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Abstract
We introduce a novel framework for optimiza-
tion based on energy-conserving Hamiltonian dy-
namics in a strongly mixing (chaotic) regime and
establish its key properties analytically and nu-
merically. The prototype is a discretization of
Born-Infeld dynamics, with a squared relativis-
tic speed limit depending on the objective func-
tion. This class of frictionless, energy-conserving
optimizers proceeds unobstructed until slowing
naturally near the minimal loss, which dominates
the phase space volume of the system. Building
from studies of chaotic systems such as dynam-
ical billiards, we formulate a specific algorithm
with good performance on machine learning and
PDE-solving tasks, including generalization. It
cannot stop at a high local minimum, an advan-
tage in non-convex loss functions, and proceeds
faster than GD+momentum in shallow valleys.

1. Introduction and Summary
Many scientific and technological problems, including ma-
chine learning (ML), require optimization, the process of
evolving to or near to the minimum of a nontrivial loss func-
tion F (Θ) depending on a high dimensional space of param-
eters Θ. The loss function may be highly non-convex and/or
contain shallow long valleys. It traditionally works – quite
well in many cases – via a form of gradient descent (GD),
with many improvements derived over the years involving
momentum and adaptive features1. A standard example
is (stochastic) GD with momentum (Polyak, 1964) which
we will denote (S)GDM. In physics terms, these standard
algorithms involve a noisy and discretized form of frictional
evolution of a particle on a complicated potential energy
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1See e.g. (Bottou et al., 2018) for a review and (Kingma & Ba,
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landscape, without conservation of total kinetic and poten-
tial energy E. More precisely, given an objective function
F (Θ), one can define a potential energy:

V (Θ) ≡ F (Θ)−∆V , (1)

where ∆V is a (possibly zero) constant shift whose adaptive
tuning we will address below. Through this map, optimiza-
tion can be formulated as (discretized) physical evolution
from an initial point Θ0, with the goal of reaching suf-
ficiently low values of V . Standard methods correspond
to friction-dominated evolution, relying on some form of
dissipation of energy to achieve this.

In this work, we show that friction is not necessary: energy-
conserving dynamics (ECD) provides a distinctive class
of optimization algorithms with some favorable properties,
including increased calculability of its behavior, resulting
from the E conservation summarized in Table 1. The min-
imal version contains zero friction, and conserves energy,
yet essentially stops moving near vanishing loss. This may
sound paradoxical on first glance, but it is straightforward.
One example which we focus on in this work is based on
relativistic Born-Infeld (BI) dynamics, with the (squared)
speed limit2 crel depending on V (Θ) as:

c2rel = V (Θ). (2)

As a consequence of this, the evolution essentially stops
when V (Θ)→ 0. As defined in (1), ∆V represents a con-
stant hyper-parameter sometimes needed to shift the objec-
tive to V = 0; although adaptively tunable, we note that
∆V = 0 in practice for a number of standard problems in-
cluding ML tasks with achievable vanishing loss objectives
and partial differential equation (PDE) solving with F given
by the summed squares of the equations. When V vanishes,
so does the speed of motion in parameter space. Another ex-
ample is to take mass = 1/V for ordinary (non-relativistic)
particle motion; again even without friction slowing it down,
the system ultimately slows as V → 0,mass→∞.

2Relativistic dynamics for optimization was considered previ-
ously in the interesting work (França et al., 2020), but there the
speed of light was taken to be a constant and friction was intro-
duced to enable the evolution to converge; see also related work in
(Lu et al., 2017a). Our approach was motivated by the mechanism
(Alishahiha et al., 2004) for early-universe inflationary cosmology,
a subject which also involves evolution on a potential landscape.
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Table 1. ECD versus frictional optimizers. Energy conservation
improves calculational control of optimization and generalization.

ECD FRICTION ((S)GDM, . . . )

CONSERVES ENERGY E FRICTION DRAINS E
CANNOT GET STUCK CAN STOP IN HIGH
IN HIGH LOCAL MINIMUM LOCAL MINIMUM
CANNOT OVERSHOOT CAN OVERSHOOT
V = 0 = ∇V V = 0 = ∇V

DEPENDS ON V AND ∇V DEPENDS ONLY ON ∇V
ON SHALLOW REGION: ON SHALLOW REGION:
θ ∼ e−mt/

√
2 (8) θ ∼ e−m2t/f (7)

ANALYTIC PREDICTION STOCHASTIC INTUITION
FOR DISTRIBUTION FOR DISTRIBUTION

In various applications, literally achieving the globally mini-
mal loss may lead to overfitting and failure of generalization.
For BI, we find that the speed limit kicks in soon enough
to avoid this in small benchmark experiments and our own
synthetic PDE solving tests.

Our contributions are to introduce ECD, the frictionless
energy-conserving class of optimizers with mixing dynamics
(introduced in §3.1), realized concretely with BBI (Algo-
rithm 1), derive its key properties and advantages (Table 1)
and confirm them experimentally in synthetic loss functions,
PDEs, MNIST and CIFAR.

2. Speed-limited Energy Conserving
Frictionless Hamiltonian Dynamics

In physical language, GDM is a discretized version of par-
ticle motion with friction on a potential energy function
V (Θ). The motion in the potential is governed by Newton’s
laws of motion, force = mass× acceleration,−∇V −fΘ̇ =
mΘ̈ with coefficient of friction f . This is equivalent to the
first-order form p = mΘ̇, ṗ = −pf/m −∇V in terms
of the position Θ and momentum p, whose appropriate
discretization leads to GDM algorithm. Friction leads to
violation of energy conservation for the particle (physically,
transfer of energy to another sector).

In relativistic particle mechanics, the evolution equations
are different, with bounded speed. For squared speed limit
V one finds frictionless, energy-conserving continuum evo-
lution equations given in terms of positions θi (components
of Θ) and momenta πi ≡ θ̇i√

1− Θ̇2

V

(components of the mo-

mentum vector Π):

θ̇i = πi
V (Θ)

E
, π̇i = −

∂iV

2

(
E

V
+

V

E

)
(3)

written in terms of the conserved energy E

E =
V√

1− Θ̇2

V

=
√

V (V +Π2) = constant. (4)

These equations are concisely derived from the appropriate
physical action principle3 in Appendix A.1 starting from the

action S = −
∫
dtV (Θ)

√
1− Θ̇2

V (Θ) (Born & Infeld, 1934;
Silverstein & Tong, 2004). E conservation (dE/dt = 0) in
the continuum theory follows from applying (3) to a time
derivative of the third expression in (4).

This implies a first-order discrete update rule

πi(t+∆t)− πi(t) = −∆t
∂iV (Θ(t))

2

(
E

V
+

V

E

)
(5)

θi(t+∆t)− θi(t) = ∆t πi(t+∆t)
V (Θ(t))

E
(6)

As we will see more in detail below, noise (minibatches) cor-
respond to a time-dependent sequence of jumps in V (Θ, t).

This will serve as a starting point for our algorithm, although
we will be led to include more features beyond the minimal
rule (5)-(6). Specifically, we will rescale Π to restore energy
conservation once violated by the discrete updates – even
in the noisy case of minibatches – and we will include
options for randomized bounces at fixed E to avoid stable
or quasistable orbits in the motion.

