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Abstract: In the present paper we consider multigrid strategies for the resolution of linear systems1

arising from the Qk Finite Elements approximation of one and higher dimensional elliptic partial2

differential equations with Dirichlet boundary conditions and where the operator is div (−a(x)∇·) ,3

with a continuous and positive over Ω, Ω being an open and bounded subset of R2. While the analysis4

is performed in one dimension, the numerics are carried out also in higher dimension d ≥ 2, showing5

an optimal behavior in terms of the dependency on the matrix size and a substantial robustness with6

respect to the dimensionality d and to the polynomial degree k.7
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1. Introduction9

We consider the solution of large linear systems whose coefficient matrices arise from the Qk10

Lagrangian Finite Element approximation of the elliptic problem11 {
div (−a(x)∇u) = f , x ∈ Ω ⊆ Rd,
u|∂Ω = 0,

(1)

with Ω a bounded subset of Rd having smooth boundaries and with a being continuous and positive12

on Ω.13

Based on the spectral analysis of the related matrix-sequences and on the study of the associated14

spectral symbol [11,12], the paper deals with ad hoc multigrid techniques where the choice of the basic15

ingredients, i.e. that of the smoothing strategy and of the projectors, has a foundation in the analysis of16

the symbol provided in [10].17

Indeed, in the systematic work in [10], tensor rectangular Finite Element approximations Qk of18

any degree k and of any dimensionality d are considered and the spectral analysis of the stiffness19

matrix-sequences {An} is provided in the sense of20

• spectral distribution in the Weyl sense and spectral clustering,21

• spectral localization, extremal eigenvalues, and conditioning.22
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We observe that the information obtained in [10] is strongly based on the notion of spectral symbol (see23

[11,12]) and is studied from the perspective of (block) multilevel Toeplitz operators [3,20] and (block)24

Generalized Locally Toeplitz sequences [18,19].25

We remind that a similar analysis is carried out in [16] for the finite approximations Pk for k ≥ 226

and for d = 2: the analysis for d = 1 is contained in [10] trivially because Qk ≡ Pk for every k ≥ 1,27

while for d = 2, and even more for d ≥ 3, the situation is greatly complicated by the fact that we do not28

encounter a tensor structure. Nevertheless, the picture is quite similar and the obtained information in29

terms of spectral symbol is sufficient for deducing a quite accurate analysis concerning the distribution30

and the extremal behavior of the eigenvalues of the resulting matrix-sequences.31

It is worth noticing that the information regarding the conditioning determines the intrinsic32

difficulty in the precision of solving a linear system, that is the impact of the inherent error, and33

it is also important in evaluating the convergence rate of classical stationary and non-stationary34

iterative solvers. On the other hand, the spectral distribution and the clustering results represent35

key ingredients in the design and in the convergence analysis of specialized multigrid methods36

and preconditioned Krylov solvers [17] such as preconditioned conjugate gradient (PCG); see [19,37

Subsection 3.7]) and [1,2,6–9,15]. As proven in [2], the knowledge of the spectral distribution allows to38

explain the superlinear convergence history of the (P)CG, thanks to the powerful potential theory.39

We emphasize that in [10,16] the final goal is the analysis and the design of fast iterative solvers40

for the associated linear systems. In the current note we go exactly in this direction, by focusing our41

attention on multigrid techniques.42

1.1. Structure of the paper43

The outline of the paper is as follows. In Section 2 we provide the notation and we present results44

regarding multigrid methods and we fix the notation for matrix-valued trigonometric polynomials,45

and the related block-Toeplitz matrices. Section 3 is devoted to the analysis of the structure and of the46

spectral features of considered matrices and matrix-sequences. The multigrid strategy definition and47

the symbol analysis of the projection operators are given in Section 4, together with selected numerical48

tests. The paper is concluded by Section 5, where open problems are discussed and conclusions are49

reported.50

2. Two-grid and Multigrid methods51

Here we concisely report few relevant results concerning the convergence theory of algebraic52

multigrid methods and we present the definition of block-Toeplitz matrices generated by a53

matrix-valued trigonometric polynomial.54

We start by taling into consideration the generic linear system Amxm = bm with large dimension55

m, where Am ∈ Cm×m is a Hermitian positive definite matrix and xm, bm ∈ Cm. Let m0 = m > m1 >56

. . . > ms > . . . > msmin and let Ps+1
s ∈ Cms+1×ms be a full-rank matrix for any s. At last, let us denote57

by Vs a class of stationary iterative methods for given linear systems of dimension ms.58

In accordance with[13], the algebraic two-grid Method (TGM) can be easily seen a stationary59

iterative method whose generic steps are reported below.60
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xout
s = T GM(s, xin

s , bs)

xpre
s = Vνpre

s,pre(xin
s , bs) Pre-smoothing iterations

rs = Asxpre
s − bs

rs+1 = Pms+1
ms rs

As+1 = Pms+1
ms As(Pms+1

ms )H

Solve As+1ys+1 = rs+1
x̂s = xpre

s − (Pms+1
ms )Hys+1

Exact Coarse Grid Correction (CGC)

xout
s = Vνpost

s,post(x̂s, bs) Post-smoothing iterations

where we refer to the dimension ms by means of its subscript s.61

In the first and last steps, a pre-smoothing iteration and a post-smoothing iteration are applied νpre62

times and νpost times, respectively, in accordance with the considered stationary iterative method in63

the class Vs. Furthermore, the intermediate steps define the exact coarse grid correction operator, which64

is depending on the considered projector operator Ps
s+1. The resulting iteration matrix of the TGM is65

then defined as66

TGMs = V
νpost
s,postCGCsV

νpre
s,pre, (2)

