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A stochastic gravitational-wave (GW) background consists of a large number of weak, independent
and uncorrelated events of astrophysical or cosmological origin. The GW power on the sky is assumed
to contain anisotropies on top of an isotropic component, i.e., the angular monopole. Complementary
to the LIGO–Virgo–KAGRA (LVK) searches, we develop an efficient analysis pipeline to compute
the maximum-likelihood anisotropic sky maps in stochastic backgrounds directly in the sky pixel
domain using data folded over one sidereal day. We invert the full pixel-pixel correlation matrix
in map-making of the GW sky, up to an optimal eigenmode cutoff decided systematically using
simulations. In addition to modeled mapping, we implement a model-independent method to probe
spectral shapes of stochastic backgrounds. Using data from LIGO–Virgo’s first three observing runs,
we obtain upper limits on anisotropies as well as the isotropic monopole as a limiting case, consistent
with the LVK results. We also set constraints on the spectral shape of the stochastic background
using this novel model-independent method.
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I. INTRODUCTION

Direct detections of gravitational waves (GWs) from
Advanced LIGO [1], Advanced Virgo [2] and KAGRA
[3] detectors so far have been traced back to point-like
sources, which make up a tiny fraction of the GW sky.
The bulk of unresolved signals associated with multiple
point sources or extended sources combine incoherently
to form backgrounds of GWs. A stochastic gravitational-
wave background (SGWB) consists of a large number of
independent and uncorrelated events which are typically
individually weak, i.e., below the detection threshold of
the detector. SGWBs can be categorized as either as-
trophysical, when produced by low-redshift, individually
indistinguishable GW events [4, 5], or cosmological [6], as
a result of high-energy events in the early Universe such
as cosmic inflation [7–9], cosmic string networks [10–13],
primordial black holes [14–16], and first order phase tran-
sitions [17–22].

Ground-based GW detectors are sensitive to SGWBs
constrained between tens of Hz and a few hundred Hz. In
other frequency bands, upper limits on SGWBs are set by
the isotropy of the Cosmological Microwave Background
(CMB) [23] in the lowest frequencies [24], by timing resid-
ual analyses in millisecond pulsars in the nHz band [25],
by normal modes of the Earth [26] and the Moon [27] in
the mHz to Hz band, and loosely by primordial deuterium
abundance from Big Bang Nucleosynthesis [28, 29] over
a broad frequency range.

Studying SGWBs may potentially open a window onto
∼ 10−32 s (at a redshift z > 1025) after the Big Bang.
Our current knowledge of the early Universe mostly
comes from the CMB [30, 31], the relic electromagnetic
(EM) radiation from 380,000 years (z ∼ 1100) after the
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Big Bang during the epoch of recombination. Before
recombination, the Universe was opaque to EM waves.
Hence, GWs present a unique opportunity to probe the
earliest moments of the Universe.

Background gravitational radiation is stochastic in
the sense that it can only be characterized statisti-
cally, in terms of moments of its probability distribution.
Stochastic GW signals can mimic shot noise, appearing
as individual bursts in the timestream, or they can be de-
scribed as Gaussian, where a multitude of signals overlap
so that the central limit theorem applies. They may also
exhibit popcorn-like features in the time domain, with
partially overlapping signals but still far from the Gaus-
sian regime [32]. To differentiate between the aforemen-
tioned sources of stochastic backgrounds, several subtrac-
tion or multi-fitting methods have been proposed [33–35],
which leverage on the particular statistical nature of each
signal contribution.

At cosmological scales, we assume the GW sky is
isotropic based on the isotropy of the CMB, which traces
the matter distribution in the Universe. However, at local
scales, the nonuniform distribution of astrophysical GW
sources may produce an anisotropic SGWB. Moreover,
similar to the CMB dipole anisotropy [36–38], our pecu-
liar motion with respect to the SGWB rest frame induces
a recurring modulation affecting the dipole. It is thus fair
to assume the SGWB power contains anisotropic compo-
nents on top of an ensemble average isotropic value.

An approach to reconstruct the angular power dis-
tribution in an anisotropic SGWB is computing the
maximum-likelihood map solutions using cross-correlated
data [39–41] from a network of ground-based GW detec-
tors. This is typically done assuming stationary Gaussian
detector noise and a specific model for the spectral power
distribution of the signal, and employing a weak-signal
approximation [42, 43]. The latter implies we can ignore
any signal contribution to the data auto-correlations, es-
sentially allowing us to estimate the noise covariance from
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the data directly [44]. Mapping can be carried out in any
set of basis functions on the sky, e.g., spherical harmonics
of the SGWB power as adopted by the LIGO Scientific,
Virgo and KAGRA (LVK) collaboration [45, 46], or sky
pixel indices as in [47–52].

Directional searches by the LVK collaboration [46, 53–
55] include the broadband radiometer analysis (BBR)
[56], the spherical harmonic decomposition (SHD) [43],
the narrow band radiometer analysis (NBR) [56], and
the all-sky, all-frequency analysis (ASAF) [57]. The BBR
targets persistent point sources emitting GWs over a wide
frequency range, whereas the SHD hunts for extended
sources with smooth frequency spectra. The NBR in-
spects frequency spectra from specific locations on the
sky, such as Scorpius X-1, SN 1987A and the Galactic
Center, in narrow frequency bands. The ASAF scans the
sky in individual frequency bins, searching for excess GW
power for each pixel-frequency pair. The BBR, SHD and
NBR approaches integrate over frequencies employing a
filter which includes a power-law model for the SGWB
power spectrum, while the ASAF is a generic unmodeled
search. Out of all of these, the SHD search is the only
one that takes pixel-pixel correlations into account.

