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1 Introduction

The holographic principle, asserting that the physical properties of a gravitational system
are encoded in its boundary [1, 2], has garnered substantial support from tools in quantum
information, including the interpretation of the entropy of black holes as an area [3]. Most
of the explicit tests of this conjecture have been realized in the framework of AdS/CFT
correspondence [4]. However, there has recently been a pressing need to extend holography
to de Sitter (dS) space, which describes the early and late stages of our universe (e.g., see [5]
for a review). This idea is supported by the fact that the cosmological horizon of dS space
also carries information about the temperature and the horizon entropy, as observed by
Gibbons and Hawking [6].

Static patch holography. In holography, the central dogma states that black holes can
be described in terms of unitary quantum systems carrying exp (A/4GN ) degrees of freedom,
as observed from the outside of an event horizon with area A [7]. In a similar way, it was
conjectured that regions delimited by a cosmological horizon can be described from their
inside as unitary quantum systems with a finite number of degrees of freedom [8–13]. In
particular, this applies to the static patch of dS space, which is the region in causal contact
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with an observer in this geometry. The so-called static patch holography assumes that the
putative dual theory lives on the stretched horizon, a timelike codimension-one surface located
just inside the cosmological horizon [14–20] (see also [21–23]).1 While there exist alternative
proposals for a holographic dual of dS space, in this work we will not focus on them.2

There are multiple reasons to believe that static patch holography may provide a well-
defined framework. First, it has been recently understood that timelike boundaries play
an important role in dS space. For instance, in three bulk dimensions, it is possible to
provide a dual interpretation in terms of irrelevant T T̄ deformations of two-dimensional
CFTs, followed by the inclusion of an additional term that introduces a positive cosmological
constant in the geometry [29]. In this way, one can perform a microstate counting inside
the static patch [30, 31], which captures the leading and the logarithmic contributions to
the entropy [32]. A further hint of the role played by timelike boundaries is that they define
sensible thermodynamics [33]. Second, the role of the observer in the presence of gravity
has recently been stressed in [34–39]. In particular, the static patch of dS space provides a
setting where an observer needs to be included to define a sensible algebra of observables.

Holographic complexity conjectures. An exciting advantage within the framework of
static patch holography is that many lessons from the AdS/CFT correspondence carry over.
This has allowed several developments in quantum information applied to dS space, including
holographic complexity. Complexity heuristically quantifies the difficulty of reaching a target
state by acting with a sequence of unitary operators on a reference state (e.g., see [40] for a
review). In quantum information, complexity is used to establish the advantages of quantum
over classical computation, and it is applied as a measure of quantum chaos in many-body
systems. In the holographic context, several geometric observables have emerged, with the
idea to capture the interior growth of black holes and to match with the computational
complexity of a dual state in the quantum theory [41, 42].

We briefly summarize the holographic conjectures. Consider a (d + 1)-dimensional bulk
background with a codimension-one boundary containing a slice Σ where a dual quantum
state is defined. Complexity=volume (CV) relates complexity to the maximal volume V of a
codimension-one hypersurface B anchored at the (d−1)-dimensional boundary slice Σ [43, 44]

CV (Σ) = max
Σ=∂B

V (B)
GN ℓ

, (1.1)

where GN is Newton’s constant and ℓ is an arbitrary length scale, usually identified as the
(A)dS radius. Complexity=volume 2.0 (CV2.0) associates complexity to the spacetime volume
VWDW of the Wheeler-De Witt (WDW) patch, i.e., the bulk domain of dependence of a
spacelike surface anchored at the boundary slice Σ [45]

C2.0V(Σ) =
VWDW
GN ℓ2 . (1.2)

1We consider that both the interior and exterior geometry with respect to a static patch observer can
be described by stretched horizon holography, as recently studied in the bilayer proposal [24–26]. We thank
Victor Franken for discussions on this point.

2We refer the reader to the review [5] and references therein for other approaches to dS holography, including
the dS/CFT correspondence [27] and centaur geometries [28].
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Complexity=action (CA) is defined in terms of the on-shell gravitational action IWDW of
the WDW patch [46, 47]

CA(Σ) =
IWDW

π
. (1.3)

Finally, there is a plethora of additional holographic conjectures, the complexity=anything
(CAny), which define a class of observables displaying linear growth at late times, as well as the
switchback effect in the presence of shock waves in planar AdS black hole geometries [48–50].3
These observables are evaluated in a spacetime region identified by the extremization of a
certain functional. The characteristic features of linear growth and switchback effect unify all
the previous proposals, which can be obtained as special limits of CAny. In this manuscript,
we will be interested in a particular class of codimension-one CAny observables defined on
constant-mean curvature (CMC) slices, introduced in [49] (see section 4.2 for the precise
details). Depending on the extrinsic curvature on the CMC slices, they will generally admit
a different behaviour compared to other complexity proposals.

Holographic complexity in de Sitter space. Several intuitions and a plethora of
examples involving all the holographic proposals have been considered in asymptotically AdS
space. In parallel, several investigations have been performed on the quantum side of AdS/CFT
duality, e.g., in the form of tensor networks with renormalization group-inspired techniques,
or as continuous circuits in quantum mechanics (QM) and quantum field theory (QFT).4

The status of complexity in asymptotically dS space is less clear since holography is less
understood, and it is more difficult to find a dual quantum circuit reproducing the expected
features, despite the existence of different toy models [51–54]. However, as long as one can
define diffeomorphism-invariant observables in a covariant manner, it is likely that they will
have a holographic dual realization. For this reason, one might speculate that the holographic
complexity observables can have a holographic realization in dS space too. Furthermore, by
construction, all the holographic complexity proposals have very similar properties in AdS
holography. Applying them outside of such a setting will allow us to identify the differences
between various proposals, as well as their universal aspects.

This point of view has motivated different studies about holographic complexity in dS
space. In this case, the prescriptions introduced above require all the geometric objects to be
anchored to the timelike boundary of the static patch, i.e., the stretched horizon [14]. The
time coordinate of a putative boundary theory is taken to run along the stretched horizon
itself. Arguably, the most striking feature of the complexity proposals in asymptotically dS
space is the existence of a divergent (also called hyperfast) growth of complexity [55–57]
at some finite time scale.5 This behaviour is in sharp contrast with the eternal evolution
of gravitational quantities in asymptotically AdS space, approaching a linear increase at
late times. However, a certain subset of codimension-one observables inside the class of
CAny proposal is still able to grow forever [59, 60]. Once we incorporate black holes in dS

3The switchback effect is a delay in the growth of complexity arising as a consequence of inserting a
perturbation in the system [44].

4We refer the reader to the references in the review [40] for more details.
5This feature is not shared by the volume conjecture in the context of two-dimensional centaur geometries,

where the growth of complexity is finite and stops at some fixed time [58].
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Figure 1. SdSn
d+1 space (illustrated for n = 2) where r

(h)
st , r

(c)
st (both in green) denote the stretched

horizons close to the black hole and the cosmological horizon, respectively. rh and rc denote the black
hole and cosmological horizon radii. The purple line region near I+ indicates a spacelike slice where
an observer could collect information encoded in the inflating region.

space, i.e., we consider Schwarzschild-de Sitter (SdS) space, holographic complexity in the
inflating region of the geometry does not qualitatively change. Despite the different outcomes
described so far, all the proposals display a switchback similar to black holes once shock
waves are introduced in the background [61–63]. The similar realization of the switchback
effect for all the complexity conjectures may be understood as a consequence of the universal
feature that the insertion of a perturbation consistent with the null energy condition creates
causal contact between regions that were originally separated in the geometry [64]. This
ultimately allows for the transfer of information [65, 66].

Motivations and new observables. The distinction between hyperfast and linear growth
at late times is a consequence of the extremal surfaces (where complexity is evaluated)
reaching or not timelike infinity I±. So far, the explorations of holographic complexity in
the SdS background only focused on the inflating patch (the region outside the cosmological
horizon rc in figure 1) [59, 62, 63]. Instead, no investigations have focused on the black hole
patch (the region inside the black hole horizon rh in figure 1). As anticipated above, the
central dogma in (A)dS space gives great importance to the region located outside the black
hole and inside the cosmological horizons, since it is believed to have a unitary description in
terms of a quantum system. An observer in such a region may have the possibility to describe
both the interior of a black hole and the exterior of a cosmological horizon. In this paper, we
study the holographic complexity conjectures for several different choices of the stretched
horizons to which the extremal surfaces of interest can be anchored. From the lenses of dS
holography, this procedure might allow us to predict the behaviour of new observables for
the putative dual quantum theory. The background of interest is the periodic extension of
the SdS black hole with n copies (that we will denote as SdSn), see figure 1. The possible
choices for the timelike surfaces to which geometric observables can be anchored is partially
motivated by the proposal of holographic screens by Bousso [8, 67], which has been previously
used to compute holographic complexity in FRLW cosmologies [68].
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Figure 2. Summary of the possible configurations for the stretched horizons. Holographic observables
are located between the stretched horizons.

Our motivations for studying complexity in the extended SdS space are two-fold. First,
this type of spacetime has been used to construct multiverse models. One instance is in
the context of dS space proliferation [69, 70], where a near-extremal extended Nariai black
hole can lead to different disconnected universes due to quantum effects. Other toy models
of eternal inflation use the extended SdS background to study the von Neumann entropy
for a subregion of I+ in lower-dimensional quantum gravity [24, 71] (see [72] for a higher
dimensional implementation)., which has also motivated certain recent braneworld multiverse
models [73, 74]. In the quantum cosmology context, the typical setting involves a meta-
observer living on a spacelike surface (see the horizontal purple lines in figure 1), from
which they are able to collect coarse-grained information on the history of the spacetime.
In these latter approaches, the extended SdS black hole has proven to be a useful tool
(e.g., see [75]). Second, we want to accumulate evidence for universal and non-universal
features of the complexity conjectures in more general asymptotically dS geometries, an
effort initiated in [76].

Main results. The extended SdS background allows for several possible configurations
of the stretched horizons, which are summarized in figure 2 (the details will be given in
section 2.2). The setting denoted as case 1 contains a single copy of the SdS geometry where
the geometric quantities only probe the cosmological patch. This is the kind of holographic
complexity already studied in the literature in empty dS space, which here we extend to the
case of a black hole. The configuration in case 2 focuses on the black hole region only, since
it probes the interior of the corresponding event horizon. This is similar to the investigations
of holographic complexity performed in asymptotically AdS geometries. The main novelty of
this work is provided by cases 3–5, where gravitational observables probe both the interior
of the black hole and the exterior of the cosmological horizon. This is possible when the
stretched horizons belong to static patches in non-consecutive regions of the Penrose diagram.

We anticipate the main results of this paper in table 1, which collects the late-time
behaviour of the complexity conjectures.6 The first set of comments comes from reading

6For visual convenience, we have split table 1 in two parts.
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Case 1 (figure 2(a)) Case 2 (figure 2(b))

CV 2.0 Hyperfast (3.10) Linear (3.13)

CA Hyperfast (3.29) Linear (3.34)

CV Hyperfast (4.22) Linear (4.32)

Cϵ (4.57)

Hyperfast if |Kϵ| < Kcrit

Linear if |Kϵ| ≥ Kcrit
Linear (4.57)

Case 3 (figure 2(c)) Cases 4–5 (figure 2(d)–2(e))

CV 2.0 Time-independent (3.18) Time-independent

CA Time-independent (3.37) Time-independent

CV Linear (4.40) Time-independent

Cϵ Linear (4.68) Time-independent

Table 1. Late-time behaviour of the holographic complexity conjectures. Cϵ is a class of codimension-
one observables among the CAny proposals, defined on CMC slices with extrinsic curvature Kϵ (Kcrit
denotes a critical value).

the table by columns, which allows us to scan for universal and distinguishing properties
of the holographic proposals:

• The first column (case 1) shows that hyperfast growth is a feature of the holographic
complexity proposals evaluated in a single inflating patch of the SdS background. This
generalizes previous results in empty dS space [55]. The only exception is provided by the
observable Cϵ, belonging to a class of codimension-one CAny observables evaluated on
CMC slices, which present an eternal evolution with linear growth at late times whenever
their extrinsic curvature is greater than a critical value (as already noticed in [74]).

• The second column (case 2) tells us that the growth rate of complexity at late times
is universally linear whenever the geometric observables are located inside the black
hole patch. This is consistent with the behaviour of black holes in asymptotically
AdS space [77].

• From the column referring to case 3, we read that all the geometric observables extending
across a single black hole and one cosmological patch do not present hyperfast growth.
However, there are some differences. The codimension-zero proposals are always time-
independent, as a consequence of the WDW patch reaching timelike infinities I± and
the singularity at all times. On the other hand, codimension-one conjectures evolve
forever, approaching a linear rate at late times.
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• The last column (cases 4–5) refers to configurations with multiple copies of the SdS
geometry, including both cosmological and black hole patches. In this setting, we
find a universal behaviour: all the holographic proposals are time-independent. For
codimension-zero observable, this is a consequence of the WDW patch reaching timelike
infinities I± and the singularity at all times. For codimension-one quantities, we find
certain constraints that only allow for the trivial evolution generated by the time
isometry of the background.

The second interpretation of table 1 comes from reading it by rows, to determine the
common features of the various configurations of the stretched horizons:

• The first two lines show that codimension-zero proposals present the same features, which
drastically change according to the location of the stretched horizons. In particular,
complexity is time-independent in cases 3–5.

• The codimension-one proposals also present similar features, except for the two possi-
bilities mentioned above for Cϵ in case 1. When there exists at least one inflating and
one black hole patch (cases 3–5), we will show that any configuration with symmetric
boundary times t is forbidden, except for a maximal surface only defined at a unique t.
While this leads to a time-independent volume in cases 4–5, instead the isometries in
case 3 allow for a non-trivial evolution that approaches linear growth at late times.

In summary, our study shows that the holographic complexity of a black hole in asymptot-
ically dS space presents different features depending on the location of the stretched horizons:
one can find hyperfast, linear, or vanishing growth. In case 3, which probes one cosmological
and one black hole patch, there is a time regime such that CA is time-independent, while CV
is not. This also happens in asymptotically AdS black holes [77]. Furthermore, let us mention
that a completely different behaviour of CV and CA is also reminiscent of the fact that defects
and boundaries show a different structure of UV divergences when evaluating CA and CV pro-
posals [78–83]. In this paper, the novelty is that the different behaviour arises in a dynamical
situation, in asymptotically dS space, and at any boundary time, including late times.

Outline. The paper is organized as follows. In section 2 we introduce the extended
SdSn black hole, which is composed of n pairs of black hole and cosmological patches. We
then describe the possible configurations for the stretched horizons to which complexity
observables are anchored. In section 3 we study the time evolution of the WDW patch and
of the codimension-zero holographic proposals (CV2.0 and CA). In section 4 we similarly
proceed with the analysis of codimension-one proposals (CV and CAny). We then conclude
in section 5 with a summary of our findings, and some relevant future directions. Appendix A
contains some technical details on the computation of CA.

2 Extended Schwarzschild-de Sitter spacetime

Black hole solutions in asymptotically dS space can be analytically extended to an infinite
sequence of regions that admit both a black hole and a cosmological horizon. We describe
this geometry and its causal structure in section 2.1. We then define in section 2.2 the
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stretched horizon, a timelike surface where a putative dual theory is conjectured to live, and
we present a set of geometric quantities that we are going to study, and are expected to have
a holographic interpretation. Section 2.3 defines the time evolution of the dual quantum
theory in terms of the bulk time running along the stretched horizon.

2.1 Geometric setting

We consider the Schwarzschild-de Sitter (SdS) spacetime in d + 1 dimensions, which is
a spherically symmetric and static black hole solution to the equations of motion of the
Einstein-Hilbert action with a positive cosmological constant:

I = 1
16πGN

∫
dd+1x

√
−g (R − 2Λ) , Λ = d(d − 1)

2L2 . (2.1)

The metric reads

ds2 = −f(r)dt2 + dr2

f(r) + r2dΩ2
d−1 , f(r) = 1− 2µ

rd−2 − r2

L2 , (2.2)

where L is the dS curvature radius, f(r) the blackening factor, and µ a parameter related to
the mass of the black hole (e.g., see [6, 84, 85] for more details). When µ = 0, the geometry
reduces to empty dS space. The case d = 2 is special because the term proportional to
r−(d−2) inside the blackening factor in eq. (2.2) becomes constant. In this special case, the
black hole can be obtained as a discrete quotient of empty dS space with a conical defect
at r = 0. In the coordinate system (2.2), r = ∞ represents timelike infinities I±, while
r = 0 is the black hole singularity.

Generic dimensions. In this work, we will only focus on the case when d ≥ 3 and the
parameter µ belongs to the range µ ∈ (0, µN ), where

µN ≡ rd−2
N

d
, rN ≡ L

√
d − 2

d
. (2.3)

In this regime, the blackening factor admits two positive roots denoted as rh < rc, where
the larger value represents a cosmological horizon and the smaller one a black hole horizon.
The Penrose diagram corresponding to the previous range of µ is depicted in figure 3. In the
following, we will refer to the left square of the causal diagram (containing a cosmological
horizon) as the cosmological or inflating region of the geometry, and to the right side of
the causal diagram as the black hole region. We will also refer to the region described by
the radial coordinate r < rh as the interior of the black hole, and r > rh as its exterior.
Similarly, r < rc describes the interior of the cosmological horizon, while for r > rc the
exterior. In particular, the static patch rh ≤ r ≤ rc is located in the exterior of the black
hole, but inside the cosmological horizon.