Energy conservation immediately implies

Theorem 2.1. If V ̸= 0 and V ̸= E then Θ̇ ̸= 0 in the
continuum evolution, and Θ(t+∆t) ̸= Θ(t) for the discrete
algorithm.

Proof. From (4) if Θ̇ = 0 and V ̸= 0 then E = V in
the continuum. This extends to the discrete case since the
algorithm restores E by rescaling Π if numerical errors in
energy conservation build up as a result of the discreteness.
Specifically, the update rule (5), together with the fact that
E is constant, makes it impossible to obtain Θt+1 = Θt

(stalling on parameter space) unless V = 0 or V = E,Π =
0. (The latter only persists to later steps (4) if ∂V = 0 with
V = E at initialization, a set of measure 0 easily avoided
with initial energy δE.)

Therefore, initialization with E ≥ V ≫ Vobjective ensures
the impossibility of getting stuck in a high local minimum
with V ≫ Vobjective; illustrated here for BI, this extends to
ECD in general.

3For a succinct introduction to this general formalism and the
role of energy conservation classical physics, see e.g. lectures 6-8
of (Susskind & Hrabovsky, 2013) or (Landau et al., 1976) Chapters
1,2,7.
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In various problems, shallow directions in the loss land-
scape are important (Li et al., 2018; Fort & Scherlis, 2019;
Draxler et al., 2018). Here also there is a contrast between
ECD (e.g. BI) and GDM as well as their stochastic versions.
To get a sense for this, consider a simple shallow direction
V = 1

2m
2θ2 (with m2 the smallest eigenvalue of the Hes-

sian). Gradient descent alone, or friction dominated motion
generally, follows the solution

Θ̇ ≃ −∇V

f
→ m2Θ

f
, Θ ∼ e−m2t/f (7)

with f the friction coefficient. BI on the other hand satisfies
the speed limit

|Θ̇| ≤
√
V → mθ/

√
2, Θ ∼ e−mt/

√
2 (8)

For a fixed value of the friction f , as we reduce m so that the
potential becomes more shallow, the GD speed decreases
quadratically while the BI speed decreases only linearly,
thus moving faster toward the objective. We find this dis-
tinction survives in the discrete hyper-parameter optimized
experiments detailed below.

A related distinction has to do with overshooting V = 0.
In the continuum, it is impossible for BI to do this since it
would violate the speed limit, whereas GDM can overshoot
and oscillate (or leave the V = 0 basin entirely). The
discretized version can overshoot V = 0 by a small amount,
at which point the algorithm optionally either stops the
evolution or adaptively adjusts ∆V if desired (see below).

If initialized at zero velocity (Θ̇ = 0), relativistic effects
are negligible to begin with: in that case the Born-Infeld
dynamics starts out like a non-relativistic particle exploring
the V landscape without friction. Even without friction, the
speed limit ensures that it slows dramatically near V = 0.

3. Mixing and Chaos: ECD with Dispersing
Elements

To avoid ECD (e.g. BI) getting into long-lived orbits high
on the loss landscape V , we exploit the analytic power of E
conservation and import results from the field of Hamilto-
nian dynamical systems. This also enables predictions for
the late-time distribution of ECD trajectories.

3.1. Mixing and Distributions

The phase space of a physical system is the space of accessi-
ble momenta Π and positions Θ. A chaotic system exhibits
sensitive dependence on initial conditions, enabling initially
closeby trajectories to explore very different regions of the
phase space; in its strongest forms most periodic orbits are
unstable. For exponentially mixing systems, after a finite
timescale tmix, the probability to find a particle – sampled

from those in a small initial droplet – in a particular region
R of the phase space is given to good approximation by the
volume (‘measure’) of R. 4 This volume is parametrically
large as V → 0 for BI. The total phase space volume for an
n-dimensional parameter space is given by

Vol(M) =

∫
dnπdnθδ(

√
V (V +Π2)− E) (9)

Integrating over Π yields eq.(40), concentrated near small
V . Near a minimum, V is quadratic, giving (after an
orthogonal diagonalization of its Hessian) V ≃ VI +
1
2

∑n
i=1 m

2
Ii(θi − θIi)

2. Evaluating this for a basin |θIi −
θi| < 1/mIi at fixed n yields (see §A.3)

Vol(MI)→ bn

(
2πn/2

Γ(n/2)

)2
En−1∏
i mIi

log(VI) VI → 0,

(10)
where bn is a constant. Since VI → 0 dominates in this
formula, mixing with a small enough value of tmix is a suf-
ficient condition for successful optimization in this frame-
work. Since the probability of being in a region of phase
space is proportional to its volume, (10) yields an analytic
prediction for the distribution of results over multiple low-
lying minima which we test experimentally in §4.3. Eq.
(10) and the results §4.3 exhibit a preference for low-lying
flat minima; on these BBI evolves faster than GD (7)-(8).
Other ECD models, e.g. V → g(V ), may enhance this
effect. In addition to its use for optimization, the formula en-
ables reverse-engineering an ECD model whose trajectories
sample from a desired distribution (De Luca et al., 2022b).

A priori we do not know whether the optimization algorithm
combined with the loss function V constitutes a strongly
chaotic, exponentially mixing system (although this may be
typical), and if so what its value of tmix is. Strong mixing
arises in dynamical billiards, see e.g. (Chernov & Markarian,
2006; Szász, 2017). Nearby trajectories bouncing off a
billiard ball disperse, leading to sensitive dependence on
initial conditions. Inspired by this, we introduce randomized
momenta at fixed Π2 in our algorithm (cf. Sec. 3.3).5

We stress that the utility of this result depends on the
timescale tmix. Consider a system consisting of a box with
an arbitrarily tiny hole to a much larger (or even infinite)
domain beyond the box. Although the latter has more phase
space volume, the time for a random trajectory to hit the hole
may be arbitrarily long. So the diverging phase space vol-
ume of a region R is not by itself enough to guarantee that
the system ends up in R after a small timescale. However,
this analogy appears too pessimistic for our case: the gradi-
ents introduce forces toward the minimum, and the speed
limit on motion is weaker for larger loss V , so the system

4A canonical example is the mixing of milk in coffee.
5Hamiltonian sampling (Betancourt, 2017; Hanada, 2018) also

involves randomized momenta, in general not conserving energy.
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moves relatively quickly through such regions, spending
more time near V = 0. Relatedly, if we endow frictionless
momentum (non-relativistic particle motion) with bounces
leading to chaos, its version of (10) is not dominated by
small V (41). This method is based on well developed sta-
tistical mechanics intuition and empirical observation, but
does not come with a general theoretical guarantee, though
it would be interesting to build from the continuum analysis
(7)-(8) to seek guarantees in the convex setting though this
may be complicated by the nonlinear updates. Typically,
the determination of tmix for a complicated system requires
experiment, and we will test our intuition that way.

3.2. The Effect of Noise (Minibatches)

Our algorithm will work similarly with or without the use
of minibatches, for which the input is a subset of the data
updated every Nbatch steps. With minibatches, the new ef-
fect on the dynamics is that the potential V (Θ, t) becomes
a function of time separately from its dependence on Θ. We
retain our prescription of explicitly restoring the initial en-
ergy E even when minibatches are used; this is a deviation
from the motivating physics model, for which explicit time
dependence generically leads to a lack of energy conserva-
tion. For a loss of the form ∆V +V = ∆V +

∑
batches Fbatch

with Fbatch ≥ 0 ∀ batches, Theorem 2.1 continues to apply.

