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1 Introduction

The holographic principle states that the physical description of certain gravitational sys-
tems is encoded in properties of their boundary [2, 3]. Many developments in quantum
information and gravity support this statement, starting from the Bekenstein-Hawking en-
tropy associated with the horizon area of a black hole [4, 5]. A concrete framework for
holography was set in the context of the AdS/CFT correspondence [6]. This framework
provides a precise relation between quantum gravity in Anti-de Sitter (AdS) space and a
conformal field theory (CFT) living on its boundary. Despite the success and importance
of this program, it would be desirable to investigate the existence of a holographic descrip-
tion of spacetimes with a positive cosmological constant, which models the universe where
we live. In this work, we will pursue this task by studying quantum information proper-
ties of asymptotically de Sitter (dS) spacetimes, following the program recently developed
in [7–10].

Holographic nature of dS space. The interpretation of area as a thermodynamic
entropy also applies to geometries with a cosmological horizon, as first pointed out by
Gibbons and Hawking [11]. More precisely, the region causally accessible to an observer
moving along a timelike worldline in dS space is delimited by past and future cosmological
horizons, which have an associated Hawking temperature and horizon entropy [11] given by

TdS = 1
2πL , SdS = A

4GN
= Ωd−1L

d−1

4GN
, (1.1)

where L is the curvature scale and Ωd−1 = 2πd/2/Γ(d/2) is the volume of the (d − 1)-
dimensional unit sphere. Here and in the following, we refer to de Sitter space in d + 1
dimensions, to facilitate the comparison with results in anti-de Sitter space where this
convention for the dimension is very common, with d specifying the dimension of the
boundary theory.

The notion of entropy in statistical mechanics is related to the counting of the mi-
crostates of a system. In the context of black holes, we may ask ourselves, what does
their entropy count? The central dogma of black holes [12] states that black holes can be
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described from the outside as quantum systems containing A/4GN degrees of freedom that
evolve unitarily in time. A foremost achievement of string theory was the verification of
this statement in the case of certain extremal black holes [13].

In this regard, cosmological horizons are more puzzling than event horizons of black
holes, because they are observer-dependent. While one may expect that a black hole is a
localized object with quantum microstates and an observer can be located unambiguously
at infinity, instead in spacetimes with positive cosmological constant, different observers
can influence different regions of spacetime, and they even experience different horizons.
The importance of role of the observer was recently highlighted in [14, 15].

The region in causal contact with an observer in dS space is called static patch. The
proposed extension of the central dogma to dS is that the cosmological horizon can be
described from the inside as a unitary quantum system with exp(A/4G) states [7–9, 16–
30]. The consequence is that the quantum mechanical theory dual to dS space has a finite
number of degrees of freedom and it is described by a maximally mixed state [14, 31, 32].
This theory is typically assumed to live on a constant radial slice surface, right inside the
cosmological horizon. We refer to the idea described here as static patch holography. In
three bulk dimensions, a concrete dual theory was formulated in terms of a T T̄ deformation
plus a cosmological constant term [33]. This setting allows for a counting of the microstates
encoded by the cosmological horizon [34], in agreement with [35]. Generalizations to other
dimensions have been discussed in [36].

Let us briefly mention that there are a few other approaches to dS holography. One is
the so-called dS/CFT correspondence, that relates quantum gravity in asymptotically (d+
1)-dimensional de Sitter (dS) spacetimes to a Euclidean d-dimensional field theory living at
timelike infinity [37]. Alternatively, one can probe cosmological horizons by embedding dS
space in a spacetime with a timelike boundary, where the tools of AdS/CFT correspondence
can still be applied [38–44]. These models are called flow or centaur geometries. In this
work, we will focus on the program of static patch holography.

Holographic complexity. The profound relation between entanglement entropy and
geometry, initiated with the seminal work by Ryu and Takayanagi [45], was recently ex-
tended to static patch holography in dS space [7–9, 46–48]. It is natural to consider a
similar extension for holographic complexity, which was proposed as the dual quantity as-
sociated with the time evolution of the Einstein-Rosen bridge (ERB) [49–53] (see [54] for
a review). Quantum computational complexity is a well-known quantity used in quantum
information science [55, 56]. Heuristically, it counts the minimal number of unitary op-
erations necessary to move from a reference state to a given target state. In holography,
complexity measures the difficulty to create a target state in the boundary theory starting
from a product (i.e., unentangled) state. The two main proposals for the dual quantity on
the gravity side are the Complexity=Volume (CV) and Complexity=Action (CA) conjec-
tures. The former associates complexity to the spatial volume of an extremal slice anchored
to the boundary [49–51], while the latter evaluates the gravitational action in the Wheeler-
De Witt (WDW) patch, i.e., the causal domain of dependence of the ERB [52, 53]. In
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mathematical terms:
CV = Vmax

GN`bulk
, CA = IWDW

π~
, (1.2)

where `bulk is a certain length scale (usually identified with the cosmological constant
curvature scale) and IWDW the on-shell action of the WDW patch, including boundary
terms [57]. The CV2.0 conjecture is another proposal that associates complexity to the
spacetime volume of the WDW patch [58]

C2.0V = VWDW
GN`2bulk

. (1.3)

This proposal is often easier to compute technically and gives similar characteristics to
the CA and CV proposals. We have therefore focused our efforts on this approach in the
present paper. The different proposals for a dual quantity of complexity have been studied
in different spacetimes with AdS asymptotics or deformations thereof (e.g., see [57, 59–71]).
All three of these approaches can be seen as special cases of a much broader conjecture for
holographic complexity which was recently proposed in [72–74].

The previously mentioned attempts to extend holography to dS space naturally lead
us to ask if holographic complexity can be of use in this context. Recently the complexity
proposals have been studied using static patch holography in general dimensions for the
empty dS background [10].1 In this context, the maximal slice is anchored to the boundary
of the static patch, the so-called stretched horizon. The stretched horizon is the place where
the holographic degrees of freedom are conjectured to live and is typically taken to be a
surface with constant radial coordinate close to the cosmological horizon.

As time progresses along the stretched horizon, the different geometric objects associ-
ated with complexity (for instance the volume, or the WDW patch) include contributions
from spacetime regions near I+ and diverge. This was already noticed in [7]. One way to
deal with this divergence is to introduce a regulator near future and past timelike infinity as
shown by the dashed top and bottom lines in figure 10. In this way, one recovers the linear
late-time behavior typical of quantum computational complexity in quantum circuits [10].

One of the famous tests of holographic complexity, in the context of AdS black holes,
is the switchback effect, which is a delay in the growth of complexity in a perturbed
background including a shockwave [50, 78, 79]. In the boundary picture, this delay arises
from cancellations between gates which commute with the perturbation at early times after
its insertion [80]

In this work, we will investigate the reaction of asymptotically de Sitter spacetimes
to the insertion of a gravitational shockwave [81–83]. We will try to understand how the
shockwave influences the volume behind the dS horizon by focusing on the computation
of CV2.0 only, since it is already a non-trivial geometric quantity that presents several
non-trivial features of complexity in dS. In particular, we find that dS exhibits a delay in

1Complexity conjectures in dS have been proposed in [7]. Reference [75] computed the volume and
action conjectures in two-dimensional dS space, and [76] studied volume complexity in the framework of
two-dimensional flow geometries. The setting with a bubble of dS space contained inside AdS geometry
(introduced in [38]) was considered in [77].
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Figure 1. Penrose diagram of de Sitter space. The diagonal black lines represent the cosmological
event horizons, and the horizontal black lines are the future and past timelike infinity I± (at r =∞).
The vertical black lines represent the worldline of an observer, located at r = 0 and the blue line
represents the stretched horizon that we defined to be a constant r surface.

the growth of the volume, similar to the switchback effect seen for AdS black holes. This is
perhaps a general property of geometries with shockwaves and therefore a general theorem
may be formulated along the lines of [84].

While holographic complexity shows signatures of scrambling here similar to AdS black
holes, we anticipate that the geometric origin of this behaviour is very different in asymp-
totically dS spaces compared to the AdS case. An important role is played by the fact that
the Penrose diagram of dS space grows taller when positive energy sources are inserted in
the bulk [85]. This leads to a time advance for null rays crossing the shockwaves [42] and
brings the two stretched horizons on the two sides of the dS spacetime into causal contact.
The latter is crucial for the appearance of certain special configurations of the WDW patch
discussed in section 4.4, and for the evaluation of the scrambling time. It would be inter-
esting to interpret the causal contact between the two sides of the Penrose diagram from
a potential boundary quantum mechanics point of view. Perhaps some inspiration can be
drawn from traversable wormholes in AdS [86, 87] where a similar situation occurs.

Outline. The paper is organized as follows. We start in section 2 by introducing the
asymptotically dS spacetimes perturbed by shockwaves. This includes a review of the
solutions and the analysis of their causal structure, including the check that the null matter
supporting the shockwaves satisfies the null energy condition. We propose in section 3
two prescriptions to define a stretched horizon in the shockwave geometries. We define a
regularized WDW patch in these geometries and we study its time evolution in section 4.
Then we present the general framework for computing complexity via the CV2.0 conjecture
and its rate of change in section 5. We apply both analytic and numerical methods to
study the growth rate in specific cases in section 6. Finally, we summarize and discuss
our results and present possible future directions in section 7. The appendices contain
additional technical details. For the sake of clarity, appendix A provides a comparison of
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our conventions and results with those of reference [1], which contains a related discussion
of holographic complexity in three-dimensional dS spaces with shockwaves. Appendix B
presents an alternative prescription to determine the location of the stretched horizon in
shockwave geometries. Appendix C provides an alternative derivation of the cosmological
scrambling time through a computation of the complexity of formation.

Note added. During the preparation of this paper we became aware of [1], which presents
a related discussion on the complexity in the presence of shockwaves in de-Sitter space.

2 Geometric preliminaries

We review in section 2.1 the main aspects of asymptotically dS backgrounds, including both
the cases of empty dS space and of the Schwarzschild-de Sitter (SdS) black holes. Then
we perturb in section 2.2 these geometries with the insertion of spherically symmetric
shockwaves, which induce a transition between black holes with different masses. As we
will see in section 2.3, the null energy condition (NEC) always implies that the mass of the
black hole has to decrease after the shock.2

2.1 Asymptotically de Sitter spacetimes

We consider the Einstein-Hilbert action in d + 1 dimensions with positive cosmological
constant

I = 1
16πGN

∫
dd+1x

√
−g (R− 2Λ) , Λ = d(d− 1)

2L2 . (2.1)

The vacuum solutions of the Einstein’s equations are described by the class of metrics [88]

ds2 = −f(r)dt2 + dr2

f(r) + r2dΩ2
d−1 , f(r) = 1− 2m

rd−2 −
r2

L2 , (2.2)

where L is the dS curvature radius and m is a parameter related to the mass of the solution,
and we refer to f(r) as the blackening factor. The case m = 0 corresponds to empty dS
space, while the case with m 6= 0 describes a Schwarzschild-de Sitter black hole.

The previous coordinates only cover a portion of spacetime; the analytic extension
behind the cosmological horizon can be achieved by introducing null coordinates

u = t− r∗(r) , v = t+ r∗(r) , (2.3)

where the tortoise coordinate is defined in terms of the blackening factor as follows

r∗(r) =
∫ r

r0

dr′

f(r′) . (2.4)

The lower limit of the integral r0 corresponds to an arbitrary constant of integration. We
will always select it such that r∗(r →∞) = 0 (in 3d or in the absence of a mass, equivalently

2Physically, this should be thought of as a spherically symmetric configuration, a star for instance, where
some mass is ejected in a spherically symmetric manner into the cosmological horizon. As a consequence
the cosmological horizon will recline from the observer.
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r∗(r → 0) = 0).3 The metric (2.2) expressed in Eddington-Finkelstein (EF) coordinates
reads

ds2 = −f(r)du2 − 2dudr + r2dΩ2
d−1 . (2.5)

The Penrose diagram is built using the following null compact coordinates

U = tan
(
e

u
L

)
, V = − tan

(
e−

v
L

)
, (2.6)

where the above convention refers to null coordinates defined in the right quadrant of the
conformal diagram; the other regions are achieved by changing the overall sign of U and
V in all the possible combinations, providing a natural Kruskal extension of spacetime.

The above blackening factor in eq. (2.2) typically has one or two physical roots (i.e.,
f(r) vanishes at one or two positive values of the radius), defining the positions of the
cosmological and black hole event horizons. We will refer to these values of the radial
coordinate as rC and rh, respectively (rh < rC). Due to the thermal emission from their
respective horizons, both the black hole and cosmological horizons have an associated
temperature and entropy, given by [11]

Th(C) = 1
4π

∣∣∣∣∂f(r)
∂r

∣∣∣∣
r=rh(C)

Sh(C) =
Ωd−1r

d−1
h(C)

4GN
. (2.7)

Below we give explicit expressions for the tortoise and null coordinates as well as the
thermodynamic quantities and a short description of the Penrose diagram for different
choices of the metric mass parameter and dimension.

2.1.1 Empty de Sitter space

We start with empty de Sitter space in d+ 1 dimensions, which is a maximally symmetric
solution of Einstein’s equations with positive cosmological constant. The topology of the
geometry is R× Sd, and the Penrose diagram is depicted in figure 2.

The worldline of an inertial observer in this geometry is represented by the vertical
black lines on the right and left sides of the diagram, corresponding to the north and
south poles (of the spatial Sd), respectively. The metric in empty dS space corresponds to
eq. (2.2) with m = 0, i.e., in any number of dimensions the blackening factor reads

f(r) = 1− r2

L2 . (2.8)

The coordinate system (2.2) describes the static patch of de Sitter space, which is the region
in causal contact with an inertial observer at the north (or south) pole, located at r = 0.
The geometry presents a cosmological horizon at r = L, as a consequence of the positive

3There is a small subtlety in integrating the tortoise coordinate across the horizons where the blackening
factor vanishes. Typically the blackening factor can be decomposed as 1/f(r) = c1/(r− rh) + c2/(r− rC) +
regular where rh stands for the black hole horizon, rC stands for the cosmological horizon and c1, c2 are
constants. When we integrate this expression, we could choose different integration constants on the two
sides of each horizon. However, we will always fix the integration constants to be equal on the two sides in
the sense that r∗(r) = c1 log |r − rh|+ c2 log |r − rC |+

∫
regular.
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Figure 2. Penrose diagram of de Sitter space. The blue lines represent the cosmological horizons
(r = L), the horizontal black lines are the future and past timelike infinity I± (at r =∞) and the
vertical black lines represent the north pole (right) and the south pole (left), located at r = 0 along
the world line of an observer.

cosmological constant. The dS background has a non-vanishing global temperature and
entropy associated with the cosmological horizon. From eq. (2.7), they read

TdS = 1
2πL , SdS = Ωd−1L

d−1

4GN
. (2.9)

The tortoise coordinate (2.4) in empty dS space reads

r∗(r) = L

2 log
∣∣∣∣L+ r

L− r

∣∣∣∣ . (2.10)

This quantity is used to define the null coordinates (2.3) and build the causal diagram
in figure 2. In the figure, we depicted several curves at constant radial or constant time
coordinate. The constant radial coordinate is depicted both outside and inside the cosmo-
logical horizon. At some large r, the former will be used as a cutoff surface that regularizes
geometric quantities reaching the timelike infinities I±; the latter will be related to the
location where the holographic degrees of freedom live, as we now describe.

Stretched horizon. It is conjectured that there exists a holographic description of the
static patch of empty dS space whose degrees of freedom live at its boundary, i.e., the
stretched horizon [7–9, 23, 29, 30, 89]. This is identified as a surface with constant radial
coordinate

rst ≡ ρL , ρ ∈ [0, 1] , (2.11)

defined on both sides of the Penrose diagram. While we are mainly interested in the
limit ρ → 1, we will allow ρ to vary along all the range ρ ∈ [0, 1], which corresponds
to interpolating between the poles and the cosmological horizon. We identify the time
coordinates running upwards along the left and right stretched horizons as the boundary
times tL, tR associated with the dual field theory. Due to the existence of a Killing vector
∂t for the metric (2.8), there is a boost symmetry such that the conjectured dual state is
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invariant under the shift

tL → tL + ∆t , tR → tR −∆t . (2.12)

In principle, these time coordinates are independent, but one can synchronize them by
considering an extremal codimension-one surface running through the bifurcation surface
and connecting the two stretched horizons. This geometric construction connects the time
slice at time tR on the right stretched horizon with the one at time tL = −tR on the left
horizon (the relative minus sign is a consequence of our choice of the upward orientation
of the boundary time coordinate on both sides of the geometry). Throughout this work, a
symmetric time evolution will correspond to the case

t

2 ≡ tR = tL . (2.13)

2.1.2 Schwarzschild-de Sitter black hole

Schwarzschild-de Sitter spacetime (sometimes also called the Kottler background [90]), is a
neutral, static, and spherically symmetric solution of Einstein equations in asymptotically
dSd+1 spacetime. We will restrict to the case d ≥ 2. The number of dimensions greatly
affects the conformal structure of the space. In particular, the case d = 2 only admits a
cosmological horizon, while for d ≥ 3 there is also a black hole horizon in general. For this
reason, we treat the two classes of solutions separately.

Three dimensions. In three dimensions (i.e., d = 2), the blackening factor in the met-
ric (2.2) becomes

f(r) = 1− 8GNE −
r2

L2 , (2.14)

where we have defined m ≡ 4GNE , and we refer to E as the energy of the solution [88, 91].
When E = 0, we recover empty dS space. The geometry only admits a cosmological
horizon at

rC = aL , a ≡
√

1− 8GNE , (2.15)

and there is no black hole horizon. This is a consequence of working in three dimensions,
where the SdS3 is locally identical to that of empty dS3 and the former can be produced
by making a global identification of dS3. By introducing the following coordinates

t̃ = a t , r̃ = r

a
, θ̃ = a θ , (2.16)

it is indeed possible to show that the SdS3 metric (2.14) simply becomes empty dS3 with
cosmological horizon L. For this reason, the three-dimensional conformal diagram of the
black hole solution is the same as for empty dS, which was depicted in figure 2. Since the
new angular coordinate is identified with period 2πa, there is a conical singularity with
positive deficit angle αdef = 2π (1− a) at the origin. The Hawking temperature and the
entropy, determined at the cosmological horizon, as computed from eq. (2.7) read

TSdS3 = a

2πL , SSdS3 = πaL

2GN
. (2.17)
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Figure 3. Penrose diagram of SdSd+1 space in dimensions d ≥ 3, when the mass parameter satisfies
0 < m < mcr. rh denotes the black hole horizon and rC the cosmological horizon.

Null directions are defined according to eq. (2.3), where the tortoise coordinate is given by

r∗(r) = L

2a log
∣∣∣∣aL+ r

aL− r

∣∣∣∣ . (2.18)

The stretched horizon is a surface with a constant value of the radial coordinate given by

rst = ρ aL , ρ ∈ [0, 1] . (2.19)

Higher dimensions. In higher dimensions d ≥ 3, the blackening factor of the met-
ric (2.2) takes the general form [88]

f(r) = 1− 2m
rd−2 −

r2

L2 , (2.20)

where m is a parameter related to the mass of the black hole (e.g., see [11, 92]) for different
proposals on how to define the masses in this setup). When the mass parameter is in the
range 0 < m < mcr

mcr ≡
rd−2

cr
d

, rcr ≡ L

√
d− 2
d

, (2.21)

then the geometry admits two horizons rC > rh, the larger value being a cosmological
horizon and the smaller one representing a black hole horizon. The Penrose diagram for
the SdS geometry in the regime 0 < m < mcr is illustrated in figure 3.