CGCs = I(s) − (Pms+1
ms )H A−1

s+1Pms+1
ms As As+1 = Pms+1

ms As(Pms+1
ms )H , (3)

where Vs,pre and Vs,post represent the pre-smoothing and post-smoothing iteration matrices, respectively67

and I(s) is the identity matrix at the s-th level.68

By employing a recursive procedure, the TGM leads to a Multi-Grid Method (MGM): indeed the69

standard V-cycle can be expressed in the following way:70

xout
s =MGM(s, xin

s , bs)

if s ≤ smin then

Solve Asxout
s = bs Exact solution

else

xpre
s = Vνpre

s,pre(xin
s , bs) Pre-smoothing iterations

rs = Asxpre
s − bs

rs+1 = Pms+1
ms rs

ys+1 =MGM(s + 1, 0s+1, rs+1)

x̂s = xpre
s − (Pms+1

ms )Hys+1

Coarse Grid Correction

xout
s = Vνpost

s,post(x̂s, bs) Post-smoothing iterations

From a computational viewpoint, it is more efficient that the matrices As+1 = Ps+1
s As(Ps+1

s )H are71

computed in the so called setup phase for reducing the related costs.72
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According to the previous setting, the global iteration matrix of the MGM is recursively defined as73

MGMsmin = O ∈ Csmin×smin ,

MGMs = V
νpost
s,post

[
I(s) − (Pms+1

ms )H
(

I(s+1) −MGMs+1

)
A−1

s+1Pms+1
ms As

]
V

νpre
s,pre,

s = smin − 1, . . . , 0.

74

Definition 1. Let Mk be the linear space of the complex k × k matrices and let f : (−π, π) → Mk be a75

measurable function with Fourier coefficients given by76

f̂ j :=
1

2π

∫
(−π,π)

f (θ)e−ı̂jθdθ ∈ Mk, ı̂2 = −1, j ∈ Z.

Then, we define the block-Toeplitz matrix Tn( f ) associated with f as the kn× kn matrix given by77

Tn( f ) = ∑
|j|<n

J(j)
n ⊗ f̂ j,

where ⊗ denotes the (Kronecker) tensor product of matrices. The term J(j)
n is the matrix of order n whose (i, k)78

entry equals 1 if i− k = j and zero otherwise. The set {Tn( f )}n is called the family of block-Toeplitz matrices79

generated by f , which is called the generating function or the symbol of {Tn( f )}n.80

Remark 1. In the relevant literature (see, for instance, [1]), the convergence analysis of the two-grid method81

splits into the validation of two separate conditions: the smoothing property and the approximation property.82

Regarding the latter, with reference to scalar structured matrices [1,9], the optimality of two-grid methods is83

given in terms of choosing the proper conditions that the symbol p of a family of projection operators has to fulfill.84

Indeed, consider Tn( f ) with n = (2t − 1), f a nonnegative trigonometric polynomial. Let θ0 be the unique zero85

of f . Then the optimality of the two-grid method applied to Tn( f ) is guaranteed if we choose the symbol p of the86

family of projection operators such that87

lim sup
θ→θ0

|p(η)|2
f (θ)

< ∞, η ∈ M(θ),

∑
η∈Ω(θ)

p2(η) > 0,
(4)

where the sets Ω(θ) andM(θ) are the following corner and mirror points88

Ω(θ) = {η ∈ {θ, θ + π}}, M(θ) = Ω(θ) \ {θ},

respectively.89

Informally, it means that the optimality of the two-grid method is obtained by choosing the family90

of projection operators associated to a symbol p such that |p|2(ϑ) + |p|2(ϑ + π) does not have zeros91

and |p|2(ϑ +π)/ f (ϑ) is bounded, (if we require the optimality of the V-cycle then the second condition92

is a bit stronger); see [1]. In a differential context, the previous conditions mean that p has a zero of93

order at least α at ϑ = π, whenever f has a zero at θ0 = 0 of order 2α.94

In our specific block setting, by interpreting the analysis given in [5], all the involved symbols are95

matrix-valued and the conditions which are sufficient for the two-grid convergence and optimality are96

the following:97
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A) zero of order 2 at ϑ = π of the proper eigenvalue function of the symbol of the projector for Qk,98

k = 1, 2, 3 (mirror point theory [1,9]) ,99

B) positive definiteness of ppH(ϑ) + ppH(ϑ + π),100

C) commutativity of p(ϑ) and p(ϑ + π).101

Even if the theoretical extension to the V-Cycle and W-cycle convergence and optimality102

is not given, in the subsequent section we propose specific choices of the projection operators103

numerically showing how this leads to two-grid, V-cycle, W-cycle procedures converging optimally or104

quasi-optimally with respect to all the relevant parameters (size, dimensionality, polynomial degree k).105

Our choices are in agreement with the mathematical conditions set in items A) and B), while106

condition C) is not satisfied. The violation of condition C) is discussed in Section 5, while, in relation107

to condition A), we observe that a stronger condition is met, since the considered order of the zero at108

ϑ = π is k + 1 which is larger than 2 for k = 2, 3.109

3. Structure of the matrices and spectral analysis: Qk ≡ Pk, d = 1110

We report some results derived in [10] for the Lagrangian Finite Elements Qk ≡ Pk, d = 1. Let us111

consider the Lagrange polynomials L0, . . . , Lk associated with the reference knots tj = j/k, j = 0, . . . , k:112

Li(t) =
k

∏
j=0
j 6=i

t− tj

ti − tj
=

k

∏
j=0
j 6=i

kt− j
i− j

, i = 0, . . . , k,

Li(tj) = δij, i, j = 0, . . . , k,

(5)

and let the symbol 〈 , 〉 denote the scalar product in L2([0, 1]), i.e., 〈ϕ, ψ〉 :=
∫ 1

0 ϕψ. In the case a(x) ≡ 1113

and Ω = (0, 1) the Qk stiffness matrix for (1) equals the matrix K(k)
n in Theorem 1.114

Theorem 1. [10] Let k, n ≥ 1. Then115

K(k)
n =


K0 KT

1

K1
. . . . . .
. . . . . . KT

1
K1 K0


−

(6)

where the subscripts ‘−’ mean that the last row and column of the of the whole matrices in square brackets are116

deleted, while K0, K1 are k× k blocks given by117

K0 =


〈L′1, L′1〉 · · · 〈L′k−1, L′1〉 〈L′k, L′1〉

...
...