We will explore aspects of the behavior of BI with mini-
batches at greater length in §A.4, both from this determinis-
tic (but time-dependent) perspective, and from the perspec-
tive of appropriate averaged stochastic dynamics; the speed
limit Θ̇2 < V constrains the variance of Θ̇.

3.3. The BBI Algorithm

We now combine the ingredients introduced so far and de-
scribe our detailed optimization algorithm. As explained
in Sec. 2, the starting point is given by the the continuum
equations (3). The first step is their discretization, which we
perform using a first order symplectic method.6 This ensures
that at this stage volume density in phase space is preserved
(cf. (França et al., 2020), Sec. 3 ), and results in the update
rules

Πk+1 = Πk −
1

2
∇Vk∆t

(
E

Vk
+

Vk

E

)
(11)

Θk+1 = Θk +Πk+1∆t
Vk

E
, (12)

where the subscript k refers to the k-th iterative step, and
Vk = V (Θk, tk) (with the explicit t-dependence applicable

6Symplectic methods are integration methods that preserve the
geometric structure of Hamiltonian dynamics. They are relevant
for our discussion since this also ensures that phase space volumes
are preserved. See e.g. (Hairer et al., 2006) for a review.

in the case with minibatches discussed in §3.2 and §A.4).
The energy E is a constant defined as

E ≡ V0 + δE , (13)

where V0 is the initial value of the (shifted) objective func-
tion (2) at the beginning of the evolution and δE ≥ 0 is an
optional extra hyperparameter. Its primary role is to add an
initial energy to overcome possible energy barriers higher
than the initial value of the potential, which is useful in
highly non-convex problems, such as the Ackley function
discussed in Sec. 4.1. It can also introduce more chaos in
the system to help distribute the results.

As shown in Theorem 2.1, the dynamics just described stops
changing Θ appreciably only when V = F − ∆V → 0
where ∆V is the hyperparameter defined in (2). This acts
both as threshold for the required accuracy of the solution
and as a shift in case the expected optimum F (Θ) ̸= 0.

In fact an adaptive tuning of ∆V is possible, added as an
option to the altorithm and tested in computational chemistry
experiments (De Luca et al., 2022c). Given a too-high initial
guess, the loss extends to V = F − ∆V < 0 and the
trajectory will jump to a small negative value V < 0 due to
the discreteness. Conditioned on this, ∆V may be lowered;
this iteratively tunes it.

The vector Θ is initialized by choosing an initial point in
parameter space (e.g. a standard initialization of a Neural
Network (NN)). The vector Π can be initialized in vari-
ous ways consistent with energy conservation. A natural
choice is to initialize it in the direction of (minus) the initial
gradient,

Π0 ≡ −
∇V (Θ0)

|∇V (Θ0|

√
E2

V0
− V0, (14)

with norm satisfying (4). Another possibility is to initialize
it in a random direction. Notice that if δE = 0, Π0 is
always initialized to zero, as is common in optimization.

The optimizer described so far implements the BI dynam-
ics, but does not yet contain the extra features encouraging
chaotic mixing as discussed in §3.1. This can be achieved
by introducing random bounces, which conserve energy by
keeping Π2 the same in the process. Such bounces can be
easily implemented by generating a new random Π with the
same norm as the original Π. We implement these in two
ways: (i) Nb fixed bounces separated by T0 timesteps, and
(ii) A variable number of progress-dependent bounces that
are performed if for T1 timesteps there is no progress in the
search of the minimum, e.g. if it fails to reach a value of V
smaller than all those previously seen. We will refer to this
Bouncing BI dynamics as BBI.

As a final ingredient, we include a rescaling of Π that re-
stores possible energy conservation violations due to numer-
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ical and discretization effects and minibatch transitions.7

This is performed by computing the current value of Π2
k

at each step and comparing it with
√

E2

Vk
− Vk, the value

it should have at step k. If there is a discrepancy, we ho-
mogeneously rescale all the components of Πk to restore
Π2

k to the appropriate value. The rescaling is not performed
if the quantity in the square root happens to be negative,
something that could happen very early in the evolution
due to small numerical errors. This mechanism, not en-
tirely faithful to the continuum dynamics, introduces small
changes in the phase space measure. We expect this effect
to be small and not appreciably affect the analytic estimates,
confirming this empirically in quantitative experiments in
Sec. 4.3. Algorithm 1 summarizes BBI.

4. Experiments
In this section, we empirically confirm the theoretically
predicted behavior of BBI as an example of (S)ECD, and
compare it to (S)GDM, studying both the noise-free and
noisy (stochastic) cases. We do not systematically compare
to adaptive optimizers such as Adam (Kingma & Ba, 2015),
leaving such features in BBI to future work. In §4.1-4.3 we
analyze synthetic functions useful for testing optimization
algorithms, illustrating the theory derived in previous sec-
tions and testing BBI against GDM. In §4.4-4.5 we present
richer, high-dimensional experiments in PDE solving and
ML (MNIST (Lecun et al., 1998) and CIFAR (Krizhevsky
et al., 2009)). These include minibatches, enabling us to
confirm the robustness of BBI in that setting.

We ran the synthetic experiments and MNIST on standard
laptop CPUs, while for CIFAR and the PDEs we used two
GPUs. More details, including the full source code and
sample results, can be found at https://github.com/gbdl/BBI.

4.1. Highly Non-Convex Landscapes.

In this section we consider highly non-convex functions,
focusing on the hard-to-optimize Ackley function (Ackley,
2012), plotted in Fig. 1 (left) and defined as

F (θ1, θ2) ≡ −20 exp
[
−0.2

√
0.5 (θ21 + θ22)

]
+

− exp [0.5 (cos 2πθ1 + cos 2πθ2)] + e+ 20 . (15)

We test the BBI optimizer on this function, to check its abil-
ity to escape the many local minima and to compare it with
friction-based methods. A typical evolution is displayed in
Fig. 2. Starting from a fixed random point, we observe:

• If δE is not large enough to escape the initial local

7Recall from §2 that the continuum dynamics conserves energy
exactly in the noise-free case.

Algorithm 1 BBI. ε1 and ε2 are numerical constants en-
suring stability (good default values are ε1 = 10−10,
ε2 = 10−40). The hyperparameter ∆V can be adaptively
tuned as explained in the main text. See also the code for a
preliminary working implementation.
Require: ∆t: Stepsize
Require: ∆V : Shift hyperparameter.
Require: δE: Extra initial energy.
Require: T0, T1, Nb: Bouncing thresholds and # of fixed

bounces.
Require: F (Θ): Function to minimize.
Require: Θ0: Initial parameter vector.
{c0, c1, nb} ← {0, 0, 0} (Initialize counters for bounces)
V ← F (Θ0)−∆V (Initialize V )
E ← V + δE (Initialize energy)

Π0 ← − ∇F (Θ0)
|∇F (Θ0)|

√
E2

V − V (Initialize momenta)
t← 0 (Initialize timestep)
while V > ε2 do

if c0 ̸= T0 and c1 ̸= T1 then
t← t+ 1
π2
C ← V (E

2

V 2 − 1) (Correct value of Π2)
if |Π2

t−1 − π2
C | < ε1 or π2

C < 0 then
α← 1

else
α←

√
π2
C

Π2
t−1

(Factor to restore energy cons.)

end if
Πt ← αΠt−1 (Restore energy conservation)
Πt ← Πt − 1

2∆t(VE + E
V )∇F (Θt−1)

Θt ← Θt−1 +∆tVEΠt

c0 ← c0 + 1
c1 ← c1 + 1
if new minimum then

c1 ← 0
end if
V ← F (Θt)−∆V

else
ΠN ← random vector (Generate random vector)
Πt ← ΠN

√
Π2

t

Π2
N

(Bounce momenta cons. Π2)
if c0 = T0 then
nb ← nb + 1
if nb < Nb then

c0 ← 0
else

c0 ← c0 + 1
end if

end if
c1 ← 0

end if
end while

https://github.com/gbdl/BBI
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Figure 1. Synthetic benchmark functions (depicted in 2 dimensions). A highly non-convex function (left), a function with shallow valleys
(center) and a simple multi-basin function (right).

minimum, the particle keeps oscillating indefinitely.
This is consistent with conservation of energy.

