
Scuola di Dottorato
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[...]
Perché l’anima è in te, sei tu, ma tu
sei mia madre e il tuo amore è la mia schiavitù:
ho passato l’infanzia schiavo di questo senso
alto, irrimediabile, di un impegno immenso.

[...]
Ti supplico, ah, ti supplico: non voler morire.
Sono qui, solo, con te, in un futuro aprile...

“Supplica a mia madre” - P. P. Pasolini, 1962
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Chapter 1

Introduction

1.1 Outline and main contribution

Multivariate time-series models help to understand and predict how multiple variables
change over time, particularly when they are interconnected and influence each other’s
dynamic. Temporal clustering helps in analyzing such data by identifying sets of time-
series that exhibit similar patterns over time. It can be advantageous in detecting trends
and anomalies, as well as making predictions for future observations. Precise modeling and
clustering of time-series data can greatly enhance forecasting accuracy and facilitate effec-
tive anomaly detection. By contrast, improper specification of the statistical model can
lead to incorrect grouping and loss of important information. In fact, inaccurate models
can result in flawed interpretation of results, particularly in fields like finance, where mis-
interpretation can have significant repercussions (see Liao (2005) for a survey on clustering
techniques for time-series data).

The modeling and clustering of financial time-series requires particular attention given
their peculiarities, such as volatility clustering, heavy tails, non-linearity, and non-normality
(Granger and Ding, 1994; Cont, 2001; Bulla and Bulla, 2006; Nystrup et al., 2015). Tradi-
tional approaches, such as the mean-variance analysis of Markowitz and Todd (2000) or the
random walks, assume a normal distribution for the data, which fails to correctly estimate
the probability of tail events (Fischer et al., 2009). Furthermore, classical clustering mod-
els may not be able to capture these trends, potentially resulting in incorrect estimates.
Hence, advanced statistical and machine learning models are required for addressing these
challenges.

High dimensionality usually characterizes this type of data (Liao, 2005; Aghabozorgi
et al., 2015). A major problem is the curse of dimensionality, wherein an increasing number
of variables leads to an exponential rise in the amount of data necessary to maintain the
same level of accuracy. Moreover, high-dimensional data can lead to overfitting, which
occurs when the model used for the analysis is too complex and captures noise in the data
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Chapter 1. Introduction

rather than the underlying patterns. To address these issues, researchers have proposed
various techniques, such as feature selection, dimensionality reduction, and regularization.
The first involves selecting a subset of the most relevant variables for clustering analysis.
Dimensionality reduction techniques, such as principal component analysis, can reduce the
number of variables by projecting them onto a lower-dimensional space, while preserving
the underlying structure of the data. Regularization techniques, such as Lasso (Tibshirani,
1996) and ridge regression (Hoerl and Kennard, 1970), can help to avoid overfitting by
penalizing overly complex models.

Financial time-series present an additional complexity given their non-stationary nature,
implying that the characteristics of such data vary over time. Non-stationarity can arise
due to a variety of factors, such as changes in market sentiment, regulatory and economic
environments, or unexpected events (Hamilton, 1989). For example, during a period of high
market volatility or a financial crisis, the statistical properties of financial data can change
abruptly, leading to different clustering results.

State-space models (Hamilton, 1994) have been recognized as a particularly suitable
choice for effectively modeling non-stationary time-series data. These models are designed
to represent the underlying dynamics of a system by modeling a set of unobserved states
that evolve over time. At the heart of a state-space model is a set of two equations: the state
equation, which describes how the underlying state of the system evolves over time, and
the observation equation, which describes how the observed data are generated from the
underlying state. The state equation is often formulated as a linear or non-linear dynamical
system, while the observation equation is typically a function of the state and some noise
process. State-space models have a number of advantages over more classical time-series
models, including the ability to handle complex non-linear dynamics and non-Gaussian
noise, or to incorporate prior knowledge about the system being modeled (Bartolucci and
De Luca, 2003). They can accommodate temporal clustering by grouping the unobserved
states, for instance using the Viterbi (1967) algorithm; see Pennoni and Bal-Domńska (2022)
for an illustration of this approach with reference to longitudinal data and Pennoni et al.
(2021) for time-series data. These models, with hidden Markov models (Zucchini et al.,
2017; Bartolucci et al., 2022) being a popular example within this category, are particularly
useful for modeling financial time-series because they are flexible enough and can help to
analyze complex data structures. One advantage is their ability to separate the underlying
state of the system from the noisy observations. In the context of financial time-series,
states can be useful to infer market regimes, while the realized observations represent noisy
measurements of these states.
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1.1. Outline and main contribution

This thesis discusses the modeling and clustering of multivariate financial time-series
considering two specific model types that belong to the broader class of state-space models:
regime switching copula models (Rodriguez, 2007; Nasri and Rémillard, 2019) and sparse
statistical jump models (Bemporad et al., 2018; Nystrup et al., 2020, 2021). These models
use temporal clustering techniques to effectively capture the dynamics of financial time-
series data and overcome the problem of non-stationarity. Regime switching copula models
are specifically designed to model the heavy tails of the joint distribution of financial returns,
while sparse statistical jump models are ideal for problems involving a large number of
variables.

Regime switching copula models involve two stochastic processes: one corresponds to
the observed series, usually returns, while the other describes the evolution of an hidden
sequence of states over time, which is modeled through a homogeneous Markov chain of
first order. The joint distribution of returns is modeled as a copula function, which changes
according to the underlying states. To address certain characteristics of this type of data and
to model heavy-tails and non-linear dependencies, we propose a regime switching Student-t
copula model. This model specifies the copula distribution as a Student-t copula (Demarta
and McNeil, 2005), enhancing the detection of shifts between bullish and bearish market
states.

Sparse statistical jump models allow for occasional jumps in asset returns, while main-
taining an infrequent occurrence of these switches. They have the ability to choose the
most relevant features that can effectively explain a complex system out of a large dataset.
These models provide various advantages. Firstly, they can carry out parameter estimation,
state-sequence decoding, and feature selection simultaneously. Secondly, they are highly ro-
bust towards incorrect model specifications and initialization, produces satisfactory results
even with limited data samples, and are more efficient when dealing with high-dimensional
feature vectors. Lastly, the estimated models are straightforward to interpret through their
state-conditional dynamics and the weight assigned to each feature.

In the following sections, we briefly introduce each proposal, highlighting its main ad-
vantages. Additionally, we provide a brief overview of our findings and contributions, which
are thoroughly discussed in subsequent Chapters. Specifically, Chapter 2 introduces a novel
maximum likelihood estimation approach for regime switching Student-t copula models. We
validate this proposal through a simulation study and apply it to jointly analyze the re-
turns of five cryptocurrencies, with the goal of tracking their dynamics. In Chapter 3,
we use sparse statistical jump models to identify the main drivers of the cryptocurrency
market from a large set of features, including cryptocurrency returns, volatility, sentiment,
and traditional financial assets. In Chapter 4, we implement a model selection method
employing generalized information criteria within the framework of sparse statistical jump
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models. We evaluate the effectiveness of this approach through an extensive simulation
study, demonstrating its capacity to select the appropriate model. We further demon-
strate the applicability of our approach in the context of the equity market, examining the
dynamics and discovering the principal drivers of MSCI developed and emerging market
indexes.

1.1.1 Regime switching Student-t copula model

Accurate modeling of the tails of the joint distribution of log-returns is crucial for effectively
capturing the occurrence of extreme events. These events, which are more frequent than
expected under a normal distribution, can result in significant losses for investors who fail
to appropriately account for them (Christoffersen, 2011).

Copula models are particularly useful for modeling the tails of the joint distribution.
They allow us to separate the marginal distributions from the underlying dependence struc-
ture, enabling a detailed analysis of individual variables dynamics while accurately captur-
ing their interdependence (Sklar, 1959; Joe and Xu, 1996). Moreover, copulas offer great
flexibility in modeling dependencies, as they assume different analytical forms that can
capture many types of dependence.

The proposed regime switching Student-t copula model allows for the analysis of dy-
namic dependence structures between two or more random variables across different market
conditions over time (Jondeau and Rockinger, 2006; Rodriguez, 2007). This variability is
captured through a homogeneous Markov chain of first order, while the joint distribution
is characterized through a Student-t copula.

The use of a Student-t copula distribution is advantageous in financial time-series mod-
eling, as evidenced by various research papers, such as Breymann et al. (2003), Fischer
et al. (2009), and Huang et al. (2009). By selecting the Student-t specification, we model
dependencies through the number of degrees of freedom and the dependence parameter
matrices. The number of degrees of freedom governs the thickness of the tails of the joint
distribution, while the dependence parameter matrices allow to estimate the correlation
structure.

Maximum likelihood estimation, especially through the Expectation-Maximization (EM)
algorithm (Dempster et al., 1977), is a widely used approach within regime switching copula
models. However, the adoption of this algorithm can be challenging when more than two
variables are considered. As the number of variables increases, the complexity of the model
grows, and the estimation process becomes computationally demanding. To account for this
issue, we propose a novel EM algorithm which is an extension of the approach developed by
Trede (2020) for a simple Student-t copula model. We address the challenges of estimating
the multidimensional Student-t copula parameters by introducing an iterative procedure
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that efficiently estimates the matrix of dependence parameters and the number of degrees
of freedom for a multivariate regime switching Student-t copula model. The proposed
method is shown to be simple, computationally feasible, and fast, making it suitable for the
analysis of multivariate financial data. We also show the good finite sample properties of
the proposed estimator through simulations and we establish its computational efficiency,
and its ability to yield better forecasting results as compared to traditional models.

We illustrate the feasibility of the proposal by modeling the log-returns of the five cryp-
tocurrencies Bitcoin, Ethereum, Ripple, Litecoin and Bitcoin Cash over a five years period.
Our analysis reveals that a two-state regime switching Student-t copula model accurately
describes switches between bull and bear market regimes by examining the strength of
correlations and the thickness of the tails of log-returns joint distribution.

1.1.2 Sparse statistical jump model

High dimensionality of financial data can make it challenging to estimate statistical models
that accurately capture the association between variables. The sparse statistical jump
model of Nystrup et al. (2021) addresses dataset sparsity, a situation where most variables
have minimal influence on the model outcome, while a few key variables play a significant
role. It is based on the so-called statistical jump model, introduced in Bemporad et al.
(2018). Within their framework, they construct complex models by combining simpler ones,
and the transition between these models is determined by an underlying latent process. The
latter refers to the state of a given market, which can be understood as the current condition
or configuration of the market’s variables and dynamics. The model incorporates a specific
hyperparameter that governs the level of persistence within a state, allowing for precise
calibration of the model responsiveness to market changes. The sparse statistical jump
model enhances the jump model framework by considering that some variables in the dataset
are irrelevant for explaining the system dynamics. This assumption is integrated into the
modeling process to improve accuracy by reducing dimensionality, and it is regulated by a
specific hyperparameter controlling the level of sparsity.

Sparse statistical jump models have several advantages as they allow to jointly perform
parameter estimation, feature selection, and state-sequence decoding. Compared to other
competitive models, they are more efficient when working with high-dimensional feature
vectors, more robust to misspecification errors and perform good even with small samples.
Additionally, they are easy to interpret, based on their state-conditional dynamics.

The application we present focuses on the cryptocurrency market, with the added chal-
lenge of working with a high-dimensional dataset. Specifically, we consider over four hun-
dred variables encompassing cryptocurrency returns, volatility and network activity, to-
gether with market sentiment, debt, equity, forex, and commodity market-related features.
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By using the sparse statistical jump model, we find that a three-state model provides the
best fit for describing changes in market dynamics. These states correspond to bull, neutral,
and bear market conditions, each with clear and intuitive interpretations. Furthermore, we
select the most relevant features for our analysis, including momentum, sentiment towards
the crypto market, and trade activity.

1.1.3 Generalized information criteria for sparse statistical jump models

The selection of hyperparameters that control the number of states, sparsity, and persis-
tence is a crucial challenge in the sparse statistical jump model framework. The number of
states determines the complexity of the model and must be chosen carefully to avoid over-
fitting or underfitting. Similarly, the degree of sparsity needs to be precisely controlled to
avoid excessive or inadequate dimensionality reduction. Additionally, regulating the states
persistence is essential to capture the temporal dependencies of the features. Selecting
these hyperparameters is often challenging, and a careful balance between model fit and
complexity must be achieved to optimize the performance.

Information criteria are widely used in the context of model selection for hidden Markov
models (Bacci et al., 2014). Their goal is to identify the optimal number of states and
the appropriate model complexity that accurately captures the underlying data-generating
process. Information criteria, such as Akaike’s information criterion (Akaike, 1974) and
Bayesian information criterion (Schwarz, 1978), offer a quantitative measure to compare
models by balancing their goodness-of-fit and complexity. They provide a parsimonious
and objective approach to identify the most suitable model by selecting the one with the
lowest information criterion value.

The generalized information criteria (GIC) framework, introduced by Fan and Tang
(2013), offers valuable guidance for model selection, particularly in high-dimensional sce-
narios. In fact, this framework extends conventional information criteria by incorporating
a penalty term based on the number of variables included in the model, providing a flexible
approach for model selection in high-dimensional scenarios.

We adapt the GIC framework to the class of sparse statistical jump models. Our
approach involves deriving expressions for the model fit and complexity to construct suitable
information criteria for model selection. To assess the performance of our proposal, we
conduct two simulation studies. Our findings demonstrate that the proposed information
criteria, tailored for sparse statistical jump models, identify the correct hyperparameter
values. Specifically, our extended criteria correctly account for sparsity, persistence and
provide an accurate estimate of the number of hidden states. These findings have important
implications for researchers working with high-dimensional datasets, where model selection
is a critical step in accurately representing the underlying data-generating process.
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Thereafter, we conduct an empirical study wherein we apply a sparse statistical jump
model with hyperparameters determined by our GIC. This model is applied to a large set
of features associated with the global equity market. Our focus lies on MSCI indexes,
encompassing developed and emerging markets, along with their cross-correlations and
correlation with the VIX index. Leveraging the extended GIC, we detect the primary driver
of equity markets, which predominantly consist of volatility-related features. Additionally,
we trace its temporal dynamics, characterized by bull, neutral, and bear market phases.

1.2 Implications for real-world applications

Regime switching Student-t copulas and sparse statistical jump models present several
benefits and implications for portfolio managers. They offer a powerful framework for
understanding financial markets dynamics, aiding portfolio allocation strategies, managing
tail risks, and uncovering different correlation patterns.

Enhancing portfolio allocations. These models capture the non-linear and time-
varying nature of financial markets. By identifying different regimes characterized by
distinct statistical properties, they allow for more accurate risk assessment and im-
proved portfolio allocations. Studies like Hamilton (1989) and Gray (1996) underline
the advantages of incorporating regime switching dynamics in portfolio optimization.
Allocation strategies dynamically adjust asset distribution in response to market con-
ditions, optimizing performance by aligning with probabilities of being in different
market regimes.

Interpreting regimes. The interpretation of regimes is crucial. Different regimes
could represent market bull/bear phases, high/low volatility periods, or various eco-
nomic cycles. For instance, in a two-regime model, one regime might signify periods
of economic expansion and low volatility, while the other denotes recessions and high
volatility. Managers can then allocate assets accordingly, balancing risk and return
profiles across different regimes (Ang and Chen, 2002).

Correlation patterns and implications. The proposed models uncover diverse
correlation patterns across different market regimes. For portfolio managers, this
means acknowledging that asset correlations can vary significantly during different
market conditions. This insight can help diversify portfolios more effectively across
regimes, reducing overall portfolio risk. Understanding these patterns, as highlighted
by Garcia and Perron (1996) and Dahlquist and Gray (2000), enables managers to
construct more robust and resilient portfolios towards changes in market conditions.
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Enhancing tail risk management. Multivariate regime switching Student-t copula
models are particularly useful in managing tail risks. In fact, these models capture
extreme events and dependencies among asset returns during different regimes, allow-
ing for a better understanding of tail risk dynamics. Tail risks, often underestimated
by traditional models, can be more accurately assessed and managed by incorporat-
ing the multivariate nature of dependencies and tail behavior across regimes (Glosten
et al., 1993).

1.3 Summary of the proposals

This thesis is the result of an extensive research aimed at advancing the field of modeling
and clustering of multivariate financial time-series data. It is organized into three main
Chapters, each contributing novel methods and insights to enhance the understanding of
financial time-series analysis.

In Chapter 2, we present regime switching Student-t copula models and introduce a
novel maximum likelihood estimation method for parameter estimation. We first provide
a comprehensive introduction to regime switching Student-t copula models, showing their
ability to capture extreme events and tail dependencies in multivariate financial time-series
data. We discuss the challenges of estimating the parameters of these models, emphasizing
the complexity introduced by the copula dependence structure. We then show our novel
estimation method, emphasizing its ability to overcome computational challenges in esti-
mating copula models with more than two variables. This improvement enhances both the
efficiency and accuracy of parameter estimation. We demonstrate the practicality of our
proposed method by applying it to cryptocurrency market data. This real-world applica-
tion shows the effectiveness of our approach in capturing regime shifts and modeling the
joint behavior of cryptocurrency returns.

Chapter 3 focuses on sparse statistical jump models and their application to the cryp-
tocurrency market. We introduce sparse statistical jump models, designed to address the
challenges posed by high-dimensional financial data. These models efficiently perform pa-
rameter estimation, feature selection, and state-sequence decoding simultaneously. We
explore the unique characteristics of the cryptocurrency market considering a large set of
candidate features related to cryptocurrency prices, cross-correlations, correlations with
traditional financial assets, market activity and market sentiment. Our research highlights
the importance of feature selection and the impact of selected features in modeling market
conditions. Through an empirical analysis, we show that a three-state model effectively
captures changes in cryptocurrency market conditions, characterizing each state as bull,
neutral, and bear market regimes. We also show that momentum, trade activity, and
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sentiment are the main drivers of this market, confirming prior research findings.
In Chapter 4, we introduce the concept of generalized information criteria and adapt its

application to sparse statistical jump models, thus developing information criteria tailored
for this model category. We emphasize the importance of model selection and illustrate
how our criteria strike a balance between model fit and complexity. We conduct exten-
sive simulation studies aimed at evaluating the performance of our proposal. The results
demonstrate that the proposed approach identifies the correct number of latent states and
improves model selection by effectively choosing the optimal values for the hyperparameters
governing state transitions and dataset sparsity. Finally, providing an empirical applica-
tion, we infer the key features that drive the return dynamics of the world equity market,
which mainly consist of volatility-related features. We also find that a three-state model
best describes the dynamics of MSCI developed and emerging markets indexes.

9



Chapter 1. Introduction

Bibliography

Aghabozorgi, S., Shirkhorshidi, A. S., and Wah, T. Y. (2015). Time-series clustering–A
decade review. Information Systems, 53:16–38.

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions
on Automatic Control, 19:716–723.

Ang, A. and Chen, J. (2002). Asymmetric correlations of equity portfolios. Journal of
Financial Economics, 63:443–494.

Bacci, S., Pandolfi, S., and Pennoni, F. (2014). A comparison of some criteria for states
selection in the latent Markov model for longitudinal data. Advances in Data Analysis
and Classification, 8:125–145.

Bartolucci, F. and De Luca, G. (2003). Likelihood-based inference for asymmetric stochastic
volatility models. Computational Statistics & Data Analysis, 42:445–449.

Bartolucci, F., Pandolfi, S., and Pennoni, F. (2022). Discrete latent variable models. Annual
Review of Statistics and Its Application, 9:425–452.

Bemporad, A., Breschi, V., Piga, D., and Boyd, S. P. (2018). Fitting jump models. Auto-
matica, 96:11–21.

Breymann, W., Dias, A., and Embrechts, P. (2003). Dependence structures for multivariate
high-frequency data in finance. Quantitative Finance, 3:1–14.

Bulla, J. and Bulla, I. (2006). Stylized facts of financial time-series and hidden semi-Markov
models. Computational Statistics & Data Analysis, 51:2192–2209.

Christoffersen, P. (2011). Elements of financial risk management. Academic Press, San
Diego, CA.

Cont, R. (2001). Empirical properties of asset returns: Stylized facts and statistical issues.
Quantitative Finance, 1:223–236.

Dahlquist, M. and Gray, S. F. (2000). Regime-switching and interest rates in the European
monetary system. Journal of International Economics, 50:399–419.

Demarta, S. and McNeil, A. J. (2005). The t copula and related copulas. International
Statistical Review, 73:111–129.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from in-
complete data via the EM algorithm. Journal of the Royal Statistical Society: Series B
(Methodological), 39:1–22.

10



Bibliography

Fan, Y. and Tang, C. Y. (2013). Tuning parameter selection in high dimensional penalized
likelihood. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
75:531–552.
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Chapter 2

Maximum likelihood estimation of multivariate
regime switching Student-t copula models

1

2.1 Introduction

Financial analysis and risk management research shows that the dependence structure of
financial time-series changes during crises, with interdependence among assets increasing
compared to stable periods (Das and Uppal, 2004; Patton, 2004). This phenomenon, known
as asymmetric dependence (Ang and Bekaert, 2002; Ang and Chen, 2002; Longin and Sol-
nik, 2002), is particularly relevant in cryptocurrency markets due to their vulnerability to
changes in economic developments and news (Garcia and Ghysels, 1998; Kristoufek, 2013;
Telli and Chen, 2020). For this reason, it is important to consider suitable specifications for
the joint distribution of log-returns to capture possible sudden changes in market dynamics.

Extensive research supports the existence of regime switches in cryptocurrency returns,
volatilities, and cross-correlation structure; see Ardia et al. (2019), Shen et al. (2020)
and Cremaschini et al. (2023). Hamilton (1989) first argued that the switching dynam-
ics of financial returns may be easily modeled through a Markovian process. In particular,
regime switching (RS) copula models, also known as Markov-switching copulas (Jondeau
and Rockinger, 2006; Rodriguez, 2007; Okimoto, 2008; Chollete et al., 2009), accurately
describe persistent correlation dynamics (Ang and Timmermann, 2012) in log-returns by
modeling the joint distribution as a copula function that changes according to latent states.
These models involve two stochastic processes: the first corresponds to the observed series,
and the other to an underlying (latent) process describing the evolution of the hidden states
over time. RS copula models are employed for exchange rates data, for the analysis of the
correlation between S&P 500 and NASDAQ indexes, for the study of gold-oil dependence
structure, and to describe momentum shifts in football matches (Stöber and Czado, 2014;

1This Chapter has been submitted for publication in the International Statistical Review and is currently
undergoing minor revisions. Cortese F., Pennoni F., Bartolucci F. Maximum likelihood estimation of
multivariate regime switching Student-t copula models.
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Härdle et al., 2015; Nasri and Rémillard, 2019; Tiwari et al., 2020; Ötting et al., 2021).
In the present Chapter, we propose a new model, named RS Student-t copula (RSStC)

model, tailored to account for stylized facts of financial returns, such as heavy-tailed distri-
butions and non-linear dependencies. The model is based on a Student-t copula (Demarta
and McNeil, 2005) which is parametrized by the number of degrees of freedom and the
matrix of dependence parameters. Student-t copula is generally preferred to Gaussian cop-
ula for financial time-series because it allows the modeling of tail dependence and kurtosis
(Breymann et al., 2003; Fischer et al., 2009; Huang et al., 2009). Compared to Archimedean
copulas (Genest et al., 2011), which rely on a single dependence parameter for all variables,
the proposed RSStC formulation offers superior accuracy in modeling the correlation struc-
ture. Additionally, while Vine copulas (Joe and Kurowicka, 2011; Czado and Nagler, 2022)
are quite flexible to model different distributions, they have a more complex analytical form.

Maximum likelihood estimation of the RS copula parameters is typically performed
through the Expectation-Maximization (EM) algorithm (Dempster et al., 1977). However,
even in the case of a simple multidimensional Student-t copula model, Hernández et al.
(2014) show that maximum likelihood estimation can be highly computationally inefficient.
We provide a new approximation method for the EM algorithm tailored for estimating
RSStC models. The proposal consists in an iterative procedure for estimating the matrix
of dependence parameters and the number of degrees of freedom of the multivariate RSStC
model. Following the approach of Trede (2020), developed for estimating a simple Student-
t copula model, we maximize the log-likelihood function corresponding to the Student-t
copula density in two steps. At the first step, we estimate the matrix of dependence
parameters for a fixed number of degrees of freedom through Lagrange multipliers relying
on a closed form solution; then, we numerically optimize the log-likelihood with respect
to the number of degrees of freedom, keeping fixed the estimated matrix of dependence
parameters. This procedure is simple, computationally feasible, and fast, even for long
series with many assets. To evaluate the proposal, we rely on a simulation study assessing
the good finite sample properties of the estimates and the computational efficiency of the
procedure. An important feature of the proposal is that it can account for persistence in
market regimes. This is an important aspect since, as suggested in Nystrup et al. (2020),
when the state sequence contains several jumps, the RS model tends to a finite mixture
model (McLachlan and Peel, 2000).

We apply the proposed approach to analyze log-returns of the five cryptocurrencies,
Bitcoin (BTC), Ethereum (ETH), Ripple (XRP), Litecoin (LTC), and Bitcoin Cash (BTC),
for five years, from 17 September 2017 to 02 October 2022. At least to our knowledge, these
data have never been analyzed with RS copula models; for a recent review of the methods
proposed in the literature for the analysis of multiple cryptoassets, see, among others, Koki
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et al. (2022). We select the optimal number of latent states relying on the Integrated
Completed Likelihood (ICL) criteria (Biernacki et al., 2000) and, following Pennoni et al.
(2021), we predict the latent regimes considering global decoding (Viterbi, 1967; Juang
and Rabiner, 1991). Additionally, we compare the forecasting performance of the proposed
model with that of a more common hidden Markov model (HMM) (Zucchini et al., 2017)
and a multivariate random walk (MRW) process considered as benchmark.

To summarize, we provide three main contributions to the existing literature. First,
we propose a multivariate RSStC model, whereas most previous works focus only on the
bivariate case. Second, we implement a novel and computationally efficient method for
estimating the matrix of dependence parameters and the number of degrees of freedom.
Third, we show the applicability of the proposal analyzing cryptocurrency log-returns in a
novel way.

We implemented the code developed to carry out the estimation of the RSStC model
and to perform simulations in the C++ language, through the R (R Core Team, 2023) package
Rcpp (Eddelbuettel and François, 2011). We make this code freely available at the following
link: https://github.com/FedericoCortese/RSstcopula/find/main.

The remainder of the Chapter is organized as follows. In Section 2.2, we introduce
the RSStC model. In Section 2.3, we show the proposed procedure for maximum likelihood
estimation of the model parameters, the initialization strategy, and the convergence criterion
chosen for the EM algorithm. In Section 2.4, we illustrate the simulation study aimed
at assessing the validity of the proposed estimation procedure, and we comment on the
results. In Section 2.5, we apply the proposal to analyze the daily log-returns of the five
cryptocurrencies and present the results along with comparative analysis. In Section 2.6
we discuss the obtained results. In Appendix 2.A, we show additional details of the E- and
M-steps of the EM algorithm, and we describe the model selection criterion. Appendix 2.B
contains more details on the simulation results. In Appendix 2.C, we show an application
in which the model is estimated using a semi-parametric approach.

2.2 Model formulation

We consider an r-dimensional copula function C, which is a multivariate cumulative dis-
tribution function on the hypercube [0, 1]r with marginal uniform distributions in [0, 1].
Estimating such a model through inferential procedures becomes challenging due to limi-
tations in numerical optimization methods when dealing with high-dimensional parameter
vectors. Additionally, the joint likelihood often involves multidimensional integrals, posing
difficulties in numerical computations. To solve this problem, we rely on Sklar’s theorem
(Sklar, 1959), suggesting that it is possible to separately estimate each marginal cumulative
distribution function and the copula function. The inference for margins approach of Joe
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and Xu (1996) allows us to split the estimation into two steps: first, we fit the marginal
distribution of each univariate time-series; second, we estimate the joint distribution of
integral transforms of these series using a RS copula model.

In the following, for the sake of clarity we explicitly refer to the practical context of
financial data. Let yyyt = (yt1, . . . , ytr)

′ denote the vector of log-returns of the r time-series at
time t = 1, . . . , T . Following a parametric approach (Joe, 1997; Nasri and Rémillard, 2019),
we assume a generalized error model (Du, 2016) for each of the r univariate time-series.
This model postulates a cumulative distribution function denoted as Gβββj , and characterizes
the integral transforms ztj = G

β̂ββj
(ytj) as independent and identically distributed random

variables with continuous distribution function Fj , j = 1, . . . , r. To eliminate the depen-
dence of the estimated copula parameters on the marginal distributions, as suggested by
Nasri and Rémillard (2019), we initially estimate the parameters βββj through a consistent
estimator β̂ββj , then we compute the uniform pseudo-observations ztj and finally we calcu-
late normalized ranks, denoted by êtj = rank(ztj)/(T + 1), for t = 1, . . . , T , j = 1, . . . , r.
Following a semi-parametric approach, normalized ranks can be directly calculated from
the observed log-returns, thus obtaining êtj = rank(ytj)/(T + 1). This is a valid alterna-
tive when there is no interest in estimating a parametric model for the marginal univariate
time-series, which might be the case when the focus is only on the association between a set
of random variables and not on their marginal distributions. We consider the first method
in the application presented in Section 2.5 to analyze cryptocurrency log-returns, and we
also offer the results with the semi-parametric approach in Appendix 2.C.

With a slight abuse of notation, let us denote with yyyt = (yt1, . . . , ytr)
′, t = 1, . . . , T , the

r-dimensional vector of pseudo-observations following an RSStC model, and let ut denote
the latent variable assumed to follow a time homogeneous Markov process of first order
with k latent states. We conceive the following assumptions:

• The latent process is characterized by a vector of initial probabilities λλλ with elements
λu = P (u1 = u), u = 1, . . . , k, and a transition matrix denoted as ΠΠΠ, with elements
πv|u = P (ut = v | ut−1 = u), u, v = 1, . . . , k.

• The vectors of pseudo-observations yyy1, . . . , yyyT are conditionally independent given the
latent regimes u1, . . . , uT , each with copula densities c(·;RRRut , νut), t = 1, . . . , T . RRRu

denotes the matrix of dependence parameters with entries ρ
(ij)
u , i, j = 1, . . . , r, i ̸= j,

each measuring the correlation between assets i and j, and νu is the number of degrees
of freedom of the Student-t copula.