In the limit, m → mcr, the black hole and cosmological horizon approach each other
towards the common critical value rh = rC = rcr. However, their proper distance does not
vanish because the blackening factor is also going to zero near r ∼ rcr. This limit is known
as the Nariai solution, see e.g., [93]. A simple coordinate transformation demonstrates that
in this limit, the static patch effectively becomes dS2 × Sd−2, see e.g., [93, 94].

While it is not possible to find a closed form for the solution to the equations f(rh) =
f(rC) = 0 in general, they can be used to re-express the mass and dS curvature scale in
terms of the two horizon radii, see e.g., [95]:

m = 1
2
rdCr

d−2
h − rdhr

d−2
C

rdC − rdh
, L2 = rdC − rdh

rd−2
C − rd−2

h

. (2.22)
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Substituting these results into the blackening factor (2.20) yields

f(r) = 1
rdC − rdh

[
rdC

(
1− r2

r2
C

−
rd−2
h

rd−2

)
− rdh

(
1− r2

r2
h

− rd−2
C

rd−2

)]
. (2.23)

Using eq. (2.7), the associated temperatures for the black hole and cosmological horizons
can be written as

Th = d
r2

cr − r2
h

4πrhL2 , TC = d
r2
C − r2

cr
4πrCL2 . (2.24)

For arbitrary mass parameter in the range (0,mcr), the Hawking temperatures at the two
horizons satisfy Th > TC , so that the system is out of equilibrium. It is relevant to notice
that when the horizon radius reaches the critical value rcr, defined in eq. (2.21), correspond-
ing to the Nariai limit, both temperatures approach zero and the configuration approaches
equilibrium [93, 96]. In this case, the black hole reaches an extremal configuration. An-
other case where the background is in thermal equilibrium corresponds to m = 0, which of
course corresponds to empty dS space. In this case, the dS horizon is in equilibrium with
the emitted radiation and therefore it does not evaporate, see e.g., [93].

To define the holographic prescription for a dual field theory associated with this
spacetime, we need to introduce a stretched horizon in this background. Since rC is the
cosmological horizon for observers on worldlines of constant radial coordinate between
r ∈ [rh, rC ], a natural prescription is to locate the stretched horizon at

rst = (1− ρ)rh + ρrC , ρ ∈ [0, 1] , (2.25)

such that it is a surface at constant r interpolating between the two horizons.

Four dimensions. Let us focus on the special case of four dimensions, i.e., we set d = 3.
The blackening factor becomes

fSdS4(r) = 1− 2m
r
− r2

L2 . (2.26)

The critical mass (2.21) implies that under the condition m2/L2 < 1/27, we have two
different roots of the blackening factor. The relations (2.22) become

m = rhrC(rh + rC)
2(r2

C + rhrC + r2
h) , L2 = r2

C + r2
h + rCrh . (2.27)

Inverting these identities, one can express the horizons in terms of the mass. In four
dimensions it is possible to find the solutions in the closed form [97–99]:

rh = rcr
(
cos η −

√
3 sin η

)
, rC = rcr

(
cos η +

√
3 sin η

)
, η ≡ 1

3 arccos
(
m

mcr

)
,

(2.28)
where rcr = L/

√
3 andmcr = rcr/3 = L/(3

√
3), with the definitions in eq. (2.21). We depict

these functions in figure 4. It is evident that increasing the mass of the black hole leads
to increasing rh and decreasing rC , until they approach each other when the parameters
satisfy m2/L2 = 1/27, which is the critical mass leading to the Nariai solution. In this
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Figure 4. Plot of the black hole and cosmological horizons for SdS4 (2.26) as functions of the mass,
in units of L = 1.

case, the black hole and cosmological horizon both reach the critical value rcr. When the
mass vanishes, we recover empty dS4 space without a black hole horizon (rh = 0), and with
rC = L.

The blackening factor can alternatively be expressed using the two horizon radii rather
than the mass and dS length, as in eq. (2.23)

fSdS4(r) = −(r − rh)(r − rC)(r + rh + rC)
r(r2

C + rhrC + r2
h) , (2.29)

which can be integrated analytically to obtain the tortoise coordinate

r∗(r) =− r2
C + rhrC + r2

h

(rC − rh)(2rC + rh)(rC + 2rh)

[
r2
C log

∣∣∣∣ r − rC
r + rC + rh

∣∣∣∣
+2rhrC log

∣∣∣∣r − rCr − rh

∣∣∣∣− r2
h log

∣∣∣∣ r − rh
r + rC + rh

∣∣∣∣] . (2.30)

The Hawking temperatures of the two horizons are given by eq. (2.7), which yields

Th = (rC − rh)(rC + 2rh)
4πL2rh

= L2 − 3r2
h

4πL2rh
, TC = (rC − rh)(rh + 2rC)

4πL2rC
= 3r2

C − L2

4πL2rC
.

(2.31)

2.2 Perturbation with shockwaves

We perturb the class of asymptotically dS spacetimes introduced in eq. (2.2) by the inclu-
sion of a shockwave intersecting the right stretched horizon at time −tw. The shockwaves
are sourced by a null fluid moving along a spherically symmetric null surface. Their effect
is to shift the mass parameter from m1 before the shock to m2 after the shock. As a
consequence, the black hole horizon is shifted from rh1 to rh2 and the cosmological horizon
of the geometry is shifted from rC1 to another value rC2.
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Geometric setting. A shockwave deformation of SdS spacetimes can be described by
the following metric

ds2 = −F (r, u)du2 − 2drdu+ r2dΩ2
d−1 , (2.32)

F (r, u) = f1(r) (1− θ(u− us)) + f2(r)θ(u− us) , (2.33)

where us is the constant null coordinate parametrizing the location of the shockwave and
θ is the Heaviside step function. The perturbation induces a jump in the blackening factor
given by

u < us : F (r, u) = f1(r) = 1− 2m1
rd−2 −

r2

L2 ,

u > us : F (r, u) = f2(r) = 1− 2m2
rd−2 −

r2

L2 .

(2.34)

The tortoise coordinate is also affected by this jump and reads4

r∗(r) =
∫ r

r0,1

dr′

f1(r′) (1− θ(u− us)) +
∫ r

r0,2

dr′

f2(r′)θ(u− us) . (2.35)

The Penrose diagram corresponding to this geometric setting is depicted in figure 5 for both
the SdS3 and for SdSd+1 (d ≥ 3) backgrounds. In these geometries, the radial coordinate
r and the ingoing null coordinate u is continuous along the entire shockwave geometry,
instead the time t and the outgoing null coordinate v are discontinuous across the shock-
wave, as a consequence of the jump in the blackening factor. We stress that the diagrams
in figure 5 are obtained with a cut-and-paste procedure. That is, the diagrams are depicted
in such a way that the cosmological horizons above and below the shockwave (i.e., at rC2
and rC1, respectively) are glued to one another across the shockwave. We will often employ
a slight abuse of notation and still refer to those diagrams as “Penrose” diagrams.5

In general, this setting corresponds to the transition between black holes with different
masses m1,m2, which also includes the possibility to evolve from a black hole solution to
empty dS (whenm2 = 0). Previous studies of shockwaves in asymptotically dS space can be
found in [81–83, 100]. We will show in section 2.3 that the NEC imposesm1 ≥ m2, therefore
such transitions always correspond to the shockwave carrying mass away from the black
hole. Interpreting the SdS background as describing the exterior geometry of a spherically
symmetric star-like object, this process corresponds to the (spherically symmetric) ejection
of mass into the cosmological horizon, and the consequence is that the cosmological horizon
is pushed further away from an observer sitting at some fixed radius.

According to the static patch holography proposal (as discussed in section 1), the dual
theory lives on the stretched horizon, where the boundary time is measured. In particular,
the null coordinate of the shockwave and the right boundary time −tw of its insertion are
related by

us = −tw − r∗(rst) , (2.36)
4As before, the constants of integration are fixed by requiring a vanishing tortoise coordinate at fu-

ture/past timelike infinity.
5For further comments, see the discussion of figure 6 at the beginning of section 3.
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(a)

𝑟 = 0

𝑟 = 0

𝑟 = 0

𝑟 = 0

(b)

Figure 5. Penrose diagrams of SdS black hole in the presence of a shockwave (a) SdS3 space and
(b) SdS in higher dimensions.

where rst is the radial coordinate of the stretched horizon. So far, we did not specify how
the stretched horizon is affected by the presence of the shockwave; this plays an important
role in the determination of the boundary time. We will return to this point in section 3.

Geometric data. We can relate the strength of the shock to the jump it induces in the
location of the cosmological horizon. For this, let us label the cosmological horizons as
rCi, where the index i = 1, 2 corresponds to the part of the geometry below or above the
shockwave at u = us, respectively:

rCi =

aiL SdS3

rcr
(
cos η +

√
3 sin η

)
SdS4,

(2.37)

where
ai ≡

√
1− 8GNEi , (2.38)

and the quantities rcr, η were defined in eqs. (2.21) and (2.28). In higher dimensions, there
is no closed form expression for the cosmological horizon, and we need to numerically solve
the conditions (2.22). According to the NEC that we will study in section 2.3, a shockwave
perturbation induces a transition between geometries such that the cosmological horizon
gets pushed away from the observer, i.e., rC1 ≤ rC2.

For later convenience, we also define a dimensionless parameter ε describing the relative
variation between the geometry before and after the shockwave insertion. It reads

ε ≡

1− E2/E1 SdS3

1−m2/m1 SdSd+1 (d ≥ 3).
(2.39)

The case of an infinitesimal deformation of the original geometry always corresponds to
ε� 1. The NEC will impose the conditions

E1 ≥ E2 , m1 ≥ m2 . (2.40)
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Therefore, in the cases of interest, we have ε ∈ [0, 1]. In particular, the maximal value
ε = 1 corresponds to the transition from the SdS black hole to empty dS space. Of course,
we always assume mi ∈ (0,mcr) (if this is satisfied before the shock it will also be satisfied
after the shock).

2.3 Null energy condition

The perturbation of a background geometry through the insertion of a shockwave should be
consistent with the NEC. We analyze the consequences of this constraint on the parameters
of the geometry.

The metric (2.32) with blackening factor (2.34) solves the Einstein equations arising
from the gravitational action (2.1)

Gµν + Λgµν = 8πGNTµν . (2.41)

Therefore the shockwave insertion is encoded by the presence of a non-vanishing stress
tensor

Tµν = 1
8πGN

d− 1
2

m1 −m2
rd−1 δ(u− us) δµu δνu . (2.42)

That is, the only non-vanishing component corresponds to Tuu. However, not all matter
can be inserted in a consistent way. We require that the energy-momentum tensor satisfies
the null-energy condition, i.e., for any null vector kµ, we impose

Tµνk
µkν ≥ 0 . (2.43)

Since the only non-vanishing component of the stress tensor is Tuu, we find that the only
non-trivial constraint is

Tµνk
µkν = 1

8πGN
d− 1

2
(ku)2

rd−1 (m1 −m2) δ(u− us) ≥ 0 , (2.44)

where ku is the u component of the null vector kµ. This implies that m1 ≥ m2, so that
shockwaves with positive energy are responsible for decreasing the mass of the black hole.6
Since SdS black holes with lower mass have a bigger cosmological horizon, the constraint
arising from the null energy condition can be alternatively formulated as rC1 ≤ rC2.

3 Stretched horizon in the presence of shockwaves

Static patch holography essentially states that the holographic dual theory lives on a con-
stant radial slice surface r = rst, given by equations (2.11), (2.19) and (2.25) for empty

6Of course, we could also consider infalling shockwaves (following surfaces of constant v), which would
increase the black hole mass. This behaviour would be similar to the usual holographic studies of asymp-
totically AdS black holes. Further, let us recall that one encounters shockwaves emerging from the white
hole region in the AdS/CFT when considering a perturbed thermofield double state in the boundary the-
ory [101, 102]. In this scenario, however, the shockwave reflects from the asymptotic boundary to become
an infalling shock. In the present case of static patch holography, it is unnatural to consider shockwaves
being reflected at the stretched horizon. Rather the holographic screen at the stretched horizon is treated
as a transparent surface.
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dS space, SdS3 and SdSd+1 (d ≥ 3), respectively. However, if we use a constant radius
surface as the stretched horizon in the presence of shockwaves, we encounter the somewhat
uncomfortable property that a stretched horizon located within the static patch before the
shock rst < rC1, can never approach the larger cosmological horizon rC2 after the shock.

To avoid this problem, in section 3.1 we propose a different prescription, which locates
the stretched horizon at a surface of constant redshift from an observer located at constant
radius. The idea is to impose that outgoing light rays emitted from the stretched horizon
are received by an observer located at some fixed r = ro,1 before the shock and at some
fixed r = ro,2 after the shock7 in such a way that the cosmological redshift is constant
along the time evolution, see figure 6(a) and 6(b). In this context, the terminology ingoing
and outgoing refers to light rays sent towards or outwards from the cosmological horizon,
respectively. In SdS3 we will locate the observer at the north pole, i.e., ro,1 = ro,2 = 0.
As remarked above figure 5, it is worth reminding the reader that in our diagrams, we
rescale the geometry after the shockwave so that the cosmological horizons rC1 and rC2
are glued together. For this reason, the light ray λ̃ jumps in figure 6(b), even though its
radial coordinate is continuous when crossing the shockwave. This is a manifestation of
the time advance for a pulse crossing the shock, e.g., see [42, 85].

Let us add that one may determine the position of the stretched horizon by any of
a number of prescriptions. The choice described above is non-local in character, i.e., the
position is related to a distant observer (or family of observers near the black hole), but it
has the virtue of imposing a physical condition for the observer. In appendix B, a second
non-local prescription is examined which again relies on the redshift between the stretched
horizon and observers near the black hole, but with slightly different boundary conditions.
However, one can also devise local approaches to determine the stretched horizon. One
simple local approach would be to ask that the proper acceleration of observers following
the local Killing flow on the stretched horizon is radially directed and has a fixed mag-
nitude. Another arises from the observation that a consequence of the redshift approach
initially described above is that the SdS time coordinate t along the stretched horizon is
discontinuous at the intersection with the shockwave. Hence another approach is to impose
the local boundary condition that the time coordinate is continuous across the shock.8

In fact, the precise prescription for the stretched horizon will be unimportant for our
results in the following. Irrespective of the prescription, the results are qualitatively similar
in general, and they will coincide in the limit of light shockwaves, which will be a focus of
our discussion.9 However, let us add that all of the prescriptions which were mentioned here
(both local and non-local) share certain universal features. These are: (1) the stretched
horizons are located at constant radial coordinate in the early past and in all the region

7We will mostly focus on the case ro,1 = ro,2 below.
8We study the consequences of this approach in section 3.2. We also return to a discussion of the

definition of time in the boundary theory in section 7.
9As an example, consider the scrambling time in the SdS3 background. This will be given by eq. (6.7)

using the prescription that keeps a constant cosmological redshift, and by eq. (6.14) when requiring that
the time coordinate along the stretched horizon is continuous. In general, these two results are qualitatively
similar, and they coincide in the limit of light shockwaves with ε→ 0.
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(a) SdS3

𝑟2
𝑠𝑡
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𝑠𝑡

𝑢𝑠 = −𝑡𝑤 − 𝑟2
∗(𝑟2
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(b) SdSd+1 with d ≥ 3

Figure 6. Light rays at constant v sent from an emission surface parametrized by r = Re(te).
The shockwave sits at constant us = −tw − r∗2(rst

2 ). For early times te � −tw, the trajectory
satisfies Re = rst

1 and the light ray is denoted with λ′. For late times te � −tw, we have Re = rst
2

and the light ray is denoted by λ. For intermediate times, the light ray is denoted by λ̃ and the
trajectory of the stretched horizon is time-dependent. The observer sits on a surface at constant
radial coordinates ro,1 before the shockwave, and ro,2 after the shock. In the case of SdS3 the
observer is located at ro,1 = ro,2 = 0. The different subfigures depict different dimensions as
indicated in the subcaption.

after the shock wave insertion, and (2) there is a limit of the parameters such that the
stretched horizons before and after the shock wave approach the respective cosmological
horizons together. Of these, the behaviour of the scrambling time which we find below
only requires that the stretched horizon sits at a fixed radius after the shockwave.

Let us remark that the previous discussion only applies to shockwaves intersecting the
right stretched horizon at finite coordinate time −tw. When the shock propagates along
the cosmological horizon (tw → ∞), the cosmological horizon itself does not change and
therefore the stretched horizon keeps the same form throughout the full geometry.

3.1 Constant redshift prescription

On the right portion of the Penrose diagram, the stretched horizon will be generically
time-dependent, because outgoing light rays can intersect the shockwave. We denote the
time-dependent position of the stretched horizon as r = Re(te), where te is a time parameter
along the stretched horizon that we call emission time. To recover the case of an unper-
turbed asymptotically dS space, we require that the stretched horizon is time-independent
in the far past and future:

lim
te→−∞

Re(te) = rst
1 , lim

te→∞
Re(te) = rst

2 , (3.1)

where rst
i is the location of the stretched horizon in the far past/future and as before it can

be re-expressed in terms of a parameter ρi (i = 1, 2)

rst
i =

ρi aiL SdS3

(1− ρi)rhi + ρirCi SdSd+1 (d ≥ 3) .
(3.2)
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We will soon see that the constant redshift requirement imposes that ρ1 and ρ2 go to
1 together. Hence, when rst

1 before the shock approaches rC1, rst
2 after the shock will

approach rC2. As advertised above, this was the original motivation for us to suggest this
prescription of the stretched horizon.

Since light rays sent after the shock do not intersect it, the stretched horizon takes
the time-independent value rst

2 over all the spacetime region after the shockwave insertion.
Of course, in the case without the shockwave, this definition recovers our previous choices
in equations (2.11), (2.19) and (2.25). We will study the location of the stretched horizon
starting from the far past and moving towards the future direction on the right side of the
Penrose diagram. On the left side of the geometry the shockwave does not intersect the
stretched horizon. Therefore the left stretched horizon will be located at the fixed value rst

1
defined in eq. (3.2), which is the same as on the right side in the far past before the shock.

A few comments are in order. First, note that the tortoise coordinate jumps across the
shockwave. Using the definition (2.3) for the null coordinate u, which is continuous across
the shockwave, we find a matching condition between the time coordinate defined in the
region before and after the null surface at u = us. Specifically, when focusing on the place
where the stretched horizon crosses the shock, we have

us = ts1 − r∗1(Re(ts1)) = −tw − r∗2(rst
2 ) , (3.3)

where ts1 denotes the boundary time on the right stretched horizon immediately before
the shockwave insertion. We will later see that when using our prescription the time
is discontinuous across the shockwave ts1 6= −tw and furthermore, the stretched horizon
jumps across the shock, that is Re(ts1) 6= rst

2 . In the above formula (3.3), we measure the
insertion time of the shockwave −tw using an observer located at the stretched horizon in
the part of the geometry at u > us. That is, we clarify that eq. (2.36) for the insertion
time of the shockwave was actually defined when approaching the shockwave from above.