The coordinate system in eq. (2.2) only covers a portion of the spacetime. In order to
enlarge this region, and in view of the evaluation of geometric observables that extend behind
the horizons, it is convenient to introduce the null directions

u = t − r∗(r) , v = t + r∗(r) , (2.4)

– 8 –



J
H
E
P
0
5
(
2
0
2
4
)
2
0
1

I+

I−

rc rh

r = 0

r = 0r = ∞

r = ∞
Vc Ub

UcVb

v c
→
−∞

v c
→
∞

r
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Figure 3. Penrose diagram of SdSd+1 space in dimensions d ≥ 3, in the regime where the mass
parameter satisfies µ ∈ (0, µN ). rh denotes the black hole horizon and rc the cosmological horizon.
We display the orientation of the null coordinates in eqs. (2.4) and (2.7), where the subscripts {b, c}
denote black hole and cosmological patches, respectively.

where the tortoise coordinate is defined by

r∗(r) =
∫ r

r0

dr′

f(r′) , (2.5)

and the integration constant r0 is chosen such that r∗(r → ∞) = 0. In this way, it is possible
to bring the metric into the Eddington-Finkelstein (EF) form

ds2 = −f(r)du2 − 2dudr + r2dΩ2
d−1 = −f(r)dv2 + 2dvdr + r2dΩ2

d−1 . (2.6)

It is important to observe that whenever an event horizon is crossed, either the null coordinate
u or v ends its range of validity and needs to be defined again using eq. (2.4) in the new patch.

The Penrose diagram in figure 3, corresponding to the maximal analytic extension of
the metric, is obtained by compactifying the Kruskal coordinates (U, V ) defined in the
central quadrant as follows7

Uc = e
u
ℓ , Vc = −e−

v
ℓ , Ub = −e−

u
ℓ , Vb = e

v
ℓ , (2.7)

where ℓ is an appropriate length scale that makes the exponent dimensionless (for instance,
one can take ℓ = L). Due to the existence of two horizons, we need to introduce two sets
of Kruskal coordinates: (Uc, Vc) cover the region with radial coordinate r ∈ (rh,∞), while
(Ub, Vb) cover the portion with r ∈ (0, rc). Both the coordinate systems are well-defined
in the central static patch with r ∈ (rh, rc), where one can change the coordinate chart
from one system to the other.

7Notice that despite the existence of two sets of Kruskal coordinates in the middle quadrant in figure 3,
the null coordinates (u, v) are uniquely defined in such region. Similar conventions apply to the Kruskal
coordinates for Kerr black holes [86].

– 9 –



J
H
E
P
0
5
(
2
0
2
4
)
2
0
1

The cosmological and black hole horizons emit thermal radiation, with associated Hawking
temperature and entropy given by8

Th(c) =
1
4π

∣∣∣∣∂f(r)
∂r

∣∣∣∣
r=rh(c)

Sh(c) =
Ωd−1rd−1

h(c)
4G

. (2.8)

In a general number of dimensions, it is possible to exploit the constraints f(rh) = f(rc) = 0
to write all the relevant quantities defining the SdS solution in terms of the two horizons.
Therefore, we obtain the following expressions for the mass parameter and dS curvature length

µ = 1
2

rd
c rd−2

h − rd
hrd−2

c

rd
c − rd

h

, L2 = rd
c − rd

h

rd−2
c − rd−2

h

, (2.9)

the blackening factor

f(r) = 1
rd

c − rd
h

[
rd

c

(
1− r2

r2
c

−
rd−2

h

rd−2

)
− rd

h

(
1− r2

r2
h

− rd−2
c

rd−2

)]
, (2.10)

and the Hawking temperatures

Th = d
r2

N − r2
h

4πrhL2 , Tc = d
r2

c − r2
N

4πrcL2 . (2.11)

For any mass parameter in the range µ ∈ (0, µN ), we get Th > Tc, which shows that the
system is out of equilibrium.

In dimensions d ≥ 3, the Nariai geometry corresponds to the limiting case where µ = µN ,
such that the black hole and cosmological horizons approach each other. However, the proper
distance between the event horizons does not vanish, because the blackening factor f(r) is
also small in this regime. A proper description of the spacetime in this limit is obtained by
taking a near-horizon limit, e.g., see section 3.1 in [89] or appendix B in [90]. The Nariai
geometry can be mapped to dS2 × Sd−1 by a change of coordinates [89, 91].

Four dimensions. When d = 3, certain analytic expressions are available. The blackening
factor in eq. (2.2) becomes

fSdS4(r) = 1− 2µ

r
− r2

L2 , (2.12)

and the critical mass in eq. (2.3) is µ2
N = L2/27. In the regime µ ∈ (0, µN ) when the blackening

factor admits two roots, one can invert the identities (2.9) specialized to d = 3 and find a
closed form for the event horizons in terms of the dS radius and the mass parameter [92–94]:

rh = rN

(
cos η −

√
3 sin η

)
, rC = rN

(
cos η +

√
3 sin η

)
, η ≡ 1

3 arccos
(

µ

µN

)
. (2.13)

8Notice that the Hawking temperatures in eq. (2.11) are defined with respect to the Killing vector
ξ = γ∂t with γ = 1. However, a consistent extremal limit is only achieved with the Hawking-Bousso choice,
corresponding to γ = 1/

√
f(r0) with r0 such that f ′(r0) = 0. This subtlety is discussed, e.g., in [87, 88], but

it does not play a relevant role in the present paper.
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The inverse of the blackening factor (2.10) can be integrated analytically, giving the tortoise
coordinate

r∗(r) = − r2
C + rhrC + r2

h

(rC − rh)(2rC + rh)(rC + 2rh)

[
r2

C log
∣∣∣∣ r − rC

r + rC + rh

∣∣∣∣
+2rhrC log

∣∣∣∣r − rC

r − rh

∣∣∣∣− r2
h log

∣∣∣∣ r − rh

r + rC + rh

∣∣∣∣] .

(2.14)

These expressions will be used for any numerical computation involving the SdS4 background
in the remainder of the paper.

Extended Schwarzschild-de Sitter background. It is important to observe that SdS
spacetime can be analytically extended even beyond the region depicted in figure 3, i.e., it is
possible to build an infinite sequence of singularities and timelike infinities I±. The Penrose
diagram is composed by a periodic extension as depicted in figure 1, where it is allowed to
have n-pairs of black hole and cosmological patches. We refer to this configuration as the
extended Schwarzschild-de Sitter spacetime, denoted with SdSn. Each of the static patches
can be described by the metric introduced above:

ds2
(i) = −f

(
r(i)
)
dt2

(i) +
dr2

f
(
r(i)
) + r2

(i)dΩ2
d−1 , f

(
r(i)
)
= 1− 2µ

rd−2
(i)

−
r2

(i)
L2 . (2.15)

The only caveat is that we need to introduce a copy of the coordinates for each copy of
SdS, which here we denoted with the index i ∈ {1, . . . , n}. It is worth mentioning that the
Euclidean continuation of SdSn geometry is singular, but this issue will not play a role in
our classical gravitational analysis.9

Next, we define the relevant geometric quantities that will be studied in the extended
SdS spacetime in this work.

2.2 Stretched horizons

In the context of static patch holography, it is conjectured that there exists a dual quantum-
mechanical description of the static patch of empty dS space in terms of a theory living on a
timelike surface (the stretched horizon) located just inside the cosmological horizon [13, 14,
24, 96–99]. In the black hole geometry defined by eq. (2.2), the stretched horizon is defined
as a surface at the constant radial coordinate

rst = (1− ρ)rh + ρrc , ρ ∈ [0, 1] , (2.16)

such that rst ∈ [rh, rc] and the parameter ρ interpolates between the two horizons. In
particular, we will be mainly interested in the limits ρ → 0 and ρ → 1, when the stretched
horizon approaches either the black hole or the cosmological horizon.10 There are various

9The Euclidean continuation is generically singular even when n = 1 (e.g., see [88]), unless one works in the
extremal SdS limit, where the black hole and inflating patches have the same temperature. In the extended
geometry, even at thermal equilibrium, there are conical singularities [71, 95].

10In this regard, a stationary observer in the static patch will generally experience an intermediate tem-
perature between the cosmological and black hole one, since the system is out of equilibrium. However, if
the stretched horizons is close to one of the horizons (either ρ → 0 or ρ → 1), then the corresponding flux of
radiation will be dominant. We thank Shan-Ming Ruan for raising this question.
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(a) Case 1 : two cosmological stretched horizons.
r = 0 r = ∞

r = 0 r = ∞

r
=
r
c r

=
r c

r
=
r
h

r = ∞

r = ∞

(b) Case 2 : two black hole stretched horizons.

Figure 4. Prescriptions for the stretched horizons (in green) in a holographic setting. (a) The
cosmological stretched horizons are placed in consecutive static patches. Geometric quantities anchored
to the cosmological stretched horizons explore the region beyond the cosmological horizon. (b) The
stretched horizons are placed in consecutive black hole patches. Geometric quantities anchored to
the black hole stretched horizon explore the region behind the black hole horizon. The gray arrows
represent the orientation of the Killing vector ∂t.

reasons that make this choice natural. First, according to the central dogma for black holes
and for inflationary models, the degrees of freedom and the unitary evolution of the dual
quantum system should be determined from the region inside the cosmological horizon, but
outside the black hole one [7, 13, 74]. This region is the static patch of the SdS background.
Secondly, the choice (2.16) defines a timelike surface where a time coordinate for the dual
quantum system can be consistently defined. Had we chosen a surface at constant r located in
the intervals [0, rh] or [rc,∞], it would have been spacelike instead. Furthermore, holographic
screens can be defined in other ways, for instance, by taking a congruence of geodesics and
imposing that the expansion parameter vanishes [67]. In the case of a static and spherically-
symmetric background like (2.2), this requirement is equivalent to locating the stretched
horizon close to one of the event horizon. Finally, a natural static sphere observer is freely
falling at fixed radius rO, i.e., identified by the condition f ′(rO) = 0. This requirement fixes
rO ∈ (rh, rc), which is the range where the stretched horizon is located.

It turns out that the realization of the requirement (2.16) in SdS background leads to
several different holographic settings:

1. Two cosmological stretched horizons. So far, all the studies of holography in
asymptotically dS space in the literature focused on locating the stretched horizons just
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Case 3 : one cosmological and one black hole stretched horizon.

Figure 5. New prescription for the stretched horizons in the SdS background. The left surface is a
cosmological stretched horizon, while the right surface is a black hole stretched horizon. Geometric
objects anchored to the stretched horizons can go behind rh and beyond rc. Gray arrows represent
the orientation of the Killing vector ∂t.

inside the cosmological horizon as depicted in figure 4(a). We refer to these surfaces at
constant radii as the cosmological stretched horizons, because they allow us to investigate
the properties of the geometry of the cosmological region. Indeed, it was conjectured
that the Ryu-Takayanagi (RT) surface, the codimension-one extremal surfaces or the
WDW patch should be anchored at the cosmological stretched horizons, such that these
geometric objects lie in the inflating region of the Penrose diagram [13, 14, 24, 55, 98].

2. Two black hole stretched horizons. In comparison to empty dS space, the existence
of a black hole event horizon in higher-dimensional SdS allows to define a so-called
black hole stretched horizon which still satisfies eq. (2.16), but is now located in the
black hole region of the Penrose diagram. The corresponding scenario, depicted in
figure 4(b), implies that the geometric quantities lie behind the black hole horizon.
This configuration is very similar to the standard holographic setting considered in
asymptotically AdS space.

3. One cosmological and one black hole stretched horizon. We depict in figure 5
a novel prescription. We take one cosmological stretched horizon and one black hole
stretched horizon, both belonging to the same copy of SdS space.

4. Two cosmological stretched horizons in different copies of SdS. The period-
icity of the SdSn geometry opens the way for more possibilities, where there are two
cosmological stretched horizons belonging to different copies of the spacetime. This
setting is depicted in figure 6(a) for the case of SdS2.

5. Two black hole stretched horizons in different copies of SdS. Another possibility
coming from the periodicity of the Penrose diagram is to take two black hole stretched
horizons in different copies, as reported in figure 6(b) for the SdS2 case.

In the remainder of the paper, we will denote as rL
st (rR

st) the left (right) stretched horizons
in a certain configuration. The common idea to all the new cases 3, 4 and 5 is that geometric
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(a) Case 4 : two cosmological stretched horizons in SdS2.
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(b) Case 5 : two black hole stretched horizons in SdS2.

Figure 6. Novel prescriptions for the stretched horizons in a holographic setting with two copies of
SdS space. (a) The cosmological stretched horizons (in green) are located in different copies of the
static patch. (b) The stretched horizons (in green) are located in different copies of the black hole
patch. Gray arrows represent the orientation of the Killing vector ∂t.

objects hanging from the corresponding stretched horizons probe both the black hole interior
and the exterior of the cosmological horizon, which are both of physical interest.

2.3 Boundary times

We interpret the time coordinates tL, tR running along the left or right stretched horizons
of the SdS geometry as the boundary times of the corresponding dual theories.11 First of
all, we define the following

Convention 2.1. The boundary time tL(tR) defined on the left (right) stretched horizon is
always chosen to be oriented upward.

The signs of the times tL, tR for the left and right boundary theories, compared to
the time coordinate tbulk naturally defined in the bulk and running along the stretched
horizon, are determined by the orientation of the Killing vector ∂t associated with the
time-translation invariance of the metric (2.2). In particular, this orientation flips whenever
an event horizon is crossed.

Let us clarify the convention 2.1 with an example. In case 1, the SdS geometry is
depicted in figure 7. The Killing vector ∂t runs upward on the right stretched horizon and

11From now on, we will refer to tL, tR as the boundary times, referring to the idea that they may be
interpreted as the time coordinates of a putative quantum theory defined on these codimension-one surfaces.
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downward on the left stretched horizon. The orange lines at ±45° represent surfaces at
constant u(v) coordinates, which compose the null boundaries of the WDW patch (that will
be analyzed in section 3.1). Focusing on the top-right boundary, we find that the constant
value of the u coordinate is given by

umax = tbulk − r∗(rR
st) = tR − r∗(rR

st) , (case 1) (2.17)

where we used the definition (2.4) and the identification tbulk = tR that comes from the
upward orientation of the Killing vector ∂t, consistent with the upward orientation of tR

according to the convention 2.1. On the contrary, if we evaluate the constant value of u

on the bottom-left boundary, we get

umin = tbulk − r∗(rL
st) = −tL − r∗(rL

st) , (case 1) (2.18)

where now we identified tbulk = −tL because the Killing vector ∂t is oriented downward, while
the convention 2.1 requires tL to be oriented upward. A similar reasoning will be applied in
the remainder of the paper to define the boundary times in any other configuration.

Next, our goal is to introduce a time dependence into the setting, in order to probe the
exterior of the cosmological horizon and the interior of the black hole.12 It is well-known
that the SdS background is static under a time evolution that runs along the same direction
dictated by the Killing vector ∂t running along the stretched horizons. More precisely, due
to the boost symmetry associated with the time isometry in the bulk, the conjectured dual
state in the boundary theory is invariant under the shifttL → tL +∆t , tR → tR −∆t cases 1, 2, 4, 5

tL → tL +∆t , tR → tR +∆t case 3 ,
(2.19)

where the different sign of case 3 compared to the other configurations is a consequence of
the orientation of the Killing vector ∂t on the two stretched horizons.

The symmetry (2.19) implies that we need to perform a different evolution of the boundary
times in case 3 (compared to the other cases) in order to achieve a time-dependent setting.
In other words, this observation justifies the following rule

Prescription 2.2. A non-trivial time evolution of the SdS background is achieved by evolving
the times of the putative boundary theory upward along the stretched horizons, except on the
left stretched horizon in case 3, where the time tL evolves downward.

In principle, the time coordinates tL, tR are independent, but one can synchronize them
by considering an extremal codimension-one surface connecting the two stretched horizons.
This geometric construction connects the time slice at time tR on the right stretched horizon
with the one at time tL = ±tR (as specified below) on the left stretched horizon. Throughout
this work, we will refer to the special case of a symmetric (antisymmetric in case 3) time

12This guiding principle was originally introduced to study the evolution of the entanglement entropy in an
eternal black hole background in [100].
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evolution whenever the following condition is met:13
t
2 ≡ tL = tR , cases 1, 2, 4, 5
t
2 ≡ −tL = tR , case 3 .

(2.20)

Using the symmetry (2.19) of the extended black hole background, this case can always be
achieved for the holographic complexity investigations, and it is not restrictive.14

3 Codimension-zero proposals

We begin our journey across the holographic proposals in extended SdS geometry by con-
sidering the codimension-zero observables. After defining in section 3.1 the main properties
of the WDW patch, we explore in sections 3.2 and 3.3 the time evolution of CV2.0 and
CA conjectures, respectively.

3.1 WDW patch

We build the WDW patch, i.e., the bulk domain of dependence of a spacelike surface anchored
at the stretched horizons, according to the list of proposals presented in section 2.2. In order
to avoid divergences of the spacetime volume or of the gravitational action when approaching
timelike infinities I±, we introduce a cutoff surface located at r = rmax. Although the region
close to the black hole singularity does not bring any divergence, we will also introduce
by analogy a cutoff surface located at r = rmin. At the end of the computation, we will
send rmax → ∞ and rmin → 0.