Complementary to the LVK searches, we present
an efficient analysis pipeline built in Python to map
anisotropies in SGWBs directly in the sky pixel domain
using data folded over one sidereal day. Our pipeline is
tailored to folded data [58–60], which assumes the SGWB
signal is stationary (i.e., is time-independent) and ex-
ploits the temporal symmetry of the Earth’s rotation to
reduce the computation time by a factor of total observ-
ing days. In the pipeline, we use the HEALPix hierarchical
pixelization scheme [61], in which the sky is discretized
into equal area elements. We invert the “full” pixel-pixel
correlation matrix in map-making of the GW sky, up to
an optimal eigenmode cutoff decided systematically using
simulations. In addition to modeled maximum-likelihood
mapping, we implement a spectral-model-independent
method to probe the spectral shape of a SGWB based
on previous work in [50], now taking into account the
deconvolution regularization problem systematically as a
function of frequency. In both approaches, sky maps are
converted from the pixel domain to the Fourier domain
to place upper limits on the angular power spectrum, as
well as the power spectrum of the monopole component
of the background.

In Sec. II, we outline our methodology to compute
the maximum-likelihood map solutions of the SGWB sky
power assuming a standard model for the power spec-
trum. In Sec. III we outline our unmodeled approach to
mapping, where we employ adaptive frequency-banding
and an adaptive pixelization scheme to probe the shape
of the signal power spectrum, as well as recovering the
angular distribution. In Sec. IV, we describe the various
simulations used to verify our pipeline. In Sec. V, we
apply our pipeline to data from LIGO–Virgo’s first three
observing runs (O1-O3). In Sec. VI, we discuss our re-
sults and outlook for upcoming observing runs and the

field of GW cosmology.

II. SGWB MAPPING

A. Energy Density Spectrum

A SGWB is characterized by its spectral emission.
Specifically, we introduce a dimensionless quantity, the
normalized GW energy density spectrum,

ΩGW(f) ≡ 1

ρc

dρGW

d log f
, (1)

where ρGW is the GW energy density and ρc is the critical
energy density required to close the Universe today,

ρc =
3H2

0 c
2

8πG
. (2)

Here, c = 2.998 × 108 m s−1 is the speed of light and
H0 = 67.4 km s−1 Mpc−1 [62] is the Hubble expansion
rate of the current epoch (with some controversy on its
measured value in the literature [62–65]). Conceptually,
ΩGW(f)(df/f) is the ratio of the GW energy density to
the total energy density required to close the Universe
today in a small frequency interval from f to f + df .
ΩGW(f) is a sky-averaged quantity, and may be writ-

ten as an integral over the sky of the directional energy
density ΩGW(f,Θ),

ΩGW(f) =
1

4π

∫
S2

dΘΩGW(f,Θ), (3)

where Θ is a direction on the sky on the two sphere in
a general basis. ΩGW(f,Θ) may be interpreted as the
energy density spectrum in each direction, and is the tar-
get of several anisotropic stochastic background searches.
As our detectors measure GW strain, it is useful to re-
port the relation between the energy density and the GW
strain power P(f,Θ),

ΩGW(f,Θ) =
4π2

ρcG
f3P(f,Θ). (4)

This follows directly from Isaacson’s formula for GW ra-
diation, which implies [32, 66]

ρGW =
π

G

∫ ∞

0

df

∫
dΘ f2P(f,Θ). (5)

Different conventions are used at times when defining
the normalization of the quantities above. We employ
the conventions as in [32].

For the sake of simplicity, stochastic searches typically
assume that the directionality and the spectral shape
of the signal are independent, such that the GW strain
power P(f,Θ) in Eq. (4) may be factored into a spectral
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term and an angular term1,

P(f,Θ) = H(f)P(Θ). (6)

The spectral shape H(f) is usually modeled as a power
law given by

Hα(f) =

(
f

fref

)α−3

, (7)

where α is the spectral index and fref is a reference fre-
quency. This choice of model is well-motivated by many
astrophysical and cosmological models [5, 6], however
there are well-known spectral shapes outside this regime,
e.g., the combined SGWB from compact binary coales-
cences (CBCs) at higher frequencies [67]. The power-law
assumption is a good approximation for the CBC SGWB
at current detector sensitivities, but is expected to break
down as sensitivity increases. For a direct comparison
with the LVK results [46], we also set fref to 25 Hz.

P(Θ) in Eq. (6) is the angular power distribution that
can be expanded in a set of chosen basis functions eη(Θ)
on the two sphere,

P(Θ) =
∑
η

Pηeη(Θ). (8)

For a pixel basis, we write

P(Θ) ≡ P(Θp) = Pp′δ(Θp,Θp′), (9)

where Pp′ is the power of the signal in each pixel. For a
spherical harmonic expansion,

P(Θ) =

∞∑
l=0

l∑
m=−l

PlmYlm(Θ), (10)

where Plm are the spherical harmonic coefficients of the
signal and Ylm(Θ) are the spherical harmonic basis func-
tions. Note that in general the units of sky power compo-
nents may be different depending on the basis and con-
ventions used. Here, we assume units of GW sky power
are strain power per steradian.

B. Cross-correlation statistic

The SGWB strain signal is best understood as a su-
perposition of sinusoidal plane waves coming from all di-
rections on the sky,

hµν(t,x) =

∫ ∞

−∞
df

∫
S2

dΘ
∑

P=+,×
hP (f,Θ)ePµν(Θ)ei2πfϕ,

(11)

1 See Sec. III for a brief discussion of the validity of this assump-
tion.

where ϕ = (t − Θ · x/c). Here, x is a position vector in
a general coordinate system. A GW detector in location
x such as an interferometer measures

h(t) =

∫ +∞

−∞
df

∫
S2

dΘ
∑

P=+,×
FP (f,Θ)hP (f,Θ) ei2πfϕ,

(12)
where FP is the polarization response function of the de-
tector, defined for example in [32]. As instrumental noise
is itself stochastic, this sort of signal is not clearly distin-
guishable from noise in a single detector, in particular in
the case where the signal is weak with respect to the noise
and both are hard to model independently. However,
even a weak stochastic background induces a correlated
signal across multiple detectors. In current stochastic
searches performed on LIGO–Virgo data, the noise is as-
sumed to be fully independent between detectors, hence
the cross-correlation of the data streams yields an opti-
mal statistic for the stochastic signal. The latter is often
referred to in the literature as an optimal filter [68], and
we describe its application as an estimator for the SGWB
signal in what follows.