...
〈L′1, L′k−1〉 · · · 〈L

′
k−1, L′k−1〉 〈L′k, L′k−1〉

〈L′1, L′k〉 · · · 〈L′k−1, L′k〉 〈L′k, L′k〉+ 〈L
′
0, L′0〉

 ,

K1 =


0 0 · · · 0 〈L′0, L′1〉
0 0 · · · 0 〈L′0, L′2〉
...

...
...

...
0 0 · · · 0 〈L′0, L′k〉

 ,

(7)
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with L0, . . . , Lk being the Lagrange polynomials in (5). In particular, following the notation in definition118

1, K(k)
n is the (nk − 1) × (nk − 1) leading principal submatrix of the block-Toeplitz matrices Tn( fQk

) and119

fQk
: [−π, π]→ Ck×k is an Hermitian matrix-valued trigonometric polynomial given by120

fQk
(ϑ) := K0 + K1eı̂ϑ + KT

1 e−ı̂ϑ. (8)

An interesting property of the Hermitian matrix-valued functions fQk
(ϑ) defined in (8) is reported121

in the theorem below from [10]: in fact, from the point of view of the spectral distribution, the message122

is that, independently of the parameter k, the spectral symbol if of the same character as 2− 2 cos(ϑ)123

which is the symbol of the basic linear Finite Elements and the most standard Finite Differences.124

Theorem 2. [10] Let k ≥ 1, then125

det( fQk
(ϑ)) = dk(2− 2 cos(ϑ)), (9)

where dk = det([〈L′j, L′i〉]ki,j=1) = det([〈L′j, L′i〉]
k−1
i,j=1) > 0 (with d1 = 1, being the determinant of the empty126

matrix equal to 1 by convention) and L0, . . . , Lk are the Lagrange polynomials (5).127

Furthermore, a generalization of the previous result in higher dimension is given in [16] and is128

reported in the subsequent theorem.129

Theorem 3. [16] Given the symbols fQk
in dimension d ≥ 1, the following statements hold true:130

1. fQk
(0)e = 0, e vector of all ones, k ≥ 1;131

2. there exist constants C1, C2 > 0 (dependent on fQk
) such that132

C1

d

∑
j=1

(2− 2 cos(ϑj)) ≤ λ1( fQk
(ϑ)) ≤ C2

d

∑
j=1

(2− 2 cos(ϑj)); (10)

3. there exist constants m, M > 0 (dependent on fQk
) such that133

0 < m ≤ λj( fQk
(ϑ)) ≤ M, j = 2, . . . , kd. (11)

4. Multigrid strategy definition, symbol analysis, and numerics134

Let us consider a family of meshes135

{T2sh}s=0,...,s such that T2sh ⊆ T2s−1h ⊆ . . . ⊆ T2h ⊆ Th.

Clearly, the same inclusion property is inherited by the corresponding Finite Element functional spaces136

and hence we find V2sh ⊆ V2s−1h ⊆ . . . ⊆ V2h ⊆ Vh.137

Therefore, in order to formulate a multigrid strategy, it is quite natural to follow a functional138

approach and to impose the prolongation operator ph
2h : V2h → Vh to be defined as the identity139

operator, that is140

ph
2hv2h = v2h for all v2h ∈ V2h.

Thus, the matrix representing the prolongation operator is formed, column by column, by representing141

each function of the basis of V2h as linear combination of the basis of Vh, the coefficients being the142

values of the functions ϕ2h
i on the fine mesh grid points, i.e.,143

ϕ2h
i (x) = ∑

xj∈Th

ϕ2h
i (xj)ϕh

j (x). (12)
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In the following subsections, we will consider in detail the case of Qk Finite Element approximation144

with k = 2 and k = 3, the case k = 1 being reported in short just for the sake of completeness.145

4.1. Q1 case146

Firstly, let us consider the case of Q1 Finite Elements, where, as is well known, the stiffness matrix147

is the scalar Toeplitz matrix generated by fQ1(ϑ) = 2− 2 cos(ϑ), and for the sake of simplicity, let us148

consider the case of T2h partitioning with 5 equispaced points (3 internal points) and Th partitioning149

with 9 equispaced points (7 internal points) obtained from T2h by considering the midpoint of each150

subinterval. In the standard geometric multigrid the prolongation operator matrix is defined as151

Ph×2h = P7
3 =



1
2
1
1
2

1
2
1
1
2

1
2
1
1
2


. (13)

Indeed, the basis functions with respect to the reference interval [0, 1] are ϕ̂1(x̂) = 1− x̂, ϕ̂2(x̂) = x̂,152

and according to (12), the ϕ2h
i coefficients are153

ϕ̂2(1/2) = 1/2, ϕ̂2(1) = 1, ϕ̂1(1/2) = 1/2,

giving the columns of the matrix in (13). However, we can think the prolongation matrix above as the154

product of the Toeplitz matrix generated by the polynomial pQ1
(ϑ) = 1 + cos(ϑ) and a suitable cutting155

matrix (see [9] for the terminology and the related notation) defined as156

Kms+1×ms =


0 1 0

0 1 0
. . . . . . . . .

