions that motivate its ranking are:
hether the evidence is empirically-grounded or not (levels 2–8 vs 9
nd 10); whether it involves users or not (2–6 vs 7–8); whether these
sers are real practitioners or not, that is lay human participants (2–
vs 6); if the study is experimental or quasi-experimental (levels 2

nd 4 vs 3, 5, and 6); whether the study is based on prospective or
etrospective cases (2 and 3 vs 4 and 5); whether these latter cases are
eal-world or simulated ones (2–5 vs 5 and 6); whether the study is
erformed in real-world settings or laboratory ones (2 and 3 vs. 4–6).
he relevance of each criterion was assigned having in mind the highest

evel, which is associated with what derives from a statistical analysis
f multiple independent studies in which attempts were made to reduce
he effect of confounding factors and increase generalizability, and the
owest level, the simple opinion of those who are considered experts
n the relevant community. Therefore, experimental design, the nature
f the cases, and the involvement of end users, possibly in their work
nvironment, are the most important criteria in our hierarchy to justify
hy one outcome should be considered stronger than others.

The careful reader will have also noticed how most of the literature
n machine learning in medical (and other) settings is still at level 8,
nd how few studies still only present external validation of perfor-
ance estimates of a classifier model (level 7), that is implement a

alidation procedure with data coming from other facilities than those
nvolved in the training of the model. The hierarchy of evidence that
e propose therefore also represents a warning about the fragility (and

herefore low usefulness) of certain results and a plea for researchers
ot to settle for easy results in laboratory settings, but to invest in more
ser studies. These latter, although more complex, as they require more
esources (including the time and availability of real practitioners) and
re more expensive and challenging, is what our society really needs
ow.

. The user study

In the rest of the paper, we will describe a comparative user study in
he mold of others we already undertook to get stronger evidence that

particular type of Pixel Attribution Maps (PAM) (that is heatmaps
hat highlight the areas in the input image that are crucial to the
odel’s decision-making process [19]), called Class Activation Maps

CAMs) [20], are effective XAI techniques in diagnostic image-based
asks [18,21,22]. While there is still a lively debate about what are the
3

best conditions under which explanations genuinely enhance diagnos-
tic accuracy [1,18,23,24], the application of PAMs, and in particular
CAMs, in medical imaging has shown promising outcomes in various
studies [25,26]. Our aim is to add to this body of evidence some
stronger findings (according to our hierarchy of evidence) on how
CAMs should be generated and rendered. To this aim, we focused on
the design of CAMs to detect traumatic thoracolumbar (TL) fractures
from X-ray images, which is still a difficult task where errors can have
a strong impact on patient outcome [21].

In particular, we will not focus on the question of which algorithm
produces the best CAMs (e.g., Grad-CAM [27], Grad-CAM++ [28].,
Score-CAM [29], PRM [30], or LayerCAM [31]), as this issue is subject
to a serious risk of obsolescence in the short term. Rather, we focused
on an issue that is usually taken for granted, namely from which layer
of the multilayer neural network (i.e., higher-level layers versus lower-
level layers) CAMs should be generated to make them more useful to
human interpretation, and with which color scheme they should be
rendered, to make them more intuitive to the decision makers to whom
they are proposed as an XAI method.

In both cases, designers still make their choice (assuming they pose
the question at all), according to very low-level considerations, that is
what most researchers do or say, or the insight of domain experts. For
instance, the idea that the traditional color schema adopted in CAMs,
that is the bi-hue (i.e., the blue-red or the green-red) schema, irrespec-
tive of the predicted class, might not be the best one, precisely because
it does not allow us to distinguish at first glance which class is predicted
by the classifier, was suggested to us by a physician involved in the user
study reported in [21]. Similarly, CAMs are generally generated from
higher-level layers as these latter have conventionally been considered
to better retain spatial information and high-level semantics [27,32],
even though no evidence, to our knowledge, has been presented in the
body of research of XAI to support this statement. For this reason, the
user study that we will describe in the next sections will address the
following two research questions:

• R1. Does utilizing higher-level or lower-level information improve
the effectiveness of the related CAMs for detecting TL fractures
from X-ray images? In other words, does the layer choice within
the DL model employed for CAMs generation have any effect
on diagnostic accuracy and decision-making (e.g., in terms of
confidence and satisfaction)?

• R2. Does the coloring scheme adopted to display CAMs have any
effect on diagnostic accuracy and decision-making?

4. Methods

Our study revolves around utilizing XAI principles to ascertain
optimal conditions for augmenting diagnostic accuracy in the realm of
vertebral X-ray fracture detection. In the following sections, we will
describe our methodology, which consists of multiple stages, primarily
data preparation, response collection (including model training and
map generation), response augmentation, and response analysis.