Consider the case of a baseline I made up of two
ground-based GW detectors 1, 2 each with data output

s(t) = h(t) + n(t), (13)

where h(t) denotes the strain due to a SGWB and n(t)
denotes the detector noise. When detector noise is un-
correlated within the baseline, the expectation value of
the cross-correlation between the strain in detector 1, s1,
and the strain in detector 2, s2, will be sensitive to the
signal component only. This can be intuitively derived
as

⟨CI⟩ = ⟨h1h2⟩+ ⟨h1n2⟩+ ⟨h2n1⟩+ ⟨n1n2⟩
≃ ⟨h1h2⟩+ ⟨n1n2⟩ ≃ ⟨h1h2⟩. (14)

We drop terms ⟨h1n2⟩ and ⟨h2n1⟩ since the GW signals
and the instrumental noise are uncorrelated. The an-
gle brackets here refer to an ensemble averaging, which
is taken in practice by averaging over time, as well as
frequency, baselines, and all other available independent
measurements of the signal.

We do not consider correlated noise in our discussion.
However, there exists a type of noise, Schumann mag-
netic resonances caused by the EM field of the Earth,
which can mimic a correlated SGWB in the detectors.
Several methods have been proposed to mitigate these ef-
fects in a GW detector network, including noise subtrac-
tion methods [69–72], the “GW Geodesy” method [73, 74],
and spectral modeling [75].

In practice, it is usually more efficient to work with
data divided into smaller time segments and transformed
to the frequency domain, making use of the Fast Fourier
Transform (FFT) [76] algorithm and parallel processing.
In the case we consider here, the data are split into seg-
ments of equal duration τ , where τ is much bigger than
the light travel time between the two detectors but small
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enough so that detector response functions do not change
significantly over the interval. The cross-spectral density
(CSD) for a baseline I of two detectors evaluated in time
segment labeled t and at frequency f is defined as

CI(t; f) =
2

τ
s̃∗1(t; f)s̃2(t; f) ≃

2

τ
h̃∗
1(t; f)h̃2(t; f), (15)

where s̃(t; f) is the short-term Fourier transform (SFT) of
s(t) of duration τ . For conventions used, please see [77].
Then, by Eq. (6) and the SFT of Eq. (11), the expectation
value of CI(t; f) is given by [77]

⟨CI(t; f)⟩ = τH(f)
∑
η

Pηγ
I
η(t; f), (16)

where γI
η(t; f) here is the unnormalized overlap reduction

function (ORF), which describes the correlated sensitiv-
ity of the baseline to the sky and frequency modes of the
signal.

In the pixel basis, η → p, so that the unnormalized
ORF becomes

γI
p; tf =

∑
P=+,×

FP
1 (t; Θp)F

P
2 (t; Θp)e

i2πfΘp·△x(t)/c, (17)

where FP (t; Θp) are detector response functions for P =
{+, ×} plane polarized waves, and Θp is the general di-
rection on the sky discretized in the pixel domain, i.e., it
is the direction pointing to the center of the pixel p. The
ORF can be transformed to the spherical harmonic basis
by

γI
lm; tf =

∫
S2

dΘp γ
I
p; tfY

∗
lm(Θp). (18)

Note that the normalization of this function on the whole
sky is 5/(8π) [68].

Using compact notation with summation over direc-
tions Θ on the sky implied, we put the signal model
Eq. (16) in a general basis into matrix form

⟨CI
tf ⟩ = KI

tfη · Pη, (19)

where

KI
tfη ≡ τH(f)γI

η(t; f). (20)

The noise covariance matrix for the CSD is subse-
quently [77]

N I
tf,t′f ′ ≡ ⟨CI

tfC
I∗
t′f ′⟩ − ⟨CI

tf ⟩⟨CI∗
t′f ′⟩

≈ τ2

4
δtt′δff ′Pn1

(t; f)Pn2
(t; f), (21)

where the one-sided noise power spectrum Pn satisfies

⟨s̃(t; f)s̃∗(t′; f ′)⟩ ≃ ⟨ñ(t; f)ñ∗(t′; f ′)⟩

=
τ

2
δtt′δff ′Pn(t; f). (22)

To lighten the notation in remaining derivation, we
drop superscripts for detector baselines and subscripts
for function dependencies when there is no confusion.

C. Maximum-likelihood Maps

We assume detector noise is Gaussian and stationary
on the timescale τ , and further assume that the SGWB
is Gaussian, unpolarized, and its spectral shape H(f) is
known2.

The likelihood function for the cross-correlation statis-
tic of a single baseline is then (using short-hand notation)

L(C|P) ∝
∏
tf

exp

[
− 1

2
χ2(P)

]
, (23)

where, given the signal model in Eq. (19), the chi-squared
statistic is

χ2(P) ≡ (C − ⟨C⟩)†N−1(C − ⟨C⟩)
= (C −K · P)†N−1(C −K · P), (24)

where the dot product indicates a sum over spatial in-
dices.

Maximizing the likelihood function Eq. (23) with re-
spect to P is equivalent to minimizing the chi-squared
statistic Eq. (24). By matrix differentiation, we derive
the maximum-likelihood estimates of angular power spec-
trum, the clean map,

P̂η =
∑
η′

Γ−1
ηη′Xη′ , (25)

where X is the so-called dirty map, and Γ is the Fisher
information matrix.

The dirty map represents the GW sky seen through
the beam matrix of the two detectors and is given by

Xη =
∑
tf

K†
tfη N

−1
tf Ctf . (26)

The Fisher matrix, which can be interpreted as a point
spread function, codifying how signals from point sources
spread elsewhere due to finite coverage of the sky by a
network of GW detectors, is

Γηη′ =
∑
tf

K†
tfηN

−1
tf Ktfη′ . (27)

The specifics of the derivation are described in [48].
The clean map statistic can be viewed as a directional
extension of the optimal statistic derived in [68], and
is thus robust to noise non-stationarity on time-scales
longer than the analyzed time segment τ , as it consists
of an inverse noise-weighted average over segments.