0 1 0

 , (14)

i.e., Pms
ms+1 = (Pms+1

ms )T = Ams(pQ1
)(Kms+1×ms)

T .157

Two-grid/Multigrid convergence with the above defined restriction/prolongation operators and a158

simple smoother (as for instance Gauss-Seidel iteration) is a classical result, both from the point of view159

of the literature of approximated differential operators [13] and from the viewpoint of the literature of160

structured matrices [1,9].161

In the first panel of Table 1, we report the number of iterations needed for achieving the predefined162

tolerance 10−6, when increasing the matrix size in the setting of the current subsection. Indeed, we use163

Ams(pQ1
)(Kms+1×ms)

T and its transpose as restriction and prolongation operators and Gauss-Seidel164

as a smoother. We highlight that only one iteration of pre-smoothing and only one iteration of165

post-smoothing are employed in the current numerics. Therefore, considering the results of Remark 1166

and the subsequent explanation, there is no surprise in observing that the number of iterations needed167

for the two-grid, V-cycle and W-cycle convergence remains almost constant when we increase the168

matrix size, numerically confirming the predicted optimality of the methods in this scalar setting.169
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k = 1 k = 2 k = 3
# subintervals TGM V-cycle W-cycle TGM V-cycle W-cycle TGM V-cycle W-cycle

8 5 5 5 7 7 7 9 9 9
16 6 7 6 7 7 7 9 9 9
32 7 7 7 7 7 7 9 9 9
64 7 7 7 7 7 7 9 9 9

128 6 7 6 7 7 7 9 9 9
256 6 7 6 7 7 7 9 9 9
512 6 7 6 7 7 7 9 9 9

Table 1. Number of iterations needed for the convergence of the two-grid, V-cycle and W-cycle methods
for k = 1, 2, 3 in one dimension with a(x) ≡ 1, tol = 1.e− 6.

4.2. Q2 case170

Let us consider the case of Q2 Finite Elements, where we have that the basis functions with respect171

to the reference interval [0, 1] are172

ϕ̂1(x̂) = 2x̂2 − 3x̂ + 1,

ϕ̂2(x̂) = −4x̂2 + 4x̂,

ϕ̂3(x̂) = 2x̂2 − x̂.

For the sake of simplicity, let us consider the case of T2h partitioning with 5 equispaced points (3173

internal points) and Th partitioning with 9 equispaced points (7 internal points) obtained from T2h by174

considering the midpoint of each subinterval.175

So, with respect to (12), the ϕ2h
1 coefficients are176

ϕ̂2(1/4) = 3/4, ϕ̂2(1/2) = 1, ϕ̂2(3/4) = 3/4, ϕ̂2(1) = 0,

while the ϕ2h
2 coefficients are177

ϕ̂3(1/4) = −1/8, ϕ̂3(1/2) = 0, ϕ̂3(3/4) = 3/8, ϕ̂3(1) = 1,
ϕ̂1(1/4) = 3/8, ϕ̂1(1/2) = 0, ϕ̂1(3/4) = −1/8, ϕ̂1(1) = 0,

and so on again as for that first couple of basis functions. Notice also that in order to evaluate the178

coefficients, for the sake of simplicity, we are referring to the basis functions on the reference interval179

as depicted in Figure 1. To sum up, the obtained prolongation matrix is as follows180

Ph×2h = P7
3 =



3
4
−1

8
1 0
3
4

3
8

0 1
3
8

3
4

0 1

−1
8

3
4


(15)

Hereafter, we are interested in setting such a geometrical multigrid strategy, proposed in [4,13,14],181

in the framework of the more general algebraic multigrid theory and in particular in the one driven182

by the matrix symbol analysis. To this end we will represent the prolongation operator quoted above183

as the product of a Toeplitz matrix generated by a polynomial pQ2
and a suitable cutting matrix. We184
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1
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3

mesh h

mesh 2h

Figure 1. Construction of the Q2 prolongation operator: basis functions on the reference element.

recall that the Finite Element stiffness matrix could be thought as a principal submatrix of a Toeplitz185

matrix generated by the matrix-valued symbol that, from (8), has the compact form186

fQ2(ϑ) =

 16
3 − 8

3 (1 + eı̂ϑ)

− 8
3 (1 + e−ı̂ϑ) 14

3 + 1
3 (e

ı̂ϑ + eı̂ϑ)

 . (16)

Then it is quite natural to look for a matrix-valued symbol for the polynomial pQ2
as well. In addition,187

the cutting matrix is also formed through the Kronecker product of the scalar cutting matrix in (14)188

and the identity matrix of order 2, so that189

Pms
ms+1

= (Pms+1
ms )T = Ams(pQ2

)((Kms+1×ms)
T ⊗ I2).

Taking into account the action of the cutting matrix (Kms+1×ms)
T ⊗ I2, we can easily identify from (15)190

the generating polynomial as191

pQ2
(ϑ) = K0 + K1eı̂ϑ + K−1e−ı̂ϑ + K2e2ı̂ϑ + K−2e−2ı̂ϑ. (17)

where192

K0 =

[
3
4

3
8

0 1

]
, K1 =

[
0 3

8
0 0

]
, K−1 =

[
3
4 − 1

8
1 0

]
, K2 =

[
0 − 1

8
0 0

]
, K−2 = 02×2,

that is193

pQ2
(ϑ) =

 3
4 (1 + e−ı̂ϑ) 3

8 (1 + eı̂ϑ)− 1
8 (e
−ı̂ϑ + e2ı̂ϑ)

e−ı̂ϑ 1

 .
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A very preliminary analysis, just by computing the determinant of pQ2
(ϑ) shows there is a zero of194

third order in the mirror point ϑ = π, being195

det(pQ2
(ϑ)) =

1
8

e−2ı̂ϑ(eı̂ϑ + 1)3.