4.1. Data preparation

The dataset included 630 vertebral cropped X-rays, from 151 trauma
patients, collected at the Spine Surgery Centre of the Niguarda General
Hospital of Milan (Italy) between 2010 and 2020. The images com-
prised both positive cases, where fractures were present (302 images),
and negative cases without detectable fractures (328 images). Gold
Standard CT and MRI images were used by three experienced spine sur-
geons to annotate these X-rays. A specialized image cropping software
was employed to extract multiple cropped images, each showcasing
various vertebrae, from each X-ray, as a form of data augmentation.
The data was partitioned into training (80%), validation (10%), and
testing (10%) sets. Data augmentation techniques were employed on
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the training set, which included random horizontal and vertical flips,
rotations, and image resizing and normalization.

Two medical specialists curated 18 images, from the test set, that
best represented both positive and negative cases, ensuring clarity and
a balance of cases with varying diagnostic complexities. These images
were used in the creation of the user questionnaire (see Sections 4.2.2
and 4.2.3).

4.2. Response collection

4.2.1. Model training
As also reported in a previous study that used the same dataset [21],

in this work, we implemented a transfer-learning approach by utilizing
a ResNeXt-50 model that was pre-trained on images from Imagenet. We
opted for this approach due to the relatively small size of our training
sample: indeed, despite the images used for pre-training come from
different domains, previous research has shown that using a transfer-
learning-based approach can positively affect generalization [33]. We
selected the ResNeXt-50 architecture based on its promising results in
previous studies [34]. Compared with the default version of the model,
we only modified the architecture by adjusting the number of neurons
in the last dense layer (i.e., the classification layer) from 1000 to 2,
so as to adapt the model to the binary classification task. To train the
model, we used the softmax function as the final activation function
and cross-entropy as the loss function.

The classification model (i.e., ResNeXt-50) was then trained2 to
identify TL fractures in vertebral X-rays. Specifically, to contextualize
the model to the considered task, we only trained the last block from
the network’s backbone and the classification layer: the weights of
all other layers were kept frozen. In line with the state-of-the-art
for transfer learning in imaging models [35], we employed separate
learning rates for the network’s backbone and the classification layer.
For the dense classification layer, we used a learning rate of 𝑙𝑟𝑔 = 2𝑒−3,
while we set the learning rate for the fourth block to 𝑙𝑟 = 1∕6 ∗ 𝑙𝑟𝑔 . We
trained the model for 200 epochs and selected the final weights based
on the minimum loss value observed on the validation set.

After training the model, we selected the two last convolutional
layers, before the dense ones, to extract CAMs. In the following, we
will refer to layer 3 (penultimate layer), as lower-level features, while we
denote the last convolutional layer (i.e., layer 4) as higher-level features.
This naming was selected so as to more figuratively distinguish between
the semantic level of the features extracted by these layers: indeed, as
also shown in Figs. 2 and 3, CAMs extracted from layer 3 represent
more fine-grained and pixel-level structures (hence, lower-level), while
those extracted from layer 4 tend to highlight more focused areas that
correspond to regions of interest (hence, higher-level) (see Fig. 1).

4.2.2. Activation maps generation
In technical terms, CAM [20] is an approach to generate weight

matrices associated with any given image, such that higher weight
values indicate areas of particular relevance for the model’s classifi-
cation. Several algorithms can be used for CAM generation. Our study
used the Grad-CAM (Gradient-weighted Class Activation Mapping) ap-
proach [27]. This approach builds upon the original CAM method to
offer a more refined approach to visual explanations. Grad-CAM is
based on the computation of the gradient of the class label scores
w.r.t. to the feature maps from any specific convolutional layer. These
gradients indicate the importance of each feature map with respect

2 All pre-preprocessing and model training steps were implemented in
Python 3.8, using the PyTorch library (v. 1.10) for implementing the clas-
sification model and the Pandas (v. 1.2) and NumPy (1.19) libraries for
data processing. The computational environment was a personal computer
encompassing 16 GB of RAM and a 6-core CPU, as well as a NVIDIA GTX
1060 Max-Q GPU.
4

Fig. 1. ResNet-50 neural network adapted for binary classification: key layers
highlighted for analysis.

Fig. 2. Example of an X-ray and its corresponding activation map based on lower-
level features. In this map, regions shown in darker shades of blue represent areas
of higher importance, indicating higher activation values in the context of the X-ray
image analysis.

to the target class. The gradients are then globally average-pooled to
obtain the weights for each feature map. These weights are subse-
quently multiplied by their respective feature maps, and the results are
summed up to produce the final Grad-CAM heatmap. This heatmap
is then resized to match the input image dimensions and overlaid
onto the original image to highlight the areas the model considers
most important for classification. Compared with other techniques for
generating CAMs, Grad-CAM provides a more versatile solution as it
can be applied to a wider range of models, including those without fully
connected layers or global average pooling layers, making it a valuable
tool for visualizing and interpreting model predictions: indeed, as noted
by a recent review [36], Grad-CAM is one of the most commonly used
explainability techniques. These CAMs were proposed to each doctor
as depicted in Figs. 2 and 3.

The image comparison tool employed in this study, as depicted
in Figs. 2, 3, facilitated the concurrent analysis of X-ray images and
their corresponding activation maps. Each image was rendered at a
resolution of 800 × 800 pixels. Users could control a horizontal sliding
control to overlay one image onto the other, to get a more in-depth
comprehension of the underlying anatomical structures.