In all the cases described below, the WDW patch is conveniently described by the null
coordinates introduced in eq. (2.4). In particular, the null boundaries delimiting the shape
of the WDW patch are identified by the conditions that either the u or v coordinate is
constant, as we will specify case by case below.

Case 1. The time dependence of the WDW patch was studied in various dimensions for
empty dS space (with and without perturbations) [55, 57, 61] and for the SdS black hole
in the presence of a shock wave [62]. We depict the relevant geometric configuration in
figure 7, focusing on the case with symmetric time evolution (2.20) and symmetric location
of the stretched horizons, i.e., rst ≡ rL

st = rR
st.

The top and bottom joints r± of the WDW patch are related to the position of the
stretched horizons as

umax = t

2 − r∗(rst) = −r∗(r+) , vmin = t

2 + r∗(rst) = r∗(r−) , r± ≥ rc , (3.1)

where we used the symmetry of the configuration to infer that the joints are located along
the vertical line at t = 0 in the Penrose diagram. The time dependence of the joints can be

13At the cost of being pedantic, we stress that t is a boundary time, related to the bulk time tbulk via the
identification of the time coordinate on the stretched horizons dictated by the Killing vector ∂t, see discussion
below eq. (2.17).

14In principle, the time coordinates are independent among each copy of SdS. However, requiring a smooth
junction between the various copies implies that the coordinates and the Killing vector ∂t are continuous.
Therefore, one can synchronize the clocks of the surfaces belonging to different copies of SdS, too.
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Figure 7. General configuration of the WDW patch in case 1. Pink and red curves near I± and the
singularities indicate cutoff surfaces rmax for the cosmological and rmin for the black hole patches,
respectively. The boundaries of the WDW patch are denoted in orange. The vertical purple line
denotes a locus of constant t = 0. The gray arrows indicate the orientation of the Killing vector ∂t,
and the circled numbers indicate the regions of integration in (3.8).

computed by taking the time derivative of the previous identities, leading to
dr+
dt

= −1
2f(r+) ,

dr−
dt

= 1
2f(r−) . (3.2)

Due to the isometries of the spacetime, the time evolution is symmetric with respect to the
boundary time t = 0. The critical time t∞ (and its opposite −t∞) is identified by the condition
that the top (bottom) joint of the WDW patch reaches future (past) timelike infinity. More
precisely, the critical time tc1 when the top joint crosses the future cutoff surface is given by

tc1 = 2 (r∗(rst)− r∗(rmax)) , t∞ = lim
rmax→∞

tc1 . (3.3)

Case 2. This setting, depicted in figure 8, has several analogies with computations of
holographic complexity performed in asymptotically AdS spacetimes (e.g., see [77, 101])
because the WDW patch covers a region behind the black hole horizon. The main differences
with these standard calculations are the specific blackening factor and the presence of the
stretched horizons, which cut part of the geometry and forbid the WDW patch to reach
any region close to r = ∞. As a consequence, the corresponding holographic complexity
will not be UV divergent, nevertheless, we expect the rate of growth to present similar
features compared to the AdS case.

Next, we assume without loss of generality that the boundary times satisfy eq. (2.20)
and that the stretched horizons are symmetric, i.e., rst ≡ rL

st = rR
st. In this configuration,

we define the special positions of the WDW patch as

umin = − t

2−r∗(rst) = −r∗(r+) , vmax = − t

2 +r∗(rst) = r∗(r−) , r± ≤ rh . (3.4)

The difference with eq. (3.1) is that r± lie in a different region, and the Killing vector
corresponding to the time directions flows in the opposite way along the stretched horizons.
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Figure 8. General configuration of the WDW patch in case 2. The same coloring scheme as figure 7
is used, with the circled regions indicating the evaluation of (3.11).

As a consequence, the derivatives of the joints now satisfy the different relations
dr+
dt

= 1
2f(r+) ,

dr−
dt

= −1
2f(r−) . (3.5)

The time evolution is still symmetric. The instant t0 (and its opposite −t0) when the top
(bottom) joint of the WDW patch reaches the future (past) singularity can be obtained
from a limit of the general critical time tc2 when the top joint cross the future cutoff surface
in the black hole region, i.e.,

tc2 = 2 (r∗(rmin)− r∗(rst)) , t0 = lim
rmin→0

tc2 . (3.6)

Case 3. Let us now consider the setting depicted in figure 9. We will keep tL, tR and the
locations of the stretched horizons rL

st, rR
st arbitrary in the following considerations. The joints

of the WDW patch are always located behind the cutoff surfaces (either rmax or rmin), even
in the limit where they approach timelike infinity I± and the singularity. Regarding the time
evolution of the diagram, it should be noted that the Killing vector ∂t is downward-oriented
along both stretched horizons, implying that the time coordinate increases towards the
bottom of the Penrose diagram. Therefore, from the perspective of a dual boundary theory,
we should denote the times on the stretched horizons as tbulk = −tL and tbulk = −tR.

Cases 4–5. The relevant shapes of the WDW patch in these cases are depicted in figure 10.
We observe that the diagrams are similar to case 3 in figure 9, except that there is an
additional inflating patch (case 4) or black hole patch (case 5). The main feature of these
configurations is that the top and bottom joints of the WDW patch always lie behind timelike
infinities or singularities, independently of the precise location of the stretched horizons and
of the value of the boundary times.

3.2 Complexity=volume 2.0

As mentioned in section 1, the CV2.0 conjecture states that holographic complexity is
proportional to the spacetime volume of the WDW patch. Given the spherical symmetry
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Figure 9. General configuration of the WDW patch in case 3. The same coloring scheme as figure 7
is used, with the circled regions indicating the evaluation of (3.15).
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Figure 10. General configuration of the WDW patch in cases 4 (Figure a) and 5 (Figure b).
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of the black hole solution (2.2), we get the expression

C2.0V = VWDW
GN L2 = Ωd−1

GN L2

∫
drdt rd−1F(r) , (3.7)

where Ωd−1 = 2πd/2/Γ(d/2) is the volume of a (d − 1)-dimensional unit sphere, and F is an
appropriate integrand which depends on the radial coordinate only.

Next, let us analyze the time dependence of the quantity (3.7) in the settings defined in
section 2.2. For convenience, we will always split the evaluation of CV2.0 as

C2.0V =
∑

k

Jk , (3.8)

where the index k refers to a subregion of the WDW patch that we specify case by case in the
configurations discussed below, and Jk is the complexity (3.7) computed in such subregion.

Case 1. The shape of the WDW patch during the time evolution is determined by the
sign of the critical time t∞ defined in eq. (3.3). One can check that increasing the value of ρ

defined in eq. (2.16) along the interval [0, 1], there is a transition from negative to positive
values of t∞. Since static patch holography proposes that the stretched horizon should be
located close to the cosmological one (ρ → 1), we will focus on this case and assume t∞ > 0.
We will comment on the opposite scenario at the end of this paragraph.

The configuration of the WDW patch represented in figure 7 is the prototype for
investigations of CV2.0 in this regime. According to the decomposition into subregions
reported in the picture, we compute the quantities entering eq. (3.8) as

J1L = J1R = Ωd−1
GN L2

∫ r+

rc

dr rd−1
(

t

2 + r∗(r)− r∗(rst)
)

, (3.9a)

J2L = J2R = Ωd−1
GN L2

∫ rc

rst
dr rd−1 (2r∗(r)− 2r∗(rst)) , (3.9b)

J3L = J3R = Ωd−1
GN L2

∫ r−

rc

dr rd−1
(
− t

2 + r∗(r)− r∗(rst)
)

, (3.9c)

where r± were implicitly defined in eq. (3.1). The total complexity is obtained by combining
the previous terms according to eq. (3.8).

The evolution of the WDW patch is composed by the three regimes summarized in
figure 11. At early times t < −t∞, the bottom joint sits behind past timelike infinity I−,
while the top joint is located outside the cosmological horizon rc. CV2.0 is determined
by eq. (3.9) with the replacement r− → rmax. The intermediate regime −t∞ ≤ t ≤ t∞ is
described by the configuration in figure 11(b), whose complexity is given by the sum of the
terms in eq. (3.9). Finally, at late times t > t∞ the top joint moves behind future timelike
infinity I+, and CV2.0 is obtained by replacing r+ → rmax in eq. (3.9).

While there is no closed expression for the above integrals in generic dimension d, we can
get the complexity rate by applying the fundamental theorem of integral calculus, together
with eq. (3.2):

dC2.0V

dt
= Ωd−1

d GN L2 ×


rd

+ if t < −t∞(
rd

+ − rd
−

)
if − t∞ ≤ t ≤ t∞

(−rd
−) if t > t∞

(3.10)
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Figure 11. Possible time evolution of the WDW patch. In the picture, we only report the part of the
Penrose diagram included between the stretched horizons. In case 1 (2), the blue lines represent the
cosmological (black hole) horizon, while the magenta cutoff surfaces are located at r = rmax (r = rmin).
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Figure 12. Time dependence of (a) CV2.0 and (b) its rate, computed according to case 1 in eq. (3.10)
during the interval [−t∞, t∞] with critical time defined in eq. (3.3). We set GN L = 1, d = 3, µ = 0.14,
and we vary the value of ρ in eq. (2.16), but always keeping t∞ > 0.

Let us focus on the intermediate regime. At the critical time t∞(−t∞) defined in eq. (3.3),
the complexity rate clearly becomes positively (negatively) divergent, since r+(r−) → ∞
and r−(r+) is finite. This is the hyperfast growth characteristic of asymptotically dS
spacetimes [14]. The plots of the time evolution of CV2.0 and its time derivative during the
interval [−t∞, t∞] are reported in figure 12, when d = 3 and for various choices of ρ. As
expected, the qualitative behaviour is similar to the case of empty dS space, see figure 5
in [55]. One can also show that by keeping the regulator rmax finite, CV2.0 approaches a
linear behaviour at early and late times, in the same fashion as figure 7 of [55]. This is also
consistent with reference [62] (see figure 24), in the limit of vanishing shock wave.

Let us briefly comment on the case (depicted in figure 13) when ρ → 0 in eq. (2.16), i.e.,
the stretched horizon approaches the black hole one and the critical time satisfies t∞ < 0.
When t∞ ≤ t ≤ −t∞, the top and bottom joints of the WDW patch both sit behind the
respective region I±. As a consequence, by direct computation one finds that the rate vanishes
during the intermediate regime. Furthermore, since at least one of the joint always reaches
timelike infinity, CV2.0 is always infinite. These results are inconsistent with the intuition
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Figure 13. Alternative time evolution of the WDW patch. Same colour scheme as in figure 11. In
the intermediate regime, both joints of the WDW patch lie behind the cutoff surfaces.

coming from circuit models and from the geometry of dS space [14, 24, 55]. Therefore, the
case with ρ → 0 does not seem the relevant regime to capture the features expected by a
holographic realization of computational complexity.

Case 2. We refer to figure 8 for the splitting of the WDW patch into the subregions
corresponding to the integrals

J1L = J1R = Ωd−1
GN L2

∫ rh

r+
dr rd−1

(
t

2 − r∗(r) + r∗(rst)
)

, (3.11a)

J2L = J2R = Ωd−1
GN L2

∫ rst

rh

dr rd−1 (2r∗(rst)− 2r∗(r)) , (3.11b)

J3L = J3R = Ωd−1
GN L2

∫ rh

r−
dr rd−1

(
− t

2 + r∗(rst)− r∗(r)
)

, (3.11c)

where r± were defined in eq. (3.4). All the other possible configurations of the WDW patch
that can arise in case 2, together with the corresponding expressions for CV2.0, can be
obtained by a limiting procedure from the above results. In the following discussion, we will
directly perform the limit rmin → 0 since it leads to regular results.

Famously, holographic complexity computed in a black hole background in asymptotically
AdS spacetime admits linear growth at early (late) times. The geometric origin for this
behaviour is that the (bottom) top joint of the WDW patch moves behind the singularity,
while the top (bottom) joint approaches a constant radial coordinate which coincides with
the location of the horizon [77]. In order to capture the linear growth, we need to study
the early and late time regimes in the evolution of CV2.0.

The WDW patch can evolve in two different ways, distinguished by the sign of t0 defined
in eq. (3.6). If t0 > 0, or equivalently for a stretched horizon (2.16) close to the black hole
horizon (ρ → 0), the time evolution is characterized by the three regimes depicted in figure 11.
At times t < −t0 the bottom joints is located behind the past singularity and CV2.0 is
given by eq. (3.11) with the replacement r− → 0. Next, we have an intermediate regime
where both joints lie inside the black hole horizon. When t > t0, the top joint moves behind
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Figure 14. Time dependence of (a) CV2.0 and (b) its rate, computed according to eq. (3.12). We set
GN L = 1, d = 3, µ = 0.14, ρ = 0.01. The intermediate interval that connects the regimes with linear
growth corresponds to the times t ∈ [−t0, t0], in terms of the critical value in eq. (3.6).

the future singularity and CV2.0 is obtained by replacing r+ → 0 in eq. (3.11). Using the
time derivatives (3.5), we find the rates

dC2.0V

dt
= Ωd−1

d GN L2 ×


(
−rd

+

)
if t < −t0(

rd
− − rd

+

)
if − t0 ≤ t ≤ t0

rd
− if t > t0

(3.12)

In particular, the late (early) time behaviour can be found analytically, since it corresponds
to r− → rh (r+ → rh). This gives

dC2.0V

dt
−→

t→±t0
± Ωd−1

d GN L2 rd
h , (3.13)

which is the characteristic linear growth of complexity. The time dependence of complexity
and its rate of growth are depicted in figure 14. The plots show that there is an intermediate
regime with non-trivial time evolution that interpolates between early and late times when
the advocated linear growth is achieved.

The other possible evolution of the WDW patch (reported in figure 13) shows up when
the critical time satisfies t0 ≤ 0, which always happens when ρ → 1. In this case, the WDW
patch starts at times t < t0 with the bottom joint behind the past singularity, while the
top joint is located behind the black hole horizon. Afterwards, both joints sit behind the
respective singularities, and after t > t0 the bottom joints moves after the past singularity
and stays in the interior of the black hole. The rate of CV2.0 reads

dC2.0V

dt
= Ωd−1

d GN L2 ×


(
−rd

+

)
if t < t0

0 if t0 ≤ t ≤ −t0

rd
− if t > −t0

(3.14)

Again, at late (early) times the bottom (top) joint of the WDW patch approaches the black
hole horizon, leading to the constant rate computed in eq. (3.13). This scenario is depicted in

– 23 –



J
H
E
P
0
5
(
2
0
2
4
)
2
0
1

-10 -5 0 5 10

0.0

0.1

0.2

0.3

0.4

(a)

-10 -5 0 5 10

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

(b)

Figure 15. Time dependence of (a) CV2.0 and (b) its rate, computed according to eq. (3.14). We set
GN L = 1, d = 3, µ = 0.14, ρ = 0.5. The intermediate regime when complexity is constant corresponds
to the interval t ∈ [t0,−t0] in terms of the critical time in eq. (3.6).

figure 15. The result is very similar to the case of black holes in asymptotically AdS spacetime,
where complexity is constant in the intermediate regime between the critical times [77], while
at late and early times approaches a constant rate. Therefore, this analysis suggests that the
expected interior growth of a black hole in asymptotically dS spacetime is recovered when
the stretched horizon is close to the cosmological one. Notably, this choice is the same that
reproduced the hyperfast growth for the inflationary patch of spacetime in case 1.

Case 3. The configuration of the WDW patch is given by the plot depicted in figure 9.
Let us split the integration region into various parts, according to the labels used in the
picture. We begin by studying the right side of the Penrose diagram. The corresponding
terms in the sum (3.8) are defined as follows:

J1R = Ωd−1
dGN L2

(
rd

h − rd
min

) ∫ +∞

−tR−r∗(rR
st)

du , (3.15a)

J2R = Ωd−1
GN L2

∫ rR
st

rh

dr rd−1
(
2r∗(rR

st)− 2r∗(r)
)
= const. (3.15b)

J3R = Ωd−1
dGN L2

(
rd

h − rd
min

) ∫ −tR+r∗(rR
st)

−∞
dv , (3.15c)

J4 = Ωd−1
dGN L2

(
rd

c − rd
h

) ∫ ∞

−∞
du = const. (3.15d)

In the previous analysis, we denoted with “const.” the time-independent terms. For con-
venience, the integrals referring to regions inside the black hole are performed by first
integrating along the radial coordinate r, and then along one of the null directions u, v.
While some expressions are formally divergent and can be explicitly evaluated using an
appropriate regularization, here we will only focus on the time dependence of the problem.
In particular, we notice that

dJ1R

dtR
= −dJ3R

dtR
= Ωd−1

dGN L2

(
rd

h − rd
min

)
⇒ d

dtR
(J1R + J3R) = 0 . (3.16)
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A similar computation shows that

dJ1L

dtL
= −dJ3L

dtL
= − Ωd−1

dGN L2

(
rd

max − rd
c

)
⇒ d

dtL
(J1L + J3L) = 0 . (3.17)

In conclusion, we trivially find

dCV 2.0
dtR

= dCV 2.0
dtL

= 0 . (3.18)

Remarkably, the spacetime volumes located on the left and right sides of the WDW patch
are separately time-independent. Therefore, any choice of the relative evolution between the
left and right boundary times tL, tR leads to a vanishing complexity rate! This behaviour
is very different compared to the previous cases and reflects the geometric feature that the
portion of WDW patches that emerge from the past cutoff surfaces of the Penrose diagram is
compensated by other regions of the same size that move behind the future cutoff surfaces.
If we aim to give a dual interpretation to the spacetime volume inside the WDW patch, we
would conclude that the putative dual state has always the same computational complexity.
In particular, it is not able to give us any information neither about the growth of black
holes or of the space beyond the cosmological horizon.