Moreover, the analysis can be more detailed as highlighted in Section 2.196

We highlight that our choices are in agreement with the mathematical conditions set in items A)197

and B). Condition C) is violated and we will discuss it in Section 5 and Remark 2. Nevertheless, it is198

possible to derive the following TGM convergence and optimality sufficient conditions that should be199

verified by f and p = pQ2
, exploiting the idea in the proof of the main result of [5]:200

p(ϑ)H p(ϑ) + p(ϑ + π)H p(ϑ + π) > Ok for all ϑ ∈ [0, 2π] (18)

R(ϑ) ≤ γI2k (19)

with201

R(ϑ) =

[
f (ϑ)

f (ϑ + π)

]− 1
2
(

I2k −
[

p(ϑ)
p(ϑ + π)

]
q(ϑ)

[
p(ϑ)H p(ϑ + π)H

]) [ f (ϑ)
f (ϑ + π)

]− 1
2

,

where q(ϑ) =
[
p(ϑ)H p(ϑ) + p(ϑ + π)H p(ϑ + π)

]−1, Ok is the k× k null matrix, γ > 0 is a constant202

independent on n, and we denote by A > B (resp. A ≤ B) the positive definiteness (resp. non positive203

definiteness) of the matrix A− B. The condition (19) is requiring the matrix-valued function R(ϑ)204

being uniformly bounded in the spectral norm. These conditions are obtained from the proof of the205

main convergence result in [5], where, after several numerical derivations, it was concluded that the206

above conditions are the final requirements needed.207

To this end we have explicitly formed the matrices involved in conditions (18) and (19) and208

computed their eigenvalues for ϑ ∈ [0, 2π]. Results are reported in Figure 2 and are in perfect209

agreement with the theoretical requirements.210

In the second panel of Table 1, we report the number of iterations needed for achieving the211

predefined tolerance 10−6, when increasing the matrix size in the setting of the current subsection.212

Indeed, we use Ams(pQ2
)(Kms+1×ms)

T and its transpose as restriction and prolongation operators and213

Gauss-Seidel as a smoother. Again we remind that only one iteration of pre-smoothing and only one214

iteration of post-smoothing are employed in our numerical setting.215

As expected, we observe that the number of iterations needed for the two-grid convergence216

remains constant when we increase the matrix size, numerically confirming the optimality of the217

method.218

Moreover, we notice that also the V-cycle and W-cycle methods possess optimal convergence219

properties. Although this behavior is expected from the point of view of differential approximated220

operators, it is interesting in the setting of algebraic multigrid methods. Indeed, constructing an221

optimal V-cycle method for matrices in this block setting might require a specific analysis of the222

spectral properties of the restricted operators (see [5]).223
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Figure 2. Check of conditions for Q2 prolongation. On the left, the plot of the eigenvalues of
p(ϑ)H p(ϑ) + p(ϑ + π)H p(ϑ + π) for ϑ ∈ [0, 2π]. On the right, the plot of the eigenvalues of R(ϑ)
for ϑ ∈ [0, 2π].

4.3. Q3 case224

Hereafter, we briefly summarize the case of Q3 Finite Elements, following the very same path we225

already considered in the previous section for P2 Finite Elements. The basis functions with respect to226

the reference interval [0, 1] are227

ϕ̂1(x̂) = −9
2

x̂3 + 9x̂2 − 11
2

x̂ + 1,

ϕ̂2(x̂) =
27
2

x̂3 − 45
2

x̂2 + 9x̂, (20)

ϕ̂3(x̂) = −27
2

x̂3 + 18x̂2 − 9
2

x̂,

ϕ̂4(x̂) =
9
2

x̂3 − 9
2

x̂2 + x̂.

For the sake of simplicity, let us consider the case of T2h partitioning with 7 equispaced points (5228

internal points) and Th partitioning with 13 equispaced points (11 internal points) obtained from T2h229

by considering the midpoint of each subinterval.230

So, with respect to (12) (see also Figure 3), the ϕ2h
1 coefficients are231

ϕ̂2(1/6) = 15/16, ϕ̂2(1/3) = 1, ϕ̂2(1/2) = 9/16,
ϕ̂2(2/3) = 0, ϕ̂2(5/6) = −5/16, ϕ̂2(1) = 0,

while, the ϕ2h
2 coefficients are232

ϕ̂3(1/6) = −5/16, ϕ̂3(1/3) = 0, ϕ̂3(1/2) = 9/16,
ϕ̂3(2/3) = 1, ϕ̂3(5/6) = 15/16, ϕ̂3(1) = 0,

and the ϕ2h
3 coefficients are233

ϕ̂4(1/6) = 1/16, ϕ̂4(1/3) = 0, ϕ̂4(1/2) = −1/16,
ϕ̂4(2/3) = 0, ϕ̂4(5/6) = 5/16, ϕ̂4(1) = 1,
ϕ̂1(1/6) = 5/16, ϕ̂1(1/3) = 0, ϕ̂1(1/2) = −1/16,
ϕ̂1(2/3) = 0, ϕ̂1(5/6) = 1/16, ϕ̂1(1) = 0.
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Thus, the obtained prolongation matrix is as follows234

Ph×2h = P11
5 =



15
16

− 5
16

1
16

1 0 0
9

16
9

16
− 1

16
0 1 0

− 5
16

15
16

5
16

0 0 1
5

16
15
16

− 5
16

0 1 0

− 1
16

9
16

9
16

0 0 1
1

16
− 5

16
15
16



. (21)