The joint density of the pseudo-observations is given by

f(yyy1, . . . , yyyT ) =

k∑
u1=1

πu1c(yyy1;RRRu1 , νu1) · . . . ·
k∑

uT=1

πuT |uT−1
c(yyyT ;RRRuT , νuT ). (2.1)
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More specifically, following Joe (2014), c(yyyt;RRRut , νut), t = 1, . . . , T , is given by

c(yyyt;RRRu, νu) =
tr,νu (xxxt;RRRu)∏r
j=1 t1,νu (xtj)

, u = 1, . . . , k,

where xxxt = (x1t, . . . , xrt)
′ is the vector with components xtj = T−1

1,νu
(ytj), j = 1, . . . , r, and

T−1
1,νu

is the inverse cumulative distribution function of a one-dimensional Student-t random
variable with νu degrees of freedom. The univariate and r-variate Student-t densities,
denoted as t1,νu and tr,νu , are defined as

t1,νu(xtj) =
Γ((νu + 1)/2)
√
πνu Γ(νu/2)

(
1 +

x2tj
νu

)−(νu+1)/2

,

tr,νu(xxxt;RRRu) =
Γ
(
νu+r
2

)
Γ
(
νu
2

)
ν

r
2
u π

r
2 |RRRu|

1
2

(
1 +

1

νu
xxxTt RRR

−1
u xxxt

)− νu+r
2

,

where Γ(·) is the gamma function.
To measure correlation between variables, we employ the Kendall’s tau (Kendall, 1938),

which offers advantages over the linear correlation coefficient, particularly in its ability
to model non-linear dependencies. Starting from the dependence parameters ρ

(ij)
u of the

Student-t copula, it is easy to compute Kendall’s tau through the following formula:

τ (ij)u =
2

π
arcsin ρ(ij)u , i, j = 1, . . . , r, i ̸= j. (2.2)

2.3 Maximum likelihood estimation

Let ℓ (θθθ | yyy1, . . . , yyyT ) denote the log-likelihood of the proposed model, corresponding to
the logarithm of (2.1), with θθθ being the column vector of parameters including the non-
redundant elements of RRRu, together with νu and λu, for u = 1, . . . , k, and πv|u, for u, v =

1, . . . , k. Maximum likelihood estimation of the model parameters is performed through the
EM algorithm; for the Student-t copula parameters, we use a two-step procedure where we
first estimate the matrix of dependence parameters for a fixed number of degrees of freedom,
through Lagrange multipliers, and then we estimate the number of degrees of freedom
through numerical optimization of the complete log-likelihood, keeping fixed the previously
estimated matrix. In the following section, we show the steps of the EM algorithm, details
of which are provided in Appendix 2.A. In Section 2.3.2, we provide additional information
on the initialization of the algorithm and its convergence.
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2.3.1 Expectation-Maximization algorithm

The complete-data log-likelihood, denoted as ℓ∗ (θθθ | (yyy1, u1), . . . , (yyyT , uT )), is the log-likelihood
computed assuming the knowledge of the hidden states u1, . . . , ut, and expressed as

ℓ∗ (θθθ | (yyy1, u1), . . . , (yyyT , uT )) =
∑T

t=1

∑k
u=1wtu log c(yyyt;RRRu, νu) +

∑k
u=1w1u log λu

+
∑T

t=2

∑k
u=1

∑k
v=1 ztuv log πv|u,

(2.3)
being wtu = I(ut = u) an indicator variable equal to 1 when the latent process is in state
u at time t (0 otherwise), and ztuv = I(ut−1 = u, ut = v) equal to 1 if the latent process
switches from state u at time t − 1 to state v a time t (0 otherwise). Note that this
log-likelihood is the sum of three components that may be maximized separately.

Starting from some initial values for the parameters collected into the vector θθθ(0), the
EM-algorithm maximizes ℓ(θθθ | yyy1, . . . , yyyT ) by alternating the following two steps until
convergence:

• E-step. Compute the conditional expected value of ℓ∗ (θθθ | (yyy1, u1), . . . , (yyyT , uT )),
given the values of the parameters at the previous iteration and the pseudo-observations.
At this step, we rely on the posterior expected values of the previous indicator vari-
ables, denoted by ŵtu and ẑtuv, whose formulas are provided in Appendix 2.A.

• M-step. Maximize the expected value of ℓ∗ (θθθ | (yyy1, u1), . . . , (yyyT , uT )) and update the
model parameters. In particular, parameters λu and πv|u are updated by using the
following explicit rules:

λ(m)
u =

ŵ1u∑k
v=1 ŵ1v

, u = 1, . . . , k, (2.4)

π
(m)
v|u =

∑T
t=2 ẑtuv∑T

t=2 ŵt−1u

, u, v = 1, . . . , k. (2.5)

The updated values of the remaining parameters, that is, RRR(m)
u and ν

(m)
u , are obtained

by solving the following optimization task

max
RRRu,νu

T∑
t=1

ŵtu log c(yyyt;RRRu, νu), u = 1, . . . , k. (2.6)

A naive, direct numerical maximization of (2.6) may be performed. However, it results
computationally inefficient, especially when the number of available assets is large. Follow-
ing Trede (2020), we maximize (2.6) with respect to RRRu, u = 1, . . . , k, given ν

(m−1)
u using

Lagrange multipliers, to obtain RRR
(m)
u , and then with respect to νu given RRR

(m)
u , obtaining
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ν
(m)
u . In particular, we obtain an estimated approximation of the matrix of dependence

parameters via the following rule:

RRR(m)
u = AAA(m−1) +RRR(m−1)

u diag
[(
RRR(m−1)

u ◦RRR(m−1)
u

)−1(
111− aaa(m−1)

)]
RRR(m−1)

u , (2.7)

with

AAA(m−1) =
ν
(m−1)
u + r

ν
(m−1)
u

∑
t ŵtu

T∑
t=1

ŵtuxxxtxxx
′
t

1 + xxx′t

(
RRR

(m−1)

u

)−1
xxxt

ν
(m−1)
u


−1

,

where ◦ in (2.7) denotes the element-wise product, 111 is a vector of 1s, aaa(m−1) denotes the
vector of diagonal elements of AAA(m−1), and xxxt is the vector with components T−1

1,νu
(ytj), with

j = 1, . . . , r. In this way, we do not require numerical optimization methods for such an
estimate, thus reducing the computational effort. See Appendix 2.A for additional details
on the derivation of the above formulas.

It is computationally simple to numerically maximize Equation (2.6) with respect to
νu once we set RRRu = RRR

(m)
u , because the number of degrees of freedom νu of the Student-t

copula is a scalar parameter. The estimates for νu, u = 1, . . . , k, are obtained as

ν(m)
u = argmax

νu

T∑
t=1

ŵtu log c(yyyt;RRR
(m)
u , νu), u = 1, . . . , k. (2.8)

We employ a heuristic approach with specific bounds to ensure successful computation of
the objective function for estimating the parameter νu. We set the lower bound at 2 for
practical purposes, and the upper bound is chosen as 25 to prevent numerical instability of
the algorithm at higher values. As also reported in Trede (2020), larger values of νu imply
a significantly higher computational time needed to achieve convergence to the maximum
of the log-likelihood function. Additionally, as the number of degrees of freedom increases,
the Student-t copula gradually approximates the Gaussian copula, and it may result less
effective in capturing extreme returns. In the simulation study of Section 2.4 and in the
application of Section 2.5, we arrange these regimes in ascending order of determinants,
from 1 to 0, corresponding to decreasing “general” correlation values.

Standard errors for the parameter estimates are computed by parametric bootstrap
(Davison and Hinkley, 1997; Chernick, 2011). In particular, we make use of the stationary
block bootstrap (Politis and Romano, 1994) to preserve time-series dependence of the data:
it consists in resampling blocks of consecutive observations and the length of each block is
distributed as a geometric random variable with average size proportional to O(T 2/3).
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2.3.2 Initialization and convergence of the algorithm

In the literature, there is currently no consensus on the most appropriate approach for
initializing the values in θθθ(0) within the context of the EM algorithm. We follow the proposal
in Bartolucci et al. (2013) (Chapter 3) and we use a deterministic rule as an initialization
strategy for RRRu, u = 1, . . . , k, such that initial values are defined on the basis of the
descriptive statistics computed for the observed time-series. To determine the initial values
for the dependence parameters, we begin by computing the matrix of sample Kendall’s tau.
Subsequently, we invert the formula in Equation (2.2) to obtain initial estimates of ρ(ij)u .
Other possible choices are illustrated in Maruotti and Punzo (2021). The starting values
for the initial probabilities λu are set equal to 1/k, and those of the transition probabilities
πv|u are set equal to 1/(γ+k) for v ̸= u and equal to (h+1)/(γ+k) for v = u, where γ is a
suitable constant (we use γ = 0 in our application). We note that a moderate initial value
of νu is the best practical choice: it should not be too large or too small because we might
encounter convergence issues. For this reason, based on a heuristic strategy, the number of
degrees of freedom of the Student-t copula is initialized with 4.

Regarding algorithm convergence, we employ two common approaches: monitoring the
distance between estimated parameter vectors at consecutive steps and tracking the increase
in the log-likelihood function at each step. Specifically, the E- and M-steps iterate until
either or both of the following conditions are met

max
h

∣∣∣θ(m+1)
h − θ

(m)
h

∣∣∣ < ϵ1,∣∣∣ℓ(θθθ(m+1))− ℓ(θθθ(m))
∣∣∣ < ϵ2,

being θ
(m)
h the h-th element of the vector θθθ(m) at the m-th iteration of the algorithm and

ϵ1, ϵ2 > 0, suitable tolerance levels. In the simulation study presented in Section 2.4 and in
the empirical analysis of Section 2.5, both tolerance levels are set at 10−8.

2.4 Simulation study

We validate the proposed RSStC model through a simulation study, examining the proper-
ties of the estimators for dependence parameters, degrees of freedom, initial and transition
probabilities. In particular, we present the simulation results for a 3-state RSStC model.

We conduct experiments on a Standard NC6 Promo virtual machine with 6 cores and 56
GB of memory. We acknowledge the University of Milano-Bicocca Data Science Lab (data-
lab) for supporting this work by providing some computational resources. As mentioned in
the introduction, we implement the R code for the EM algorithm through the package Rcpp,
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which allows the user to easily integrate C++ into the R environment. The code is available
at the following link https://github.com/FedericoCortese/RSstcopula/find/main.

The estimation procedure is remarkably efficient, as it takes only around 50 seconds
to estimate a 3-state model with data consisting of 1, 500 observations and 5 marginals.
Moreover, the computational time increases linearly with both the dataset size (T ) and the
number of states (r).

2.4.1 Three state regime switching Student-t copula model

We generate data from a 3-state RSStC model drawing B = 1, 000 samples of dimension
r = 5, each with a total number of observations T = 1,500. The model has equally probable
initial probabilities λλλ = (1/3, 1/3, 1/3)′ and transition probability matrix given by

ΠΠΠ =

 0.700 0.200 0.100

0.300 0.600 0.100

0.100 0.100 0.800

 .

The dependence matrices are fixed at

RRR1 =


1.000 − − − −
0.900 1.000 − − −
0.700 0.750 1.000 − −
0.800 0.900 0.700 1.000 −
0.800 0.800 0.800 0.800 1.000

 , RRR2 =


1.000 − − − −
0.500 1.000 − − −
0.300 0.400 1.000 − −
0.500 0.400 0.400 1.000 −
0.400 0.500 0.500 0.300 1.000

 ,

RRR3 =


1.000 − − − −
0.100 1.000 − − −
0.150 −0.100 1.000 − −
0.050 0.100 0.050 1.000 −
0.050 −0.050 0.100 −0.010 1.000

 ,

with state-specific numbers of degrees of freedom equal to ν1 = 3, ν2 = 6 and ν3 = 10,
respectively.

We evaluate the estimator in terms of the average bias and root mean squared error
(RMSE) across B = 1, 000 samples computed for the h-th parameter θh as

Bias = E
(
θ̃h − θh

)
,

RMSE =

√
E
(
θ̃h − θh

)2
+Var

(
θ̃h

)
,

where θ̃h denotes the h-th component of the vector of parameters θ̃θθ estimated on the
simulated sample, and θh the corresponding component of the vector θθθ of true parameters.
We also compute bootstrap percentiles confidence intervals (CI) at 95% level.

Table 2.1 shows results for the parameters of the hidden Markov process under different
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scenarios. The bias is always low and RMSEs of the initial probabilities are around 0.5,
while they are below 0.168 for the transition probabilities. CIs of the transition probabilities
are narrower for higher probabilities.

Table 2.1: Simulation results for the 3-state RSStC model: true parameter value, bias,
RMSE, lower and upper bounds of the CIs (CIL and CIU, respectively) of the initial and
transition probabilities.

λ1 λ2 λ3 π1|1 π1|2 π1|3 π2|1 π2|2 π2|3 π3|1 π3|2 π3|3

True 0.333 0.333 0.333 0.700 0.300 0.100 0.200 0.600 0.100 0.100 0.100 0.800

Bias -0.014 0.079 -0.065 0.019 -0.012 -0.007 -0.027 0.085 -0.058 0.000 -0.025 0.026

RMSE 0.475 0.440 0.492 0.080 0.074 0.048 0.099 0.168 0.112 0.040 0.080 0.074

CIL 0.000 0.000 0.000 0.461 0.100 0.024 0.167 0.225 0.019 0.027 0.015 0.603

CIU 1.000 1.000 1.000 0.774 0.354 0.220 0.517 0.730 0.384 0.180 0.299 0.859

Table 2.2 reports results of the dependence parameters ρ(ij)u and the number of degrees of
freedom νu. The maximum absolute bias for the dependence parameters is 0.037, specifically
for the pair of marginals (2, 3) in the second state. RMSE values are all below 0.135. CIs for
the first state are narrower, indicating more accurate estimates when the correlation is high,
while CIs for the second state show higher uncertainty in the estimated parameters. As
νu decreases, bias tends to decrease, resulting in improved estimation results when fitting
distributions with fat tails.

We also examined a 2-state RSStC model in a separate simulation study, and the out-
comes closely resemble those of the 3-state model. Furthermore, we varied the number
of observations, T , and the number of assets, r. Our findings indicate that the proposed
approach demonstrates good finite sample properties, as evidenced by a decline in RMSE
with increasing T . Similarly, as r increases, the RMSE decreases for initial and transition
probabilities, as well as for the number of degrees of freedom, while it shows an increment
for dependence parameters. Comprehensive information on these simulation results can be
found in Appendix 2.B.

2.5 Empirical study

2.5.1 Data

Data used for the application are multidimensional time-series of the daily log-returns
considered at closing prices of BTC, ETH, XRP, LTC, and BCH, which are, in terms of
market capitalization, the less manipulated and more liquid crypto assets. We acknowledge
the Crypto Asset Lab, which is an independent academic lab established at the University
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Table 2.2: Simulation results for the 3-state RSStC model: the true parameter value, bias,
RMSE, lower and upper bounds of the CIs (CIL and CIU, respectively) of the dependence
parameters, and the number of degrees of freedom.

State 1 ρ
(12)
1 ρ

(13)
1 ρ

(14)
1 ρ

(15)
1 ρ

(23)
1 ρ

(24)
1 ρ

(25)
1 ρ

(34)
1 ρ

(35)
1 ρ

(45)
1 ν1

True 0.900 0.700 0.800 0.800 0.750 0.900 0.800 0.700 0.800 0.800 3.000

Bias 0.001 0.003 0.002 0.002 0.003 0.001 0.003 0.003 0.002 0.002 -0.031

RMSE 0.015 0.034 0.025 0.026 0.030 0.015 0.028 0.034 0.025 0.026 0.441

CIL 0.869 0.628 0.750 0.746 0.688 0.867 0.742 0.635 0.747 0.745 2.285

CIU 0.924 0.763 0.842 0.843 0.802 0.923 0.843 0.759 0.842 0.843 4.054

State 2 ρ
(12)
2 ρ

(13)
2 ρ

(14)
2 ρ

(15)
2 ρ

(23)
2 ρ

(24)
2 ρ

(25)
2 ρ

(34)
2 ρ

(35)
2 ρ

(45)
2 ν2

True 0.500 0.300 0.500 0.400 0.400 0.400 0.500 0.400 0.500 0.300 6.000

Bias 0.032 0.032 0.031 0.032 0.037 0.035 0.032 0.026 0.029 0.036 0.611

RMSE 0.110 0.117 0.110 0.119 0.124 0.128 0.115 0.109 0.110 0.135 1.844

CIL 0.302 0.108 0.310 0.197 0.206 0.175 0.302 0.228 0.320 0.194 3.848

CIU 0.759 0.581 0.741 0.660 0.691 0.719 0.760 0.656 0.736 0.621 10.395

State 3 ρ
(12)
3 ρ

(13)
3 ρ

(14)
3 ρ

(15)
3 ρ

(23)
3 ρ

(24)
3 ρ

(25)
3 ρ

(34)
3 ρ

(35)
3 ρ

(45)
3 ν3

True 0.100 0.150 0.050 0.050 -0.100 0.100 -0.050 0.050 0.100 -0.010 10.000

Bias 0.008 0.000 0.011 0.007 0.012 0.007 0.014 0.011 0.011 0.009 1.416

RMSE 0.073 0.062 0.078 0.070 0.078 0.064 0.081 0.073 0.072 0.068 3.725

CIL -0.038 0.024 -0.097 -0.081 -0.249 -0.018 -0.194 -0.092 -0.039 -0.145 7.002

CIU 0.239 0.275 0.199 0.191 0.061 0.225 0.125 0.192 0.239 0.122 21.602

of Milano-Bicocca, for providing the data used in the analysis. We recall that BTC is
the first cryptocurrency that has operated digitally since 2009 with a decentralized ledger
system known as blockchain. ETH, released in 2015, has a semi-decentralized network that
allows creating and running smart contracts, whereby it differs from other cryptocurrencies
with its unlimited supply. LTC is a clone of BTC, created in 2011. Meanwhile, XRP was
created in 2012 with a different design from BTC since it has a centralized network and an
un-mineable coin. Finally, BCH is an altcoin created in 2007. Especially recently, they got
increasing public attention because they differentiate quite a lot from other more common
assets due to their extraordinary return potential in phases of extreme price growth. We
consider 1,842 daily closing prices observed over a five years period from 17 September 2017
to 02 October 2022. Log-returns of the daily closing prices are given by

ytj = log
pt+1,j

ptj
, j = 1, . . . , r, t = 1, . . . , T,
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where ptj denotes the closing price for asset j at time t. Similar data have been analyzed
in Pennoni et al. (2021) through a Gaussian HMM based on discrete latent variables, to
which we refer the reader for more details.

Table 2.3 presents the sample unconditional means and standard deviations of the log-
returns for the five cryptocurrencies. Volatilities exhibit remarkably high values, while the
average log-returns are approximately 0. Table 2.4 shows the observed linear correlations:
a positive association is present for each pair, with a maximum value of 0.787 for the pair
of cryptos BTC-ETH.

Table 2.3: Sample means and standard deviations (S.D.) of BTC, ETH, XRP, LTC, and
BCH log-returns from 17 September 2017 to 02 October 2022.

Cryptocurrency

BTC ETH XRP LTC BCH

Mean (%) 0.090 0.087 0.049 0.002 -0.073

S.D. (%) 4.166 5.271 6.451 5.659 6.585

Table 2.4: Observed correlations between log-returns of BTC, ETH, XRP, LTC, and BCH.

BTC ETH XRP LTC BCH

BTC 1.000 - - - -

ETH 0.787 1.000 - - -

XRP 0.560 0.653 1.000 - -

LTC 0.765 0.823 0.644 1.000 -

BCH 0.678 0.742 0.583 0.732 1.000

2.5.2 Results

First, we assume the well-known ARMA(1,1)-GARCH(1,1) model (Engle and Bollerslev,
1986) for the marginals. Its efficacy, when combined with copula models, has been demon-
strated in previous studies such as Bauwens et al. (2006) and Patton (2012). It postulates
the following autoregressive equations for the conditional mean and variance of each log-
return series

ytj = α1jyt−1,j + α2jζt−1,j +
√
σ2
tjξtj ,

σ2
tj = ω0j + ω1jζ

2
t−1,j + ω2jσ

2
t−1,j ,

(2.9)

where α1j , α2j , ω0j , ω1j , and ω2j , are the ARMA(1,1)-GARCH(1,1) parameters for time-
series j, j = 1, . . . , r, and ζtj = ytj− ȳtj , with ȳtj = α1jyt−1,j+α2jζt−1,j . Second, we assume
that the innovations ξtj follow a skewed generalized error distribution (SGED, Theodossiou,
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2015), whose density is given by

f (x;ϕ, κ) =
κ exp

[
− 1

κ

∣∣∣ x+δ1
δ2(1+ϕ sign(x+δ1))

∣∣∣κ]
2δ2Γ

(
1
κ

) , (2.10)

where ϕ is the skewness parameter, κ the shape parameter and

δ1 =
2
2
κ δ2ϕΓ( 1

2
+ 1

κ)√
π

,

δ2 =
π(1+3ϕ2)Γ( 3

κ)−16
1
κ ϕ2Γ( 1

2
+ 1

κ)Γ(
1
κ)

πΓ( 1
κ)

.

SGED reduces to the standard Gaussian distribution when ϕ = 0 and κ = 2 and to the
Laplace distribution when ϕ = 0 and κ = 1. It has been used previously to model univariate
cryptocurrency time-series in Cerqueti et al. (2020).

Table 2.5 reports the estimated coefficients of the marginals models. Standard errors
are obtained with the nonparametric block bootstrap as detailed in Section 2.3.1, consid-
ering an average block length of 127 and B = 1, 000 bootstrap samples. Following Nasri

Table 2.5: Estimated parameters of the ARMA(1,1)-GARCH(1,1) model as in Equation
(2.9). The coefficients ϕj and κj , j = 1, . . . , 5, refer to the skewness and shape parameters
of the SGED. Standard errors (in brackets) are obtained by nonparametric block bootstrap.

Cryptocurrency

Parameter BTC ETH XRP LTC BCH

α1j -0.122 -0.214 -0.021 -0.045 -0.124
(0.009) (0.015) (0.003) (0.012) (0.014)

α2j 0.038 0.113 -0.149 -0.060 0.018
(0.003) (0.010) (0.008) (0.014) (0.009)

ω0j 0.000 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000)

ω1j 0.067 0.085 0.126 0.079 0.062
(0.006) (0.017) (0.021) (0.019) (0.013)

ω2j 0.923 0.854 0.854 0.864 0.911
(0.005) (0.025) (0.022) (0.033) (0.018)

ϕj 0.963 0.972 0.990 0.986 1.016
(0.006) (0.016) (0.015) (0.018) (0.041)

κj 0.910 1.040 0.874 1.054 0.908
(0.047) (0.043) (0.033) (0.042) (0.035)

and Rémillard (2019), we perform a parametric bootstrap (PB) test to evaluate the ad-
equacy of the marginal models (Rémillard, 2011). The implementation proceeds in two
steps: firstly, we generate simulated data based on the estimated marginal model; secondly,
we compute the Cramér-Von Mises test statistic for the bootstraped data and compare this
value with the value of the test statistic computed for the observed data in order to assess
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model adequacy. Results reported in Table 2.7 show that the null hypothesis of a correct
specification for the marginal distribution is never rejected at each statistical significance
level. In the same table, results for the Dickey-Fuller (DF) test suggest that the null hy-
pothesis of non-stationarity of the innovations is rejected at each significance level. We also
investigate the presence of change-points in the residuals, employing the wild binary search
procedure proposed by Fryzlewicz (2014). Results indicate the existence of a minimum of
six change-points for all cryptocurrencies, with some displaying an even higher number.

Once we have computed the marginal pseudo-observations through the normalized ranks
of the integral transformation of the innovations from the previous models, we can estimate
the RSStC model, and perform model selection. The Bayesian Information Criterion (BIC,
Schwarz, 1978) is commonly employed to choose a suitable number of latent states, al-
though, it may overestimate this number. Alternatively, as demonstrated in Pohle et al.
(2017), ICL provides more parsimonious results. In Table 2.7, we show the values of BIC
and ICL under the RSStC model with k ranging from 1 to 4. While the BIC decreases
as k increases, ICL leads us to select a model with two latent states. The maximum log-
likelihood for the 2-state RSStC model is ℓ̂(θθθ|yyy1, . . . , yyyT ) = 4, 902.366, and the total number
of estimated parameters is K = 25.

Table 2.6: P -values of the Parametric Bootstrap (PB) and Dickey-Fuller (DF) tests.

Cryptocurrency

Test BTC ETH XRP LTC BCH

PB 0.106 0.433 0.369 0.894 0.146

DF < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

Table 2.7: Integrated Completed Likelihood (ICL) and Bayesian Information Criteria (BIC)
computed for increasing values of the number of hidden regimes k. The minimum values
are indicated in bold.

k

Information Criterion 1 2 3 4

ICL -9,469.583 -9,616.781 -9,449.637 -9,601.758

BIC -9,469.583 -9,887.301 -9,935.296 -9,988.286

Table 2.8 reports the estimated number of degrees of freedom and the determinant of the
fitted matrices of dependence parameters under the RSStC model with 2 states. Notably,
regimes with strong dependence exhibit a lower estimated number of degrees of freedom,
indicating the prevalence of “fat-tailed” distributions in states with high correlations. This
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suggests that when the correlation among crypto assets is high, joint high losses (or earn-
ings) occur more frequently. Table 2.9 presents the matrix of the dependence parameters

Table 2.8: Estimated number of degrees of freedom νu, and determinant of the estimated
matrices of dependence parameters under the 2-state RSStC model. Standard errors (in
brackets) are obtained with nonparametric block bootstrap.

State u =1 u =2

νu 6.231 9.416
(1.275) (3.627)

det(RRRu) 0.001 0.065

and Table 2.10 displays the computed Kendall’s tau values using Equation (2.2). These
estimates allow us to characterize each regime based on pair-specific correlations. The
first regime exhibits the highest Kendall’s tau values, indicating a highly correlated mar-
ket state. In contrast, the second regime displays correlation values ranging from 0.324 to
0.519, suggesting a market regime with lower interdependence.

Table 2.9: Estimated dependence parameters ρ
(ij)
u under the 2-state RSStC model. Stan-

dard errors (in brackets) are obtained with nonparametric block bootstrap.

State u =1 BTC ETH XRP LTC BCH

BTC 1.000 - - - -
(0.000)

ETH 0.911 1.000 - - -
(0.016) (0.000)

XRP 0.902 0.910 1.000 - -
(0.025) (0.020) (0.000)

LTC 0.875 0.902 0.910 1.000 -
(0.034) (0.026) (0.034) (0.000)

BCH 0.902 0.907 0.927 0.901 1.000
(0.023) (0.022) (0.027) (0.035) (0.000)

State u =2 BTC ETH XRP LTC BCH

BTC 1.000 - - - -
(0.000)

ETH 0.652 1.000 - - -
(0.128) (0.000)

XRP 0.667 0.728 1.000 - -
(0.067) (0.039) (0.000)

LTC 0.487 0.613 0.592 1.000 -
(0.122) (0.087) (0.066) (0.000)

BCH 0.569 0.645 0.672 0.517 1.000
(0.156) (0.090) (0.123) (0.145) (0.000)

Table 2.11 reports the estimated transition probability matrices under the 2-state RSStC
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Table 2.10: Kendall’s tau as in Equation (2.2) computed with the estimated dependence
parameters ρ

(ij)
u under the 2-state RSStC model.

State u =1 BTC ETH XRP LTC BCH

BTC 1.000 - - - -

ETH 0.730 1.000 - - -

XRP 0.715 0.728 1.000 - -

LTC 0.678 0.715 0.728 1.000 -

BCH 0.716 0.724 0.756 0.714 1.000

State u =2 BTC ETH XRP LTC BCH

BTC 1.000 - - - -

ETH 0.452 1.000 - - -

XRP 0.465 0.519 1.000 - -

LTC 0.324 0.420 0.403 1.000 -

BCH 0.385 0.446 0.469 0.346 1.000

model. We notice a general persistence in each regime: the maximum off-diagonal entry
is observed from regime 2 to regime 1 (0.121). The estimated stationary distribution has
probabilities (0.579, 0.421).

Table 2.11: Estimated transition probabilities πu|v under the 2-state RSStC model. Stan-
dard errors (in brackets) are obtained with nonparametric block bootstrap.

State u = 1 u = 2

v = 1 0.912 0.088
(0.046) (0.041)

v = 2 0.121 0.879
(0.046) (0.041)

In Table 2.12, we present the estimated state-conditional means and standard deviations
for the five cryptocurrency log-returns, with the state prediction performed through the
Viterbi algorithm (Viterbi, 1967). Findings reveal that the 1st state, which represents
a regime characterized by high correlations among cryptocurrencies, is associated with
negative daily log-returns. Conversely, the 2nd state demonstrates positive average returns.
Based on these observations, we can characterize the two states as bearish and bullish
market regimes. Moreover, the state-conditional standard deviations indicate high volatility
in both regimes.

Figure 2.1 displays the decoded state sequence alongside the prices of BTC, ETH,
XRP, LTC, and BCH. The analysis reveals distinct periods characterized by different mar-
ket regimes. Initially, a bullish market regime dominates, followed by a significant presence
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Table 2.12: Estimated state-conditional means and standard deviations of the five cryp-
tocurrencies log-returns with state allocation obtained through global decoding under the
2-state RSStC model.

State 1 Mean (%) S.D. (%) State 2 Mean (%) S.D. (%)

BTC -0.363 4.121 BTC 0.744 4.147

ETH -0.509 5.400 ETH 0.948 4.957

XRP -0.699 5.377 XRP 1.131 7.619

LTC -0.725 5.454 LTC 1.052 5.788

BCH -0.902 6.013 BCH 1.125 7.169

of a bearish market regime until mid-2018. After a brief period of price increases, bearish
periods becomes prominent until early 2020. Subsequently, all cryptocurrencies exhibit pos-
itive returns until late 2021, at which point a prevailing bearish trend reemerges. Notably,
price increases and decreases consistently correspond to the bullish and bearish market
regimes, identified solely by examining correlations. This implies that the presence of a
specific market regime can be identified without relying on the first and second-order mo-
ments of cryptocurrency log-returns. Bullish and bearish regimes are visited 59.1%, 40.9%
of the time, respectively, and the average sojourn times are equal to 23 days for the first
state and 16 days for the second state.

Our findings corroborate the results from the previous study by Ardia et al. (2019), in
which the authors use a 2-state Markov-switching GARCH model fitted on univariate BTC
time-series. Their model employs a fat-tailed distribution across two regimes identified
by low and high unconditional volatilities which exhibit strong persistence. Koki et al.
(2022) fit a range of HMMs to the log-returns of three cryptocurrencies, namely BTC,
ETH, and XRP, with different numbers of states. They determine that a 4-state model
provided the most accurate forecasting results among all considered model specifications.
Nonetheless, the statistical properties of the hidden states exhibit differences among the
three cryptocurrencies, making the interpretation of these latent states as distinct economic
regimes a challenging task.

2.5.3 Comparative analysis

We compare our proposal with the estimates obtained with the basic HMM (Zucchini et al.,
2017). We also show the forecast performance of both models and a benchmark model, the
MRW process.

The basic HMM assumes a conditional Gaussian distribution and it is generally not
robust for analyzing extreme events usually observed in financial data. Cryptocurrency
markets are characterized by heavy-tailed distributions that lead to frequent extreme price
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Figure 2.1: Observed prices of BTC, ETH, XRP, LTC, and BCH (17 September 2017 -
02 October 2022) with the global decoding state sequence highlighted in red for state 1
(bearish market) and green for state 2 (bullish market).
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movements, whether positive or negative, more than in traditional financial markets. In
this regard, the Student-t copula accommodates heavy-tailed distributions, allowing us to
model the idiosyncrasies of cryptocurrency log-returns. Thus, the proposed RSStC model
may appropriately represents the observed underlying trends of the cryptocurrency log-
returns.