To generate a diverse set of CAMs, as anticipated in Section 4.1, two
board-certified orthopedic specialists and spine surgeons selected 18 X-
ray images from a randomized subset of the test dataset. The chosen
images were required to meet the following criteria: (1) sufficiently
clear for interpretation despite the lower resolution compared to con-
ventional original X-rays, and (2) a balanced distribution of positive
and negative examples. Additionally, the selection process aimed to
include cases of varying complexity to ensure a comprehensive array
of clinical scenarios for evaluation. In particular, the two clinicians
considered cases indicative of medium-to-high complexity and such
that they were of different diagnostic difficulties.

Four activation maps were produced for each of these selected

images, two obtained from the lower-level features, and two from
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Fig. 3. Example of an X-ray and its corresponding activation map based on higher-
level features. In this map, regions shown in darker shades of blue represent areas
of higher importance, indicating higher activation values in the context of the X-ray
image analysis.

the higher-level features. Intuitively, activation maps obtained from
lower-level features represent more fine-grained information, while, by
contrast, activation maps obtained from higher-level features represent
more abstract information. The two activation map images obtained
for each layer differed in the coloring scheme: in the traditional color
scheme, the X-rays were colored using the common red-blue gradient
(independent of the class label that the AI model assigned to the X-
ray image), denoting importance of the pixels; by contrast, in the
semantic color scheme the X-rays were colored differently based on
the classification of the AI model, with color red used for identifying
a possible fracture while color blue used for identifying no presence
of fractures, and saturation as a measure of pixel importance that is
relevant w.r.t. the predicted class.

4.2.3. Experiment design
To carry out our user studies, we adopted the following study de-

sign. To measure the impact of these visual explanations, we considered
the AI-first interaction protocol [18]. Furthermore, to collect evidence
of sufficient strength, we designed an experimental user-centered study:
in particular, our user study can be associated to Levels 4 and 5 in the
hierarchy of evidence presented in Table 1, i.e., the highest levels of
evidence not involving prospective real-world cases. The user-centered
study was structured as follows:

• We created two different physician groups: Group A, associated
with the semantic coloring scheme of CAM, and Group B, asso-
ciated with the ‘traditional’ coloring scheme of CAM. Thus, the
analysis of the coloring scheme was performed according to a
between-subject study design;

• We showed the clinicians the advice generated by the AI and
the activation maps developed (using either lower/higher level
features, depending on the image) for each analyzed case. Thus,
the analysis of higher-level vs lower-level feature information was
performed according to a within-subject study design3;

• We collected the respondents’ definitive diagnosis, their confi-
dence in that diagnosis, and their feedback on the usefulness of
the activation maps in aiding the final diagnosis.

3 We performed a Mann–Whitney U Test [37] to compare the two groups
of images: We evaluated the perceived level of complexity for each case and
examined the presence of significant differences between the two groups: the
null hypothesis of equivalence between the two groups of cases could not be
rejected (𝑈 = 9454, 𝑝𝑣𝑎𝑙𝑢𝑒 = .175). Thus, any differences in user performance or
other outcome measures between the two groups can confidently be attributed
to the type of features (low vs. high) used in the CAMs, rather than inherent
differences in image complexity.
5

Fig. 4. CAM based on the lower-level features for the traditional color.

As described in the Introduction, this study adopts the proposed
principles of EBXAI to investigate the best conditions and modalities
for providing XAI support (in the form of CAMs) with the aim of
improving diagnostic accuracy (and its utility). To achieve this, we
analyzed various scenarios stratified by:

1. Case Complexity, represented by the average complexity score
given by each clinician on a 1-to −4 ordinal scale;

2. Presence or absence of a fracture, as predicted by the AI;
3. Expertise of the clinicians, categorized into two levels based on

years of experience: novice and less expert physicians, who have
worked in the field for less than 5 years, and more experienced
physicians, who have worked for at least 5 years.

We also compared the above-defined XAI solutions without any further
stratification.

In the user study, an online, multi-page questionnaire (implemented
on the LimeSurvey4 platform) was administered to a cohort of 16
medical professionals, comprising 8 specialized spine surgeons and 8
musculoskeletal radiologists. These participants were tasked with pro-
viding diagnoses for an array of clinical cases, utilizing both AI and XAI
support tools. As described previously, we divided the 16 physicians
into groups A and B as a first step, see Fig. 6. Both groups saw the same
cases with the same layers during the trial. The only difference between
them was the color of the activation maps, as depicted in Figs. 4 and
5.

For each of the 18 cases, the clinicians were first shown the X-
ray image together with the CAM visual aids (in particular, physicians
in Group A were shown CAMs with semantic coloring, while those
in Group B were shown CAMs with traditional coloring), using a
Javascript-based comparison element,5 similar to what is shown in
Figs. 2 and 3. The clinicians were also shown, at the same time, the
AI model’s support: for physicians in Group A, the AI classification was
directly represented through the color coding of the CAM, while for
those in Group B, the AI classification was provided in textual format.
The clinicians were then asked to provide their diagnosis along with
an assessment of their confidence level, on 1-to −4 ordinal scale, and
the case’s perceived complexity and the CAM’s perceived utility on 1-to
−4 ordinal scale. The scheme adopted in the user study is depicted in
Fig. 6.