In what follows, it will be useful to define the critical time t̃e1 such that light emitted
from the stretched horizon at time t̃e1 ≤ te ≤ ts1 crosses the shock. The time t̃e1 corre-
sponds to the limiting case of a light ray emitted from the stretched horizon and reaching
ro,1 at the intersection with the shockwave u = us. It reads

t̃e1 = −tw − r∗1(rst
1 )− r∗2(rst

2 ) + 2r∗1(ro,1) . (3.4)

Computation of the redshift. We consider the setting with a transition between two
SdSd+1 (d ≥ 2) black holes, as depicted in figure 6. The gravitational shockwave propagates
through the spacetime along the constant null coordinate us defined in eq. (3.3), reaching
either the north pole or the singularity of the black hole (both located at r = 0). In this
setting, light rays at constant v are emitted at time te from the surface r = Re(te) towards
an observer that receives and collects the radiation at r = Ro(to). We assume that the
observer is always located on a time-independent surface, even at intermediate times, and
that Ro remains continuous when crossing the shockwave (therefore R0 ≡ ro,1 = ro,2).

In order to measure a frequency, we send two photons at different times te and te +
δte from the surface at Re(te), and consequently a detector located at constant radial
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Figure 7. Light rays sent from the emission surface Re at times te and te + δte towards the
absorption surface Ro, where they are received at times to and to + δto.

coordinate Ro measures their absorption at times to and to + δto. This is depicted in
figure 7. The corresponding emission and absorption frequencies are

ωe = 2π
δτe

, ωo = 2π
δτo

, (3.5)

where we denoted with δτe and δτo the infinitesimal proper times at the positions of the
emission and absorption, respectively. In particular, the redshift factor z at a generic point
is defined by

1 + z = ωe
ωo

= δτo
δτe

. (3.6)

Time-independent part of the stretched horizon. It is possible to relate the proper
time to the time coordinates measured at the positions of emission and absorption of the
light rays. If these positions are located at constant radial coordinate, the relation reads

δτe =
√
f(Re)δte , δτo =

√
f(Ro)δto , (3.7)

and the redshift factor simplifies to

1 + z = δto
δte

√
f(Ro)
f(Re)

. (3.8)

In order to determine the relative time difference, we consider the lines at constant v of a
light ray and its next peak. They are parameterized by

v(te) = te + r∗(Re) = to + r∗(Ro) ,
v(te + δte) = te + δte + r∗(Re) = to + δto + r∗(Ro) ,

(3.9)

where we used the fact that the constant value of the null coordinate can be measured in
two different points. By subtracting the two equations, we get δte = δto, which via eq. (3.8)
gives a redshift

1 + z =
√
f(Ro)
f(Re)

= ωe
ωo
≥ 1 . (3.10)
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Now we fix the cosmological redshift in the far past and future, according to the constraints
in eq. (3.1):

• In the far past:

1 + zλ′ =
√
f1(Ro)
f1(rst

1 ) . (3.11)

• In the far future:

1 + zλ =
√
f2(Ro)
f2(rst

2 ) . (3.12)

The requirement zλ = zλ′ implies

f1(Ro)
f1(rst

1 ) = f2(Ro)
f2(rst

2 ) . (3.13)

As can be seen from the equation above, when rst
1 → rC1, we also need rst

2 → rC2 for
the equation to be satisfied.10 When the transition occurs between SdS3 black holes, we
set Ro = 0 which gives rst

1 /a1 = rst
2 /a2. This means that the values ρi associated with

the stretched horizons in equation (3.2) are equal ρst
1 = ρst

2 . This is no longer the case as
soon as Ro 6= 0 or for the higher dimensional black hole, where it is not possible to choose
R0 = 0 (because it is the location of the singularity of the black hole).

More generally, for the case with ro,1 6= ro,2, the position of the stretched horizon after
the shock can be fixed by the condition

f1(ro,1)
f1(rst

1 ) = f2(ro,2)
f2(rst

2 ) . (3.14)

relating the early and late time limits of the stretched horizon (3.1). Note that also in this
case the two stretched horizons approach the cosmological horizons together in order for
the equation to be satisfied. Next, let us look at the time-dependent part of the stretched
horizon.

Time-dependent part of the stretched horizon. We now consider the case of an
outgoing light ray sent at an intermediate time, when it propagates in both parts of the
geometry before reaching the observer at r = R0. Such light rays are denoted with λ̃ in
figure 6. The constant redshift condition in eq. (3.8) has to be modified taking into account
that now the stretched horizon is time dependent,

1 + zλ̃ =
√
f2(Ro)
f1(Re)

1√
1− (R′e)2

f1(Re)2

dto
dte

(3.15)

where R′e ≡ dRe/dte and we assumed that light rays are still sent at fixed angular coordi-
nates.

10Recall that this was part of our original motivation for this prescription.
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An outgoing light ray in this regime crosses the shockwave. Its parametrization in the
region u < us reads

v1 = te + r∗1(Re) = −tw − r∗2(rst
2 ) + 2r∗1(rsh) , (3.16)

while after the shockwave we have

v2 = to + r∗2(Ro) = −tw − r∗2(rst
2 ) + 2r∗2(rsh) . (3.17)

In these two expressions we denoted by rsh the radial coordinate where the light ray crosses
the shockwave and by to the time at which the light ray is received by the observer. Then
we proceed in solving for the time dependent position of the stretched horizon Re(te) as
follows:

1. Determine numerically (or if possible, analytically) rsh as a function of to from
eq. (3.17).

2. Take the derivative with respect to to of eq. (3.16) and extract the expression for
dte/dto.

3. Plug the previous expression inside eq. (3.15) rewriting the unknown function Re(te)
as a function of to. The constant redshift condition now gives a differential equation
for Re(to) which we solve by using the initial condition

Re(t̃o,2) = rst
1 . (3.18)

Here t̃o,2 is the time (defined in the region u > us) where the shock crosses the
observer’s worldline, i.e.,

t̃o,2 = −tw − r∗2(rst
2 ) + r∗2(ro,2) . (3.19)

Substituting the solution back into equation (3.15), we can integrate te(to) in order to
express Re(te). However, in the plots below we have plotted (the curious hybrid) Re(to)
for times after the shocks to avoid the jump in the definition of time across the shock.11

The solution for the time dependent part of the stretched horizon is depicted in figure 8
for the SdS4 black hole. As shown in the figure, the stretched horizon in the presence of a
shockwave is not at a constant r coordinate. When the first light ray crosses the shock, the
stretched horizon becomes time dependent. After the last light ray crosses the shock, the
stretched horizon is again at a constant r surface which jumps discontinuously compared
to its previous value.

The discontinuity decreases for ρ → 1, for a smaller strength of the shockwave ε → 0
and for an earlier insertion time tw →∞. One can check that

Re(ts,o2) 6= rst
2 , r∗1(Re(ts,o2)) 6= r∗2(rst

2 ) , (3.20)
11The emission time te jumps across the shockwave, as a consequence of eq. (3.3) with the observation

that Re(ts1) 6= rst
2 .
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Figure 8. Plots representing the time-dependent solution Re(to) for the stretched horizon in the
SdS4 geometry. We fix L = 1, m1 = 0.14, m2 = 0.13, Ro = 0.2 and depict the result for various
choices of ρ1

st reported in the legend.

where ts,o2 is defined as the observer’s time of the last light ray sent during the time-
dependent regime of the stretched horizon. In other words, it is the time coordinate
measured by the observer when a light ray is emitted from the intersection between the
stretched horizon Re and the shockwave. The latter inequality in (3.20) implies that the
coordinate time te measured along the stretched horizon is discontinuous when crossing the
shockwave. In this regime the observer’s time to is instead continuous, and for this reason
we used it in the plots.

Finally, we mention that the constant redshift prescription is not unique: there are
many boundary conditions that can be changed such as the location of the observer, the
light rays used to compute the redshift and the continuity properties of the stretched
horizon. We discuss these issues and we show that some universal properties of the stretched
horizon are preserved by other prescriptions in appendix B.

Results in three dimensions. The three-dimensional SdS black hole only presents a
cosmological horizon, therefore the Penrose diagram reduces to figure 6(a) and we can
locate the observer at the north pole Ro = 0. These simplifications make the problem
simpler to study, and now various steps can be performed analytically.

Following the steps outlined below eq. (3.17) with the choice Ro = 0, we find:

1. From eq. (3.17) we determine

rsh = a2L tanh
[
a2
2L

(
to + tw + r∗2(rst

2 )
)]

, (3.21)

where we used the fact that rsh ≤ a2L.

2. Taking the derivative of eq. (3.16) gives

dte
dto

= 2
f1(rsh)

drsh
dto

(
1 + R′(te)

f1(Re)

)−1
,

drsh
dto

= a2
2

2 cosh2 (a2to
2L
)2 , (3.22)

where the latter identity comes from eq. (3.21).
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Figure 9. Plots representing the time-dependent solution Re(to) for the stretched horizon in the
SdS3 geometry. We fix L = 1, 8GNE1 = 0.2, ε = 0.1 and Ro = 0 and depict the result for various
choices of ρ1

st reported in the legend.

3. Plugging the previous derivative dte/dto inside eq. (3.15) leads to the differential
equation √√√√f1(rst

1 )
f1(Re)

+ Ṙe
2

f1(Re)2 + Ṙe
f1(Re)

= 2
f1(rsh)

drsh
dto

, (3.23)

where Ṙe ≡ dRe/dto. After imposing the boundary condition (3.18), we can numeri-
cally solve this differential equation for Re(to).

The solutions for various choices of the parameter ρ1
st are depicted in figure 9. We notice

that the stretched horizon jumps after the intersection with the shockwave. While the
jump is initially towards a smaller value of the radial coordinate, for increasing values of
ρ1

st the stretched horizon moves towards a bigger value of r instead. This is consistent
with the requirement that the stretched horizons, either before and after the shockwave,
approach the corresponding cosmological horizon together when ρ1

st → 1. The statement
on the jump of the stretched horizon is also valid in higher dimensions, but it is easier
to observe in this three-dimensional setting. The qualitative behaviour is similar to the
higher-dimensional case in figure 8, therefore the same comments as remarked around the
inequalities (3.20) apply here as well.

3.2 Continuous time prescription

The constant redshift prescription of section 3.1 defines the location of the stretched horizon
in terms of a physical experiment, where light rays are sent between a source and a detector
in such a way as to keep the cosmological redshift constant. However, a disadvantage of
the previous method is that the de-Sitter time coordinate t along the stretched horizon
jumps when crossing the shockwave. In this section, we examine an alternative to the
constant redshift prescription. Instead, we determine the location of the stretched horizon
so that the time coordinate is continuous along it. We further require that the stretched
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horizon is located at (a different) constant value of the radial coordinate before and after
the shockwave insertion. A welcome outcome of these requirements is that as the stretched
horizon before the shockwave approaches the cosmological horizon rC1, the stretched hori-
zon after the shockwave will approach the larger cosmological horizon rC2. This intuitive
result was a guiding principles for us to produced this definition of the stretched horizon
in a shockwave geometry. This approach is also technically more efficient and, e.g., allows
us to produce an interesting analytic expression for the scrambling time — see eq. (6.18)

Let us assume that the stretched horizon is always located at a constant radial coor-
dinate during all the time evolution, except for a possible jump at the intersection with
the shockwave. We parametrize these constant values according to eq. (3.2). We now
impose that the coordinate time is continuous along the stretched horizon. By evaluating
the constant null direction us using the data before and after the shockwave insertion as
in eq. (3.3), we find the constraint

r∗1(rst
1 ) = r∗2(rst

2 ) . (3.24)

We provide the solution for this identity in some examples of asymptotically dS spacetimes.
In the case of a transition between SdS3 backgrounds, the solutions read

rst
1 = ρ a1L , rst

2 = a2L tanh
[
a2
2a1

log
(1 + ρ

1− ρ

)]
, (3.25)

where we denoted with ρ ≡ ρ1 the value of the parameter defined in eq. (3.2) before the
shockwave insertion. We analytically observe that the stretched horizons before and after
the shock approach the corresponding cosmological horizon together when ρ → 1, and
they both approaches the pole r = 0 when ρ → 0. Similar results can be found for the
higher-dimensional SdS black hole, where the solution is numerical.

In section 5 we will take a generic and constant value rst
2 for the right stretched horizon

after the shockwave insertion. When considering the specific examples in section 6, we will
usually specialize to the constant redshift prescription described in section 3.1. The re-
quirement of a continuous time coordinate along the stretched horizon discussed here leads
to the same qualitative results; minor quantitative differences will be discussed explicitly.

4 WDW patch

According to the prescription proposed in [7, 10], holographic complexity in asymptotically
dS spacetime is defined by anchoring extremal surfaces (for the volume) and the WDW
patch (for the CV2.0 and action proposals) to the two stretched horizons. In this section,
we study the shape of the WDW patch in preparation for the computation of the CV2.0
conjecture in section 5.

We begin in section 4.1 by presenting a regularization prescription that cuts the WDW
patch using appropriate cutoff surfaces near timelike infinity. We study the time depen-
dence of the WDW patch in section 4.2, identifying in section 4.3 a set of critical times
parametrizing different regimes of the evolution. Spacetimes with dS asymptotics present
a novel feature compared to the AdS counterpart; they can admit special configurations of
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Figure 10. The WDW patch in SdSd+1 perturbed by a shockwave. rc1, rh1 are the cosmological
and black hole horizon before the shockwave. The shockwave can be thought of as throwing away
mass from the black hole therefore the mass of the black hole after the shockwave is smaller.
rc2, rh2 are the cosmological and black hole horizon after the shockwave. In the figure rs, rb are the
intersections between the past and future boundary of the WDW with the shockwave. rm2, rm1
are the top and bottom joints of the WDW patch. (a) WDW patch in SdS3 space perturbed by a
shockwave. (b) WDW patch in SdSd+1 with d ≥ 3 perturbed by a shockwave.

the WDW patch where the top and bottom joints move outside the cosmological horizons.
These cases are analyzed in section 4.4. We finally apply the general techniques to SdS
space explicitly in section 4.5.

4.1 Regularization

The hyperfast growth of asymptotically dS spaces is responsible for a divergent complexity,
which we regularize by delimiting the integration domain of the WDW patch with cutoff
surfaces located near timelike infinity [10]. Given an asymptotically dS geometry of the
form (2.32), we define the cutoff in the lower region of the Penrose diagram as

rmax,1 = rC1
δ
, (4.1)

where δ > 0 is an infinitesimal dimensionless regulator and the cosmological horizon was
defined in eq. (2.37). Unlike the stretched horizon, this cutoff surface near past timelike
infinity I− does not intersect the shockwave. Therefore there is no need for prescriptions of
the kind discussed in section 3. We need to independently choose another location for the
cutoff surface in the top part of the Penrose diagram (close to I+): for simplicity, we set

rmax,2 = rmax,1 = rC1
δ
. (4.2)

In the remaining part of the paper, we will be generic and perform the computations by
keeping distinct values rmax,1, rmax,2 for the cutoff surfaces; we will use the expressions (4.1)
and (4.2) only in explicit examples.
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4.2 Time evolution of the WDW patch

We will study the time dependence of the WDW patch, referring to the configuration in
figure 10(a) for concreteness. There are certain positions of the WDW patch which play a
crucial role in the evolution of the system. We denote them as follows:

• rs is the intersection between the shockwave and the past boundary of the WDW
patch in the right exterior (rs ≤ rC2);

• rb is the intersection between the future boundary of the WDW patch and the shock-
wave behind the interior of the first cosmological horizon (rb ≥ rC1);

• rm1 is the bottom joint of the WDW patch, obtained as the intersection of its past
null boundaries;

• rm2 is the top joint of the WDW patch, located at the intersection of its future null
boundaries.

A typical feature of the WDW patch is that the top and bottom joints rm1, rm2 are located
behind the horizon. This happens for several geometries whose asymptotics is AdS, dS and
in many other settings [10, 53, 60, 63, 78, 79]. In the present case, however, we will find
unusual configurations of the WDW patch where the top and bottom vertices of the WDW
patch will end up outside the cosmological horizon.

In order to concretely determine the above-mentioned positions, we impose that the
appropriate null surfaces intersect. The idea consists of evaluating the constant null co-
ordinates in two different points: at the stretched horizon where the boundary times are
defined, and at the special positions of the WDW patch that we want to determine. This
procedure leads to the identities

tR + tw = 2r∗2(rs)− 2r∗2(rst
2 ) , (4.3)

tL − tw = r∗1(rst
1 ) + r∗2(rst

2 )− 2r∗1(rb) , (4.4)
tL − tw = 2r∗1(rm1)− 2r∗1(rs)− r∗1(rst

1 ) + r∗2(rst
2 ) , (4.5)

tR + tw = 2r∗2(rb)− 2r∗2(rm2) . (4.6)

Note that the above equations satisfy the symmetry (2.12) together with the appropriate
shift of the shock12

tw → tw + ∆t . (4.7)

By differentiating these relations at fixed boundary time tL, we find

drs
dtR

= f2(rs)
2 ,

drb
dtR

= 0 , drm1
dtR

= f1(rm1)
2

f2(rs)
f1(rs)

,
drm2
dtR

= −f2(rm2)
2 , (4.8)

while when keeping tR fixed, we obtain

drs
dtL

= 0 , drb
dtL

= −f1(rb)
2 ,

drm1
dtL

= f1(rm1)
2 ,

drm2
dtL

= −f2(rm2)
2

f1(rb)
f2(rb)

. (4.9)
12This is not really an isometry of our SdS solution as eq. (4.7) shifts the location of the shockwave.

However, our analysis is left invariant with these three shifts of the time parameters.
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(a) t = tc1. (b) t = tc2.
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(c) t = tc3.

Figure 11. Time evolution of the WDW patch in the presence of the shockwave and determination
of the critical times. (a) Critical time tc1 when the bottom vertex of the WDW patch sits on the
cutoff surface r = rmax,1 located close to I−. (b) Critical time tc2 when the top vertex of the
WDW patch sits on the cutoff surface r = rmax,2 located close to I+. (c) Critical time tc3 when rb

intersects the cutoff surface located at rmax,2. As indicated in the main text, the Penrose diagrams
show only the region between the two stretched horizons.

4.3 Critical times of the WDW patch

The time dependence of holographic complexity crucially depends on the location of the
special positions of the WDW patch, in particular, if they reach the cutoff surfaces near
timelike infinity that regularize the spacetime volume. It turns out that there exist several
critical times corresponding to the transition of different shapes of the WDW patch. While
many of the considerations that we will make are not affected by the precise relation be-
tween the right and left boundary times, we will mainly focus on the symmetric case (2.13)
for the derivation of the critical times. We collect in figure 11 the various configurations.
For the sake of simplicity, here and in the following figures, we only show the portion of
the Penrose diagram between the two stretched horizons on either side of the cosmological
horizon. The full extension of the Penrose diagrams would appear as in figure 10.

