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Abstract
A new class of sampling strategies is proposed that can be applied to population-
based surveys targeting a rare trait that is unevenly spread over an area of interest. 
Our proposal is characterised by the ability to tailor the data collection to specific 
features and challenges of the survey at hand. It is based on integrating an adaptive 
component into a sequential selection, which aims both to intensify the detection 
of positive cases, upon exploiting the spatial clustering, and to provide a flexible 
framework to manage logistics and budget constraints. A class of estimators is also 
proposed to account for the selection bias, that are proved unbiased for the popula-
tion mean (prevalence) as well as consistent and asymptotically Normal distributed. 
Unbiased variance estimation is also provided. A ready-to-implement weighting sys-
tem is developed for estimation purposes. Two special strategies included in the pro-
posed class are presented, that are based on the Poisson sampling and proved more 
efficient. The selection of primary sampling units is also illustrated for tuberculo-
sis prevalence surveys, which are recommended in many countries and supported 
by the World Health Organisation as an emblematic example of the need for an 
improved sampling design. Simulation results are given in the tuberculosis applica-
tion to illustrate the strengths and weaknesses of the proposed sequential adaptive 
sampling strategies with respect to traditional cross-sectional non-informative sam-
pling as currently suggested by World Health Organisation guidelines.
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1 Introduction

In this paper, a novel class of sampling strategies is proposed, based on the idea of 
improving the quality of the sampled data by designing the sampling process on the 
basis of peculiar features of the surveyed population. We consider population-based 
surveys targeting a trait, an attribute or a condition which is at the same time dif-
ficult to detect across individuals and unevenly distributed over an area of interest, 
i.e. a study variable possibly rare and spatially clustered. Challenging issues such 
as budget constraints and logistics associated with the on-field operations are also 
taken into account, because of their importance in practice. The new sampling strat-
egy proposed here pursues the three main aims listed below 

1. Over-sampling of units that possess the characteristic of interest (positive cases, 
for short).

2. Cost-effectiveness, through improved control over logistics and budget’s manage-
ment, both at the sample design stage and in real-time during data collection.

3. Unbiased and accurate estimation of the population mean, including unbiased 
variance estimation.

To meet the above aims, the use of an informative complex sampling design is pro-
posed. In contrast to noninformative designs, as for instance traditional self-weight-
ing equal-probability designs, a sample design is defined informative when the prob-
ability of selecting a sample (and hence the probability of a unit to be included in 
such sample) depends on the values of the study variable (e.g. see Cassel et al. 1977). 
A popular type of informative sample design is the class of Adaptive Sampling ( 
Thompson and Seber 1996). Our proposal is based on tailoring the data collection 
process by combining an adaptive approach with a sequential selection (see for 
instance Tillé 2006, Sect. 3.5). The adaptive component aims at purposely improv-
ing the detection of units that are positive cases. The sequential component aims 
at providing a flexible framework to deal with budget and logistic constraints. The 
two components are combined by exploiting the spatial clustering that is typical, for 
instance, of infectious diseases. In particular for epidemiological surveys, an obvi-
ous benefit of this approach is its increased potential to make an impact in reducing 
the infection burden on the surveyed population, since once detected people diag-
nosed as positive cases can be quarantined or/and subjected to the appropriate treat-
ment. This paper has been originally inspired by the need of such a new sampling 
approach in the context of population-based surveys that measure tuberculosis (TB) 
prevalence at national level, which are recommended in many settings around the 
world and supported by World Health Organization (WHO). TB prevalence surveys 
will be used as a motivational example of a real application throughout the paper. 
However, the same perspective obviously applies to the unprecedented challenges 
posed by the Covid-19 planetary crisis of 2020. Indeed the pandemic has exposed 
worldwide the largely unmet need of providing governments, media and the general 
public, with truthful estimates of crucial parameters, that can not be computed upon 
data collected with purely medical purposes (Splendore 2020). Innovative ad hoc 
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sampling strategies are strongly needed, able to monitor outbreaks and epi-curves, 
as well as to assess the statistical quality of data collected by health systems (see, 
among others, Alleva et al. 2022, Rossman et al. 2020, Franceschi et al. 2020), to 
analyze overall socio-economic implications, and to support official statistics (Divi-
sion 2020; Radermacher 2020).

The paper is organized as follows: Sect. 2 provides the background by introducing 
the motivational example of prevalence surveys of TB disease. Section 3 introduces 
a new class of informative list-sequential adaptive sample designs for general selec-
tion of individual population units. Special attention is then paid to two important 
cases included in the class and based on Poisson sampling: Poisson adaptive (PoSA) 
design and conditional Poisson adaptive (CPoSA) design. Section  4 introduces a 
new class of estimators of the population mean, dubbed the Pseudo Horvitz-Thomp-
son estimators, that are able to provide unbiased estimates under the list-sequential 
adaptive sampling introduced in Sect.   3. In Sect.  5 asymptotic properties of the 
strategies proposed in the previous sections are derived and discussed. Section 6 is 
devoted to illustrate the selection of primary sampling units in multi-stage designs, 
which is consistent with the motivational TB example. Section 7 presents empiri-
cal evidence to highlight the strengths, weaknesses and areas for improvement over 
traditional sampling strategies. Finally, Sect. 8 outlines our concluding remarks and 
future research. Proofs are gathered and fully illustrated in the Appendix.

2  Background and motivation

In this section we briefly present, as an inspiring example, the population-based 
surveys for assessing TB prevalence at a national level, promoted by WHO and its 
partner agencies. Worldwide, TB is one of the top ten causes of death and the lead-
ing cause of death from a single infectious agent. The United Nations Sustainable 
Development Goals and the WHO’s End TB Strategy goals and targets provide 
the framework for national and international efforts to end the TB epidemic dur-
ing the period 2016–2030. Monitoring progress against epidemiological targets is 
possible using evidence from national surveillance systems complemented by peri-
odic surveys where surveillance systems are still being strengthened. Perhaps the 
most important of these are population-based prevalence surveys. Currently, TB 
prevalence surveys are being implemented according to the most recent interna-
tional guidelines ( WHO 2011), where the recommended sampling design is a tra-
ditional, multi-stage, cross-sectional design. It is intended for general consumption 
by a wide array of practical users although, at the same time, it has limitations and 
inconveniences. Despite being a global public health priority (WHO 2020), statisti-
cally speaking, TB qualifies as a rare trait among the general population. Even in 
high-burden countries, national TB prevalence is generally estimated to be less than 
1%. Consequently, under the currently recommended sampling design, this leads to 
very large sample sizes of between 50,000–100,000 people with an associated cost 
of USD 1–4 million. This significant investment typically leads to the estimation 
of a national percentage figure based on the detection of a few people diagnosed 
with TB among a very large sample of people without the disease. A recent example 
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of such an outcome is given by the second national survey conducted in Vietnam 
2017-2018 (Nguyen et al. 2020) where 221 (bacteriologically confirmed) TB cases 
have been found among the 61,763 participants in the survey (0.36% case detec-
tion). Of course, nothing is really methodologically wrong in the currently recom-
mended traditional sampling design. However, a main stimulus behind the proposals 
presented in this paper is the potential for methodological improvements to optimise 
the investment of resources and efforts, as well as to generate additional information 
for TB epidemiology in the settings where the survey is implemented. The main 
drive for the development of a new sampling approach has been the prospect to find 
more people with the disease and, because TB is both infectious and mostly treat-
able, to isolate and cure them. Thus, it appears important to put an emphasis on 
over-sampling people with TB, making the survey itself a tool for reducing disease 
burden, generating new knowledge about TB epidemiology and informing on pub-
lic health action. Equally important is the goal to gain better control over logistics. 
For instance, it is crucial for TB surveys that are to be implemented in the poor-
est settings around the world, to be able to avoid logistically difficult areas of the 
country, areas that might be hard to reach due to seasonal weather, flooding or even 
war zones. In these areas, data collection is typically compromised and the field 
operations budget consequently increases. In addition, we considered as a primary 
goal the development of a new strategy as feasible and statistically simple for use in 
general guidelines and field implementation. According to the inspiring TB applica-
tion, our proposal can easily accomodate the selection of primary sampling units 
(PSU) in cluster and multistage designs. In fact, the sample design currently sug-
gested by the WHO guidelines refers to a selection of national sub-areas as PSUs. 
Still, we believe that the methodology proposed here could be a useful blueprint in 
surveys epidemic outbreaks and other spatially clustered phenomena, attributes or 
conditions. With this in mind, we will first introduce our sampling strategy to select 
elementary units. Successively, we will illustrate how it may apply to select PSUs, 
consistently to our TB motivational example.