Cases 4–5. Decomposing the WDW patch in a similar way as case 3, we find that CV2.0
is time-independent.

3.3 Complexity=action

According to the CA proposal, holographic complexity is proportional to the on-shell gravi-
tational action evaluated in the WDW patch, i.e.,

CA = IWDW
π

, IWDW =
∑
X

IX , X ∈ {B,GHY,N ,J , ct} . (3.19)

The terms contributing to the list labelled by X are collected in [102] or in appendix A
of [103] (see also [104, 105]). We briefly review their expressions:

• The bulk term is the Einstein-Hilbert action

IB = 1
16πGN

∫
WDW

dd+1x
√
−g (R − 2Λ) , (3.20)

where R is the Ricci scalar, and Λ the cosmological constant.

• The Gibbons-Hawking-York (GHY) term is evaluated on timelike or spacelike codimension-
one boundary surfaces

IGHY = εt,s

8πG

∫
Bt,s

ddx
√
|h|K , (3.21)

where h is the determinant of the induced metric and K is the trace of the extrinsic
curvature. The parameter εt,s = ±1 distinguishes if the surface of interest Bt,s is
timelike or spacelike, respectively.
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• The codimension-one null boundaries admit the contribution

IN = εn

8πG

∫
Bn

dλdd−1x
√
|γ|κ(λ) , (3.22)

where εn = ±1 depends on the orientation of the null normal to the surface, λ is a
parameter along the congruence of geodesics, γ is the induced metric along the other
orthogonal directions and κ(λ) is the acceleration of the null geodesics. In the case of
an affine parametrization, κ = 0.

• Codimension-two joints arise from the intersection of codimension-one surfaces. In this
work, the relevant joints will always arise from intersections involving at least one null
surface. Their expression reads

IJ = εa
8πG

∫
J

dd−1x
√
|γ| a , (3.23)

where the coefficient εa = ±1 depends on the orientations of the joint, and γ is the
determinant of the induced metric along the codimension-two joint. The integrand a is

a =


log |t · k| if t timelike and k null
log |n · k| if n spacelike and k null
log

∣∣∣12kL · kR

∣∣∣ if kL, kR null
(3.24)

where the argument of the logarithms is the scalar product between the outward-directed
one-forms normal to the codimension-one surfaces intersecting at the joint.

• Since the gravitational action is not reparametrization-invariant as it stands, we need
to add a counterterm on codimension-one null boundaries

Ict =
1

8πG

∫
Bn

dλdd−1x
√

γ Θ log |ℓctΘ| , (3.25)

where Θ is the expansion of the congruence of null geodesics and ℓct is an arbitrary
length scale.

The asymptotically dS spacetimes with metric (2.2) have constant Ricci scalar, thus the
bulk term is simply proportional to the CV2.0 conjecture:

IB = d

8πGN L2 VWDW = d

8π
C2.0V . (3.26)

Therefore, the bulk contribution satisfies the same properties discovered for the CV2.0
computation performed in section 3.2. In the following, we will denote the combination
of boundary terms with

Ibdy = IGHY + IN + IJ + Ict . (3.27)

We report here the main results, while we refer the reader to appendix A for more details.
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Case 1. We study a symmetric configuration of both the time evolution (2.20) and the
location of the stretched horizons rR

st = rL
st. When the critical time satisfies t∞ > 0, the

evolution of the WDW patch is described by figure 11. During the intermediate time regime
−t∞ ≤ t ≤ t∞, the CA conjecture is obtained by summing the bulk term (3.26) and the
boundary contribution evaluated in eq. (A.5). It is more insightful to study the rate of growth
of CA, obtained by applying the time derivatives (3.2):

dCA

dt
= Ωd−1

8π2GN

[
(r+)d

L2 + d − 1
2 (r+)d−2f(r+) log

∣∣∣∣∣ℓ2
ct(d − 1)2f(r+)

(r+)2

∣∣∣∣∣+ (r+)d−1 f ′(r+)
2

−(r−)d

L2 − d − 1
2 (r−)d−2f(r−) log

∣∣∣∣∣ℓ2
ct(d − 1)2f(r−)

(r−)2

∣∣∣∣∣− (r−)d−1 f ′(r−)
2

]
,

(3.28)
where r± were defined in eq. (3.1). We already established by inspection of eq. (3.10) that
CV2.0 displays a hyperfast growth when approaching the critical times ±t∞. To check
whether the rate of CA is also divergent when the top joint of the WDW patch approaches
I+, we perform a series expansion around r+ = ∞ of eq. (3.28). Using the explicit blackening
factor in eq. (2.2), we get

dCA

dt
−→

t→t∞

Ωd−1
16π2GN L2 (d − 1)(r+)d log

∣∣∣∣∣ L2

ℓ2
ct(d − 1)2

∣∣∣∣∣ . (3.29)

The complexity rate (and therefore CA itself) is positively divergent if the counterterm
length scale satisfies

ℓct <
L

d − 1 . (3.30)

This requirement is the same that fixes the positivity of complexity in empty dS space [55].
In a similar way, when t → −t∞, a series expansion around r− = ∞ gives

dCA

dt
−→

t→−t∞
− Ωd−1

16π2GN L2 (d − 1)(r−)d log
∣∣∣∣∣ L2

ℓ2
ct(d − 1)2

∣∣∣∣∣ , (3.31)

and now the condition (3.30) implies that the rate is negatively divergent instead. The time
evolution of CA during the intermediate regime is depicted in figure 16. In this plot, we
consider various possibilities for the parameter ρ defining the location of the stretched horizon,
but we always keep ℓct = 1/3 to satisfy (3.30), so that complexity is positive (negative)
at late (early) times.

The time evolution of the WDW patch when t < −t∞ or t > t∞ is different compared to
the intermediate regime that we studied above because GHY terms are now non-vanishing.
The most relevant and characteristic feature of asymptotically dS spacetimes is the hyperfast
growth, which we already capture with the expansion in eq. (3.29). At early and late times,
the divergent growth of complexity can be regularized by keeping the radial coordinate
r = rmax of the cutoff surface finite. The analysis and results in the latter case are analogous
to empty dS space (see figure 8 in [55]), and we will not report them here.

When the critical time satisfies t∞ < 0, the WDW patch follows the evolution depicted
in figure 13, and CA is always trivially divergent. Therefore, this case does not seem to not
capture the expected behaviour of complexity for a putative dual state.
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Figure 16. Time dependence of (a) CA and (b) its rate, computed according to case 1 in eq. (3.28)
during the interval [−t∞, t∞] with critical time defined in eq. (3.3). We set GN L = 1, d = 3, µ =
0.14, ℓct = 1/3, and we vary ρ in eq. (2.16), while keeping t∞ > 0.

Case 2. In the following, we focus on a symmetric configuration of the boundary times (2.20)
and of the stretched horizons rR

st = rL
st. Let us first assume that the critical time satisfies

t0 > 0, when the evolution of the WDW patch is governed by the diagrams in figure 11. By
applying the time derivatives (3.5) to the CA conjecture (3.19), we obtain

8π2GN

Ωd−1

dCA

dt
=



−µd− (r+)d

L2 − d−1
2 (r+)d−2f(r+) log

∣∣∣ ℓ2
ct(d−1)2f(r+)

(r+)2

∣∣∣−(r+)d−1 f ′(r+)
2 if t <−t0(

− (r+)d

L2 − d−1
2 (r+)d−2f(r+) log

∣∣∣ ℓ2
ct(d−1)2f(r+)

(r+)2

∣∣∣−(r+)d−1 f ′(r+)
2

+ (r−)d

L2 + d−1
2 (r−)d−2f(r−) log

∣∣∣ ℓ2
ct(d−1)2f(r−)

(r−)2

∣∣∣+(r−)d−1 f ′(r−)
2

)
if t∈ [−t0, t0]

µd+ (r−)d

L2 + d−1
2 (r−)d−2f(r−) log

∣∣∣ ℓ2
ct(d−1)2f(r−)

(r−)2

∣∣∣+(r−)d−1 f ′(r−)
2 if t > t0

(3.32)
where the results for the boundary terms were taken from appendix A.2. We represent the
numerical evolution of CA and of its rate in figure 17. It is evident that while the complexity
is continuous, instead its time derivative presents a discontinuity at the critical times. The
value of the jump at t = t0 is simply obtained by comparing the rate in the last regime with
the rate at intermediate times in the limit r+ → 0, giving

dCA

dt

∣∣∣
t=t+

0
− dCA

dt

∣∣∣
t=t−0

= Ωd−1
8π2GN

µd . (3.33)

The GHY term is fully responsible for this jump since all the terms on null boundaries (either
codimension-one or codimension-two) evaluated at the singularity vanish. At t = −t0, the
same conclusion (except for an overall minus sign) holds. It is straightforward to determine
the late (early) time limits, which correspond to the bottom (top) joint of the WDW patch
approaching the horizon radius rh. The rate reads

lim
t→±∞

dCA

dt
= ± Ωd−1

8π2GN

[
µd + (rh)d

L2 + (rh)d−1 f ′(rh)
2

]
, (3.34)

which is clearly a constant. This shows that CA asymptotically reproduces the celebrated
linear trend of complexity.
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Figure 17. Time dependence of (a) CA and (b) its rate, computed according to eq. (3.32). We set
GN L = 1, d = 3, µ = 0.14, ρ = 0.01, ℓct = 1/3.

Next, let us assume that the critical time is instead negative, i.e., t0 < 0. In this case the
evolution of the WDW patch is depicted in figure 13, and similar computations lead to the rate

8π2GN

Ωd−1

dCA

dt
=


−µd− (r+)d

L2 − d−1
2 (r+)d−2f(r+) log

∣∣∣ ℓ2
ct(d−1)2f(r+)

(r+)2

∣∣∣−(r+)d−1 f ′(r+)
2 if t < t0

0 otherwise

µd+ (r−)d

L2 + d−1
2 (r−)d−2f(r−) log

∣∣∣ ℓ2
ct(d−1)2f(r−)

(r−)2

∣∣∣+(r−)d−1 f ′(r−)
2 if t >−t0

(3.35)
whose main difference with the previous scenario is the time-independence of the intermediate
regime.15 We present a numerical evaluation of CA and of its rate in figure 18. First of all,
we observe again that the time derivative of CA is discontinuous at the critical time. One
can evaluate the jump at t = −t0 by performing the limit r− → 0 to get

dCA

dt

∣∣∣
t=−t+

0
− dCA

dt

∣∣∣
t=−t−0

= Ωd−1
8π2GN

µd , (3.36)

which is the same result obtained in eq. (3.33). An analogous computation shows that the
same conclusion holds for the other critical time. The early and late time limits are also given
by the same expression (3.34) determined above. Therefore, we conclude that the location of
the stretched horizons in case 2 mainly affects the intermediate regime. When taking ρ → 1,
complexity shows an evolution very similar to the case of black holes in AdS [77].

Case 3. The boundary terms of the gravitational action in the setting described by figure 9
are evaluated in appendix A.3. The main observation is that the rates in eqs. (3.18) and (A.20)
vanish for any choice of the boundary times tL, tR, therefore implying that

dCA

dtL
= dCA

dtR
= 0 . (3.37)

In particular, the on-shell action inside the WDW patch evaluated on the right and left sides
of the Penrose diagram are separately time-independent.

15The time-independence of the bulk term is a trivial consequence of the intermediate regime of CV2.0 in
eq. (3.14). The vanishing rate of the boundary terms is found in eq. (A.16).
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Figure 18. Time dependence of (a) CA and (b) its rate, computed according to eq. (3.35). We set
GN L = 1, d = 3, µ = 0.14, ρ = 0.5, ℓct = 1/3.

Cases 4–5. In analogy with case 3, one can show that CA conjecture in cases 4 and 5 is
also time-independent. The precise steps are similar to the ones reported in appendix A.3.

4 Codimension-one proposals

We continue the analysis of holographic complexity in the extended SdS background with
the codimension-one proposals: the volume (section 4.1), and a special class of the com-
plexity=anything conjectures (section 4.2).

4.1 Complexity=volume

The CV conjecture in asymptotically dS space states that complexity is associated with
the maximal volume V of a slice anchored at the stretched horizons. Assuming that the
codimension-one surface preserves the spherical symmetry of the background, we describe
it in terms of a parameter σ such that

CV = V

GN L
= Ωd−1

GN L

∫
rd−1

√
−f(r)u̇2 − 2u̇ṙ dσ

= Ωd−1
GN L

∫
rd−1

√
−f(r)v̇2 + 2v̇ṙ dσ ,

(4.1)

where we introduced the null coordinates (2.4) and used the notation · ≡ d/dσ. In the
following, we will focus on the computation of V . Since the volume functional does not
depend on u(v), there is a corresponding conserved momentum

Pu ≡ −f(r)u̇ − ṙ√
−f(r)u̇2 − 2u̇ṙ

rd−1 = −f(r)v̇ + ṙ√
−f(r)v̇2 + 2v̇ṙ

rd−1 ≡ Pv . (4.2)

From now on, we define Pu = Pv ≡ P Ld−1. The functional (4.1) is invariant under
reparametrizations. This allows us to fix the gauge

√
−f(r)u̇2 − 2u̇ṙ =

√
−f(r)v̇2 + 2v̇ṙ =

(
r

L

)d−1
, (4.3)

– 30 –



J
H
E
P
0
5
(
2
0
2
4
)
2
0
1

under which choice the volume reads

V = Ωd−1

∫
r2(d−1)

Ld−1 dσ . (4.4)

With the gauge choice in eq. (4.3), the conserved momentum (4.2) becomes

P = −f(r)u̇ − ṙ = −f(r)v̇ + ṙ . (4.5)

Solving for the derivatives of the null coordinates and plugging the results into eq. (4.3), we get

ṙ± = ±

√
P 2 + f(r)

(
r

L

)2(d−1)
, u̇± = −P − ṙ±

f(r) , v̇± = −P + ṙ±
f(r) . (4.6)

For a fixed orientation of the parameter σ along the maximal slice, when r increases in the
same direction as σ the solution is given by the + branch, otherwise we must look at the −
branch. We stress that the sign of P for a given maximal slice depends on the orientation
of σ. This can be understood by noting from eq. (4.5) that

P = −f(r)ṫ . (4.7)

Outside the cosmological horizon and inside the black hole we have f(r) < 0, so sign(P ) =
sign(ṫ). In other words, in these regions P > 0 if σ is oriented as the Killing vector ∂t,
otherwise P < 0.16 From figure 9, we conclude that if σ runs from the right stretched horizon
to the left one, P > 0 in the future black hole interior and P < 0 in the future inflating
region. This is the convention we will employ in the rest of the work.

The first equation in (4.6) can be written in the form

ṙ2
± + Ueff(r) = P 2 , Ueff(r) = −f(r)

(
r

L

)2(d−1)
, (4.8)

which describes the motion of a classical non-relativistic particle with energy P 2 in a potential
Ueff(r) [48, 77, 106, 107]. The turning points rt of the extremal codimension-one surface
satisfy ṙ± = 0, and are thus the solutions to the equation

P 2 = Ueff(rt) = −
(

rt

L

)2(d−1)
+ 2µ

L2(d−1) rd
t +

(
rt

L

)2d

, (4.9)

where the explicit form of the blackening factor (2.2) has been used in the last step. The
qualitative behaviour of the function Ueff(r) can be easily inferred from the properties of the
blackening factor f(r). In particular, Ueff(r) vanishes for r = 0, rh, rc and has an opposite
sign compared to f(r). In other words, Ueff(r) ≥ 0 for 0 ≤ r ≤ rh and r ≥ rc, whereas
Ueff(r) < 0 for rh < r < rc. Hence, we deduce that Ueff(r) has at least a (local) maximum in
the interval (0, rh) and at least a minimum in the range (rh, rc), while it diverges for r → +∞.
A plot of the function Ueff(r) is displayed in figure 19(b), from which it can be seen that
there exist only one local maximum and one local minimum. In the parameter space we have
numerically explored, the function Ueff(r) keeps the same qualitative behaviour. So, in what
follows we will assume the existence of a single local maximum in Ueff(r).

16Of course, in the external region f(r) > 0, so sign(P ) = −sign(ṫ) and opposite conclusions follow.
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The shape of the effective potential Ueff(r) has crucial consequences on the time evolution
of the maximal codimension-one slice. For a fixed value of the conserved momentum P ,
from eq. (4.8) it is clear that the corresponding maximal surface can only explore spacetime
regions where P 2 ≥ Ueff(r). When the condition is saturated, i.e., P 2 = Ueff(rt), a potential
barrier is met and the maximal surface presents a turning point r = rt. The following
observations thus follow:

• If the maximal surface extends into the inflating region r ≥ rc, the potential barrier
prevents the surface from reaching timelike infinity I±. Strictly speaking, timelike
infinity can only be reached by the maximal surfaces with P → ±∞.

• If the maximal surface enters the black hole r ≤ rh, it ends up in the singularity
r = 0 unless a potential barrier is met. Therefore, the singularity is avoided when the
corresponding P 2 is lower than the maximal value of the effective potential inside the
black hole.