It is worth mentioning that the cases collected in the above figure always arise for
any asymptotically dS metric of the form (2.32), independently of the value taken by the
parameter ε defined in eq. (2.39) and of the time −tw when the shockwave is inserted at
the right stretched horizon. It turns out that the backgrounds in eq. (2.32) also allow for
configurations which are unusual, i.e., the analogous behaviour never appears in asymp-
totically AdS Vaidya geometries [78, 79]: they correspond to the top and bottom vertices
of the WDW patch moving outside the cosmological horizon, but the difference is that
some of these configurations may or may not occur depending on the choice of parameters
describing the shock. For these reasons, here we only focus on the universal regimes, while
we will treat in more detail the special cases in section 4.4. We will observe that for a
shock wave inserted far enough in the past (bigger tw), the special configurations described
in section 4.4 will always appear.

Shockwave insertion. The first critical time corresponds to the instant when the shock-
wave is inserted, at tR = −tw. By construction the WDW patch for times t < −2tw is
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completely located in the unperturbed original geometry (2.2) and the quantities rs, rb are
not defined simply because the shockwave does not intersect the WDW patch. In the case
of a symmetric time evolution (2.13), we will call this critical time

tc0 = −2tw . (4.10)

Joints reaching timelike infinities. The next critical times tc1, tc2, correspond to the
instants when the past or future vertices of the WDW patch touch the cutoff surfaces
located at rmax,1 and rmax,2, respectively. The critical time tc1, corresponding to the bottom
joint touching the cutoff surface rmax,1 close to past timelike infinity (see figure 11(a)), is
obtained by imposing that rm1 = rmax,1. By manipulating eqs. (4.3) and (4.5) with this
requirement, we find

tw = r∗1(rs) + r∗2(rs) + 1
2r
∗
1(rst

1 )− 3
2r
∗
2(rst

2 )− r∗1(rmax,1) , (4.11)

tc1 = 2tw − 4r∗1(rs) + 4r∗1(rmax,1)− 2r∗1(rst
1 ) + 2r∗2(rst

2 ) . (4.12)

After fixing the parameter tw, we obtain from eq. (4.11) the value of rs, and then we
substitute the result into eq. (4.12) to obtain the critical time.

One can similarly compute the second critical time when the future vertex touches the
cutoff surface r = rmax,2, corresponding to figure 11(b). Manipulating eqs. (4.4) and (4.6),
we find

tw = r∗1(rb) + r∗2(rb)− r∗2(rmax,2)− 1
2r
∗
1(rst

1 )− 1
2r
∗
2(rst

2 ) , (4.13)

tc2 = −2tw + 4r∗2(rb)− 4r∗2(rmax,2) . (4.14)

Special point rb reaching the cutoff surface. The last transition occurs at later
times when the joint located at r = rb touches the future cutoff rmax,2. This corresponds
to the Penrose diagram in figure 11(c). We impose rb(tc3) = rmax,2, which via eq. (4.4)
gives the analytic solution

tc3 = 2tw + 2r∗1(rst
1 ) + 2r∗2(rst

2 )− 4r∗1(rmax,2) . (4.15)

Relations between critical times. By definition, the critical times satisfy the inequal-
ities tc1 ≤ tc2 ≤ tc3. However, there is in general no definite ordering between tc0 and tc1.
As summarized in table 1, when the insertion time is moved closer to tw = 0, there is a
transition from the regime where tc0 < tc1 to the opposite case where tc0 < tc1.

We remind the reader that the shockwave is always inserted in the past, i.e., at the
time tR = −tw with tw ≥ 0. We will focus mostly on the case tc0 < tc1. As noted in the
table, this occurs when the insertion time of the shock is very early, tw � L. Further,
as mentioned already, our analysis focuses on the time dependence of the volume of the
WDW patch after it crosses the shock, for t > tc0. Earlier than that, the time dependence
is influenced by the time-dependent part of the stretched horizon. This analysis is more
complicated and we leave it for future investigations.
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Choice of parameters Time ordering
tw � L tc0 tc1 tc2 tc3

tw � L tc1 tc0 tc2 tc3

Table 1. Hierarchy between the critical times in the regimes with either tw � L or tw � L. When
the shockwave is sent at times closer to 0, there is a change in the ordering of tc0 and tc1. The
other critical times always have a definite order.

4.4 Special configurations of the WDW patch

We remark on a special feature of the special positions of the WDW patch discussed in
section 4.2, which does not manifest in the AdS counterpart: the null energy condition
fixes rC1 ≤ rC2 for all the geometries in asymptotically dS spacetimes. For this reason,
there exist finite times tc,s and tc,b such that the special positions of the WDW patch
reach the values rs = rC1 and rb = rC2, respectively. By plugging these results inside
the identities defining the position of the top and bottom joints of the WDW patch, see
eqs. (4.5) and (4.6), we find

rs(tc,s) = rC1 ⇒ rm1 = rC1 ,

rb(tc,b) = rC2 ⇒ rm2 = rC2 .
(4.16)

Therefore, we conclude that the critical time tc,s can be equivalently identified either as the
special position rs or the bottom vertex rm1 reaching the cosmological horizon rC1. In a
similar way, the critical time tc,b corresponds to rb and the top joint of the WDW patch to
reach the cosmological horizon rC2. These configurations change the shape of the WDW
patch, as depicted in figures 12(a) and 12(b).13

Indeed, one can show for all the geometries described by eq. (2.32) that rs is a mono-
tonically increasing function of time which runs along the range [0, rC2]. Once it sits in
the interval [rC1, rC2], its location in the Penrose diagram jumps from the right to the top
quadrant of the Penrose diagram (this refers to the intersection point before the shock-
wave), changing the shape of the WDW patch as depicted in figure 12(a). The critical
time corresponding to the beginning of this regime is obtained from eq. (4.3) by imposing
rs = rC1. For symmetric boundary times as in eq. (2.13), this gives

tc,s = −2tw + 4r∗2(rC1)− 4r∗2(rst
2 ) . (4.17)

A consequence of this peculiar regime is that the bottom joint of the WDW patch stops
being located outside of the cosmological horizon rC1 (i.e., with rm1 > rC1) rather moves
to the interior region corresponding to the left quadrant of the Penrose diagram. In terms
of the radial coordinate, rs reaches the cosmological horizon rC1 from below, while the
joint rm1 reaches the same location from above.

13It is important to observe that these configurations arise due to the time advance experienced by light
rays crossing the shockwave. As a result of the latter, the two stretched horizons are in causal contact, e.g.,
as can be seen by extending the null rays defining the top left boundary of the WDW patch in figure 12(b).
We discuss this feature further in section 7.

– 28 –



J
H
E
P
0
7
(
2
0
2
3
)
1
6
2

(a) (b) (c)

Figure 12. Exceptional shapes of the WDW patch, corresponding to the case (a) when the special
point rs of the WDW patch sits in the range [rC1, rC2], (b) or when the special point rb sits in the
same interval. Case (c) corresponds to both rs, rb being located in the range [rC1, rC2].

Similar considerations apply to rb, which is generically a monotonically increasing
function of time along the range [rC1, rmax,1]. When rb sits in the interval [rC1, rC2], it
is located in the right quadrant of the Penrose diagram (this refers to the intersection
point after the shockwave), as depicted in figure 12(b). The critical time tc,b such that
this configuration is achieved corresponds to imposing rb = rC2 in eq. (4.4), giving in the
symmetric setting (2.13) the expression

tc,b = 2tw − 4r∗1(rC2) + 2r∗1(rst
1 ) + 2r∗2(rst

2 ) . (4.18)

In this regime, the top joint of the WDW patch moves towards the exterior of the cosmo-
logical horizon rC2.

Depending on the choice of the parameters (ρ, ε, tw) describing the shockwave geome-
try (2.32), it can happen that tc,s ≤ tc,b. In the list of parameters, we used ρ to denote ρ1
from equation (3.2) fixing the location of the stretched horizon in the far past, before the
shockwave. We will refer to this parameter as simply ρ from now on. In that case, there
exists a time regime tc,s ≤ t ≤ tc,b such that both the special points of the WDW patch
are located in the interval [rC1, rC2] and the corresponding Penrose diagram is represented
in figure 12(c).

4.4.1 Joints behind the stretched horizon

Since the special configurations studied here allow for the joints rm1 and rm2 to move
outside from the cosmological horizon, it is also possible for them to reach the location of the
stretched horizons, thus changing even further the form of the WDW patch and introducing
two other critical times into the game. For a symmetric time evolution (2.13), this only
happens for a part of the time range tc,s ≤ t ≤ tc,b, corresponding to the configuration
depicted in figure 12(c). In this case, the WDW patch looks as in figure 13. There are two
critical times defined by the following (equivalent) conditions defining the beginning and
ending times of these special configurations:
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• The left future and right past boundaries of the WDW patch meet the shockwave
with rs = rb.

• The bottom joint reaches the stretched horizon before the shockwave insertion, i.e.,
rm1 = rst

1 .

• The top joint reaches the stretched horizon after the shockwave insertion,
i.e., rm2 = rst

2 .

It is easy to show the equivalence of these statements by using the identities which describe
the time evolution of the WDW patch. If we impose rs = rb and subtract the eqs. (4.4)
and (4.5), we obtain

2r∗1(rst
1 )− 2r∗1(rm1) = 0 ⇒ rm1 = rst

1 . (4.19)

If we subtract the identities (4.3) and (4.6) instead, we find

2r∗2(rst
2 )− 2r∗2(rm2) = 0 ⇒ rm2 = rst

2 , (4.20)

which shows that rs = rb implies that the vertices of the WDW patch reach the corre-
sponding stretched horizon. By performing the same manipulations, one can also show the
opposite direction, thus proving the equivalence of the previous bullets.

We denote with tc,st the critical times (there can be either two or none of those)
corresponding to the instant when the joints reach (or leave) the stretched horizons. By
manipulating eqs. (4.3) and (4.4) under the assumptions that rs = rb, rm1 = rst

1 and
rm2 = rst

2 , we find

tw = r∗1(rs) + r∗2(rs)−
1
2r
∗
1(rst

1 )− 3
2r
∗
2(rst

2 ) , (4.21)

tc,st = 2tw − 4r∗1(rs) + 2r∗1(rst
1 ) + 2r∗2(rst

2 ) . (4.22)

We numerically solve the first equation for rs and then plug the result into the second
one to obtain the corresponding critical times. In the computation of CV2.0 conjecture,
we need to take into account the possibility that the WDW patch assumes a new shape
after the joints moved behind the stretched horizons, corresponding to the Penrose diagram
depicted in figure 13. In this configuration, the stretched horizons cut the WDW patch.

Hierarchy between critical times. It is important to observe that the identity (4.21)
may or may not admit solutions for fixed values of the parameters (ρ, ε, tw) and generic
time. If the solutions exist, they must be two because the WDW patch will enter and then
exit the configuration in figure 13 with the time scales satisfying

tc,s ≤ tc,st1 ≤ tc,st2 ≤ tc,b . (4.23)

The reason for this hierarchy is evident from the corresponding definitions: the critical
times tc,st can only exist when rs and rb are both located inside the interval [rC1, rC2],
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Figure 13. Plot of the WDW patch in the regime when the top and bottom joints move behind
the stretched horizons.

Comparison Time ordering
Hierarchy with figure 12(a) and 12(b) tc,s tc,st1 tc,st2 tc,b

Hierarchy with figure 11(a) and 11(b) tc1 tc,st1 tc,st2 tc2

Table 2. Hierarchies involving the critical times tc,st1, tc,st2 characterized by the shape in figure 13
of the WDW patch. In the first row, the comparison is made with respect to the critical times tc,s

and tc,b defining the beginning of the regimes in figure 12(a) and 12(b), respectively. In the second
row, the comparison is done with the standard shapes in figure 11(a) and 11(b).

which is determined by the critical times tc,s and tc,b. Furthermore, it is also clear that the
following inequalities hold

tc1 ≤ tc,st1 ≤ tc,st2 ≤ tc2 , (4.24)

because by definition the critical times tc1, tc2 require the joints of the WDW patch to reach
timelike infinity and to be located inside the cosmological horizon, while tc,st assume the
joints to move outside from the horizon. These statements are summarized in table 2.

Before proceeding, we remark that for large enough tw, the special configuration in
figure 13 exists. In general, there is no definite relation between tc1 and tc,s or between tc2
and tc,b. Even further, there is no definite relation between tc,s and the insertion time of
the shockwave tc0 = −2tw. This is clear from eqs. (4.17), which implies

tc,s − tc,0 = 4r∗2(rC1)− 4r∗2(rst
2 ) . (4.25)

Depending on the choice of the parameters (ρ, ε), one can make the second term sublead-
ing or dominant, thus allowing for two different orderings between these times. One can
similarly take eq. (4.18) and compute

tc,b − tc,0 = 4tw − 4r∗1(rC2) + 2r∗1(rst
1 ) + 2r∗2(rst

2 ) . (4.26)

In most of the cases, one finds tc0 < tc,b, but one can get the opposite ordering when the
parameters satisfy

tw � L , ε� 1 , ρ ∼ 1 . (4.27)
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Figure 14. Plot of the quantities rs and rb in eqs. (4.28) and (4.29). The horizontal dashed lines
correspond to the cosmological horizons a1L and a2L. We fix the values L = 1, ρ = 0.5, GNE1 = 0.02
and we consider the symmetric time configuration (2.13). The stretched horizons are selected
according to the prescriptions in eq. (3.2) (and (3.13) with R0 = 0). Panel (a) ε = 0.1, tw = 4.
Panel (b) ε = 0.5, tw = 6. In this case, there is a regime when both the solutions are located inside
the interval [rC1, rC2], and the WDW patch takes the shape in figure 12(c) and (13).

This shows that several hierarchies are possible, which are relevant for the time evolution
of CV2.0.

4.5 Explicit cases

In three bulk dimensions, we can analytically compute the time dependence of the special
positions of the WDW patch. In the following analysis, we will assume to work at t ≥ tc0.
We leave the treatment of earlier times for future studies.

Three dimensions. The results for the three-dimensional SdS black hole can be deter-
mined analytically. Starting from eqs. (4.3) and (4.4), we find

rs = La2 tanh
[
a2
2L(tR + tw + 2r∗2(rst

2 ))
]
, (4.28)

rb = La1 coth
[
a1
2L(−tL + tw + r∗1(rst

1 ) + r∗2(rst
2 ))

]
. (4.29)

The lower and top joints of the WDW patch are defined by cases, depending on the range
of rs and rb.

The time dependence of these functions in the symmetric configuration (2.13) is de-
picted in figure 14(a) and 14(b). The plots represent the evolution for fixed values of
(ρ, tw) and two different choices of ε. As it is clear from the analytic expressions, after the
insertion of the shockwave at t = −2tw, both the positions are monotonically increasing
functions of the boundary time. In particular, rs moves from regions closer to the north
pole towards the cosmological horizon rC2, while rb moves from the horizon rC1 towards
future timelike infinity I+.
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Substituting the previous results into eqs. (4.5) and (4.6), we obtain

rm1 =

La1 coth
[ a1

2L(tL − tw + 2r∗1(rs) + r∗1(rst
1 )− r∗2(rst

2 ))
]

if rs ≤ rC1

La1 tanh
[ a1

2L(tL − tw + 2r∗1(rs) + r∗1(rst
1 )− r∗2(rst

2 ))
]

if rC1 < rs ≤ rC2,
(4.30)

rm2 =

La2 coth
[ a2

2L(−tR − tw + 2r∗2(rb))
]

if rb ≥ rC2

La2 tanh
[ a2

2L(−tR − tw + 2r∗2(rb))
]

if rC1 ≤ rb < rC2.
(4.31)

Notice that these functions are defined by cases because we need to pick a different solu-
tion depending on the evolution of the WDW patch. When either of the positions rs, rb
enter the interval [rC1, rC2], then the joints rm1, rm2 of the WDW patch move outside the
corresponding cosmological horizon.

Higher dimensions. In higher dimensions, it is not possible to analytically solve the
full-time evolution of the special positions of the WDW patch. However, one can check nu-
merically that the time dependence of the special points of the WDW patch is qualitatively
similar to the previous plots.

5 Complexity=Volume 2.0

We apply the CV2.0 conjecture [58] to compute the holographic complexity in the asymp-
totically dS geometries introduced in eq. (2.32). To evaluate of the spacetime volume of
the WDW patch, we use

CV 2.0 ≡
VWDW
GNL2 = Ωd−1

GNL2

∫
dr rd−1

∫
dtF(r) , Ωd−1 = 2π d

2

Γ
(
d
2

) , (5.1)

where we have written the measure explicitly and collected the volume of the (d − 1)-
dimensional unit sphere. The integrand F(r) is a formal way to denote that we will split
the integration region into several terms, which will only depend on the radial coordinate.
This is similar to the analysis performed in the Vaidya case [79]; we will specify below the
explicit form of the integrands. The generic time evolution of the WDW patch (in the
absence of the special regimes discussed in section 4.4) is depicted in figure 15.

We will start by presenting in section 5.1 the general computation of CV2.0 in the
regime tc1 ≤ t ≤ tc2, which corresponds to the WDW patch not reaching the cutoff surfaces
located at timelike infinities. Besides being an important regime because it presents a
plateau of complexity, it is also convenient because we can obtain the other cases from
limits of this calculation.

One can repeat the process described in section 5.1 for the special configuration de-
picted in figures 12(a) and 12(b) and find that the functional for the complexity remains
the same. The case when the joints of the WDW patch move behind the stretched horizon
is different and plays an important role. For this reason, the explicit computation will be
reported in section 5.2. We then list the expressions for the integrated CV2.0 in all the
regimes in section 5.3 and we derive the rate of change of complexity in section 5.4.
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(a) (b) (c)

(d) (e)

Figure 15. Time evolution of the WDW patch in the presence of the shockwave. (a) Early times
t < tc0 when the WDW patch completely sits in the dS geometry before the shockwave insertion.
(b) Times tc0 ≤ t < tc1 after the shockwave insertion, when the past vertex of the WDW patch
sits behind I−. (c) Intermediate times tc1 ≤ t < tc2 when both the vertices of the WDW patch are
located inside the cosmological horizons. (d) Times tc2 ≤ t < tc3 when the future joint sits behind
the cutoff surface at r = rmax,2. (e) Late times t ≥ tc3 when the future vertex sits behind the cutoff
surface at r = rmax,2.

As in the previous section, the following Penrose diagrams depict only the region
between the two stretched horizons on either side of the cosmological horizons. We will
perform the general computations in terms of generic cosmological and stretched horizons,
without referring to a specific dimension of SdS. We will focus on the specific cases of three
and four bulk dimensions in section 6. Furthermore, we will only consider times after the
shockwave insertion,14 thus excluding the regime at t < −2tw depicted in figure 15(a).

5.1 General strategy

We perform the general computation of CV2.0 conjecture in eq. (5.1) for the regime depicted
in figure 15(c); the other cases can be obtained with small changes in the endpoints of
integration.

14 If we decide to impose fixed cosmological redshift, then the stretched horizon becomes time-dependent
for a certain regime before the shockwave insertion. Thus the computations become much more complicated.
For this reason, we leave investigating these earlier times for future work.
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Figure 16. Decomposition of the WDW patch into seven regions for the evaluation of CV2.0.