Estimation of the parameters of the HMM has been performed with the routines pro-
vided within the R package RcppHMM (Ardenas-Ovando et al., 2017); for an alternative
HMM formulation, the LMest package (Bartolucci et al., 2017) can be used. Model se-
lection performed with both BIC and ICL criteria suggests a HMM with 6 regimes. In
the following, we show some results obtained with both 2- and 6-state HMMs, denoted as
HMM-2, and HMM-6, respectively.

We note that the self-transition probabilities estimated under the HMM-2 are 0.633 and
0.873, respectively, and those of the HMM-6 range in the interval (0.425, 0.673). Notably,
as illustrated in the previous section and shown in Table 2.11, the RSStC model exhibits
higher values. Such a model is sometimes preferable to make profitable investment decisions
since asset allocation is more stable and the portfolio turnover is low. In fact, disposing
of a model with more stable regimes allows us to avoid frequent reallocation or trading in
response to short-term market fluctuations. This strategy implies reduced transaction costs
and tax-efficient investments strategies, as also noticed in Nystrup et al. (2020).

Forecasts are implemented through a rolling window approach for each model: it consists
in dividing the available data into overlapping windows, each consisting of 1,500 observa-
tions. We estimate parameters using each window and employ the estimates to generate
one-step-ahead forecasts for the log-returns of the five cryptocurrencies. In more details,
we obtain forecasts for the RSStC model according to the following steps, as suggested in
Simard and Rémillard (2015):

1. Estimate the RSStC model as explained in Sections 2.2 and 2.3.

2. Simulate pseudo-marginals from the fitted copula model. This involves generating
random samples from the copula function corresponding to the estimated dependence
structure. In particular, we consider 1, 000 observations.

3. Transform the generated uniform samples into the desired marginal distributions using
the inverse of the estimated marginal cumulative distribution functions.

4. Use data obtained at the previous step to forecast future values of each variable in
the time-series using sample mean, and estimate prediction intervals using sample
quantiles.

To estimate HMM and MRW forecasts, we adopt a similar approach. We utilize the es-
timated parameters for the HMM to simulate portfolio realizations for the one-step-ahead
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observation. This process involves generating latent states based on the HMM’s predictive
distribution. These latent states are then used to create corresponding portfolio returns
for the next period. Similarly, for the MRW process, we use the estimated parameters to
simulate future portfolio returns.

We evaluate forecast quality through two different metrics. We employ the RMSE and
the percentage of correct sign predictions (CSP). RMSE quantifies the accuracy between
true and forecasted values by calculating the average of squared differences. CSP, on the
other hand, measures the frequency with which we accurately forecast the sign of returns.
We present the results of our evaluation in Table 2.13.

Table 2.13: RMSE between true and forecasted values of the five cryptocurrencies and
percentage CSP obtained under the 2-state RSStC, HMM-2, HMM-6 and MRW models.

RSStC HMM-2 HMM-6 MRW

RMSE 0.061 0.065 0.067 0.093

CSP (%) 53.26 49.03 50.73 50.67

As Timmermann (2018) wisely noted, “detecting breaks in financial forecasting models
is a formidable task, and transforming such evidence into more accurate forecasts is even
more challenging”. Our approach acknowledges this inherent complexity, positioning it as
a practical solution for decision-making processes, even without aiming for extraordinary
predictive accuracy. In fact, in terms of forecasting performance, the RSStC model achieves
lower RMSE compared to traditional models, thus providing enhanced accuracy in predict-
ing cryptocurrency returns which can results particularly useful in case of future financial
crisis events.

We also compare the models using the Diebold-Mariano test (Diebold and Mariano,
2002) and Model Confidence Set (MCS) procedure of Hansen et al. (2011). The first test
specifically compares the forecast accuracy of two models, typically testing whether the
difference in forecast performance is statistically significant. The MCS, instead, constructs
a confidence set that includes models that are statistically indistinguishable from the best-
performing model. The Diebold-Mariano test reveals no statistically significant difference
among the squared error estimates of the three models. However, according to the MCS,
the RSStC emerges as the top predictive model for LTC, XRP, and BCH log-returns. In
contrast, for BTC and ETH log-returns, the MRW ranks first.

We additionally evaluate the ability of the three models to cover severe losses computing
a popular risk measure like the Value-at-Risk (VaR, Duffie and Pan, 1997). We evaluate
whether the VaR forecasts adequately capture the actual proportion of losses surpassing
the estimated VaR level throught the conditional coverage test of Christoffersen (1998).
The null hypothesis typically posits that the VaR model correctly captures the proportion
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or frequency of actual losses exceeding the VaR threshold at the specified confidence level.
The findings indicate that, at the 1% significance level, the null hypothesis is not rejected
for RSStC and HMM VaR forecasts, while being rejected for the MRW model.

2.6 Discussion

In this Chapter, we provide three main contributions to the existing literature on regime
switching copula models. First, we generalize the regime switching Student-t copula model
to the multivariate case. Second, we propose a novel maximum likelihood estimation proce-
dure for multivariate regime switching Student-t copula models through a two-step method,
initially estimating the dependence matrix and then the number of degrees of freedom.
Third, we analyze the joint distribution of the log-returns of five cryptocurrencies during
the period 2017-2022 with the proposed model.

Our simulation studies demonstrate the good finite sample properties of the proposed
estimators, highlighting its ability to accurately detect the true number of degrees of free-
dom. This capability is particularly pronounced in situations where this number is low,
denoting a process with fat tails.

By analyzing five years of time-series data encompassing the log-returns of Bitcoin,
Ethereum, Ripple, Litecoin, and Bitcoin Cash, we show the suitability of a 2-state regime
switching Student-t copula model for detecting market trends. Through the application
of the Viterbi algorithm to decode state sequences, we can effectively distinguish between
bullish and bearish market phases. Notably, bearish periods in financial markets correspond
to increasing correlations among assets. In comparison to two commonly used basic models,
our proposed approach is more robust and yields slightly improved forecasting results. These
advantages translate into the potential for making more profitable investment decisions
and implementing portfolio trading strategies. The estimated allocation into each regime,
as determined through global decoding, plays a crucial role in achieving these benefits.
Given the ongoing growth of these cryptocurrencies and the presence of co-integration and
dynamic interdependencies between them, the ability to detect signals of market dynamics is
of primary importance, not only for optimizing investment strategies but also for identifying
early warnings of potential financial crises.

As lines for future research, we highlight that it would be of interest to model marginals
distributions with a Markov process along with the joint distribution. Moreover, an in-
teresting area of investigation lies in the use of skewed Student-t copulas (Bauwens and
Laurent, 2005). These copulas present a promising approach to capture asymmetries in
dynamic behaviors.
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Appendices

2.A EM algorithm implementation

Let us denote with θθθ the full vector of parameters and with ℓ∗ (θθθ | (yyy1, u1), . . . , (yyyT , uT ))
the complete-data log-likelihood as in Equation (2.3). Starting from an initial parameter
vector θθθ(0), at the m-iteration the algorithm performs the following steps:

• E-step: compute the posterior expected value of the indicator variables wtu, ztuv,
given by the quantities

ŵtu = P (ut = u | yyy1, . . . , yyyT ),
ẑtuv = P (ut−1 = u, ut = v | yyy1, . . . , yyyT , ),

for t = 1, . . . , T , and for all u, v = 1, . . . , k. Let us define (see also Remillard (2013);
Nasri et al. (2020))

η̄t(u) = P (ut = u | yyyt+1, . . . , yyyT ), t = 1, . . . , T,

ηt(u) = P (ut = u | yyy1, . . . , yyyt), t = 2, . . . , T,

where the conditioning argument disappears from the first expression for t = T . The
above quantities are initialized with

η̄T (u) = 1/k, η1(u) =
λuc(yyy1;RRRu, νu)∑k
v=1 πvc(yyy1;RRRv, νv)

, u = 1, . . . , k,

and are computed recursively (Baum and Petrie, 1966; Welch, 2003; Nasri et al., 2020)
through

ηt(u) =
c(yyyt;RRRu, νu)

∑k
v=1 ηt−1(v)πu|v∑k

a=1 c(yyyt;RRRa, νa)
∑k

v=1 ηt−1(v)πa|v
, t = 2, . . . , T,

η̄t(u) =

∑k
v=1 η̄t+1(v)πv|uc(yyyt+1;RRRv, νv)∑k

a=1

∑k
v=1 η̄t+1(v)πv|ac(yyyt+1;RRRv, νv)

, t = 1, . . . , T − 1,

to be evaluated in reverse order. From the previous expressions we obtain ŵtu and
ẑtvu as

ŵtu =
ηt(u)η̄t(u)∑k
a=1 ηt(a)η̄t(a)

, t = 1, . . . , T, u = 1, . . . , k,

ẑtuv =
πv|uηt−1(u)η̄t(v)c(yyyt;RRRu, νu)∑k

a=1

∑k
b=1 πb|aηt−1(a)η̄t(b)c(yyyt;RRRb, νb)

, t = 2, . . . , T, u, v = 1, . . . , k.
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The expected value of the complete-data log-likelihood is then obtained by substitut-
ing ŵtu and ẑtuv to wtu and ztuv, in Equation (2.3). This expected value is denoted
by Q(θθθ | θθθ(m−1)) where θθθ(m−1) is the vector of parameters provided by the previous
M-step, on the basis of which ŵtu and ẑtuv are computed.

• M-step. The new parameter vector θθθ(m) is obtained as argmaxθθθ Q(θθθ | θθθ(m−1)).
Parameters λu and πv|u are updated by using formulas in (2.4) and (2.5). Following
Trede (2020), the updated values of the remaining parameters, RRR(m)

u and ν
(m)
u , are

obtained as follows: for a given u, u = 1, . . . , k, we maximize

T∑
t=1

ŵtu log c(yyyt;RRRu, νu),

subject to the restriction that RRRu is symmetric, positive definite, and with all diagonal
elements equal to 1. The Lagrangians are the following

L(RRRu | νu) =
T∑
t=1

ŵtu log c (yyyt;RRRu, νu) +
r∑

j=1

µj

(
ρ(jj)u − 1

)
,

with µµµ = (µ1, . . . , µr)
′ being the Lagrange multipliers. Setting the first derivative

with respect to RRRu equal to 0 turns to

∂L(RRRu | νu)
∂RRRu

= −
∑

t ŵtu

2
RRR−1

u +
νu + r

2νu

T∑
t=1

ŵtuRRR
−1
u xxxtxxx

′
tRRR

−1
u

(
1 +

1

v
xxx′tRRR

−1
u xxxt

)−1

+MMM = 000,

where we denoted with MMM = diag(µµµ) the matrix with diagonal elements equal to
µ1, . . . , µr, and zero in all other positions and with xxxt the vector with components
T−1
1,νu

(ytj), with j = 1, . . . , r. Multiplying both sides by RRRu gives

RRRu =
νu + r

νu
∑T

t=1 ŵtu

T∑
t=1

ŵtuxxxtxxx
′
t

(
1 +

1

νu
xxx′tRRR

−1
u xxxt

)−1

+
2∑
t ŵtu

RRRuMMMRRRu.

Let denote the first term of the previous expression with

AAA =
νu + r

νu
∑

t ŵtu

T∑
t=1

ŵtuxxxtxxx
′
t

(
1 +

1

νu
xxx′tRRR

−1
u xxxt

)−1

,

and let aaa be the vector of diagonal elements of AAA. The Lagrange multipliers µµµ satisfy
the equations

2∑T
t=1 ŵtu

(RRRu ◦RRRu)µµµ = 111− aaa,
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with RRRu ◦ RRRu being the matrix of squared elements of RRRu. In order to satisfy the
restrictions, the Lagrange multipliers are

µµµ =
T∑
t=1

ŵtu(RRRu ◦RRRu)
−1(111− aaa)/2,

which, substituted in the equation for RRRu, yields to

RRRu = AAA+RRRudiag
[
(RRRu ◦RRRu)

−1(111− aaa)
]
RRRu.

The above Equation cannot be solved analytically and we consider the iterative solu-
tion as in Equation (2.7). The estimate for νu is obtained by solving the optimization
problem in Equation (2.8).

In the application presented in Section 2.5, the number of latent states k is selected accord-
ing to the ICL criterion (Biernacki et al., 2000), defined as

ICL = −2 log ℓ∗(θ̂θθ | (yyy1, u1), . . . , (yyyT , uT )) +K log(T ), (2.11)

being θ̂θθ the vector of estimated RSStC parameters and K the number of free parameters,
computed as K = (k−1)+k(k−1)+k(r(r+1)/2)+k. As suggested in Pohle et al. (2017),
the unknown sequence u1, . . . , uT may be replaced with the decoded time-series û1, . . . , ûT

obtained applying the Viterbi algorithm to the posterior probabilities estimated with the
selected RSStC model.

2.B Complete simulation results

In this Appendix, we report the simulation results regarding the 2-state RSStC model,
and the complete results for the 2- and for the 3-state model when varying the number of
observations T or the number of assets r.

Two state regime switching Student-t copula model

We generate data from a 2-state RSStC model and we simulate B = 1, 000 samples of
dimension r = 5, each with a total number of observations T =1,500. We set the vector of
initial probabilities λλλ = (1/2, 1/2)′ so that each state is equally likely, we fix the transition
matrix assumed as follows

ΠΠΠ =

[
0.800 0.200

0.200 0.800

]
,
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the matrices of dependence parameters as

RRR1 =


1.000 − − − −
0.900 1.000 − − −
0.900 0.900 1.000 − −
0.900 0.900 0.900 1.000 −
0.900 0.900 0.900 0.900 1.000

 , RRR2 =


1.000 − − − −
0.200 1.000 − − −
0.000 0.000 1.000 − −
0.100 0.200 0.100 1.000 −
0.000 0.200 0.200 0.000 1.000

 ,

and the state-specific numbers of degrees of freedom are fixed as ν1 = 5 and ν2 = 15,
respectively. We simulate a turbulent market scenario with high asset correlation and fat
tails, and a more stable market scenario with low dependencies and a higher degree of
freedom. We evaluate the results using the criteria outlined in Section 2.4.

Table 2.14 presents the true value, bias, RMSE, and CI for each parameter. The maxi-
mum absolute bias for the initial probabilities is 0.033, and for the transition probabilities
is approaching zero. The maximum RMSE is 0.499 for the initial probabilities and 0.018
for the transition probabilities. CIs for the transition probabilities are narrow and centered
around the true values, those of the initial probabilities reflect the unitary nature of the
maximum likelihood estimator for these parameters (Zucchini et al., 2017).

Table 2.14: Simulation results for the 2-state RSStC model: true parameter value, bias,
RMSE, lower and upper bounds of the CIs (CIL and CIU, respectively) of the initial and
transition probabilities.

λ1 λ2 π1|1 π1|2 π2|1 π2|2

True 0.500 0.500 0.800 0.200 0.200 0.800

Bias -0.033 0.033 0.000 0.000 0.000 0.000

RMSE 0.499 0.499 0.018 0.018 0.017 0.017

CIL 0.000 0.000 0.764 0.168 0.168 0.764

CIU 1.000 1.000 0.832 0.236 0.236 0.832

Table 2.15 presents simulation results for the dependence parameters ρ(ij)u and the num-
ber of degrees of freedom νu. Regarding the dependence parameters, the maximum absolute
bias is 0.002, and the highest RMSE occurs for ρ

(15)
2 and ρ

(45)
2 , with a value of 0.041. The

CIs are narrower in the first state, indicating a more accurate estimation of high correla-
tions. In terms of the number of degrees of freedom, we observe that as νu decreases, the
absolute bias and RMSE decrease while the CI narrows.

Increasing the series length and the number of assets

In this simulated scenario, we investigate the RMSE by varying the series length (T ) and the
number of assets (r). We simulate data from 2- and 3-state RSStC models using the values
of the parameters employed for the simulated scenarios presented in Sections 2.B and 2.4.1.
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Table 2.15: Simulation results for the 2-state RSStC model: true parameter value, bias,
RMSE, lower and upper bounds of the CIs (CIL and CIU, respectively) of the dependence
parameters, and of the number of degrees of freedom.

State 1 ρ
(12)
1 ρ

(13)
1 ρ

(14)
1 ρ

(15)
1 ρ

(23)
1 ρ

(24)
1 ρ

(25)
1 ρ

(34)
1 ρ

(35)
1 ρ

(45)
1 ν1

True 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 5.000

Bias 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 -0.001 0.000 -0.157

RMSE 0.008 0.009 0.008 0.008 0.009 0.008 0.009 0.009 0.009 0.008 0.916

CIL 0.882 0.881 0.883 0.882 0.880 0.882 0.881 0.882 0.882 0.882 3.724

CIU 0.915 0.915 0.915 0.915 0.915 0.915 0.915 0.916 0.916 0.915 7.159

State 2 ρ
(12)
2 ρ

(13)
2 ρ

(14)
2 ρ

(15)
2 ρ

(23)
2 ρ

(24)
2 ρ

(25)
2 ρ

(34)
2 ρ

(35)
2 ρ

(45)
2 ν2

True 0.200 0.000 0.100 0.000 0.000 0.200 0.200 0.100 0.200 0.000 15.000

Bias 0.002 0.000 0.001 0.001 0.002 0.001 0.001 0.001 -0.001 0.002 0.668

RMSE 0.038 0.040 0.040 0.041 0.040 0.037 0.037 0.039 0.038 0.041 3.476

CIL 0.128 -0.077 0.024 -0.080 -0.077 0.132 0.125 0.022 0.123 -0.080 10.480

CIU 0.274 0.083 0.175 0.077 0.081 0.270 0.274 0.180 0.275 0.075 23.502

For each simulated sample, we calculate the average RMSE over B = 1, 000 samples for
each group of parameters, including initial probabilities, transition probabilities, number of
degrees of freedom, and dependence parameters. We consider five different series of lengths
T = 250, 500, 1,000, 1,500, 2,000, referred to r = 5 assets.

We summarize the results in Figure 2.2, illustrating that the average RMSE decreases
rapidly as the series length increases for all parameters. We omit the average RMSE for
initial probabilities as it remains around 0.5 up to the fourth decimal digit.

Then, we increase the number of assets while keeping the series length fixed at T =

1, 000. We consider three plausible values for r, namely 2, 5, and 10, and we simulate
B = 1, 000 samples from the 2- and 3-state RSStC models. In the 2-state model, the
initial and transition probabilities, as well as the vector of degrees of freedom, remain
unchanged from the first simulation study. However, the dependence parameters are kept
identical for all pairs of observations. Specifically, we use ρ

(ij)
1 = 0.9 for the first regime

and ρ
(ij)
2 = 0.1 for the second regime, for i ̸= j. For the 3-state RSStC model, we follow a

similar procedure. The initial probabilities, transition probabilities, and number of degrees
of freedom remain the same as in the second simulation study. The dependence parameters
are set as ρ

(ij)
1 = 0.9, ρ(ij)2 = 0.5, and ρ

(ij)
3 = 0.1, for i ̸= j. In Figure 2.3, we observe that

the average RMSE for the dependence parameters increases when the number of assets is
higher than 2. However, the RMSE for the number of degrees of freedom and the transition
probabilities decreases as the number of marginals increases.

In the following, we present comprehensive results of the simulation studies conducted

40



2.B. Complete simulation results

(a) 2-state RSStC model
Transition Probabilities Dependence Parameters Number of Degrees of Freedom
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(b) 3-state RSStC model
Transition Probabilities Dependence Parameters Number of Degrees of Freedom
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Figure 2.2: Average RMSE for transition probabilities, dependence parameters, and number
of degrees of freedom in the 2-state (a) and 3-state (b) RSStC models, with series length
(T ) varying from 250 to 2,000 and r = 5.
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(a) 2-state RSStC model
Transition Probabilities Dependence Parameters Number of Degrees of Freedom
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(b) 3-state RSStC model
Transition Probabilities Dependence Parameters Number of Degrees of Freedom
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Figure 2.3: Average RMSE for transition probabilities, dependence parameters, and number
of degrees of freedom in the 2-state (a) and 3-state (b) RSStC models, with number of assets
(r) varying from 2 to 10 and T = 1, 500.
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in Section 4. Specifically, Tables 2.16 to 2.21 report the results for the 2-state model for
T = 250, 500, and T = 1, 000. Additionally, Tables 2.22 to 2.27 present the results for the
3-state model, for T = 250, 500, and T = 1, 000.

Table 2.16: Simulation results for the 2-state RSStC model with T = 250: true parameter
value, bias, RMSE, lower and upper bounds of the CIs (CIL and CIU, respectively) of the
initial and transition probabilities.

λ1 λ2 π1|1 π1|2 π2|1 π2|2

True 0.500 0.500 0.800 0.200 0.200 0.800

Bias -0.034 -0.034 0.002 -0.002 -0.003 0.003

RMSE 0.500 0.500 0.046 0.046 0.046 0.046

CIL 0.000 0.000 0.690 0.120 0.124 0.698

CIU 1.000 1.000 0.880 0.310 0.302 0.876

Table 2.17: Simulation results for the 2-state RSStC model with T = 250: true parameter
value, bias, RMSE, lower and upper bounds of the CIs (CIL and CIU, respectively) of the
dependence parameters, and of the number of degrees of freedom.

State 1 ρ
(12)
1 ρ

(13)
1 ρ

(14)
1 ρ

(15)
1 ρ

(23)
1 ρ

(24)
1 ρ

(25)
1 ρ

(34)
1 ρ

(35)
1 ρ

(45)
1 ν1

True 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 5.000

Bias 0.002 0.002 0.002 0.002 0.002 0.001 0.003 0.002 0.002 0.001 -1.142

RMSE 0.022 0.023 0.022 0.023 0.022 0.022 0.022 0.023 0.023 0.022 3.520

CIL 0.848 0.849 0.845 0.849 0.849 0.846 0.852 0.846 0.849 0.848 2.772

CIU 0.935 0.934 0.932 0.935 0.933 0.934 0.932 0.936 0.934 0.933 14.605

State 2 ρ
(12)
2 ρ

(13)
2 ρ

(14)
2 ρ

(15)
2 ρ

(23)
2 ρ

(24)
2 ρ

(25)
2 ρ

(34)
2 ρ

(35)
2 ρ

(45)
2 ν2

True 0.200 0.000 0.100 0.000 0.000 0.200 0.200 0.100 0.200 0.000 15.000

Bias -0.002 -0.003 -0.006 -0.001 -0.001 0.000 -0.001 -0.003 -0.001 -0.000 -3.090

RMSE 0.093 0.104 0.098 0.101 0.098 0.093 0.095 0.099 0.091 0.102 6.937

CIL 0.004 -0.209 -0.093 -0.195 -0.192 0.016 0.010 -0.103 0.018 -0.197 7.468

CIU 0.364 0.198 0.286 0.204 0.187 0.378 0.387 0.281 0.378 0.198 25.000

43



Chapter 2. Maximum likelihood estimation of multivariate regime
switching

Student-t copula models

Table 2.18: Simulation results for the 2-state RSStC model with T = 500: true parameter
value, bias, RMSE, lower and upper bounds of the CIs (CIL and CIU, respectively) of the
initial and transition probabilities.

λ1 λ2 π1|1 π1|2 π2|1 π2|2

True 0.500 0.500 0.800 0.200 0.200 0.800

Bias -0.023 0.023 0.002 -0.002 -0.002 0.002

RMSE 0.500 0.500 0.034 0.034 0.032 0.032

CIL 0.000 0.000 0.728 0.142 0.141 0.733

CIU 1.000 1.000 0.858 0.272 0.267 0.859

Table 2.19: Simulation results for the 2-state RSStC model with T = 500: true parameter
value, bias, RMSE, lower and upper bounds of the CIs (CIL and CIU, respectively) of the
dependence parameters, and of the number of degrees of freedom.

State 1 ρ
(12)
1 ρ

(13)
1 ρ

(14)
1 ρ

(15)
1 ρ

(23)
1 ρ

(24)
1 ρ

(25)
1 ρ

(34)
1 ρ

(35)
1 ρ

(45)
1 ν1

True 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 5.000

Bias 0.001 0.001 0.000 0.001 0.001 -0.000 0.001 0.000 0.000 0.000 -0.631

RMSE 0.015 0.016 0.015 0.016 0.016 0.015 0.015 0.016 0.016 0.016 2.183

CIL 0.865 0.865 0.867 0.863 0.867 0.866 0.865 0.866 0.864 0.863 3.094

CIU 0.925 0.927 0.927 0.924 0.926 0.927 0.925 0.927 0.927 0.926 11.292

State 2 ρ
(12)
2 ρ

(13)
2 ρ

(14)
2 ρ

(15)
2 ρ

(23)
2 ρ

(24)
2 ρ

(25)
2 ρ

(34)
2 ρ

(35)
2 ρ

(45)
2 ν2

True 0.200 0.000 0.100 0.000 0.000 0.200 0.200 0.100 0.200 0.000 15.000

Bias 0.000 0.001 -0.001 0.001 0.002 -0.003 -0.001 0.000 -0.003 -0.001 -2.525

RMSE 0.067 0.069 0.070 0.071 0.071 0.065 0.065 0.069 0.065 0.070 6.113

CIL 0.067 -0.138 -0.035 -0.129 -0.139 0.073 0.073 -0.041 0.071 -0.131 8.615

CIU 0.330 0.128 0.235 0.142 0.135 0.326 0.329 0.233 0.318 0.132 25.000

Table 2.20: Simulation results for the 2-state RSStC model with T = 1, 000: true parameter
value, bias, RMSE, lower and upper bounds of the CIs (CIL and CIU, respectively) of the
initial and transition probabilities.

λ1 λ2 π1|1 π1|2 π2|1 π2|2

True 0.500 0.500 0.800 0.200 0.200 0.800

Bias -0.020 0.020 0.000 0.000 -0.001 0.001

RMSE 0.500 0.500 0.023 0.023 0.022 0.022

CIL 0.000 0.000 0.751 0.158 0.161 0.753

CIU 1.000 1.000 0.842 0.249 0.247 0.839
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Table 2.21: Simulation results for the 2-state RSStC model with T = 1, 000: true parameter
value, bias, RMSE, lower and upper bounds of the CIs (CIL and CIU, respectively) of the
dependence parameters, and of the number of degrees of freedom.

State 1 ρ
(12)
1 ρ

(13)
1 ρ

(14)
1 ρ

(15)
1 ρ

(23)
1 ρ

(24)
1 ρ

(25)
1 ρ

(34)
1 ρ

(35)
1 ρ

(45)
1 ν1

True 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 5.000

Bias 0.001 0.001 0.000 0.001 0.001 0.000 0.001 0.000 0.000 0.000 -0.242

RMSE 0.010 0.011 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.01 1.147

CIL 0.878 0.876 0.880 0.878 0.879 0.878 0.879 0.877 0.878 0.878 3.581

CIU 0.919 0.919 0.919 0.918 0.919 0.918 0.919 0.918 0.919 0.918 7.883

State 2 ρ
(12)
2 ρ

(13)
2 ρ

(14)
2 ρ

(15)
2 ρ

(23)
2 ρ

(24)
2 ρ

(25)
2 ρ

(34)
2 ρ

(35)
2 ρ

(45)
2 ν2

True 0.200 0.000 0.100 0.000 0.000 0.200 0.200 0.100 0.200 0.000 15.000

Bias 0.000 0.002 0.000 -0.001 0.001 0.000 -0.004 -0.001 -0.001 -0.001 -1.588

RMSE 0.047 0.048 0.048 0.049 0.049 0.046 0.045 0.047 0.044 0.05 4.935

CIL 0.109 -0.093 0.004 -0.085 -0.097 0.109 0.114 0.008 0.111 -0.098 9.719

CIU 0.286 0.093 0.194 0.094 0.093 0.295 0.294 0.195 0.284 0.103 25.000

Table 2.22: Simulation results for the 3-state RSStC model with T = 250: true parameter
value, bias, RMSE, lower and upper bounds of the CIs (CIL and CIU, respectively) of the
initial and transition probabilities.

λ1 λ2 λ3 π1|1 π1|2 π1|3 π2|1 π2|2 π2|3 π3|1 π3|2 π3|3

True 0.333 0.333 0.333 0.700 0.200 0.100 0.200 0.700 0.100 0.100 0.200 0.700

Bias -0.038 0.055 -0.017 0.041 0.020 -0.060 -0.054 0.348 -0.293 -0.033 -0.068 0.102

RMSE 0.483 0.445 0.473 0.144 0.129 0.121 0.169 0.406 0.353 0.088 0.183 0.210

CIL 0.000 0.000 0.000 0.255 0.000 0.000 0.000 0.000 0.064 0.000 0.024 0.175

CIU 1.000 1.000 1.000 0.831 0.477 0.385 0.614 0.755 0.821 0.326 0.704 0.856
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Table 2.23: Simulation results for the 3-state RSStC model with T = 250: true parameter
value, bias, RMSE, lower and upper bounds of the CIs (CIL and CIU, respectively) of the
dependence parameters, and of the number of degrees of freedom.

State 1 ρ
(12)
1 ρ

(13)
1 ρ

(14)
1 ρ

(15)
1 ρ

(23)
1 ρ

(24)
1 ρ

(25)
1 ρ

(34)
1 ρ

(35)
1 ρ

(45)
1 ν1

True 0.900 0.700 0.800 0.800 0.750 0.900 0.800 0.700 0.800 0.800 3.000

Bias 0.030 0.021 0.022 0.027 0.028 0.024 0.028 0.021 0.023 0.025 -0.303

RMSE 0.099 0.062 0.074 0.085 0.088 0.075 0.085 0.063 0.065 0.077 1.974

CIL 0.740 0.767 0.771 0.754 0.756 0.748 0.733 0.770 0.769 0.744 2.000

CIU 0.955 0.954 0.957 0.953 0.952 0.954 0.956 0.952 0.953 0.953 8.99

State 2 ρ
(12)
2 ρ

(13)
2 ρ

(14)
2 ρ

(15)
2 ρ

(23)
2 ρ

(24)
2 ρ

(25)
2 ρ

(34)
2 ρ

(35)
2 ρ

(45)
2 ν2

True 0.500 0.300 0.500 0.400 0.400 0.400 0.500 0.400 0.500 0.300 7.000

Bias -0.048 0.006 -0.003 -0.020 -0.024 -0.023 -0.041 -0.003 -0.019 -0.020 -4.188

RMSE 0.279 0.285 0.282 0.301 0.301 0.249 0.285 0.274 0.259 0.299 8.231

CIL -0.170 -0.159 -0.244 -0.267 -0.275 -0.049 -0.168 -0.165 -0.096 -0.241 2.684

CIU 0.899 0.904 0.898 0.898 0.906 0.908 0.897 0.903 0.901 0.898 25.000

State 3 ρ
(12)
3 ρ

(13)
3 ρ

(14)
3 ρ

(15)
3 ρ

(23)
3 ρ

(24)
3 ρ

(25)
3 ρ

(34)
3 ρ

(35)
3 ρ

(45)
3 ν1

True 0.100 0.150 0.050 0.050 -0.100 0.100 -0.050 0.050 0.100 -0.010 15.000

Bias -0.039 -0.181 -0.128 -0.135 -0.129 -0.092 -0.056 -0.141 -0.088 -0.135 -6.185

RMSE 0.172 0.269 0.226 0.229 0.234 0.191 0.178 0.226 0.192 0.225 8.600

CIL -0.137 -0.250 -0.202 -0.255 -0.281 -0.072 -0.116 -0.146 -0.089 -0.254 7.338

CIU 0.531 0.548 0.544 0.472 0.483 0.577 0.559 0.546 0.579 0.452 25.000

Table 2.24: Simulation results for the 3-state RSStC model with T = 500: true parameter
value, bias, RMSE, lower and upper bounds of the CIs (CIL and CIU, respectively) of the
initial and transition probabilities.