• When δE is above a certain threshold, the particle
escapes the first local minimum and keeps moving,
eventually discovering the global minimum at θi = 0.
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Figure 2. A typical BBI trajectory (starting from the circle) ex-
plores the rich landscape, stopping only at the global minimum
(star).

This is to be contrasted with friction based optimizers, such
as GDM. In that case, we observe three regimes: (i) with a
small stepsize, the evolution is not able to escape from the
first local minimum it finds, (ii) with higher stepsizes, the
optimizer jumps out of the first local minimum and keeps
exploring the landscape erratically. Doing so it might be
able to get somewhat close the the global minimum, but the
evolution is unstable and does not converge to that point, (iii)
with even higher learning rates the evolution is divergent.
This behavior is consistent with the analysis in (Lewkowycz
et al., 2020), where the second phase is called catapult
phase. We will adopt the same name8.

8(Lewkowycz et al., 2020) found that on certain problems with
flat minima the catapult phase is best for (S)GD. See Sec. 4.2 for a
function with shallow regions.

To confirm this behavior in general we performed a search
in the hyperparameter space by using hyperopt with its Tree
Of Parzen Estimators algorithm (Bergstra et al., 2013). To
do so, we picked an initial point, and used hyperopt to find
the best hyperparameters for the various optimizers. For
each optimizer we ran 500 trials, evolving for 200 steps
each, using the lowest point found during this evolution
as the measure of success. For GDM we hyperoptimized
both the learning rate η ∈ [10−4, .5] and the value of the
momentum µ ∈ [.0, 1.0].9 For BBI, we fixed a default value
for the chaos-inducing hyperparameters (T0 = 20, Nb =
4, T1 = 100), set δE = 2 to overcome the initial barrier, and
used hyperopt only on the step size. The results confirm the
observations above. Indeed, for GDM to escape the initial
minimum, hyperopt must increase the step-size, which then
results in an erratic unstable evolution. Since hyperopt tries
to avoid divergences, it will automatically select the catapult
phase to escape the initial minimum and get to a lower loss.
To confirm this interpretation, we also ran hyperopt again on
GDM but with a more stringent upper bound on the allowed
value of step-size, finding that with this constraint it is not
able to escape from the initial local minimum.

After this phase of estimation of the best hyperparameters,
we ran the evolution again for a longer time. GDM in
the catapult regime keeps moving erratically, while BBI
explores the rich landscape eventually finding the global
minimum. Fig. 3 summarizes these results.

Finally, we also checked that these results are robust against
changes of the initial point. To confirm this, we evolved
from 100 randomly selected points for (x, y) ∈ [−4, 4]2
using the hyperparameters estimated above. For each of the
points we ran the evolution 5 times, to take advantage of
the chaotic (and non-deterministic) features of BBI, but not
during the estimation phase. Doing this, we obtained that for
90/100 random initial points, BBI achieved V < 5× 10−4

9We also ran hyperopt a second time on the pair {η, γ =
− logµ}, not finding an appreciable difference (in other experi-
ments this improved GD e.g. compared to (França et al., 2020)).
For (S)GDM and its parameters we are using the default imple-
mentation in Pytorch.
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Figure 3. Comparison of the optimizers on the highly non-convex
Ackley function (15). The plot shows a typical run with the best
hyperparameters as estimated with hyperopt. GDM is either stuck
on the initial local minimum or it catapults itself out with a high
step size, which however forbids it to converge to the global op-
timum. BBI explores the rich landscape eventually finding the
global minimum and converging to a prescribed accuracy specified
by ∆V (here 10−4).

within 3 × 104 iterations, compared to 2/100 of the times
where GDM gets close to the minimum by chance during
its erratic evolution.

4.2. Shallow Valleys

In this section, we analyze the case where the global mini-
mum lies in an almost-flat valley, making efficient conver-
gence hard. For concreteness, we focus on the Zakharov
function ((Jamil & Yang, 2013), Function 173), plotted in 2
dimensions in Fig. 1 (center), with n-dimensional definition

F (Θ) ≡
n∑

i=1

θ2i +

(
1

2

n∑
i=1

iθi

)2

+

(
1

2

n∑
i=1

iθi

)4

. (16)

It has no local minima, but the global minimum at Θ = 0
lies in a nearly flat valley, slowing optimization. We take
n = 10, and compare the performance of BBI and GDM
with the same methodology described in Sec. 4.1. That is,
we start from a fixed reference point, (−1, ...,−1), and use
hyperopt to estimate the best hyperparameters by evolving
500 times for 2500 iterations. For GDM we search on the
stepsize twice (η ∈ [10−10, .5] and η ∈ [10−10, 10−5]) and
on the momentum µ ∈ [.0, 1.0], while for BBI we set high
thresholds to turn off bounces, set δE = 0, and search only
on the step-size ∆t ∈ [10−6, 10−2]. With the best hyper-
parameters thus determined, we ran the evolution for 104

iterations, obtaining the results in Fig. 4. We also selected
random initialization points and ran multiple evolutions with
the previously estimated best hyperparameters, confirming
that BBI consistently performs better than GDM.

GDM BBI

0 2000 4000 6000 8000 10000
Iteration

10 20
10 16
10 12
10 8
10 4
100
104

V

Figure 4. Performance comparison on a ten-dimensional Zakharov
function with the best estimated parameters. BBI proceeds faster
and stops at the desired accuracy specified by ∆V , here 10−22.

4.3. Two-Dimensional Multi-Basin Function

In this section we study the optimization in a simple land-
scape with two global minima whose basins of attraction
have different shapes. In this landscape, BI alone (with-
out bounces) does not exhibit chaotic mixing in our experi-
ments. We will confirm empirically that the chaotic billiards-
inspired bouncing prescription in BBI is able to find multiple
solutions of global optimization problems which matches
the predictions from mixing dynamics. Explicitly, we con-
sider the function

F (Θ) ≡ −exp
(
−0.4|Θ− c1|2

)
+

− (1− ϵ)exp
(
−0.8|Θ− c2|2

)
+

+ 10−3|Θ− c1|2|Θ− c2|2 + 1 , (17)

where ϵ ≪ 1 can be tuned to ensure the two minima are
numerically at the same height, and c1 and c2 are the lo-
cations of the two global minima. We will use ϵ ∼ 10−6,
c1 = (−2,−2), c2 = (2, 2). This function has two global
minima for which V = 0 (see Fig. 1 (right)).