The total CV2.0 complexity is given by

CV 2.0 =
7∑

k=1
Ik , (5.2)

where each of the following seven terms refers to a corresponding part in the splitting
depicted in figure 16:

I1 ≡
Ωd−1
GNL2

∫ rs

rst
2

dr rd−1
(
2r∗2(r)− 2r∗2(rst

2 )
)
, (5.3a)

I2 ≡
Ωd−1
GNL2

∫ rb

rs

dr rd−1 (tR + tw) , (5.3b)

I3 ≡
Ωd−1
GNL2

∫ rm2

rb

dr rd−1 (tR + tw + 2r∗2(r)− 2r∗2(rb)) , (5.3c)

I4 ≡
Ωd−1
GNL2

∫ rb

rC1
dr rd−1

(
tL − tw + 2r∗1(r)− r∗1(rst

1 )− r∗2(rst
2 )
)
, (5.3d)

I5 ≡
Ωd−1
GNL2

∫ rC1

rs

dr rd−1 (2r∗1(r)− 2r∗1(rs)) , (5.3e)

I6 ≡
Ωd−1
GNL2

∫ rC1

rst
1

dr rd−1
(
2r∗1(r)− 2r∗1(rst

1 )
)
, (5.3f)

I7 ≡
Ωd−1
GNL2

∫ rm1

rC1
dr rd−1

(
tw − tL + 2r∗1(r)− 2r∗1(rs)− r∗1(rst

1 ) + r∗2(rst
2 )
)
. (5.3g)

By applying eqs. (4.8) and (4.9), we obtain the rate of change of holographic complexity.
The derivatives with respect to the right and left boundary times are

dCV 2.0
dtR

= Ωd−1
GNL2

1
d

[
rdm2 − rds −

f2(rs)
f1(rs)

(
rdm1 − rds

)]
, (5.4)

dCV 2.0
dtL

= Ωd−1
GNL2

1
d

[
rdb − rdm1 + f1(rb)

f2(rb)
(
rdm2 − rdb

)]
. (5.5)

In order to find this result, we used the fundamental theorem of integral calculus, the chain
rule, and eqs. (4.3)–(4.6). Focusing on the symmetric case (2.13) by using the chain rule
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Figure 17. Decomposition of the WDW patch into four regions for the evaluation of CV2.0 when
the special points of the WDW patch satisfy rs ≥ rb, thus implying that the top and bottom joints
lie behind the stretched horizons.

and taking the average of the previous results, we find

dCV 2.0
dt

= Ωd−1
2GNL2

1
d

[
rdm2

(
1 + f1(rb)

f2(rb)

)
− rdm1

(
1 + f2(rs)

f1(rs)

)
+rdb

(
1− f1(rb)

f2(rb)

)
− rds

(
1− f2(rs)

f1(rs)

)]
.

(5.6)

It is clear that in any regime, this rate diverges when the bottom or top vertices of the
WDW patch reach past or future timelike infinity, respectively. This is the reason for
introducing the cutoff surfaces to act as regulators. Naively, it looks like the rate of growth
of complexity diverges at rs = rC1, when the factors f1(rs) appear at the denominator
vanish. However, one can check that when rs = rC1, we also have rm1 = rC1. As a result,
this limit in the complexity rate (5.6) remains finite.

5.2 CV2.0 with the joints behind the stretched horizons

The analysis performed in section 4.4 revealed that it is possible to achieve a time regime
such that the top and bottom joints of the WDW patch move behind the stretched horizon,
corresponding to the Penrose diagram in figure 13. We perform the corresponding com-
putation of the CV2.0 conjecture, which is based on a different splitting of the integration
into the regions depicted in figure 17. We find

CV 2.0 =
4∑

k=1
Jk , (5.7)
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where the spacetime volume corresponding to each subregion is given by

J1 ≡
Ωd−1
GNL2

∫ rb

rst
2

dr rd−1
(
tR + tw + 2r∗2(rst

2 )− 2r∗2(rb)
)
, (5.8a)

J2 ≡
Ωd−1
GNL2

∫ rs

rb

dr rd−1
(
tR + tw + 2r∗2(rst

2 )− 2r∗2(r)
)
, (5.8b)

J3 ≡
Ωd−1
GNL2

∫ rs

rb

dr rd−1 (2r∗1(r)− 2r∗1(rs)) , (5.8c)

J4 ≡
Ωd−1
GNL2

∫ rb

rst
1

dr rd−1
(
−tL + tw + r∗1(rst

1 ) + r∗2(rst
2 )− 2r∗1(rs)

)
, (5.8d)

It turns out that this expression can be obtained by a careful limiting procedure of the
result (5.2). This is more evident by considering the growth rate, which requires to use of
the identities (4.8) and (4.9). In the case with symmetric boundary times (2.13), we get

dCV 2.0
dt

=− Ωd−1
2GNL2

1
d

[
(rst

2 )d
(

1 + f1(rb)
f2(rb)

)
− (rst

1 )d
(

1 + f2(rs)
f1(rs)

)
+rdb

(
1− f1(rb)

f2(rb)

)
− rds

(
1− f2(rs)

f1(rs)

)]
.

(5.9)

By comparing with eq. (5.6), we notice that this result is obtained by setting rm1 → rst
1

and rm2 → rst
2 , but in addition, we also need to reverse the overall sign. This change

of sign corresponds to the fact that rs and rb exchange their location with respect to
the other configurations of the WDW patch. Therefore, null rays which were previously
delimiting bottom integration endpoints, now end up becoming top integration endpoints
and vice versa. Indeed, one can check that this prescription is correct, because it gives a
positive-definite expression for CV2.0, as expected from a spacetime volume.

5.3 Integrated Complexity=Volume 2.0

As we mentioned earlier, the other regimes in figure 15 are very similar to the one studied
above. Therefore, we only list the regularized CV2.0 for the different regimes after the
shockwave insertion depicted in figure 15, rather than presenting the full derivation. In
the following computations, we regularize the spacetime volume using the cutoff surfaces
introduced in eqs. (4.1) and (4.2). We locate the stretched horizon on the left side as
summarized in eq. (3.2), and on the right side as determined by the condition in eq. (3.13).
The different regimes are limits of the intermediate regime described in section 5.1. These
are the results:

• The regime tc0 ≤ t < tc1, corresponds to setting rm1 → rmax,1 in eq. (5.2).

• The regime tc1 ≤ t < tc2 (the intermediate regime): the result was found in eq. (5.2).
If the choice of parameters allows for the configuration in figure 13, during the time
period delimited by the critical times tc,st defined in eq. (4.22), we use the expres-
sion (5.7) instead.

• The regime tc2 ≤ t < tc3, is equivalent to setting rm2 → rmax,2 in eq. (5.2).
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• The regime tc3 ≤ t, In this case, we effectively put rb = rmax,1 in the geometry before
the shockwave, corresponding to region 4 in figure 16. We effectively put rb = rmax,2
in the geometry after the shock, which also corresponds to the region 2,3 in figure 16.
In particular, the term corresponding to region 3 in figure 16 now vanishes.

One may wonder if the special configurations of the WDW patch depicted in figure 12
provide a different result. The outcome of the analysis is that the formal functional de-
pendence of CV2.0 for the exceptional configurations of the WDW patch (introduced in
section 4.2) remains unchanged, and the only difference in the computation is that one has
to pick the correct solution for the joints rm1, rm2 (i.e., inside or outside the cosmological
horizon). For this reason, it is not restrictive to use the expressions listed in the previous
bullets.

5.4 Complexity rate of change

We list the rates of complexity change in the symmetric time configuration (2.13) for the
different regimes mentioned above:

• Regime tc0 ≤ t < tc1:

dCV 2.0
dt

= Ωd−1
2GNL2

1
d

[
rdm2

(
1 + f1(rb)

f2(rb)

)
− (rmax,1)d

(
1 + f2(rs)

f1(rs)

)
+rdb

(
1− f1(rb)

f2(rb)

)
− rds

(
1− f2(rs)

f1(rs)

)]
.

(5.10)

• Regime tc1 ≤ t < tc2: the rate is given in eq. (5.6). When the parameters allow for
the existence of a configuration where the joints move behind the stretched horizon,
we need to use the rate (5.9) instead.

• Regime tc2 ≤ t < tc3:

dCV 2.0
dt

= Ωd−1
2GNL2

1
d

[
(rmax,2)d

(
1 + f1(rb)

f2(rb)

)
− rdm1

(
1 + f2(rs)

f1(rs)

)
+rdb

(
1− f1(rb)

f2(rb)

)
− rds

(
1− f2(rs)

f1(rs)

)]
.

(5.11)

• Regime t ≥ tc3:

dCV 2.0
dt

= Ωd−1
2GNL2

1
d

[
(rmax,1)d + (rmax,2)d − rdm1

(
1 + f2(rs)

f1(rs)

)
− rds

(
1− f2(rs)

f1(rs)

)]
.

(5.12)

Next, we will analytically evaluate the late time limit of the complexity rate.

Late times. The late time limit t� tc3 corresponds to the case when the geometric data
go to

rm1 → rC1 , rs → rC2 ⇒ f2(rs)→ 0 , (5.13)
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as can be understood geometrically and checked in specific examples such as the eqs. (4.28)
and (4.30). In this case the CV2.0 rate (5.12) becomes

dCV 2.0
dt

(t� tc3) = Ωd−1
2GNL2

1
d

[
(rmax,1)d + (rmax,2)d − (rC2)d − (rC1)d

]
≈

≈ Ωd−1
2GNL2

1
d

[
(rmax,1)d + (rmax,2)d

]
= Ωd−1
GNL2

1
d

(
rC1
δ

)d
,

(5.14)

where we approximated the results by assuming δ � 1 and in the last step we used the
definitions (4.1) and (4.2). We find that the result is the same as in empty dS without a
shockwave for late times [10].

In the strict limit δ → 0, this expression becomes positively divergent, reproducing the
original hyperfast growth of complexity [7]. As soon as we keep the δ regulator finite, this
is a constant rate, corresponding to the usual linear behavior of complexity for late times.
In particular, the growth rate is given by the sum of the rates in the two geometries, related
to the location of the regulator surfaces close to timelike infinities. This behavior parallels
the statement, valid in the AdS-Vaidya case, that the complexity rate at late times is the
sum of the masses of the black holes between which the geometry jumps [79].

6 Explicit results for the Complexity=Volume 2.0

We specialize the general computation of CV2.0 and the corresponding growth rate, per-
formed in section 5, to the cases of shockwaves geometries describing a transition between
SdS black holes in three dimensions (section 6.1) and in four dimensions (section 6.2).
One of the main results is that there is always a time interval during the evolution where a
plateau appears in the complexity (i.e., the growth rate essentially vanishes). We will inves-
tigate various features of this regime in terms of the parameters describing the shockwave
perturbation.

6.1 Three-dimensional SdS space

We consider the transition between two SdS3 geometries with blackening factor (2.34). We
explicitly evaluate the complexity according to CV2.0 conjecture following the procedure
presented in section 5.3, where the special positions of the WDW patch were given in
eqs. (4.28)–(4.31).

Integrated complexity. The time dependence of the integrated CV2.0 complexity is
plotted in figure 18(a). We observe that the complexity increases linearly at late times
t & tc2, where the critical time tc2 was defined in eq. (4.14). The rate of linear increase
is fixed by the cutoff near future infinity, as we have seen in equation (5.14). The linear
evolution is preceded by a plateau region in the time interval t ∈ [tc1, tc2], where the critical
times tc1 and tc2 were defined in eqs. (4.12) and (4.14). We call this part of the time
evolution a plateau region, referring to the fact that complexity is approximately constant
and much smaller than its value at later times because the WDW patch does not reach
timelike infinity, and therefore we do not need to regularize its spacetime volume. We plot
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Figure 18. (a) Complexity computed according to the CV2.0 proposal as a function of time. We
fix L = 1, ρ = 0.5, tw = 2, δ = 0.05, GNE1 = 0.02 and ε = 0.1, according to the definition (2.39).
(b) Focus on the plateau regime during the interval t ∈ [tc1, tc2]. In the lower panels, we focus on
the junctions at critical times (a) tc1, (b) tc2, (c) tc3.

the plateau region in more detail in figure 18(b). Note that its behavior is similar to the
one observed in the absence of a shockwave, see figure 5 in reference [10]. A focus on the
transition between various regimes of the complexity evolution is shown in the lower panels
demonstrating that the complexity is continuous at all times after the shockwave insertion.
As we will see in a moment, for different parameters of the shockwaves, the size of the
plateau region can become arbitrarily long, especially for very early shocks.

The choice of parameters presented in the plot 18(a), where the insertion time of
the shock which is not too large, corresponds to a time evolution of the positions where
the WDW patch intersect the shockwave (i.e., rs and rb) is similar to that plotted in
figure 14(a). In particular, the special configurations depicted in figure 13 are not realized.
Now we consider instead a choice of parameters with a bigger value of the insertion time tw
of the shock, which leads to the configuration in figure 12(c). The integrated complexity
is represented in figure 19. First of all, we notice that the duration of the plateau region is
much longer than in the previous case. Secondly, the focus on the plateau regime (plotted
in figure 19(b)) shows a kink along the time evolution. This precisely corresponds to the
transition to the regime where the joints of the WDW patch move behind the stretched
horizon, as can be understood by the fact that the complexity vanishes at the location of
the kink. This happens because at the critical time defined in eq. (4.22), we have rs = rb
and the spacetime volume of the WDW patch vanishes. One can check that complexity is
continuous at all the critical times in this case, too.

According to the hierarchies of critical times shown in table 1, it can happen that
tc1 < tc0. When this situation occurs, we find yet another different scenario for the evolution
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Figure 19. (a) Complexity computed according to the CV2.0 proposal as a function of time in
d = 2. We fix L = 1, ρ = 0.99, tw = 6, δ = 0.05, GNE1 = 0.02 and the quantity ε = 0.01 defined
in eq. (2.39). The parameters are chosen such that the plateau is in the regime where the length
of the plateau is growing linearly as a function of tw and the special configurations described in
section 4.4 appear. (b) Focus on the time interval t ∈ [tc1, tc2].

of complexity, where CV2.0 directly starts at the shockwave insertion in the plateau regime.
This scenario is plotted in figure 20.

Finally, in appendix C, we also analyze the complexity of formation of shockwaves
in SdS3, defined as the excess complexity at tL = tR = 0 with a shockwave compared
to the case of empty dS space as a function of the parameters of the problem. In the
appendix, we find that the complexity of formation shows a plateau regime where it is
approximately constant, and slightly decreases until it meets a kink, which corresponds
to the transition to a special configuration 12(c) of the WDW patch. After the kink,
the complexity of formation increases and it can be approximated by a linear function
proportional to (tw − t∗), see eq. (C.8). The linear growth is delayed by a scrambling time
t∗, in a similar fashion as what happens for the time evolution of complexity. We will
analyze in detail the features of the scrambling time for the plateau region of complexity
in section 6.1.1.

Complexity rate of change. The time dependence of the rate of change of the holo-
graphic complexity is plotted in figure 21 for the three cases illustrated in figures 18, 19
and 20. These rates are determined according to the expressions derived in section 5.4.
Note that the rate is continuous across the transitions between various regimes (after the
shockwave insertion). The red region corresponds to the interval when CV2.0 admits the
plateau, and after that, we notice that the rate decreases until it reaches the constant
value (5.14) for late times, represented by the horizontal dotted line. This is analogous to
the behavior seen for AdS black holes [63].

One may also consider the limiting case when the shockwave perturbation produces a
transition from a black hole to empty dS space: the qualitative behavior does not change
with respect to the plots reported here.
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Figure 20. (a) Complexity computed according to the CV2.0 proposal as a function of time in
d = 2. We fix L = 1, ρ = 0.99, tw = 2, δ = 0.05, GNE1 = 0.02 and the quantity ε = 0.1 defined in
eq. (2.39). (b) Focus on the time interval t ∈ [tc1, tc2].
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Figure 21. (a) Plot of the rate of change of CV2.0 for the geometry described by the blackening
factor (2.34) with d = 2. We set L = 1, tw = 2, ρ = 0.5, GNE1 = 0.02, ε = 0.1, δ = 0.05. Different
colors correspond to different regimes delimited by the corresponding critical times. (b) Plot of
the rate, but choosing the parameters GNE1 = 0.02, ε = 0.01, ρ = 0.99, tw = 6, δ = 0.01 instead.
(c) Plot of the rate, but choosing the parameters GNE1 = 0.02, ε = 0.1, ρ = 0.99, tw = 2, δ = 0.01
instead.
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6.1.1 Plateau of complexity

A peculiar aspect of the complexity rate of change in the presence of shockwaves, which was
observed in [79] for the asymptotically AdS case, is that there exists a time interval such
that the complexity rate of change is approximately vanishing. In the case of AdS-Vaidya
geometries, this regime appears when both the top and bottom joints of the WDW patch
touch future (past) timelike infinity. For SdS this interval starts at the critical time tc1
and ends at tc2, corresponding to the bottom (top) joint of the WDW patch touching past
(future) timelike infinity (if tc0 > tc1 the plateau will start when the WDW patch crosses
the shock as shown in figure 20). The origin of this behavior for each of the geometries is
different. For AdS black holes, the complexity rate of change is approximately vanishing
due to the cancellation between the increase of the complexity from the top quadrant
and decrease from the bottom region. While in SdS, it arises because of the stretched
horizon, the top and bottom joints of the WDW patch do not reach the future and past
singularity at the same time. The cancellation appears only when the WDW patch is not
touching the singularities. It is possible that for small enough values of the stretched horizon
parameter ρ (i.e., the stretch horizon approaches the black hole horizon), the reasoning for
the cancellation might be similar to that for the AdS black holes. We leave the exploration
of this question for the future.

In figure 22, we plot the numerical dependence of the complexity rate determined in
eq. (5.6) for intermediate times, referring to the choice of parameters used in the plot 21(a).
While the graphs have a dependence on the geometric data similar to the unperturbed case
studied in figure 5 of reference [10], the main difference is that there are several cases that
show a kink in the evolution of the rate. This happens when the joints of the WDW patch
move behind the stretched horizon, and it is a peculiar property of the asymptotically dS
spacetimes. We notice that the plateau regime lasts longer in the following circumstances:
when the stretched horizon is closer to the cosmological one (ρ→ 1), when the shockwave
is inserted earlier (increasing tw), and when the shock is heavier (increasing ε). The same
qualitative dependence on the parameters (tw, ε) was observed in the AdS-Vaidya case [79].

Before diving into a detailed analysis of the length of the plateau region, we specify
that the presence of an additional regime where the top and bottom joints of the WDW
patch move behind the stretched horizons does not affect the discussion presented here.
Indeed, complexity stays very small even in such regime, and furthermore the critical time
tc,st when this occurs always satisfies eq. (4.24), as commented in section 4.4.