4 https://www.limesurvey.org/
5 https://juxtapose.knightlab.com/

https://www.limesurvey.org/
https://juxtapose.knightlab.com/
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Fig. 5. CAM based on the lower-level features for the semantic color.

Fig. 6. User Study Workflow: The diagram illustrates the division of participants into
two distinct groups for the study. Group 1 engages with traditional coloring explainable
AI (XAI) techniques, while Group 2 interacts with semantic coloring XAI support. Each
group is tasked with analyzing a set of 18 images, comprising original X-rays and their
corresponding Class Activation Maps (CAM). These images are equally divided, with 9
generated from lower-level features and 9 from higher-level features. For each image
analyzed, we record the participant’s initial judgment (H1) and their final decision
after utilizing the XAI support (FHD). Additionally, we gather data on the confidence
levels associated with these judgments, the complexity rating of each case, and their
perceived utility of the CAM. This workflow is designed to comprehensively assess the
impact of different XAI approaches on participants’ decision-making processes in image
analysis.

4.3. Response augmentation

We employed the bootstrap method to assess the significance of the
observed differences. This general, non-parametric statistical technique
allows for the estimation of sample distribution properties by resam-
pling the data with replacement [38]. To enhance the reliability of
our inferences, we adopted a stratified oversampling approach, which
maintains the balance across key variables (namely, the accuracy of the
AI and physician, as well as the complexity of the cases) by randomly
oversampling within the strata of the groups to be compared. More
in detail, as our study involved 16 physicians, we derived a non-
oversampled set of 16 accuracy values, one for each physician, under
different settings (i.e., lower/higher-level features, CAMs, positive and
negative labels, and complexity). Then, given any two sub-groups to
compare, these accuracy levels were used to compute the observed
statistic as:

𝛥 = ̄𝑎𝑐𝑐 − ̄𝑎𝑐𝑐 , (1)
6

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 1 2
where ̄𝑎𝑐𝑐𝑖 is the average accuracy of users in group i, with 𝑖 ∈ {1, 2}.
Subsequently, during each bootstrap iteration, we computed the empir-
ical statistics for the resampled data and finally used these empirical
statistics to estimate the final p-values. The number of iterations was
set to 1000, and the number of oversampled and bootstrapped samples
was 100. We applied the bias-corrected and accelerated (BCa) method
to obtain more accurate confidence intervals [39]. The BCa improves
upon the standard percentile bootstrap by accounting for potential bias
and skewness in the bootstrap distribution. It does so by applying a
bias-correction term that adjusts the confidence interval based on the
proportion of bootstrap statistics smaller than the observed statistic and
an acceleration term that adjusts the confidence interval by considering
the skewness of the distribution. This approach results in a more
reliable estimation of confidence intervals, which helps avoid potential
over- or under-coverage compared to the standard percentile bootstrap
method.

4.4. Response analysis

After collecting all responses, a comparative examination was con-
ducted by applying a hypothesis testing approach. First, we compared
the diagnostic accuracy of the clinicians supported by lower-level fea-
tures CAMs vs. higher-level features CAMs; similarly, we compared the
diagnostic accuracy of the clinicians supported by Semantic CAMs vs.
Traditional CAMs. Then, we considered the following stratifications:
by complexity level (dichotomized at the threshold 2, where cases
with perceived complexity lower than 2 were rated as being of low
complexity and otherwise of high complexity), by predicted diagnosis
(i.e., Positive vs. Negative); and by users’ expertise (comparing physi-
cians who had worked for less than 5 years with those who had worked
for at least 5 years).

Cohen’s D [40] was used as a measure of effect size to assess the
impact on accuracy across the stratifications under examination. This
measure is defined as 𝐷 = 𝛥𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦

𝑆𝐷𝑝𝑜𝑜𝑙𝑒𝑑
, where 𝛥𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 is defined as in

Eq. (1), and 𝑆𝐷𝑝𝑜𝑜𝑙𝑒𝑑 is the pooled standard deviation for the two
groups. Since we performed multiple tests for differences, we corrected
the p-values for each comparison group using the Benjamini–Hochberg
correction method [41] across the entire set of statistical tests (a total
of 18) instead of dividing them into distinct groups, so as to control for
the false discovery rate.

Finally, we also considered the perceived utility of the explanations
as well as the reported confidence on the final decision (FHD). In partic-
ular, in regard to the perceived utility, we studied how it varied w.r.t.
AI correctness (AI-correct versus AI-incorrect judgments) as well as
w.r.t. to the main factors of analysis considered (i.e., CAM coloring and
layer). Similarly, we evaluated differences in reported confidence based
on the CAM coloring (semantic vs. traditional) and layer (lower-level
features vs. higher-level features).