The shapes of the basins directly enter in the volume formula
(10) through the eigenvalues of the Hessian Hij ≡ ∂2

ijV ,
i, j = {1, 2}. For the potential (17) this gives the ratio of
the volumes of the two basins

Vol(M1)/Vol(M2) =∼ 1.93 , (18)

assuming the energy is held fixed. In a perfectly mixing
system this ratio is also the ratio of convergence to the two
basins. To test how close the bouncing prescription in the
BBI algorithm brings the potential (17) to a mixing system,
we performed multiple evolutions and checked the ratio
of times the particles get in one of the two basins. With
103 evolutions, the partial ratios already asymptote to a
value close to the theoretically predicted value (18). For the
example in Fig. 6, the agreement is within ∼ 11%.

This shows that the addition of bounces introduces chaos
even in a simple non-mixing potential for pure BI. This
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Figure 5. Ten trajectories starting from the same initial point,
bouncing at the beginning. The black circles denote boundaries of
the regions of basins. This shows that an initial random bounce
and a small number of other bounces along the evolution are able
to distribute the trajectories in the different basins.
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Figure 6. Partial ratios of convergence to the different basins on
multiple runs (blue). All the runs start from the same initial point
and are performed with Nb = 1,∆t = 10−2, T1 = 750, T2 =
20, δE = 0,∆V = 10−3. The asymptotic ratio is within 11% of
the expected ratio for a mixing system (Eq. (18), green).

implies that BBI can find multiple solutions of optimization
problems, a result we will reproduce in §4.4 in a PDE-
solving example. The analytic estimate for the ratio of
trajectories landing on different minima (10) holds up in
this simple experiment. The formula (10) assumes effective
mixing on a relevant timescale and requires knowledge of
the geometry of the basins near each V = VI . Since these
are not a priori known in many problems, it might be hard
to check for some situations. In any case, the present exper-
iment shows that the bounces can produce approximately
mixing systems such that the optimization converges to the
different solutions with good control. Here we make no
comparison to GD-like optimizers, which lack a prediction
of the ratio of convergence to different basins.

4.4. PDE Solving Examples

In this section, we start the investigation of larger optimiza-
tion problems, solving Partial Differential Equations (PDEs)
with NNs. PDEs are ubiquitous in science; developing effi-

cient numerical solvers is of paramount importance. Many
methods have been developed to attack this problem, in-
cluding recent exploration of Machine Learning methods.
(A partial list includes (Lagaris et al., 1998; Weinan & Yu,
2017; Sirignano & Spiliopoulos, 2018; Raissi et al., 2019;
Bar-Sinai et al., 2019; Piscopo et al., 2019; Geist et al., 2021;
Zang et al., 2020; Lu et al., 2020) and (Beck et al., 2021;
Lu et al., 2022).) These promise more versatility, poten-
tially avoiding the curse of dimensionality, the exponential
increase in complexity with the number of dimensions.

The most common approach is to employ a NN as an ansatz
for the solution of the PDE, using the squared PDE itself (to-
gether with its boundary conditions (BC)) as a loss function,
schematically V (Θ) = F (Θ) is given by:∑
x∈D

PDE[N (x;Θ)]2 + γ
∑
x∈∂D

BC[N (x;Θ)]2 + R(Θ)

(19)
where N is a neural network, γ is a fixed coefficient, R
is a possible regularization term and D and ∂D are sets
of points randomly sampled from the domain of the PDE
and its boundary. We note that here the ∆V parameter
(2) is not needed and is set to 0. The price paid by these
methods is the absence of guarantees about the convergence
and accuracy. Indeed, even though NNs can represent large
classes of functions with good accuracy (Cybenko, 1989;
Hornik et al., 1989; Lu et al., 2017b; Liang & Srikant, 2017) ,
the fact that the training converges to those is not guaranteed
(see e.g. (Adcock & Dexter, 2021) for a recent analysis of
convergence of Neural Networks to known functions), and
the optimizer is important.

In this regard, the BBI properties of not stopping until the
best approximation to the solution is found and of pre-
dictably exploring different regions of the parameter space
to capture multiple solutions appear very promising. We
have verified this by constructing a hard PDE problem, with
two known distinct solutions, finding that BBI with a resid-
ual NN ansatz in (19) successfully converges to both solu-
tions with good accuracy consistently across hundreds of
experiments. See App. B for details on the PDE problem.

The randomly sampled points x can be changed during the
evolution, similarly to minibatches in ML problems, giv-
ing rise to a time-dependent potential V (Θ, t) as described
in §3.2. Doing this every epoch =1000 iterations, with
∆V = 0, Nb = 10,∆t = 5 × 10−6, δE = 2 × 106, T0 =
1000, and T1 = 5000 for a small sample of 12 1500-epoch
runs yields consistent solutions of the PDE, dominated by
one solution (finding the other solution 1 out of 12 times).
Although small statistics, this illustrates BBI’s robustness
against batch-induced noise.

Indeed in BBI the effects of noise are limited by the speed
limit on the variance of Θ̇ (see §3.2 and §A.4). We find
multiple PDE solutions due to the bouncing (without noise)
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Table 2. Test set accuracy: Mean , Median.

DATA SET SGD BBI

MNIST 99.166 , 98.160 99.177 , 99.190
CIFAR-10 92.628 , 92.655 92.434 , 92.435

from the same initial point. It would be interesting to quan-
tify this analysis (c.f. §4.3) for these larger problems.

4.5. Small-Scale ML Benchmarks

Next we consider MNIST (Lecun et al., 1998) and CIFAR-
10 (Krizhevsky et al., 2009) as small ML benchmarks on
which to test BBI, giving another check of whether the
prescription of enforcing energy conservation described in
Sec. 3.3 works well with minibatches (Table 2).

For MNIST we used a simple CNN having two convolu-
tional layers with maxpool in between and a final dense layer.
We took batches of size 50 and performed a grid search
on the hyperpameters running for 3 epochs. For SGD we
searched on the learning rate η ∈ {.001, .01, .05, .1, .2, .3}
and on the momentum µ ∈ {.85, .9, .95, .99, .999}, while
for BBI we scanned over the same learning rates ∆t ∈
{.001, .01, .05, .1, .2, .3} and on δE ∈ {.0, .1, .5, 1.0, 2.0},
keeping fixed ∆V = 10−6, T0 = 100, Nb = 5, T1 = 1000.
Choosing the best parameters according to their test accu-
racy, we performed 60 evolutions for 50 epochs, recording
mean and median of the accuracy on the test set.

For CIFAR-10, we used a ResNet-18 (He et al., 2016)
and employed hyperopt to estimate the best hyperperame-
ters by performing 50 trials for 3 epochs each. For SGD
we searched both on η ∈ [0.001, 0.2] and µ ∈ [.8, 1.0]
while for BBI we fixed the chaos-inducing parameters
(Nb = 100, T0 = 100, T1 = 200) and ∆V = δE = 0
and only searched on ∆t ∈ [.001, .2]. After the estimation
phase, we evolved 16 times for 150 epochs with the best
hyperparameters and computed mean and median. Both
benchmarks use a standard Cross Entropy loss. Given the
small statistics, the distributions of results are not Gaussian
and we only report mean and median.