Duration of the plateau. We estimate the time duration of the plateau according to

tpl ≡ tc2 − tc1 . (6.1)

Using eqs. (4.12) and (4.14), we find

tpl = −4tw − 4 (r∗2(rmax,2) + r∗1(rmax,1)) + 4 (r∗2(rb) + r∗1(rs)) + 2
(
r∗1(rst

1 )− r∗2(rst
2 )
)
. (6.2)

We will use the definitions for rs and rb given at the critical times in eqs. (4.11) and (4.13),
respectively. The previous identity has an explicit linear dependence on tw, plus another
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Figure 22. Plot of the rate of evolution of CV2.0 conjecture as determined by eq. (5.6). We
put L = 1, δ = 0.05, GNE1 = 0.02 for all the cases, then we fix two out of three parameters
ρ, tw, ε and we let one of them vary. (a) We vary the parameter ρ at the stretched horizon while
setting ε = 0.001, tw = 6 . (b) We vary the time tw when the shockwave is inserted while setting
ε = 0.1, ρ = 0.99. (c) We vary the strength ε of the perturbation while setting tw = 4, ρ = 0.99.

implicit dependence on tw encoded by the positions rs and rb determined at the corre-
sponding critical times. The critical times approach a linear dependence on the time tw
when tw � L, and such regime begins after a non-vanishing delay that we identify as the
scrambling time.

We plot the numerical time duration of the plateau (6.1) as a function of the time
insertion of the shockwave tw in figure 23, for various choices of the strength ε of the
perturbation. The scrambling time becomes smaller for bigger values of the deformation
parameter ε, as can be expected by the fact that the transition between the geometries is
sharper. This is also an expected feature of the behavior of complexity, where the smearing
of a smaller perturbation throughout the system takes longer.

The numerical computation shows that the duration of the plateau always starts from
a value independent of ε. This constant can be analytically determined in the limiting case
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Figure 23. Dependence of the duration of the plateau in terms of the insertion time of the
shockwave, for various choices of ε defined in eq. (2.39) in d = 2. (a) We fix L = 1, δ = 0.05, GNE1 =
0.02 and ρ = 0.5 . The dotted lines corresponds to the curves tpl = 4(tw − t∗) with scrambling
time in eq. (6.7). In panel (b), we only change the location of the stretched horizons by choosing
ρ = 0.99.

without shockwave, i.e., when ε = 0. Indeed, the duration of the plateau in SdS3 reads15

tdS
pl = 2L

a1
log

[(1 + ρ)(1− δ)
(1− ρ)(1 + δ)

]
. (6.3)

This regime does not exist (i.e., we find tdS
pl = 0) when we do not regularize the geometry

(i.e., δ = 0) and at the same time we attach the stretched horizon at the pole (i.e., ρ = 0).
Instead, this regime becomes longer (and approaches infinity) when we move the stretched
horizon closer to the cosmological one (i.e., ρ→ 1).

When tc1 < tc0, the plateau will start before the shockwave insertion, and this involves
a computation of complexity during the time-dependent regime of the stretched horizon.
We leave this analysis for future investigations. For this reason, the numerical results
represented by the continuous lines in figure 23 are only depicted after a certain value of
tw, which depends on ε, such that we meet the requirement tc0 < tc1.

Scrambling time. In the case of shockwaves in AdS space, we can extract from the
duration of the plateau the time it takes the system to scramble a perturbation [50, 79].
This time is known as the scrambling time and it determines the beginning of the linear
regime in the evolution of tpl. Indeed, there is a linear regime for tw � L such that

tpl = 4(tw − t∗) . (6.4)

In the case of asymptotically dS space, we will work in the same way, to find an analogous
notion of scrambling time for the shockwave perturbation. This scrambling time can be
found analytically in an expansion for sufficiently large tw.

We parameterize the position rs at the critical time tc1 in this limit as

rs = a1L(1− e−xs) . (6.5)
15This result can be obtained by considering the three-dimensional SdS solution without shockwaves, and

computing analytically the critical time in a fashion similar to the case of empty dS space, studied in [10].
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A numerical analysis shows that e−xs � ε and e−xs � 1. Therefore, we will work under
the assumption that the exponential e−xs is small compared to any other (dimensionless)
parameters characterizing the solution. One can similarly show that a good ansatz for the
special position rb of the WDW patch at the critical time tc2 is determined by

rb = a2L(1 + e−xb) , e−xb � ε , e−xb � 1 , (6.6)

where again we do not assume any condition on the strength of the shockwave insertion.
One can show that the total duration of the plateau in the regime tw � L is well

approximated by eq. (6.4), with scrambling time

t∗ =
(
L

4a1
+ 3L

4a2

)
log

(1− ρ
1 + ρ

)
+ L

2

( 1
a1

+ 1
a2

)
log

(
a1 + a2
a2 − a1

)
. (6.7)

Here we assumed that the stretched horizon after the shockwave insertion is determined
according to eq. (3.13) by requiring a constant cosmological redshift. One can notice from
the plot in figure 23 that this approximation (marked by the dotted lines) works very well
in the regime tw � L. It is important to stress that this prediction is valid in any regime
where the assumptions (6.5) and (6.6) hold, independently of the values of ρ, ε.

If we further assume that ε � 1, such that the factors ai defined in eq. (2.38) are
related by

a2 ≈ a1

(
1 + ε

4GNE1
a2

1

)
, (6.8)

then the corresponding approximation for the scrambling time reads

t∗ ≈
ε→0

L

a1
log

(
a2

1
2GNE1

1
ε

)
= 1

2πT1
log

(
a2

1
2GNE1

1
ε

)
, (6.9)

where we recognized that the prefactor of the logarithmic divergence is proportional to the
Hawking temperature T1 = a1/(2πL) given in eq. (2.17). For comparison, in the three-
dimensional AdS-Vaidya geometry the expression for the duration of the plateau tpl for
small deformations of the shockwave (ε� 1) is given by [79]

tVaidya
pl = 4(tw − t∗) , tVaidya

∗ ≈
ε�1

1
2πT1

log
(2
ε

)
, (6.10)

where T1 is the temperature (2.9) of the black hole before the shockwave insertion and ε

is related to the jump in the black hole masses m2/m1 = (1 + ε)2.
In this three-dimensional case, we also find an interpretation for the argument of the

logarithm in terms of dual quantities defined on the would-be boundary dual theory. We
assume that the energy of the shockwave, defined as the difference between the energy of
the black hole solution before and after the perturbation, is proportional to a few thermal
quanta: E1 − E2 = 2T1. According to eq. (2.39), this implies

a2
1

2GNE1

1
ε

= 2T1S1
E1 − E2

= S1 , (6.11)
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such that the scrambling time (6.9) reads

t∗ ≈
ε�1

1
2πT1

logS1 . (6.12)

Now, we note that this result precisely matches with the one obtained for three-dimensional
AdS-Vaidya geometry connecting two BTZ black hole backgrounds, since 2/ε = S1 in
eq. (6.10) once we require the energy of the shockwave to be ∆E = 2T1. Remarkably,
these very different settings reproduce the same leading behavior for the scrambling time
in three dimensions.16

The opposite limiting case corresponds to the maximal change of the energy of the
black hole, which happens when E2 = 0, or analogously ε = 1. In such a framework,
we have a transition from SdS3 to empty dS space, and the position of the cosmological
horizon simply reduces to the value of the curvature radius L. This is equivalent to setting
a2 = 1, which gives

t∗ =
ε=1

(
L

4a1
+ 3L

4

)
log

(1− ρ
1 + ρ

)
+ L

2

( 1
a1

+ 1
)

log
(1 + a1

1− a1

)
. (6.13)

We might note here that the prefactors in both terms, which set the scale of t∗, involve some
average of the inverse temperatures of the initial and final cosmological horizons. When the
critical times discussed in section 4.3 satisfy tc1 < tc0, the duration of the plateau changes
because it is measured starting from the shockwave insertion. Nonetheless, one can check
that there is still a linear regime when tw � L, and that the scrambling time defined in
eq. (6.7) is still the same.

One may wonder what is the duration of the regime delimited by the critical times
tc,st1 ≤ t ≤ tc,st2 defined in eq. (4.22), corresponding to the joints of the WDW patch in
figure 12(c) moving behind the stretched horizons. One can show that in the limit tw � L,
the duration of such regime is approximated by the same analytic function obtained in
eqs. (6.4) and (6.7). Indeed, the kinks in figure 19(b) are very close to the beginning and
ending of the plateau regime, and we find that tc,st1 → tc1, tc,st2 → tc2 when we increase
tw.

The results discussed so far apply when the stretched horizon is determined by requiring
a constant cosmological redshift, as discussed in section 3.1. We report for completeness the
duration of the plateau and the scrambling time when the stretched horizons are determined
by requiring a continuous flux of time instead, see section 3.2:

tpl = 4(tw − t∗) , t∗ = L

a1
log

(1− ρ
1 + ρ

)
+ L

2a1

( 1
a1

+ 1
a2

)
log

(
a1 + a2
a2 − a1

)
. (6.14)

Comparing to eq. (6.7), we notice that the difference is only contained in the prefactor of
the first term, and it becomes negligible when ε→ 0.

16Recall that in eq. (6.12), S1 corresponds to the entropy of the cosmological horizon (there is no black
hole horizon for SdS3) while for the AdS-Vaidya background, S1 is the black hole entropy. In both cases,
this can be regarded as the entropy of the state in the dual theory.
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Figure 24. Plot of the rate of CV2.0 for the geometry described by the blackening factor (2.34)
in d = 3. We set tw = 2, ρ = 0.5,m1 = 0.14,m2 = 0.13, δ = 0.1. Different colors correspond to
different regimes delimited by the corresponding critical times.

6.2 Four-dimensional SdS space

In the case of general higher-dimensional black holes in dS space, the treatment becomes
numerical and we do not have a closed form for the special positions of the WDW patch
— see however the next subsection. While the integrations required to compute CV2.0
are not known analytically, the complexity rate is still determined by the analysis given in
section 5.4. We focus on the four-dimensional case, which corresponds to the blackening
factor (2.34) with d = 3. The resulting plot of the rate of change of the holographic
complexity is plotted in figure 24. While the Penrose diagram is different from the lower-
dimensional counterpart, the prescription to attach the stretched horizon between the black
hole and cosmological horizon is responsible for a similar time evolution compared to the
other cases. By numerical integration, we can show that just as in SdS3, there is also a
plateau region at intermediate times in SdS4.

6.2.1 Plateau of complexity
As mentioned above, higher-dimensional SdS black holes still admit a plateau regime de-
limited by the critical times defined in eqs. (4.12) and (4.14). When tw � L, the position
rs of the WDW patch can be parametrized as

rs = rC1
(
1− e−xs

)
with e−xs � ε

L
, e−xs � 1 , (6.15)

and a similar ansatz applies to the position rb

rb = rC2(1 + e−xb) with e−xb � ε

L
, e−xb � 1 . (6.16)

As in SdS3, we will only consider the complexity after the shockwave in order to not be
affected by the time-dependent part of the stretched horizon.

Using the ansatz (6.15) and (6.16), one can derive that the linear behaviour for insertion
times satisfying tw � L is well approximated by the interpolating function

tpl = 4(tw − t∗) , (6.17)
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Figure 25. Dependence of the duration of the plateau on the insertion time of the shockwave, for
various choices of ε defined in eq. (2.39) in d = 3. We fix δ = 0.1,m1 = 0.14 and ρ = 0.5 in the
left panel, ρ = 0.99 in the right one. The dotted lines corresponds to the curves tpl = 4(tw − t∗) in
eq. (6.18).

with scrambling time

t∗ = − r2
C2 + rh2rC2 + r2

h2
(rC2 − rh2)(2rC2 + rh2)(rC2 + 2rh2)

[
r2
C2 log

∣∣∣∣ rC1 − rC2
rC1 + rC2 + rh2

∣∣∣∣
+2rC2rh2 log

∣∣∣∣rC1 − rC2
rC1 − rh2

∣∣∣∣− r2
h2 log

∣∣∣∣ rC1 − rh2
rC1 + rC2 + rh2

∣∣∣∣]
− r2

C1 + rh1rC1 + r2
h1

(rC1 − rh1)(2rC1 + rh1)(rC1 + 2rh1)

[
r2
C1 log

∣∣∣∣(rC1 − rC2) ((ρ+ 1)rC1 + (2− ρ)rh1)
(ρ− 1)(rC1 + rC2 + rh1)(rC1 − rh1)

∣∣∣∣
+2rC1rh1 log

∣∣∣∣ (rC1 − rC2)ρ
(rC2 − rh1)(1− ρ)

∣∣∣∣− r2
h1 log

∣∣∣∣(rC2 − rh1) ((ρ+ 1)rC1 + (2− ρ)rh1)
ρ(rC1 + rC2 + rh1)(rC1 − rh1)

∣∣∣∣] .
(6.18)

Indeed, we can notice from figure 25 that the interpolation is precise.17 We find a qualita-
tively similar behavior to the one found for SdS3. As discussed below eq. (6.3), the equation
for the duration of the plateau only holds when tc0 ≤ tc1. Therefore, the continuous curves
in the plot refer to this regime only.

We expand the scrambling time for small values of the ε parameter defined in eq. (2.39).
To this aim, we first expand at linear order the event horizons as

rh2 = rh1 − αrcr ε+O(ε2) , rC2 = rC1 + βrcr ε+O(ε2) . (6.19)

Exploiting the fact that the blackening factor of the black hole vanishes at the horizons
and expanding at first order around ε = 0, we find the explicit expressions for d = 3

α rcr = rh1rC1(rh1 + rC1)
r2
C1 + rh1rC1 − 2r2

h1
, β rcr = rh1rC1(rh1 + rC1)

2r2
C1 − rh1rC1 − r2

h1
. (6.20)

17The scrambling time (6.18) is determined using the continuous time prescription described in section 3.2
for the stretched horizon. A similar computation using the constant redshift prescription of section 3.1 is
technically harder. However, we observe that in three dimensions the two prescriptions give the same
result in the relevant limit ε→ 0, see eq. (6.14). We believe that a similar phenomenon happens in higher
dimensions.
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Substituting these expressions inside the scrambling time (6.18) and keeping only the lead-
ing logarithmic divergence, we find

t∗ ≈
ε�1

2rC1L
2

(rC1 − rh1)(2rC1 + rh1) log
(1
ε

)
= 1

2πTC1
log

(1
ε

)
, (6.21)

where we recognized the Hawking temperature at the cosmological horizon of the SdS4
black hole, see eq. (2.31). Therefore, we notice that this limit for the scrambling time
shows a universal pattern common to all asymptotically dS spacetimes. Note that, in the
limit ε� 1 we have Tc1 ≈ Tc2 for first order corrections in ε. Finally, we can also anticipate
that the argument of the logarithm in eq. (6.21) will also acquire a factor of 1 − ρ in the
double scaling limit considered below.

6.3 Higher dimensions

For higher dimensions, we are able to find a general description of the scrambling time.
The description is more cumbersome than in eq. (6.18), but it greatly simplifies in the
double scaling limit defined by

ε→ 0 , ρ→ 1 , 1− ρ
ε

fixed . (6.22)

The result reads

t
SdSd+1
∗ = 1

2πTC1
log

(1− ρ
βrcrε

(rC1 − rh1)
)

+O(1− ρ, ε) (6.23)

This formula is valid in any number of spacetime dimensions, with the values of the critical
radius given in eq. (2.21) and the constant β defined by the leading order in ε,

rcr ≡ L

√
d− 2
d

, rC2 = rC1 + βrcr ε+O(ε2) . (6.24)

To better understand the scrambling time for SdSd+1, we consider the limit of small black
holes rh1/rC1 � 1. Then using eq. (6.24), we can recast the above result (6.23) as

t
SdSd+1
∗ ≈ 1

2πTC1
log

(
(1− ρ)(d− 1)SC1

∆SC1

)
. (6.25)

Here, SC1 is the initial entropy of the cosmological horizon while ∆SC1 = SC2−SC1 is the
increase in the cosmological entropy.

In the regime rh1/rC1 � 1, we can also write the scrambling time as

t
SdSd+1
∗ ≈ 1

2πTC1
log

[(
rC1
rh1

)d−2 2(1− ρ)
ε

]
+O(1− ρ, ε) . (6.26)

One can always exploit the definitions of Hawking temperature to express the scrambling
times in terms of TC1, Th1. The precise dictionary depends on the number of dimensions;
to avoid cumbersome expressions, we do not report them explicitly. However, some simpli-
fications occur in the limit of small black holes rh1/rC1 � 1. In this limit, we send rh1 → 0
and rC1 → L, so that the expressions (2.24) for the Hawking temperatures become

Th1 ≈
d− 2
4πrh1

, TC1 ≈
1

2πrC1
⇒ rh1

rC1
≈ d− 2

2
TC1
Th1

. (6.27)
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Therefore we can express the scrambling time for a light black hole in SdS as

t
SdSd+1
∗ ≈ 1

2πTC1
log

[(
Th1
TC1

)d−2 ( 2
d− 2

)d−2 2(1− ρ)
ε

]
. (6.28)

For Th1 � 1 the stretch horizon can approach the cosmological horizon without t∗ be-
coming negative. The condition for positive t∗ is T d−2

h1 (1 − ρ) > ε. We note that in this
expression (6.28), the black hole seems to play a central role in defining the scrambling time
in contrast to the formula in eq. (6.25) only refers to the cosmological horizon. Of course,
these two expressions are entirely equivalent even though their physical interpretation is
somewhat disparate. We would like to understand if either of these conditions have a good
geometric interpretation in future studies.

7 Discussion

7.1 Summary of results

In order to better understand dS holography, we studied shockwaves in SdS geometries
and how they affect the spacetime volume of the WDW patch as a function of the time
along the stretched horizon. We found several interesting properties. For times around
tL = tR = 0, we found that there is a plateau regime where the spacetime volume of the
WDW patch is approximately constant. Similar behavior was found for shockwaves of
AdS black holes [79], but the origin of the phenomena in the two settings is different. In
AdS black holes the plateau appears when the top and bottom joints of the WDW patch
are both behind the singularities of the black hole, while in SdS background the plateau
appears in the regime where the future and past joints both do not yet reach future and past
timelike infinities. The difference between the two frameworks comes from the inclusion
of the stretched horizon in SdS geometry. In both cases, there is a scrambling time that
determines the length of the plateau, after which complexity starts to increase linearly.
That is, tpl = 4(tw − t∗).

We considered a double scaling limit (6.22) where the strength of the shockwave is
small and the stretched horizon approaches the cosmological horizon for general d + 1
dimensions. Further in the regime of small black holes (i.e., rh1 � rC1), we found two
interesting expressions for the scrambling time. The first of these (6.25),

t
SdSd+1
∗ ≈ 1

2πTC1
log

(
(1− ρ)(d− 1)SC1

∆SC1

)
, (7.1)

refers only to properties of the cosmological and stretched horizons. Of course, this may
seem natural as the scrambling time should be a property of the dual boundary theory
residing on the stretched horizon. However, the second expression (6.28), which is mathe-
matically equivalent to the first,

t
SdSd+1
∗ ≈ 1

2πTC1
log

[(
Th1
TC1

)d−2 ( 2
d− 2

)d−2 2(1− ρ)
ε

]
, (7.2)
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seems to give an important role to the black hole horizon as well. Of course, in both
expressions, the scrambling time is proportional to the inverse temperature of the cosmo-
logical horizon, and it is logarithmic in the parameter (1−ρ) describing the location of the
stretched horizon. It may be useful to note that in this regime (rh1 � rC1), the black hole
makes a small entropic contribution (i.e., Sh1 � SC1) but it is very hot (i.e., Th1 � TC1).
Hence the system is far from an equilibrium configuration by some measure.