2 In case of a non-Gaussian signal, we can expect the approach
to be sub-optimal, as the likelihood used does not capture key
features of the signal. In case of a polarized background, extra
terms to the ORF must be considered [48].
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The above derivation for a baseline of two GW de-
tectors is easily generalized to a multi-detector network.
Assuming each baseline provides an independent mea-
surement of the signal, it is sufficient to sum dirty maps
and Fisher matrices over all baselines in the network

X =
∑
I

XI , Γ =
∑
I

ΓI , (28)

to obtain the network clean map using Eq. (25).
In the weak signal limit, we can further show [43]

⟨X ·X†⟩ − ⟨X⟩⟨X†⟩ ≈ Γ, (29)

⟨P̂ · P̂†⟩ − ⟨P̂⟩⟨P̂†⟩ ≈ Γ−1. (30)

Therefore, Γ is the covariance matrix for the dirty map
X and Γ−1 is the covariance matrix for the clean map P̂.

We can then define the signal-to-noise (SNR) map to
be the result of the matrix multiplication [49]

ρ = Γ− 1
2 · P̂, (31)

which takes off-diagonal elements of the Fisher matrix
into account, and the noise standard deviation map to
be

σ =
√

diagΓ−1. (32)

The noise map so defined is only sensitive to diagonal
elements of the inverse Fisher matrix, ignoring all pixel-
pixel correlations. However, correlations between differ-
ent locations on the sky are nontrivial. The noise map
is thereby only an approximation of the noise standard
deviation of the estimator P̂. In the case of a singular
Fisher matrix, the calculation of the SNR requires regu-
larizing adjustments as described below.

The dirty maps and Fisher matrices may be calculated
over broad frequency bands to improve detection statis-
tics. However, this implies integrating over the spectral
shape of the SGWB, H(f), hence the resulting clean map
Eq. (25) is a biased estimator of the angular power distri-
bution, as we do not know H(f) a priori. The standard
spectral-model approach is to assume a power-law spec-
tral model Hα(f) as in Eq. (7) and estimate P̂ for a set
of α candidates. We consider here three possible spec-
tral index values, in keeping with the LVK searches [46]:
α = 0, a flat energy density spectrum consistent with
many cosmological models [6]; α = 2/3, an astrophysical
background dominated by CBCs [5]; and α = 3, a generic
flat strain spectrum [78]. Other approaches, such as the
ASAF approach, solve for P̂ in each frequency bin, and
do not require a model for H(f); however, in this case
it is not possible to invert the full Fisher matrix, as it
is prohibitively singular in a single frequency bin. This
is the main motivation for integrating over broader fre-
quency ranges when taking pixel-pixel correlations into
account.

D. Deconvolution Regularization

To perform the deconvolution in Eq. (25), we need to
invert the Fisher matrix which is typically singular due
to the uneven sampling of the sky. In the absence of de-
tections, current search methods employed by both the
LVK collaboration and independent groups condition the
Fisher matrix in an ad hoc way; specifically, the LVK
has proceeded either by restricting only to diagonal ele-
ments and hence ignoring all pixel-pixel correlations as
in the BBR search for point sources, or discarding the
smaller 1/3 of eigenvalues and fixing a maximum mul-
tipole as in the SHD search for extended sources [46].
Other groups have instead chosen a fixed condition num-
ber for the Fisher matrix [49, 50]. It is clear that moving
towards the detection era for SGWBs systematic ways to
better regularize the Fisher matrix must be established,
especially to claim confident detections.

The Fisher matrix is in general singular since there
exist null directions the detector network is insensitive
to [48, 79]. The current level of singularity may be seen
in the right panel of Fig. 1, where eigenvalues of the
LIGO Hanford–LIGO Livingston–Virgo (HLV) network
Fisher matrix with present data are shown. To address
this issue, we use a singular value decomposition (SVD)
[80] of the Fisher matrix to rank contributing directions
and discard eigenmodes which carry little information
[43]. The inherent condition number of the matrix, i.e.,
the ratio between the minimum and maximum eigenval-
ues, depends on the spectral shape. Including too many
eigenmodes introduces unwanted noise whereas discard-
ing too many eigenmodes sacrifices signals. The SVD
technique allows to condition the matrix, i.e., impose an
eigenvalue threshold such that all normalized eigenval-
ues that are smaller than the imposed condition number
are discarded. This approach was previously explored
systematically in [52]. In the rest of this paper, the nota-
tion Γ−1 indicates a regularized inverted Fisher matrix,
and Γ is the regularized Fisher matrix. In particular, in
calculating the SNR as presented in Eq. (31), we employ
the square root of the regularized Fisher matrix.

We present a method to determine this threshold em-
pirically via simulations. For each spectral index α, we
impose the condition number returning the least resid-
ual sum of squares (RSS) from a respective high SNR
monopole simulation,

RSS = (Pinj − P̂)T (Pinj − P̂), (33)

where Pinj is the injected monopole. Monopole simu-
lations are used for the calculation since we expect an
intrinsic monopole irrespective of spectral shapes, and
stronger than any higher multipoles [32]. The monopole
simulations are generated using the HLV detector net-
work configuration in its O3 sensitivity, since most sensi-
tivity of the combined O1+O2+O3 runs comes from O3.
The residuals computed for different condition numbers
are illustrated in the left panel of Fig. 1. The optimal
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Figure 1. The left panel shows the condition numbers (i.e., eigenvalue thresholds) and resulting normalized residual sums of
squares for power laws of spectral indices 0, 2/3 and 3. We select the threshold returning the least residual sum of squares in
a monopole injected simulation for each spectral index. The right panel illustrates the comparison between the Fisher matrix
eigenvalue distributions for the HLV network for different values of α. The horizontal dashed lines show the optimal thresholds
determined via monopole simulations.