5. Results

The involved 16 X-rays board-certified orthopedists interpreted and
made a diagnosis for the set of 18 cases selected above, where each
case included an X-ray image, the AI advice, and an activation map.
This resulted in an aggregate of 576 evaluations by the decision makers
involved in our user study.

The results of the statistical analysis are reported in Table 2. In
the table, we report the p-values (both adjusted and non-adjusted),
the confidence intervals for the observed difference in accuracy, and
the Cohen’s D effect size. For the lower-level features vs. higher-level
features group, a positive Cohen’s D value indicates that lower-level
features are associated with a higher accuracy compared to higher-level
features. Conversely, a negative value means that higher-level features
outperform lower-level features in terms of effect upon accuracy. Sim-
ilarly, a positive Cohen’s D value in the Semantic vs. Traditional group
implies that Semantic CAMs yield higher accuracy on average than
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Table 2
Results of the bootstrapped hypothesis testing for the differences in accuracy between
lower-level features and higher-level features XAI support, and Semantic (Group 1)
and Traditional (Group 2). The p-values adjustments were performed based on the
Benjamini–Hochberg FDR correction. Cohen’s D is computed on the original data: a
positive (resp., negative) value means that the accuracy of Group 1 (resp., Group 2)
was higher than that of Group 2 (resp. Group 1). Bold values indicate a significant
difference. The confidence intervals (CI) are calculated using the BCa bootstrap method,
which can result in asymmetric intervals. This asymmetry accounts for the skewness
in the bootstrap distribution of the statistic. It is important to note that the observed
statistic (𝛥𝐴𝑐𝑐𝑜𝑏𝑠) may not always fall within the confidence intervals due to sampling
variability.

Comparison 𝛥𝐴𝑐𝑐𝑜𝑏𝑠 BCa CI 95% 𝑃 -value 𝑃𝑎𝑑𝑗 Cohen’s D

Lower-Level Features vs. Higher-Level Features
Overall .041 [.045, .059] .027 .044 .383
Semantic CAM .027 [−.001, .086] .332 .373 .238
Traditional CAM .055 [.045, .111] .019 .037 .592
AI POS .134 [.083, .136] .0001 .001 1.113
AI NEG −.059 [−.102, −.057] .053 .073 −.313
Low Complexity .07 [.091, .092] .001 .004 .645
High Complexity −.019 [−.119, .037] .638 .672 −.077
Expertise ≤ 5 years .013 [−.037, .075] .672 .672 .102
Expertise > 5 years .069 [.08,.119] .021 .037 .861

Semantic vs. Traditional
Overall −.049 [−.054, −.044] .0001 .001 −1.009
Lower-Level Features −.083 [−.096,−.091] .002 .007 −.828
Higher-Level Features −.056 [−.083,−.056] .046 .069 −.5
AI POS −.055 [−.075, −.051] .012 .027 −.632
AI NEG −.084 [−.09, −.083] .003 .009 .686
Low Complexity −.04 [−.075, −.034] .057 .073 −.456
High Complexity −.103 [−.123, −.101] .004 .01 −.643
Expertise ≤ 5 years −.097 [−.098,−.081] .001 .004 −1.2
Expertise > 5 years −.041 [−.081,−.03] .147 .176 −.66

Fig. 7. Utility perceived by physicians stratified by either correct or wrong
classification.

their traditional counterparts, whereas a negative value means that
Traditional CAMs exhibit better accuracy than Semantic CAMs.

The physicians’ perceived utility, based on whether the AI correctly
predicted the class, is shown in Fig. 7.

6. Discussion

Our experiment and user study has been aimed at investigating
the impact of CAMs on diagnostic accuracy and other psychometric
dimensions of a diagnostic task, namely the detection of TL fractures
in vertebral X-rays. By adopting what we called an evidence-based XAI
approach, of which our study represents an exemplar application, our
study applies a user-centered approach to the comprehensive eval-
uation of the effectiveness of human–AI collaboration where CAMs
are used to make the AI more transparent, understandable and ex-
plainable, that is as XAI method. In particular, by means of a user
study producing evidence at the 5th level in the hierarchy reported in
Table 1, we explored the effectiveness of CAMs generated from higher-
level features (i.e., Layer 4) versus those generated from lower-level
7

Fig. 8. Utility perceived by the two groups of physicians (Traditional vs. Semantic)
stratified by layers.

Fig. 9. Confidence perceived by the two groups of physicians (Traditional vs. Semantic)
stratified by layers.

features (i.e., Layer 3), and assessed the influence of ‘semantic’ versus
‘traditional’ coloring in aiding diagnosis.