Thus, taking into consideration that the stiffness matrix is a principal submatrix of the Toeplitz235

matrix generated by the matrix-valued function236

fQ3(ϑ) =


54
5 − 297

40
27
20 −

189
40 eı̂ϑ

− 297
40

54
5 − 189

40 + 27
20 eı̂ϑ

27
20 −

189
40 e−ı̂ϑ − 189

40 + 27
20 e−ı̂ϑ 37

5 −
13
40 (e

ı̂ϑ + e−ı̂ϑ)

 , (22)

we are looking for the matrix-valued symbol pQ3
as well. By defining237

Pms
ms+1

= (Pms+1
ms )T = Ams(pQ3

)((Kms+1×ms)
T ⊗ I3)

it is easy to identify the generating polynomial as238

pQ3
(ϑ) = K0 + K1eı̂ϑ + K−1e−ı̂ϑ + K2e2ı̂ϑ + K−2e−2ı̂ϑ, (23)

where239

K0 =

 0 1 0
− 5

16
15
16

5
16

0 0 1

, K1 =

 0 0 5
16

0 0 0
0 0 − 1

16

, K−1 =

 15
16 − 5

16
1

16
1 0 0

9
16

9
16 − 1

16

,

240

K2 =

 0 0 0
0 0 1

16
0 0 0

, K−2 = 03×3,

that is241

pQ3
(ϑ) =

 15
16 e−ı̂ϑ 1− 5

16 e−ı̂ϑ 1
16 e−ı̂ϑ + 5

16 eı̂ϑ

e−ı̂ϑ − 5
16

15
16

5
16 + 1

16 e2ı̂ϑ

9
16 e−ı̂ϑ 9

16 e−ı̂ϑ 1− 1
16 (e

ı̂ϑ + e−ı̂ϑ)

 . (24)

A trivial computation shows again shows there is a zero of fourth order in the mirror point ϑ = π,242

being243

det(pQ3
(ϑ)) =

1
64

e−3ı̂ϑ(eı̂ϑ + 1)4.

However, the main goal is to verify conditions (18) and (19): we have explicitly formed the matrices244

involved and computed their eigenvalues for ϑ ∈ [0, 2π]. Results are in perfect agreement with245
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tol = 1.e− 2 tol = 1.e− 4 tol = 1.e− 8
# subintervals TGM V-cycle W-cycle TGM V-cycle W-cycle TGM V-cycle W-cycle

8 3 3 3 5 5 5 8 8 8
16 3 3 3 5 5 5 9 9 9
32 3 3 3 5 5 5 9 10 9
64 3 3 3 5 5 5 9 10 9

128 3 3 3 5 5 5 9 10 9
256 3 3 3 5 5 5 9 10 9
512 3 3 3 5 5 5 9 10 9

Table 2. Number of iterations needed for the convergence of the two-grid, V-cycle and W-cycle
methods for k = 2 in one dimension with a(x) ≡ 1, tol = 1.e− 2, 1.e− 4, 1.e− 8.

tol = 1.e− 2 tol = 1.e− 4 tol = 1.e− 8
# subintervals TGM V-cycle W-cycle TGM V-cycle W-cycle TGM V-cycle W-cycle

8 3 3 3 6 6 6 12 12 12
16 3 3 3 6 6 6 12 12 12
32 3 3 3 6 6 6 12 12 12
64 3 3 3 6 6 6 12 12 12

128 3 3 3 6 6 6 12 12 12
256 3 3 3 6 6 6 12 12 12
512 3 3 3 6 6 6 12 12 12

Table 3. Number of iterations needed for the convergence of the two-grid, V-cycle and W-cycle methods
for k = 3 in one dimension with a(x) ≡ 1, tol = 1.e− 2, 1.e− 4, 1.e− 8.

the theoretical requirements (see Figure 4). This analysis links the geometric approach proposed in246

[4,13,14] to the novel algebraic multigrid methods for block-Toeplitz matrices.247

In the third panel of Table 1, we report the number of iterations needed for achieving the248

predefined tolerance 10−6, when increasing the matrix size in the setting of the current subsection.249

Indeed, we use Ams(pQ3
)(Kms+1×ms)

T and its transpose as restriction and prolongation operators and250

Gauss-Seidel as a smoother (one iteration of pre-smoothing and one iteration of post-smoothing).251

As expected, we observe that the number of iterations needed for the two-grid convergence252

remains constant when we increase the matrix size, numerically confirming the optimality of the253

method. As in the Q2 case, we also notice that the V-cycle and W-cycle methods possess the same254

optimal convergence properties.255

Comparing the three panels in Table 1, we also notice a mild dependency of the number of256

iterations on the polynomial degree k. In addition, we can see in Tables 2-3 that the optimal behavior257

of the two-grid, V-cycle and W-cycle methods for k = 2, 3 remains unchanged if we test different258

tolerance values.259

Remark 2. In the cases analyzed in the current section, we notice that, even though p(0) and p(π) do not260

commute, the two-grid method is still convergent and optimal. The latter commutation property, along with261

conditions A) and B) reported in 2, is sufficient to have optimal convergence of the two-grid method. This262

analysis reveals that commutativity is not a necessary property. Indeed, in our examples, we showed that the263

operator R(ϑ) is uniformly bounded in the spectral norm.264

However, we notice that in all cases the commutator SQk
(ϑ) = pQk

(ϑ)pQk
(ϑ + π)− pQk

(ϑ)pQk
(ϑ + π)265

computed in 0 is a singular matrix. In particular, computing our commutator matrix SQk
(ϑ) in ϑ = 0 we266

obtain:267

SQ2
(0) =

1
2

(
−1 1
−1 1

)
, SQ3

(0) =
1

256

−462 330 132
−438 354 84
−378 270 108

 ,

which are indeed singular matrices.268
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Figure 3. Construction of the Q3 prolongation operator: basis functions on the reference element.
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Figure 4. Check of conditions for Q3 prolongation. On the left, the plot of the eigenvalues of
p(ϑ)H p(ϑ) + p(ϑ + π)H p(ϑ + π) for ϑ ∈ [0, 2π]. On the right, the plot of the eigenvalues of R(ϑ)
for ϑ ∈ [0, 2π].