3  A new class of sequential adaptive sampling designs

The goal of this section is to introduce a general class of sampling designs that is 
based on the idea of integrating into the List Sequential sampling (cfr. Bondesson 
and Thorburn 2008) an appropriate adaptive component ( Thompson 2017). Notice 
that the inclusion of an adaptive component considerably affects the original List 
Sequential scheme by Bondesson and Thorburn (2008), because the resulting sam-
pling design becomes informative. For the sake of simplicity, we consider a simpli-
fied setup where the spatial setting is essentially uni-dimensional. In terms of sam-
pling design this choice implies that the target population is pre-ordered according 
to a rule either natural or pre-chosen as convenient accordingly to the survey’s goals. 
As a result, population units would be either close or distant each other according to 
such an order. An example of pre-ordered population units are susceptible individu-
als standing in queue for service or gathering side by side in places of interest. In 
what follows U = {1, … i, … , N} denotes the target population and it is also meant 
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to reflect such an ordering. Let us denote by Y the character of interest, taking value 
yi for unit i. According to Sect. 2, interest is mainly in units satisfying a pre-specified 
condition, as for instance TB positive cases. To give a general formalisation to this 
fact, let D be a set of real numbers. Unit i satisfies condition D whenever yi ∈ D . 
Correspondingly to unit i, the indicator function of the set D, ID(yi),

is considered. For instance, in terms of the TB example, each yi may be either 1 
(if unit i is TB positive) or 0 (if unit i is TB negative). Thus, for binary Y , we have 
D = {1} and di = yi . Let Si be the sample membership indicator (SMI) of unit i, i.e. 
a random variable taking value Si = 1 if unit i is selected in the sample, and equal to 
0 otherwise. A random sample of units is then defined as the vector of the N SMIs, 
whose value s1, … , si, … , sN will identify the selected sample. We consider the 
simplest choice to define the distance between units in the ordered population. i.e. 
units i − 1 and i, as well as units i and i + 1 , are close for being strictly subsequent, 
while units i − 1 and i + 1 are not. We then consider the general sequential sample 
design in which all units i ∈ U are visited step by step along the sequence 1, … , N . 
At step i, a real-time decision is made whether unit i is or is not selected in the sam-
ple upon the result of a Bernoulli trial. (cfr., for instance, Tillé (2006), Ch. 3). This 
selection scheme can be fully decribed by means of an updating matrix, an operative 
tool in the form of a ready-to-implement algorithm suitable for real-time sampling. 
The updating matrix lists the N steps of the selection process on the rows, and lists 
the population units on the columns in the chosen order, which also gives the visit/
selection sequence. Starting from a chosen set of initial probabilities �(0)

i
 , the updat-

ing matrix is given by

It is important to notice that unit i may be selected/not selected only when visited at 
the i-th step of the sampling algorithm, i.e at the i-th row of the updating matrix (1). 
Therefore, at each step of the selection sequence, the matrix entries can be in one of 
the three following states. 

(1) Before visiting unit i (i.e. until step i − 1 , lower triangle), the sample membership 
of unit i is the r.v. Si.

di = I(yi∈D) =

{
1 if yi ∈ D

0 otherwise
, i = 1, … , N

(1)

unit → 1 2 ⋯ i ⋯ N

step ↓ �
(0)

1
�
(0)

2
⋯ �

(0)

i
⋯ �

(0)

N

1 S1 = s1 �
(1)

2
… �

(1)

i
… �

(1)

N

2 s1 S2 = s2 … �
(2)

i
… �

(2)

N

⋮ … ⋮ ⋮

i s1 s2 … Si = si … �
(i)

N

⋮ … ⋮ ⋮

N s1 s2 … si … Sn = sN
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(2) At step i, unit i is visited and its selection/not selection attained, i.e. the sample 
membership indicator takes on its realisation Si = si.

(3) After (i.e. from step i + 1 on) the actual sample membership si is recorded for 
unit i with no more randomness.

At the end of the selection process, the last row of the updating matrix shows the 
selected sample. Moreover, upon recording Si = si along the diagonal of the updating 
matrix, the selection probabilities are updated for all subsequent to-be-visited units, 
j = i + 1, … , N (upper triangle) according to a chosen updating rule. In our proposal 
for an informative sequential sampling we propose to use an adaptive updating rule. 
According to our goal to over-sampling units satisfying condition D, and given that 
in many cases of interest, such as in the TB example, they can be expected to be close 
each other along the sequence of population units (in the order they are visited), the 
decision to include/not include unit i in the sample is made depending on the result of 
the previous step. This leads to the following adaptive updating rule

Quantities w(i)

j−i
 are the updating weights, chosen in order to satisfy the constraints 

0 < 𝜋
(i)

j
≤ 1 . Hence, Eqs. 1 and 2 define an entire class of sequential adaptive sam-

pling algorithms according to different choices for the updating weights w(i)

j−i
 . In the 

sequel, we will always assume that w(i)

j−i
 depends on S1 , … , Si−1 , as well as on yj s cor-

responding to Sj = 1 , namely on the pairs ((Sj, Sjyj); j = 1, … , i) . More formally, if 
Fi = �(S1, … , Si) is the sub-�-field generated by S1, … , Si , the weights w(i)

j−i
 are 

assumed to be measurable w.r.t. Fi−1 . Furthermore, from Eq. (2) it follows that

In the following subsections we propose two special cases of the informative 
sequential adaptive design above that are of practical interest, and we develop the 
associated probabilistic input required for unbiased estimation.

3.1  Poisson sequential adaptive (PoSA) sampling design

Poisson Sequential Adaptive (PoSA, for short) sampling design is included into the 
general scheme introduced above by taking null weights w(i)

j−i
 , which leads to the fol-

lowing PoSA updating rule:

(2)�
(i)

j
=

{
1 if j = i + 1 and Sidi = 1

�
(i−1)

j
−
(
Si − �

(i−1)

i

)
w
(i)

j−i
otherwise

(3)P(Si = s|Fi−1) =
(
�
(i−1)

i

)s(
1 − �

(i−1)

i

)1−s

, s ∈ {0, 1}.

(4)𝜋
(i)

j
=

⎧⎪⎨⎪⎩

diSi + 𝜋
(0)

i+1

�
1 − diSi

�
if j = i + 1

𝜋
(0)

j
if j > i + 1
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According to (4) if, at step i, unit i is selected (Si = 1) and it results in a positive 
case ( di = 1 ), then the selection probability of the close unit i + 1 is updated to 1, 
so that it is certainly included in the sample. Otherwise, the selection probability of 
the close unit i + 1 is left unaltered to its initial value, similarly to all the remaining 
selection probabilities of units j > i + 1. In this way the updating is limited because 
it actually affects only pairs of strictly subsequent units. A first important feature of 
PoSA is that it possesses a Markov-type property

According to (5), unit i is selected at step i with conditional probability �(i−1)

i
 , which 

is known at the previous step, located at the previous row, same column in the updat-
ing matrix (1).

In the subsequent Proposition 1, first and second order (unconditional) inclu-
sion probabilities for PoSA design are computed

Proposition 1 For PoSA design, first and second order inclusion probabilities are 
equal to

Note that the inclusion probabilities ( 6 ), (7) only depend on the initial prob-
abilities �(0)

i
 s and on di s. In this sense, PoSA design does not depend on the order 

of units. However, the conditional probabilities P
(
Si = s||Fi−1

)
 do depend on the 

order of units.
Of course, unconditional inclusion probabilities cannot be computed in prac-

tice, because they also depend of di s associated to unobserved population units. 
Furthermore, from Proposition 1 it is easy to verify that

Equation ( 8 ) shows that �i,i+k = �i�i+k if at least one among di, … , di+k−1 is equal 
to 0. Since Si s are Bernoulli r.v.s, this implies that Si and Si+k are independent if at 
least one among di, … , di+k−1 is equal to 0. In addition, Si , Si+1 , … , Si+k are jointly 
independent when di, … , di+k−1 are all equal to 0. To clarify further the structure 
of inclusion probabilities for PoSA design, let us first observe that the N population 
units can be partitioned into consecutive blocks

(5)P
(
Si = s||Fi−1

)
= P

(
Si = s||Si−1

)
=
(
�
(i−1)

i

)s(
1 − �

(i−1)

i

)1−s

s ∈ {0, 1}.