λ1 λ2 λ3 π1|1 π1|2 π1|3 π2|1 π2|2 π2|3 π3|1 π3|2 π3|3

True 0.333 0.333 0.333 0.700 0.200 0.100 0.200 0.700 0.100 0.100 0.200 0.700

Bias -0.026 0.074 -0.048 0.037 0.029 -0.066 -0.061 0.330 -0.269 -0.022 -0.040 0.062

RMSE 0.478 0.438 0.485 0.130 0.106 0.118 0.158 0.387 0.325 0.063 0.155 0.172

CIL 0.000 0.000 0.000 0.278 0.013 0.017 0.033 0.000 0.069 0.012 0.035 0.251

CIU 1.000 1.000 1.000 0.797 0.430 0.357 0.573 0.772 0.790 0.245 0.609 0.850
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Table 2.25: Simulation results for the 3-state RSStC model with T = 500: true parameter
value, bias, RMSE, lower and upper bounds of the CIs (CIL and CIU, respectively) of the
dependence parameters, and of the number of degrees of freedom.

State 1 ρ
(12)
1 ρ

(13)
1 ρ

(14)
1 ρ

(15)
1 ρ

(23)
1 ρ

(24)
1 ρ

(25)
1 ρ

(34)
1 ρ

(35)
1 ρ

(45)
1 ν1

True 0.900 0.700 0.800 0.800 0.750 0.900 0.800 0.700 0.800 0.800 3.000

Bias 0.019 0.016 0.016 0.017 0.019 0.014 0.017 0.017 0.016 0.017 -0.015

RMSE 0.079 0.063 0.071 0.070 0.099 0.057 0.059 0.074 0.063 0.075 1.120

CIL 0.808 0.819 0.813 0.812 0.818 0.822 0.813 0.823 0.808 0.807 2.000

CIU 0.942 0.941 0.944 0.943 0.944 0.943 0.944 0.936 0.943 0.942 5.998

State 2 ρ
(12)
2 ρ

(13)
2 ρ

(14)
2 ρ

(15)
2 ρ

(23)
2 ρ

(24)
2 ρ

(25)
2 ρ

(34)
2 ρ

(35)
2 ρ

(45)
2 ν2

True 0.500 0.300 0.500 0.400 0.400 0.400 0.500 0.400 0.500 0.300 7.000

Bias -0.096 -0.056 -0.055 -0.072 -0.078 -0.063 -0.087 -0.058 -0.054 -0.072 -1.865

RMSE 0.246 0.239 0.231 0.264 0.257 0.216 0.248 0.229 0.224 0.259 5.295

CIL 0.043 -0.039 0.027 -0.070 -0.079 0.086 0.024 0.061 0.108 -0.055 2.677

CIU 0.900 0.908 0.903 0.902 0.890 0.896 0.905 0.910 0.910 0.900 25.000

State 3 ρ
(12)
3 ρ

(13)
3 ρ

(14)
3 ρ

(15)
3 ρ

(23)
3 ρ

(24)
3 ρ

(25)
3 ρ

(34)
3 ρ

(35)
3 ρ

(45)
3 ν1

True 0.100 0.150 0.050 0.050 -0.100 0.100 -0.050 0.050 0.100 -0.010 15.000

Bias -0.042 -0.171 -0.131 -0.128 -0.120 -0.094 -0.045 -0.128 -0.092 -0.128 -3.577

RMSE 0.133 0.231 0.192 0.197 0.191 0.156 0.135 0.195 0.152 0.192 7.527

CIL -0.029 -0.161 -0.088 -0.189 -0.211 0.022 -0.054 -0.097 0.046 -0.178 7.732

CIU 0.480 0.467 0.464 0.398 0.380 0.523 0.475 0.488 0.512 0.386 25.000

Table 2.26: Simulation results for the 3-state RSStC model with T = 1, 000: true parameter
value, bias, RMSE, lower and upper bounds of the CIs (CIL and CIU, respectively) of the
initial and transition probabilities.

λ1 λ2 λ3 π1|1 π1|2 π1|3 π2|1 π2|2 π2|3 π3|1 π3|2 π3|3

True 0.333 0.333 0.333 0.700 0.200 0.100 0.200 0.700 0.100 0.100 0.200 0.700

Bias 0.021 0.027 -0.048 0.030 0.027 -0.057 -0.049 0.280 -0.230 -0.019 -0.029 0.048

RMSE 0.461 0.454 0.483 0.117 0.105 0.093 0.128 0.342 0.286 0.054 0.138 0.148

CIL 0.000 0.000 0.000 0.348 0.026 0.034 0.059 0.002 0.052 0.026 0.032 0.319

CIU 1.000 1.000 1.000 0.778 0.414 0.293 0.528 0.780 0.733 0.223 0.512 0.839

47



Chapter 2. Maximum likelihood estimation of multivariate regime
switching

Student-t copula models

Table 2.27: Simulation results for the 3-state RSStC model with T = 1, 000: true parameter
value, bias, RMSE, lower and upper bounds of the CIs (CIL and CIU, respectively) of the
dependence parameters, and of the number of degrees of freedom.

State 1 ρ
(12)
1 ρ

(13)
1 ρ

(14)
1 ρ

(15)
1 ρ

(23)
1 ρ

(24)
1 ρ

(25)
1 ρ

(34)
1 ρ

(35)
1 ρ

(45)
1 ν1

True 0.900 0.700 0.800 0.800 0.750 0.900 0.800 0.700 0.800 0.800 3.000

Bias 0.008 0.008 0.007 0.010 0.008 0.008 0.010 0.008 0.009 0.009 -0.058

RMSE 0.032 0.027 0.036 0.053 0.025 0.028 0.038 0.025 0.036 0.046 0.767

CIL 0.850 0.848 0.853 0.848 0.848 0.846 0.844 0.850 0.848 0.847 2.000

CIU 0.936 0.932 0.933 0.933 0.934 0.935 0.935 0.933 0.933 0.934 4.886

State 2 ρ
(12)
2 ρ

(13)
2 ρ

(14)
2 ρ

(15)
2 ρ

(23)
2 ρ

(24)
2 ρ

(25)
2 ρ

(34)
2 ρ

(35)
2 ρ

(45)
2 ν2

True 0.500 0.300 0.500 0.400 0.400 0.400 0.500 0.400 0.500 0.300 7.000

Bias -0.084 -0.077 -0.074 -0.091 -0.088 -0.066 -0.082 -0.071 -0.078 -0.092 -0.879

RMSE 0.215 0.208 0.188 0.235 0.228 0.190 0.218 0.203 0.188 0.232 3.364

CIL 0.141 0.136 0.220 0.045 0.065 0.199 0.135 0.155 0.243 0.037 2.858

CIU 0.887 0.895 0.881 0.881 0.889 0.888 0.887 0.893 0.896 0.890 15.316

State 3 ρ
(12)
3 ρ

(13)
3 ρ

(14)
3 ρ

(15)
3 ρ

(23)
3 ρ

(24)
3 ρ

(25)
3 ρ

(34)
3 ρ

(35)
3 ρ

(45)
3 ν1

True 0.100 0.150 0.050 0.050 -0.100 0.100 -0.050 0.050 0.100 -0.010 15.000

Bias -0.038 -0.133 -0.102 -0.102 -0.102 -0.072 -0.041 -0.105 -0.071 -0.101 -1.924

RMSE 0.105 0.197 0.158 0.162 0.163 0.131 0.108 0.162 0.126 0.165 6.528

CIL 0.024 -0.186 -0.062 -0.173 -0.172 0.036 0.037 -0.061 0.052 -0.193 7.927

CIU 0.420 0.379 0.399 0.348 0.340 0.465 0.417 0.418 0.446 0.318 25.000
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2.C Semi-parametric approach

As discussed in Section 2 of the present Chapter, a semi-parametric model presents a
viable alternative to the parametric model when the primary objective is modeling the
joint distribution rather than the marginal distributions. In the case of employing a semi-
parametric model, normalized ranks are computed directly from the observed log-returns
of each individual time-series.

In the following, we show the results of the RSStC model obtained adopting this alter-
native approach applied to cryptocurrencies log-returns. We select the number of hidden
states based on the Integrated Complete Likelihood (ICL, Biernacki et al., 2000) criterion
and, according to the values reported in Table 2.28 also showing the realized values of the
Bayesian Information Criterion (BIC, Schwarz, 1978) we select an RSStC model with 2
hidden states. This result is coherent with that obtained in Section 5, as we select a 2-state
model in both cases.

Table 2.28: Bayesian Information Criteria (BIC) and Integrated Completed Likelihood
(ICL) computed for increasing values of the number of hidden regimes k (semi-parametric
approach).

k

Information Criterion 1 2 3 4

ICL -8,996.649 -9,696.635 -9,624.546 -9,494.576

BIC -8,996.649 -9,876.457 -9,912.995 -9,933.16

Table 2.29 shows the estimated number of degrees of freedom and the determinant of
the matrices of dependence parameters. Similarly to previous results, regimes with higher
general correlation are associated with lower estimated values for νu.

Table 2.29: Estimated number of degrees of freedom νu, and determinant of the estimated
matrices of dependence parameters under the 2-state RSStC model (semi-parametric ap-
proach). Standard errors (in brackets) are obtained with nonparametric block bootstrap.

State u = 1 u = 2

νu 6.603 7.517
(1.808) (3.763)

det(RRRu) 0.001 0.089

Tables 2.30 and 2.31 report the estimated dependence parameters and Kendall’s tau,
respectively, under the 2-state RSS-tC model. We recover a correlation structure from
these estimates almost identical to that provided by the 2-state RSStC model estimated in
Section 5 (Tables 2.9 and 2.10).
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Table 2.30: Estimated dependence parameters ρ
(ij)
u under the 2-state RSStC model (semi-

parametric approach). Standard errors (in brackets) are obtained with nonparametric block
bootstrap.

State u = 1 BTC ETH XRP LTC BCH

BTC 1.000 - - - -
(0.000)

ETH 0.905 1.000 - - -
(0.019) (0.000)

XRP 0.859 0.895 1.000 - -
(0.032) (0.027) (0.000)

LTC 0.892 0.912 0.903 1.000 -
(0.026) (0.019) (0.029) (0.000)

BCH 0.887 0.903 0.893 0.923 1.000
(0.031) (0.029) (0.040) (0.031) (0.000)

State u = 2 BTC ETH XRP LTC BCH

BTC 1.000 - - - -
(0.000)

ETH 0.634 1.000 - - -
(0.127) (0.000)

XRP 0.441 0.545 1.000 - -
(0.138) (0.117) (0.000)

LTC 0.655 0.704 0.531 1.000 -
(0.074) (0.050) (0.097) (0.000)

BCH 0.548 0.620 0.452 0.637 1.000
(0.155) (0.099) (0.148) (0.132) (0.000)

Table 2.32 reports the estimated transition probability matrices for the 2-state RSStC
model. Even in this case, strong persistence is observed: the highest off-diagonal element
is given by the transition probability from state 2 to state 1 (0.091).

Table 2.33 shows the state-conditional means and standard deviations of the five cryp-
tocurrencies log-returns with the state allocation obtained through the Viterbi (Viterbi,
1967) algorithm. The categorization of states as bearish and bullish aligns with the de-
scriptions outlined in the Chapter. In fact, the first state is consistently characterized
by negative log-returns, while the second state is marked by positive log-returns for all
cryptocurrencies.

Regimes 1 and 2 are visited 65.67% and 34.33%, respectively, with sojourn times equal
to 31 days for the first state and 20 days for the second state. These values are slightly
different from the previous findings. In order to provide a more appropriate comparison of
the time-series decoded with the two approaches, we also compute the adjusted Rand index
(ARI, Hubert and Arabie, 1985) equal to 0.53: this result suggests that the choice made
on the marginal distributions slightly affects the posterior allocation. For a more detailed
explanation of how to compute this index, please refer to Appendix 4.B of Chapter 4.
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Table 2.31: Kendall’s tau computed with the estimated dependence parameters ρ(ij)u under
the 2-state RSStC model (semi-parametric approach).

State u = 1 BTC ETH XRP LTC BCH

BTC 1.000 - - - -

ETH 0.720 1.000 - - -

XRP 0.658 0.706 1.000 - -

LTC 0.701 0.731 0.718 1.000 -

BCH 0.695 0.717 0.703 0.748 1.000

State u = 2 BTC ETH XRP LTC BCH

BTC 1.000 - - - -

ETH 0.437 1.000 - - -

XRP 0.291 0.367 1.000 - -

LTC 0.455 0.497 0.356 1.000 -

BCH 0.369 0.426 0.298 0.439 1.000

Table 2.32: Estimated transition probabilities πu|v under the 2-state RSStC model (semi-
parametric approach). Bootstrap standard errors are reported in brackets.

State u = 1 u = 2

v = 1 0.949 0.051
(0.051) (0.043)

v = 2 0.090 0.910
(0.051) (0.043)

Table 2.33: State-conditional means and standard deviations of the five cryptocurrencies
log-returns with state allocation obtained through the Viterbi algorithm.

State 1 Mean (%) S.D. (%) State 2 Mean (%) S.D. (%)

BTC -0.237 3.904 BTC 0.715 4.565

ETH -0.396 5.105 ETH 1.010 5.461

XRP -0.586 4.961 XRP 1.265 8.484

LTC -0.576 5.182 LTC 1.107 6.334

BCH -0.617 5.660 BCH 0.968 7.966
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Sklar, A. (1959). Fonctions de répartition à n dimensions et leurs marges. Publications de
l’Institut Statistique de l’Université de Paris, 8:229–231.
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Chapter 3

What drives cryptocurrency returns? A sparse
statistical jump model approach

1

3.1 Introduction

Since the introduction of Bitcoin in 2009, which operates with a decentralized ledger system
known as the blockchain, cryptocurrencies have attracted much attention, and today some
market participants argue that they constitute a separate asset class (Bianchi, 2020; Pele
et al., 2021). Following the introduction of Bitcoin, many other cryptocurrencies have been
implemented, collectively referred to as altcoins. By March 2022, there were approximately
18K cryptocurrencies in total.

Time-series analysis of cryptocurrency dynamics show they exhibit regime switching,
structural breaks and jumps in both returns and volatility (Ardia et al., 2019; Chaim
and Laurini, 2018; Shen et al., 2020) (see Figure 3.1). In his seminal work, Hamilton
(1989) suggests that the dynamics of financial returns can be described by Markovian
regime-switching processes, with drastic breaks associated with events like economic crises
or political events. Later, Rydén et al. (1998) demonstrate empirically that a simple hidden
Markov model (HMM) can reproduce most of the common stylized facts in asset returns
(cf. Cont (2001) and Lindström et al. (2015, Chapter 1)).

Figà-Talamanca et al. (2021) adopt a multivariate approach to demonstrate the presence
of common market regimes amongst cryptocurrencies. They analyze first differences of Bit-
coin, Ethereum, Litecoin, and Monero prices, and conclude that a multivariate generalized
white noise Markov switching model with three states best fits the data. Moreover, they
characterize the regimes in terms of their different state-conditional volatilities. Koki et al.
(2022) estimate several different HMMs for the purpose of forecasting Bitcoin, Ethereum
and Ripple and demonstrate that a four-state specification provides the best out-of-sample

1This Chapter has been published in: Cortese F., Kolm P., Lindström E. (2023). What drives
cryptocurrency returns? A sparse statistical jump model approach. Digital Finance, 1-36. https:
//link.springer.com/article/10.1007/s42521-023-00085-x
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Figure 3.1: Cumulative log-returns of the five cryptocurrencies Bitcoin (BTC), Ethereum
(ETH), Ripple (XRP), Litecoin (LTC), and Bitcoin Cash (BCH), over the period January
2018 - September 2022.

performance. However, the statistical properties of the hidden states are not consistent
across the three cryptocurrencies, making an interpretation of the latent states as different
economic regimes difficult. An alternative explanation to their empirical results is that
the switching dynamics is governed by some exogenous process(es) not included in their
models.

While the understanding of the key drivers of cryptocurrency returns is still emerging,
the literature has identified a number of crypto-, sentiment- and financial market-related
features that impact cryptocurrency market dynamics (see, for example Koki et al. (2022);
Yae and Tian (2022) for an overview). Kristoufek (2015) finds that trade and transaction
volumes are positively correlated with Bitcoin returns. Similarly, Aalborg et al. (2019) sug-
gest that frequent use of Bitcoin would increase its demand, but also that this relationship
might be negative during periods of high volatility. Catania et al. (2019) and Bianchi (2020)
study the dependence of many cryptocurrencies on macroeconomic factors like S&P500 re-
turns, market volatility (VIX) and commodities. They find a weak correlation between
returns on cryptocurrencies and commodities, especially gold. Yae and Tian (2022) demon-
strate that the change in correlation between Bitcoin and S&P500 returns predicts future
Bitcoin returns. In particular, they show that an increase (decrease) in correlations today
suppresses (boosts) Bitcoin prices the following day. Xiong et al. (2020) provide evidence of
the importance of including production cost and use value (a measure of how many people
use a particular coin as a mean of exchanging value) of Bitcoin, as measured by the number
of unique addresses and the Bitcoin hash rate. Several studies suggest that market senti-
ment plays a crucial role in determining the prices of cryptocurrencies. Kristoufek (2013)
finds a strong correlation between the number of visits to the Bitcoin Wikipedia page and
price dynamics. Similarly, Aalborg et al. (2019) and Cheah et al. (2020) suggest that in-
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vestor attention, as measured by Google search queries for the term “bitcoin”, also impacts
the cryptocurrency market. Urquhart (2018) analyzes Google Trends search queries and
suggests that large realized volatility and trading volumes increase public attention towards
BTC. Likewise, Figa-Talamanca and Patacca (2019) observe that the search volume index
provided by Google is a statistically significant predictor of the conditional variance of BTC
returns.

Liu and Tsyvinski (2021) and Liu et al. (2022) find that cross-sectional factors con-
structed from market return, size, momentum, and public attention can forecast cryp-
tocurrency returns. Cheah et al. (2020) and Koki et al. (2022) also find that time-series
momentum is a statistically significant predictor for the upward and downward trending
states of crypto markets.

In this Chapter, we aim to determine what are the most important drivers of the re-
turn dynamics of the five largest and most liquid cryptocurrencies; namely, Bitcoin (BTC),
Ethereum (ETH), Ripple (XRP), Litecoin (LTC), and Bitcoin Cash (BCH). For this pur-
pose, we construct a large set of candidate features grouped into three categories: financial
market, sentiment and crypto market-related features. While many of these features are
drawn from the emerging literature, we also propose some that are new.

We adopt the sparse statistical jump model (SJM) of Nystrup et al. (2021) to select the
features that best explain cryptocurrency returns. As an alternative modeling framework
to HMMs, the SJMs have several advantages. First, they allow us to simultaneously per-
form parameter estimation, state-sequence decoding and feature selection. Second, Nystrup
et al. (2021) show that, in contrast to many “competing” models, SJMs are more robust to
misspecification and initialization, deliver acceptable performance even on smaller samples,
and tend to be more efficient for high-dimensional feature vectors. Third, the estimated
SJMs are easy to interpret from their conditional state dynamics and the weight associated
with each feature, providing an opportunity to reconcile statistical properties and selected
features with observed market behavior and economic intuition.

We demonstrate in our empirical study that when more than four hundred features
are included, a three-state SJM best explains cryptocurrency returns. The three states
have intuitive economic interpretations, corresponding to bull, neutral, and bear market
regimes. The relevant features selected by the SJM are exponential moving averages of
returns, features representing trend and reversal signals drawn from the technical analysis
literature, market activity and public attention. The features that we use for representing
market activity and public attention are new. Our findings are consistent with those of
Figà-Talamanca et al. (2021), who also identify three common market regimes. Comparing
our decoded state sequences with theirs, we find that they are similar. However, in contrast
to their results, we do not find the volatilities to be the key features that distinguish the
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market states.
The rest of the Chapter is organized as follows. In Section 3.2, we review the mathemat-

ical formulation of SJMs, their implementation and hyperparameter tuning. In Section 3.3,
we describe the candidate features we use in inferring drivers of cryptocurrency returns. We
describe the preparation of our dataset and present the results from our empirical analysis
in Section 3.4. Section 3.5 concludes. Appendix 3.A provides a complete list of all the
features we use in this study.

3.2 Methodology

Traditional regime switching models, such as HMMs that have been used for decades in
finance and economics, strike a balance between being interpretable and flexible enough
to model complex non-stationary behavior. Well-known limitations of this class of models
include sensitivity to model misspecification and feature selection for exogenous variables
(see Zucchini et al. (2017) for a recent overview). Another issue is the difficulty to reli-
ably estimate model parameters, as the log-likelihood function is notoriously multimodal.
Estimation frameworks, such as direct maximization of the log-likelihood, the expectation-
maximization algorithm, and Bayesian approaches are compared in Rydén (2008), with no
uniform preference of any particular framework over the others.

Recently, Bemporad et al. (2018) introduced the class of statistical jump models (JM),
nesting e.g. HMMs. We remark that JMs are not related to jump-diffusion models, a com-
mon class of stochastic processes. Following the trend in statistics and machine learning of
reformulating probabilistic models as well-behaved optimization problems, such as LASSO
or support vector machines, a JM is estimated by minimizing the combined loss of the
(negative) likelihood and penalties for jumping between states.

Nystrup et al. (2020b) reformulate the JM as a temporal clustering model. They show in
a simulation study that the JM interpretation of an HMM has many advantages, including
robustness against model misspecification and poor initialization of the optimizer, as well as
surprisingly rapid convergence, typically within only a few iterations. Nystrup et al. (2020b)
proves that the global loss can be optimized by sequentially alternating between (a) fitting
the model parameters while keeping the state sequence fixed, and (b) estimating the state
sequence through dynamic programming while keeping the model parameters fixed.

In a further extension, Nystrup et al. (2021) introduce the sparse statistical jump model
(SJM) by incorporating feature selection from the clustering literature. This is important as
large scale feature selection has been infeasible for standard HMMs. They demonstrate in
a series of simulation studies that SJMs outperform competing frameworks and are capable
of recovering true features, while rejecting false features with high probability even when
considering hundreds of them.
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3.2.1 Mathematical formulation of the SJM

The JM proposed by Bemporad et al. (2018) is governed by a latent state sequence, {st},
switching between K states, each associated with a vector of parameters, {θk}Kk=1. The
model is fitted to a time-series yyy1, . . . , yyyT , by minimizing the loss

T−1∑
t=1

[
l(yyyt; θst) + λI{st ̸=st−1}

]
+ l(yyyT ; θsT ) , (3.1)

where the hyperparameter λ ≥ 0 controls the number of jumps between states and l(·)
is some loss function to be specified. Bemporad et al. (2018) show in their paper that a
suitable choice of these local likelihood terms can generate a number of well known model
classes, including HMMs.

Nystrup et al. (2020b) consider temporal clustering by transforming the data into p

standardized features, ỹyyt,p ∈ Rp, and using a quadratic loss function. Their corresponding
objective function is given by

T−1∑
t=1

[
∥ỹyyt,p −µµµst∥22 + λI{st ̸=st−1}

]
+ ∥ỹyyT,p −µµµsT ∥

2
2 , (3.2)

where µµµst is the conditional mean of state st. It can be shown that this form of temporal
clustering collapses into K-means clustering when λ = 0.

Nystrup et al. (2021) note that the total sum of squares (TSS) can be expressed as
the sum of within-cluster sum of squares (WCSS) and the between-cluster sum of squares
(BCSS)

T∑
t=1

∥ỹyyt,p − µ̄µµ∥22 =
T∑
t=1

∥ỹyyt,p −µµµst∥22 +
K∑
k=1

nk∥µµµk − µ̄µµ∥22 , (3.3)

where µ̄µµ is the unconditional mean of the features, and µµµk the conditional mean of the
features in the k-th state.

Building upon the work by Witten and Tibshirani (2010) on feature selection in clus-
tering, and using that minimizing the WCSS in Equation (3.2) is equivalent to maximizing
the BCSS (as the TSS is constant), Nystrup et al. (2021) propose to solve

maxµµµk,{st},www www′∑K
k=1 nk (µµµk −µµµ)2 − λ

∑T−1
t=1 I{st ̸=st−1}

subject to ∥www∥2 ≤ 1, ∥www∥1 ≤ κ

wp ≥ 0 ∀p ,
(3.4)

where www is the vector of feature weights, nk denotes the number of observations belonging
to the k-th cluster, and the hyperparameter 1 ≤ κ ≤ √

p controls the degree of sparsity
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of the features. Nystrup et al. (2021) show that this optimization problem can be solved
by iteratively alternating between (a) fitting model parameters given the state sequence,
{st}, and weights www, (b) deriving the state sequence, {st}, by solving a dynamic program,
essentially running the Viterbi algorithm backwards, and (c) updating the weights www using
soft thresholding.

3.2.2 Model implementation and hyperparameters

As the SJM is unsupervised, we select its hyperparameters based on a version of the gen-
eralized information criterion (GIC) (Fan and Tang, 2013) for high-dimensional, penalized
models suitably modified for SJMs.

Fan and Tang (2013) consider a setup where the number of features is considerably
larger than the number of observations. They define a GIC as

GIC =
1

T

{
2
(
ℓS(YYY )− ℓ(θ̂ααα,YYY )

)
+ aTM

}
, (3.5)

where YYY is the matrix of features, M is a measure of model complexity, aT is a penalty
term possibly depending on the number of observations T and features p, ℓ(θ̂ααα,YYY ) is the
log-likelihood computed using the estimated active set of features, ααα, and ℓS(YYY ) is the
log-likelihood for the saturated model, which is the model obtained considering the entire
set of features. Fan and Tang (2013) note that the generalized versions of the Akaike’s
information criterion (AIC) (Akaike, 1974) or the Bayesian information criterion (BIC)
(Schwarz, 1978) are recovered by setting M equal to the total number of parameters, and
aT = 2 or aT = log(T ) for AIC and BIC, respectively.

In this Chapter, we determine the optimal model using our preliminary findings on
a GIC customized for SJMs. Notably, we employ aT = log(T ), transforming it into a
modified variant of the BIC. However, in Chapter 4, we introduce a more rigorous version
of the GIC, employing a slightly different expression. For a comprehensive understanding
of the preliminary GIC version and the results of our simulation study, which evaluated its
effectiveness in selecting the correct model, please refer to Cortese et al. (2023).

The modified BIC (which we denote by BIC in the following) is defined as

BIC =
1

T

{
2
(
LT (λ̄, κ̄, K̄;YYY )− LT (λ, κ,K;YYY )

)
+M log(T )

}
, (3.6)

where LT (λ, κ,K;YYY ) denotes the estimated BCSS, λ, κ, and K are the values for the jump
penalty, sparsity hyperparameter, and number of latent states, respectively. The terms λ̄,
κ̄, and K̄ represent the SJM hyperparameters for the saturated model, which includes all
features. Setting λ̄ = 0 and κ̄ =

√
p is straightforward, but choosing K̄ is less clear. In

our experience, for modeling recurrent states, we recommend not exceeding K̄ = 6. This is
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because when K̄ is too high, the index tends to select numerous states, each visited only
once. We define M in Equation (3.6) by

M = K0|ααα0|+ |ααα0|(K −K0) +K0(|ααακ| − |ααα0|) +
∑
t

Ist ̸=st−1 , (3.7)

where the three first terms come from a linear approximation of K and |ααακ| near the point
(K0, |ααα0|). This expression penalizes for increasing values of K and |ααακ|, the number of
latent states and active features. |ααακ| indirectly depends on the hyperparameter κ, and it
increases with increasing values of κ. The last term in Equation (3.7) counts the number
of jumps across states and thereby depends indirectly on the jump penalty λ.

In practical applications, we suggest to select K0 and |ααα0| based on prior knowledge of
the number of latent states and relevant features. In our empirical work, we set |ααα0| = 150

as we surmise that first and second order moments, correlations, volumes and momentum
related features may be relevant, and these features are roughly 30 for each of the five
cryptocurrencies. The choice of K0 is based primarily on qualitative properties. Selecting
it too small will restrict the dynamics. Too large and the model does not generate persis-
tent or even recurrent states. Rather, it segments the time-series into separate blocks, thus
negatively impacting model predictability. Koki et al. (2022) find that a non-homogeneous
HMM with four states best describes BTC, ETH and XRP log-returns dynamics. In his
comparative analysis, Bulla (2011) observes that considering an HMM with Student-t con-
ditional distributions results into selecting a fewer number of regimes. In fact, compared
to Gaussian conditional distributions, model estimation is less dependent on a few extreme
observations that might cause the number of states to increase. Nystrup et al. (2020b) show
that the JM is robust against distributional misspecification, similar to using an HMM with
Student-t conditional distribution. Hence, we use K0 = 3, reflecting our prior assumption
of a modest number of states. In our setting, assuming an a priori number of states equal
to 2, 3 or 4 does not significantly change the results.

3.3 Econometric features

We construct a large set of features as potential candidates for explaining cryptocurrency
returns. Many of these features have been proposed in the literature (see, Yae and Tian
(2022) for a survey), but some are new. We categorize them into three groups: financial
market, sentiment, and crypto market-related features. Financial market features are based
on information from the equity, fixed income, foreign exchange and commodity markets.
Sentiment features proxy for investor attention toward the cryptocurrency markets. Crypto
market-related features include prices and volumes of the cryptocurrencies as well as metrics
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related to the blockchain.
Some of our features require parameter choices before they are calculated, such as

window length and the number of observations. This is addressed in our empirical study
by including multiple versions of the same variable computed for different parameters,
from which the feature selection algorithm then can choose the most suitable appropriate
features. Next, we describe the construction of the features in each group.

3.3.1 Financial market features

There is an ongoing debate whether cryptocurrencies constitute a separate asset class, with
some market participants arguing that due fat-tails, high kurtosis and conditional volatility
of their returns (Pele et al., 2021), they behave significantly differently than traditional
assets. Nevertheless, it is natural to ask whether there exists some relationship between
cryptocurrencies and traditional assets classes. Therefore, we construct a number of fea-
tures based on time-series from the equity, fixed income, foreign exchange and commodity
markets, aimed at describing cross-asset dynamics between cryptocurrencies and traditional
markets. In particular, we consider the following features: first differences of WTI oil prices;
first differences of 10-year minus 3-months constant maturity Treasury yields (T10Y3M);
log-returns of gold; log-returns of the S&P500; log-returns of NASDAQ; log-returns of EUR-
USD; log-returns of JPY-USD; log-returns of CNY-USD; log-differences of VIX index; and
exponential moving averages (EMAs) for log-differences of VIX index with half-lives d =

1, 2, 7, and 14 days. To proxy for possible comovements of cryptocurrencies relative to
traditional asset classes (Selmi et al., 2018), we include exponentially weighted linear and
Gerber correlations, denoted by ρd and gd, (Gerber et al., 2022) of BTC log-returns with
all other financial market features above with half-lives d = 1, 2, 7, and 14 days.