In appendix C, we provided an alternative derivation of the scrambling time in terms
for the complexity of formation [60] . There, in working with the double scaling limit (6.22),
we found a precise match between the expressions for the scrambling time in eqs. (6.23)
and (C.13) when we also consider the simplifying limit of small black holes, as was con-
sidered above. Hence for any number of dimensions (i.e., d ≥ 3), both approaches yield
precisely the same expression for the scrambling time, as given in eq. (7.1) or eq. (7.2).

It is interesting to compare eq. (7.1) for general d with the expression the scrambling
time in eq. (6.12) for d = 2, since both apply for small shocks (i.e., ε� 1). First, however,
we observe that it is straightforward to show that beginning with eq. (6.7) and applying
the same double scaling limit as in eq. (6.22), one recovers the scrambling time in eq. (7.1)
with d = 2.

There are two key differences between the present analysis (i.e., the double scaling
limit) and our derivation of the expression in eq. (6.12) (or eq. (C.10)). The first is that
for the former, we assumed (1 − ρ) ∼ O(1) and so did not keep track of the contribution
proportional to log(1− ρ) which appears in eq. (6.7) (or eq. (C.9)). The second difference
is that we made a specific choice for the strength of the shockwave ε so that the change in
energy corresponds to a few thermal quanta. That is, εE1 = E1−E2 = 2T1 — see eq. (6.11)
and the preceding discussion. In the context of eq. (7.1), it is interesting to consider what
this choice implies for the change in the entropy of the cosmological horizon. Applying
eqs. (2.37) and (2.38), we find

∆SC1 = πL

2GN
(a2 − a1) ≈ E1 − E2

TC1
= 2 , (7.3)

where we have used the “small black hole” approximation that 8GNEi � 1. A natural
generalization to higher dimensions of this result for d = 2 would be to choose ε so that
∆SC1 ∼ d in which case the scrambling time (7.1) reduces to

t
SdSd+1
∗ ≈ 1

2πTC1
log

(
d− 1
d

(1− ρ)SC1

)
. (7.4)

Of course, this expression is very reminiscent of those found in holographic studies of AdS
black holes, in that the scrambling time is proportional to the log of the horizon entropy.

The primary difference between the formula for AdS scrambling times and those found
here is the appearance of the factor of 1− ρ in the argument of the logarithm in eq. (7.1)
or eq. (7.4). We are considering a limit where this factor is small and so the latter is
simply related to the redshift factor experienced by observers on the stretched horizon, i.e.,
f(rst) ' 2(1 − ρ) — see further discussion below. It is curious that in, e.g., eq. (7.1), one
can tune this factor to cause the vanishing of this leading contribution to the scrambling
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time in specific instances. It is not a priori clear what the meaning of this observation
would be for the dual theory, and we would like to understand this better in the future.

For late (early) times in the evolution of the spacetime volume of the WDW patch,
we found that there is a linear increase (decrease) in complexity at a rate governed by
the cutoff, see eq. (5.14). This behavior starts after (before) the top (bottom) joint of
the WDW patch reaches future (past) infinity. Of course as in ref. [10] which examined
holographic complexity in empty dS space, the rate (5.14) in this linear regime is governed
by our choice of the regulator surfaces near the future and past timelike infinities — see
eqs. (4.1) and (4.2). The expression in eq. (5.14) can be written as

dCV 2.0
dt

≈ TdS
TC1

SC1
δd

, (7.5)

where we are assuming δ � 1. Here we are distinguishing TdS , the temperature of empty
dS space, and TC1, the initial temperature of the cosmological horizon in the shockwave
geometry. Of course, in the regime of small black holes (i.e., rh1 � rC1), these two
temperatures are approximately the same and our result here matches that found in [10].
Of course, with a full nonperturbative description, this linear regime would arise because of
the finiteness of the Hilbert space, and we expect that the prefactor SC1 would be replaced
by a factor exponential in the number of degrees of freedom.

Returning to the derivation of the scrambling time given in appendix C, the complexity
of formation for the SdS3 background initially decreases as a function of tw, until there is
a kink in correspondence of the transition from a conventional to a special configuration
of the WDW patch, see figure 31. After the kink, the complexity of formation increases
and can be approximated by a linear function with a scrambling time that shows the same
features as the expression (7.2). In particular, it is inversely proportional to the Hawking
temperature of the cosmological horizon, and logarithmic in the parameters ε and (1− ρ).
In fact, as shown in eq. (C.13), the same behaviour is found in any number of dimensions
d ≥ 3 when we also consider the regime of small black holes.

Our entire discussion to this point describes the evolution in terms of the coordinate
time t. It may be more natural to express the time evolution in terms of the proper time
of a stationary observer sitting at the stretched horizon, i.e., tprop =

√
f(rst) t. As we are

primarily concerned with the evolution after the shockwave passes the stretched horizon,
this would simply introduce a constant overall prefactor in our results. For example, rather
than being inversely proportional to TC1, the scrambling time (7.1) measured in proper
time units would be inversely proportional to TC1,prop = TC1/

√
f(rst) which corresponds

to the temperature experienced by the stationary observer.18

In SdS with positive energy shockwaves, exceptional configurations of the WDW patch
may arise, as we discussed in section 4.4. When the special configurations appear, there is a
linear increase in the length of the plateau as a function of tw. When the more conventional
configuration of the WDW patch studied in section 4.3 appears, the length of the plateau

18Note that in general, a stationary observer actually sees a flux of radiation from both the cosmological
and black hole horizons. However, if the observer is close to the cosmological horizon, her experience is
dominated by the former flux with TC1,prop.
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Figure 26. Pictorial representation of the time advance of a light rays crossing a shockwave (shown
as the red line) in dS space, depicted for three dimensions for simplicity. The causal region for the
observer at the left (right) pole is shaded in light blue (green). As illustrated, these two regions
and hence the corresponding stretched horizons (shown as dashed lines) are in causal contact. This
causal structure gives rise to the exceptional configurations discussed in section 4.4.

is approximately constant as a function of the insertion time tw and we found that it is
the same constant for any energy of the shockwave ε. However, for large enough tw, the
special configurations always appear.

These exceptional configurations of the WDW patch arise because the Penrose diagram
of dS space grows taller when a null pulse carrying positive energy is inserted in the
bulk [85]. The corresponding time advance of a light ray crossing the shockwave brings the
left and right causal patches of the geometry into causal contact.19 As shown in figure 26,
a shockwave emerging from the right side allows signals from the left casual patch to
enter that on the right. As commented in footnote 13, one then finds that irrespective of
the detailed prescription defining the stretched horizons, these two surfaces on either side
of the cosmological horizon are always in causal contact in the presence of shockwaves.
Furthermore, with such a structure, the two casual patches no longer provide a bipartition
of a global time slice and hence the dual description will no longer associate these regions
with two halves of an entangled state. It is, of course, an interesting research problem to
better understand the relation of the dual holographic states on the stretched horizons —
see [100, 103] for a related discussion. Perhaps some inspiration for a dual holographic
interpretation can be drawn from traversable wormholes in AdS [86, 87], where a similar
situation occurs.

For the purposes of the present work, we remark that as noted in the beginning of
section 3, the details of the swithcback effect and the corresponding scrambling time are
not affected by the specific choice of the stretched horizon on either side of the cosmological
horizon. The key feature (which all of the prescriptions noted there satisfy) is that the
stretched horizon sits at a fixed radius after passing the shockwave.

19We thank the referee emphasizing this point.

– 54 –



J
H
E
P
0
7
(
2
0
2
3
)
1
6
2

7.2 Future directions

The investigations carried out in this work open the way for many other future develop-
ments:

1. Time-dependent regime of the stretched horizon. We would like to study
the spacetime volume of the WDW patch before the WDW patch crosses the shock-
wave. In this regime the stretched horizon, when imposing constant redshift, is
time-dependent. This feature complicates the derivation of the spacetime volume.
We would like to learn if this regime affects the plateau when the latter starts before
the shock.

2. Other complexity conjectures. In order to complete the holographic complexity
picture, we would like to study the action of the WDW patch and the volume of
maximal surfaces, which are the two conjectures originally proposed in [49–53]. Re-
cently these proposals were extended to the complexity=anything conjecture, which
defines a class of geometrical quantities reproducing the linear growth of complexity
and the switchback effect [72–74]. It would be interesting to study if these proposals
all admit similar properties in dS space.

3. Circuit models. The dual model suggested by static patch holography is a quantum-
mechanical theory with a finite-dimensional Hilbert space in a maximally mixed state.
However the details of the holographic dictionary are still unclear. We would like to
study circuit models that might have similar properties to the holographic behaviour
found in this work. In [7, 32] a setting based on the epidemic spreading in a double-
scaled SYK model was proposed as the dual theory to dS living on the stretched
horizon. This model reproduces the hyper-fast growth of complexity for theories
with a dS dual, see eq. (5.14). We would like to study the effect on this model of
a perturbation to see if circuit complexity shows similar traits as the holographic
complexity derived in our setup of shockwaves in SdS. Furthermore, in recent years
it was proposed that a concrete dual description of three-dimensional dS space can
be described in terms of T T̄ deformations with an additional term which makes the
cosmological constant positive [33, 34, 36]. It would be interesting to understand the
relation between these two proposals.

4. Two-dimensional case. In our work we only considered SdSd+1 for d ≥ 2. For d = 1
SdS2 is the same solution as empty dS2. We would like to study the construction of
dS2 in the presence of shockwaves that are sent at an arbitrary time, by imposing
the NEC condition. After the construction of the geometry, we would like to study
holographic complexity following the steps that were done in this work.

5. General GR theorems. We found a similar behavior of the spacetime volume of
the WDW patch in shockwave geometries with either AdS or dS asymptotics. For
example, in both cases we found a plateau of complexity and a similar scrambling time
proportional to the logarithm of the relative size of the perturbation corresponding
to a delay of the plateau. This is an interesting geometric property. We would like
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to study the effect of shockwaves on general geometries and learn whether there is a
general theorem in GR that can explain the similarities, perhaps along the lines of
the theorems presented in the volume case in reference [84].

6. Centaur geometries and dual theory. Centaur geometries provide a setting
where dS space is connected to an asymptotically AdS region and the boundary is
timelike, as in the standard application of AdS/CFT duality. Volume complexity has
been studied in this setting in the two-dimensional case [104], but the construction of
the geometries in higher dimensions is non-trivial (see [105] for recent developments).
It would be interesting to study holographic complexity in these settings in the pres-
ence of a shockwave, to compare with the computation presented in this work. This
will allow to achieve a better understanding of the dual theory, and to distinguish
universal features of complexity.

7. Localized shockwaves. Shockwave solutions along the cosmological horizon of
the kind considered in [81–83] can be localized, i.e., the energy-momentum tensor
has a non-trivial profile along the angular directions. We are interested in studying
how these different shockwave perturbations influence holographic complexity and
its spreading, and compare its qualitative features with the case of entanglement,
considered in e.g., [106–108].
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A Comparison with reference [1]

As the present paper was being completed, we became aware of reference [1] which presents
a related discussion on holographic complexity in de Sitter spaces with the insertion of null
shockwaves. The latter mainly focuses on the special case of d = 2, i.e., of a three-
dimensional bulk geometry. In this appendix, we compare our notation and results with
those found in [1]. In table 3, the reader can find where in each of the papers, the details of
the respective conventions were described. In summary, most of the conventions coincide
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Our conventions Reference [1]
Geometry section 2 section 2.2

Stretched horizon section 3 section 2.2.1 and figure 5
Critical times sections 4.3 and 6.1.1 section 3.3

Table 3. Summary of the sections where the conventions of our work and of reference [1] are stated.

and the main difference between the two papers is that they focus on a different order of
limits to study the critical times. Below we specify the differences between the conventions
in the two papers.

Geometry. The conventions for the geometry and the null coordinates coincide with
reference [1] after the mapping

E ↔M , ε E1 ↔ E , (A.1)

between our (left-hand side) and their (right-hand side) notation.

Stretched horizon. The location of the stretched horizon differs in the presence of a
shockwave:

• Our conventions. We define in section 3 various prescriptions, whose common
feature is that the stretched horizon rst

i ∈ [0, rC,i] (here i = 1, 2) can approach
the cosmological horizon of the corresponding part of the geometry, and is time-
independent after crossing the shockwave.

• Conventions of [1]. The stretched horizon in reference [1] is not affected by the
presence of the shockwave. It always varies along the interval rst ∈ [0, `], with ` being
the dS radius, independently of the cosmological horizon of the corresponding region.

We define the left and right boundary times (tL, tR) as the time coordinates running along
the stretched horizons, while in reference [1] they are measured at the poles. As a con-
sequence, the constant value of the null coordinate us for a shockwave inserted from the
north pole is

us =

−tw + r∗2(rst
2 ) our conventions

−tw reference [1]
(A.2)

This is a minor change that only shifts the boundary times by a constant.

Critical times. The critical time t∞ = `τ∞ in eq. (3.49) of reference [1] denotes the
instant when the top joint rm2 of the WDW patch (see section 4.2) reaches future timelike
infinity I+, in the absence of any cutoff regulator. In our notation, this time corresponds
to tc2 defined in eq. (4.14) when rmax,2 →∞. In fact, by summing eqs. (4.4) and (4.6) and
using the identity r∗(∞) = 0, we obtain

tc2 = 2r∗2(rb)− 2r∗1(rb) + r∗1(rst
1 ) + r∗2(rst

2 ) . (A.3)
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This result is consistent with eq. (3.49) of [1], once we take into account the different
prescriptions for the stretched horizon, the identity (A.2), and map rb ↔ rs between our
and their conventions, respectively.

The critical times define the duration of the plateau regime tpl in eq. (6.1). In order
to study the scrambling time and the linear approximation of the plateau for tw � L, we
take an ansatz in eq. (6.6) which assumes

tw →∞ , e−
a1
L
tw � ε (our conventions) , (A.4)

and only afterwards we perform the limit ε → 0. The double scaling limit (2.58) in
reference [1] focuses instead on the regime

ε→ 0 , tw →∞ , ε e
a1
L
tw fixed (reference [1]) . (A.5)

In order to investigate the limit (A.5) in our analysis, we need to choose the following value
for the energy of the shockwave:

ε = a2
1

2GNE1
e−

a1
L
tw . (A.6)

Plugging this value inside eq. (6.9) gives

tpl|(A.6) = 4(tw − t∗) = O(ε) , (A.7)

which cancels the linear dependence in tw and the finite part and recovers the result (3.63)
of reference [1] (since β ∝ ε). Therefore we observe that our and their analysis correspond
to a different order of limits applied to a similar formula for the critical time.

B Ping-pong prescription for the constant redshift

The procedure which defines the stretched horizon by imposing a constant cosmological
redshift in section 3.1 is subject to ambiguities, such as the location of the observer and
the orientation of the light rays (ingoing/outgoing) used to fix the location of the stretched
horizon. In the following, we will define the location of the stretched horizon by using
the constant redshift prescription, but changing the boundary conditions compared to the
analysis of section 3.1. We will discuss the discrepancies and the similarities between the
two cases. Throughout this appendix, the terminology ingoing and outgoing will refer to
light rays sent towards or outwards from the cosmological horizon, respectively.

B.1 Details of the prescription

We consider for simplicity the setting with a transition between two SdS3 black holes; the
higher dimensional case is technically harder, but conceptually similar to the following
analysis. The procedure is schematically depicted in figure 27. The idea is to define a
(generically time-dependent) trajectory for two observers located along the curves r =
Rs(ts) and r = Ra(ta) by using signals that they send and receive. We refer to the former
curve Rs as the stretched horizon, and to the latter Ra as the auxiliary horizon. We will
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𝑟𝑎,2

𝑅𝑠1

𝑟2
𝑠𝑡

(a)

𝑟𝑎,2

𝑅𝑠1

𝑟2
𝑠𝑡

𝑅𝑎1

(b)

𝑟𝑎,2

𝑅𝑠1

𝑟2
𝑠𝑡

𝑅𝑎1

𝑅𝑠2

(c)

Figure 27. Alternative prescription to define the stretched horizon in SdS3 background. (a) First
step: we start with time-independent curves located at rst

2 and ra,2. Then we use ingoing light
rays along the v direction to define a time-dependent stretched horizon Rs,1 (green curve in the
picture), requiring continuity when crossing the shockwave. (b) Second step: we send outgoing light
rays along u to reconstruct the time-dependent curve Ra,1, imposing continuity at the shockwave
insertion. (c) Third step: using ingoing light rays at constant v, we reconstruct another time-
dependent part of the stretched horizon Rs,2. The prescription is implemented recursively. The
arrow along the light rays identifies if they are ingoing or outgoing.

follow the time evolution backwards, starting from null future infinity and moving towards
the past. In the far future, we require that the trajectories are time-independent, i.e.,

lim
ts→∞

Rs(ts) = rst
2 , lim

ta→∞
Ra(ta) = ra,2 , (B.1)

and they satisfy ra,2 < rst
2 < rC2. Contrarily to the method described in section 3.1, in

this case the observers located along the two trajectories will repeatedly exchange the role
of being the emitter and the receiver of light rays. More precisely, we define the following
steps:

1. We send ingoing light rays at constant v from the stretched horizon towards the
auxiliary one. Once the boundary conditions rst

2 and ra,2 are specified, we are able to
reconstruct the time-dependent part of Rs(ts) represented in green in figure 27(a).

2. We proceed by sending outgoing light rays at constant u from the green region of
the stretched horizon Rs(ts) determined in point 1, in order to reconstruct the violet
part of the auxiliary curve Ra(ta), see figure 27(b).

3. We send ingoing light rays at constant v from the violet part of Ra(ta) computed in
step 2, and we rebuild the magenta part of the stretched horizon Rs(ts), as shown in
figure 27(b).

4. Finally, we apply steps 2 and 3 recursively.

In this procedure, we impose that the stretched and auxiliary horizons are continuous
when crossing the shockwave. This condition, combined with the requirement that the
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redshift is constant, is sufficient to uniquely determine the location of the two curves
throughout the full backward time evolution. Since we alternate the use of light rays at
constant u and v and we repeatedly exchange the role of emitter and observer along the
horizons, we will refer to this method as the ping-pong prescription.

In the course of our analysis, we will find that the continuity requirement along the full
time evolution is too strong, and leads to a solution for the stretched horizon inconsistent
with our expectations. Therefore, later on we will relax this condition by allowing a jump
of the stretched horizon when crossing the shockwave. This will be studied in section B.3.

B.2 Implementation of the procedure

In the following computations, the insertion time tw of the shockwave will be measured
at the stretched horizon after the perturbation, according to eq. (3.3). Furthermore, we
specify that the time coordinate along the stretched and auxiliary horizons will always be
measured before the shockwave insertion, so that they run continuously through all the
backward time evolution.