(6)�i =E
[
Si
]
= �

(0)

i
+

i−1∑
j=1

�
(0)

j

i∏
h=j+1

(
1 − �

(0)

h

)
dh−1

(7)

�i,i+k =E
[
SiSi+k

]
= �i

{
�
(0)

i+k
+

i+k−1∑
j=i+1

�
(0)

j

i+k−1∏
h=j

(
1 − �

(0)

h+1

)
dh

+

i+k−1∏
h=i

(
1 − �

(0)

h+1

)
dh

}
.

(8)�i,i+k − �i�i+k = �i(1 − �i)(1 − �
(0)

i+1
)⋯ (1 − �

(0)

i+k
)di ⋯ di+k−1.
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where each block B0
k
 is composed by consecutive units with di = 0 , and each block 

B1
k
 is composed by consecutive units with di = 1 , k = 1, … , K . Note that B0

1
 and/or 

B1
K

 may be empty. To simplify the notation, from now on we will denote by ik,j the 
first unit of block Bj

k
 , j = 0, 1 . From ( 6 ) it follows

Let s denote the selected sample, namely the set of i such that the last Nth row of the 
updating matrix (1) shows a value si equal to 1. PoSA sampling results in a sample 
of random size n

s
 , given by

The expected sample size is then equal to

PoSA expected sample size depends on unknown population quantities, though it is 
lower-bounded by 

∑N

i=1
�
(0)

i
 . This will be further discussed in the next section.

3.2  Controlling sample size: conditional poisson sequential adaptive (CPoSA) 
design

Although PoSA sampling design is of practical interest for its simplicity, its random 
sample size n

s
 can limit its applicability. In principle, the random sample size is a char-

acteristic of adaptive sampling and randomness around the PoSA sample size is a natu-
ral by-product of its effectiveness in over-sampling positive cases. However it is often 
regarded as a practical issue and, as a consequence of PoSA simplicity, it possibly leads 
to extreme results. In particular, it could give unnecessarily large samples even if no 
new positive cases are detected; at the same time, it may threaten estimates accuracy 
when leading to overly small samples. With the purpose to remove such extremes and 
to enhance control over sample size, we now introduce a conditional version of PoSA, 
dubbed CPoSA. Meanwhile, we do not want to compromise on desirable features of 
PoSA, namely the over-sampling of positive cases, its technical simplicity and readiness 
to implement. We therefore target two key points: first of all, we want to avoid unaccep-
table small samples. To this end, a minimum sample size should be established so that 
the selection process is not allowed to stop before this minimum has been reached. In 

(9)B0
1
, B1

1
, B0

2
, B1

2
, … , B0

K
, B1

K

(10)

𝜋i =

⎧⎪⎨⎪⎩

𝜋
(0)

i
if i ∈ B0

1

𝜋
(0)

i
if i ∈ (B0

k
⧵ {ik,0}) ∪ {ik+1,1}, k > 1

𝜋
(0)

i
+
∑i−1

j=ik,1
𝜋
(0)

j

∏i

h=j+1
(1 − 𝜋

(0)

h
) if i ∈ (B1

k
⧵ {ik,1}) ∪ {ik+1,0}, k ≥ 1

(11)n
s
=

N∑
i=1

Si.

(12)

E
[
n
s

]
=

N∑
i=1

�
(0)

i
+

N∑
i=2

(
1 − �

(0)

i

)
di−1E

(
Si−1

)
=

N∑
i=1

�
(0)

i
+

N∑
i=2

(
1 − �

(0)

i

)
di−1�i−1.
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the second place, additional selections would be still allowed provided that they are 
additional positive cases. Let nmin be the pre-fixed minimum sample size. The set of 
initial probabilities has to be chosen such that 

∑N

i=1
�
(0)

i
= nmin . Then, CPoSA selec-

tion has to be similar to PoSA in that, at the i-th step, (i ≥ 2) unit i is selected with the 
probability updated at the previous step �(i−1)

i
 . However, a modification in the CPoSA 

updating rule makes the design both adaptive and dependent on the number i of units 
already visited, to enforce the over-sampling of positive cases while securing at least 
sample size nmin . A simple way to accomplish both requirements above is to include 
a weighting factor 1∕(N − i) into the PoSA adaptive updating rule (4). Moreover, if at 
step i, unit i is certainly included in the sample as a result of the adaptive mechanism, 
i.e. because of its closeness to a selected positive case, it should count as an additional 
selection and shall not impact changes on the selection probabilities of non-strictly sub-
sequent units. This gives the following CPoSA updating rule, that applies, at step i ≥ 2 , 
to all units j ≥ i + 1

A main difference of CPoSA with respect to PoSA is that in the ith row of the updat-
ing matrix, all units j > i + 1 undergo an actual updating of selection probabilities. 
In particular

Therefore, updated selection probabilities would increase in case of non-selection of 
visited units in order to pursue the stated minimum sample size. At the same time, 
updated selection probabilities would tend to 0 in case of consecutive selections of 
negative cases beyond the nmin bound. In other words, CPoSA sampling, despite 
providing a final sample of random size to foster its ability to over-sample positive 
cases, aims at a sample of at least size nmin while avoiding to inflate the final sample 
with additional negative cases. This remark clarifies how CPoSA can increase con-
trol, with respect to PoSA, upon both excessively small and large effective sample 
sizes. To gain further control on large sample behaviour, we will also consider the 
following slight modification of CPoSA updating rule (13)

(13)

𝜋
(i)

j
=

⎧
⎪⎨⎪⎩

1 if j = i + 1 and Sidi = 1

𝜋
(i)

j
= max

�
0, min

�
𝜋
(i−1)

j
−

Si−𝜋
(i−1)

i

N−i
, 1

��
if j > i + 1

(14)

�
(i)

i+1
= 1 if Sidi = 1

�
(i)

j
≤ �

(i−1)

j
if j ≥ i + 2, Si = 1, di = 0, 1

�
(i)

j
≥ �

(i−1)

j
if j ≥ i + 2, Si = 0, di = 0, 1

(15)

𝜋
(i)

j
=

⎧
⎪⎨⎪⎩

1 if j = i + 1 and Sidi = 1

𝜋
(i)

j
= max

�
𝛿N , min

�
𝜋
(i−1)

j
−

Si−𝜋
(i−1)

i

N−i
, 1

��
if j > i + 1
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with 𝛿N > 0 for each positive N that could either decrease to zero or to a positive � as 
N increases.

The behaviour of CPoSA, mainly in terms of control on the final sample size, will 
be further illustrated in Sect. 7 by simulation results.

4  Unbiased estimation of the population mean under informative 
sequential adaptive sampling: the Pseudo‑HT estimator

In the present section we focus on the population mean yN =
∑N

i=1
yi∕N as the 

parameter of interest. The case of a proportion, corresponding to the motivating 
example of TB prevalence surveys (prevalence is defined as the proportion of posi-
tive cases in a given country at a give point in time), is a special case for binary yis.

In order to construct an unbiased estimator of yN , consider the conditional inclu-
sion probabilities �(i−1)

i
= E

[
Si|Fi−1

]
 , and define the r.v.s

The probability distribution of Ti , conditionally on Fi−1 , is known, because it only 
depends on observed quantities, namely (S1, S1d1) , … , (Si−1, Si−1di−1) . The most 
important property of r.v.s Ti s is reported in Proposition 2.

Proposition 2 Let 1 ≤ n ≤ N , and consider n indices 1 ≤ i1 < i2 < ⋯ < in ≤ N . 
Then, the relationship

holds.