In a distinct analysis, in response to the reviewer’s suggestion, we incorporate one
additional variable related to inflation expectations, such as the 10-year breakeven inflation
rate. However, we choose not to include the 5-year forward inflation expectation rate due
to its high linear coefficient correlation of 0.92 with the initial variable, implying that one
could serve as a proxy for the other. Notably, the results remain consistent even after
introducing this variable into the analysis.

3.3.2 Sentiment features

Cheah et al. (2020) suggest that investor sentiment, such as public attention, has an impact
on the cryptocurrency markets. Likewise, Aalborg et al. (2019) find that Google searches
for BTC can predict BTC trading volume, while Urquhart (2018) and Figa-Talamanca and
Patacca (2019) provide evidence of a relationship between Google searches and volatility of
BTC returns.
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To proxy for public attention toward cryptocurrencies, we use the log-differences of the
Google Trends indexes (GT) from the queries “bitcoin”, “ethereum”, “ripple”, “litecoin”, and
“bitcoin cash”. We also add a second set of public attention-related features computed as
exponentially weighted linear and Gerber correlations with half-lives d = 1, 2, 7, and 14
days of log-differences of Google Trend indexes and log-returns of each cryptocurrency.

In response to the reviewer’s guidance, we conduct an additional analysis incorporating
the infectious disease equity market volatility tracker (Baker and Bloom, 2013). However,
we refrain from including the economic policy uncertainty (EPU) indicator due to its re-
liance on monthly observations, whereas our data operates on a daily frequency. Notably,
the empirical findings remain unchanged even with the inclusion of this variable.

3.3.3 Crypto market-related features

This category covers features derived directly from cryptocurrency prices, trade volumes,
and blockchain-related metrics. Log-differences of the total number of unique addresses
with balance (AddWB) used on the blockchain aim at measuring the use value of a given
coin. The number of addresses with balance is defined as the number of unique identifiers
that serves as a virtual location where the coin can be sent. This metric differs from the
total number of unique addresses in that it only counts wallets currently holding a particular
coin, while the other one considers all addresses ever created. We use first differences of
the total volume on chain (VOC), as a feature for the aggregate volume of transactions
recorded on chain. Following Cong et al. (2021), we construct three value factors as the
ratio between the total number of addresses and prices (AM), the number of addresses
with balance and prices (UM), and the recorded volume on chain and prices (TM). We
compute all the above mentioned features only for BTC, ETH, LTC and BCH due to data
availability issues.

Hash rates refer to the amount of computing power used by the cryptocurrency network
to process transactions and serves as a measure of the production cost of the mining process
(Xiong et al., 2020). We include log-differences of hash rates (HR) for BTC and ETH.

To capture first and second moments of cryptocurrency returns, we include USD de-
nominated daily log-returns, and EMAs of log-returns and volatilities with half-lives d =

1, 2, 7 and 14 days. To represent market activity, we use first differences of the logarithm
of USD denominated trading volumes (V ) and the corresponding EMAs with the same
half-lives as above.

The results from several studies suggest that time-series momentum is an important
driver of crypto-returns (see, for example Liu and Tsyvinski (2021); Liu et al. (2022);
Yae and Tian (2022)). Therefore, we include several different momentum-based features
in this study. Specifically, for each of the cryptocurrencies we consider the time-series
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momentum signal (RF) of Moskowitz et al. (2012) which is based on time-series regressions
with a variable lag of l. In our empirical, work we use l = 1, 2, 7 and 14 days. Moreover,
taking inspiration from the technical analysis literature, we include the relative strength
index (RSI) and the moving average converge-divergence minus signal (MACDS) indicator
(Wilder, 1978; Appel, 2005). The MACDS and RSI are features that represent trend and
reversal signals, respectively, and are often used together to determine whether markets are
in either a trending or range-bound condition. We apply the standard parameter choices
when computing these features.

To proxy for illiquidity, we include the Amihud (2002) illiquidity measure (AMIHUD),
computed as the ratio of absolute daily log-returns and daily volumes for each coin.

Finally, we also construct exponentially weighted linear and Gerber correlations with
half-lives d = 1, 2, 7 and 14 days of (a) BTC log-returns and log-returns of all other cryp-
tocurrencies to obtain estimates of market betas, (b) log-returns and log-differences of trade
volumes for each crypto, (c) BTC and ETH log-returns and log-differences of their corre-
sponding hash rates, (d) BTC, ETH, LTC and BCH log-returns and their corresponding
VOC and AddWB.

3.4 Empirical study

3.4.1 Data

The study by Alexander and Dakos (2020) emphasizes that, for empirical analysis of cryp-
tocurrency markets, the choice of data sources is critical. In particular, they advise that
researchers use trade data obtained from the crypto exchanges, rather than non-trade data
from coin-ranking websites and other sources where data quality is significantly lower.
Barucci et al. (2022) highlight that for intraday settings, cryptocurrencies quoted against
BTC, ETH or Tether (USDT) are more liquid and therefore tend to be more accurate than
those quoted against the dollar. In fact, USDT facilitates trades in cryptocurrencies as fees
are lower and no bank transfers are needed.

In the present work, we take the perspective of a USD denominated investor and there-
fore use USD prices and volumes.2 Following Pennoni et al. (2021), we use price and trade
volume data from the Crypto Asset Lab (CAL)3, who collect data from crypto exchanges

2To ensure that the results of our study is not an artefact of possible differences in daily USD vs. USDT
cryptocurrency quotations, we also perform our analysis with USDT denominated daily prices and volumes
obtained from KuCoin. Due to data availability issues, the data for this comparative analysis covers a
shorter time period, from March 7, 2019 through September 13, 2022. We observe no significant differences
between the model estimated with USD or USDT denominated data. The results of this comparative
analysis are available upon request.

3The Crypto Asset Lab is an independent lab established at the University of Milano-Bicocca; see
https://cryptoassetlab.diseade.unimib.it
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that satisfy their reliability and liquidity criteria. We are grateful to CAL for providing us
with daily volume-weighted USD denominated prices and aggregate trade volumes, recorded
at midnight UTC, from the Coinbase-pro, Poloniex, Bitstamp, Gemini, Bittrex, Kraken,
and Bitflyer digital exchanges.

We obtain treasury constant maturity yields data from FRED4; gold and WTI oil prices,
S&P500, NASDAQ and VIX levels, EUR-USD, JPY-USD and CNY-USD exchange rates
from Bloomberg; hash rates, number of unique addresses with balance and volumes on
chain from intotheblock.com; and online search trends for the five cryptocurrencies from
Google Trends5.

Our dataset spans the time period from January 16, 2018 through September 13, 2022,
with a total number of 1,702 daily observations. As traditional financial markets are only
open during business days, their corresponding time-series lack values during weekends.
For convenience, we impute any missing data using the mice R package (Van Buuren and
Groothuis-Oudshoorn, 2011). Tables 3.1 and 3.2 provide the unconditional means, standard
deviations and correlation matrix of the five cryptocurrency log-returns. From the different
time-series, we derive a total of 409 features, all of which are stationary (see Section 3.3 for
a description of the construction of the features and Appendix 3.A for a complete list).

Table 3.1: Daily unconditional means and standard deviations (SD) of the five cryptocur-
rency log-returns.

Mean (%) SD (%)

BTC 0.02 4.05
ETH 0.01 5.25
XRP -0.09 6.03
LTC -0.08 5.48
BCH -0.18 6.24

3.4.2 Results

We use the Python implementation of the SJM from Nystrup et al. (2021), available from
their online supplementary material.6 The estimation of the SJM requires 3.1 seconds on a
16-core Intel i7-8750H with 16GB of RAM.7 For the remainder of this section, we discuss
the results from the model.

4https://fred.stlouisfed.org
5https://trends.google.com
6https://www.sciencedirect.com/science/article/pii/S0957417421009647#appSB
7We thank the University of Milano-Bicocca Data Science Lab (datalab) for supporting this work by

providing computational resources.
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Table 3.2: Unconditional correlation matrix of the five cryptocurrency log-returns.

BTC ETH XRP LTC BCH

BTC 1.00 - - - -
ETH 0.84 1.00 - - -
XRP 0.65 0.70 1.00 - -
LTC 0.81 0.84 0.71 1.00 -
BCH 0.78 0.81 0.68 0.83 1.00

Based on the BIC as in Equation (3.6), we select the model with K = 3 states and with
λ = 5, κ = 4. The daily state-conditional means and standard deviations of the returns are
noticeably increasing from state 1 to state 3, as shown in Table 3.3. In Table 3.4, we observe

Table 3.3: State-conditional means and standard deviations (SD) of the five cryptocurrency
log-returns obtained from the SJM model.

State 1 State 2 State 3

Mean (%) SD (%) Mean (%) SD (%) Mean (%) SD (%)

BTC 1.02 3.64 -0.26 3.15 -1.39 5.72
ETH 1.36 4.55 -0.29 4.23 -2.05 7.38
XRP 0.87 6.27 -0.26 4.80 -1.69 7.42
LTC 1.22 5.22 -0.47 4.17 -1.87 7.51
BCH 1.31 6.15 -0.46 4.59 -2.57 8.37

that the correlations of the cryptocurreny log-returns increase from the first through the
third state, where the correlations in the third state are remarkably high. This increase
in correlations is consistent with the asymmetric correlation phenomena within equities
and other asset classes, as well as across asset classes (see, for example Erb et al. (1994);
De Bandt and Hartmann (2000); Cappiello et al. (2006)).

Figure 3.2 depicts the decoded state sequence together with the cumulative log-returns
of BTC, ETH, XRP, LTC and BCH. Throughout our sample of 1, 702 observations, the
model spends 38.9%, 41.8% and 19.3% of its time in each of the three different states, where
each visit lasts for an average of 26.5, 17.8 and 16.4 days.

Together, the conditional statistics above suggest an interpretation of the states as dis-
tinct market regimes, where the first, second and third states represent a bull, neutral,
and bear market regime, respectively. While the first regime (bull market) has positive
average return and moderate volatility, the second regime (neutral market) is character-
ized by an average return slightly below zero under moderate volatility but with higher
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Table 3.4: State-conditional correlations of the five cryptocurrency log-returns obtained
from the SJM model.

State 1 BTC ETH XRP LTC BCH

BTC 1.00 - - - -
ETH 0.72 1.00 - - -
XRP 0.50 0.57 1.00 - -
LTC 0.70 0.73 0.58 1.00 -
BCH 0.63 0.67 0.54 0.73 1.00

State 2 BTC ETH XRP LTC BCH

BTC 1.00 - - - -
ETH 0.84 1.000 - - -
XRP 0.62 0.66 1.00 - -
LTC 0.83 0.86 0.67 1.00 -
BCH 0.81 0.81 0.65 0.84 1.00

State 3 BTC ETH XRP LTC BCH

BTC 1.00 - - - -
ETH 0.92 1.00 - - -
XRP 0.81 0.87 1.00 - -
LTC 0.89 0.92 0.89 1.00 -
BCH 0.89 0.90 0.86 0.91 1.00

correlations than the first regime. In contrast, the third regime (bear market) is associated
with a significant average negative return and high volatility, approximately twice the mag-
nitude of the volatilities observed in the two other regimes. In addition, cryptocurrency
returns are highly correlated in the bear market regime, suggesting that there is little to
no cross-sectional diversification during bad times.

Next, we turn to examining the features selected by the SJM. From the 409 features,
the model selects 19 as being relevant (see, Figure 3.3 for a depiction of the feature weights
of the relevant features). We observe that the 7- and 14-day EMAs of log-returns are the
most relevant, with RSIs following thereafter. The state-conditional values of the relevant
features are given in Table 3.5. These values are consistent with the bull (positive trend),
neutral (range-bound) and bear (negative trend) regime interpretations above. The state-
conditional 7- and 14-day EMAs for log-returns are similar in sign and magnitude to the
state-conditional means and are consistent with the upward and downward momentum
observed in the first and third regime.

The state-conditional RSI for BTC are 66.46, 45.03 and 32.58, consistent with the bull
(positive trend), neutral (range-bound) and bear (negative trend) regime interpretations
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Figure 3.2: Cumulative log-returns of BTC, ETH, XRP, LTC, and BCH over the period
January 2018 - September 2022, together with the state sequence obtained from the SJM
in green (bull), yellow (neutral) and red (bear).

above. State-conditional RSIs for the other cryptocurrencies have similar magnitudes.
We observe that the 7-day exponentially weighted correlation of log-differences of Google

Trend index and log-returns of BTC is relevant. The state-conditional values are equal
to 0.26,−0.10 and −0.38 in the bull, neutral and bear market states, respectively. This
suggests that public attention affects the evolution of crypto markets, especially during
downward and upward market trends. The model selects the 7- and 14-day exponentially
weighted correlation of log-differences of Google Trend index and log-returns of ETH, having
state-conditional values similar to that of ρ7(GTBTC, rBTC). Similarly, the 7- and 14-day
exponentially weighted linear correlations of log-returns and log-differences of the BTC and
ETH trade volumes are also selected. The state-conditional values in the bull, neutral and
bear market states of the 7-day correlations for BTC are 0.24,−0.07 and −0.36, respectively.
The corresponding values for the 14-day correlations of BTC and for the 7- and 14-day
correlations of ETH are similar in magnitude. Finally, we note the model does not select
any features from the group of financial market features (cf. Section 3.3.1). In fact, the
average state conditional correlations of BTC log-returns and each of the financial features
are close to zero in all the three regimes.

3.4.3 Discussion

The SJM model distinguishes three distinct regimes driven by upward, downward and
sideways trends, suggesting that time-series momentum is a key driver of cryptocurren-
cies. Notably, the presence of time-series momentum is well-established in traditional asset
classes such as equity, currency, commodity, and fixed income markets (Moskowitz et al.,
2012; Babu et al., 2020). More recently it has also been shown to be prevalent in the crypto
markets (Cheah et al., 2020; Liu and Tsyvinski, 2021; Liu et al., 2022; Koki et al., 2022).

72



3.4. Empirical study

EMA14(rBCH)
EMA14(rBTC)
EMA14(rETH)
EMA14(rLTC)
EMA7(rBCH)
EMA7(rBTC)
EMA7(rETH)
EMA7(rLTC)

ρ14(GTETH, rETH)
ρ14(VBTC, rBTC)
ρ14(VETH, rETH)

ρ7(GTBTC, rBTC)
ρ7(GTETH, rETH)

ρ7(VBTC, rBTC)
ρ7(VETH, rETH)

RSI(BCH)
RSI(BTC)
RSI(ETH)
RSI(LTC)

0 2 4 6 8

Weight (%)

F
e
a
tu

re Group

Crypto Market
Sentiment

Figure 3.3: Estimated weights of the relevant features in the three-state model. The selected
features are RSIs for BTC, ETH, LTC and BCH; 7- and 14-day exponentially weighted
linear correlations of log-differences of volumes and log-returns for BTC and ETH; 7-day
exponentially weighted linear correlations of log-differences of GT and log-returns for BTC
and ETH; 14-day exponentially weighted linear correlations of log-differences of GT and
log-returns for BTC; 7- and 14-day EMAs of log-returns of BTC, ETH, LTC and BCH. RSI,
ρd and EMAd denote the relative strength index, exponentially weighted linear correlation
and exponential moving average with a half-life of d days, respectively.

Theories of sentiment in the behavioral finance literature suggests time-series momentum
may result from initial under-reaction followed by delayed over-reaction.8 Below we pro-
vide some support for this explanation and discuss how the interplay between institutional
investors, who predominately act as market makers in these markets, and retail investors,
who are holding positions longer, contribute to the trends.

While the interest of larger financial institutions in the crypto markets is growing,
Karniol-Tambour et al. (2022) estimate that as of January 2022 only around 5% of Bitcoin
is held by institutional investors. However, although institutions do not appear to have the
largest share of holdings in the crypto markets, in the last few years they are generally be-
lieved to be the dominant players when it comes to trading volumes (e.g. market making).
In 2021, institutions traded over one trillion dollars worth of cryptocurrencies on Coinbase,

8Under-reaction is the failure of markets to fully react to new information and can occur through several
behavioral channels, including gradual dissemination of news (Hong and Stein, 1999), adherence to prior
beliefs and cognitive biases such as anchoring (Barberis et al., 1998), or selling profitable assets too early
while holding on to losing ones too long (Shefrin and Statman, 1985). Conversely, over-reaction is the
tendency of markets reacting too strongly to new information and can result from excessive optimism and
self-attribution biases (Daniel et al., 1998), herding behavior (Bikhchandani et al., 1992), positive feedback
trading (De Long et al., 1990), or market sentiment (Baker and Wurgler, 2006).
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Table 3.5: Estimated weights and state-conditional values of the selected features. RSI,
ρd and EMAd denote the relative strength index, exponentially weighted linear correlation
and exponential moving average with a half-life of d days, respectively.

Feature Weight(%) Bull Neutral Bear

RSI(LTC) 5.0 63.03 43.96 31.81
RSI(ETH) 7.0 66.68 45.03 31.61
RSI(BTC) 5.5 66.46 45.71 31.58
RSI(BCH) 5.6 62.55 43.55 28.60
ρ7(VETH,rETH) 1.6 0.21 -0.09 -0.32
ρ7(VBTC,rBTC) 4.2 0.24 -0.07 -0.36
ρ7(GTETH,rETH) 4.8 0.31 -0.08 -0.35
ρ7(GTBTC,rBTC) 2.1 0.26 -0.10 -0.38
ρ14(VETH,rETH) 1.6 0.22 -0.06 -0.29
ρ14(VBTC,rBTC) 4.2 0.18 -0.04 -0.29
ρ14(GTETH,rETH) 0.8 0.14 -0.08 -0.27
EMA7(rETH) 7.6 1.08% -0.25% 1.50%
EMA7(rLTC) 7.3 0.92% -0.34% -1.56%
EMA7(rBTC) 7.5 0.80% -0.15% -1.18%
EMA7(rBCH) 6.1 0.98% -0.39% -2.04%
EMA14(rETH) 5.5 0.78% -0.17% -1.00%
EMA14(rLTC) 8.3 0.65% -0.27% -1.12%
EMA14(rBTC) 8.4 0.60% -0.10% -0.86%
EMA14(rBCH) 6.7 0.65% -0.33% -1.46%

an increase from the 120 billion dollar trading volume the previous year, and more than
twice the amount traded by retail investors (half a trillion dollars) (Vigna, 2022). As far
as positive momentum, Auer et al. (2022) show that an increase in the price of Bitcoin
causes a significant entry of new retail investors in the crypto markets who in turn drive
up prices further, consistent with a positive feedback trading explanation (De Long et al.,
1990). Using a dataset on client transactions and account balances of retail customers at a
large German online bank, Hackethal et al. (2022) suggest that customers investing in cryp-
tocurrencies and cryptocurrency structured retail products are likely to exhibit investing
biases consistent with naive trend-chasing and overtrading behavior (Barber and Odean,
2008). Additionally, Kogan et al. (2022) show that many retail investors actually end up
following momentum strategies, whether they are aware of it or not, when investing in
cryptocurrencies. The authors argue that this behavior is predominantly driven by retail
investors holding on to their positions, even in periods of large price moves. In particular,
they do not rebalance after prices increase or double up when prices decrease.

The features representing the interaction of cryptocurrency returns with public attention
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and trade volumes are also selected by our model. Their state-conditional values are positive
in the bull regime, negative in the bear regime, and close to zero in the neutral regime,
consistent with, for example, Bianchi and Dickerson (2019); Smales (2022).

Inspecting which groups of features are not selected by the SJM provides additional
insight into the workings of crypto markets. Most importantly, features representing tradi-
tional asset classes are not helpful in explaining cryptocurrencies (see also Baur et al. (2018);
Bianchi (2020)) and neither is cryptocurrency return volatility-based features. That the lat-
ter are not selected is perhaps a bit surprising, especially as volatility-based features are
some of the most important features for identifying regimes in the equity markets (Nystrup
et al., 2020a, 2021). A possible reason for their non-inclusion is that their state-conditional
values are about the same in the bull and neutral regimes, with each being about half of
the corresponding values in the bear regime.

3.5 Conclusions

We employ the sparse statistical jump model to infer key features that drive the return
dynamics of the largest cryptocurrencies. Our results suggest that a model with three states
provides an intuitive interpretation of these markets corresponding to bull, neutral and bear
market regimes. We find that first moments of returns (but not second moments), features
representing trends and reversal signals drawn from the technical analysis literature, market
activity and public attention have the strongest descriptive power. The features that we
use for representing market activity and public attention are new and aid in explaining
cryptocurrency returns in upward and downward market trends.

These findings have practical implications for trading and risk management in the crypto
market. In particular, practitioners can use the identified features to distinguish upward and
downward market trends, and detect when the market switches between different regimes.

Appendices

3.A Feature set

Tag Variable(s) Transformation Group

rBTC BTC log-ret log-difference Crypto Market-Related

rETH ETH log-ret log-difference Crypto Market-Related

rXRP XRP log-ret log-difference Crypto Market-Related

rLTC LTC log-ret log-difference Crypto Market-Related

rBCH BCH log-ret log-difference Crypto Market-Related

VBTC BTC Volume log-difference Crypto Market-Related

Continued on next page
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Tag Variable(s) Transformation Group

VETH ETH Volume log difference Crypto Market-Related

VXRP XRP Volume log-difference Crypto Market-Related

VLTC LTC Volume log-difference Crypto Market-Related

VBCH BCH Volume log-difference Crypto Market-Related

EMA1(rBTC) BTC log-ret 1-day EMA Crypto Market-Related

EMA1(rETH) ETH log-ret 1-day EMA Crypto Market-Related

EMA1(rXRP) XRP log-ret 1-day EMA Crypto Market-Related

EMA1(rLTC) LTC log-ret 1-day EMA Crypto Market-Related

EMA1(rBCH) BCH log-ret 1-day EMA Crypto Market-Related

EMA1(σBTC) BTC log-ret 1-day EMA volatility Crypto Market-Related

EMA1(σETH) ETH log-ret 1-day EMA volatility Crypto Market-Related

EMA1(σXRP) XRP log-ret 1-day EMA volatility Crypto Market-Related

EMA1(σLTC) LTC log-ret 1-day EMA volatility Crypto Market-Related

EMA1(σBCH) BCH log-ret 1-day EMA volatility Crypto Market-Related

EMA2(rBTC) BTC log-ret 2-day EMA Crypto Market-Related

EMA2(rETH) ETH log-ret 2-day EMA Crypto Market-Related

EMA2(rXRP) XRP log-ret 2-day EMA Crypto Market-Related

EMA2(rLTC) LTC log-ret 2-day EMA Crypto Market-Related

EMA2(rBCH) BCH log-ret 2-day EMA Crypto Market-Related

EMA2(σBTC) BTC log-ret 2-day EMA volatility Crypto Market-Related

EMA2(σETH) ETH log-ret 2-day EMA volatility Crypto Market-Related

EMA2(σXRP) XRP log-ret 2-day EMA volatility Crypto Market-Related

EMA2(σLTC) LTC log-ret 2-day EMA volatility Crypto Market-Related

EMA2(σBCH) BCH log-ret 2-day EMA volatility Crypto Market-Related

EMA7(rBTC) BTC log-ret 7-day EMA Crypto Market-Related

EMA7(rETH) ETH log-ret 7-day EMA Crypto Market-Related

EMA7(rXRP) XRP log-ret 7-day EMA Crypto Market-Related

EMA7(rLTC) LTC log-ret 7-day EMA Crypto Market-Related

EMA7(rBCH) BCH log-ret 7-day EMA Crypto Market-Related

EMA7(σBTC) BTC log-ret 7-day EMA volatility Crypto Market-Related

EMA7(σETH) ETH log-ret 7-day EMA volatility Crypto Market-Related

EMA7(σXRP) XRP log-ret 7-day EMA volatility Crypto Market-Related

EMA7(σLTC) LTC log-ret 7-day EMA volatility Crypto Market-Related

EMA7(σBCH) BCH log-ret 7-day EMA volatility Crypto Market-Related

EMA14(rBTC) BTC log-ret 14-day EMA Crypto Market-Related

EMA14(rETH) ETH log-ret 14-day EMA Crypto Market-Related

EMA14(rXRP) XRP log-ret 14-day EMA Crypto Market-Related

EMA14(rLTC) LTC log-ret 14-day EMA Crypto Market-Related

EMA14(rBCH) BCH log-ret 14-day EMA Crypto Market-Related

EMA14(σBTC) BTC log-ret 14-day EMA volatility Crypto Market-Related

EMA14(σETH) ETH log-ret 14-day EMA volatility Crypto Market-Related

EMA14(σXRP) XRP log-ret 14-day EMA volatility Crypto Market-Related

EMA14(σLTC) LTC log-ret 14-day EMA volatility Crypto Market-Related

EMA14(σBCH) BCH log-ret 14-day EMA volatility Crypto Market-Related

EMA1(VBTC) BTC Volume 1-day EMA Volume Crypto Market-Related

EMA1(VETH) ETH Volume 1-day EMA Volume Crypto Market-Related

EMA1(VXRP) XRP Volume 1-day EMA Volume Crypto Market-Related

EMA1(VLTC) LTC Volume 1-day EMA Volume Crypto Market-Related

EMA1(VBCH) BCH Volume 1-day EMA Volume Crypto Market-Related

EMA2(VBTC) BTC Volume 2-day EMA Volume Crypto Market-Related

EMA2(VETH) ETH Volume 2-day EMA Volume Crypto Market-Related

EMA2(VXRP) XRP Volume 2-day EMA Volume Crypto Market-Related
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Tag Variable(s) Transformation Group

EMA2(VLTC) LTC Volume 2-day EMA Volume Crypto Market-Related

EMA2(VBCH) BCH Volume 2-day EMA Volume Crypto Market-Related

EMA7(VBTC) BTC Volume 7-day EMA Volume Crypto Market-Related

EMA7(VETH) ETH Volume 7-day EMA Volume Crypto Market-Related

EMA7(VXRP) XRP Volume 7-day EMA Volume Crypto Market-Related

EMA7(VLTC) LTC Volume 7-day EMA Volume Crypto Market-Related

EMA7(VBCH) BCH Volume 7-day EMA Volume Crypto Market-Related

EMA14(VBTC) BTC Volume 14-day EMA Volume Crypto Market-Related

EMA14(VETH) ETH Volume 14-day EMA Volume Crypto Market-Related

EMA14(VXRP) XRP Volume 14-day EMA Volume Crypto Market-Related

EMA14(VLTC) LTC Volume 14-day EMA Volume Crypto Market-Related

EMA14(VBCH) BCH Volume 14-day EMA Volume Crypto Market-Related

ρ1(VBTC,rBTC) BTC log-ret BTC Volume 1-day EMA linear correlation Crypto Market-Related

ρ1(VETH,rETH) ETH log-ret ET Volume 1-day EMA linear correlation Crypto Market-Related

ρ1(VXRP,rXRP) XRP log-ret XRP Volume 1-day EMA linear correlation Crypto Market-Related

ρ1(VLTC,rLTC) LTC log-ret LTC Volume 1-day EMA linear correlation Crypto Market-Related

ρ1(VBCH,rBCH) BCH log-ret BCH Volume 1-day EMA linear correlation Crypto Market-Related

ρ2(VBTC,rBTC) BTC log-ret BTC Volume 2-day EMA linear correlation Crypto Market-Related

ρ2(VETH,rETH) ETH log-ret ET Volume 2-day EMA linear correlation Crypto Market-Related

ρ2(VXRP,rXRP) XRP log-ret XRP Volume 2-day EMA linear correlation Crypto Market-Related

ρ2(VLTC,rLTC) LTC log-ret LTC Volume 2-day EMA linear correlation Crypto Market-Related

ρ2(VBCH,rBCH) BCH log-ret BCH Volume 2-day EMA linear correlation Crypto Market-Related

ρ7(VBTC,rBTC) BTC log-ret BTC Volume 7-day EMA linear correlation Crypto Market-Related

ρ7(VETH,rETH) ETH log-ret ET Volume 7-day EMA linear correlation Crypto Market-Related

ρ7(VXRP,rXRP) XRP log-ret XRP Volume 7-day EMA linear correlation Crypto Market-Related

ρ7(VLTC,rLTC) LTC log-ret LTC Volume 7-day EMA linear correlation Crypto Market-Related

ρ7(VBCH,rBCH) BCH log-ret BCH Volume 7-day EMA linear correlation Crypto Market-Related

ρ14(VBTC,rBTC) BTC log-ret BTC Volume 14-day EMA linear correlation Crypto Market-Related

ρ14(VETH,rETH) ETH log-ret ET Volume 14-day EMA linear correlation Crypto Market-Related

ρ14(VXRP,rXRP) XRP log-ret XRP Volume 14-day EMA linear correlation Crypto Market-Related

ρ14(VLTC,rLTC) LTC log-ret LTC Volume 14-day EMA linear correlation Crypto Market-Related

ρ14(VBCH,rBCH) BCH log-ret BCH Volume 14-day EMA linear correlation Crypto Market-Related

g1(VBTC,rBTC) BTC log-ret BTC Volume 1-day EMA Gerber correlation Crypto Market-Related

g1(VETH,rETH) ETH log-ret ET Volume 1-day EMA Gerber correlation Crypto Market-Related

g1(VXRP,rXRP) XRP log-ret XRP Volume 1-day EMA Gerber correlation Crypto Market-Related

g1(VLTC,rLTC) LTC log-ret LTC Volume 1-day EMA Gerber correlation Crypto Market-Related

g1(VBCH,rBCH) BCH log-ret BCH Volume 1-day EMA Gerber correlation Crypto Market-Related

g2(VBTC,rBTC) BTC log-ret BTC Volume 2-day EMA Gerber correlation Crypto Market-Related

g2(VETH,rETH) ETH log-ret ET Volume 2-day EMA Gerber correlation Crypto Market-Related

g2(VXRP,rXRP) XRP log-ret XRP Volume 2-day EMA Gerber correlation Crypto Market-Related

g2(VLTC,rLTC) LTC log-ret LTC Volume 2-day EMA Gerber correlation Crypto Market-Related

g2(VBCH,rBCH) BCH log-ret BCH Volume 2-day EMA Gerber correlation Crypto Market-Related

g7(VBTC,rBTC) BTC log-ret BTC Volume 7-day EMA Gerber correlation Crypto Market-Related

g7(VETH,rETH) ETH log-ret ET Volume 7-day EMA Gerber correlation Crypto Market-Related

g7(VXRP,rXRP) XRP log-ret XRP Volume 7-day EMA Gerber correlation Crypto Market-Related

g7(VLTC,rLTC) LTC log-ret LTC Volume 7-day EMA Gerber correlation Crypto Market-Related

g7(VBCH,rBCH) BCH log-ret BCH Volume 7-day EMA Gerber correlation Crypto Market-Related

g14(VBTC,rBTC) BTC log-ret BTC Volume 14-day EMA Gerber correlation Crypto Market-Related

g14(VETH,rETH) ETH log-ret ET Volume 14-day EMA Gerber correlation Crypto Market-Related

g14(VXRP,rXRP) XRP log-ret XRP Volume 14-day EMA Gerber correlation Crypto Market-Related

g14(VLTC,rLTC) LTC log-ret LTC Volume 14-day EMA Gerber correlation Crypto Market-Related

g14(VBCH,rBCH) BCH log-ret BCH Volume 14-day EMA Gerber correlation Crypto Market-Related
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Tag Variable(s) Transformation Group