α Condition number Percentage of eigenvalues
0 10−5.5 27.51%

2/3 10−5.5 48.93%
3 10−3.5 100%

Table I. Optimal condition numbers and associated percent-
ages of eigenvalues kept for Fisher matrices of the HLV net-
work in its O3 sensitivity. Results are computed empiri-
cally via monopole injected simulations in a pixel basis of
Npix = 3072 pixels.

condition numbers with the smallest residuals for differ-
ent power laws are listed in Table I. The percentages of
eigenvalues kept using the optimal condition numbers are
also shown in Table I. Note these are quite different from
the nominal value of 2/3 in the LVK SHD searches, and
depend strongly on the spectral index. The comparison
between the Fisher matrix eigenvalues and the associ-
ated optimal condition numbers for the HLV network for
different power laws is shown in the right panel of Fig. 1.

A GW detector network is diffraction-limited, i.e., the
resolution and hence the point spread function inherently
depends on the frequency of the source. Choosing a pixel
basis with a higher resolution than the internal detector
resolution at the relevant signal frequencies compromises
SNRs of the deconvolved map. The angular resolution
of a two-detector baseline is estimated by the diffraction
limit [81]

△θ ≃ λ

2D
=

c

2fD
, (34)

where D is the baseline length. The expected angular
resolution ℓmax = π/∆θ per frequency for our analyses

can be derived from Eq. (34), with some technicalities.
The HL baseline length DHL = 3002 km is used through-
out the analyses for being the most sensitive baseline,
so we expect this baseline to dominate the resolution.
Furthermore, for broadband analyses we expect each fre-
quency to contribute as a function of overall signal spec-
tral shape [46]. While we quote results at a fixed refer-
ence frequency in this case, chosen in line with previous
results, this frequency does not determine our angular
resolution. On the other hand, for the banded approach
described below, we quote results at the midpoint of each
frequency band considered. As these are not broad-band
integrated results, the reference frequency used here can
give a reasonable estimate of the expected angular reso-
lution in each band. Note that a recent study shows that
the diffraction limit is not optimal to resolve sources [82],
however we are most concerned here with maximizing the
detection statistic, not the recovered resolution. In our
pixel-basis approach, we use this limit as a lower bound
on the number of pixels to use, so as to over-resolve the
anisotropies. The upper bound on pixel number is set by
Fisher matrix regularization, as described below.

Finally, adding more detectors to the network is a
form of regularization, since it provides larger coverage
of the sky. With ever-improving sensitivities of exist-
ing detectors and addition of new detectors (KAGRA [3]
and LIGO India [83]) in the future, Fisher matrices in
modeled broadband searches will be much better condi-
tioned so that specialized regularization techniques will
become less important. On the other hand, however, the
spectral-model-independent method described in Sec. III
relies heavily on trustworthy regularization of all Fisher
matrices in its narrowband searches.
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E. Multipole Moments

Extended anisotropies are parameterized in multipole
moments of the power on the sky, which are quantified
by their spherical harmonic coefficients. We carry out
our analysis in the pixel domain by choosing a pixel
basis expansion as in Eq. (9). Hence, to obtain limits
on anisotropies about the mean background, we convert
from the pixel basis to the spherical harmonic basis.

We can construct estimators of spherical harmonic co-
efficients P̂lm for the GW sky directly using estimated
angular power in pixels P̂p by

P̂lm = (Y † · Γ · Y )−1 · (Y † · Γ · P̂p), (35)

where Y = Ylm,p is the spherical harmonic basis matrix.
Noise in the Fourier domain can be computed as [50]

N̂l =
1

1 + 2l

∑
m

∣∣∣∣∑
pp′

Ylm,pΓpp′Y ∗
p′,lm

∣∣∣∣2. (36)

Analogous to the approach in CMB experiments, we con-
struct unbiased estimators of the squared angular power
Ĉl in the spherical harmonic basis by

Ĉl =
1

1 + 2l

∑
m

|P̂lm|2 − N̂l. (37)

Assuming a spectral index α, our maximum-likelihood
estimates P̂η of the GW angular power spectrum yield an
estimate of the normalized GW energy density ΩGW at
a reference frequency fref , integrated over a broad band
of frequencies. The normalized GW energy density at
the reference frequency fref is calculated using the noise-
weighted monopole value P̂00 of the GW power across
the sky estimated from the maps by Eq. (35),

Ωα ≡ ΩGW(fref) =
2π2

3H2
0

f3
ref P̂00. (38)

Note the computation of P̂00 includes a normalization by
a factor of 5/(8π) due to the normalization of detector
overlap functions [68]. The GW energy density spectrum
at arbitrary frequencies is then obtained by re-scaling the
frequency-integrated estimate of ΩGW with its spectral
shape,

ΩGW(f) = Ωα

(
f

fref

)α

. (39)

III. SPECTRAL-MODEL-INDEPENDENT
APPROACH

In Eq. (6), we assume the GW power on the sky can
be factored into separate directional and frequency com-
ponents, and we further assume the spectral shape is a
power law of index α as in Eq. (7). Though these two

simplifications are motivated by many astrophysical and
cosmological models [5, 6], they are not exact and will
eventually break down.

There are SGWBs with non power-law spectral shapes.
For example, in low frequencies, the SGWB due to
CBCs is well modeled by a power law of spectral index
2/3. However, in high frequencies, we expect a spectral
turnover determined by the redshift-dependent star for-
mation rate and the average total mass of binary black
holes (BBHs) [84, 85]. Measuring this turnover will thus
allow us to probe the average BBH total mass, the evo-
lution of that quantity over cosmic time, and the star
formation history of the Universe. Moreover, there may
even be backgrounds with direction-dependent spectral
emission, which the spectral-model search is not optimal
for.