As a by-product of Proposition 2 it readily follows that the r.v.s Ti s are pair-wise 
uncorrelated:

C(⋅, ⋅) denoting the covariance operator.
Proposition 2 essentially shows that ((T1, … , TN); N ≥ 1) is a martingale differ-

ence array; cfr. Hall and Heyde (1980).
As an estimator of yN we consider here the Pseudo Horvitz-Thompson (Pseudo-

HT, for short) estimator:

(16)Ti =
Si

�
(i−1)

i

− 1, i = 1, … , N.

(17)E
[
Ti1Ti2 ⋯Tin

]
= 0

(18)C
(
Ti, Tj

)
= 0 i ≠ j = 1, … , N

(19)�̄YPHT =
1

N

N∑
i=1

Si

𝜋
(i−1)

i

yi.
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Expectation and variance of �̄YPHT are summarized in Proposition 3, which is readily 
obtained from Proposition  2 and Eq. (18).

Proposition 3 The expectation and the variance of �̄YPHT are equal to

respectively.

From Eq. ( 21 ) it is also easy to see that an unbiased estimator of the variance 
of �̄YPHT is

4.1  PoSA Pseudo‑HT estimation

In this section Pseudo-HT estimation is applied under PoSA sampling design pro-
posed in Sect. 3.1. The relations with the plain (non-adaptive, non-informative) 
Poisson design will be studied and gain in efficiency of PoSA versus Poisson 
sampling will be illustrated.

Under PoSA design, since �(i−1)

i
= �

(0)

i
+ di−1Si−1(1 − �

(0)

i
) is either equal to �(0)

i
 

or to 1, it follows that

and hence the estimator �̄YPHT can be written as

with d0 = 0 . The term N−1
∑

Siyi∕�
(0)

i
 is essentially the Horvitz-Thompson estima-

tor of yN in case of (non-informative) Poisson design with inclusion probabilities 

(20)E
[
�̄YPHT

]
=yN

(21)V
(
�̄YPHT

)
=

1

N2

N∑
i=1

E

[
1

𝜋
(i−1)

i

− 1

]
y2
i

(22)V̂PHT =
1

N2

N∑
i=1

Si

�
(i−1)

i

(
1

�
(i−1)

i

− 1

)
y2
i
.

(23)
1

�
(i−1)

i

= di−1Si−1

(
1 −

1

�
(0)

i

)
+

1

�
(0)

i

(24)

�̄YPoSA =
1

N

N∑
i=1

{
di−1Si−1

(
1 −

1

𝜋
(0)

i

)
+

1

𝜋
(0)

i

}
Siyi

=
1

N

N∑
i=1

Si

𝜋
(0)

i

yi +
1

N

N∑
i=1

(
1 −

1

𝜋
(0)

i

)
di−1Si−1Siyi
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�
(0)

i
 s. The second term in (24 ) is an additional term due to the adaptive updating 

rule and the use of conditional inclusion probabilities. As far as the variance of (24 ) 
is concerned, from (21 ) and (23) it follows

The term

is the variance of the Horvitz-Thompson estimator if Poisson design with inclusion 
probabilities �(0)

i
 s were to be used. The term

represents the gain in efficiency (reduction of variance) under PoSA design.
Similar considerations, with more complicated formulas, can be done under 

CPoSA design illustrated in Sect. 3.2.

5  Asymptotic properties under informative sequential adaptive 
sampling

5.1  Generalities and assumptions

The present section is devoted to study asymptotic properties of the estimator �̄YPHT 
when the population size N increases. The assumptions on which asymptotic nor-
mality for PoSA design rests are listed below, where the symbol

is used. 

A1 � ≤ �
(0)

i
≤ 1 − � for some 𝛿 > 0 , and for each N ≥ 1 and i = 1, … , N.

A2 The limits 

V
(
�̄YPoSA

)
=

1

N2

N∑
i=1

E

[
1

𝜋
(0)

i

− 1 + di−1Si−1

(
1 −

1

𝜋
(0)

i

)]
y2
i

=
1

N2

N∑
i=1

(
1

𝜋
(0)

i

− 1

)
y2
i
−

1

N2

N∑
i=1

(
1

𝜋
(0)

i

− 1

)
di−1E[Si−1]y

2
i

=
1

N2

N∑
i=1

(
1

𝜋
(0)

i

− 1

)
y2
i
−

1

N2

N∑
i=1

(
1

𝜋
(0)

i

− 1

)
di−1𝜋i−1y

2
i
.

1

N2

N∑
i=1

(
1

�
(0)

i

− 1

)
y2
i

1

N2

N∑
i=1

(
1

�
(0)

i

− 1

)
di−1�i−1y

2
i

(25)�2
N
=

N∑
i=1

E

[
1

�
(i−1)

i

− 1

]
y2
i



1 3

Sequential adaptive strategies for sampling rare clustered…

 exist, with 𝜇2y > 0.
A3 Non-null asymptotic variance: 

A4 The values yi s are uniformly bounded by a constant M: |yi| ≤ M for each 
i = 1, … , N and N ≥ 1.

A5 �B1
k
�∕√N = o(1) uniformly in k, as N → ∞.

Remark 1 Assumptions A1, A2 are quite standard for asymptotics in survey sam-
pling; cfr., for instance, Francisco and Fuller (1991) and Isaki and Fuller (1982). 
Assumption A3 is a slightly weaker than Condition 3 (which involves, in its turn, a 
superpopulation model) in Francisco and Fuller (1991).

In the subsequent sections consistency and asymptotic normality of the Pseudo-
HT estimator are established. The attack line is fairly simple. Asymptotic properties 
are first studied for PoSA design, and then extended to more general (informative) 
sequential adaptive designs.

Remark 2 Under PoSA design, from the inequality, �(i−1)

i
≥ �

(0)

i
≥ � we get

and hence, using Assumption A2, it is seen that

As a consequence of A3, there exist two positive constants c, C such that

for all Ns large enough.

Remark 3 Assumption A5 is fulfilled, for instance, when values yi s are generated 
according to a superpopulation model where the r.v.s Yi s are i.i.d.. In this case, the 
values di s are realizations of i.i.d. Bernoulli r.v.s Di = ID(Yi) . Clearly, the blocks ( 9 
) correspond to (maximal) runs of 0s and 1s, respectively. Let |B1

k
| be the cardinal-

ity of block B1
k
 , so that max1≤k≤K |B1

k
| is the length of the longest run of 1s in the 

sequence d1, … , dN . Define next p = ℙ(Di = 1) , and assume p > 0 . From the Erdös 
and Rényi (1970) law of large numbers we get

�y = lim
N→∞

1

N

N∑
i=1

yi, �2y = lim
N→∞

1

N

N∑
i=1

y2
i

(26)lim inf
N→∞

N−1𝜎2
N
> 0.

1

N
�2
N
≤ 1

N

N∑
i=1

(
1

�
− 1

)
y2
i

lim sup
N→∞

1

N
𝜎2
N
≤ 1 − 𝛿

𝛿
𝜇2y < ∞.

(27)cN ≤ �2
N
≤ CN
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with ℙ-probability 1. Furthermore, an elementary computation shows that the total 
number of runs has expected value 1 + 2(N − 1)p(1 − p) , and that its variance is 
smaller than constN for an appropriate const > 0 , so that K∕N = O(1) with ℙ-prob-
ability 1.

5.2  Consistency and asymptotic normality: PoSA design

The consistency of �̄YPoSA is derived under a condition slightly weaker than A1.

Proposition 4 Suppose that �(0)

i
≥ �N , for all i = 1, … , N , with N�N → ∞ as 

N → ∞ . Then

where p
−→ denotes convergence in probability.

Notice that condition 𝜋(0)

i
> 𝛿N implies that the unconditional inclusion probabili-

ties �i = E[�
(i−1)

i
] are all larger than �N . Hence the expected sample size satisfies the 

inequality:

This means that the expected sample size has to tend to infinity as N does. On the 
other hand, the expected sampling fraction E

[
n
s

]
∕N is larger than �N , and hence it 

can either tend to 0 or to a positive number as N increases.
Let us now move to asymptotic normality under PoSA design. To simplify the 

notation, define

Clearly, ((XNi; i = 1, … , N); N ≥ 1) is a martingale difference array.

Lemma 1 Under assumptions A1-A5 and PoSA design:

Lemma 2 Under assumptions A1-A5 and PoSA design, there exists a positive con-
stant R for which

max
1≤k≤K |B

1
k
|∕ log1∕p N → 1

(28)�̄YPoSA − yN
p
−→0 as N → ∞

E
[
n
s

]
=

N∑
i=1

�i ≥ N�N .