VOCBTC BTC on chain volume first difference Crypto Market-Related

VOCETH ETH on chain volume first difference Crypto Market-Related

VOCLTC LTC on chain volume first difference Crypto Market-Related

VOCBCH BCH on chain volume first difference Crypto Market-Related

HRBTC BTC hash-rate log-difference Crypto Market-Related

HRETH ETH hash-rate log-difference Crypto Market-Related

AddWBBTC BTC number of total addresses with

balance

log-difference Crypto Market-Related

AddWBETH ETH number of total addresses with

balance

log-difference Crypto Market-Related

AddWBLTC LTC number of total addresses with

balance

log-difference Crypto Market-Related

AddWBBCH BCH number of total addresses

with balance

log-difference Crypto Market-Related

ρ1(VOCBTC,rBTC) BTC log-ret BTC volume on chain 1-day EMA linear correlation Crypto Market-Related

ρ1(VOCETH,rETH) ETH log-ret ET volume on chain 1-day EMA linear correlation Crypto Market-Related

ρ2(VOCBTC,rBTC) BTC log-ret BTC volume on chain 2-day EMA linear correlation Crypto Market-Related

ρ2(VOCETH,rETH) ETH log-ret ET volume on chain 2-day EMA linear correlation Crypto Market-Related

ρ7(VOCBTC,rBTC) BTC log-ret BTC volume on chain 7-day EMA linear correlation Crypto Market-Related

ρ7(VOCETH,rETH) ETH log-ret ET volume on chain 7-day EMA linear correlation Crypto Market-Related

ρ14(VOCBTC,rBTC) BTC log-ret BTC volume on chain 14-day EMA linear correlation Crypto Market-Related

ρ14(VOCETH,rETH) ETH log-ret ET volume on chain 14-day EMA linear correlation Crypto Market-Related

g1(VOCBTC,rBTC) BTC log-ret BTC volume on chain 1-day EMA Gerber correlation Crypto Market-Related

g1(VOCETH,rETH) ETH log-ret ET volume on chain 1-day EMA Gerber correlation Crypto Market-Related

g2(VOCBTC,rBTC) BTC log-ret BTC volume on chain 2-day EMA Gerber correlation Crypto Market-Related

g2(VOCETH,rETH) ETH log-ret ET volume on chain 2-day EMA Gerber correlation Crypto Market-Related

g7(VOCBTC,rBTC) BTC log-ret BTC volume on chain 7-day EMA Gerber correlation Crypto Market-Related

g7(VOCETH,rETH) ETH log-ret ET volume on chain 7-day EMA Gerber correlation Crypto Market-Related

g14(VOCBTC,rBTC) BTC log-ret BTC volume on chain 14-day EMA Gerber correlation Crypto Market-Related

g14(VOCETH,rETH) ETH log-ret ET volume on chain 14-day EMA Gerber correlation Crypto Market-Related

ρ1(VOCLTC,rLTC) LTC log-ret LTC volume on chain 1-day EMA linear correlation Crypto Market-Related

ρ1(VOCBCH,rBCH) BCH log-ret ET volume on chain 1-day EMA linear correlation Crypto Market-Related

ρ2(VOCLTC,rLTC) LTC log-ret LTC volume on chain 2-day EMA linear correlation Crypto Market-Related

ρ2(VOCBCH,rBCH) BCH log-ret ET volume on chain 2-day EMA linear correlation Crypto Market-Related

ρ7(VOCLTC,rLTC) LTC log-ret LTC volume on chain 7-day EMA linear correlation Crypto Market-Related

ρ7(VOCBCH,rBCH) BCH log-ret ET volume on chain 7-day EMA linear correlation Crypto Market-Related

ρ14(VOCLTC,rLTC) LTC log-ret LTC volume on chain 14-day EMA linear correlation Crypto Market-Related

ρ14(VOCBCH,rBCH) BCH log-ret ET volume on chain 14-day EMA linear correlation Crypto Market-Related

g1(VOCLTC,rLTC) LTC log-ret LTC volume on chain 1-day EMA Gerber correlation Crypto Market-Related

g1(VOCBCH,rBCH) BCH log-ret ET volume on chain 1-day EMA Gerber correlation Crypto Market-Related

g2(VOCLTC,rLTC) LTC log-ret LTC volume on chain 2-day EMA Gerber correlation Crypto Market-Related

g2(VOCBCH,rBCH) BCH log-ret ET volume on chain 2-day EMA Gerber correlation Crypto Market-Related

g7(VOCLTC,rLTC) LTC log-ret LTC volume on chain 7-day EMA Gerber correlation Crypto Market-Related

g7(VOCBCH,rBCH) BCH log-ret ET volume on chain 7-day EMA Gerber correlation Crypto Market-Related

g14(VOCLTC,rLTC) LTC log-ret LTC volume on chain 14-day EMA Gerber correlation Crypto Market-Related

g14(VOCBCH,rBCH) BCH log-ret ET volume on chain 14-day EMA Gerber correlation Crypto Market-Related

ρ1(AddWBBTC,rBTC) BTC log-ret BTC number of total

addresses with balance with balance

1-day EMA linear correlation Crypto Market-Related

ρ1(AddWBETH,rETH) ETH log-ret ET number of total ad-

dresses with balance with balance

1-day EMA linear correlation Crypto Market-Related

ρ1(AddWBLTC,rLTC) LTC log-ret LTC number of total

addresses with balance with balance

1-day EMA linear correlation Crypto Market-Related
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Tag Variable(s) Transformation Group

ρ1(AddWBBCH,rBCH) BCH log-ret BCH number of total

addresses with balance with balance

1-day EMA linear correlation Crypto Market-Related

ρ2(AddWBBTC,rBTC) BTC log-ret BTC number of total

addresses with balance with balance

2-day EMA linear correlation Crypto Market-Related

ρ2(AddWBETH,rETH) ETH log-ret ET number of total ad-

dresses with balance with balance

2-day EMA linear correlation Crypto Market-Related

ρ2(AddWBLTC,rLTC) LTC log-ret LTC number of total

addresses with balance with balance

2-day EMA linear correlation Crypto Market-Related

ρ2(AddWBBCH,rBCH) BCH log-ret BCH number of total

addresses with balance with balance

2-day EMA linear correlation Crypto Market-Related

ρ7(AddWBBTC,rBTC) BTC log-ret BTC number of total

addresses with balance with balance

7-day EMA linear correlation Crypto Market-Related

ρ7(AddWBETH,rETH) ETH log-ret ET number of total ad-

dresses with balance with balance

7-day EMA linear correlation Crypto Market-Related

ρ7(AddWBLTC,rLTC) LTC log-ret LTC number of total

addresses with balance with balance

7-day EMA linear correlation Crypto Market-Related

ρ7(AddWBBCH,rBCH) BCH log-ret BCH number of total

addresses with balance with balance

7-day EMA linear correlation Crypto Market-Related

ρ14(AddWBBTC,rBTC) BTC log-ret BTC number of total

addresses with balance with balance

14-day EMA linear correlation Crypto Market-Related

ρ14(AddWBETH,rETH) ETH log-ret ET number of total ad-

dresses with balance with balance

14-day EMA linear correlation Crypto Market-Related

ρ14(AddWBLTC,rLTC) LTC log-ret LTC number of total

addresses with balance with balance

14-day EMA linear correlation Crypto Market-Related

ρ14(AddWBBCH,rBCH) BCH log-ret BCH number of total

addresses with balance with balance

14-day EMA linear correlation Crypto Market-Related

g1(AddWBBTC,rBTC) BTC log-ret BTC number of total

addresses with balance with balance

1-day EMA Gerber correlation Crypto Market-Related

g1(AddWBETH,rETH) ETH log-ret ET number of total ad-

dresses with balance with balance

1-day EMA Gerber correlation Crypto Market-Related

g1(AddWBLTC,rLTC) LTC log-ret LTC number of total

addresses with balance with balance

1-day EMA Gerber correlation Crypto Market-Related

g1(AddWBBCH,rBCH) BCH log-ret BCH number of total

addresses with balance with balance

1-day EMA Gerber correlation Crypto Market-Related

g2(AddWBBTC,rBTC) BTC log-ret BTC number of total

addresses with balance with balance

2-day EMA Gerber correlation Crypto Market-Related

g2(AddWBETH,rETH) ETH log-ret ET number of total ad-

dresses with balance with balance

2-day EMA Gerber correlation Crypto Market-Related

g2(AddWBLTC,rLTC) LTC log-ret LTC number of total

addresses with balance with balance

2-day EMA Gerber correlation Crypto Market-Related

g2(AddWBBCH,rBCH) BCH log-ret BCH number of total

addresses with balance with balance

2-day EMA Gerber correlation Crypto Market-Related

g7(AddWBBTC,rBTC) BTC log-ret BTC number of total

addresses with balance with balance

7-day EMA Gerber correlation Crypto Market-Related

g7(AddWBETH,rETH) ETH log-ret ET number of total ad-

dresses with balance with balance

7-day EMA Gerber correlation Crypto Market-Related

g7(AddWBLTC,rLTC) LTC log-ret LTC number of total

addresses with balance with balance

7-day EMA Gerber correlation Crypto Market-Related

g7(AddWBBCH,rBCH) BCH log-ret BCH number of total

addresses with balance with balance

7-day EMA Gerber correlation Crypto Market-Related

g14(AddWBBTC,rBTC) BTC log-ret BTC number of total

addresses with balance with balance

14-day EMA Gerber correlation Crypto Market-Related
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Tag Variable(s) Transformation Group

g14(AddWBETH,rETH) ETH log-ret ET number of total ad-

dresses with balance with balance

14-day EMA Gerber correlation Crypto Market-Related

g14(AddWBLTC,rLTC) LTC log-ret LTC number of total

addresses with balance with balance

14-day EMA Gerber correlation Crypto Market-Related

g14(AddWBBCH,rBCH) BCH log-ret BCH number of total

addresses with balance with balance

14-day EMA Gerber correlation Crypto Market-Related

ρ1(HRBTC,rBTC) BTC log-ret BTC hash rate 1-day EMA linear correlation Crypto Market-Related

ρ1(HRETH,rETH) ETH log-ret ET hash rate 1-day EMA linear correlation Crypto Market-Related

ρ2(HRBTC,rBTC) BTC log-ret BTC hash rate 2-day EMA linear correlation Crypto Market-Related

ρ2(HRETH,rETH) ETH log-ret ET hash rate 2-day EMA linear correlation Crypto Market-Related

ρ7(HRBTC,rBTC) BTC log-ret BTC hash rate 7-day EMA linear correlation Crypto Market-Related

ρ7(HRETH,rETH) ETH log-ret ET hash rate 7-day EMA linear correlation Crypto Market-Related

ρ14(HRBTC,rBTC) BTC log-ret BTC hash rate 14-day EMA linear correlation Crypto Market-Related

ρ14(HRETH,rETH) ETH log-ret ET hash rate 14-day EMA linear correlation Crypto Market-Related

g1(HRBTC,rBTC) BTC log-ret BTC hash rate 1-day EMA Gerber correlation Crypto Market-Related

g1(HRETH,rETH) ETH log-ret ET hash rate 1-day EMA Gerber correlation Crypto Market-Related

g2(HRBTC,rBTC) BTC log-ret BTC hash rate 2-day EMA Gerber correlation Crypto Market-Related

g2(HRETH,rETH) ETH log-ret ET hash rate 2-day EMA Gerber correlation Crypto Market-Related

g7(HRBTC,rBTC) BTC log-ret BTC hash rate 7-day EMA Gerber correlation Crypto Market-Related

g7(HRETH,rETH) ETH log-ret ET hash rate 7-day EMA Gerber correlation Crypto Market-Related

g14(HRBTC,rBTC) BTC log-ret BTC hash rate 14-day EMA Gerber correlation Crypto Market-Related

g14(HRETH,rETH) ETH log-ret ET hash rate 14-day EMA Gerber correlation Crypto Market-Related

RF1(BTC) BTC log-ret BTC Volatility time-series regression forecast l=1 Crypto Market-Related

RF2(BTC) BTC log-ret BTC Volatility time-series regression forecast l=2 Crypto Market-Related

RF7(BTC) BTC log-ret BTC Volatility time-series regression forecast l=7 Crypto Market-Related

RF14(BTC) BTC log-ret BTC Volatility time-series regression forecast l=14 Crypto Market-Related

RF1(ETH) ETH log-ret ETH Volatility time-series regression forecast l=1 Crypto Market-Related

RF2(ETH) ETH log-ret ETH Volatility time-series regression forecast l=2 Crypto Market-Related

RF7(ETH) ETH log-ret ETH Volatility time-series regression forecast l=7 Crypto Market-Related

RF14(ETH) ETH log-ret ETH Volatility time-series regression forecast l=14 Crypto Market-Related

RF1(XRP) XRP log-ret XRP Volatility time-series regression forecast l=1 Crypto Market-Related

RF2(XRP) XRP log-ret XRP Volatility time-series regression forecast l=2 Crypto Market-Related

RF7(XRP) XRP log-ret XRP Volatility time-series regression forecast l=7 Crypto Market-Related

RF14(XRP) XRP log-ret XRP Volatility time-series regression forecast l=14 Crypto Market-Related

RF1(LTC) LTC log-ret LTC Volatility time-series regression forecast l=1 Crypto Market-Related

RF2(LTC) LTC log-ret LTC Volatility time-series regression forecast l=2 Crypto Market-Related

RF7(LTC) LTC log-ret LTC Volatility time-series regression forecast l=7 Crypto Market-Related

RF14(LTC) LTC log-ret LTC Volatility time-series regression forecast l=14 Crypto Market-Related

RF1(BCH) BCH log-ret BCH Volatility time-series regression forecast l=1 Crypto Market-Related

RF2(BCH) BCH log-ret BCH Volatility time-series regression forecast l=2 Crypto Market-Related

RF7(BCH) BCH log-ret BCH Volatility time-series regression forecast l=7 Crypto Market-Related

RF14(BCH) BCH log-ret BCH Volatility time-series regression forecast l=14 Crypto Market-Related

RSI(BTC) BTC Price RSI Crypto Market-Related

MACDS(BTC) BTC Price MACD minus signal Crypto Market-Related

RSI(ETH) ETH Price RSI Crypto Market-Related

MACDS(ETH) ETH Price MACD minus signal Crypto Market-Related

RSI(XRP) XRP Price RSI Crypto Market-Related

MACDS(XRP) XRP Price MACD minus signal Crypto Market-Related

RSI(LTC) LTC Price RSI Crypto Market-Related

MACDS(LTC) LTC Price MACD minus signal Crypto Market-Related

RSI(BCH) BCH Price RSI Crypto Market-Related

MACDS(BCH) BCH Price MACD minus signal Crypto Market-Related
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Tag Variable(s) Transformation Group

ρ1(rETH,rBTC) BTC log-ret ETH log-ret 1-day linear correlation Crypto Market-Related

ρ1(rXRP,rBTC) BTC log-ret XRP log-ret 1-day linear correlation Crypto Market-Related

ρ1(rLTC,rBTC) BTC log-ret LTC log-ret 1-day linear correlation Crypto Market-Related

ρ1(rBCH,rBTC) BTC log-ret BCH log-ret 1-day linear correlation Crypto Market-Related

ρ2(rETH,rBTC) BTC log-ret ETH log-ret 2-day linear correlation Crypto Market-Related

ρ2(rXRP,rBTC) BTC log-ret XRP log-ret 2-day linear correlation Crypto Market-Related

ρ2(rLTC,rBTC) BTC log-ret LTC log-ret 2-day linear correlation Crypto Market-Related

ρ2(rBCH,rBTC) BTC log-ret BCH log-ret 2-day linear correlation Crypto Market-Related

ρ7(rETH,rBTC) BTC log-ret ETH log-ret 7-day linear correlation Crypto Market-Related

ρ7(rXRP,rBTC) BTC log-ret XRP log-ret 7-day linear correlation Crypto Market-Related

ρ7(rLTC,rBTC) BTC log-ret LTC log-ret 7-day linear correlation Crypto Market-Related

ρ7(rBCH,rBTC) BTC log-ret BCH log-ret 7-day linear correlation Crypto Market-Related

ρ14(rETH,rBTC) BTC log-ret ETH log-ret 14-day linear correlation Crypto Market-Related

ρ14(rXRP,rBTC) BTC log-ret XRP log-ret 14-day linear correlation Crypto Market-Related

ρ14(rLTC,rBTC) BTC log-ret LTC log-ret 14-day linear correlation Crypto Market-Related

ρ14(rBCH,rBTC) BTC log-ret BCH log-ret 14-day linear correlation Crypto Market-Related

g1(rETH,rBTC) BTC log-ret ETH log-ret 1-day linear correlation Crypto Market-Related

g1(rXRP,rBTC) BTC log-ret XRP log-ret 1-day linear correlation Crypto Market-Related

g1(rLTC,rBTC) BTC log-ret LTC log-ret 1-day linear correlation Crypto Market-Related

g1(rBCH,rBTC) BTC log-ret BCH log-ret 1-day linear correlation Crypto Market-Related

g2(rETH,rBTC) BTC log-ret ETH log-ret 2-day linear correlation Crypto Market-Related

g2(rXRP,rBTC) BTC log-ret XRP log-ret 2-day linear correlation Crypto Market-Related

g2(rLTC,rBTC) BTC log-ret LTC log-ret 2-day linear correlation Crypto Market-Related

g2(rBCH,rBTC) BTC log-ret BCH log-ret 2-day linear correlation Crypto Market-Related

g7(rETH,rBTC) BTC log-ret ETH log-ret 7-day linear correlation Crypto Market-Related

g7(rXRP,rBTC) BTC log-ret XRP log-ret 7-day linear correlation Crypto Market-Related

g7(rLTC,rBTC) BTC log-ret LTC log-ret 7-day linear correlation Crypto Market-Related

g7(rBCH,rBTC) BTC log-ret BCH log-ret 7-day linear correlation Crypto Market-Related

g14(rETH,rBTC) BTC log-ret ETH log-ret 14-day linear correlation Crypto Market-Related

g14(rXRP,rBTC) BTC log-ret XRP log-ret 14-day linear correlation Crypto Market-Related

g14(rLTC,rBTC) BTC log-ret LTC log-ret 14-day linear correlation Crypto Market-Related

g14(rBCH,rBTC) BTC log-ret BCH log-ret 14-day linear correlation Crypto Market-Related

TM(BTC) BTC on chain volume with balance

BTC prices

first difference of ratio Crypto Market-Related

TM(ETH) ETH on chain volume with balance

ETH prices

first difference of ratio Crypto Market-Related

TM(LTC) LTC on chain volume with balance

LTC prices

first difference of ratio Crypto Market-Related

TM(BCH) BCH number of total addresses

with balance BCH prices

first difference of ratio Crypto Market-Related

AM(BTC) BTC number of total addresses

BTC prices

log-difference of ratio Crypto Market-Related

AM(ETH) ETH number of total addresses

ETH prices

log-difference of ratio Crypto Market-Related

AM(LTC) LTC number of total addresses LTC

prices

log-difference of ratio Crypto Market-Related

AM(BCH) BCH nuber of total addresses BCH

prices

log-difference of ratio Crypto Market-Related

UM(BTC) BTC number of total addresses with

balance BTC prices

log-difference of ratio Crypto Market-Related

UM(ETH) ETH number of total addresses with

balance ETH prices

log-difference of ratio Crypto Market-Related
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Tag Variable(s) Transformation Group

UM(LTC) LTC number of total addresses with

balance LTC prices

log-difference of ratio Crypto Market-Related

UM(BCH) BCH nuber of total addresses with

balance BCH prices

log-difference of ratio Crypto Market-Related

AMIHUDBTC BTC absolute log-ret BTC volume ratio Crypto Market-Related

AMIHUDETH ETH absolute log-ret ETH volume ratio Crypto Market-Related

AMIHUDXRP XRP absolute log-ret XRP volume ratio Crypto Market-Related

AMIHUDLTC LTC absolute log-ret LTC volume ratio Crypto Market-Related

AMIHUDBCH BCH absolute log-ret BCH volume ratio Crypto Market-Related

GTBTC BTC Google Index first difference Sentiment

GTETH ETH Google Index first difference Sentiment

GTXRP XRP Google Index first difference Sentiment

GTLTC LTC Google Index first difference Sentiment

GTBCH BCH Google Index first difference Sentiment

ρ1(GTBTC,rBTC) BTC log-ret BTC Google 1-day EMA linear correlation Sentiment

ρ1(GTETH,rETH) ETH log-ret ET Google 1-day EMA linear correlation Sentiment

ρ1(GTXRP,rXRP) XRP log-ret XRP Google 1-day EMA linear correlation Sentiment

ρ1(GTLTC,rLTC) LTC log-ret LTC Google 1-day EMA linear correlation Sentiment

ρ1(GTBCH,rBCH) BCH log-ret BCH Google 1-day EMA linear correlation Sentiment

ρ2(GTBTC,rBTC) BTC log-ret BTC Google 2-day EMA linear correlation Sentiment

ρ2(GTETH,rETH) ETH log-ret ET Google 2-day EMA linear correlation Sentiment

ρ2(GTXRP,rXRP) XRP log-ret XRP Google 2-day EMA linear correlation Sentiment

ρ2(GTLTC,rLTC) LTC log-ret LTC Google 2-day EMA linear correlation Sentiment

ρ2(GTBCH,rBCH) BCH log-ret BCH Google 2-day EMA linear correlation Sentiment

ρ7(GTBTC,rBTC) BTC log-ret BTC Google 7-day EMA linear correlation Sentiment

ρ7(GTETH,rETH) ETH log-ret ET Google 7-day EMA linear correlation Sentiment

ρ7(GTXRP,rXRP) XRP log-ret XRP Google 7-day EMA linear correlation Sentiment

ρ7(GTLTC,rLTC) LTC log-ret LTC Google 7-day EMA linear correlation Sentiment

ρ7(GTBCH,rBCH) BCH log-ret BCH Google 7-day EMA linear correlation Sentiment

ρ14(GTBTC,rBTC) BTC log-ret BTC Google 14-day EMA linear correlation Sentiment

ρ14(GTETH,rETH) ETH log-ret ET Google 14-day EMA linear correlation Sentiment

ρ14(GTXRP,rXRP) XRP log-ret XRP Google 14-day EMA linear correlation Sentiment

ρ14(GTLTC,rLTC) LTC log-ret LTC Google 14-day EMA linear correlation Sentiment

ρ14(GTBCH,rBCH) BCH log-ret BCH Google 14-day EMA linear correlation Sentiment

g1(GTBTC,rBTC) BTC log-ret BTC Google 1-day EMA Gerber correlation Sentiment

g1(GTETH,rETH) ETH log-ret ET Google 1-day EMA Gerber correlation Sentiment

g1(GTXRP,rXRP) XRP log-ret XRP Google 1-day EMA Gerber correlation Sentiment

g1(GTLTC,rLTC) LTC log-ret LTC Google 1-day EMA Gerber correlation Sentiment

g1(GTBCH,rBCH) BCH log-ret BCH Google 1-day EMA Gerber correlation Sentiment

g2(GTBTC,rBTC) BTC log-ret BTC Google 2-day EMA Gerber correlation Sentiment

g2(GTETH,rETH) ETH log-ret ET Google 2-day EMA Gerber correlation Sentiment

g2(GTXRP,rXRP) XRP log-ret XRP Google 2-day EMA Gerber correlation Sentiment

g2(GTLTC,rLTC) LTC log-ret LTC Google 2-day EMA Gerber correlation Sentiment

g2(GTBCH,rBCH) BCH log-ret BCH Google 2-day EMA Gerber correlation Sentiment

g7(GTBTC,rBTC) BTC log-ret BTC Google 7-day EMA Gerber correlation Sentiment

g7(GTETH,rETH) ETH log-ret ET Google 7-day EMA Gerber correlation Sentiment

g7(GTXRP,rXRP) XRP log-ret XRP Google 7-day EMA Gerber correlation Sentiment

g7(GTLTC,rLTC) LTC log-ret LTC Google 7-day EMA Gerber correlation Sentiment

g7(GTBCH,rBCH) BCH log-ret BCH Google 7-day EMA Gerber correlation Sentiment

g14(GTBTC,rBTC) BTC log-ret BTC Google 14-day EMA Gerber correlation Sentiment

g14(GTETH,rETH) ETH log-ret ET Google 14-day EMA Gerber correlation Sentiment

g14(GTXRP,rXRP) XRP log-ret XRP Google 14-day EMA Gerber correlation Sentiment
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Tag Variable(s) Transformation Group

g14(GTLTC,rLTC) LTC log-ret LTC Google 14-day EMA Gerber correlation Sentiment

g14(GTBCH,rBCH) BCH log-ret BCH Google 14-day EMA Gerber correlation Sentiment

GOLD Gold log-ret log-difference Financial Market

EURUSD EURUSD log-ret log-difference Financial Market

JPYUSD JPYUSD log-ret log-difference Financial Market

CNYUSD CNYUSD log-ret log-difference Financial Market

VIX VIX log-ret log-difference Financial Market

SP500 SP500 log-ret log-difference Financial Market

NASDAQ NASDAQ log-ret log-difference Financial Market

T10Y3M 10 years minus 3 months US trea-

sury yields

first difference Financial Market

WTI WTI first difference Financial Market

ρ1(GOLD,rBTC) BTC log-ret gold log-ret 1-day EMA Gerber correlation Financial Market

ρ2(GOLD,rBTC) BTC log-ret gold log-ret 2-day EMA Gerber correlation Financial Market

ρ7(GOLD,rBTC) BTC log-ret gold log-ret 7-day EMA Gerber correlation Financial Market

ρ14(GOLD,rBTC) BTC log-ret gold log-ret 14-day EMA Gerber correlation Financial Market

g1(GOLD,rBTC) BTC log-ret gold log-ret 1-day EMA Gerber correlation Financial Market

g2(GOLD,rBTC) BTC log-ret gold log-ret 2-day EMA Gerber correlation Financial Market

g7(GOLD,rBTC) BTC log-ret gold log-ret 7-day EMA Gerber correlation Financial Market

g14(GOLD,rBTC) BTC log-ret gold log-ret 14-day EMA Gerber correlation Financial Market

ρ1(EURUSD,rBTC) BTC log-ret EURUSD log-ret 1-day EMA Gerber correlation Financial Market

ρ2(EURUSD,rBTC) BTC log-ret EURUSD log-ret 2-day EMA Gerber correlation Financial Market

ρ7(EURUSD,rBTC) BTC log-ret EURUSD log-ret 7-day EMA Gerber correlation Financial Market

ρ14(EURUSD,rBTC) BTC log-ret EURUSD log-ret 14-day EMA Gerber correlation Financial Market

g1(EURUSD,rBTC) BTC log-ret EURUSD log-ret 1-day EMA Gerber correlation Financial Market

g2(EURUSD,rBTC) BTC log-ret EURUSD log-ret 2-day EMA Gerber correlation Financial Market

g7(EURUSD,rBTC) BTC log-ret EURUSD log-ret 7-day EMA Gerber correlation Financial Market

g14(EURUSD,rBTC) BTC log-ret EURUSD log-ret 14-day EMA Gerber correlation Financial Market

ρ1(JPYUSD,rBTC) BTC log-ret JPYUSD log-ret 1-day EMA Gerber correlation Financial Market

ρ2(JPYUSD,rBTC) BTC log-ret JPYUSD log-ret 2-day EMA Gerber correlation Financial Market

ρ7(JPYUSD,rBTC) BTC log-ret JPYUSD log-ret 7-day EMA Gerber correlation Financial Market

ρ14(JPYUSD,rBTC) BTC log-ret JPYUSD log-ret 14-day EMA Gerber correlation Financial Market

g1(JPYUSD,rBTC) BTC log-ret JPYUSD log-ret 1-day EMA Gerber correlation Financial Market

g2(JPYUSD,rBTC) BTC log-ret JPYUSD log-ret 2-day EMA Gerber correlation Financial Market

g7(JPYUSD,rBTC) BTC log-ret JPYUSD log-ret 7-day EMA Gerber correlation Financial Market

g14(JPYUSD,rBTC) BTC log-ret JPYUSD log-ret 14-day EMA Gerber correlation Financial Market

ρ1(CNYUSD,rBTC) BTC log-ret CNYUSD log-ret 1-day EMA Gerber correlation Financial Market

ρ2(CNYUSD,rBTC) BTC log-ret CNYUSD log-ret 2-day EMA Gerber correlation Financial Market

ρ7(CNYUSD,rBTC) BTC log-ret CNYUSD log-ret 7-day EMA Gerber correlation Financial Market

ρ14(CNYUSD,rBTC) BTC log-ret CNYUSD log-ret 14-day EMA Gerber correlation Financial Market

g1(CNYUSD,rBTC) BTC log-ret CNYUSD log-ret 1-day EMA Gerber correlation Financial Market

g2(CNYUSD,rBTC) BTC log-ret CNYUSD log-ret 2-day EMA Gerber correlation Financial Market

g7(CNYUSD,rBTC) BTC log-ret CNYUSD log-ret 7-day EMA Gerber correlation Financial Market

g14(CNYUSD,rBTC) BTC log-ret CNYUSD log-ret 14-day EMA Gerber correlation Financial Market

ρ1(VIX,rBTC) BTC log-ret VIX log-ret 1-day EMA Gerber correlation Financial Market

ρ2(VIX,rBTC) BTC log-ret VIX log-ret 2-day EMA Gerber correlation Financial Market

ρ7(VIX,rBTC) BTC log-ret VIX log-ret 7-day EMA Gerber correlation Financial Market

ρ14(VIX,rBTC) BTC log-ret VIX log-ret 14-day EMA Gerber correlation Financial Market

g1(VIX,rBTC) BTC log-ret VIX log-ret 1-day EMA Gerber correlation Financial Market

g2(VIX,rBTC) BTC log-ret VIX log-ret 2-day EMA Gerber correlation Financial Market

g7(VIX,rBTC) BTC log-ret VIX log-ret 7-day EMA Gerber correlation Financial Market

g14(VIX,rBTC) BTC log-ret VIX log-ret 14-day EMA Gerber correlation Financial Market
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Tag Variable(s) Transformation Group

ρ1(SP500,rBTC) BTC log-ret SP500 log-ret 1-day EMA Gerber correlation Financial Market

ρ2(SP500,rBTC) BTC log-ret SP500 log-ret 2-day EMA Gerber correlation Financial Market

ρ7(SP500,rBTC) BTC log-ret SP500 log-ret 7-day EMA Gerber correlation Financial Market

ρ14(SP500,rBTC) BTC log-ret SP500 log-ret 14-day EMA Gerber correlation Financial Market

g1(SP500,rBTC) BTC log-ret SP500 log-ret 1-day EMA Gerber correlation Financial Market

g2(SP500,rBTC) BTC log-ret SP500 log-ret 2-day EMA Gerber correlation Financial Market

g7(SP500,rBTC) BTC log-ret SP500 log-ret 7-day EMA Gerber correlation Financial Market

g14(SP500,rBTC) BTC log-ret SP500 log-ret 14-day EMA Gerber correlation Financial Market

ρ1(NASDAQ,rBTC) BTC log-ret NASDAQ log-ret 1-day EMA Gerber correlation Financial Market

ρ2(NASDAQ,rBTC) BTC log-ret NASDAQ log-ret 2-day EMA Gerber correlation Financial Market

ρ7(NASDAQ,rBTC) BTC log-ret NASDAQ log-ret 7-day EMA Gerber correlation Financial Market

ρ14(NASDAQ,rBTC) BTC log-ret NASDAQ log-ret 14-day EMA Gerber correlation Financial Market

g1(NASDAQ,rBTC) BTC log-ret NASDAQ log-ret 1-day EMA Gerber correlation Financial Market

g2(NASDAQ,rBTC) BTC log-ret NASDAQ log-ret 2-day EMA Gerber correlation Financial Market

g7(NASDAQ,rBTC) BTC log-ret NASDAQ log-ret 7-day EMA Gerber correlation Financial Market

g14(NASDAQ,rBTC) BTC log-ret NASDAQ log-ret 14-day EMA Gerber correlation Financial Market

ρ1(T10Y3M, rBTC) BTC log-ret T10Y3M 1-day EMA Gerber correlation Financial Market

ρ2(T10Y3M, rBTC) BTC log-ret T10Y3M 2-day EMA Gerber correlation Financial Market

ρ7(T10Y3M, rBTC) BTC log-ret T10Y3M 7-day EMA Gerber correlation Financial Market

ρ14(T10Y3M, rBTC) BTC log-ret T10Y3M 14-day EMA Gerber correlation Financial Market

g1(T10Y3M, rBTC) BTC log-ret T10Y3M 1-day EMA Gerber correlation Financial Market

g2(T10Y3M, rBTC) BTC log-ret T10Y3M 2-day EMA Gerber correlation Financial Market

g7(T10Y3M, rBTC) BTC log-ret T10Y3M 7-day EMA Gerber correlation Financial Market

g14(T10Y3M, rBTC) BTC log-ret T10Y3M 14-day EMA Gerber correlation Financial Market

ρ1(WTI,rBTC) BTC log-ret WTI 1-day EMA Gerber correlation Financial Market

ρ2(WTI,rBTC) BTC log-ret WTI 2-day EMA Gerber correlation Financial Market

ρ7(WTI,rBTC) BTC log-ret WTI 7-day EMA Gerber correlation Financial Market

ρ14(WTI,rBTC) BTC log-ret WTI 14-day EMA Gerber correlation Financial Market

g1(WTI,rBTC) BTC log-ret WTI 1-day EMA Gerber correlation Financial Market

g2(WTI,rBTC) BTC log-ret WTI 2-day EMA Gerber correlation Financial Market

g7(WTI,rBTC) BTC log-ret WTI 7-day EMA Gerber correlation Financial Market

g14(WTI,rBTC) BTC log-ret WTI 14-day EMA Gerber correlation Financial Market

EMA1(VIX) VIX log-ret 1-day EMA Financial Market

EMA2(VIX) VIX log-ret 2-day EMA Financial Market

EMA7(VIX) VIX log-ret 7-day EMA Financial Market

EMA14(VIX) VIX log-ret 14-day EMA Financial Market
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Chapter 4

Generalized information criteria for sparse
statistical jump models

1

4.1 Introduction

Regime switching models, such as hidden Markov models (HMMs), are widely employed
when data exhibits structural breaks. Common applications include natural language pro-
cessing, signal processing, wind and solar power forecasting, biology and finance (see Bar-
tolucci et al. (2013) or Zucchini et al. (2017) for an overview). HMMs effectively capture
stylized facts of financial markets, especially when parameters are allowed to be time-
varying (Nystrup et al., 2017). However, statistical inference poses challenges due to the
complexity of optimizing the log-likelihood function, sensitivity to model misspecification,
and suboptimal initialization (Rydén et al., 1998; Rydén, 2008; Nystrup et al., 2020c).