We stress that the experiments in this section are not meant
as a thorough comparison, but only as a first check that the
BBI algorithm performs well on larger scale problems and
is robust to the presence of minibatch. This also shows that
overfitting does not appear to be a problem – as anticipated
given from the speed limit strongly slowing evolution before
literally V = 0 – since the accuracy results on the test set
are in line with SGDM. In progress are extensions to larger
ML problems, analyzing ECD dynamics (10) in relation to
properties of the loss F (Θ) (De Luca et al., 2022a).

5. Discussion
We have established that maintaining energy conservation
in the descent of the loss function V is compatible with
successful optimization, leading to certain analytic handles
on the process that are unavailable for frictional methods
(SGDM etc.). Small-scale and benchmark numerical exper-
iments bear out the theoretical predictions and intuitions,
with some favorable properties and results compared to the
standard frictional optimization. There is much more to
explore particularly with larger-scale applications in order
to determine the full impact of these novel features.

An important direction is to optimize among ECD opti-
mizers, with the guidance of (10)(40). Combining ECD
with adaptive stepsizes as in e.g. (Kingma & Ba, 2015) or
with weight averaging (Izmailov et al., 2018) – distributed
predictably as in (40)(10) – may be worthwhile. It is in-
triguing that the stochasticity of SGD, which introduces
hard-to-characterize noise, is largely replaced in BBI by the
bounces; the relativistic speed limit constrains the variance
⟨Θ̇2⟩ entering into minibatch-induced noise (§A.4). Since
the randomness induced by bouncings is intrinsic (not tied
to the batches), we expect that bouncing ECD algorithms are
robust against adversarial attacks based on batch ordering
such as (Shumailov et al., 2021). It will also be interesting
to assess the way that ECD’s distinctive dynamics affects
representation learning, e.g. adapting to ECD the frame-
works developed in (Roberts et al., 2021) and (Yang et al.,
2022) for initialization and hyperparameter scalings with
network size.
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A. Appendix: Further Details of ECD.
Here we collect further details and comments on the theory of ECD and BI. Section A.1 spells out the derivation of the BI
dynamics from the framework of Lagrangian and Hamiltonian classical mechanics in physics. In §A.2 we give additional
examples of ECD dynamics. Section A.3 supplies details of the calculation of the phase space volume (10). Section A.4
explores the sharp distinctions between the stochastic version of BI and SGDM, finding reduced diffusion in BI due to the
speed limit. This enables BBI to explore the landscape with less hard to characterize noise (whose role is replaced by the
bounces of BBI).

A.1. BI Dynamics From the Action and Hamiltonian

Optimization is analogous to a physical particle propagating on the loss landscape. In physics, the equations of classical
mechanics can be efficiently derived by extremizing an action functional S =

∫
dtL in terms of a Lagrangian L. Their

first-order form derives from a Hamiltonian H . The absence of explicit time-dependence in the S or equivalently in H yields
conservation of energy. This formalism may be found in many classical mechanics textbooks, and is succinctly explained
without prerequisites in e.g. Lectures 6-8 of (Susskind & Hrabovsky, 2013) or (Landau et al., 1976) Chapters 1,2,7.

We quickly review this formalism in App. A.1.1, with an emphasis on obtaining GDM continuum equations from a time-
dependent action. There is a relation, known as Noether’s theorem, between conservation of energy and the absence of
explicit time dependence in the specification of the physical theory. Conversely, time-dependence in the specification of the
theory can capture the effect of the the dissipation of energy into an additional sector of a larger energy-conserving system.
For a discussion of Noether’s theorem, see e.g. ((Landau et al., 1976), Chapter 2). In this appendix, we will spell out these
results in the case relevant for its relation to optimization dynamics.

After explaining this in the non-relativistic case analogous to GDM, we specialize the formalism to BBI’s energy-conserving
dynamics in App. A.1.2 with a time-independent action and briefly introduce other ECD for optimization in App. A.2.

A.1.1. ACTIONS, HAMILTONIANS AND GRADIENT DESCENT WITH MOMENTUM

If a mechanical system is identified by a vector of position Θ and its velocity Θ̇, where the dot denotes a time-derivative, its
dynamics (meaning the equations governing its time evolution starting from an initial point Θ0 with initial velocity Θ̇0) can
be encoded in an action functional

S ≡
∫

dtL(Θ, Θ̇, t) , (20)

constructed in terms of a function L(Θ, Θ̇, t) called Lagrangian. The time evolution of the system is then determined by
the Euler-Lagrange equations

d

dt

(
∂L

∂Θ̇

)
=

∂L

∂Θ
. (21)

which result from demanding that the variation of the action vanishes (Susskind & Hrabovsky, 2013).

To gain some intuition, let us apply this formalism to the action

SGDM =

∫
dte

f
m t

[
mΘ̇2

2
− V (Θ)

]
. (22)

The Euler-Lagrange equations (21) give
mΘ̈ = −∇V − fΘ̇ (23)

This second-order system describes the motion of a particle of mass m under the force −∇V , slowed down by friction
controlled by the coefficient f .

A convenient and conceptually important rewriting of the same physics in a first-order fashion can be obtained by switching
to Hamiltionian formalism. To do so, one defines the vector of momenta

Π ≡ ∂L

∂Θ̇
(24)

and an Hamiltonian function
H(Θ,Π, t) ≡ ΠΘ̇− L(Θ, Θ̇, t) , (25)
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where all the instances of Θ̇ in (25) are substituted for Π,Θ and t using (24). In this language, the Euler-Lagrange equations
(21) are translated to Hamilton-Jacobi equations

Θ̇ =
∂H

∂Π
, Π̇ = −∂H

∂Θ
. (26)

Applying the Hamiltonian formalism to the GDM action (22) transforms the system (23) into

Θ̇ =
Π

m
, Π̇ = − f

m
Π−∇V. (27)

Substituting the first equation here into the second recovers the second order form (23). The system (27) is a continuum
version of the GDM algorithm, as discussed recently e.g. in (França et al., 2020; Muehlebach & Jordan, 2021) and references
therein. Extra care with the map continuous↔ discrete is required when considering the effects of stochasticity added to
GDM by noisy gradients (e.g. (Yaida, 2018; Kunin et al., 2021) ). We will analyze the effect of noise for BBI in Sec. A.4.

The Hamiltonian is interpreted as the total energy E of the system. However, in the GDM example described so far, one can
easily check that it not conserved, i.e. its value changes during the evolution:

d

dt
HGDM ̸= 0 E is not conserved. (28)

Physically, energy has been lost due the heat generated by friction. Mathematically, this non-conservation is a consequence
of the Lagrangian (22) depending explicitly on t.

A.1.2. ENERGY CONSERVING DYNAMICS AND BBI

The Born-Infeld (BI) dynamics (3)-(5) can be derived at the continuum level from the action

SBI =

∫
dtL = −

∫
dtV (Θ)

√
1− Θ̇2

V (Θ)
. (29)

Using (24) we derive the momentum

Π =
∂L

∂Θ̇
=

Θ̇√
1− Θ̇2

V (Θ)

(30)

and from (25) the Hamiltonian

HBI = ΠΘ̇− L =
V (Θ)√
1− Θ̇2

V (Θ)

=
√
V (Θ)(V (Θ) +Π2). (31)

From this we extract the continuum equations of motion (3), which we repeat here for convenience of the reader:

Θ̇ = Π
V (Θ)

E
, Π̇ = −∇V

2

(
E

V (Θ)
+

V (Θ)

E

)
, (32)

where we defined E ≡ HBI . As explained in the main text, a first order symplectic integration of these equations produces
the discretized BI evolution.