(29)XNi =

√
N

�N

�
Si

�
(i−1)

i

− 1

�
yi, i = 1, … , N.

(30)1

N

N∑
i=1

E[X2

Ni
|Fi−1]

p

−→1 as N → ∞.
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Proposition 5 Suppose that Assumptions A1-A5 are fulfilled. Under PoSA design, 
the following three statements hold.

N(0, 1) denoting the Standard Normal distribution, d
−→ denoting convergence in dis-

tribution, and p
−→ convergence in probability.

Remark 4 As remarked by a referee, Proposition 5 may be proved differently. Since

and

are two independent sequences of independent r.v.s, the Central Limit Theorem for 
triangular arrays of independent r.v.s could be used.

5.3  Consistency and asymptotic normality: general sequential adaptive designs

This section deals with consistency and asymptotic normality of �̄YPHT under rather 
general sequential adaptive designs, including CPoSA.

In Lemma  3, which is used in all subsequent developments, the relationships 
between a general sequential adaptive design and PoSA design are studied in terms 
of difference of conditional inclusion probabilities.

(31)E[X4
Ni
] ≤ R ∀i = 1, … , N and ∀N ≥ 1.

(32)
�̄YPoSA − yN√
V(�̄YPoSA)

d
−→N(0, 1) as N → ∞;

(33)
�VPHT

V(�̄YPoSA)

p
−→1 as N → ∞;

(34)
�̄YPoSA − yN√

�VPHT

d
−→N(0, 1) as N → ∞,

(
Si

�
(i−1)

i

)

i∈B1
1
∪{i2,0}

, … ,

(
Si

�
(i−1)

i

)

i∈BK−1
1

∪{iK,0}

,

(
Si

�
(i−1)

i

)

i∈BK
1

Si

�
i−1)

i

, i ∈ B0
1
∪

(
K⋃
k=2

B0
k
⧵ {ik,0}

)
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Lemma 3 Consider a general sequential adaptive design with updating rule (2), 
with initial probabilities �(0)

i
 and conditional inclusion probabilities �(i)

j
 . Let further 

�
(i)

j,PoSA
 be the conditional inclusion probabilities of a PoSA design with the same ini-

tial probabilities �(0)

i
 . Then, the following relationship holds:

where

Moreover, the inequality

holds, with

In order to get consistency the main restrictions we consider are in Assump-
tions A6, A7 below. 

A6 Consider the weights of the updating rule (2 ), and let AN,i be defined as in (39 ). 
Then, 

∑N

i=1
AN,i−1 = o(N) as N → ∞.

A7 �(i−1)

i
≥ �N for every i = 1, … , N and N ≥ 1 , with N�2

N
→ ∞ as N → ∞.

Example 1 Consider the CPoSA design, with w(i)

k
= 1∕(N − i) . The term A2

N,i
 is eas-

ily computed by taking into account that

from which we get

(35)�
(i)

i+1
= Sidi + (1 − Sidi)�

(0)

i+1
− CN,i = �

(i)

i+1,PoSA
− CN,i

(36)cik =(1 − Sidi)
(
Si−k+1 − �

(i−k)

i−k+1

)
w
(i−k+1)

k
, k ≥ 1

(37)CN,i =ci1 +⋯ + cii.

(38)E
[|Ci|

] ≤ AN,i, i = 1, … , N

(39)AN,i =

√√√√ i∑
k=1

E

[(
w
(i−k+1)

k

)2
]
.

A2
N,i

=

i∑
k=1

1

(N − (i − k + 1))2
=

i∑
j=1

1

(N − j)2

≤ 1

N2

i∑
j=0

1

(1 − j∕N)2
≤ 1

N �
i∕N

0

1

(1 − x)2
dx

=
1

N

(
1

1 − i∕N
− 1

)
=

1

N

i

N − i
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Next, from

where B(u, v) is the Beta function of arguments u, v, it is seen that Assumption A6 
is satisfied.

Proposition 6 Suppose that Assumptions A1-A7 are fulfilled and that �(0)

i
≥ �N , for 

all i = 1, … , N , with N�N → ∞ as N → ∞ . Then:

To get asymptotic normality we need a condition stronger than A7, which is 
reported below. 

A7′  �(i−1)

i
≥ � for every i = 1, … , N and N ≥ 1.

Lemma 4 Under Assumptions A1-A6 and A7′ we have

Consider �2
N

 and XNi as defined in (25) and (29), respectively.

Lemma 5 Under assumptions A1-A6 and A7′ , the following two results hold:

Proposition 7 Suppose that Assumptions A1-A6 and A7′ are fulfilled. Then, the fol-
lowing three statements hold.

(40)AN,i ≤ 1√
N

�
i

N − i
.

1

N

N�
i=1

AN,i−1 =
1

N3∕2

N�
i=1

�
i

N − i + 1
=

1

N3∕2

N�
i=1

�
i

N

�1∕2�
1 −

i − 1

N

�−1∕2

≤ 1√
N
B(3∕2, 1∕2),

(41)�̄YPHT − yN
p
−→0 as N → ∞.

(42)
1

N

N∑
i=1

(
1

�
(i−1)

i

−
1

�
(i−1)

i,PoSA

)
y2
i

p
−→0 as N → ∞.

(43)1

N

N∑
i

E
[
X2
Ni
|Fi−1

] p
−→1 as N → ∞.

(44)E[X4
Ni
] ≤ R ∀i = 1, … , N and ∀N ≥ 1.

(45)
�̄YPHT − yN√
V(�̄YPHT )

d
−→N(0, 1) as N → ∞;
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Remark 5 As it appears from Example 1, CPoSA design satisfies Assumption A6. 
In addition, the modified CPoSA updating rule ( 15 ) with 𝛿N = 𝛿 > 0 also satisfies 
Assumption A7′.

Remark 6 Propositions 6, 7 also hold, with minor adaptations in the original non-
informative setting by Bondesson and Thorburn (2008). Thus, they also provide 
a way to prove consistency and asymptotic normality of the pseudo-HT estimator 
in the class of non-informative designs by Bondesson and Thorburn (2008). Since 
this point is outside of the goals of the present paper, we do not pursue into that 
direction.

Remark 7 If yi values, as well as the initial inclusion probabilities �(0)

i
 are allowed 

to depend on N, under conditions A1-A5, all results of the present section still hold 
true. This will be used in Sect. 6 to obtain asymptotic properties of the estimator (51 
).

6  Applying sequential adaptive designs to select PSUs in cluster 
sampling

An interesting application of sequential adaptive designs is to select primary sam-
pling units (PSU) in multi-stage cluster sampling, which is the case in our motiva-
tional tuberculosis example described in Sect. 2. We will highlight how sequential 
adaptive designs, and in particular PoSA and CPoSA, offer a flexible framework 
to manage logistics and survey budget and, at the same time, improve case detec-
tion and provide unbiased estimates of national TB prevalence. To implement TB 
prevalence surveys, the sampling design currently suggested by the WHO guide-
lines implies the selection of national sub-areas as PSUs. Sub-areas are groups of 
individuals purposefully informed according to specific criteria described in the 
guidelines book ( WHO 2011), and all individuals included in the selected PSUs 
are invited to participate to the survey for data collection. The spatial pattern in 
the surveyed country is intended on the basis of TB being an infectious disease. 
The one-dimensional simplification may be a pre-designed route on a geographi-
cal map that needs to be followed across the country by the field team and equip-
ment (e.g. medical staff and X-ray). From a theoretical viewpoint, the choice of 
a route requires to create a function that maps a two-dimensional space into a 

(46)
�VPHT

V(�̄YPHT )

p
−→1 as N → ∞;