Introduced by Bemporad et al. (2018), the class of so-called statistical jump models
(JMs) offers an intriguing alternative to HMMs. It provides a framework for modeling
complex dynamics by transitioning (“jumping”) between simpler models. They demonstrate
that a standard Gaussian HMM is a special case within their framework. Nystrup et al.
(2020a) and Nystrup et al. (2020c) build upon this work by using K-means clustering for
the local models. The resulting algorithm conducts temporal clustering, where the cluster
persistence is controlled by a hyperparameter. Nystrup et al. (2020a) apply this framework
to streaming data, while Nystrup et al. (2021) propose a feature selection framework for this
form of temporal clustering, referred to as sparse statistical jump models (SJMs). Unlike
classical HMMs, the fitting algorithm for SJMs converges quickly, even when there is a
substantial number of irrelevant features. It is also robust towards model misspecification
and poor initialization. Additionally, SJMs can seamlessly integrate exogenous variables,
typically a challenging aspect of classical HMMs (Rydén, 2008; Bartolucci et al., 2014).

1A preliminary version of this Chapter has been published in: Cortese F., Kolm P., Lindström E. (2023).
Generalized information criteria for sparse statistical jump models. In Linde, P., editor, Symposium i
Anvendt Statistik, volume 44. www.statistiksymposium.dk
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An open question in the practical application of SJMs is the need to properly choose
the hyperparameters that govern their behavior. Specifically, these hyperparameters relate
to the temporal persistence of the latent states, the selection of relevant features, and
the number of clusters used to model the data. Manually tuning these hyperparameters
can be a challenging and time-consuming task, and it can be difficult to obtain optimal
results even with expert knowledge. Therefore, the development of techniques for automatic
hyperparameter tuning is highly desirable to improve the efficiency and accuracy of SJMs
in practice. This aligns with recent trends in machine learning, where there is a substantial
interest in automatic selection of hyperparameters, e.g. for the topology of deep neural
networks (Hutter et al., 2019). Nystrup et al. (2020b) find that their model’s performance
improves significantly when they undertake hyperparameter tuning to optimize specific
application-related performance criteria.

In general, researchers determine optimal hyperparameters using either cross-validation
(CV, Stone, 1974), by empirically testing which parameters deliver the best out-of-sample
performance, or employing an information criterion (IC) such as the Akaike’s information
criterion (AIC, Akaike, 1974) or the Bayesian information criterion (BIC, Schwarz, 1978).
AIC typically selects the best predictor but may not accurately determine the correct model
order. On the other hand, BIC asymptotically identifies the correct model order, but often
results in poorer predictive performance.

In recent work on generalized information criteria (GIC), Fan and Tang (2013) con-
sider the case where the number of features is comparable to, or substantially larger than,
the number of observations. They demonstrate the inadequacy of AIC and BIC in high-
dimensional settings for identifying the correct model. To address this issue, they introduce
a novel IC, here referred to as the Fan-Tang information criterion (FTIC), which is proven
to consistently select the correct model order asymptotically.

In the present Chapter, we adapt the GIC framework for model selection in high-
dimensional penalized models to SJMs. In particular, we make three main contribu-
tions. First, to effectively leverage the GIC, we rephrase the SJM into an approximate
log-likelihood framework, then we derive an expression that quantifies its model complex-
ity, and we further extend the GIC framework to incorporate SJMs. Specifically, we propose
a FTIC, an AIC, and a BIC for SJMs, each incorporating the proposed model complexity
measure that penalizes for the number of active features, states, and jumps between states.
Second, in a comprehensive simulation study, we demonstrate that the new FTIC, suitably
modified for SJMs, outperforms the other ICs in selecting the correct hyperparameter val-
ues. Third, we conduct an empirical study where we apply a SJM to a dataset consisting
of features related to global equity markets, as represented by the MSCI developed and
emerging market indexes. We determine the best SJM based on the new FTIC, allowing
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us to correctly detect switches between different phases of the market, and to identify its
main drivers, which primarily hinges on features related to volatility.

The Chapter is organized as follows. In Section 4.2, we review some popular ICs for
model selection and we propose an extension of the GIC framework for SJMs. In Section
4.3, we present a simulation study comparing the new FTIC, AIC, and BIC in selecting
the correct model. In Section 4.4, we employ our model selection framework for SJMs to
determine the number of regimes, their level of persistence, and the main drivers of the
world equity markets. In Section 4.5, we draw some conclusions. In Appendix 4.A, we
derive the approximate log-likelihood function for SJMs, and Appendix 4.B offers technical
background on the measures used to evaluate the suitability of the proposed ICs.

4.2 Methodology

A fundamental result in theoretical statistics is the importance of the (log-)likelihood func-
tion, as it effectively encodes model specific information generated from observations. As
such, it is often used for parameter inference.

However, it cannot be utilized for comparisons between competing models, since it
increases monotonically with increasing model complexity. It is known from likelihood ratio
tests (Wilks, 1938) that, due to overfitting, adding irrelevant parameters still increases the
value of the log-likelihood function. Instead, researchers often use CV or ICs for model
selection and hyperparameter estimation.

The CV technique involves partitioning the data into two or more blocks, using some for
model fitting and some others for validation. This practice breaks the positive dependence
between the parameter estimates and the model fit, as these are based on separate random
events. Thus, the model fit computed on the validation set is not inflated by overfitting,
but rather penalized by it.

To make the best possible use of the data, one typically performs random resampling of
the blocks and averages the final result across each random experiment. A special case of
CV is the leave-one-out CV: Stone (1977) shows that this methodology is asymptotically
equivalent to the AIC, a property that holds for any model. Another special case is the
leave-ν-out CV when ν = T (1−1/(log(T )−1)), where T is the sample size. This approach
is asymptotically equivalent to BIC for linear models (Shao, 1997).

However, although CV is easily understood in principle, it is also associated with a
number of difficulties, such as computational cost and the difficulty to apply it to dependent
data. Hence, ICs are still relevant to select model order and hyperparameters.
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4.2.1 Information criteria

ICs provide a quantitative way to balance the in-sample goodness of fit of a model with its
model complexity, thus avoiding overfitting. An IC is defined, in general, as a combination
of two terms

IC := F + aTM, (4.1)

where F is a measure of model fit, often the log-likelihood function, aT is a positive sequence
depending on the sample size T , and possibly the number of parameters and/or features
considered, and M is a measure of model complexity (Konishi and Kitagawa, 2008; Fan
and Tang, 2013).

4.2.1.1 Akaike’s information criterion

AIC is used for selecting the best predictive model. It is an asymptotic unbiased estimator
of the expected Kullback-Leibler risk loss under the assumption that the candidate model
includes the true model. It is given by

AIC := −2ℓ(θ̂θθ) + 2q,

with q, the number of parameters, considered as measure of model complexity, aT = 2,
and employing minus twice the log-likelihood ℓ(θ̂θθ) as measure of model fitting. The closely
related Takeuchi information criterion (TIC), introduced by Takeuchi (1976), generalizes
AIC by accommodating likelihood misspecification.

4.2.1.2 Bayesian information criterion

Schwarz (1978) derives BIC by considering the posterior probability for a specific model,
given the data. This is a consistent criteria, as it will asymptotically select the correct
model with probability one. It is obtained by noting that the posterior probability for a
model M, given data YYY , is defined as

P(M|YYY ) ∝ P(YYY |M)P(M),

=

∫
(P(YYY |θθθ,M)P(θθθ|M)) dθθθ P(M),

where P(YYY |θθθ,M) is the likelihood, P(θθθ|M) is the prior for the parameters, and P(M) is the
prior distribution on the model space. Assuming uninformative priors and approximating
the integral using the Laplace method results in

BIC := −2ℓ(θ̂θθ) + q log(T ),
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in accordance with Equation (4.1), with aT set as log(T ), and employing the same model
fitting criteria and complexity measures as employed by AIC.

Previous research has extended the BIC concept to situations where the number of
parameters q is of the same magnitude, or even substantially larger than the number of
observations T . This setup causes some difficulties as the number of possible models grows
rapidly with q. Chen and Chen (2008) addresses this issue by modifying the prior probabili-
ties P(M), penalizing models with additional parameters. They show that their generalized
BIC is still consistent for large models spaces.

4.2.2 Generalized information criteria

Fan and Tang (2013) present a further extension as they consider the setup where the
number of features grows substantially faster than the number of observations, extending
the Chen and Chen (2008) methodology. They demonstrate that, in high-dimensional
setting, AIC or BIC fail to identify the correct model, whereas their criterion remains
consistent.

Their article defines a GIC, which compares a saturated model and a candidate model,
as

GIC :=
1

T

{
2
(
ℓS(YYY )− ℓ(θ̂θθααα,YYY )

)
+ aTM

}
, (4.2)

where ℓS(YYY ) is the log-likelihood for the saturated model, evaluated using the estimate of
the complete, unconstrained parameter vector, while ℓ(θ̂θθααα,YYY ) is the log-likelihood evaluated
using the parameter vector θ̂θθααα. Here, ααα represents the set of active parameters, and θ̂θθααα is
the estimated parameter vector that exclusively pertains to the active set.

Fan and Tang (2013) suggest setting the model complexity M equal to the cardinality
of the active set of parameters, and aT = log(log(T )) log(p), where p is the total number of
features considered, cf. Hannan and Quinn (1979); Chen et al. (2009).

4.2.3 GIC for sparse statistical jump models

We adapt the GIC as given in Equation (4.2) to the statistical JMs and SJMs presented
in Section 3.2 of Chapter 3. To the best of our knowledge, there is no exact closed form
expression for the log-likelihood function, but we derive an approximation in Appendix 4.A,
given by

ℓ̂(µµµ) =
T∑
t=1

{
C(K, p)− 1

2
∥ỹyyt,p −µµµst∥22

}

= T · C(K, p)− 1

2

T∑
t=1

∥ỹyyt,p −µµµst∥22,
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being C(K, p) = − log(K)− p
2 log(2π), µµµ = {µµµ1, . . . ,µµµK} the conditional mean vectors of the

features, and ỹyyt,p the standardized features. From Equation, (3.3), TSS = WCSS + BCSS,
so it follows that the approximate log-likelihood can be expressed as

ℓ̂(µµµ) = T · C(K, p)− 1

2
WCSS = T · C(K, p)− 1

2
(TSS − BCSS),

with BCSS being computed in Equation (3.4). Finally, we obtain the approximation of the
GIC by inserting those approximations in Equation (4.2)

ĜIC =
1

T

{
2
(
ℓ̂S(YYY )− ℓ̂(θ̂ααα,YYY )

)
+ aTM

}
=

1

T

{
(BCSSS − BCSS) + aTM

}
+ 2

(
CS(K, p)− C(K, p)

)
, (4.3)

where YYY is the matrix of standardized features.

4.2.3.1 Model complexity

Model complexity, denoted as M , is typically defined by the size of the active parameter
set. This definition requires adaptation in the context of the SJM formulation, where three
hyperparameters serve distinct roles: K governs the number of states, λ regulates the
number of jumps, and κ controls feature selection.

The number of parameters for a Gaussian mixture model with equal probability for each
component is K|ααα|, the number of states multiplied by the number of active features in each
state. Additionally, the number of jumps (and the number of potential state transitions)
will have a positive impact on the model complexity. This suggests a model complexity
approximately given by

M ≈ K(|ααακ|+ Γλ), (4.4)

where |ααακ| is the number of features selected by the SJM, and Γλ =
∑

t Ist ̸=st−1 the number
of jumps across states. Γλ is binomially distributed, with the number of jumps being the
sufficient statistic for a binomial distribution.

We define the model complexity measure M as linear approximation of Equation (4.4)

M := K (|ααα0|+ Γ0) +K0 (|ααακ| − |ααα0|+ Γλ − Γ0) , (4.5)

near the point (K0, |ααα0|,Γ0). Equation (4.5) penalizes for increasing values of K, |ααακ|, and
Γλ, the number of latent states, active features and jumps. |ααακ| and Γλ depends indirectly
on the hyperparameters κ and λ, respectively; the first increases with increasing values of
κ, the latter decreases when increasing λ.

In practical applications, we recommend choosing K0, |ααα0|, and Γ0 using pre-existing
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insights about the number of latent states, features and jumps. By incorporating this prior
knowledge into the linear approximation, we provide a solid basis for tailoring the model
fit measure to our specific expectations.

To enhance the efficacy of the GIC, we set an upper limit on Γλ equal to 40% of the total
number of observations, leveraging a heuristic approach to ensure its robustness. This serves
the purpose of filtering out models characterized by excessively high number of jumps, in
essence pure mixture models, which typically lack meaningful or insightful interpretations.

We determine hyperparameters λ̄, κ̄, and K̄ for fitting the saturated model in the SJM
framework as follows. Setting λ̄ = 0 and κ̄ =

√
p is an easy choice, as these values result

in an SJM with no jump penalty and that considers all the features. However, selecting K̄

is not as clear. In our experience, if the goal is to estimate a model with recurrent states,
we recommend not exceeding K̄ = 6 although that number is model and data dependent.
When K̄ is too high, the modified GIC selects a large number of states, each one being
visited only once, which may not be desirable for the application in mind.

We can easily recover SJM modified versions of FTIC, AIC, and BIC based on (4.3) just
changing the value of aT . With a slight abuse of notation, we denote the resulting indexes
as FTIC, AIC, and BIC.

4.3 Simulation study

We conduct two simulation studies to demonstrate the efficacy of the proposed FTIC, AIC,
and BIC for SJMs. The studies aim to assess the ICs accuracy in correctly determining
hyperparameter values, specifically the persistence parameter λ, the sparsity parameter κ,
and the number of latent states K.

4.3.1 Simulation setup

4.3.1.1 Model

We simulate observations yyy1, . . . , yyyT , from a multivariate Gaussian HMM with Ktrue latent
states,

yyyt|st ∼ N (µµµst ,ΣΣΣst).

The latent process {st} is a Markov chain of first order with Ktrue states, with initial
probabilities πi = 1/Ktrue, ∀i = 1, . . . ,Ktrue, and transition probability matrix denoted by
ΠΠΠ ∈ RKtrue×Ktrue , with elements πij , i, j = 1, . . . ,Ktrue. We vary the number of latent states
Ktrue ∈ {2, 3, 4} and simulate data in both studies. We draw state-conditional mean vectors
µµµk ∈ Rptrue , k = 1, . . . ,Ktrue, from the uniform distribution U(−2, 2). The state-conditional
covariance matrices ΣΣΣk have diagonal elements equal to 1 and off-diagonal elements ρ

(k)
ij ,
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i, j = 1, . . . , ptrue, i ̸= j, k = 1, . . . ,Ktrue, given by:

• ρ
(1)
ij = 0.80, ρ(2)ij = 0.40 when Ktrue = 2;

• ρ
(1)
ij = 0.80, ρ(2)ij = 0.60, ρ(3)ij = 0.30 when Ktrue = 3;

• ρ
(1)
ij = 0.80, ρ(2)ij = 0.60, ρ(3)ij = 0.30, ρ(4)ij = 0 when Ktrue = 4.

4.3.1.2 Features construction

We derive the features employed in the simulation study through standardization of the
simulated time-series yyy1, . . . , yyyT . Following Nystrup et al. (2021), to evaluate the SJM
ability to select features, we consider two datasets. The first dataset includes only the
original ptrue features, while the second dataset contains a total of p > ptrue features.
Within this set, the first ptrue correspond to the original time-series, while we obtain the
subsequent p− ptrue through distinct permutations of the rows of the original data matrix.
The purpose of these row permutations is to disrupt temporal information while preserving
both cross-sectional details and distributional attributes. We refer to these as false features.
Specifically, each simulation study incorporates p = 300 features in total, p − ptrue = 200

of which are false features.

4.3.1.3 Estimation

We fit a family of SJMs by varying λ, κ and K and we compute the three ICs for each
possible λ, κ, and K according to Equation (4.3). To determine M , we take K0 and |ααα0|
to be equal to their true counterparts, i.e. |ααα0| = 100 and K0 = Ktrue. We set Γ0 equal to
(1− πii)(K0 − 1)T based on our empirical observation that this value closely approximates
the average true number of jumps.

In the first study, we vary the number of observations considering three possible setups,
each one consisting of 300, 600, and 1,000 observations, respectively. The objective here
is to evaluate the convergence of the ICs. We emphasize that the application employs a
substantially larger number of observations.

In the second study, we investigate model performance across varying degrees of persis-
tence. We achive this by exploring different values of the self-transition probabilities πii,
i = 1, . . . ,Ktrue, representing the probability of remaining within a specific latent state. In
particular, we consider a less persistent HMM with πii = 0.70, and a more persistent HMM
with πii = 0.90.
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4.3.1.4 Evaluation of the performance

We repeat the procedure 100 times for each scenario, each time changing the seed, and the
reported results refer to the average indexes obtained across the 100 studies. To provide a
better understanding of the results, we compute the confidence bands for the 100 simulations
as the average ICs ±2 the standard deviation. These bands enable us to assess the variability
of the ICs across the different simulations.

To evaluate the ability of the ICs in selecting optimal λ and κ values, we employ the ad-
justed Rand index (ARI, Hubert and Arabie, 1985), which measures the similarity between
true and predicted cluster assignments. We calculate ARI for both the estimated state
sequences {ŝt} and active feature sequences {ωi}. We obtain {ωi} through the following

ωi = Iŵi ̸=0, i = 1, . . . , p,

where ŵi is the estimated weight for feature i. We compare this sequence to that of true
active features, given by

(1, 1, . . . , 1,︸ ︷︷ ︸
ptrue times

0, 0, . . . , 0)︸ ︷︷ ︸
p− ptrue times

,

which is a sequence with 1s in the first ptrue entries and 0 elsewhere. We denote the two ARIs
by ARI({ŝt}) and ARI({ωi}), respectively. We recall that an ARI equal to one corresponds
to a perfect match between the elements of the two sequences, and the index decreases
as similarity decreases. For an explanation of how to calculate this index, please refer to
Appendix 4.B.

4.3.2 Varying the number of observations

In this initial scenario, we consider a dataset denoted by YYY ∈ RT×p, with p = 300, consisting
of 100 true and 200 false features. Additionally, we explore three distinct values for T ,
namely 300, 600, and 1,000. We set the transition probability matrices as follows

ΠΠΠ2 =

[
0.80 0.20

0.20 0.80

]
,

ΠΠΠ3 =

 0.80 0.10 0.10

0.10 0.80 0.10

0.10 0.10 0.80

 ,
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ΠΠΠ4 =


0.80 0.06̄ 0.06̄ 0.06̄

0.06̄ 0.80 0.06̄ 0.06̄

0.06̄ 0.06̄ 0.80 0.06̄

0.06̄ 0.06̄ 0.06̄ 0.80

 ,

for the HMMs with 2, 3 and 4 states, respectively. We fit a family of SJMs by varying λ, κ,
and K such that λ ∈ {0, 5, 10, 25, 50, 100}, κ ∈ {1, 2, 3, . . . , 10, 12, 14, 17}, and K ∈ {2, 3, 4}.

Table 4.1 presents the results of the GIC and two ARIs computed for different values
of Ktrue and T . Additionally, it presents the average count of correctly identified features
(True Positives, TP) and incorrectly identified features (False Positives, FP). Based on
these findings, it can be concluded that FTIC proves effective in selecting the three hyper-
parameters. In fact, it fails to select the correct number of latent states only when T = 300

and Ktrue = 4. BIC exhibits shortcomings in correctly selecting the number of states when
Ktrue = 2 and T is either 300 or 600, whereas it performs good when T = 1, 000. Con-
versely, AIC always fails in selecting the appropriate number of latent states when the true
count is 2. When it comes to selecting the jump penalty λ and the sparsity hyperparameter
κ, FTIC generally outperforms both AIC and BIC. The minimum FTIC values correspond
to a λ value that yields ARI({st}) = 1 in all scenarios except one (T = 300 and Ktrue = 4),
and the minimum FTIC corresponds to a κ value that maximizes ARI({ωi}) in most sce-
narios, followed by BIC. Regarding the selection of features, AIC demonstrates a tendency
to include a considerable number of false features, even in scenarios with a high number
of observations. This aligns with a common observation in regression analysis, where, with
larger sample sizes, AIC tends to include an increasing number of irrelevant explanatory
variables (Heinze et al., 2018). In contrast, FTIC adopts a more conservative approach,
selecting a substantial portion of the true features across most scenarios.

Figures 4.1, 4.2, and 4.3 display the FTIC, AIC, and BIC values for different true
numbers of latent states when T is set to 300, 600, and 1, 000, respectively. For each plot,
we vary κ (λ) within the pre-specified interval, while the value of λ (κ) is selected as the
value that minimizes the corresponding index. The results indicate that AIC and BIC
typically fails to identify the correct number of latent states when Ktrue = 2. In contrast,
FTIC performs well in almost all scenarios, showing decreasing variability as the number
of states increases. This indicates that FTIC is more precise in estimating the true number
of states compared to the other two ICs.

Based on these results, we can conclude that FTIC is preferable to the other two indexes
since it yields satisfactory results for all three hyperparameters selections, even when the
number of observations is low.
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4.3.3 Varying the self-transition probability

In this second scenario, we assess the effectiveness of the proposed ICs for varying levels
of persistence within a given state. We consider a dataset YYY consisting of T = 1, 000

observations and p = 300 features, of which 200 are false features. We set the matrices of
transition probabilities equal to

ΠΠΠ2 =

[
0.70 0.30

0.30 0.70

]
, (4.6)

ΠΠΠ3 =

 0.70 0.15 0.15

0.15 0.70 0.15

0.15 0.15 0.70

 , (4.7)

ΠΠΠ4 =


0.70 0.10 0.10 0.10

0.10 0.70 0.10 0.10

0.10 0.10 0.70 0.10

0.10 0.10 0.10 0.70

 , (4.8)

for the less persistent HMMs with 2, 3 and 4 states, respectively. The transition matrices
are equal to

ΠΠΠ2 =

[
0.90 0.10

0.10 0.90

]
, (4.9)

ΠΠΠ3 =

 0.90 0.05 0.05

0.05 0.90 0.05

0.05 0.05 0.90

 , (4.10)

ΠΠΠ4 =


0.90 0.03̄ 0.03̄ 0.03̄

0.03̄ 0.90 0.03̄ 0.03̄

0.03̄ 0.03̄ 0.90 0.03̄

0.03̄ 0.03̄ 0.03̄ 0.90

 , (4.11)

for the more persistent HMMs with 2, 3 and 4 states, respectively. We fit a sequence of
SJMs by varying λ, κ and K within the same parameter sets as the first simulation study.
We then compute the ICs for each possible combination of λ, κ, and K.

In Table 4.2, we present the results for this second simulation study, which reports the
IC values and the corresponding ARIs in the less persistent and in the more persistent
scenarios. Overall, the results show that FTIC outperforms the other two ICs, as it always
selects the correct number of latent states and produces good ARI results, except in the
less persistent scenario when Ktrue = 4. Nevertheless, we find this result satisfying as
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the objective of the study is to test the limits of the parameter settings, and assess the
performance of the proposed ICs. In fact, it is worth noting that, in practical applications,
the estimated persistence is typically around 90% (Ang and Timmermann, 2012).

FTIC is conservative in terms of the average number of selected features, as it includes
the majority of true features while incorporating only a minimal proportion, or even none
at all, of false ones. AIC and BIC face challenges when Ktrue = 2 in the less persistent
scenario. An important observation is that all ICs perform good as we increase the level of
persistence.

Figures 4.4 and 4.5 show the average estimated values of FTIC, AIC, and BIC over 100
simulation samples, as well as the corresponding confidence bands, for varying values of
πii. Once again, FTIC usually achieves the minimum value when the true number of latent
states is selected. However, in the less persistent scenario, AIC and BIC face difficulties in
accurately determining the number of latent states when Ktrue = 2. The results for AIC
are less clear due to overlapping confidence bands, making it challenging to draw definitive
conclusions.

In summary, we can conclude that FTIC outperforms other indexes in all scenarios,
even when the number of observations slightly exceed the number of features. For hyperpa-
rameter selection in the SJM framework, FTIC stands as the best choice, while BIC proves
valuable when the sample size is high. The simulation results also confirm the reliability of
the first-order approximation used in IC derivation.

4.4 An application to the MSCI and MSCIEM indexes

Regime switching models are commonly used to determine the state of financial markets
and have proven valuable in asset allocation and risk management (Ang and Timmermann,
2012; Nystrup et al., 2015, 2017, 2019; Yao et al., 2020). In this application, we use a set of
features based on daily dollar-denominated log-returns and trading volumes of the MSCI
World Index (MSCI) and MSCI Emerging Market Index (MSCIEM) to infer the states
of the global equity market. The MSCI and MSCIEM represent large and mid-cap stocks
across 23 developed markets and 24 emerging markets countries, respectively.2,3 Each index
covers approximately 85% of the free float-adjusted market capitalization in each country.

2The developed markets countries are: Australia, Austria, Belgium, Canada, Denmark, Finland, France,
Germany, Hong Kong, Ireland, Israel, Italy, Japan, Netherlands, New Zealand, Norway, Portugal, Singapore,
Spain, Sweden, Switzerland, the UK and the US. The MSCI World Index fact sheet is available at: https:
//www.msci.com/documents/10199/178e6643-6ae6-47b9-82be-e1fc565ededb.

3The emerging markets countries are: Brazil, Chile, China, Colombia, Czech Republic, Egypt, Greece,
Hungary, India, Indonesia, Korea, Kuwait, Malaysia, Mexico, Peru, Philippines, Poland, Qatar, Saudi
Arabia, South Africa, Taiwan, Thailand, Turkey and United Arab Emirates. The MSCI Emerging
Markets fact sheet is available at: https://www.msci.com/documents/10199/c0db0a48-01f2-4ba9-ad01-
226fd5678111.
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4.4. An application to the MSCI and MSCIEM indexes

With a slight abuse of notation, in the following we refer to the logarithmic difference
of a time-series as its log-return even if the time-series is not a tradable asset or security.

We compute exponentially weighted moving averages (EMA) of log-returns (r), volatil-
ities (σ) and log-returns of volumes (V ) with half-lives equal to 1, 2, 7, 14, 30 and 90 days.
We include exponentially weighted linear (ρ) and Gerber (g) (Gerber et al., 2022) correla-
tions between MSCI and MSCIEM log-returns and between log-returns and log-returns of
volumes for each index, with the same half-lives as above.

We add the following momentum-based features: the time-series momentum signal (RF)
of Moskowitz et al. (2012) with 1, 2, 7, 14, 30 and 90 daily lags; the relative strength
index (RSI) with a lag of 14, and the moving average convergence divergence minus signal
(MACDS) indicator, computed by subtracting the 26-period EMA from the 12-period EMA
and further subtracting the 9-period EMA (known as the “signal line”). Additionally, we
consider the Amihud (2002) illiquidity measure (AMIHUD) calculated as the ratio between
absolute log-returns and volumes for each index. Finally, we consider log-return of the VIX
index along with its EMAs with the same half-lives as above. We also utilize exponential
weighted linear and Gerber correlations between the VIX log-returns and log-returns for
MSCI and MSCIEM, respectively.