6.1. The reference layer for CAM generation

Our first finding regards the fact that CAMs generated from lower-
level features are associated with higher diagnostic accuracy than
higher-level ones, in several stratification scenarios. This finding is
partly surprising since it is a common belief in the XAI literature that
CAMs should be generated from higher-level features [42], as this
information is ‘‘closer’’ to the final classification and hence considered
to be more understandable by human users. By contrast, our results
suggest that lower-level features might be more informative and hence
helpful in detecting vertebral fractures. In particular, the overall dif-
ference in accuracy observed comparing the effect of CAMs generated
from either lower-level or higher-level features was significant (𝑝𝑎𝑑𝑗 =
.044, Cohen’s D = .383), with lower-level feature CAMs outperforming
the higher-level feature ones. Lower-level feature CAMs performed
particularly well in cases where AI correctly identified a fracture (AI
POS, 𝑝𝑎𝑑𝑗 = .001, Cohen’s D = 1.113). A possible explanation for this
effect lies in the different anatomical landmarks highlighted in the
maps: the lower-level features appeared more ‘‘focused’’ and specific
in highlighting critical areas for fracture recognition, while higher-
level feature CAMs were perceived as ‘‘broader’’ and less specific in
their highlighted zones. To provide a more detailed analysis of this
observation, one of the authors identified a sample of cases, extracted
from our study, of particular interest.

The first case (see Fig. 10) consists of a peculiar type of fracture,
i.e., the Chance Fracture or B1 fracture according to the AOSpine
classification; this is a rare pattern, which represents only 1%–2%
of all thoracolumbar fractures. In this specific case, the fracture line
extends from the anterior part of the vertebral body, where a pathologic
inflection can be seen (Fig. 10 A, Yellow Arrow), through the vertebral
body and the pedicles. The specific inflection on the anterior part
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Fig. 10. Visual comparison of X-ray images and associated class activation mappings
(CAMs) illustrating varying levels of feature extraction. (A) Original X-ray image depict-
ing the anatomical structures under examination. (B) Corresponding CAM, highlighting
lower-level features. (C) The CAM emphasizes higher-level features.

Fig. 11. Visual comparison of X-ray images and associated class activation mappings
(CAMs) illustrating varying levels of feature extraction. (A) Original X-ray image
depicting the anatomical structures under examination. (B) CAM highlights lower-level
features. (C) CAM emphasizes higher-level features.

of the vertebral body was precisely highlighted by the lower-level
feature CAMs; on the contrary, the higher-level features CAM shows
an overall ‘‘broad’’ and generic activation that mainly highlights the
spinous process, which is not involved in this type of fracture (see
Fig. 10 C). Admittedly, both maps failed to highlight the fracture line
inside the pedicles, which is important for a correct classification of
this kind of fracture. However, focusing the observer’s attention on
the inflection point could be a sufficiently strong clue for correctly
identifying the fracture.

The second case example regards a more common fracture pattern,
i.e., the A3 AOSpine (26% of cases in our dataset); in this case, the
diagnostic difficulty lies in the fact that the anatomical alteration of
the vertebral body is minimal, as it can be seen in the X-ray, and hence
difficult to identify (see Fig. 11 A). Again, the lower-level features map
highlights the correct landmark (see Fig. 11 B), while the higher-level
features map highlights a slightly wider and higher area (see Fig. 11
C, i.e., the intervertebral disk). This made the lower-level CAM more
indicative and informative towards the correct diagnosis, while the
region on the left highlighted by the higher-level feature CAM lacked
substantive information.

We also comment on how expertise can be factored in. In the case of
physicians with higher expertise, we observed a significant difference
in diagnostic accuracy between lower-level feature CAM and higher-
level features ones (𝑝𝑎𝑑𝑗 = .037). The observed effect size (Cohen’s
D) was 0.86, indicating a large effect. This finding suggests that more
experienced physicians significantly benefit from CAMs generated from
lower-level layers when they are called to detect TL fractures in verte-
bral X-rays. In contrast, for physicians with lower expertise (≤ 5 years),
there was no significant difference between lower/higher-level features
(𝑝𝑎𝑑𝑗 = .672), and the effect size was relatively small (Cohen’s D =
.102). This implies that the reference layer from which to generate the
CAMs might not be as influential for less experienced physicians in this
diagnostic task. Other factors, such as training or additional guidance,
might be required to improve diagnostic performance. For physicians
with a higher level of expertise, their ability to leverage the CAMs
generated from lower-level features might be an extension of their
comprehensive understanding and interpretation of the anatomical
intricacies involved in diagnosing TL fractures from vertebral X-rays.
In this context, the lower-level features of CAMs, that better emphasize
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detailed anatomical landmarks, might align more closely with the
experienced physicians’ cognitive models of the diagnostic task. On the
other hand, for physicians with less experience, the lack of significant
difference in diagnostic accuracy between lower-level and higher-level
feature CAMs might reflect their relative uncertainty in finding the
correct fracture pattern. Thus, a map that highlights a broader area
where the fracture may lie, is equally effective as a map that better
focus on the precise anatomical region.