(47)
�̄YPHT − yN√

�VPHT

d
−→N(0, 1) as N → ∞.
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one-dimensional space. This problem is also related to the inclusion of spatial 
aspects into the sampling design, in particular to spread the sample. A widely 
used methodology is the Generalized Random Tessellation Stratification (GRTS); 
cfr. Stevens and Olsen (1999), Stevens and Olsen (2004). A recent contribution, 
based on the traveling salesman problem, is in Dickson and Tillé (2016). For the 
purposes of our TB example, the choice of the route may be part of the survey 
design and may be tailored upon specific requirements and/or physical features 
of the country. It can be negotiated with local authorities and compromised to 
budget constraints. For instance, the route can be defined by minimising travel 
costs while at the same time acknowledging the presence of limited access areas. 
PSUs are to be informed along the chosen route in such a way that they result pre-
ordered. Thus, the same closeness notion prescribed by both PoSA and CPoSA 
applies to pairs of strictly subsequent PSUs. Let h = 1, … , M denote the ordered 
sequence of PSUs, and let Nh be the number of individuals included in the hth 
PSU, so that 

∑M

h=1
Nh is the size of the surveyed population. The updating matrix, 

i.e. the operative device given in (1) would list the M selection steps on the rows, 
along the assigned route, and the M PSUs on the columns with chosen initial 
probabilities �(0)

h
, h = 1…M . At step h, the h-th PSU is visited and selected/

not selected upon a Bernoulli trial with probability �(h−1)

h
 updated at the previous 

step. If PSU h is selected, all individuals are enrolled for data collection so that 
the actual prevalence of the PSU’s TB cases can be observed

where yi is equal to 1 if unit i is a TB positive case, and 0 otherwise.
Upon recording the realization of PSU’s sample membership indicator Sh = sh 

(either 0 or 1) on the diagonal of the updating matrix, the selection probability of 
all subsequent PSUs j ≥ h + 1 is updated as follows. Let t be a chosen threshold, 
e.g. an anticipated guess or a previous estimate of the national prevalence. As 
condition D we consider here the exceedance of threshold t, namely

In general, the updating rule is

where, in particular,

(48)Ȳh =
1

Nh

Nh∑
i=1

yi

dh = I(Ȳh≥t) =
{

1 if Ȳh ≥ t

0 if Ȳh < t
.

(49)�
(h)

j
=

{
1 if j = h + 1 and Shdh = 1

�
(h−1)

j
−
(
Shdh − �

(h−1)

h

)
w
(h)

j−h
otherwise

(50)
w
(h)

j−h
=0 under PoSA

w
(h)

j−h
=

1

M − h
under CPoSA.
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The threshold t may also depend on h according to clinical reasons, logistic con-
venience or relevant PSU features, for instance whether rural or urban. Based on 
the input from the updating matrix and the sub-area prevalences computed from 
selected PSUs, the Pseudo-HT estimator of the overall national prevalence is given 
by

For variance estimation, Eq. (22) can be adapted accordingly.
We conclude with two practical comments. First of all, CPoSA can be applied 

by choosing a number mmin of PSUs as minimum first-stage sample size. Conse-
quently, the minimum size nmin of the final sample of individuals can be planned 
nearby mmin ⋅ N̄ , where N̄ is the PSUs’ average size. WHO’s guidelines recommend 
designing PSUs of equal size. For instance, in Kenya’s 2015-2016 prevalence sur-
vey (Ministry of Health, Republic of Kenya, 2016), PSUs were defined as an aver-
age of 500 households, ranging between 400 and 600 households with 720 (range: 
650-790) eligible people per PSU invited to participate, which ultimately led to a 
planned sample of 72 000 individuals. However, as the variability among PSU sizes 
increases so does the uncertainty around the choice of mmin and the forecast on nmin , 
which can limit the effectiveness of CPoSA versus PoSA in controlling the size of 
the final sample.

In the second place, it is worth mentioning that 100% participation of all 
the invited units included in the selected PSUs may harldy be the case in prac-
tice. Indeed, WHO guidelines recommend to increase the planned sample size to 
allow for non-participation in the survey of eligible individuals on the basis of the 
expected quote of participation. On the other hand, evidence of reasonable to large 
participation can be found in national prevalence surveys conducted in different 
world settings. For instance, the already mentioned Kenya 2015-2016 survey regis-
tered an 83% participation rate (87% female, 77% male, expected 85%).

7  Empirical evidence

This section aims to present empirical evidence of the strengths and weaknesses of 
our proposed sampling strategies. A simulation has been designed in the framework 
of our motivational example (Sect.  6), by using the WHO guidelines and Kenya 
2016 TB prevalence survey as reference model. The study has three main goals

– to explore the performance of CPoSA versus PoSA, particularly in terms of final 
sample size and over-sampling of positive cases;

– to investigate the performance of CPoSA versus a traditional cross-sectional, 
non-adaptive sampling design, based on a real application; and

– to compare the efficiency of the pseudo-HT estimator (19) w.r.t. the traditional 
HT estimator.

(51)�̄YPHT =
1

N

M∑
h=1

NhȲh
Sh

𝜋
(h−1)

h
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7.1  Simulation protocol

The simulation protocol is based on a population of size N = 250 000 individual 
units over a country area, represented as a square (see Fig. 1). y values are generated 
from a Bernoulli distribution with parameter 0.005, leading to a simulated true prev-
alence of 0.5%. This choice is intended to simulate a rare disease and is driven by the 
estimated 558 cases per 100 000 population units from the Kenya survey. M = 225 
sub-areas (PSUs) were generated via a super-imposed 15 × 15 grid of squares with 
size Nh between 1034 and 1208 elementary units. According to the WHO guide-
lines, sampling concerns PSUs and all elementary units included into selected PSUs 
are included in the final sample. In particular, Pareto sampling (cfr. Rosén 1997) 
has been used for probability-proportional-to-size selection of PSUs and as tradi-
tional design for the purposes of comparison. Sample size for the traditional sam-
pling design was computed according to the WHO guidelines for the recommended 
level of precision (less than 25% absolute error at 95% confidence level) and based 
on a preliminary guess of the to-be-estimated prevalence. Note that we used the true 
0.005 prevalence as the anticipated guess so that the traditional design, which we 
shall use as benchmark for the purposes of our study, is in fact simulated in its best 
scenario. This choice led to plan the selection of mWHO = 27 PSUs, with forecasted 
nWHO = 29 290 elementary units. The same true prevalence 0.005 has been used for 
both PoSA and CPoSA as threshold t to set the adaptive updating rule in Eq. (49). 
For comparisons with CPoSA, and considering its over-sampling vocation, we used 
nWHO as an upper limit to set the CPoSA minimum size of the sample of units, in the 

Population1 Population2 Population3

Population4 Population5 Population6

Fig. 1  Six simulated scenarios: dots depict positive cases gathered in 3 clusters
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range 0.7nWHO ≤ nmin ≤ nWHO , which led to set mmin between 19 and 22 as minimum 
size for PSU selection. The required initial ordering was chosen as an up-and-down 
path across all 225 PSUs. This choice is intended to ensure comparability of the 
surveyed population with respect to the traditional design. On the other hand, such 
a choice may not favour either PoSA or CPoSA against the traditional non adaptive 
design. Other more favorable choices would be possible, for instance when auxiliary 
information is available that can facilitate the crossing of sub-areas with the highest 
clusterisation of positive cases.

Inclusion probabilities under the traditional design have been set as pro-
portional to the PSU size Nh according to the WHO guidelines, resulting in 
0.11 ≤ mWHONh∕N ≤ 0.13 . The same set of inclusion probabilities has been used as 
initial �(0)

h
 under PoSA and CPoSA.

The key simulation factor is the level of spatial clustering of the study variable, 
i.e. how concentrated or else how spread-out are the TB cases over the surveyed 
region. We then generated 6 scenarios with increasing proportion of positive cases 
(in the range 0 to 70%) gathered in 2, 3 and 4 clusters. As a measure of such cluster-
ing we considered the coefficient of intra-area variation, according to the WHO 
guidelines. In particular, the coefficient of intra-area variation is defined as 
k =

√
V
(
Ȳh
)
∕Ȳ  , where V

�
Ȳh
�
= (1∕N)

∑M

h=1

�
Ȳh − Ȳ

�2
Nh , namely the between-

area variability of the study variable. Every simulation is based on 5000 Monte 
Carlo (MC) runs.