Step 1. In the region after the shockwave, the curves are located at constant Rs = rst
2

and Ra = ra,2, therefore the cosmological redshift (3.10) reads

1 + z0 =
√
f2(ra,2)
f2(rst

2 ) . (B.2)

The non-trivial part of the procedure is to compute the stretched horizon in the green
region of figure 27(a). Using the general definition (3.6), we find

1 + z1 =
√

f2(ro,2)
f1(Rs,1(ts,1))

1√
1− (R′s,1(ts,1))2

f1(Rs,1(ts,1))2

dta,0
dts,1

, (B.3)

where ts,1 is the time measured along the trajectory Rs,1 and we denote the derivative as
′ ≡ d/dts,1. We refer to ta,0 as the time coordinate measured along the time-independent
part of the auxiliary horizon ra,2. We relate the time coordinates along the stretched and
auxiliary horizons by computing the constant value of the v coordinate of an ingoing null
ray crossing the shockwave in two different ways

ts,1 + r∗1(Rs,1(ts,1)) = −tw − r∗2(rst
2 ) + 2r∗1(rsh) ,

−tw − r∗2(rst
2 ) + 2r∗2(rsh) = ta,0 + r∗2(ra,2) ,

(B.4)

where rsh is the intersection of the light ray with the shock. These relations allow to solve
for rsh and to express one time in terms of the other, i.e., ta,0(ts,1).

The configuration corresponding to the green curves depicted in figure 27(a) applies
during the time interval t̃s1,c2 ≤ ts,1 ≤ t̃s1,c1 delimited by the critical times

t̃s1,c1 = −tw − r∗2(rst
2 ) + r∗1(rst

2 ) ,
t̃s1,c2 = −tw − r∗2(rst

2 )− r∗1(Rs,1(t̃s1,c2)) + 2r∗1(ra,2) ,
(B.5)
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the latter identity being an implicit equation that we solve numerically. The time t̃s1,c1 is
the instant when an ingoing ray at constant v is received at the location of the shockwave,
while t̃s1,c2 corresponds to a null ray precisely emitted from the shock. The light rays
corresponding to these extremal configurations are the top and bottom ones depicted in
figure 27(a), respectively.

By requiring z0 = z1 in eqs. (B.2) and (B.3) and extracting ta,0(ts,1) from eq. (B.4), we
then find a differential equation for Rs,1(ts,1) with boundary condition Rs,1(t̃s1,c1) = rst

2 „
which corresponds to the continuity of the stretched horizon when crossing the shockwave.

From now on, both the stretched and auxiliary horizons will always be time-dependent,
and we will describe the procedure which recursively reconstructs their shape by evolving
the system towards the past.

Recursive step 2: reconstruction of the auxiliary horizon. For i ≥ 1, we assume
that the previous step in the procedure gave us the solutions Rs,i(ts,1) and ts,i(ts,1), always
expressed in terms of the time ts,1 along the stretched horizon used in step 1 to parametrize
the green curve in figure 27(a). In this step we will reconstruct the region Ra,i(ts,1) of the
auxiliary horizon, and relate times along the auxiliary and stretched horizons as ta,i(ts,1).
When i = 1, it means that we use the solution Rs,1(ts,1) from step 1 to reconstruct the
violet region of the auxiliary horizon in figure 27(b).

For i ≥ 1, we use outgoing light rays at constant u to find the identities

ta,i − r∗1(Ra,i(ts,1)) = ts,i(ts,1)− r∗1(Rs,i(ts,1)) , (B.6a)

1 + z2i =
√
f1(Ra,i(ts,1))
f1(Rs,i(ts,1))

√√√√
1−

(
R′a,i(ts,1)

dts,1
dta,i

)2

f1(Ra,i(ts,1))2√√√√
1−

(
R′s,i(ts,1)

dts,1
dts,i

)2

f1(Rs,i(ts,1))2

dta,i
dts,1

dts,1
dts,i

, (B.6b)

where the latter identity is the cosmological redshift (3.6). Then we perform the following
steps:

• Differentiate eq. (B.6a) with respect to ts,1 to get dta,i/dts,1.

• Plug dta,i/dts,1 inside eq. (B.6b) and solve the differential equation z0 = z2i for
Ra,i(ts,1).

• Plug the result back inside eq. (B.6a) to get ta,i(ts,1).

Using this method, we expressed all the quantities as functions of the time ts,1 defined
along the green curve in figure 27. Therefore the time interval characterizing this step is
delimited by the same critical times t̃s1,c2 ≤ ts ≤ t̃s1,c1 used in step 1, and the boundary
condition of the differential equation z0 = z2i is Ra,i(t̃s1,c1) = Ra,i−1(t̃s1,c2), correspond-
ing to the continuity requirement for the auxiliary horizon along all the backward time
evolution (including the transition at the shockwave).
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Recursive step 3: reconstruction of the stretched horizon. For i ≥ 2, we assume
that we computed in the previous step the functions Ra,i−1(ts,1) and ta,i−1(ts,1). We use
this information to reconstruct another region Rs,i and to relate times along the stretched
horizon as ts,i(ts,1). When i = 2, it means that we reconstruct the magenta region in
figure 27(c).

For any i ≥ 2, we send ingoing light rays at constant v and we use the definition of
redshift (3.6) to find

ta,i−1(ts,1) + r∗1(Ra,i−1(ts,1)) = ts,i + r∗1(Rs,i(ts,1)) , (B.7a)

1 + z2i−1 =
√
f1(Ra,i−1(ts,1))
f1(Rs,i(ts,1))

√√√√
1−

(
R′a,i−1(ts,1)

dts,1
dta,i−1

)2

f1(Ra,i−1(ts,1))2√√√√
1−

(
R′s,i(ts,1)

dts,1
dts,i

)2

f1(Rs,i(ts,1))2

dta,i−1
dts,1

dts,1
dts,i

.

(B.7b)

We then proceed as follows:

• Differentiate eq. (B.7a) with respect to ts,1 to get dts,i

dts,1
.

• Plug dts,i

dts,1
inside eq. (B.7b) and then solve the differential equation z0 = z2i−1 for

Rs,i(ts,1).

• Plug the result back in eq. (B.7a) to find ts,i(ts,1).

In this way we expressed again all the quantities in terms of the time ts,1 running along
the green curve in figure 27. Therefore, the critical times delimiting this configuration are
still t̃s1,c1, t̃s1,c2 and the boundary condition for the differential equation z0 = z2i−1 reads
Rs,i(t̃s1,c1) = Rs,i−1(t̃s1,c2). This constraint imposes the continuity of the stretched horizon
along all the past time evolution (including the intersection with the shockwave).

B.3 Results

By applying the recursive procedure of section B.2 and imposing the continuity of the
auxiliary and stretched horizons along all the time evolution, we obtain a numerical solution
for their shape which is plotted in figure 28. We find that the two horizons reach the north
pole at finite and different times.

The previous result is somewhat unsatisfactory, because these curves do not reach
past infinity. Furthermore, one would expect from the constant redshift procedure of
section 3.1 that it should be possible (at least for certain choices of the parameters) to
approach a trajectory at constant radial coordinate in the far past. To this aim, we modify
the boundary condition for the stretched horizon that we impose in step 1 of section B.2
when crossing the shockwave. In particular, we allow for a discontinuity δ > 0 of the form

Rs(ts1,c1) = rst
2 (1 + δ) . (B.8)

Studying various choices of δ, we find three possibilities:
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Figure 28. Time-dependent part of the stretched Rs and auxiliary Ra horizons in the SdS3 back-
ground, requiring continuity when crossing the shockwave. We fix rst

2 = 0.5, ra,2 = 0.4, 8πGNE1 =
0.1, ε = 0.05, L = 1.

1. When δ . δcr, the solutions behave as in figure 28. For the choice of the parameters
in the plot, we numerically find δcr ' 0.000605 . . .

2. When δ & δcr, both the stretched and auxiliary horizons approach the past cosmo-
logical horizon rC1 as depicted in figure 29. This result can be checked by using
null coordinates (which are continuously defined in the relevant region of the Penrose
diagram), showing that u→ −∞, while v reaches a finite value.

3. The results in points 1 and 2 suggest the existence of a transition between the two
regimes where the horizons either reach the north pole or the cosmological horizon
in finite time. Indeed, it is possible to fine-tune the parameter δ ∼ δcr, such that
there is a longer region where the two curves are approximately at constant radial
coordinate, as shown in figure 30. Eventually, there is a particular value of δ when
the two curves reach the pole at past null infinity.

The result described in the last point shows that it is possible to fine-tune the ping-pong
prescription to find stretched and auxiliary horizons that are time-independent in the far
past, as we required in eq. (3.1) for the constant redshift prescription. This fact, combined
with the time-independence of the curves after the shockwave, are then universal require-
ments that we can always impose when constructing the stretched horizon in shockwave
geometries.

C Complexity of formation for shockwaves in SdS

The complexity of formation is defined as the excess complexity in the presence of a shock-
wave, compared to that of empty dS space (without a shock), i.e.,

∆C = C (SdSshockwave)
∣∣
tL=tR=0 − C(dS)

∣∣
tL=tR=0 . (C.1)
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Figure 29. Time-dependent part of the stretched Rs and auxiliary Ra horizons in the SdS3
background, with a jump δ & δcr in the boundary condition according to eq. (B.8).
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Figure 30. Time evolution of the stretched and auxiliary horizons for various values of the dis-
continuity δ in eq. (B.8). The parameter δ increases for curves reaching the r = 0 at earlier times
(moving towards the left side of the plot).

This corresponds to evaluating the complexity (5.2) at t = 0 and then subtracting the
CV2.0 result for dS without shocks.

The complexity of formation was extensively studied for AdS black hole backgrounds [60]
and for the AdS shockwave geometries (i.e., AdS-Vaidya backgrounds) in [50, 79]. In [60],
the authors considered the excess in complexity for a black hole background, compared to
two copies of empty AdS. In this case, it was found that for boundary dimensions d > 2,
the difference in the complexities grows linearly with the thermal entropy at high temper-
atures. For the special case d = 2, the complexity of formation was found to be a fixed
constant. In [50, 79], the complexity of formation was studied for black hole backgrounds in
the presence of shockwaves. Here the authors asked, how much more complex is the state
at tL = tR = 0 if a perturbation was inserted on the right side at the time −tw in the past,
compared to such a state in the absence of the perturbation. The complexity interpreta-
tion, as well as the gravitational calculation, suggest that as tw increases, the complexity
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is roughly a constant (in fact it grows exponentially, but this exponential is suppressed by
a tiny prefactor) up to the scrambling time, at which point it starts increasing linearly.

We would like to study the complexity of formation in SdS backgrounds in the presence
of shockwaves and check if it has similar properties to those described above for AdS
spacetimes. In particular, we would like to use it to read the scrambling time for the would-
be boundary theory and compare it to the results obtained from the time dependence of
complexity.

C.1 General setting

We compute the complexity of formation for the SdSd+1 geometry perturbed by a shock-
wave with d ≥ 2. We numerically observe that tc1 < 0 < tc2, therefore the complexity
of formation corresponds to the intermediate regime where the CV2.0 is finite and ad-
mits a plateau in the growth of the spacetime volume as a function of time. The relevant
quantities needed for the calculation are the following:

• The special positions of the WDW patch, determined by eqs. (4.28)–(4.31) evaluated
at tR = tL = 0.

• The formal expression for the complexity given by eq. (5.2) for the usual configura-
tions of the WDW patch, and by eq. (5.7) when the joints move behind the stretched
horizons.

From these expressions, we notice that there always exists a sufficiently high value of tw
such that the joints of the WDW patch move outside the cosmological horizon and reach the
stretched horizon, thus producing the configuration in figure 13. Therefore, it is important
to consider both regimes in the evaluation of the complexity of formation. The standard
computation corresponds to eq. (5.2) evaluated at tR = tL = 0, that is

CV 2.0(0) = Ωd−1
GNL2

[∫ rs

rst
2

drrd−1
(
2r∗2(r)−2r∗2(rst

2 )
)

+
∫ rb

rs

drrd−1tw

+
∫ rb

rC1
drrd−1

(
−tw+2r∗1(r)−r∗1(rst

1 )−r∗2(rst
2 )
)

+
∫ rC1

rs

drrd−1 (2r∗1(r)−2r∗1(rs))

+
∫ rC1

rst
1

drrd−1
(
2r∗1(r)−2r∗1(rst

1 )
)

+
∫ rm2

rb

drrd−1 (tw+2r∗2(r)−2r∗2(rb))

+
∫ rm1

rC1
drrd−1

(
tw+2r∗1(r)−2r∗1(rs)−r∗1(rst

1 )+r∗2(rst
2 )
)]
.

(C.2)

When the configuration with the joints behind the stretched horizon is achieved, we use
instead the expression (5.7) at tR = tL = 0, which reads

CV 2.0(0) = Ωd−1
GNL2

[ ∫ rb

rst
2

dr rd−1
(
tw + 2r∗2(rst

2 )− 2r∗2(rb)
)

+
∫ rs

rb

dr rd−1
(
tw + 2r∗2(rst

2 )− 2r∗2(r) + 2r∗1(r)− 2r∗1(rs)
)

+
∫ rb

rst
1

dr rd−1
(
tw + r∗1(rst

1 ) + r∗2(rst
2 )− 2r∗1(rs)

) ]
.

(C.3)
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Figure 31. Complexity of formation as a function of tw, for various choices of ε at fixed L = 1, ρ =
0.5, GNE1 = 0.02.

We remark that the results (C.2) and (C.3) are valid in any number of dimensions d ≥ 2.

C.2 Three-dimensional SdS space

Now we specialize to the three-dimensional case. The relevant integrals to perform for
SdS3 are ∫

dr r r∗1(r) = L

4a1

[
a2

1L
2 log

∣∣∣∣a1L− r
a1L+ r

∣∣∣∣+ 2a1Lr + r2 log
∣∣∣∣a1L+ r

a1L− r

∣∣∣∣] ,∫
dr r r∗2(r) = L

4a2

[
a2

2L
2 log

∣∣∣∣a2L− r
a2L+ r

∣∣∣∣+ 2a2Lr + r2 log
∣∣∣∣a2L+ r

a2L− r

∣∣∣∣] . (C.4)

Once this recipe is applied, the complexity of formation (C.1) according to the CV2.0
prescription is given by20

∆CV 2.0 = CV 2.0; SdS
∣∣

t=0
ε 6=0
− CV 2.0; dS

∣∣
t=0
ε=0

, (C.5)

where we subtract the dS3 contribution. We depict the dependence of the complexity of
formation on tw for various choices of the parameters ε in figure 31.

Due to the transition in the definitions of rm1 and rm2 in eqs. (4.30) and (4.31) (taking
tL = tR = 0), the functional dependence for small tw is smooth until it reaches a kink in
correspondence with the transition rs = rb. This is the case when the joints reach precisely
the stretched horizon and the spacetime volume of the WDW patch vanishes.

Linear approximation. To get a better understanding of the complexity of formation
as a function of the physical data, we perform the integrations explicitly (again focusing on

20One can check that once we set ε = 0, the complexity becomes independent of tw. This is consistent
with the fact that there is no shockwave in the geometry without deformation.
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d = 2). The computation at a generic time is a straightforward but tedious exercise, which
does not give particular physical insights. It is more relevant to consider the limiting case
tw →∞, which corresponds to a regime where the joints of the WDW patch move behind
the stretched horizons.

In this limit, the following simplifications occur

lim
tw→∞

rs = a2L , lim
tw→∞

rb = a1L , lim
tw→∞

rm1 = rst
1 , lim

tw→∞
rm2 = rst

2 . (C.6)

As a consequence, the CV2.0 evaluated at t = 0 becomes

lim
tw→∞

C2.0V (0) = 2π
GNL2

[∫ a1L

rst
2

dr r
(
tw + 2r∗2(rst

2 )− 2r∗2(a1L)
)

+
∫ a2L

a1L
dr r

(
tw + 2r∗2(rst

2 )− 2r∗2(r) + 2r∗1(r)− 2r∗1(a2L)
)

+
∫ a1L

rst
1

dr r
(
tw + r∗1(rst

1 ) + r∗2(rst
2 )− 2r∗1(a2L)

)]
.

(C.7)

An analytic expression can be obtained after performing the explicit integrations according
to eq. (C.4):

C2.0V (0) = π

2GN

(
1− ρ2

) (
a2

1 + a2
2

)
(tw − t∗) , (C.8)

with scrambling time

t∗ = L

a2
1 + a2

2

[
1
2

(
a1 + 2a2 + a2

1
a2

)
log

(1− ρ
1 + ρ

)
+ (a1 + a2) log

(
a1 + a2
a2 − a1

)]
. (C.9)

Note that these expressions are only valid when tw � L. It is interesting that this expres-
sion is very similar to eq. (6.7) up to the precise form of the prefactors in front of the two
logarithms. In the limit ε → 0, we only keep the leading logarithmic divergence coming
from the second term to find

t∗ ≈
ε�1

L

a1
log

(
a2

1
2GNE1

1
ε

)
= 1

2πT1
logS1 . (C.10)

In particular, in the last equality, we recognize the Hawking temperature of the black hole
before the shockwave insertion, and we required the energy of the shockwave perturbation
to be proportional to a few thermal quanta. This result matches the behavior found for
the scrambling time in the same regime (i.e., for tiny ε, the leading ε divergence in the
scrambling time matches) determined for the plateau regime in eq. (6.9).

C.3 Higher-dimensional SdS space

It is difficult to perform an explicit computation of the complexity of formation in higher
dimensions (d ≥ 3), because the tortoise coordinate r∗(r) becomes cumbersome and a
closed form for the integrals in eqs. (C.2) and (C.3) is not always achievable. However, we
can attain an analytic expression for the scrambling time when the following assumptions
hold:
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• The insertion time of the shock wave is large compared to the dS radius tw � L.

• We perform the double-scaling limit (6.22).

• We consider small black holes, such that rh,i/rC,i � 1 for i = 1, 2.

The previous assumptions lead to the following simplifications:

r∗i (r) ≈
rC,i
2 log

∣∣∣∣∣rC,i + r

rC,i − r

∣∣∣∣∣ , rst
i ≈ ρrC,i (i = 1, 2) (C.11)

Equation (C.11) contains all the data entering the complexity of formation for large in-
sertion times tw � L, as evaluated in eq. (C.3). At this point, the computation of the
complexity of formation is straightforward and follows similar steps as those performed
below eq. (C.4). The result reads

C2.0V (0) ≈ Ωd−1(rC1)d−2

2GN

(
1− ρ2

)
(tw − t∗) , (C.12)

with scrambling time

t∗ ≈ rC1 log
(
rC1
βrcr

1− ρ
ε

)
= 1

2πTC1
log

(
rC1
βrcr

1− ρ
ε

)
, (C.13)

where βrcr is defined by the expansion (6.20). Remarkably, this coincides with the re-
sult (6.23) in the limit of small black hole horizons, i.e., we replace rC1 − rh1 ≈ rC1.
Therefore in the regime described above, we find a precise matching in any bulk dimension
between the scrambling time associated to the linear regimes (tw � L) for either the du-
ration of the plateau region or the complexity of formation. A similar universal behaviour
was found in the AdS case as well [79].

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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