A generic, spectral-model-independent approach thus
allows us to probe the spectral shape of the SGWB
and potentially identify contributing sources and mecha-
nisms. Towards building a general, model-agnostic search
for SGWBs, a first step is to reduce the assumption of
spectral shapes to a minimum while maintaining the GW
strain power factorization.

A. Adaptive Frequency Banding

To reconstruct the spectral dependence of a SGWB,
we run map-making in distinct frequency bands of adap-
tively chosen bandwidths. The number of bands is a user
input to the pipeline, which ideally is numerous enough to
achieve a good approximation of the spectral shape. Nev-
ertheless, it competes with the conditioning of the Fisher
matrix in each band. Each band needs to be wide enough
for the Fisher matrix to be adequately well-behaved so
as to allow inversion. With the number of bands as in-
put, the algorithm chooses frequency endpoints with each
band containing equal amount of noise-weighted strain
power. Within each band, we then assume a fixed, least-
informative prior flat in energy density, Hα(f) ∼ f−3,
to run map-making. The optimal condition number of
the Fisher matrix for each band would ideally be deter-
mined independently using the method presented in Sec.
IID with a monopole simulation in that band. However,
running a simulation for each band is computationally
expensive. At the current sensitivity level, we choose to
use the broadband optimal condition number in Table I
for each spectral shape as a proxy. With the assump-
tion of an angular-independent spectral shape and with
the Fisher matrix properly conditioned, estimated GW
energy densities in each frequency band trace out the
strain power spectral dependence.

B. Adaptive Pixelization

In the spectral-model-independent method, a single
angular resolution does not accommodate all frequency
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bands due to different diffraction limits estimated via
Eq. (34). Fixing an angular resolution across all bands
over-resolves lower frequencies and hence impairs the
Fisher matrix conditioning, and under-resolves higher
frequencies and hence loses attainable SNRs. We there-
fore independently estimate the expected angular res-
olution for each frequency band using Eq. (34), with
D = DHL and f to be the midpoint of the band. We limit
ourselves to the optimal resolutions within the HEALPix
package [61] (i.e., choices of resolution Nside = 2n), im-
plying a coarse resolution variation over frequency bands,
as described in Sec. IV. We choose the pixel resolution
such that point sources are over-resolved: specifically,
spread across four pixels. We leave the pixelization opti-
mization as well as the exploration of alternative pixeliza-
tion schemes which allow for finer resolution variations
for future work.

IV. SIMULATIONS

We demonstrate the maximum-likelihood mapping
method in the pixel domain outlined in Sec. II C in the
spectral-model-dependent case by running our pipeline
to recover various injected maps for power-law models
of spectral indices 0, 2/3 and 3. We also illustrate the
spectral-model-independent approach to probe spectral
dependence as described in Sec. III via simulations us-
ing a realistic spectral shape from the population studies
of GWTC-3 [67]. We use the present sensitivity from
the HLV detectors to construct the simulations, released
publicly in [86]. For all spectral models, we inject loud
angular power distributions of monopoles, Gaussian ran-
dom fields, and random point sources on the sky. The
simulated input strain power is h2 ∼ O(10−45) for the
map-making verification, while we use h2 ∼ O(10−40) for
the spectral-model-independent method testing. These
may be considered very high SNR cases at present sen-
sitivity, as may be observed in the SNR maps presented
in Fig. 2.

The simulated data consist of sequential CSD fre-
quency segments corresponding to time segments of τ =
96 s over a sidereal day, same as the LIGO–Virgo folded
dataset format [86], where changes in ORFs are negligi-
ble and the noise within each segment stays constant to
a good approximation. We simulate CSDs for all three
baselines in the HLV detector network in [20, 1726] Hz
in both the spectral-model-dependent and independent
cases. We then run the complete analysis pipeline to
compute maximum-likelihood map solutions for compar-
isons with injected maps.

We generate simulated CSD time series via Eq. (19).
We also add simulated Gaussian noise consistent with
the representative LIGO noise curve [87, 88]. To verify
the pipeline implementation, we use Eqs. (25) – (27) to
compute P̂.

With expected SGWBs and associated spectral indices
in mind, we demonstrate the map-making functionality

in three cases: a monopole map with α = 0; a Gaussian
random field with α = 2/3 and an maximum resolution
ℓmax = 8; and a map of 30 random point sources with
α = 3. We run our searches in the frequency range of
[20, 1726] Hz, similarly to the LVK broadband searches
in O3 [46]. We choose a pixel basis of 3072 pixels, or
equivalently Nside = 16 in the HEALPix scheme, with each
pixel covering 13.4 deg2.

In Fig. 2, we show input maps, reconstructed clean
maps, SNR maps and normalized residual maps for all
three cases. All injected maps are successfully recovered,
with minimal residual maps. We have also verified all
combinations of injected maps and spectral indices not
shown in Fig. 2. Note that our mapping method in the
pixel domain successfully recovers both extended sources
as in the case of the monopole and Gaussian maps as
well as the map with 30 random point sources, although
with some caveats. The “point” sources are generated in
the same resolution as the recovery map, meaning that
each “point” here spans 13.4 deg2. For a more realistic
check, point source simulations need to be generated at a
finer resolution and recovered by coarser graining. Also,
for α = 3, the Fisher matrix is well-conditioned hence
we do not need to apply conditioning in its inversion.
Without the information loss, point sources for α = 3
are well recovered whereas for other spectral indices the
recoveries manifest leakage and loss of resolution. An
example of point source recovery for α = 0 is shown
in Fig. 3, illustrating the “smearing” of the point source
recovery. Limited by computational resources, we defer
work on improving the resolution on the clean map to
future work.