These observations have important consequences for the evolution of holographic com-
plexity. First, the CV prescription requires to compute the maximal volume of a connected
surface anchored at the stretched horizons. Therefore, any extremal surface starting from
one stretched horizon and falling into the singularity before reaching the other stretched
horizon will be discarded in our analysis.17 Second, hyperfast growth is achieved whenever the
extremal surface reaches timelike infinity I±. Given the discussion above, we conclude that as
long as the conserved momentum is bounded |P | < ∞, hyperfast growth is avoided. In what
follows, we perform a detailed description of the time evolution of maximal codimension-one
slices for the various choices of stretched horizons introduced in section 2.2.

Case 1. We place the left and right stretched horizons rst ≡ rL
st = rR

st into two consecutive
static patches, see figure 19(a), and we attach the codimension-one surface to the left and right
stretched horizon at times −tL and tR, respectively. Due to the time-translation symmetry
of the configuration, it is not restrictive to consider the symmetric case (2.20). After leaving
the right stretched horizon rst, the maximal surface moves in the direction of increasing r

and enters the inflating region. As it can be seen in figure 19(a), here it passes through a
turning point and proceeds in the direction of decreasing r until it reaches the left stretched
horizon rst. In summary, the maximal surface admits a single turning point rtc satisfying
rtc ≥ rc. Therefore, the extremal volume and the boundary time at the stretched horizon
rst are respectively given by

V (P )
Ωd−1

= 2
Ld−1

∫ rtc

rst

r2(d−1)√
P 2 + f(r)(r/L)2(d−1)

dr , (4.10)

t(P ) = 2
∫ rtc

rst

P

f(r)
√

P 2 + f(r)(r/L)2(d−1)
dr , (4.11)

17In principle, one can generalize the CV conjecture to include the possibility that an extremal surface is
composed of two parts ending at r = 0, and connected through the singularity. This case is considered in
section 2.2.2 of [49] for asymptotically AdS space, and a similar prescription is employed in empty dS space in
section 5 of [55]. However, these configurations are either extremal but not maximal, or they appear after
some critical time. We will not consider them in this work.
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Figure 19. (a) The left and right stretched horizons (in green) are placed in consecutive static
patches. In this prescription, the codimension-one extremal surface Σ, anchored to the stretched
horizon (green dots), explores the region outside the cosmological horizon. The extremal surfaces
are characterized by P < 0 (P > 0) in the upper (lower) half of the Penrose diagram, see the purple
(red) curves. The black curve has P = 0. (b) Qualitative behavior of the effective potential Ueff(r) in
eq. (4.9). For every value of P 2, the surface connects the two stretched horizons after going through
the turning point rtc . We have set d = 3, µ = 0.187, and L = 1.

where the second expression is obtained by adding the left and right-hand sides of

−r∗(rtc)−
t

2 + r∗(rst) =
∫ rtc

rst

u̇+
ṙ+

dr =
∫ rtc

rst

−P −
√

P 2 + f(r)(r/L)2(d−1)

f(r)
√

P 2 + f(r)(r/L)2(d−1)
dr , (4.12)

− t

2 + r∗(rst)− r∗(rtc) =
∫ rst

rtc

v̇−
ṙ−

dr =
∫ rst

rtc

P +
√

P 2 + f(r)(r/L)2(d−1)

f(r)
√

P 2 + f(r)(r/L)2(d−1)
dr , (4.13)

in which we set the time at the turning point ttc = 0 by symmetry. In the previous equations,
we exploited the fact that ∫ b

a

dr

f(r) = r∗(b)− r∗(a) . (4.14)

In figure 20 we show numerical plots of volume complexity and its growth rate as functions of
time for several values of the stretched horizon parameter ρ for d = 3. For different spacetime
dimensions, we qualitatively get the same behaviours. In particular, the volume diverges at a
finite critical time, which increases both with the spacetime dimension d and with the value
of ρ. Restricting to t > 0, for small values of ρ there are two main regimes (see the green
curve in figure 20): at small times there are three extremal surfaces anchored at the same
boundary time t, whereas at large times there are two. Such configurations are symmetric
under time-reflection t → −t. According to the CV prescription, complexity is determined by
the maximal volume among these possibilities. An analog case with multiple extremal surfaces
happened in [55, 56, 58]. Following the same arguments presented in [55, 56], we deduce that,
for fixed time t, the surface with larger volume is the one with larger |P |. For bigger values
of ρ, there is instead only one extremal surface, and no further maximization is required.
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Figure 20. Time dependence of (a) CV and (b) its rate for the prescription in figure 19. Different
curves correspond to different values of the stretched horizon parameter ρ. We have set d = 3, µ = 0.14,
and GN L = 1. When multiple extremal surfaces exist (see the green curve), it is understood that
complexity corresponds to the maximal value of the volume at each fixed time t.

The volume diverges when the turning point reaches rtc = rmax → +∞. From eq. (4.9),
we note that this happens for

P 2 ∼
(

rmax
L

)2d

→ +∞ . (4.15)

Consequently, from eq. (4.11) the critical time (for P → −∞) can be expressed as

tc1 = −2
∫ rmax

rst

dr

f(r) = 2(r∗(rst)− r∗(rmax)) , t∞ = lim
rmax→∞

tc1 , (4.16)

in accordance with the result obtained for codimension-zero proposals in eq. (3.3). Since the
contribution from empty dS space in the blackening factor f(r) ∼ −(r/L)2 is the dominant
term in the previous integrals, the critical time obtained in empty dS (discussed in section 5
of [55]) is valid for this case as well. Therefore, we conclude that in the SdS background we
get the following dominant contribution around the critical time

t − t∞ ∼ L2

rmax
. (4.17)

Growth rate. In order to analyze the growth rate of volume complexity, it is convenient
to observe that

(r/L)2(d−1)√
P 2+f(r)(r/L)2(d−1)

=− P 2

f(r)
√

P 2+f(r)(r/L)2(d−1)
+

√
P 2+f(r)(r/L)2(d−1)

f(r) . (4.18)

We can thus re-express the volume as

V

Ωd−1Ld−1 = −P t + 2
∫ rtc

rst

√
P 2 + f(r)(r/L)2(d−1)

f(r) dr . (4.19)

Taking the derivative with respect to the boundary time t, we obtain

1
Ωd−1Ld−1

dV

dt
= −P − dP

dt

t − 2
∫ rtc

rst

P

f(r)
√

P 2 + f(r)(r/L)2(d−1)
dr


+ 2drtc

dt

√
P 2 + f(rtc)(rtc/L)2(d−1)

f(rtc)
.

(4.20)
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Figure 21. (a) The left and right stretched horizons are placed in consecutive static patches. In
this prescription, the codimension-one extremal surface Σ explores the region behind the black hole
horizon. The extremal surfaces have P > 0 (P < 0) in the upper (lower) half of the Penrose diagram,
see the red (purple) curves. (b) Qualitative behavior of the effective potential Ueff(r). For large P 2,
the surface falls into the black hole singularity. For small enough P 2, the surface connects the two
stretched horizons after going through the turning point rth

. We have set d = 3, µ = 0.187, and L = 1.

The second term vanishes because of eq. (4.11), while the third term vanishes due to the
definition of turning point in eq. (4.9). Therefore, we get

dV

dt
= −Ωd−1Ld−1P . (4.21)

In particular, at the critical time, we find

lim
t→t∞

dV

dt
= Ωd−1

rd
max
L

∼ 1
(t∞ − t)d

, (4.22)

where eq. (4.17) has been used. This result describes the hyperfast growth of CV in asymp-
totically dS geometries.

Case 2. One can proceed in a similar way with the configuration depicted in figure 21(a),
where we anchor the maximal volume surfaces to a pair of black hole stretched horizons
rst ≡ rL

st = rR
st. Without loss of generality, we consider the symmetric choice (2.20) for the

boundary times along the stretched horizons. After leaving the right stretched horizon rst, the
maximal surface extends in the direction of decreasing r and enters the black hole. Contrary
to case 1, the value of |P | cannot be arbitrarily large. Let us define r = rf such that

U ′
eff(rf ) = 0 , U ′′

eff(rf ) ≤ 0 . (4.23)

Namely, r = rf is the local maximum of the effective potential: Umax ≡ Ueff(rf ). As it
can be understood from figure 21(b), for P 2 > Umax the codimension-one slice falls into
the black hole singularity r = 0 before connecting the left and right stretched horizons.
Instead, for 0 ≤ P 2 ≤ Umax, the maximal surface meets the potential barrier and passes
through a turning point. Then, it moves in the direction of increasing r and reaches the left
stretched horizon. Therefore, 0 ≤ P 2 ≤ Umax is the range of the conserved momentum P 2
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Figure 22. Time dependence of (a) CV and (b) its rate for the prescription in figure 21. Different
curves correspond to different values of the stretched horizon parameter. We have set d = 3, µ = 0.14,
and GN L = 1. For any fixed time t, holographic complexity corresponds to the maximum of each
coloured curve.

that properly defines an extremal surface according to CV conjecture (see also footnote 17).
In this case, the turning point is located at rth

≤ rh. Thus, the extremal volume and the
boundary time at the stretched horizons rst read

V (P )
Ωd−1

= 2
Ld−1

∫ rst

rth

r2(d−1)√
P 2 + f(r)(r/L)2(d−1)

dr , (4.24)

t(P ) = −2
∫ rst

rth

P

f(r)
√

P 2 + f(r)(r/L)2(d−1)
dr , (4.25)

respectively.18 The second relation comes from expressing

r∗(rth
)− t

2 − r∗(rst) =
∫ rth

rst

v̇−
ṙ−

dr =
∫ rth

rst

P +
√

P 2 + f(r)(r/L)2(d−1)

f(r)
√

P 2 + f(r)(r/L)2(d−1)
dr , (4.26)

− t

2 − r∗(rst) + r∗(rth
) =

∫ rst

rth

u̇+
ṙ+

dr =
∫ rst

rth

−P −
√

P 2 + f(r)(r/L)2(d−1)

f(r)
√

P 2 + f(r)(r/L)2(d−1)
dr , (4.27)

where we set the time at the turning point tth
= 0 by symmetry. In figure 22 we display

the volume and its growth rate as functions of the boundary time t for different values of
the stretched horizon parameter ρ. For any value of ρ, at small times, a window exists in
which for fixed t there are three extremal surfaces. Again, the maximal surface is the one
with larger |P |. For larger times, only one extremal surface exists.

With the growth of the anchoring time t, the turning point approaches the black hole
singularity, and the value of the conserved momentum P increases. In the late-time limit
t → +∞, the value of the conserved momentum is P 2 = P 2

max ≡ Umax, as it can be consistently
18Notice the opposite sign in (4.25) with respect to (4.11). The reason for this difference is that P , as

defined in (4.2), takes values P ≤ 0 in the future region of the inflating patch, while P ≥ 0 in the black hole
patch, as the Killing vector corresponding to time translations adopts opposite orientations in these two cases.
This determines the sign of the late time rate of growth of the CV proposal, as previously pointed out in [107].
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checked from eq. (4.25). Namely, at P = Pmax the turning point is rth
= rf and

Ueff(r) ∼ Ueff(rf ) +
1
2U ′′

eff(r − rf )2 + . . . , (4.28)

since U ′
eff(rf ) = 0. This condition is crucial for the stretched horizon time to diverge. Indeed,

t(Pmax)∼ 2
√
2
∫ rf Pmax

f(rf )
√
−U ′′

eff(rf )(r−rf )
dr ∼ 2

√
2Pmax

f(rf )
√
−U ′′

eff(rf )
log |r−rf | , (4.29)

around the turning point. At late times, the extremal surface hugs the final slice located
at constant r = rf .

Growth rate. In contrast to case 1, the extremal volume slices do not explore the inflating
region. Instead, the same type of late-time growth found for asymptotically AdS black holes
trivially follows. Indeed, using the same trick (4.20) as in case 1, we write the volume as

V

Ωd−1Ld−1 = P t + 2
∫ rst

rth

√
P 2 + f(r)(r/L)2(d−1)

f(r) dr . (4.30)

Similarly to eq. (4.21), we find

dV

dt
= Ωd−1Ld−1P . (4.31)

Therefore, at late times we get

lim
t→+∞

dV

dt
= Ωd−1Ld−1√Umax = Ωd−1

√
−f(rf ) rd−1

f , (4.32)

where rf is defined in eq. (4.23). We notice that the final result corresponds to the volume
measure evaluated on the final slice at constant r = rf . This is the characteristic linear
growth obtained in asymptotically AdS geometries [77].

Case 3. We place the left and right stretched horizons at r = rL
st and r = rR

st into non-
consecutive static patches, as in figure 23(a). Starting from the right stretched horizon rR

st, the
maximal surface moves towards decreasing r until it enters the black hole. For the surface to
reach the left stretched horizon rL

st, the value of the conserved momentum P must be properly
chosen, see figure 23(b). For P 2 > Umax, the maximal surface does not encounter a potential
barrier inside the black hole, so it falls into the singularity.19 Instead, for 0 ≤ P 2 ≤ Umax, the
surface passes through a turning point rth

and turns to the direction of increasing r. Next, it
explores the inflating region, where it meets another turning point rtc . Finally, it attaches to
the left stretched horizon rL

st. In summary, for 0 ≤ P 2 ≤ Umax there are two turning points,
one inside the inflating region and one inside the black hole. In this case, the volume reads20

V (P )
Ωd−1

= 1
Ld−1

(∫ rR
st

rth

+
∫ rtc

rth

+
∫ rtc

rL
st

)
r2(d−1)√

P 2 + f(r)(r/L)2(d−1)
dr . (4.33)

19Let us remind that Umax is the value of the effective potential Ueff(r) at the location of its local maximum.
20One can straightforwardly generalize the arguments in case of n cosmological and black hole patches upon

the replacement
∫ rtc

rth

→ n
∫ rtc

rth

. However, for clarity, we will limit the discussion to n = 1 in case 3, and to
n = 2 in cases 4–5.
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Figure 23. (a) The left and right stretched horizons are placed in non-consecutive static patches.
According to the prescription 2.2, the maximal volume surfaces Σ can evolve to arbitrary late boundary
time tR = −tL. The red (purple) extremal surfaces have P > 0 (P < 0). The dashed curves correspond
to finite boundary time, while the solid curves are achieved at late (early) times. (b) Qualitative
behavior of the effective potential Ueff(r). For large P 2, the surface directly falls into the black hole
singularity. For small enough P 2, the surface connects the two stretched horizons after going through
two turning points rtc

and rth
. We have set d = 3, µ = 0.187, and L = 1.

To determine the boundary time as a function of the conserved momentum P , it is convenient
to introduce the function

τ±(r, P ) ≡
−P ±

√
P 2 + f(r)(r/L)2(d−1)

f(r)
√

P 2 + f(r)(r/L)2(d−1)
. (4.34)

For a fixed P , the maximal surface explores the future (past) black hole interior and the
past (future) inflating region. We define the anchoring time at the left and right stretched
horizon as −tL and −tR respectively, according to the convention 2.1 and the orientation
of the Killing vector ∂t depicted in figure 9. In this way, we have

tth
− r∗(rth

) + tR + r∗(rR
st) =

∫ rth

rR
st

u̇−
ṙ−

dr = −
∫ rth

rR
st

τ+(r, P )dr , (4.35a)

ttc + r∗(rtc)− tth
− r∗(rth

) =
∫ rtc

rth

v̇+
ṙ+

dr =
∫ rtc

rth

τ+(r, P )dr , (4.35b)

−tL − r∗(rL
st)− ttc + r∗(rtc) =

∫ rL
st

rtc

u̇−
ṙ−

dr = −
∫ rL

st

rtc

τ+(r, P )dr , (4.35c)

where ttc(tth
) is the value of the time coordinate at the turning point rtc(rth

). Notice that
from eq. (4.34) we get∫ b

a
τ±(r, P ) dr =

∫ b

a

−P

f(r)
√

P 2 + f(r)(r/L)2(d−1)
dr ± r∗(b)∓ r∗(a) . (4.36)

Therefore, by summing the identities (4.35), after some algebra we obtain

tR − tL = −
(∫ rR

st

rth

+
∫ rtc

rth

+
∫ rtc

rL
st

)
P

f(r)
√

P 2 + f(r)(r/L)2(d−1)
dr . (4.37)

We now have two main choices:
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Figure 24. Plot of the integral I in eq. (4.38) as a function of the conserved momentum |P | ≤
√

Umax,
for various choices of the dimension d and the mass parameter µ. We fix L = 1.

• tR = tL, time grows in a symmetric way on the two stretched horizons. In agreement
with the time translation symmetry (2.19), the volume is time-independent. Indeed, all
the surfaces with tR = tL can be obtained from the P = 0 solution at tR = tL = 0 by
applying the time translation (2.19).

• tR ̸= tL, the anchoring times are not symmetric. The volume is time-dependent. In
particular, as argued around eq. (2.20), it is not restrictive to choose the antisymmetric
configuration −tL = tR = t/2.

Before proceeding, we discuss the consistency of the identities (4.35). When tL = tR

and the stretched horizons are located at the same radial coordinate rL
st = rR

st, the extremal
surfaces in the Penrose diagram are symmetric, therefore the turning points are located
at tth

= ttc = 0. By plugging these conditions and the identity (4.36) inside eq. (4.35b),
we find the following constraint

I(P ) = 0 , I(P ) ≡
∫ rtc

rth

P

f(r)
√

P 2 + f(r)(r/L)2(d−1)
dr . (4.38)

A priori, for any allowed value of P , one has to compute the turning points rtc , rth
, and

then check whether the constraint (4.38) is satisfied. This step is performed numerically, for
various choices of the spacetime dimensions and of the mass parameter, in figure 24. It is
clear that the constraint only holds when P = 0. This result is consistent with the first bullet
below eq. (4.37). In other words, the volume is time-independent, and this case corresponds
to the trivial evolution performed with the Killing vectors.