Remark 3. It is worth stressing that the results hold also in dimension d ≥ 2. In fact, interestingly enough, we269

observe that the dimensionality d does not affect the efficiency of the proposed method as well shown in Table 4270

for the case d = 2. We finally remind that the tensor structure of the resulting matrices highly facilitates the271

generalization and extension of the numerical code to the case of d ≥ 2. Indeed the prolongation operators in the272

multilevel setting are constructed by a proper tensorization of those in 1D.273

Furthermore, we highlight that the presented analysis for a ≡ 1 can be easily extended to the274

case on non constant coefficients a(x) 6= 1 in 1D, resp. a(x, y) 6= 1 in 2D, since, following a geometric275

approach, the prolongation operators for the general variable coefficients remain unchanged. In Tables276

5-6 we show the number of iterations needed for the convergence of the two-grid, V-cycle and W-cycle277

methods for k = 2 in one and two dimensions for different values of a 6≡ 1.278

5. Concluding remarks279

In the present paper we have considered multigrid strategies for the resolution of linear systems280

arising from the Qk Finite Elements approximation of one and higher dimensional elliptic partial281
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k = 1 k = 2 k = 3
# Two V- W- # Two V- W- # Two V- W-

nodes Grid cycle cycle nodes Grid cycle cycle nodes Grid cycle cycle
72 5 5 5 152 6 6 6 232 7 7 7

152 5 6 5 312 6 6 6 472 7 7 7
312 5 6 5 632 6 6 6 952 7 7 7
632 5 6 5 1272 6 6 6 1912 7 7 7
1272 5 6 5 2552 6 6 6 3832 7 7 7

Table 4. Number of iterations needed for the convergence of the two-grid, V-cycle and W-cycle methods
for k = 1, 2, 3 in dimension d = 2 with a(x) ≡ 1.

a(x) = ex a(x) = 10x + 1 a(x) = |x− 1/2|+ 1
# subintervals TGM V-cycle W-cycle TGM V-cycle W-cycle TGM V-cycle W-cycle

8 7 7 7 11 11 11 7 7 7
16 7 7 7 9 12 8 7 7 7
32 7 8 7 7 14 7 7 7 7
64 7 8 7 7 14 7 7 7 7

128 7 8 7 7 15 7 7 7 7
256 7 8 7 7 15 7 7 7 7
512 7 8 7 7 14 7 7 7 7

Table 5. Number of iterations needed for the convergence of the two-grid, V-cycle and W-cycle
methods for k = 2 in one dimension with a(x) = ex, a(x) = 10x + 1, a(x) = |x− 1/2|+ 1, respectively,
tol = 1.e− 6.

a(x, y) = e(x+y) 10(x + y) + 1 |x− 1/2|+ |y− 1/2|+ 1
{

1 x, y ≤ 1/2
5000 otherwise

# Two V- W- Two V- W- Two V- W- Two V- W-
nodes Grid cycle cycle Grid cycle cycle Grid cycle cycle Grid cycle cycle

72 6 6 6 6 6 6 6 6 6 6 6 6
152 6 6 6 6 6 6 6 6 6 6 6 6
312 6 6 6 6 6 6 6 6 6 6 6 6
632 6 6 6 6 6 6 6 6 6 6 6 6
1272 6 6 6 6 6 6 6 6 6 6 6 6

Table 6. Number of iterations needed for the convergence of the two-grid, V-cycle and W-cycle
methods for k = 2 in two dimensions with a(x, y) = e(x+y), a(x, y) = 10(x + y) + 1, a(x, y) =

|x− 1/2|+ |y− 1/2|+ 1, a(x, y) = 1 if x ≤ 1/2 and y ≤ 1/2, 5000 otherwise respectively, tol = 1.e− 6.
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differential equations with Dirichlet boundary conditions and where the operator is div (−a(x)∇·),282

with a continuous and positive over Ω, Ω being an open and bounded subset of Rd. While the analysis283

has been given in one dimension, the numerics are shown also in higher dimension d ≥ 2, showing284

an optimal behavior in terms of the dependency on the matrix size and a substantial robustness with285

respect to the dimensionality d and to the polynomial degree k (see Remark 3).286

We mention the fact that our analysis might be of interest for several variations on problem (1).287

Indeed if we impose different boundary conditions our procedure can be applied with slight changes.288

In fact, the resulting stiffness matrices differ from the ones analyzed in the present paper, of a small289

rank correction matrix. Therefore, they share the same asymptotic spectral properties, which means290

we only have to take care of possible outliers, which affect the choice of the proper smoother.291

By interpreting the analysis given in [5] in our specific block setting, we have provided a study of292

the relevant analytical features of all the involved spectral symbols, both of the stiffness matrices fQk
293

and of the projection operators pQk
, k = 1, 2, 3. While the two-grid, V-cycle, and W-cycle procedures294

show optimal or quasi-optimal convergence rate, with respect to all the relevant parameters (size,295

dimensionality, polynomial degree k, diffusion coefficient), the theoretical prescriptions are only partly296

satisfied. In fact, our choices are in agreement with the mathematical conditions set in items A) and B),297

while condition C) is violated. Here for quasi-optimal convergence rate we mean that the convergence298

speed does not depend on the size (optimality with respect to the this parameter) and it is mildly299

depending on the other relevant parameters such as dimensionality, polynomial degree k, and diffusion300

coefficient. By looking at the mathematical derivations in [5], we observe that the latter condition301

indeed is a technical one. In reality, we believe that condition C) is not essential and the commutation302

request can be substituted by a less restrictive one, possibly following the considerations in Remark 2.303