These considerations bring us to reinforce the point that we asserted
in [21], where we advocated a higher acquaintance and familiarity of
medical professionals with how machines ‘‘see’’ radiological images.
From the present user study we confirm the idea that the ways in
which machines perceive X-rays can be highly different from how
humans read and interpret them [43]; we called this area of concern,
the semiotics of machine interpretation. It is quite natural that just as
ML models can identify ethnicity, gender, and smoking status from
pictures that humans have always considered entirely unrelated to
these conditions [44], similarly, ML models may discern characteristics
that are indicative of a fracture (for instance, attributable to muscle
rigidity or associated microtrauma) that are not immediately apparent
to human observation. Consequently, physicians should improve their
proficiency in recognizing the patterns that are more correlative of
positivity (e.g., fracture presence) as this might be detected by the
machine that they use, and highlighted through lower-level CAMs.

As a final remark in regard to the reference layer and type of CAMs,
we acknowledge that the above findings, although novel and to some
respect even surprising, are not generalizable to other settings: for
example, the optimal layer from which to generate CAMs should in gen-
eral be expected to vary depending on both the considered task, as well
as the model architecture and the technique used to generate the CAMs.
However, here we want to emphasize a sort of additional finding that
those results suggest: the importance of having data scientists and ML
programmers explore alternative layer configurations for generating
CAMs in different medical imaging applications, so as to consider the
inherent nature of the specific medical task being addressed. In other
words, the reference layer matters and its choice should be backed by
empirical evidence, as the one we statistically drew from our user study.

6.2. The coloring scheme in CAM generation

Our second main finding regards the observation that CAMs adopt-
ing a traditional (i.e., red-blue gradient) coloring scheme were con-
sistently associated with higher accuracy than the semantic coloring
schema (i.e., red gradient for positive images, blue gradient for negative
cases), across all layers. This observation contradicts the conjecture,
formulated by the domain experts involved in [21], who advocated
for the semantic scheme assuming that this latter would make image
interpretation more intuitive and associated with fewer misunderstand-
ings in regard to the classification provided by the machine. Contrary
to this idea, which we can consider a sort of expert opinion (Level
10 in Table 1), we collected clear evidence (as mentioned above,
Levels 4 and 5 in Table 1) that physicians perceived traditional CAMs
significantly more useful and these were actually more effective in help-
ing image interpretation. This finding can be related to the so-called
Jakob’s Law [45], which is attributed to the physicians’ familiarity
with conventional color schemes that have been recently used in CAM-
aided diagnostic imaging. The overall difference in accuracy between
traditional and semantic CAMs was significant (𝑝𝑎𝑑𝑗 = .001, Cohen’s D
= −1.009), with traditional CAMs associated with better performance
especially when paired with lower-level features (𝑝𝑎𝑑𝑗 = .007, Cohen’s
D = −.828). Despite the statistical insignificance of rejecting the null
hypothesis asserting equivalence in higher-level features between the
two groups in terms of predictive accuracy (𝑝𝑎𝑑𝑗 = .069), our analysis
elucidated a Cohen’s D value of = −.5. This result denotes a medium
effect size [46]. In this case, the negative sign means that, on average,
the group exposed to traditional CAMS exhibited higher diagnostic
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accuracy. Furthermore, traditional colored CAMs outperformed seman-
tic colored CAMs for both positive predictions (AI POS, 𝑝𝑎𝑑𝑗 = .027,

ohen’s D = −.632) and negative ones (AI NEG, 𝑝𝑎𝑑𝑗 = .009, Cohen’s
= .686). When examining the impact of coloring schemes, we also

bserved a significant difference in diagnostic accuracy between se-
antically and traditionally colored CAMs for physicians with lower

xpertise (𝑝𝑎𝑑𝑗 = .004), with an effect size of −1.2, which suggests
very large effect [46] in favor of traditional CAMs. However, for

hysicians with higher expertise, there was no significant difference
etween semantic and traditional colored CAMs (𝑝𝑎𝑑𝑗 = .176), although
he effect size was still moderately large (Cohen’s D: −0.66). This
inding indicates that the choice of the coloring scheme might not play
critical role for more experienced physicians in this context, as they
ight be more adept at interpreting AI-generated PAMs regardless of

he coloring scheme.

.3. Perceived utility and confidence

When analyzing the utility perceived by physicians, we observed
clear difference in perceived usefulness between cases where AI

orrectly predicted the class (AI Right) and cases where AI wrongly
redicted the class (AI Wrong). As shown in Fig. 7, physicians found
he AI and XAI more useful when the model accurately identified
he corresponding class. This observation is evident from the non-
verlapping confidence intervals of the notches, suggesting a significant
ifference in perceived utility. The utility perceived by the two groups
f physicians (Traditional vs. Semantic), stratified by layers, is illus-
rated in Fig. 8. On average, higher-level features were perceived as
ore useful in the Semantic setting, while lower-level features were
erceived as more useful in the Traditional setting. However, it is
ssential to note that, in this case, the median confidence intervals
verlap between the various groups, indicating that the differences in
erceived utility might not be significant.