On the contrary, when tR = −tL = t/2, the extremal surface is not symmetric in the
Penrose diagram, therefore we are allowed to have ttc ̸= 0 and tth

̸= 0. In this way, there are
three unknown variables ttc , tth

, t that can be determined by using the three identities (4.35).
The conserved momentum P is not constrained except for the condition |P | ≤

√
Umax, which

defines the existence of two turning points.
Let us focus on the time-dependent (antisymmetric) choice. Similar manipulations as

in cases 1–2, applied to eqs. (4.33) and (4.37), lead to

dV

dt
= Ωd−1Ld−1P . (4.39)
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Figure 25. Plots of the radial and time coordinates of the turning point in the black hole and
cosmological patches as functions of the boundary time t in case 3. We set d = 3, µ = 0.14 and L = 1.

We can understand the evolution of the extremal surfaces, schematically depicted in fig-
ure 23(a), by studying the positions (rtc , rth

) and the time coordinates (ttc , tth
) of the turning

points as functions of the boundary time. These plots are shown in figure 25. At times t > 0,
we find that the turning point rtc moves in the past exterior of the cosmological horizon
towards the bottom-left corner C− of the Penrose diagram where the horizons, the singularity,
and past infinity I− meet. This corner is characterized by the condition ttc = ∞, while the
corresponding radial coordinate is ill-defined. At late times in the evolution, the turning point
formally reaches the corner C− with finite value r̄tc > rc of the radial coordinate, such that
Ueff(r̄tc) = Umax. On the other hand, the turning point rth

moves towards the past singularity
inside the interior of the black hole, until it asymptotically approaches a finite positive time
0 < tth

< ∞ and a final slice at constant radial coordinate rfh
< rh such that U ′

eff(rfh
) = 0.

Starting from eq. (4.35a) and applying manipulations similar to eq. (4.29), we find that
the condition U ′(rfh

) = 0 implies tR(
√

Umax) → ∞. By imposing the antisymmetry tL = −tR

in the time evolution, we find that eqs. (4.35b) and (4.35c) are solved when ttc → ∞. These
conditions define the late-time regime of the complexity evolution. It is difficult to numerically
plot the exact shape of the extremal surface at late times. The previous observations suggest
that the extremal surface in the limit t → ∞ becomes disconnected, composed of two parts:
the single point at the corner C−, plus a surface at constant radius rfh

in the black hole
region. A priori, it may be possible that the extremal surface remains connected in the strict
limit t → ∞. However, one can at least rule out that the extremal surface in the inflating
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Figure 26. Time dependence of (a) CV and (b) its rate for the prescription in figure 23. Different
curves correspond to different values of the left and right stretched horizon parameters. It is understood
that the complexity function is obtained by taking the maximum of each coloured curve for any fixed
time t. We have set d = 3, µ = 0.14, and GN L = 1.
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Figure 27. (a) The left and right stretched horizons are placed in non-consecutive static patches.
Given the restriction (4.38), only the conserved momentum P = 0 is allowed for the surface Σ depicted
in the diagram. (b) Qualitative behavior of the effective potential Ueff(r). The surface Σ connects the
two stretched horizons after going through three turning points: rtc

, rth
, and rtc

again. In this case,
the turning points coincide with the location of the cosmological and black hole horizons, respectively.
We have set d = 3, µ = 0.187, and L = 1.

patch becomes null and hugs the cosmological horizon, since this would lead to an inconsistent
limit of the spacelike surfaces determined by the equations of motion (4.8). We reserve the
precise study of the extremal surface in the late time limit for future studies.

Nonetheless, we find the rate of growth of the volume by plugging the value of P =
√

Umax
inside eq. (4.39). The result reads

lim
t→∞

dV

dt
= Ωd−1

√
−f(rf )rd−1

f . (4.40)

We conclude that CV conjecture approaches a linear increase at late times in case 3, charac-
terized by the volume measure evaluated on the final slice inside the black hole. The full
time dependence of CV and its rate are plotted in figure 26.

Case 4. The configuration is illustrated in figure 27(a). We locate the left and right stretched
horizons at rL

st = rR
st ≡ rst and, following the orientation of the Killing vector in figure 10(a),

we define the left and right time as −tL and tR, respectively. Due to the time translation
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symmetry (2.19), it is not restrictive to consider the symmetric configuration (2.20). An
analysis of the effective potential in figure 27(b) implies that the conserved momentum needs
to satisfy 0 ≤ P 2 ≤ Umax (where Umax is the local maximum of the effective potential)
in order to obtain a connected extremal surface anchored to the stretched horizons. In
this regime, the expressions for the volume and boundary time can be found in a similar
manner to eqs. (4.33) and (4.37), but in this case there is an additional turning point in
the inflating region of the second patch. The symmetries of the configuration imply that
the turning points in the cosmological regions are located at the same radial coordinate
rtc1 = rtc2 ≡ rtc , therefore we find

V (P )
Ωd−1

= 2
Ld−1

(∫ rtc

rst
+
∫ rtc

rth

)
r2(d−1)√

P 2 + f(r)(r/L)2(d−1)
dr . (4.41)

In performing the previous steps, we employed a smooth coordinate map in the static patch
region that connects different copies of SdS space. For a fixed P , the maximal surface explores
the future (past) black hole interior and the past (future) inflating regions. Next, we study
the difference of the null coordinates u(v) on the extremal surface, moving from the right to
the left of the Penrose diagram. The following relations hold

ttc − r∗(rtc)− tR + r∗(rR
st) =

∫ rtc

rR
st

u̇+
ṙ+

dr = −
∫ rR

st

rtc

τ−(r, P )dr , (4.42a)

tth
+ r∗(rth

)− ttc − r∗(rtc) =
∫ rth

rtc

v̇−
ṙ−

dr =
∫ rtc

rth

τ−(r, P )dr , (4.42b)

ttc − r∗(rtc)− tth
+ r∗(rth

) =
∫ rtc

rth

u̇+
ṙ+

dr =
∫ rtc

rth

τ−(r, P )dr , (4.42c)

−tL + r∗(rL
st)− ttc + r∗(rtc) =

∫ rL
st

rtc

v̇−
ṙ−

dr =
∫ rtc

rL
st

τ−(r, P )dr , (4.42d)

where we momentarily kept tL, tR arbitrary. Since the turning points in the two inflating
regions are located at the same radial coordinate, we find that the summation of eqs. (4.42b)–
(4.42c) leads to the same constraint obtained in eq. (4.38). This constraint can also be achieved
by considering either eq. (4.42b) or (4.42c) separately, in the symmetric setting (2.20) where
ttc = tth

= 0. In analogy with our discussion in case 3 of this section, the vanishing of
I(P ) forces P = 0, which means that the maximal volume surface would only exist for a
single boundary time in the symmetric configuration, namely tL = tR = 0. A possible way
to determine an extremal surface for any boundary time is to evolve its endpoints in the
antisymmetric way tL = −tR. However, this leads to the trivial time evolution generated
by the Killing vector ∂t. This means that the maximal volume slice will remain with the
same constant value

V (0) = 2Ωd−1
Ld−1

(∫ rtc

rst
+
∫ rtc

rth

)
rd−1 dr√

f(r)
. (4.43)

Thus, the choice tL = −tR allows for an evolution (although trivial) of the codimension-one
observable.
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Figure 28. (a) The left and right stretched horizons are placed in non-consecutive static patches
with a generic boundary time tR = −tL. Due to the constraint (4.38), only the conserved momentum
P = 0 is allowed for the surface Σ depicted in the diagram. (b) Qualitative behavior of the effective
potential Ueff(r). The surface Σ connects the stretched horizons after going through three turning
points: rth

, rtc , and rth
again. In this case, the turning points coincide with the location of the

cosmological and black hole horizons, respectively. We have set d = 3, µ = 0.187, and L = 1.

Case 5. This configuration is illustrated in figure 28. We take rL
st = rR

st ≡ rst and we
define the time on the left and right stretched horizons as tL and −tR, respectively (see
figure 10(b)). Again, it is not restrictive to take the symmetric configuration (2.20). Similarly
to the previous cases, one can express

V (P )
Ωd−1

= 2
Ld−1

(∫ rst

rth

+
∫ rtc

rth

)
r2(d−1)√

P 2 + f(r)(r/L)2(d−1)
dr . (4.44)

Furthermore, we obtain several identities by computing the null coordinates at various points
along the extremal surface

tth
− r∗(rth

) + tR + r∗(rR
st) =

∫ rth

rR
st

u̇−
ṙ−

dr =
∫ rR

st

rth

τ+(r, P )dr , (4.45a)

ttc + r∗(rtc)− tth
− r∗(rth

) =
∫ rtc

rth

v̇+
ṙ+

dr =
∫ rtc

rth

τ+(r, P )dr , (4.45b)

tth
− r∗(rth

)− ttc + r∗(rtc) =
∫ rth

rtc

u̇−
ṙ−

dr =
∫ rtc

rth

τ+(r, P )dr , (4.45c)

tL + r∗(rL
st)− tth

+ r∗(rth
) =

∫ rL
st

rth

v̇+
ṙ+

dr =
∫ rL

st

rth

τ+(r, P )dr , (4.45d)

where we momentarily allowed tL, tR to be arbitrary. By adding eqs. (4.45b) and (4.45c),
we find again the constraint (4.38). This implies that P = 0, therefore only the solution
tL = tR = 0 is allowed in the non-trivial case determined by the prescription 2.2. At arbitrary
boundary time, the only allowed configuration is the antisymmetric one (with tL = −tR)
for which the volume is simply given by eq. (4.44) with P = 0.

4.2 Complexity=anything

We are interested in codimension-one observables within the class of the CAny proposal [48–50].
First, we define a spacetime region by extremizing the following combination of codimension-
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Figure 29. Proposal for evaluating the volume of CMC slices for SdSd+1 black holes. M (gray) is the
bulk region bounded by the slices Σ− and Σ+ (cyan and orange, respectively), where C− and C+ in
eq. (4.48) are evaluated. In the picture, we anchor the bulk region to the black hole stretched horizons
(green lines) at particular locations (green dots). Similar considerations apply to the cosmological
stretched horizons. The precise profile of the Σϵ slices is determined by the extremization of eq. (4.46).

one and codimension-zero terms with different weights

CCMC = 1
GN L

[
α+

∫
Σ+

ddσ
√

h + α−

∫
Σ−

ddσ
√

h + αB

L

∫
M

dd+1x
√
−g

]
, (4.46)

where M is a (d + 1)-dimensional bulk region with future (past) boundaries Σ± anchored at
the stretched horizons, such that ∂M = Σ+ ∪Σ−, as shown in figure 29.21 We denote with h

the determinant of the induced metric on Σ±. The coefficients α± and αB are dimensionless
constants. The extremization of the functional (4.46) defines constant mean curvature (CMC)
slices, i.e., the extrinsic curvature on these surfaces is given by [49, 108]

Kϵ ≡ K

∣∣∣∣
Σϵ

= −ϵ
αB

αϵ L
, (4.47)

with the convention that the vectors normal to Σ± are future-directed. We then define
holographic complexity as the physical observable

Cϵ ≡ 1
GN L

∫
Σϵ

ddσ
√

h F [gµν , Rµνρσ, ∇µ] , (4.48)

where F [gµν , Rµνρσ, ∇µ] is an arbitrary scalar functional composed of (d + 1)-dimensional
bulk curvature invariants built with the metric gµν , the Riemann tensor Rµνρσ and the
covariant derivative ∇µ. The quantity Cϵ is defined on either the future (when ϵ = −) or the
past (when ϵ = +) codimension-one CMC slices Σ± determined by the extremization of the
functional (4.46) with fixed boundary conditions on the stretched horizons.

To simplify the evaluation of the CMC slices and the associated complexity observable,
we employ the EF coordinates (2.6). Using the spherical symmetry of the background (2.2),
we describe the slices Σϵ in terms of a radial parameter σ, such that the coordinates are
expressed as (v(σ), r(σ)). Evaluating eq. (4.46) in this coordinate system, we obtain

CCMC = Ωd−1Ld−2

GN

∑
ϵ

αϵ

∫
Σϵ

dσ Lϵ , (4.49)

21We will label with ϵ = {+,−} the quantities defined on the codimension-one surfaces Σ±.
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where
Lϵ ≡

(
r

L

)d−1√
−f(r)v̇2 + 2v̇ṙ + ϵ L|Kϵ|

d v̇

(
r

L

)d

=
(

r

L

)d−1√
−f(r)u̇2 − 2u̇ṙ + ϵ L|Kϵ|

d u̇

(
r

L

)d

.

(4.50)

Using the gauge choice (4.3), the equations of motion (EOM) associated to eq. (4.49) can
be written as

ṙ2 + U(Pϵ, r) = 0 , (4.51)

where

Pϵ ≡
∂Lϵ

∂v̇
= ṙ − v̇ f(r) + ϵ

L |Kϵ|
d

(
r

L

)d

= ∂Lϵ

∂u̇
= −ṙ − u̇ f(r) + ϵ

L |Kϵ|
d

(
r

L

)d

, (4.52a)

U(Pϵ, r) ≡ −f(r)
(

r

L

)2(d−1)
−
(

Pϵ − ϵ
L |Kϵ|

d

(
r

L

)d
)2

. (4.52b)

The differential equation (4.51) effectively describes the motion of a particle in a potential
U . The quantity Pϵ is a conserved momentum corresponding to the fact that the variable
u(v) is cyclic for the Lagrangian density Lϵ.

The codimension-one surfaces solving the variational problem in eq. (4.51) determine
the CMC slices where complexity is calculated according to eq. (4.48). In EF coordinates,
the CAny observable reads

Cϵ = Ωd−1Ld−2

GN

∫
Σϵ

dσ

(
r

L

)d−1√
−f(r)v̇2 + 2v̇ṙ a(r)

= Ωd−1Ld−2

GN

∫
Σϵ

dσ

(
r

L

)d−1√
−f(r)u̇2 − 2u̇ṙ a(r) ,

(4.53)

where a(r) is a dimensionless scalar function corresponding to the evaluation of the functional
F in eq. (4.48) in the geometry under consideration. We remark that the CAny proposal
evaluated on CMC slices reduces to the CV conjecture (4.1) when Kϵ = 0 and F = 1
in eq. (4.48).22 Indeed, by imposing the above-mentioned conditions, we find that the
identities (4.51), (4.52a) and (4.52b) reduce to eqs. (4.8) and (4.2), and the observable (4.53)
reduces to the induced volume on the extremal surface.

The shape of the effective potential U is crucial to determine the time evolution of the
CMC slices. As long as Pϵ lies in a range such that the effective potential admits at least
one root, then the corresponding extremal surface will present a turning point rt defined by
U(Pϵ, rt) = 0. The major difference with the CV case is that the effective potential (4.52b) is
itself a function of Pϵ, therefore it is more difficult to determine the full time-dependence of
complexity. For this reason, we will mainly focus on the late time behaviour, which provides
the most relevant and universal feature.

22Equivalently, it follows from eq. (4.47) that when Kϵ = 0, only the α+ or α− terms in (4.46) contribute to
define the region of integration, which collapses to a single extremal surface.
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In the following, we analyze the CAny observable for the various configurations of the
stretched horizons presented in section 2.2.

Case 1. This case has been previously investigated in [59]. Here we briefly report the main
results, and we include additional information on the time dependence of complexity. Without
loss of generality, we consider the case of a symmetric time evolution (2.20) and we locate
the stretched horizons at the same radial coordinate rst = rL

st = rR
st. The codimension-one

observable in eq. (4.53) can be expressed as

Cϵ = 2Ωd−1Ld−2

GN

∫ rtc

rst

a(r)
(

r
L

)2(d−1)√
−U(Pϵ, r)

dr . (4.54)

Meanwhile, the evolution of the boundary time follows from

t = 2
∫ rtc

rst

Pϵ − ϵL |Kϵ|
d

(
r
L

)d
f(r)

√
−U(Pϵ, r)

dr . (4.55)

This allows to bring the integral (4.54) to the form

Cϵ = Ωd−1Ld−2

GN
a(rtc)

√
−f(rtc)

(
rtc

L

)2(d−1)
t

+2Ωd−1Ld−2

GN

∫ rtc

rst
dr

a(r)f(r)
(

r
L

)2(d−1)−a(rtc)
√
−f(rtc)

( rtc
L

)2(d−1)
(
Pϵ− ϵL |Kϵ|

d

(
r
L

)d)
f(r)

√
−U(Pϵ, r)

.

(4.56)
As discussed in [59], one can perform an additional minimization between C± to define a
time-reversal invariant observable in asymptotically dS space that avoids a hyperfast growth.
For our purposes, it is sufficient to note that at late (early) times, the knowledge of C−(C+)
will be sufficient to determine the complexity, while the other surface might not be defined.