The final dataset consists of p = 125 features spanning for the time period4 January
30th, 1996 - March 3rd 2023, for a total number of observations T = 6, 843. We fit a
sequence of SJMs for varying λ, κ, and K, then we select the best model according to the
FTIC, computed for K0 = 3, |ααα0| = 50 and Γ0 = (1 − πii)(K0 − 1)T , with πii = 0.875.
Our choice is justified by the expectation of the practical interpretation, with an antici-
pated number of states likely to be either 2 or 3 (Guo et al., 2011; Ang and Timmermann,
2012; Dua and Tuteja, 2021). Regarding the selected features, we anticipate around 50, en-
compassing those related to volatility and cross-correlation, which aligns with prior studies
(Nystrup et al., 2020a, 2021). It is worth noting that, while the model selection procedure
remains robust to the choice of K0 and |ααα0|, it is sensitive to Γ0. Therefore, we recommend
setting this value sufficiently high, as otherwise the FTIC may opt for a higher number of
states.

Results show that the minimum FTIC corresponds to λ = 10, κ = 6, and K = 3.
The daily state-conditional means and volatilities of MSCI log-returns are -0.08%, 0.00%,
and 0.04%, and 2.57%, 1.00%, and 0.68%. Daily state-conditional means and volatilities
of MSCIEM log-returns are -0.05%, -0.02%, and 0.04%, and 2.73%, 1.20%, and 0.82%,
respectively. Moreover, the daily state-conditional pairwise correlations are 77%, 66% and
45%. Based on these findings, we can characterize each state as bear, neutral, and bull

4The MSCIEM made its debut on January 1, 2001, and data preceding this date is estimated based on
the index’s hypothetical performance during that earlier period. Please refer to the index documentation
for more details https://www.msci.com/documents/10199/c0db0a48-01f2-4ba9-ad01-226fd5678111.
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market regimes, respectively.
The sojourn times for each state are 87, 114, and 122.65 days, and the SJM spends

5.09%, 48.31%, and 46.60% of its time in each of them. Figure 4.6 depicts the cumulative
log-returns of the two indexes with the estimated states highlighted with different colours.
We underline that the model is remarkably able to track rise/drops in cumulative returns,
as increasing returns are always highlighted in green (bull state) and decreasing returns in
yellow or red (neutral and bear states).

We now examine the features selected by the SJM. Out of the original 125, 55 have been
identified as relevant, as reported in Table 4.3. EMAs for volatilities possess the highest
weights, and their state-dependent values align perfectly with the previously defined regime
characterization. EMAs for MSCI and MSCIEM log-returns with half-lives of 90 and 30
are also relevant variables, and their state-dependent values consistently decrease from the
bull to the bear state. The correlations between the log-returns of MSCI and MSCIEM
demonstrate an upward trend from the bull to the bear states. This fact is commonly
observed during periods of financial crisis, where the correlation among assets of the same
type tends to strengthen. Additionally, the correlations between the log-returns of the VIX
index and the log-returns of MSCI and MSCIEM are significant and consistently exhibit
a negative trend, declining in magnitude from bear to bull states. This pattern indicates
that an increase in market volatility corresponds to negative log-returns, as anticipated.

Table 4.4 shows feature weights categorized into groups: volatility, correlation of MSCI
and MSCIEM log-returns with VIX, momentum, and cross-correlation. The dominant
role of volatility in explaining equity markets is evident, with correlation with VIX also
contributing significantly. Momentum-related features hold a total weight of 8.01%, and
cross-correlation, specifically between MSCI and MSCIEM, accounts for 19.96%.

4.5 Discussion

We propose a modified version of the generalized information criteria to perform hyperpa-
rameter selection in the sparse statistical jump model framework. This involves rephrasing
the sparse statistical jump model into an approximate log-likelihood framework, followed by
the derivation of an expression to quantify its model complexity. Through two simulation
studies, we test the ability of FTIC, AIC, and BIC suitably modified for sparse statistical
jump models to correctly select the hyperparameter values. In the first simulation study,
varying the number of observations, we show that FTIC outperforms the other two infor-
mation criteria in correctly identifying the true number of latent states, number of relevant
features, and level of persistence within a specific state. In fact, it provides better results
in terms of the adjusted Rand index and it always selects the correct number of states and
features, except when the true number of latent states is 2 and the number of observations
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is low. BIC provides good results for sufficiently high number of observations, while AIC
tends to include a considerable number of false features. In the second simulation study,
we evaluate the performance of the proposed information criteria across different levels of
persistence. The results indicate that all information criteria deliver excellent results when
the persistence is high. However, in scenarios with low persistence, FTIC outperforms the
other two information criteria due to its more conservative approach in selecting the num-
ber of states and features. Based on these observations, we can conclude that FTIC is the
best information criterion for the sparse statistical jump model framework, given its better
performance in selecting the hyperparameters, followed by BIC.

We present an application regarding the equity market and we show that the selected
model is meaningful as it has a valid economic interpretation. In fact, each of the states
represents a different market scenario, from bull to bear, the state-jumps are coherent with
rising/falling price periods and the selected features have attractive financial explanations.

Appendices

4.A Approximate log-likelihood function for JMs

In this appendix, we derive an approximation for the log-likelihood function of statistical
jump models. We assume that data, yyy1, . . . , yyyT , have been standardized with zero mean
and unit variance.

For a sequence of distinct real numbers v1, . . . , vK ∈ R, with vi ̸= vj , for all i ̸= j,
we denote by v(1), . . . , v(K), the values of the original sequence sorted in ascending order,
v(1) < . . . < v(K).

Lemma 1 (LogSumExp). Suppose v1, . . . , vK , is a sequence of distinct real numbers. Then,

log

(
K∑
k=1

exp(vk)

)
= v(K) + log

(
1 +

K−1∑
k=1

exp
(
v(k) − v(K)

))
.

Proof. We observe that

log

(
K∑
k=1

exp(v(k))

)
= log

(
exp(v(K))

K∑
k=1

exp
(
v(k) − v(K)

))

= v(K) + log

(
K∑
k=1

exp
(
v(k) − v(K)

))

= v(K) + log

(
1 +

K−1∑
k=1

exp
(
v(k) − v(K)

))
.
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Gaussian mixture models

We consider the Gaussian mixture model (GMM, McLachlan and Peel, 2000) with proba-
bility density function given by

p(yyy) =
K∑
k=1

γkϕ (yyy;µµµk,ΣΣΣk) ,

where the k-th component, ϕ (yyy;µµµk,ΣΣΣk), is the Gaussian probability density function with
mean µµµk ∈ Rp, and covariance ΣΣΣk ∈ Rp×p

+ . γk ∈ R+ is the weight for the k-th component,
and

∑K
k=1 γk = 1. For the observations yyy1, . . . , yyyT , the resulting log-likelihood function is

given by

ℓ (γγγ,µµµ,ΣΣΣ) =
T∑
t=1

log

(
K∑
k=1

γkϕ (yyyt;µµµk,ΣΣΣk)

)
, (4.12)

where γγγ := {γ1, . . . , γK}, µµµ := {µµµ1, . . . ,µµµK}, and ΣΣΣ := {ΣΣΣ1, . . . ,ΣΣΣK}.

Proposition 1. The log-likelihood function (4.12) can be expressed as

ℓ (γγγ,µµµ,ΣΣΣ) =

T∑
t=1

(
v(K),t + log

(
1 +

K−1∑
k=1

exp
(
v(k),t − v(K),t

)))
,

where
v(i),t := C(γ(i),ΣΣΣ(i))−

1

2
(yyyt −µµµ(i))

⊤ΣΣΣ−1
(i) (yyyt −µµµ(i)) , i = 1, . . .K , (4.13)

is an ascending sequence such that

v(1),t < . . . < v(K),t , t = 1, . . . , T . (4.14)

Furthermore, C(γ(i),ΣΣΣ(i)) ∈ R depends on γ(i) and ΣΣΣ(i), but not on yyyt or µµµ(i).

Proof. By defining
exp(vk,t) := γkϕ (yyyt;µµµk,ΣΣΣk) , (4.15)
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we observe that

vk,t = log(γk) + log (ϕ (yyyt;µµµk,ΣΣΣk))

= log(γk)−
1

2
log (det (2πΣΣΣk))︸ ︷︷ ︸

Does not depend on yyyt or µµµk

−1

2
(yyyt −µµµk)

⊤ΣΣΣ−1
k (yyyt −µµµk)

= C(γk,ΣΣΣk)−
1

2
(yyyt −µµµk)

⊤ΣΣΣ−1
k (yyyt −µµµk) ,

where C(γk,ΣΣΣk) := log(γk)− 1
2 log (det (2πΣΣΣk)). For every t, the sequence {vk,t}Kk=1 is made

of distinct elements with probability one. The proof now follows immediately from Lemma
1.

K-means

The K-means algorithm simplifies the GMM, yielding a computationally less complex prob-
lem. In particular, let us consider a GMM in which all components have the same covariance,
and equal weights:

ΣΣΣk ≡ ϵIp and γk ≡ 1/K , k = 1, . . . ,K . (4.16)

It is well-known that the K-means algorithm can be derived as the limit of the EM algorithm
for this GMM, as ϵ → 0 (Bishop, 2006). It follows from Bishop (2006, Sec. 9.3.2), that the
K-means algorithm finds the solution to

µ̂µµ = argmax

T∑
t=1

v(K),t = argmin

T∑
t=1

min
k

∥yyyt −µµµk∥22 ,

where µ̂µµ := {µ̂µµ1, . . . , µ̂µµK} are the K-means centroids. This expression is remarkably similar
to the one in Nystrup et al. (2020c),

µ̂µµK-means = argmin
T∑
t=1

∥yyyt −µµµst∥22 ,

where {st} is the latent state sequence. Below, we will use this result to derive an approx-
imate log-likelihood function for JMs.

Proposition 2. An approximate log-likelihood function for the K-means model is given by

ℓ (γγγ,µµµ) =

T∑
t=1

v(K),t ,
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where
vk,t := C(γk,ΣΣΣk)−

1

2
(yyyt −µµµk)

⊤ΣΣΣ−1
k (yyyt −µµµk) , i = 1, . . .K . (4.17)

Furthermore, C(γk,ΣΣΣk) ∈ R depends on γk and ΣΣΣk, but not on yyyt or µµµk.

Proof. By substituting (4.16) into formula (4.17), we obtain

vk,t = log(γk)−
1

2
log (det (2πΣΣΣk))−

1

2
(yyyt −µµµk)

⊤ΣΣΣ−1
k (yyyt −µµµk)

= Cϵ −
1

2ϵ
dk,t ,

where Cϵ := C(1/K, ϵIp), for all k, and dk,t := ∥yyyt−µµµk∥22, is the quadratic distance between
observation yyyt, and centroid µµµk. By arranging the sequence {dk,t}Kk=1 in ascending order,
d(1),t < . . . < d(K),t, it follows that

v(K),t = Cϵ −
1

2ϵ
d(1),t ,

and
v(k),t − v(K),t =

1

2ϵ

(
d(1),t − d(K−k+1),t

)
, k = 1, . . . ,K − 1 .

Clearly, d(1),t − d(K−k+1),t < 0, for all k < K, which implies that v(k),t − v(K),t → −∞, and
consequently, exp(v(k),t − v(K),t) → 0, as ϵ ↓ 0. Therefore,

log

(
K∑
k=1

exp(v(k),t)

)
= v(K),t + log

(
1 +

K−1∑
k=1

exp
(
v(k),t − v(K),t

))
→ v(K),t as ϵ ↓ 0 .

Approximating the log-likelihood function

The SJM algorithm in Nystrup et al. (2021) closely resembles the K-means algorithm when
computing the centroids µ̂µµK-means. The assumptions used in the K-means derivations, using
Lemma 1, provide a data compression argument that reduces the sum across all K com-
ponents in the mixture to only the most important single component. The corresponding
approximation of the log-likelihood function is given by

ℓ̂ (γγγ,µµµ,ΣΣΣ) =
T∑
t=1

v(K),t.
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For the SJM, we recall that the data is standardized. Hence, we propose to use this first
order approximation of the log-likelihood function, but evaluating it using γk = 1/K and
Σk = Ip, arriving at

ℓ̂(µµµ) =
T∑
t=1

(
− log(K)− p

2
log(2π)− 1

2
min
k

∥yyyt −µµµk∥22
)

= T
(
− log(K)− p

2
log(2π)

)
−

T∑
t=1

1

2
min
k

∥yyyt −µµµk∥22.

It should be clear that the argument maximizing this equation is the same as the K-means
estimate of the centroids. However, the additional terms does have implications for the value
of the log-likelihood function when varying the number of states, K, and the dimension, p.

4.B Adjusted Rand index

In this appendix, we provide some details on the adjusted Rand index (ARI, Hubert and
Arabie, 1985). ARI measures the degree of overlapping between two grouping of partitions:
Gm = {Gm

1 , . . . , Gm
h }, obtained with a clustering algorithm on a set of n elements, and

Gr = {Gr
1, . . . , G

r
l }, interpreted as the real clustering. Given the following contingency

table
Gm

1 Gm
2 · · · Gm

h

∑h
j=1 nij

Gr
1 n11 n12 · · · n1h a1

Gr
2 n21 n22 · · · n2h a2
...

...
...

. . .
...

...
Gr

l nl1 nl2 · · · nlh al∑l
i=1 nij b1 b2 · · · bh n

ARI(Gr, Gm) is obtained as proposed in Das and Biswas (2023)

ARI (Gr, Gm) =

∑
ij

(nij

2

)
−

[∑
i (

ai
2 )

∑
j (

bj
2
)
]

(n2)

1
2

[∑
i

(
ai
2

)
+
∑

j

(bj
2

)]
−

[∑
i (

ai
2 )

∑
j (

bj
2
)
]

(n2)

.

Here, nij represents the count of shared elements within clusters Gm
i and Gr

j , while ai

aggregates all nij values linked to any Gr
j in Gr and all Gm

i in Gm. Similarly, bj sums all
nij values related to any Gm

i in Gm and all Gr
j in Gr.
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Table 4.1: Simulation results for the minimum FTIC, AIC, and BIC and the corresponding
λ, κ, and K for varying number of true latent states Ktrue when the number of observa-
tions T is equal to 300 (a) 600 (b) and 1,000 (c). Value refers to the averages across 100
simulations of the estimated value of the reported IC, and ARI({ŝt}) and ARI({ωi}) are
the average ARIs computed between true and estimated sequences of states, and between
true and estimated sequences of active features, respectively. TP (true positives) and FP
(false positives) are the average numbers of correctly selected and wrongly selected features,
respectively.

(a) T = 300

Ktrue IC Value λ κ K ARI({ŝt}) ARI({ωi}) TP FP

FTIC 44.08 5.00 7.00 2 1.00 0.55 63.38 0.00
2 AIC 34.55 5.00 12.00 4 0.53 0.00 99.85 197.81

BIC 44.72 5.00 12.00 4 0.53 0.00 99.85 197.81

FTIC 9.82 5.00 8.00 3 1.00 0.73 78.52 0.00
3 AIC 15.38 5.00 9.00 3 1.00 0.74 97.66 22.48

BIC 13.23 5.00 8.00 3 1.00 0.73 78.52 0.00

FTIC -18.21 25.00 1.00 2 0.07 0.01 0.99 0.01
4 AIC -2.93 5.00 9.00 4 1.00 0.93 94.68 0.00

BIC -9.12 5.00 9.00 4 1.00 0.93 94.68 0.00

(b) T = 600

Ktrue IC Value λ κ K ARI({ŝt}) ARI({ωi}) TP FP

FTIC 43.55 5.00 7.00 2 1.00 0.55 63.43 0.00
2 AIC 35.57 5.00 12.00 4 0.53 0.00 99.96 198.86

BIC 43.00 5.00 12.00 4 0.53 0.00 99.96 198.86

FTIC 7.84 5.00 8.00 3 1.00 0.72 78.26 0.00
3 AIC 12.69 5.00 9.00 3 1.00 0.78 97.88 22.16

BIC 10.53 5.00 9.00 3 1.00 0.78 97.88 22.16

FTIC -19.68 5.00 9.00 4 1.00 0.93 94.45 0.00
4 AIC -5.69 5.00 9.00 4 1.00 0.93 94.45 0.00

BIC -12.86 5.00 9.00 4 1.00 0.93 94.45 0.00

(c) T = 1, 000

Ktrue IC Value λ κ K ARI({ŝt}) ARI({ωi}) TP FP

FTIC 43.14 5.00 7.00 2 1.00 0.55 63.33 0.00
2 AIC 40.08 5.00 12.00 4 0.54 0.00 100.00 199.98

BIC 43.44 5.00 7.00 2 1.00 0.55 63.33 0.00

FTIC 7.00 5.00 9.00 3 1.00 0.77 97.83 26.44
3 AIC 11.72 5.00 9.00 3 1.00 0.77 97.83 26.44

BIC 9.16 5.00 9.00 3 1.00 0.77 97.83 26.44

FTIC -21.55 5.00 9.00 4 1.00 0.93 94.47 0.00
4 AIC -6.94 5.00 9.00 4 1.00 0.93 94.47 0.00

BIC -14.88 5.00 9.00 4 1.00 0.93 94.47 0.00
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(a)

(b)

(c)

Figure 4.1: FTIC, AIC, and BIC of the SJM from 100 simulations each of length T = 300
for different values of λ and κ. Panel (a)–(c) depict the average ICs and their ±2 standard
deviation confidence bands when the true number of latent states (Ktrue) is equal to 2, 3,
and 4, respectively.

111



Chapter 4. Generalized information criteria for sparse statistical jump
models

(a)

(b)

(c)

Figure 4.2: FTIC, AIC, and BIC of the SJM from 100 simulations each of length T = 600
for different values of λ and κ. Panel (a)–(c) depict the average ICs and their ±2 standard
deviation confidence bands when the true number of latent states (Ktrue) is equal to 2, 3,
and 4, respectively.
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(a)

(b)

(c)

Figure 4.3: FTIC, AIC, and BIC of the SJM from 100 simulations each of length T = 1, 000
for different values of λ and κ. Panel (a)–(c) depict the average ICs and their ±2 standard
deviation confidence bands when the true number of latent states (Ktrue) is equal to 2, 3,
and 4, respectively.
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Table 4.2: Simulation results for the minimum FTIC, AIC, and BIC and the corresponding
λ, κ, and K for varying number of true latent states Ktrue, in the less persistent (a) and
more persistent (b) HMM setups. Value refers to the averages across 100 simulations of the
estimated value of the reported IC, and ARI({ŝt}) and ARI({ωi}) are the average ARIs
computed between true and estimated sequences of states, and between true and estimated
sequences of active features, respectively. TP (true positives) and FP (false positives) are
the average numbers of correctly selected and wrongly selected features, respectively.

(a) Less persistent HMM

Ktrue IC Value λ κ K ARI({ŝt}) ARI({ωi}) TP FP

FTIC 42.98 5.00 7.00 2 1.00 0.55 63.45 0.00
2 AIC 37.56 5.00 9.00 4 0.52 0.17 82.78 73.94

BIC 42.41 5.00 9.00 4 0.52 0.17 82.78 73.94

FTIC 3.12 5.00 9.00 3 1.00 0.79 97.82 23.13
3 AIC 10.72 5.00 9.00 3 1.00 0.79 97.82 23.13

BIC 6.59 5.00 9.00 3 1.00 0.79 97.82 23.13

FTIC -33.00 5.00 6.00 2 0.35 0.48 56.68 0.00
4 AIC -8.72 5.00 9.00 4 1.00 0.93 94.46 0.00

BIC -20.63 5.00 9.00 4 1.00 0.93 94.46 0.00

(b) More persistent HMM

Ktrue IC Value λ κ K ARI({ŝt}) ARI({ωi}) TP FP

FTIC 43.59 5.00 7.00 2 1.00 0.55 63.43 0.00
2 AIC 43.52 5.00 8.00 2 1.00 0.59 91.83 54.96

BIC 43.89 5.00 7.00 2 1.00 0.55 63.43 0.00

FTIC 11.16 5.00 9.00 3 1.00 0.78 98.02 27.99
3 AIC 13.14 5.00 9.00 3 1.00 0.78 98.02 27.99

BIC 12.06 5.00 9.00 3 1.00 0.78 98.02 27.99

FTIC -11.67 10.00 9.00 4 0.99 0.93 94.43 0.00
3 AIC -4.29 5.00 9.00 4 1.00 0.92 94.54 2.00

BIC -8.28 5.00 9.00 4 1.00 0.92 94.54 2.00
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(a)

(b)

(c)

Figure 4.4: FTIC, AIC, and BIC of the SJM from 100 simulations each of length T = 1, 000
of a less persistent HMM with transition probabilities given by Equations (4.6), (4.7) and
(4.8). Panel (a)–(c) depict the average ICs and their ±2 standard deviation confidence
bands for different values of λ and κ when the true number of latent states (Ktrue) is equal
to 2, 3, and 4, respectively.
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(a)

(b)

(c)

Figure 4.5: FTIC, AIC, and BIC of the SJM from 100 simulations each of length T = 1, 000
of a more persistent HMM with transition probabilities given by Equations (4.9), (4.10) and
(4.11). Panel (a)–(c) depict the average ICs and their ±2 standard deviation confidence
bands for different values of λ and κ when the true number of latent states (Ktrue) is equal
to 2, 3, and 4, respectively.
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Figure 4.6: Cumulative log-returns of MSCI and MSCIEM with the state sequence of the
best SJM as determined by FTIC.
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Table 4.3: Selected features along with relative weights and state-conditional values. All
values are expressed as percentage.

Feature Weight Bear Neutral Bull

EMA14(σMSCI) 4.10 2.36 0.94 0.64
EMA30(σMSCIEM) 4.07 2.42 1.17 0.82
EMA14(σMSCIEM) 4.00 2.54 1.15 0.78
EMA30(σMSCI) 3.93 2.21 0.97 0.67
ρ30(rMSCIEM, rVIX) 3.91 -51.36 -42.20 -21.63
g90(rMSCIEM, rVIX) 3.91 -20.07 -17.09 -10.12
ρ90(rMSCIEM, rVIX) 3.80 -48.43 -40.84 -26.21
EMA7(σMSCI) 3.78 2.38 0.93 0.62
EMA7(σMSCIEM) 3.55 2.55 1.13 0.77
g30(rMSCIEM, rVIX) 3.16 -23.32 -18.59 -9.54
EMA90(σMSCIEM) 3.07 2.04 1.19 0.90
ρ14(rMSCIEM, rVIX) 3.05 -50.85 -42.19 -19.19
ρ30(rMSCI, rMSCIEM) 3.03 76.39 67.95 51.21
g90(rMSCI, rMSCIEM) 3.02 36.33 30.81 24.36
EMA2(σMSCI) 2.84 2.31 0.89 0.60
g30(rMSCI, rMSCIEM) 2.69 40.57 33.38 24.15
ρ14(rMSCI, rMSCIEM) 2.66 76.64 68.01 49.33
EMA90(σMSCI) 2.58 1.79 0.99 0.75
ρ90(rMSCI, rMSCIEM) 2.58 75.62 67.23 54.95
EMA2(σMSCIEM) 2.53 2.47 1.08 0.74
EMA90(rMSCI) 2.31 -0.13 0.01 0.05
g14(rMSCIEM, rVIX) 2.30 -26.40 -20.20 -9.14
EMA1(σMSCI) 2.26 2.24 0.86 0.58
ρ7(rMSCIEM, rVIX) 2.04 -49.81 -41.66 -17.61
ρ7(rMSCI, rMSCIEM) 2.03 76.57 67.84 47.78
EMA90(rMSCIEM) 1.94 -0.19 -0.00 0.05
EMA1(σMSCIEM) 1.93 2.39 1.05 0.71
g14(rMSCI, rMSCIEM) 1.68 40.65 35.38 24.99
ρ90(rMSCI, rVIX) 1.49 -76.35 -73.77 -65.96
EMA30(rMSCI) 1.48 -0.20 0.01 0.05
g7(rMSCIEM, rVIX) 1.45 -25.33 -21.65 -7.96
EMA90(rVIX) 1.44 0.36 0.02 -0.05
ρ30(rMSCI, rVIX) 1.44 -79.61 -75.10 -66.04
ρ14(rMSCI, rVIX) 1.06 -79.42 -75.22 -65.10
g7(rMSCI, rMSCIEM) 1.06 41.47 36.77 24.98
EMA30(rMSCIEM) 1.05 -0.27 -0.01 0.06
g90(rMSCI, rVIX) 0.86 -39.06 -33.80 -29.74
ρ2(rMSCI, rMSCIEM) 0.77 75.99 66.33 44.61
g30(rMSCI, rVIX) 0.67 -41.45 -36.48 -31.93
ρ7(rMSCI, rVIX) 0.62 -78.64 -74.73 -64.12
g14(rMSCI, rVIX) 0.57 -43.75 -37.76 -31.92
ρ2(rMSCIEM, rVIX) 0.55 -48.64 -39.14 -15.78
EMA14(rMSCI) 0.54 -0.20 0.01 0.05
EMA30(rVIX) 0.38 0.54 0.02 -0.06
EMA14(rMSCIEM) 0.30 -0.25 -0.01 0.06
ρ1(rMSCI, rMSCIEM) 0.29 74.08 64.20 42.17
g2(rMSCIEM, rVIX) 0.26 -24.86 -22.00 -7.65
g7(rMSCI, rVIX) 0.23 -43.53 -39.44 -32.58
RF(rMSCIEM) 0.20 -0.47 -0.04 0.06
RF(rMSCI) 0.17 -0.45 -0.00 0.05
g2(rMSCI, rMSCIEM) 0.15 40.66 37.26 24.87
ρ1(rMSCIEM, rVIX) 0.14 -47.59 -36.87 -14.54
ρ90(vMSCIEM, rMSCIEM) 0.05 3.84 0.09 2.97
EMA7(rMSCI)) 0.02 -0.18 0.00 0.05
ρ2(rMSCI, rVIX) 0.01 -76.93 -72.11 -61.73



4.B. Adjusted Rand index

Table 4.4: Weights distribution and average state-conditional values by group of features.
All values are expressed as percentage.

Group Weight Bear Neutral Bull

Volatility 38.64 2.31 1.03 0.72
Correlation with VIX 31.52 -48.77 -43.04 -30.42
Cross-correlation 19.96 59.54 52.29 37.58
Momentum 8.01 -0.26 0.00 0.05

119



Chapter 4. Generalized information criteria for sparse statistical jump
models

Bibliography

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions
on Automatic Control, 19:716–723.

Amihud, Y. (2002). Illiquidity and stock returns: Cross-section and time-series effects.
Journal of Financial Markets, 5:31–56.

Ang, A. and Timmermann, A. (2012). Regime changes and financial markets. Annual
Review of Financial Economics, 4:313–337.

Bartolucci, F., Farcomeni, A., and Pennoni, F. (2013). Latent Markov Models for Longitu-
dinal Data. Chapman & Hall/CRC Press, Boca Raton, FL.

Bartolucci, F., Farcomeni, A., and Pennoni, F. (2014). Latent Markov models: A review of a
general framework for the analysis of longitudinal data with covariates. Test, 23:433–465.

Bemporad, A., Breschi, V., Piga, D., and Boyd, S. P. (2018). Fitting jump models. Auto-
matica, 96:11–21.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer, New York,
NY.

Chen, J. and Chen, Z. (2008). Extended Bayesian information criteria for model selection
with large model spaces. Biometrika, 95:759–771.

Chen, Y., Mabu, S., Shimada, K., and Hirasawa, K. (2009). A genetic network program-
ming with learning approach for enhanced stock trading model. Expert Systems with
Applications, 36:12537–12546.

Das, S. and Biswas, A. (2023). Chapter four - Analyzing correlation between quality and ac-
curacy of graph clustering. In Patgiri, R., Deka, G. C., and Biswas, A., editors, Principles
of Big Graph: In-depth Insight, volume 128 of Advances in Computers, pages 135–163.
Elsevier.

Dua, P. and Tuteja, D. (2021). Regime shifts in the behaviour of international currency
and equity markets: A Markov-switching analysis. Journal of Quantitative Economics,
19:309–336.

Fan, Y. and Tang, C. Y. (2013). Tuning parameter selection in high dimensional penalized
likelihood. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
75:531–552.

120



Bibliography

Gerber, S., Markowitz, H. M., Ernst, P. A., Miao, Y., Javid, B., and Sargen, P. (2022). The
Gerber statistic: A robust co-movement measure for portfolio optimization. The Journal
of Portfolio Management, 48:87–102.

Guo, F., Chen, C. R., and Huang, Y. S. (2011). Markets contagion during financial crisis:
A regime-switching approach. International Review of Economics & Finance, 20:95–109.

Hannan, E. J. and Quinn, B. G. (1979). The determination of the order of an autoregression.
Journal of the Royal Statistical Society: Series B (Methodological), 41:190–195.

Heinze, G., Wallisch, C., and Dunkler, D. (2018). Variable selection–A review and recom-
mendations for the practicing statistician. Biometrical journal, 60:431–449.

Hubert, L. and Arabie, P. (1985). Comparing partitions. Journal of Classification, 2:193–
218.

Hutter, F., Kotthoff, L., and Vanschoren, J. (2019). Automated Machine Learning: Methods,
Systems, Challenges. Springer Nature.

Konishi, S. and Kitagawa, G. (2008). Information Criteria and Statistical Modeling.
Springer, New York, NY.

McLachlan, G. and Peel, D. (2000). Finite Mixture Models. New York: Wiley.

Moskowitz, T. J., Ooi, Y. H., and Pedersen, L. H. (2012). Time-series momentum. Journal
of Financial Economics, 104:228–250.

Nystrup, P., Boyd, S., Lindström, E., and Madsen, H. (2019). Multi-period portfolio
selection with drawdown control. Annals of Operations Research, 282:245–271.

Nystrup, P., Hansen, B. W., Madsen, H., and Lindström, E. (2015). Regime-based versus
static asset allocation: Letting the data speak. Journal of Portfolio Management, 42:103–
109.

Nystrup, P., Kolm, P. N., and Lindström, E. (2020a). Greedy online classification of per-
sistent market states using realized intraday volatility features. The Journal of Financial
Data Science, 2:25–39.

Nystrup, P., Kolm, P. N., and Lindström, E. (2021). Feature selection in jump models.
Expert Systems with Applications, 184:115558.

Nystrup, P., Lindström, E., and Madsen, H. (2020b). Hyperparameter optimization for
portfolio selection. The Journal of Financial Data Science, 2:40–54.

121



Chapter 4. Generalized information criteria for sparse statistical jump
models

Nystrup, P., Lindström, E., and Madsen, H. (2020c). Learning hidden Markov models with
persistent states by penalizing jumps. Expert Systems with Applications, 150:113307.

Nystrup, P., Madsen, H., and Lindström, E. (2017). Long memory of financial time-series
and hidden markov models with time-varying parameters. Journal of Forecasting, 36:989–
1002.

Rydén, T. (2008). EM versus Markov Chain Monte Carlo for estimation of hidden Markov
models: A computational perspective. Bayesian Analysis, 3:659–688.
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