For the BI dynamics, the Hamiltonian (31) is conserved, meaning that its value is fixed during the evolution generated by
(32):

d

dt
HBI = 0 E is a constant. (33)

From eq. (31) we see that the speed of motion in parameter space |Θ̇| cannot exceed V , and conversely that Θ̇2 will not
vanish for 0 < V < E. This is very different from gradient descent with or without momentum.
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A.2. Other Examples of ECD

There is a large space of physical models with energy conserving, frictionless dynamics that slows to a stop as V → 0.
Another mentioned in §1 has action (in the language of §A.1)

S =

∫
dt

(
1

2
m(Θ)Θ̇2

)
=

∫
dt

(
1

2V (Θ)
Θ̇2

)
(34)

Here the objective V → 0 occurs when the mass (= 1/V ) blows up, causing the particle to slow to a stop.

For such a model the first order equations of motion read

Θ̇ = ΠV (Θ) Π̇ = − E

V (Θ)
∇V , (35)

descending from the Hamiltonian

H =
1

2
V (Θ)Π2. (36)

A symplectic integration of the equations (35) produces another example of an optimization algorithm that conserves energy
and shares the properties of BBI described in the main text.

Another example analogous to BI and also inspired by a similar theoretical cosmology model (Mathis et al., 2021) has a
logarithmic rather than a square root branch cut enforcing the speed limit:

S =

∫
dt

[
−V (Θ)

2
log

(
1− Θ̇2

V (Θ)

)]
(37)

In all these cases, including BI, the shifted loss function V (Θ) (2) may be replaced by any function of it that approaches 0
as V → 0. In general, there is a high-dimensional space of possible ECD models, all with the same general properties listed
in Table 1.

In the context of theoretical cosmology, the classes of models of early universe inflation (accelerated expansion of the
universe) which motivated ECD are distinctive in terms of their dynamics and their observational signatures. These enable
empirical discrimination between them and the GD-like dynamics of so-called slow-roll inflation. (Armendariz-Picon et al.,
1999; Alishahiha et al., 2004; Chen et al., 2007; Cheung et al., 2008). In the present work, we similarly see sharp distinctions
between frictional and ECD optimization which will be interesting to further explore and exploit.

A.3. Details in the Calculation of the Phase Space Volume Formula Predicting the Distribution of Results

Here we supply the steps deriving (10) from (38).

The total volume is given by

Vol(M) =

∫
dnπdnθδ(

√
V (V +Π2)− E) (38)

Writing |Π| = π̃ and doing the angular integral in the momenta gives

Vol(M) =
2πn/2

Γ(n/2)

∫
dnθ

∫ ∞

0

dπ̃π̃n−1δ(
√

V (V + π̃2)− E) . (39)

Using the δ function to do the π̃ integral then yields

Vol(M) =
2πn/2

Γ(n/2)

∫
dnθ

E

V

(
E2

V
− V

)n−2
2

. (40)

The analogous formula for pure momentum (without speed limit or friction) would be

Vol(M) ∝
∫

dnθ(E − V )
n−2
2 frictionless non-relativistic momentum (41)
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and does not exhibit the dominance at low V of BBI (40). Different forms of ECD will produces analogous formulas to (40),
sometimes enhancing the dominance at small V . It will be interesting to explore the performance of such generalizations,
including the replacement of V with a more general function g(V ) of the loss.

Let us consider the contributions to the integral near the global minimum (or degenerate minima) at some Θ0 where V → 0.
We can expand the measure,

dnθ = |Θ−Θ0|n−1d|Θ−Θ0|dΩΘ−Θ0 (42)

and also expand V ∝ |Θ−Θ0|κ for some κ. From (40) we see that the singularity there is integrable only for κ < 2. One
would expect κ = 2 for a smooth potential V with global minimum Vglobal = 0. This leads to a logarithmically divergent
volume as we approach Vglobal.

More generally, we can compare the phase space volume in the basins of attraction of different local minima. Starting from
(40) and working in the regime of V ≪ E, we can write the measure near the Ith local (or global) minimum as

Vol(MI) =
2πn/2

Γ(n/2)
En−1

∫
dn(θ − θI)V

−n/2 (43)

Near a minimum, V is quadratic, giving (after an orthogonal diagonalization of its Hessian)

V ≃ VI +
1

2

n∑
i=1

m2
Ii(θi − θIi)

2 . (44)

Defining

ηiI = miI(θi − θIi)⇒ V ≃ VI +
1

2

n∑
i=1

η2Ii , (45)

we get

Vol(MI) =
2πn/2

Γ(n/2)

En−1∏
i mIi

∫
dnηV −n/2 =

(
2πn/2

Γ(n/2)

)2
En−1∏
i mIi

∫
dη

ηn−1

(VI +
1
2η

2)n/2
, (46)

where η ≡ |ηI | exhibiting a logarithmic divergence as VI → 0 as in (10).

Integrating η from 0 to 1 here, as an estimate of the contribution to the measure of this Ith minimum, gives a formula for the
volume in terms of a hypergeometric function:

Vol(MI) =

(
2πn/2

Γ(n/2)

)2
En−1∏
i mIi

V
−n/2
I

n
2F1(

n

2
,
n

2
,
n

2
+ 1,− 1

2VI
) . (47)

A.4. Further Study of BI in the Stochastic Case

As noted in the main text, it is often necessary to separate the data (or the input points sampled in solving differential
equations) into minibatches xB , switching from batch B to batch B + 1 at time tB , i.e. switching to a new minibatch every
∆(tB+1 − tB)/∆t steps. As explained in §3.2, the essential features of ECD persist in this case, as is borne out by the
experiments.

In this section we explore in a little more detail the stochastic behavior of BI. Similarly to the noise-free case, we find clear
distinctions between this class of optimizers and friction-based ones such as SGDM. It would be interesting to extend these
preliminary studies in the future. We note interesting prior work (Tolley & Wyman, 2010) on stochastic effects in the DBI
theory of early universe inflation (Alishahiha et al., 2004).

The transitions to new batches means that at a given time, the algorithm evolves in the loss landscape given by V B =
V (Θ;xB) rather than the full loss V (Θ;x). The loss therefore behaves like a time dependent potential in the corresponding
Hamiltonian system. In this physical system, that would generally lead to energy non-conservation by an amount determined
by the strength of the time dependence, (V B+1 − V B)/V B ≡ ∆VB/V

B . In our algorithm, however, the situation is
somewhat different since we keep the energy fixed via the rescalings described in the main text.
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To begin let us describe the rescaling required to preserve energy E in the presence of minibatches (even in the absence of
discretization error). From (31) we have Π2 = E2

V − V . Thus as we transition from batch B to batch B + 1, we have to
rescale by a factor

λ =
πi,B+1

πi,B
=

√
E2/V B+1 − V B+1

E2/V B − V B
(48)

in order to conserve energy.