In particular, one can show that the growth rate at late times becomes

lim
t→∞

d
dt

C− = Ωd−1
GN L

a(rf )
√
−f(rf )r2(d−1)

f (4.57)

where rf = limt→∞ rtc is the turning point at late times, which satisfies rf ≥ rc. This
behaviour is achieved whenever rf is a maximum of the effective potential (4.52b), i.e., the
following conditions hold:

U(Pϵ, rf ) = 0 , ∂rU(Pϵ, rf ) = 0 , ∂2
rU(Pϵ, rf ) ≤ 0 . (4.58)

The previous constraints can be summarized into the algebraic relation

4rf f (rf )
(
(d − 1)f ′ (rf ) + Kϵ

2rf

)
+ 4(d − 1)2f (rf ) 2 + rf

2f ′ (rf ) 2 = 0 . (4.59)

When there are no roots to the above equation in the range rc ≤ rf < ∞, eq. (4.57) does not
hold, and complexity presents instead a hyperfast growth in the inflating patch. Indeed, the
latter behaviour happens when Kϵ = 0, leading to the CV conjecture studied in section 4.1.

The novelty carried by the class of holographic proposals (4.48) is the existence of a
range of extrinsic curvatures for the CMC slices |Kϵ| ≥ Kcrit such that the identity (4.59)
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Figure 30. Case 1: (a) Representation of the profile of the CMC slices Σ+ (orange) and Σ− (cyan)
when |Kϵ| ≥ Kcrit for SdS space. (b) Effective potential (4.52b). A particle coming from rst will be
reflected at the turning point rtc

if it exists; otherwise it will fall into timelike infinity I±. Numerical
values are the same as in figure 19, in addition to Pϵ = −9.37 and |Kϵ| = 100.

admits a turning point located beyond the cosmological horizon, and the hyperfast growth
is avoided. At the special values of the mass parameter µ = 0 (pure dS space) and µ = µN

(extremal case), the critical extrinsic curvature is analytically found to be

Kcrit(µ = 0) = 2
√

d − 1
L

, Kcrit(µ = µN ) =
√

d

L
. (4.60)

For general µ, there is no closed-form expression for the critical value of Kϵ, but one can
prove that it always exists [59].

The time evolution of the CMC slices in the SdS background is shown in figure 30(a).
We depict the effective potential U in figure 30(b) for a specific value of the conserved
momentum. This plot shows that at the corresponding boundary time, determined according
to eq. (4.55), there is a single turning point corresponding to the existence of a root of the
effective potential. The late-time behaviour of complexity and its rate of growth are depicted
in figure 31, referring to the case Kϵ ≥ Kcrit and for a trivial function F = 1 in eq. (4.48). As
anticipated below eq. (4.59), the main feature is that CAny displays a linear increase with a
rate independent of ρ, the value that determines the location of the stretched horizons.

Case 2. We consider again a symmetric configuration of the boundary times (2.20) and
of the stretched horizons rL

st = rR
st. The evaluation of complexity and of the boundary time

is very similar to eqs. (4.54) and (4.55):

Cϵ = 2Ωd−1Ld−2

GN

∫ rst

rth

(
r
L

)2(d−1)√
−U(P ϵ

v , r)
dr , (4.61)

t = −2
∫ rst

rth

(
Pϵ − ϵL |Kϵ|

d

(
r
L

)d)
f(r)

√
−U(Pϵ, r)

dr . (4.62)

After similar manipulations, we find that the rate of growth at late times is formally given
by the same expression (4.57) with rf satisfying eq. (4.59). However, the difference with
the previous case is that the radial coordinate rf of the turning point generating the late
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Figure 31. Case 1: evaluation of (a) the late-time behavior of C− determined by eq. (4.56) and of (b)
its rate of growth as a function of time. We take a(r) = 1, K− = 100/L, besides the same parameters
as in figure 20. Notice that all the different choices of ρ lead to the same late-time rate of growth.
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Figure 32. Case 2: (a) Representation of the profile of the CMC slices for Σ− (cyan) and Σ+ (orange)
for SdS space with a pair of black hole stretched horizons. (b) Effective potential (4.52b). A particle
moving in the potential coming from rst will be reflected at the turning point rth

. The numerical
parameters are chosen to be the same as in figure 30, except for Pϵ = −4.07.

time linear growth now lies inside the interval [0, rh] (with rst > rh). One can now find a
solution for rf in this range even when Kϵ = 0, as obtained in case 2 of section 4.1, and
in contrast to case 1 for the CAny proposal. This result is consistent with the behaviour
of black holes in asymptotically AdS space [49, 50].

The CMC slices in the SdS black hole background and a plot of the effective potential for
a specific value of Pϵ are shown in figure 32, while the corresponding plot for the complexity
growth at late times is shown in figure 33.

Case 3. We consider the case of a cosmological stretched horizon located at rL
st on the left

side, and a black hole stretched horizon at rR
st on the right side of the Penrose diagram. The

general CAny observable defined in eq. (4.53) becomes

Cϵ = Ωd−1Ld−2

GN

(∫ rtc

rL
st

+
∫ rtc

rth

+
∫ rR

st

rth

)(
r
L

)2(d−1)
a(r)√

−U(Pϵ, r)
dr . (4.63)
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Figure 33. Case 2: late-time behavior of (a) Cϵ in eq. (4.61) and (b) its rate of growth. The same
parameters as in figure 31 have been used, including a(r) = 1 and K− = 100/L.

Next, we follow similar steps to case 3 in section 4.1 to derive an expression for the boundary
times. Namely, we define the anchoring times at the left and right stretched horizons as
−tL and −tR, and we obtain the same eq. (4.35) except for the modification τ± → τ ϵ

±
in (4.34), where

τ ϵ
±(Pϵ, r) ≡

−
(
Pϵ − ϵL |Kϵ|

d

(
r
L

)d)±√−U(Pϵ, r)
f(r)

√
−U(Pϵ, r)

. (4.64)

After this replacement, we can directly add the various contributions to find

tR − tL =
(∫ rtc

rL
st

+
∫ rtc

rth

+
∫ rR

st

rth

)
Pϵ − ϵL |Kϵ|

d

(
r
L

)d
f(r)

√
−U(Pϵ, r)

dr , (4.65)

ttc − tth
= −I(Pϵ, Kϵ), I(Pϵ, Kϵ) =

∫ rtc

rth

Pϵ − ϵL |Kϵ|
d

(
r
L

)d
f(r)

√
−U(Pϵ, r)

dr . (4.66)

When |Kϵ| ≥ Kcrit, one can numerically show that there do not exist two turning points rtc

and rth
at fixed boundary time, thus corresponding to disconnected extremal surfaces Σϵ.

For this reason, we will restrict the following analysis to the case |Kϵ| < Kcrit.
Similar to case 3 in section 4.1, we have two possibilities:

• In the symmetric configuration tL = tR, the only solution to eq. (4.65) is characterized
by the conditions Pϵ = Kϵ = 0. Therefore, the CAny proposal is reduced to CV, and
the same analysis performed in section 4.1 follows. In particular, the previous result
is consistent with the constraint (4.66), and leads to a time-independent complexity
observable (4.63).

• In contrast, when we consider (without loss of generality) the relation tR = −tL dictated
by prescription 2.2, we can have a non-trivial time evolution with non-vanishing ttc , tth

.
We will consider this choice in the remainder of the section.

We proceed to evaluate eq. (4.63) carefully. Since under the gauge fixing (4.3) we have
Pϵ − ϵL |Kϵ|

d = −ṙ − f(r)u̇ = −f(r)ṫ, the sign of this combination will be determined by
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Figure 34. Case 3: (a) Representation of the profile of the CMC slices for Σ− (cyan) and Σ+ (orange)
when |Kϵ| ≤ Kcrit for a SdS black hole, intersecting the stretched horizons at the green dots. Dashed
and solid lines represent different boundary times along the evolution. (b) Effective potential (4.52b).
A particle moving in the potential coming from rR

st will be reflected at the turning points and reach
rL

st. The numerical parameters are chosen to be the same as in figure 32, except for |Kϵ| =
√
3, and

Pϵ = −0.027.

the orientation of the Killing vectors, as we remarked in footnote 18. The CMC slices
corresponding to this regime are shown in figure 34.

We can now take care of the integrand (4.63) at the turning points. At late times,
eq. (4.59) admits a turning point rth

inside the black hole region but does not admit a
turning point rtc outside the cosmological horizon. For this reason, we can conveniently
re-express the complexity as

GN Cϵ

Ωd−1Ld−2 =
√
−f(rth

)
(rth

L

)2(d−1)
a(rth

)
(∫ rR

st

rth

+
∫ rtc

rth

+
∫ rtc

rL
st

)(
Pϵ−ϵL |Kϵ|

d

(
r
L

)d
)

dr

f(r)
√
−U(Pϵ, r)

+
(∫ rR

st

rth

+
∫ rtc

rth

+
∫ rtc

rL
st

)
f(r)( r

L)2(d−1)
a(r)−

√
−f(rth

)
( rth

L

)2(d−1)
a(rth

)
(

Pϵ− |Kϵ|
d ( r

L)d
)

f(r)
√

−U(Pϵ,r)
dr .

(4.67)
By denoting with rfh

the local maximum of the effective potential U approached by the CMC
slice at late times, we obtain that the time derivative of eq. (4.67) reads

lim
t→∞

dCϵ

dt
= Ωd−1Ld−2

GN

√
−f(rfh

)
(

rfh

L

)2(d−1)
a(rfh

) . (4.68)

The existence of a final slice at constant radius approached by the CMC slices is responsible
for the linear growth at late times. Notice that the result for Kϵ < Kcrit agrees with the
analysis of case 3 in section 4.1 when Kϵ = 0 and a(r) = 1.

Case 4. We assume that the cosmological stretched horizons are located at the same
radial coordinate rL

st = rR
st ≡ rst. Without loss of generality, we also consider the symmetric

configuration (2.20) of the boundary times. In each copy of the extended SdSn geometry,
all connected surfaces Σϵ must at least pass through a turning point behind the black hole
horizon and one beyond the cosmological horizon. Specializing to the case n = 2, we have
a single turning point rth

in the interior of the black hole, and two turning points outside
the cosmological horizon, located at the same radial coordinate rtc by symmetry. When
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Figure 35. Case 3: plot of (a) C− in eq. (4.67) and (b) its rate of growth. We use the same parameters
as in figure 31, in addition to n = 1 and various choices of ρL and ρR, as indicated in the legend of
the figure.

|Kϵ| ≥ Kcrit, there are no connected surfaces. In the other regime |Kϵ| < Kcrit, we perform
manipulations similar to case 3 to get

Cϵ = 2Ωd−1Ld−2

GN

(∫ rtc

rst
+
∫ rtc

rth

)(
r
L

)2(d−1)
a(r)√

−U(Pϵ, r)
dr , (4.69)

tR + tL = 2
(∫ rtc

rst
+
∫ rtc

rth

)(
Pϵ − ϵL |Kϵ|

d

(
r
L

)d)
dr

f(r)
√
−U(Pϵ, r)

, (4.70)

together with the constraint (4.66). Now, there are two main possibilities:

• When tR = −tL, the condition (4.66), together with (4.70), implies that Pϵ = Kϵ = 0,
thus leading to the time-independent evolution of CV already analyzed in section 4.1.

• When we consider (without loss of generality) the time-dependent case tR = tL proposed
by the prescription 2.2, symmetry arguments imply that the turning points are located
at ttc = tth

= 0. In this case, one has to numerically check whether the constraint (4.66),
with vanishing left-hand-side, is satisfied. The plots of the integral I(Pϵ, Kϵ) are depicted
in figure 36 for the case |Kϵ| < Kcrit. One can clearly see that the constraint is only
satisfied for a specific value of Pϵ. Therefore, holographic complexity would only be
defined for a single boundary time.

In summary, CMC surfaces connecting the two stretched horizons only exist at a fixed
symmetric boundary time. Alternatively, we can have solutions defined at arbitrary (but
antisymmetric) boundary times by evolving the trivial surface at constant t = 0 with the
time isometry.

Case 5. Analogous to the evaluation of case 5 in section 4.1, we consider a symmetric
location of the black hole stretched horizons rL

st = rR
st = rst. We find that

Cϵ = 2Ωd−1Ld−2

GN

(∫ rst

rth

+
∫ rtc

rth

)(
r
L

)2(d−1)
a(r)√

−U(Pϵ, r)
dr , (4.71)

tR + tL = −2
(∫ rst

rth

+
∫ rtc

rth

)(
Pϵ − ϵL |Kϵ|

d

(
r
L

)d)
dr

f(r)
√
−U(Pϵ, r)

, (4.72)
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Figure 36. Plot of the integral I(Pϵ, K) in (4.66) as a function of the conserved momentum Pϵ for
fixed |Kϵ| =

√
3 < Kcrit and for various d, µ. We fix L = 1 and ϵ = −1. The function only vanishes

for particular values of Pϵ.

together with the constraint (4.66). The conclusions are the same as case 4: either the CMC
slices degenerate to the volume case with a trivial evolution at antisymmetric times tL = −tR,
or they exist at a single boundary time, such that tL = tR and the constraint (4.66) is satisfied.

5 Conclusions

In this work, we studied the time dependence of holographic complexity in the extended
SdS black hole geometry for several configurations of the stretched horizons. The results
are summarized in table 1.

In case 1, which investigates the cosmological patch of the geometry, complexity is
characterized by a hyperfast growth, extending previous studies in empty dS space [55].
The only exception to this behaviour is represented by a class of codimension-one CAny
observables, which present an eternal evolution with a linear increase at late times, if the
extrinsic curvature on CMC slices where they are evaluated is larger than a critical value [59].
These results may suggest that the hyperfast growth could be used as a way to discriminate
whether a complexity conjecture is well-behaved or not. In case 2, where only the black
hole patch of the geometry is considered, we achieve the characteristic linear growth for
all the complexity conjectures, in agreement with the behaviour of AdS black holes (e.g.,
see [48, 49, 77]). This seems a robust feature that holds independently of the asymptotics
of the spacetime where complexity is evaluated. Cases 3–5 are novel set-ups that access
both the interior of the black hole and the exterior of the cosmological horizon. In the case
of codimension-zero proposals, all the complexity observables are time-independent. This
happens because the WDW patch always reaches timelike infinities I± and the singularities.
In particular, the portion of WDW patch emerging from the past of the Penrose diagram
is always compensated by the disappearance of a region of equal size into the future part
of the geometry. Remarkably, this feature happens separately on the left and right sides
of the diagram, therefore it is not a consequence of any synchronization of the boundary
times on the two stretched horizons.
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For codimension-one observables, the situation is more peculiar. Our main result is that
in the volume case, connected extremal surfaces anchored at symmetric times to the stretched
horizons only exist when tL = tR = 0. In case 3, the isometries of the geometry allow for a
non-trivial evolution of complexity that approaches linear growth at late times. In cases 4–5,
the isometries imply that only the trivial evolution is possible, leading to a time-independent
result. Similar features appear for the codimension-one CAny proposal. We conclude that
the extended SdS black hole represents an arena where the location of the stretched horizons
distinguishes among different behaviours for the holographic proposals.

It is interesting to compare our results on codimension-one extremal surfaces with the
recent study of spacelike geodesics connecting static sphere observers in SdS space [109],
in comparison to our case 3. When the boundary times are symmetric (tL = tR), they
found that there exists a small window where these spacelike geodesics exist, that connect
the future (past) of the inflating patch with the past (future) of the black hole patch. In
empty dS space, the only symmetric spacelike geodesics connecting antipodal static patch
observers require tL = tR = 0, e.g., see [58, 110]. These findings resonate with our results,
except that we only have the time tL = tR = 0 allowed, instead of a small boundary time
interval. These discrepancies can be probably attributed to the different dimensionality
between the geometric objects that we studied, compared to the analysis in the literature. In
the case of geodesics, it is interesting to notice that more general configurations are allowed
by considering curves with a complex length [111, 112]. This suggests that we may consider
complex maximal volume to find a non-trivial time evolution for symmetric configurations
in multiple copies of the SdS geometry.

Outlook. One of the motivations for this work was to relate our results with the coarse-
graining of information for general observables in quantum cosmology. According to static
patch holography, we expect that the information about the geometry in the static patch can
be retrieved from observables anchored at the stretched horizon, either near the black hole or
the cosmological horizons. On the other hand, in the quantum cosmology context, one usually
considers a meta-observer that lives close to a spacelike surface (such as a reheating surface,
see the horizontal purple lines in figure 1). One may expect that the observables anchored
to the stretched horizons should give the same information to which this meta-observer has
access. If this is true, then one would conclude that the encoding of information in the
extended SdS geometry is redundant. This is because the meta-observer living on a single
spacelike slice close to I± would have access to the information contained in the other copies
of the extended SdS background as well. Our results imply that if the observer were to
measure gravitational probes such as those in case 3, they would be able to extract different
types of dynamical information with codimension-one observables, while they would not
find any time evolution from the codimension-zero observables that we studied. In general,
we expect that other codimension-zero observables in the CAny class [49] could allow for
non-trivial dynamics, as long as the bulk region where complexity is evaluated does not reach
both I± and the singularities of the black hole. We leave this analysis for future studies.

The covariant objects computed in this work can be interpreted as proper measurements
of complexity only if we find a dual quantum state and a corresponding circuit that exhibits
the same features. Circuits and gravitational settings based on a double-scaled SYK model
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were recently built in [14, 113–117]. One may then hope to refine these toy models using
Nielsen or Krylov definitions of complexity in quantum mechanics [118–121].