We focus on the 6 scenarios with 3 clusters depicted in Fig.   1 for increasing 
levels of clusterisation as given in Table  1. Simulations results for 3 clusters appear 
suitable for showing general trends. Moreover, setting 3 clusters in the population 
allows for simulating the widest range of clustering as given by 0.5 ≤ k ≤ 2.5 . Of 
course, the main impact of varying the number of clusters in the population occurs 
upon the final sample size of both PoSA and CPoSA, which increases as the number 
of clusters increases. However, aside from this effect naturally related to the adaptive 
component, no peculiarities have emerged, and simulation results for 3 clusters are 
quite uniformly intermediate between scenarios with 2 and 4 clusters.

7.2  Comparison of PoSA and CPoSA designs

The performances of PoSA and CPoSA are compared with respect to two key fea-
tures: the size of the provided sample and the number of positive cases selected. 
Results are shown in Fig. 2, where Monte Carlo (MC) distributions are plotted for 

Table 1  Key features of the 
six simulated scenarios with 3 
clusters

Pop 1 2 3 4 5 6

% of cases
gathered into 0% 30% 40% 47% 60% 70%
the 3 clusters
k 0.5 1.1 1.4 1.7 2.0 2.5
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increasing level of clustering (as measured by k) and increasing CPoSA minimum 
sample size. The upper panel graphs clarify how CPoSA can control sample size. It 
can reduce both the variability in the size of samples produced by PoSA and its out-
liers, i.e. excessively small and large samples. At the same time, lower panel graphs 
show that the ability to over-sampling positive cases is quite equally enforced by 
CPoSA and PoSA. Meanwhile, the two sampling designs show similar behaviour on 
average for an increasing level of k and for different values of nmin.

7.3  Comparison of CPoSA to traditional, non‑adaptive design

To give a better idea of the performance of CPoSA, in the subsequent two sets of 
graphs CPoSA is compared to the traditional design for 3 values of nmin up to nWHO 
(column-wise) and for 4 relevant features (row-wise): 1) the ability to detect positive 
cases, as measured by the MC Expectation of the rate of positive cases into the sim-
ulated samples; 2) the accuracy of the final estimate, as measured by the MC Root 

Mean Squared Error of the estimator 
√

EMC

(
̂̄Y − Ȳ

)2

 ; 3) the final sample size; and 
4) the cost per case detected, as measured by the MC Expectation, across all simu-
lated sample, of the ratio of the total survey cost over the number of positive cases 

Fig. 2  CPoSA versus PoSA for increasing values of nmin : boxplots of the MC distribution of final sample 
size (upper panels) and number of positive cases detected (lower panel) (98% values represented)
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selected. The survey cost has been computed under a conventional linear cost func-
tion C = c0 + c1m +

∑
h∈sm

c2Nh where m denotes the size of the sample sm of 
selected PSUs under a given design. The costs have been set according to the budget 
of the 2016 Kenya survey. In details we set fixed costs c0 = 2 900 000 USD, includ-
ing for instance procurement capital, training and launchs; unitary cost per PSU 
c1 = 18 900 USD, which includes cluster budget, transport and development of 
maps; unitary cost per elementary unit c2 = 6.5 USD for individual specimens pro-
cessing, laboratory field expenses and consumables. A fixed 20% discount has been 
applied to PSU cost c1 under CPoSA. This choice is intended to simulate the 
expected savings following from the increased control over logistics and budget 
allocation, e.g. the planning of a route for sequential selection by minimising travel 
costs. To facilitate comparisons, all simulation results are presented for CPoSA as a 
ratio relative to the traditional design. Equal performance is indicated by the dashed 
line, while gains (losses) show above (below) the equality line.

Simulation results indicate that CPoSA improves uniformly, under all aspects 
explored, as the spatial clustering of positive cases increases. In particular, the 
CPoSA’s potential to over-sample positive cases, shown in Fig. 3 upper panels, rap-
idly outperforms the traditional sampling design as k increases from scenario of no 
clustering (k = 0.5) to 70% of clustering of positive cases (k = 2.5) . The number of 
positive cases detected under CPoSA can be 1.3 to 1.45 times larger than the tradi-
tional (WHO) design, as the minimum sample size increases up to the same WHO 
size. The ability to over-sample positive cases that characterises CPoSA has a cost 

nmin =  0.7nWHO nmin =  0.8nWHO nmin = nWHO
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Fig. 3  CPoSA versus traditional WHO design: over-sampling of positive cases and accuracy of the final 
estimate, for increasing level of k. Ratio over the traditional design (dashed line means equal perfor-
mance)
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in terms of efficiency of the estimate released (Fig. 3, lower panels). The efficiency 
loss under CPoSA against the benchmark design can be as much as 60 to 75% in 
the worst-case scenario with no spatial clustering. However, CPoSA’s efficiency 
promptly improves as k increases, reducing the loss to 25-20% for higher values of 
spatial variability. In this case, equal efficiency is approached for larger sample size.

Simulation results presented in the upper panels of Fig. 4 show that the size of the 
final sample under CPoSA can be significantly larger than the fixed size nWHO under 
the traditional design, up to 45% larger in the worst scenario of no spatial cluster-
ing (k = 0.5) . Meanwhile, CPoSA’s final sample size rapidly reduces as k increases, 
quickly approaching the same size under the (fixed-size) traditional design when 
nmin is chosen to be slightly smaller. This suggests that the planning of nmin is a key 
factor to control the final sample size under CPoSA, which should be carefully bal-
anced versus the expected level of spatial clustering. Finally, in the lower panels 
of Fig.  4 simulation results indicate that CPoSA outperforms the traditional sam-
pling strategy in terms of the cost per case detected, as a mirror-effect of the over-
sampling capacity, combined with the savings allowed, at the survey design phase, 
with regard to the logistics and PSUs budget. Again, the cost per case decreases as k 
increases. The downsize is emphasised for larger sample size, 40% less in the most 
clustered scenario.
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Fig. 4  CPoSA versus traditional WHO design: final sample size and cost per case detected, for increasing 
level of k. Ratio over the traditional design (dashed line means equal performance)
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7.4  Comparison of Pseudo‑HT to HT estimator

The goal of this last section is to compare the performance of the proposed pseudo-
HT estimator (19) versus the traditional HT estimator, expressed in terms of estima-
tor’s variance. It is important to remark that traditional HT estimator does not actu-
ally apply in practice, because (marginal) first order inclusion probabilities �i are 
unknown, depending on unobserved population values yi s for all adaptive sampling 
designs considered in the present paper (cfr. Eq. 6). Heuristically, the HT estimator 
might be expected to be more efficient than the Pseudo-HT estimator, being based 
on extra-sample information, namely the unavailable �i s for all population units. 
However, simulation results for the six scenarios in Fig. 1 suggest for this intuition 
to be false. First and second order inclusion probabilities �i and �ij have been com-
puted under PoSA design, and then used to compute the exact variance V(�̄YHT ) of 
the traditional HT estimator. Finally, the exact variance of the Pseudo-HT estima-
tor V(�̄YPoSA) has been computed under the same PoSA deisgn and for the same six 
populations. Results are presented in Table 2.

It is apparent, at least in the simulated scenarios, that Pseudo-HT estimator out-
performs HT estimator under PoSA, uniformily for different levels of spatial cluster-
ing of positive cases. This is of course a nice feature of the Pseudo-HT estimator, 
and a solid argument in favour of its use. A possible explanation of results in Table 2 
is that the final sample size under CPoSA is less variable than the PoSA design case.