For spectral-model-independent narrowband searches,
we show the pipeline’s capability to probe spectral shapes
using injected maps of a monopole, a Gaussian random
field and 30 random point sources. The pipeline runs
map-making in 30 adaptively chosen frequency bands in
the search range of [20, 1726] Hz for each simulation. In
each band, we set f to be the midpoint frequency, and
adaptively produce sky maps of 192, 768, 3072 pixels,
or equivalently Nside = 4, 8, 16 in the HEALPix scheme,
with each pixel covering 214.9 deg2, 53.7 deg2, 13.4 deg2
respectively. These choices allow for good regularization
of the Fisher matrix, and allow us to aptly over-resolve
anisotropies according to the diffraction limit. We plot
the reconstructed spectral shapes and energy densities in
each case, along with the target model in Fig. 4. In the
first two cases, map monopoles in different bands collec-
tively trace out the expected spectral shape. The recov-
ery of the spectrum is harder in the case of random point
sources: we find that the monopole is not well recovered
at lower frequencies, while the spectrum emerges in the
higher frequency bands. As may be observed in Fig. 5,
the recovered maps at lower frequencies do not resolve
the point sources, causing GW power leakage. More on
this sort of effect is explained in [89]. This may also be
due to a sub-optimal conditioning of the Fisher matrix,
which can be explored by repeating simulations as de-
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Figure 2. Top to bottom: input, clean, SNR, and normalized residual maps from simulations described in Sec. IV. From left
to right: monopole (α = 0), Gaussian random field (α = 2/3), 30 random points (α = 3). For all simulations, the pixel with
the maximum residual is at the level of a few percent of the injected signal. We have verified that the residuals are Gaussian
distributed with norm 1. In the monopole reconstruction, the SNR map presents a characteristic horizontal band due to the
shape the ORF traces on the sky over 1 day; this may be also noticed in Fig. 9. In the Gaussian field case, the injected map
has patches of zero power, and is thus more subject to poor estimation due to noise fluctuations than the other cases shown.
In the case of 30 random points, the SNR map presents a residual of the point-spread function with negative values as it is the
result of the matrix operation in Eq. 31, which can give rise to negative fluctuations where the pixel power is very low.

Figure 3. Example of recovery of 30 point sources for α = 0. The smearing of the point spread is not completely deconvolved
due to the singularity of the Fisher matrix in this case. The negative power in P̂ is due to noise fluctuations.
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Figure 4. Reconstructed normalized energy densities and spectral dependencies in 30 adaptive frequency bands for maps of a
monopole (blue), a Gaussian random field (orange), and 30 random point sources (green) for a non-power-law spectral shape.
On the left: H(f); on the right: Ω(f), as defined in Eqs. (4) and (6). The spectral shapes are well reconstructed for maps of
extended sources (note that the recoveries almost overlap in the plots), whereas for point sources reconstruction is imperfect
in particular in the lower frequency bands. See the text for details.

Figure 5. Left to right are input map for the spectral-model-independent run in 30 adaptive frequency bands and reconstructed
clean maps for bands [20, 93.46875] Hz and [1092.71875, 1726] Hz.

scribed in Sec. IID in each individual frequency band.

V. APPLICATION TO LIGO–VIRGO DATA

We apply the methods outlined above to real data ob-
tained by the LIGO and Virgo GW detectors. Our re-
sults clearly show no evidence for a signal, in agreement
with the LVK results [46], hence we set upper limits on
anisotropies as well as the isotropic monopole as a limit-
ing case using the maximum-likelihood mapping method
in the pixel domain described in Sec. II. We also set con-
straints on the spectral shape of the SGWB using the
spectral-model-independent method described in Sec. III.

For the analyses, we use the publicly available folded
datasets of the first three observing runs of Advanced
LIGO and Advanced Virgo [86]. The strain time series
is Fourier transformed and cross-correlated between each
available pair of detectors in the network at the time of
observing. The cross-correlated data from each pair are
then folded over one sidereal day [58, 59], reducing the

computation time for anisotropic searches by a factor of
the number of total observing days. This makes the pro-
cessing of stochastic searches feasible in any modern-day
personal computer. For O1 and O2, cross-correlated data
only exist for the HL baseline, while for O3, data from all
three combinations, HL, HV and LV, are available. Each
sidereal-day folded dataset is chunked into 898 segments,
with each segment lasting τ = 96 s.

We perform all our analyses in the frequency range be-
tween 20 and 1726 Hz at a resolution of 1/32 Hz, although
99% of sensitivity for isotropic broadband analyses comes
from the frequency band between 20 and 300 Hz [45].
This is because, depending on the spectral shape of the
signal and the regularity of the Fisher matrix, anisotropic
searches are not limited by the same sky-integrated sen-
sitivity as isotropic searches.
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Figure 6. Clean maps, SNR maps and noise maps broadband-integrated over [20, 1726] Hz at a reference frequency of fref = 25
Hz using data from LIGO–Virgo’s first three observing runs. From left to right are for spectral indices 0, 2/3 and 3.

Figure 7. 95% upper limits on the angular power spectrum
Cl of the SGWB for power laws of α = 0, 2/3 and 3 at a
reference frequency fref = 25 using data from LIGO–Virgo’s
first three observing runs. We have noted the outlier for ℓ = 6
in the α = 3 case: this is currently under investigation and
is believed to be due to a noise fluctuation which makes the
point value of C6 negative.

A. Spectral-model-dependent, Broadband Limits

For the spectral-model-dependent, broadband
searches, we present the results using three spec-
tral indices, α = 0, 2/3 and 3, same as the LVK searches
[46]. The entire range of frequencies is integrated into
a single map for each case of α. Combining O1, O2
and O3 analyses, we show the reconstructed clean maps
computed via Eq. (25), SNR maps via Eq. (31) and
noise maps via Eq. (32) in Fig. 6 for each spectral index
α = 0, 2/3 and 3 from left to right respectively. The
condition number chosen for each index is listed in Table
I.