Before commenting on the small learning rate regime, we first note that the prescription of (Yaida, 2018), deriving averaged
correlations of observables under the assumption of a late time steady state distribution, extends to the BI case. Following
(Yaida, 2018), if we assume an equilibrium distribution at late times, we can compute appropriate correlation functions in
the putative distribution. Those arising at the quadratic order in Θ,Π are:

⟨[|∂iV
B

V B
θj |]⟩ = ⟨[|

∂jV
B

V B
θi|], ⟨ V (θiπj + θjπi) ⟩ = ∆tE ⟨ 1

4
(∂iV θj + ∂jV θi)− [| (V

B)2

2E2
πiπj |] ⟩ (49)

where as in that work, V B denotes the loss function for batch B, [| . . . |] represents a minibatch average, whereas ⟨. . . ⟩
represents the expectation value in the steady state distribution. Here we assumed V B ≪ E to simplify the formulas. The
last relation here is comparable to equation (28) in (Yaida, 2018), with the similarity clearer upon noting from (30)-(31)
that the velocity is given by vi = θ̇i = πiV/E. Although the relations look similar, they encode very different behavior:
Whereas in SGDM ⟨v2⟩ is generally nonzero (and in ordinary Brownian motion it is approximately constant), in BI this
quantity is bounded by V because of the loss-dependent speed limit.

Next, we briefly study the small ∆t regime. By plugging the second equation in (3) into the first and taking into account the
additional time-dependence in V and in π from the rescaling (48), we obtain the second-order equations

θ̈i = −
1

2
∂iV + θ̇i(

Θ̇ · ∇V
V

) + θ̇i
∑
B

δ(t− tB)

(
1− λ(∆V B) +

∆V B

V B

)
. (50)

For the present discussion we do not include the billiards-inspired bounces prescribed in the algorithm. All of the terms
multiplying δ(t− tB) are of order ∆V B/V B and may be expected to ensemble-average to zero (including when multiplied
by other quantities such as θ̇i that are not tied to the random choice of new batch). We could have obtained the resulting
equation equally well from our discretization of BI by plugging (5) into (6).

We may contrast this to a similar small learning-rate limit (Kunin et al., 2021) for SGDM:

∆t

2
(1 + β)Θ̈+ (1− β)Θ̇ = −∇V B (51)

derived from the update rule
vk+1 − βvk = −∇Vk, Θk+1 −Θk = ∆t vk+1 . (52)

We note the absence of a ∆t in the first update rule, which is standard in machine learning but different from the standard
discretization of the analogous non-relativistic classical particle model and hence different from the non-relativistic regime
of our discretized BI model.

Aside from the distinction in the placement of ∆t factors, we note the presence of a friction term in (51) and its absence in
(50). In both cases, the batch dependence in V (Θ, t) constitutes a source of noise, in general with nontrivial statistics.

For now, we contrast the form that Brownian motion takes in the two systems in this small-learning-rate regime. According
to (Kunin et al., 2021), SGDM exhibits anomalous Brownian motion, with the variance of the motion behaving as ⟨Θ2⟩ ∝ tκ

for some positive exponent κ. The minimal version of Brownian motion in physics can be derived from the Langevin
equation θ̈ + γθ̇ = ξ 10 where the noise term satisfies ⟨ξ(t)ξ(t′)⟩ = δ(t− t′), which is very loosely similar to (51), leading
to the relation d

dt ⟨θ
2⟩ = 2⟨θ̇2⟩/γ = constant.

In comparing to (50), although there is no friction term, we can see that for a potential basin of the form 1
2m

2Θ2, for
speed-limited motion along the gradient direction we have ⟨Θ̇ · ∇V/V ⟩ ∼ −1 + fluctuations. Comparing to the standard

10See e.g. https://web.stanford.edu/ peastman/statmech/friction.html .

https://web.stanford.edu/~peastman/statmech/friction.html
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Brownian motion result just summarized, we again expect d
dt ⟨Θ

2⟩ ∼ 2⟨Θ̇2⟩. But in contrast to that case and SGDM, for BI
the speed limit strongly constrains the right hand side. Thus we expect much less diffusion for BI. Instead, for BI it is the
billiards-inspired bounces lead to mixing over the phase space. Clearly it would be interesting to flesh out these distinctions
in more detail, along with their implications for representation learning in ML and for coverage of PDE solutions.

B. Details on the PDE Problems
Here we describe in some details the class of PDE problems on which we tested the BBI algorithm.

We considered the class of nonlinear Poisson Dirichlet problems defined by

find u such that
{

∆u+ u2 = f x ∈ Ω
u = f0 x ∈ ∂Ω

, (53)

where Ω is a domain in Rd with boundary ∂Ω, ∆ = −
∑d

i=1 ∂
2
xi

, and f is a known function.

To design a specific problem we then proceeded backwards: we chose a certain u with a non-trivial shape, plugged it on the
left hand sides of (53) and computed f (and f0). This allowed us to know analytically one of the solutions of the problem.
Specifically, for the experiment presented in Sec. 4.4 we worked in the unit-ball in R2 and considered as analytic solution
the function

uan. = sin2(20(x2
1 + x2

2)) (54)

of which we plot a section in Fig. 7 (left).
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Figure 7. The solutions to the PDE problem studied in Sec. 4.4. On the left a section at x2 = 0 of the analytic solution (54); on the right,
a section of the other solution determined numerically with a shooting method.

We have chosen such a wiggly solution in order to obtain a relatively hard numerical problem. Plugging it in Prob. (53) , we
extract f and f0:

f =
1

8

(
3− 4(1 + 6400(x2

1 + x2
2)) cos(40(x

2
1 + x2

2)) + cos(80(x2
1 + x2

2))− 640 sin(40(x2
1 + x2

2))
)

(55)

and f0 = 0.833469. The problem (54) being nonlinear, we can ask whether other solutions exist. As can be shown by
employing radial symmetry together with a shooting method, the answer is affirmative: two solutions exist with second one
represented in Fig. 7 (right). We stress that spherical symmetry and the reduction to a one-dimensional radial equation are
used only to employ a standard method to assess the existence of other solutions, but has not been employed in any way in
the solution of Prob. (53) with NNs, since ultimately the goal is to being able to solve higher-dimensional problems with no
symmetry assumptions.

For the experiments in Sec. 4.4, we then used as an ansatz for solving (53) a residual network defined as

yi1 = σ(
∑n

µ=1 W
iµ
0 xµ + bi0)

yis+1 = yis + σ(
∑N

j=1 W
ij
s yjs + bis)

yD+2 =
∑N

j=1 W
j
D+1y

j
D+1 + bD+1

(56)

where s = 1, . . . D and i = 1, . . . , N with D and N being respectively the depth and width. d is the dimension of the
PDE problem, and in our examples restrict to d = 2. As activation function σ we chose the logistic sigmoid. We briefly
experimented with other smooth activation functions (tanh, sin) and not observing degradation of performance, we focused
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on the sigmoid to show the distribution of results. The sets of weight and biases, W and b, define the set of parameters
collectively denoted as Θ in the main text. Summing up, the sequence of transformations in (56) is defining a function from
Rd → R, depending on these parameters, which is used as an ansatz for the PDE solution. Schematically,

N (x;Θ) ≡ yD+2(yD+1(. . . )). (57)

In our experiments we used 3 middle layers of width 200, i.e. D = 3 and N = 200. The loss function (19) is then
constructed with an L2 regularization term R(Θ) = 2 × 10−4Θ2, γ = 105 and by sampling respectively 104 and 103

random points from the unit ball in R2 and its boundary.