Such a point is in our opinion important for widening the generality of the theory and it will be the304

subject of future investigations.305

In conclusion, regarding the computational cost of the proposed algorithm, we highlight that the306

choice of the optimal smoother from a computational viewpoint is beyond the scope of the present307

paper. Indeed, in the case where the matrices possess a tensor structure a further analysis will be308

performed in order to devise a more competitive method.309

Author Contributions: All authors contributed equally and significantly in writing this article. All authors read310

and approved the final manuscript.311

Funding: The authors are grateful to INDAM-GNCS for the support in conducting the research. Paola Ferrari is312

(partially) financed by the GNCS2019 Project “Metodi numerici per problemi mal posti".313

Conflicts of Interest: The authors declare no conflict of interest.314

References315

1. Aricò, A.; Donatelli, M.; Serra-Capizzano, S. V-cycle optimal convergence for certain (multilevel) structured316

linear systems. SIAM J. Matrix Anal. Appl. 2004, 26, 186–214.317

2. Beckermann, B.; Kuijlaars, A.B.J. Superlinear convergence of conjugate gradients. SIAM J. Numer. Anal. 2001,318

39, 300–329.319

3. Böttcher, A.; Silbermann, B. Introduction to Large Truncated Toeplitz Matrices. Springer-Verlag, New York 1999.320

4. Brandt, A. Multi-level adaptive solutions to boundary-value problems. Math. Comp. 1977, 31-138, 333–390.321

5. Donatelli, M.; Ferrari, P.; Furci, I.; Sesana, D.; Serra-Capizzano, S. Multigrid methods for block-circulant and322

block-Toeplitz large linear systems: algorithmic proposals and two-grid optimality analysis. Under revision.323

6. Donatelli, M.; Garoni, C.; Manni, C.; Serra-Capizzano, S.; Speleers, H. Robust and optimal multi-iterative324

techniques for IgA Galerkin linear systems. Comput. Methods Appl. Mech. Engrg. 2015, 284, 230–264.325

7. Donatelli, M.; Garoni, C.; Manni, C.; Serra-Capizzano, S.; Speleers, H. Robust and optimal multi-iterative326

techniques for IgA collocation linear systems. Comput. Methods Appl. Mech. Engrg. 2015, 284, 1120–1146.327

8. Donatelli, M.; Garoni, C.; Manni, C.; Serra-Capizzano, S.; Speleers, H. Symbol-based multigrid methods for328

Galerkin B-spline isogeometric analysis. SIAM J. Numer. Anal. 2017, 55-1, 31–62.329

9. Fiorentino, G.; Serra, S. Multigrid methods for Toeplitz matrices. Calcolo 1991, 28, 283–305.330



Version December 12, 2019 submitted to Mathematics 17 of 17

10. Garoni, C.; Serra-Capizzano, S.; Sesana, D. Spectral analysis and spectral symbol of d-variate Qp Lagrangian331

FEM stiffness matrices. SIAM J. Matrix Anal.Appl. 2015, 36-3, 1100–1128.332

11. Garoni, C.; Serra-Capizzano, S.; Sesana, D. Block Locally Toeplitz Sequences: Construction and Properties.333

Proc. Workshop Structured matrices: analysis, algorithms and applications - Cortona (AR - Italy) Sept. 4–8 2017,334

Springer INdAM Series 2019, 30, 25–58.335

12. Garoni, C.; Serra-Capizzano, S.; Sesana, D. Block Generalized Locally Toeplitz Sequences: Topological336

Construction, Spectral Distribution Results, and Star-Algebra Structure. Proc. Workshop Structured matrices:337

analysis, algorithms and applications - Cortona (AR - Italy) Sept. 4–8 2017, Springer INdAM Series 2019, 30, 59–80.338

13. Hackbusch, W. Multigrid Methods and Applications. Springer Verlag, Berlin, Germany, 1985.339

14. Hackbusch, W. Iterative solution of large sparse systems of equations. Springer Verlag, New York, 1994.340

15. Mazza, M.; Ratnani, A.; Serra Capizzano, S. Spectral analysis and spectral symbol for the 2D curl-curl341

(stabilized) operator with applications to the related iterative solutions. Math. Comput. 2019, 88-317,342

1155–1188.343

16. Rahla, R.; Serra-Capizzano, S.; Tablino Possio, C. Spectral analysis of Pk Finite Element Matrices in the case of344

Friedrichs-Keller triangulations via GLT Technology. Numer. Linear Algebra Appl., to appear.345

17. Saad, Y. Iterative methods for sparse linear systems. 2nd Edition, SIAM 2003.346

18. Serra Capizzano, S. Generalized locally Toeplitz sequences: spectral analysis and applications to discretized347

partial differential equations. Linear Algebra Appl. 2003, 366, 371–402.348

19. Serra Capizzano, S. The GLT class as a generalized Fourier analysis and applications. Linear Algebra Appl.349

2006, 419-1, 180–233.350

20. Tilli, P. A note on the spectral distribution of Toeplitz matrices. Linear Multilinear Algebra 1998, 45, 147–159.351

21. Tyrstyshnikov, E. A unifying approach to some old and new theorems on distribution and clustering. Linear352

Algebra Appl. 1996, 232, 1–43.353

c© 2019 by the authors. Submitted to Mathematics for possible open access publication354

under the terms and conditions of the Creative Commons Attribution (CC BY) license355

(http://creativecommons.org/licenses/by/4.0/).356

http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Structure of the paper

	Two-grid and Multigrid methods
	Structure of the matrices and spectral analysis: equivalence, in one dimension
	Multigrid strategy definition, symbol analysis, and numerics
	Q1 case
	Q2 case
	Q3 case

	Concluding remarks
	References