We calculate the normalized GW energy density at a
reference frequency of fref = 25 Hz for each spectral in-
dex and find these are consistent with 0, hence we set fre-
quentist 95% confidence level upper limits summarized in
Table II. Our upper limits are consistent with the LVK
isotropic search results [45]. From the SNR maps in Fig. 6
we find the maximum SNR values across the sky, reported
in Table II. These are well below a significant deviation
from 0. To confirm this, we calculate p-values from the
distributions of the SNR maps; these are also reported in
Table II. We thus conclude that we find no evidence of
GW signals in either the monopole or anisotropies. Note
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α Max SNR (% p-value) 95% upper limit on Ωα

0 1.9 (6) 7.3× 10−9

2/3 2.2 (3) 5.1× 10−9

3 2.7 (1) 5.1× 10−10

Table II. Maximum pixel SNRs of the reconstructed broad-
band clean maps and 95% confidence level upper limits on
the normalized GW energy density at a reference frequency
of fref = 25 Hz for the HLV network using data from the first
three observing runs.

that the SNR maps are Gaussian distributed with norms
less than 1: the same behaviour is observed in the LVK
collaboration work [46], and stems from the fact that the
maps have been regularized. The p-values calculated here
include this re-normalization.

We also show the upper limits on the angular power
spectrum Cl’s of the SGWB obtained via Eq. (37) in
Fig. 7. These are approximately consistent with the LVK
anisotropic search results [46], given that regularization is
performed very differently, hence the spread over ℓ modes
appears different in the two upper limits. Our choice of
the maximum ℓ mode included here is dictated by our
pixel resolution, jointly with the expected angular res-
olution of this style of search discussed in [46]. The
relation between ℓ mode and number of pixels necessary
to resolve it, expressed in terms of the HEALPix Nside pa-
rameter, is roughly ℓmax ∼ 2Nside. This would suggest
going up to an ℓmax = 32 for our analysis. However,
even in the most sensitive scenario (α = 3), according
to [46] we expect resolutions higher than ℓmax > 16 to be
unattainable, due to the shape of the LIGO and Virgo
noise curves. Hence, we select ℓmax = 16.

B. Spectral-model-independent, Narrowband
Limits

Using the spectral-model-independent method de-
scribed in Sec. III, we first divide the search range be-
tween 20 and 1726 Hz into 10 and 20 frequency bands
with adaptively chosen endpoints. Since O3 achieves the
best sensitivity out of the three observing runs and HL
is the most sensitive out of the three baselines, the fre-
quency endpoints are chosen such that each band con-
tains the same amount of noise weighted strain power of
the O3 HL data. O1 HL, O2 HL, O3 HV and O3 LV
analyses then employ the same frequency banding as O3
HL.

The mapping method described in Sec. II C is run on
each band separately and the resulting upper limits on
the GW energy density are plotted in Fig. 8. The energy
densities in different bands collectively probe the spectral
shape of the SGWB. The spectral shapes obtained in our
analyses are consistent with a noise-dominated estimate
with increasing power as a function of frequency, resem-
bling the detector noise curve. We also show the clean

maps, SNR maps and noise maps for three narrowband
analyses in low, mid and high frequencies of the 10-band
case in Fig. 9. The lowest frequency band is between
20 and 133.125 Hz; the mid band is between 270.5 and
324.21875 Hz; and the highest band is between 765.8125
and 1726 Hz. We note that the changes in the scale
of structures are evident as frequencies increase and our
method chooses the resolution of each band accordingly
as demonstrated in Fig. 9.

VI. CONCLUSIONS

In this work, we have developed a maximum-likelihood
mapping method in the pixel domain for the SGWB
power on the sky, complimentary to the methods of the
LVK collaboration [46]. In SGWB mapping, Fisher ma-
trix regularization has long been an active area of re-
search. We have presented an empirical method, al-
beit preliminary, to systematically regularize the Fisher
matrix in mapping deconvolution via monopole simula-
tions. In addition to modeled searches, we have intro-
duced an improved spectral-model-independent, narrow-
band search method to probe the spectral shape of the
SGWB, with adaptive frequency banding and adaptive
pixelization techniques applied to each band. We have
shown that this is a valid method to probe spectral shapes
of anisotropic backgrounds, and may serve as a first step
to characterize these signals which may then inspire a
targeted search with a more refined model.

We have verified both the modeled and the unmod-
eled methods in various simulations and we apply both
to LIGO–Virgo’s folded datasets from the first three ob-
serving runs. In the spectral-model-dependent, broad-
band searches, we do not find any excess signals on top
of the detector noise. In the spectral-model-independent,
narrowband searches, our obtained spectral shapes are
consistent with noise dominated estimates. Our results
are in agreement with what is found by the LVK, as sum-
marized in Table II.

In future work, we will improve the reliability of the
Fisher matrix regularization method when applied to
narrowband searches. The method is sub-optimal in nar-
row bands as the Fisher matrix conditioning will be band-
dependent. This is particularly evident in our simula-
tions of point sources, which are very sensitive to Fisher
regularisation (see Figs. 4 and 5). Ideally, the condi-
tion number for each band is independently determined,
while in this study we have used the broadband condi-
tion numbers as an alternative. Furthermore, we can ex-
plore setting constraints on different parametric models
of the SGWB spectral shape starting from our spectral-
model-independent results. Finally, the ultimate goal of
the spectral-model-independent method is to extend its
capability to search for angular-dependent, frequency-
dependent (most general) backgrounds.

In expectation of a first detection of SGWBs in the
coming observing runs, we also plan to use the pipeline
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Figure 8. 95% upper limits on the energy densities in distinct frequency bands used in the spectral-model-independent spectral
analysis. We show our results in 10 and 20 bands. The method assumes a scale invariant spectral shape in each spectral band.
The results are consistent with noise dominated estimates.

Figure 9. Clean maps, SNR maps and noise maps for three frequency bands representative of low, mid and high frequencies
in the spectral-model-independent search. In this analysis of the combined O1+O2+O3 data, the search range is divided into
10 bands. From left to right, the plots shown are for frequencies between 20 and 133.125 Hz, between 270.5 and 324.21875 Hz
and between 765.8125 and 1726 Hz, and Npix = 192, 768, 3072 respectively.
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to probe interesting questions. For example, we aim to
assess whether we should expect to detect the isotropic
or anisotropic component of the SGWB first, assuming
different observing scenarios and signal characteristics.
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