8  Concluding remarks

In this paper a novel class of sequential adaptive sampling strategies has been proposed, 
that apply to population-based surveys for a clustered study variable, as for instance an 
infectious disease. The underlying idea is to integrate an adaptive component into a 
list-sequential selection, which implies both practical advantages and methodological 
challenges. On the practical side, the proposed strategy allows for oversampling posi-
tive cases of the study variable while pursuing cost effectiveness. On the methodologi-
cal side the informative nature of the sampling design has required the development 

Table 2  Comparing efficiency 
of Psudo-HT estimator vs HT 
estimator, under PoSA design 
and 6 populations (see Table 1 
and Fig. 1)

Pop V

(
̂̄YPoSA

)
V

(
̂̄YHT

)
Ratio

1 1.43 1.89 0.76
2 2.56 3.20 0.80
3 3.17 3.87 0.82
4 4.47 5.63 0.79
5 5.40 6.87 0.79
6 7.35 9.04 0.81
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of a proper weighting system and the construction of a class of unbiased Pseudo-HT 
estimators, for which consistency and asymptotic Normal distribution have been also 
proved. As first proposals based on Poisson sampling, two special members of the pro-
posed class of sampling strategies, called PoSA and CPoSA, have been given special 
attention. However, due to their simplicity, both PoSA and CPoSA have limitations, 
which in fact open future research opportunities. In particular, the assumption of a lin-
early ordered population can be feasible and effective in the practice of TB prevalence 
surveys, but can reveal too strong and less viable in different application contexts. Thus, 
a natural improvement would be to relax the assumption of a linearly ordered popula-
tion, e.g. the pre-fixed path in the TB example, to allow a two-dimensional selection 
that is able to move freely all along the geographical area of interest, while controlling 
covariances between SMIs. This could be done by leaving the Poisson list-sequential 
choice in favour of a more flexible design such as, for instance, the spatially correlated 
Poisson sampling (Grafström 2012). Future research will also explore the availability 
of auxiliary variable(s) and accessible paradata that can be effectively employed both at 
the design stage and at the estimation stage of the survey, to improve estimation accu-
racy. For instance, in the TB example, epidemiological, socio-cultural and/or economic 
covariates may be available from previous surveys and official registers. They can be 
exploited for an advanced definition of neighbourhood conditions either for population 
units or PSUs, thus refining the mere physical/geographical proximity applied to PoSA 
and CPoSA.

APPENDIX: Proofs and auxiliary results

Proof of Proposition 1 Eqns. (6 ), (7 ) are easily proved by induction. Equation ( 6 ) 
is true if i = 1 , because it gives �1 = �

(0)

1
 . Assuming than it holds for unit i, we must 

prove it also holds for unit i + 1 . Using the updating rule, we have

Equation ( 7 ) is proved similarly. It is easy to verify that it is true as k = 1 , because

�i+1 =E[E[Si+1|Fi]] = E[diSi + �
(0)

i+1
(1 − diSi)]

=�
(0)

i+1
+ �idi(1 − �

(0)

i+1
) = �

(0)

i+1
+ di(1 − �

(0)

i+1
)
{
�
(0)

i

+

i−1∑
j=1

�
(0)

j

i∏
h=j+1

(
1 − �

(0)

h

)
dh−1

}

=�
(0)

i+1
+

i∑
j=1

�
(0)

j

i+1∏
h=j+1

(
1 − �

(0)

h

)
dh−1.
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coincides with ( 7 ) for k = 1 . Assuming next that ( 7 ) holds for k, we have

  ◻

Proof of Proposition 2 The proof is immediate by observing that

because E
[
Tin |Fin−1

]
= 0 in view of ( 3 ).   ◻

Proof of Proposition 3 Unbiasedness of �̄YPHT is an immediate consequence of 
E[Ti] = 0 . As far as its variance is concerned, since Ti s are pair-wise uncorrelated 
we have first

Next, using ( 3 ) and taking into account that

we have

�i,i+1 =E[SiSi+1] = E[SiE[Si+1|Fi]]

=E[Si(�
(0)

i+1
+ Sidi(1 − �

(0)

i+1
)] = E[Si(�

(0)

i+1
+ di(1 − �

(0)

i+1
))]

=�i(�
(0)

i+1
+ di(1 − �

(0)

i+1
))

�i,i+k+1 =E[SiE[Si+k+1|Fi+k]] = E[Si(�
(0)

i+k+1
+ Si+kdi+k(1 − �

(0)

i+k+1
)]

=�i�
(0)

i+k+1
+ di+k(1 − �

(0)

i+k+1
)�i,i+k

=�i�
(0)
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(0)

i+k+1
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(0)
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i+k−1∑
j=i+1

�
(0)

j
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(0)

h+1
)dh
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i+k−1∏
h=i

(1 − �
(0)

h+1
)dh

)}

=�i

{
�
(0)
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(0)

j
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(0)

h+1
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(0)
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(52)
E
[
Ti1Ti2 ⋯Tin

]
=E

[
E
[
Ti1Ti2 ⋯Tin |Fin−1

]]

=E
[
Ti1Ti2 ⋯Tin−1E

[
Tin |Fin−1

]]

=0

V
(
�̄YPHT

)
=

1

N2

N∑
i=1

V

(
Si

𝜋
(i−1)

i

)
y2
i
.

E

[
Si

�
(i−1)

i

||||||
Fi−1

]
= 1



1 3

Sequential adaptive strategies for sampling rare clustered…

from which Eq. ( 21 ) follows.   ◻

Proof of Proposition 4 In view of Proposition 3, it is enough to prove that the vari-
ance of �̄YPoSA tends to 0 as N increases. From �(i−1)

i
≥ �

(0)

i
≥ �N it is immediate to 

see that

and hence

from which ( 28 ) follows.   ◻

Proof of Lemma 1 In the first place, from E[(Si∕�
(i−1)

i
− 1)2|Fi−1] = 1∕�

(i−1)

i
− 1 we 

get

for every N ≥ 1.
In the second place, from ( 23 ) we may write
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where C(Si−1, Sj−1) is the covariance between Si−1 and Sj−1.
Now, from V(Si−1) = �i−1(1 − �i−1) ≤ 1∕4 and 1∕�(0)

i
≤ �−1 we have

ad N increases.
As a consequence of (  8 ) and subsequent remarks, the covariance between 

Si−1 and Sj−1 is non-zero only in two cases: (a) both units i − 1 and j − 1 lie in the 
same block B1

k
 ; (ii) (i − 1) ∈ B1

k
 and j − 1 is the first unit of the block B0

k+1
 , for 

some k = 1, … , K . Denote again by ik+1,0 the first unit of the block B0
k+1

 , and by 
B1+
k

 the set B1
k

⋃
{ik+1,0} , and by |Bt

k
| the cardinality of the set Bt

k
 , t = 0, 1 . Since 

C(Si, Sj) ≤ 1∕4 , we have

by Assumption A5.
The proof now follows from ( 53 )-( 56 ).   ◻

Proof of Lemma 2 From �(i−1)

i
≥ �

(0)

i
≥ � and Eq. ( 27 ), we get

for all Ns large enough. The Lemma easily follows from ( 57 ).   ◻

Proof of Proposition 5 To prove ( 32 ), it is enough to take into account that
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and to use Lemmas 1, 2 and Th. 1.3 in Alj et al. (2014).
To prove ( 33 ), it is enough to prove that

To this purpose, observe that

where

Taking into account that E
[
Y �
Ni
|Fi−1

]
= 0 and, by A1, A4,

from Csörgő (1968) it follows that

In the second place, as an easy consequence of Lemma 1 it is seen that

Hence, ( 58 ) now follows from ( 59 ), ( 60 ). Finally, ( 34 ) is an immediate conse-
quence of ( 32 ) and ( 33 ).   ◻

Proof of Lemma 3 From the updating rule ( 2 ) it is not difficult to see that
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where ci s and Ci s are defined as in ( 37 ), ( 36 ), respectively.
To prove inequality (  38 ), let us first observe that 

((Si−k+1 − �
(i−k)

i−k+1
)wi−k+1

k
; k = 1, … , i) is a martin-

gale difference w.r.t. the filtration F1, … , Fi , because 
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(i−k)

i−k+1
)wi−k+1

k
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= 0 , wi−k+1

k
 being 

Fi−k-measurable. As a consequence, the r.v.s (Si−k+1 − �
(i−k)

i−k+1
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k
 are pair-wise 

uncorrelated. Using the Lyapunov inequality, we then have

because both |1 − Sidi| and |Si−k+1 − �
(i−k)

i−k+1
| are smaller than 1.   ◻

Proof of Proposition 6 Using the same arguments as in Proposition  4, we have to 
show that the variance of �̄YPHT tends to 0 as N increases. From relationship (35), we 
get
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which proves the result.   ◻

Proof of Lemma 4 Proof is a consequence of Lemma 3, because

as N increases, by Assumption A6.   ◻

Proof of Lemma 5 It is enough to use Lemma 4, from which we obtain

and to repeat verbatim the arguments of Lemmas 1, 2.   ◻

Proof of Proposition 7 It suffices to use Lemmas 5 and Th. 1.3 in Alj et al. (2014).  
 ◻
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