Next, let us discuss some further developments in the study of gravitational observables.
First, the switchback effect is a crucial ingredient of all the complexity proposals. While this
property has already been analyzed in asymptotically dS space in many instances [57, 62, 63],
it would be interesting to extend the analysis to the observables considered in this work. In
particular, a natural step would be to investigate whether the time-independent observables
in cases 3–5 would develop non-trivial dynamics after the insertion of a shock wave. Second,
we plan to compute the holographic complexity conjectures in lower-dimensional gravity.
Two-dimensional empty dS space arises from the dimensional reduction of near-extremal
SdS black holes in higher dimensions. Explicitly, when rc,h → rN defined in eq. (2.3), the
geometry is well-known to become dS2×Sd−1 (e.g., see [89])

ds2 = −
(
1− ρ2

L2
2

)
dτ2 +

(
1− ρ2

L2
2

)−1
dρ2 + r2

NdΩ2
d−1 , (5.1)

where L2 is the length scale of dS2, and ρ is a radial coordinate measuring the finite separation
between the cosmological and black hole horizons. There are different reasons to be interested
in this regime. First, let us consider the complexity rate obtained at late times for the CAny
observables in cases 1–3 (see table 1 and references therein). The results always depend on
the location rfi

of a final slice which is approached by the extremal surface at late times. In
the near-extremal limit, the solution for rf in eq. (4.59) has been previously found to coincide
with the Nariai radius rN [59]. While in the general case the turning points in the cosmological
and black hole region (if they both exist) satisfy rtc > rth

, the naive near-extremal limit
µ → µN at late times would imply that rtc → rth

→ rN . According to this limit, we would
conclude that the growth rate at late times reads

lim
t→∞

d
dt

Cϵ = 0 , (5.2)

for cases 1–3, while this equation is already true without taking the near-extremal limit in
cases 4–5. The Lloyd bound on complexity for asymptotically AdS black holes is conjectured
to take the form dC/dt ∼ TS [43, 47]. The result (5.2) is usually associated to the vanishing
temperature of extremal black holes. While the naive Hawking temperature associated with
the SdS solution (see eq. (2.11)) vanishes in the limit rc,h → rN , a careful analysis of the
surface gravity experienced by a static patch observer moving along a worldline shows that
the temperature should be non-zero (see footnote 8) [87, 88]. If we assume that the Lloyd
bound also holds in SdS space, then we expect that a non-vanishing dC/dt ∼ TS should
be reproduced using the dS2×Sd−1 geometry.

Another reason to be interested in two-dimensional empty dS case is that one might
be able to propose modifications of the CAny conjectures based on our higher dimensional
results, in a similar fashion as the refinement of CV considered in [57]. In the case of the
observables in the extended SdSn with n > 1, the two-dimensional quantities analog to
cases 4–5 are Jackiw-Teitelbom (JT) gravity multiverse models [71, 95]. Moreover, in two
dimensions it is possible to consider centaur geometries where patches of dS space are glued
to asymptotic AdS regions, which have a standard timelike boundary where AdS/CFT duality

– 54 –



J
H
E
P
0
5
(
2
0
2
4
)
2
0
1

applies [5, 28]. It would be interesting to study holographic complexity for multiple copies of
this geometry and check whether the time-independence of the codimension-zero proposals in
cases 3–5, and codimension-one proposals in 4–5 is lifted. In particular, the case of a single
copy was studied in [58], where no hyperfast growth arises.

Finally, another interesting and challenging task would be to include quantum corrections
in the evaluation of holographic complexity, as recently uncovered in JT gravity [122]. A
useful test ground for these corrections is provided by double holography, where quantum
backreaction can be tracked in an exactly solvable regime [123, 124]. A brane-world version
of the extended SdS black hole was recently proposed in [74], and a SdS3 black hole with
quantum corrections has appeared in [125]. Therefore, it might be useful to test whether the
complexity proposals explored in our work display either a similar or a radically different
behavior compared to these models.
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A Details on the complexity=action proposal

In this appendix, we present additional technical details on the computation of the boundary
action Ibdy in eq. (3.27) for various configurations of the WDW patch.

A.1 Case 1

Assuming that t∞ > 0, we focus on the regime at intermediate times −t∞ ≤ t ≤ t∞ when
the WDW patch takes the shape in figure 11(b). In this setting all the codimension-one
boundaries are null, therefore there are no GHY terms. In case 1, the special positions of
the WDW patch r± are defined in eq. (3.1).
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Joint terms. The geometry contains four null-null joints: the top and bottom vertices of
the WDW patch, plus two joints located at the stretched horizons. The one-forms orthogonal
to the null boundaries of the WDW patch are given by

TL : kTL
µ dxµ = −α

(
du + 2

f(r)dr

) ∣∣∣
v=−tL+r∗(rL

st)

BL : kBL
µ dxµ = βdu|u=−tL−r∗(rL

st)

TR : kTR
µ dxµ = β′du|u=tR−r∗(rR

st)

BR : kBR
µ dxµ = −α′

(
du + 2

f(r)dr

) ∣∣∣
v=tR+r∗(rR

st)

(A.1)

where R denotes right, L left, T top, B bottom. The corresponding joint contributions read

Ist,L
J = − Ωd−1

8πGN
(rL

st)d−1 log
∣∣∣∣∣ αβ

f(rL
st)

∣∣∣∣∣ , Ist,R
J = − Ωd−1

8πGN
(rR

st)d−1 log
∣∣∣∣∣ α′β′

f(rR
st)

∣∣∣∣∣ , (A.2a)

IT
J = Ωd−1

8πGN
(r+)d−1 log

∣∣∣∣ αβ′

f(r+)

∣∣∣∣ , IB
J = Ωd−1

8πGN
(r−)d−1 log

∣∣∣∣ α′β

f(r−)

∣∣∣∣ . (A.2b)

Contributions on null boundaries. The parametrization (A.1) is affine, therefore the
codimension-one boundary terms in eq. (3.22) vanish. The counterterm (3.25) is non-trivial.
To evaluate the latter, we compute the expansion parameter of the null geodesics delimiting
the WDW patch

TL : ΘTL = −α(d − 1)
r

, BL : ΘBL = −β(d − 1)
r

,

TR : ΘTR = −β′(d − 1)
r

, BR : ΘBR = −α′(d − 1)
r

.

(A.3)

Correspondingly, the null counterterm evaluated at each null boundary reads

ITL
ct =− Ωd−1

8πGN

{
(r+)d−1

[
log
∣∣∣∣αℓct(d−1)

r+

∣∣∣∣+ 1
d−1

]
−(rL

st)d−1
[
log
∣∣∣∣∣αℓct(d−1)

rL
st

∣∣∣∣∣+ 1
d−1

]}
,

(A.4a)

IBL
ct =− Ωd−1

8πGN

{
(r−)d−1

[
log
∣∣∣∣βℓct(d−1)

r−

∣∣∣∣+ 1
d−1

]
−(rL

st)d−1
[
log
∣∣∣∣∣βℓct(d−1)

rL
st

∣∣∣∣∣+ 1
d−1

]}
,

(A.4b)

ITR
ct =− Ωd−1

8πGN

{
(r+)d−1

[
log
∣∣∣∣β′ℓct(d−1)

r+

∣∣∣∣+ 1
d−1

]
−(rR

st)d−1
[
log
∣∣∣∣∣β′ℓct(d−1)

rR
st

∣∣∣∣∣+ 1
d−1

]}
,

(A.4c)

IBR
ct =− Ωd−1

8πGN

{
(r−)d−1

[
log
∣∣∣∣α′ℓct(d−1)

r−

∣∣∣∣+ 1
d−1

]
−(rR

st)d−1
[
log
∣∣∣∣∣α′ℓct(d−1)

rR
st

∣∣∣∣∣+ 1
d−1

]}
.

(A.4d)

– 56 –



J
H
E
P
0
5
(
2
0
2
4
)
2
0
1

Total boundary action. Finally, the boundary action (3.27) is given by the summation
of eqs. (A.2) and (A.4). In the symmetric case rL

st = rR
st, the result reads

Ibdy(−t∞≤ t≤ t∞)=

Ωd−1
8πGN

{
−2(rst)d−1

[
log
∣∣∣∣∣ (rst)2

f(rst)ℓ2
ct(d−1)2

∣∣∣∣∣− 2
d−1

]
+(r+)d−1

[
log
∣∣∣∣∣ (r+)2

f(r+)ℓ2
ct(d−1)2

∣∣∣∣∣− 2
d−1

]

+(r−)d−1
[
log
∣∣∣∣∣ (r−)2

f(r−)ℓ2
ct(d−1)2

∣∣∣∣∣− 2
d−1

]}
,

(A.5)
where r± were defined in eq. (3.1), and we assumed that the stretched horizons on the two
sides of the geometry are located at the same radial coordinate, i.e., rL

st = rR
st.

A.2 Case 2

When the stretched horizons are determined according to case 2 in section 2.2, we need to
study the early and late time regimes to find the characteristic linear growth of complexity.
Depending on the sign of the critical time t0, the time dependence of the WDW patch can
follow two different evolutions, represented by the Penrose diagrams in figure 11 or 13. The
formal expression of CA at early and late times is universal, while it differs at intermediate
times between the two cases.

Evolution with critical time t0 > 0 (see figure 11). The analytic expression of the
boundary terms at intermediate times −t0 ≤ t ≤ t0 is given by the same analytic formula
reported in eq. (A.5), with the only difference that the locations of the joints r± are now
defined by eq. (3.4).

At times t > t0, the configuration of the WDW patch is given by figure 11(c). The main
novelty is the existence of GHY terms due to the intersection of the WDW patch with the
spacelike cutoff surface at r = rmin. The corresponding induced metric reads

√
h = rd−1

√
f(r)

∣∣∣
r=rmin

, K =
√

f(r)∂r

√
h = 1

2r
√

f(r)
[
2(d − 1)f(r) + rf ′(r)

] ∣∣∣
r=rmin

,

(A.6)
which gives the GHY contribution

IGHY = − Ωd−1
16πGN

(rmin)d−2
(
tR + tL + r∗(rR

st) + r∗(rL
st)− 2r∗(rmin)

)
×
[
2(d − 1)f(r) + rf ′(r)

] ∣∣∣
r=rmin

.
(A.7)

There are some special choices that simplify the previous result. First, we consider the
symmetric time evolution (2.20). Second, we locate the stretched horizons at the same radial
coordinate rR

st = rL
st. Finally, we take the limit rmin → 0. All together, these choices lead to

lim
rmin→0

IGHY = Ωd−1
8πGN

µd (t + 2r∗(rst)− 2r∗(0)) , (A.8)

where µ is the mass parameter entering the blackening factor in eq. (2.2).
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Next, let us evaluate the joints. The expressions in eq. (A.2) are also valid in this setting,
except for the top vertex IT

J , which now moved behind the cutoff surface at r = rmin. There
are instead two new joints arising from the intersection of the future boundaries of the WDW
patch with the cutoff. The one-form normal to such spacelike surface is given by

tµdxµ = − dr√
−f(r)

∣∣∣
r=rmin

. (A.9)

This allows to determine the joints

ITL
J = Ωd−1

8πGN
(rmin)d−1 log

∣∣∣∣ α

f(rmin)

∣∣∣∣ , ITR
J = Ωd−1

8πGN
(rmin)d−1 log

∣∣∣∣ β′

f(rmin)

∣∣∣∣ . (A.10)

Tthese expressions vanish in the limit rmin → 0.
Finally, the counterterms (A.4) referring to the top-left and top-right null boundaries

of the WDW patch get modified as

ITL
ct = Ωd−1

8πGN
(rst)d−1

[
log

∣∣∣∣αℓct(d − 1)
rst

∣∣∣∣+ 1
d − 1

]
, (A.11a)

ITR
ct = Ωd−1

8πGN
(rst)d−1

[
log

∣∣∣∣β′ℓct(d − 1)
rst

∣∣∣∣+ 1
d − 1

]
, (A.11b)

where we already considered the symmetric case rR
st = rL

st and performed the limit rmin → 0.
The contributions arising from the past boundaries in eq. (A.4) is unchanged.

Summing all the boundary terms determined above according to eq. (3.27), we obtain

Ibdy(t > t0)=
Ωd−1
8πGN

{
µd(t+2r∗(rst)−2r∗(0))−2(rst)d−1

[
log
∣∣∣∣∣ (rst)2

f2(rst)ℓ2
ct(d−1)2

∣∣∣∣∣− 2
d−1

]

+(r−)d−1
[
log
∣∣∣∣∣ (r−)2

f(r−)ℓ2
ct(d−1)2

∣∣∣∣∣− 2
d−1

]}
.

(A.12)
The computation of CA at times t < t0 is very similar as the case of late times, with the
roles of r+ and r− exchanged. We directly report the result

Ibdy(t <−t0)=
Ωd−1
8πGN

{
µd(−t+2r∗(rst)−2r∗(0))−2(rst)d−1

[
log
∣∣∣∣∣ (rst)2

f2(rst)ℓ2
ct(d−1)2

∣∣∣∣∣− 2
d−1

]

+(r+)d−1
[
log
∣∣∣∣∣ (r+)2

f(r+)ℓ2
ct(d−1)2

∣∣∣∣∣− 2
d−1

]}
.

(A.13)

Evolution with critical time t0 < 0 (see figure 13). Since we already argued that
early and late times contribute to CA with the same expressions (A.13) and (A.12) computed
above, it is sufficient to focus on the intermediate time regime t0 ≤ t ≤ −t0.

There are two GHY terms, coming from either the past or the future cutoff surfaces
near the singularities. The sum of these contributions reads

IT
GHY+IB

GHY = Ωd−1
8πGN

(rmin)d−2
(
r∗(rL

st) + r∗(rR
st)− 2r∗(rmin)

) [
2(d − 1)f(rmin) + rf ′(rmin)

]
.

(A.14)
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Next, we consider the joints. At the stretched horizons we have the usual contributions in
eq. (A.2a). The intersections with the singularities lead to vanishing results when performing
the limit rmin → 0, similarly to the analog computation performed in eq. (A.10). Finally, the
counterterms include contributions similar to eq. (A.11), and their sum reads

Ict =
Ωd−1
8πGN

{
(rL

st)d−1
[
log

∣∣∣∣∣αℓct(d − 1)
rL

st

∣∣∣∣∣+ 1
d − 1

]
+ (rR

st)d−1
[
log

∣∣∣∣∣β′ℓct(d − 1)
rR

st

∣∣∣∣∣+ 1
d − 1

]

+(rL
st)d−1

[
log

∣∣∣∣∣βℓct(d − 1)
rL

st

∣∣∣∣∣+ 1
d − 1

]
+ (rR

st)d−1
[
log

∣∣∣∣∣α′ℓct(d − 1)
rR

st

∣∣∣∣∣+ 1
d − 1

]}
.

(A.15)
The relevant observation is that the sum of boundary terms (A.14) and (A.15) is time-
independent, i.e.,

dIbdy
dt

(t0 ≤ t ≤ −t0) = 0 . (A.16)

A.3 Cases 3–5

In case 3, the top and bottom joints of the WDW patch always lie behind the cutoff surfaces,
see figure 9. In the following, we will focus on the left side of the diagram.

GHY terms. There are two codimension-one spacelike surfaces, corresponding to the
intersection of the WDW patch with the cutoff surfaces located near the singularities. The
induced metric is given by eq. (A.6), and the corresponding GHY terms sum to

IL
GHY = Ωd−1

16πGN
(rmax)d−2 [2(d − 1)f(rmax) + rf ′(rmax)]

(∫ −tL−r∗(rmax)

−∞
du +

∫ ∞

−tL+r∗(rmax)
dv

)
,

(A.17)
where we expressed the result as an integral over u(v) for convenience. The important
observation is that the time dependence on tL cancels when summing the two terms.

Joint terms. The right joint evaluated at the stretched horizons has the same formal
expression Ist,L

J computed in eq. (A.2a). The intersections between the cutoff surfaces and
the WDW patch generate two more joints on the left region, given by

ITL
J = Ωd−1

8πGN
(rmax)d−1 log

∣∣∣∣∣ α√
f(rmax)

∣∣∣∣∣ , IBL
J = Ωd−1

8πGN
(rmax)d−1 log

∣∣∣∣∣ β√
f(rmax)

∣∣∣∣∣ .

(A.18)

Counterterm. The parametrization (A.1) is affine, therefore there are no codimension-one
boundary terms for the null surfaces except for the counterterms. The null counterterms read

ITL
ct =− Ωd−1

8πGN

{
(rmax)d−1

[
log
∣∣∣∣αℓct(d−1)

rmax

∣∣∣∣+ 1
d−1

]
−(rst)d−1

[
log
∣∣∣∣αℓct(d−1)

rst

∣∣∣∣+ 1
d−1

]}
,

(A.19a)

IBL
ct =− Ωd−1

8πGN

{
(rmax)d−1

[
log
∣∣∣∣βℓct(d−1)

rmax

∣∣∣∣+ 1
d−1

]
−(rst)d−1

[
log
∣∣∣∣βℓct(d−1)

rst

∣∣∣∣+ 1
d−1

]}
.

(A.19b)

Combining with the joints, the normalization of null normals cancel from the action.
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Total sum. The sum of all the boundary terms (3.27) on the left side of the diagram is
time-independent, without need for any particular assumption on the boundary times tL, tR.
An analog computation reveals that the right side is also independently time-independent,
leading to the result

dIbdy
dtL

= dIbdy
dtR

= 0 . (A.20)

Finally, let us point out that cases 4 and 5 do not present additional new terms, instead
they always reduce to contributions similar to other cases.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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