We also analyzed the confidence perceived by the two groups of
hysicians (Traditional vs. Semantic) stratified by feature representa-
ions. On average, confidence appeared to be higher in lower-level
eatures. Within the Semantic group, the median confidence inter-
al did not overlap, indicating a significant difference in confidence
etween the lower/higher-level features. In contrast, the Traditional
roup exhibited overlapping confidence intervals; however, as depicted
n Fig. 9, Layer 3 (lower-level features) still seemed to increase physi-
ians’ confidence. These findings on perceived confidence highlight
he potential influence of CAMs generated from different layers on
hysicians’ trust in AI-assisted diagnostic tools. The increased confi-
ence observed for Layer 3, particularly within the Semantic group,
uggests that CAMs from this layer may be more effective in supporting
hysicians in their decision-making process.

These results on perceived confidence and utility emphasize the
mportance of considering the subjective perception of physicians when
valuating the impact of CAMs on clinical decision-making, as an
dditional form of evidence. Indeed, understanding how physicians
erceive the usefulness of different CAMs can inform the design of more
ffective and user-friendly XAI tools, ultimately contributing to better
atient outcomes.

.4. Limitations

Although we deem the findings of this study original and significant,
e must also acknowledge some limitations regarding generalizability.
irstly, the findings we collected in regard to thoracolumbar (TL)
ractures in vertebral X-rays, cannot be entirely applicable to other
iagnostic tasks, especially across different specialties. Additionally, the
elatively small sample size of images, despite being carefully chosen
o represent varying complexities and frequencies, and the diversity in
xpertise levels of the image readers, might limit the broad applicability
f our findings within the realm of detecting TL fractures from X-rays.
9

Furthermore, the dataset partitioning strategy used in our study,
ith a ratio of 8:1:1 for training, validation, and testing, also presents a
otential limitation. This distribution, while considered appropriate for
he study’s aims, suggests that a more extensive test dataset could have
otentially provided more compelling evidence. To mitigate the risk of
alse negatives and strengthen our statistical claims, we implemented
tate-of-the-art augmentation techniques (refer to Section 4.3) and
alculated effect sizes in addition to reporting p-values. In doing so,
uture studies might perform a power analysis leveraging the effect
izes identified in this study and benefit from considering a more
xtensive test dataset to further validate and extend these findings.

. Conclusion

In this study, we proposed a novel methodological framework to
esign and evaluate XAI systems that ground on an evidence-based
nd empirical approach, inspired by evidence-based medicine. The
onceptual foundation of our design approach rests on three pillars.
1) Evidence-based methodology: the design of XAI systems should
e grounded on solid experimental designs that investigate how the
upport affects the decision-making process; (2) Hierarchy of evi-
ence: clearly not all experimental designs provide the same evidence
trength, and XAI empirical studies should be designed so as to provide
he strongest possible form of evidence (according to Table 1) given
he considered setting; (3) User-centric evaluation: as emphasized also
n Table 1, the human-centered aspect is pivotal in our evidence-
ased methodology and appropriate evaluation of AI and XAI systems
hould always include the human users. This approach thus aims to
ive XAI systems’ designers a principled way to create decision support
ystems and XAI solutions, emphasizing the need to go beyond simple
valuation practices that do not take into account the needs of, and
mpact on, the final users.

To exemplify our methodological contribution we also presented
he results of an experimental study, by which we have elucidated key
spects of Class Activation Maps (CAMs) configuration for enhancing
iagnostic accuracy in the detection of thoracolumbar fractures from
-rays. Our findings emphasize the effectiveness of generating CAMs

rom lower-level features, as well as of utilizing a traditional red-blue
oloring scheme. These configurations not only improved diagnostic
ccuracy but also bolstered physician confidence in their diagnoses.
n alignment with our evidence-based framework, our study design
as centered on user engagement, and involved real physicians in

ritical diagnostic tasks, marking a significant advancement in our
tudy. By reaching levels 4 and 5 in the hierarchy of evidence, our
tudy challenges prevalent opinions among domain experts (level 10)
nd the broader XAI community, particularly concerning the choice of
ayers for CAM generation. Our approach does not oppose the views
f these groups but rather treats them as starting points for more
igorous empirical research. This strategy allows us to isolate and
nderstand the impacts of specific design choices on critical aspects
f medical practice, such as diagnostic accuracy and user satisfaction.
onsequently, this study not only contributes significantly to the field
f effective XAI design but also sets a precedent for future research
ocused on a human-centered approach in the evaluation of XAI tools
n real-world applications.

Moreover, the results of this study also points to the potential of
daptive AI approaches to enhance diagnostic accuracy and decision-
aking in medical imaging. Adaptive AI tailors the presentation of
AMs based on various factors such as the model’s prediction, per-
eived complexity, or the physician’s expertise. This, in turn, offers a
ore personalized and contextually pertinent visualization, improving

he utility of XAI solutions, such as CAMs, enhancing the physician’s
iagnostic accuracy, and thereby contributing to improved patient
utcomes.

Finally, our findings also point out the necessity for further inves-
igations to assess the extendibility of these results across different
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imaging modalities and diagnostic tasks. Such exploration should focus
on incorporating empirical evidence and user preferences in the design
of XAI methods, aimed at configuring better AI systems that strengthen
human–AI collaboration thereby enhancing patient care and clinical
decision-making.
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