
Can wearable technologies contribute to an age-friendly
walkability environment? First insights from a systematic review

of the literature
Frida Milella, Michela Oltolini, Stefania Bandini

University of Milano-Bicocca, Department of Informatics, Systems and Communication (DISCo)
Milano, Italy

ABSTRACT
Research on wearable devices and sensors applied to older adults
has witnessed significant growth, primarily focusing on health mon-
itoring but also on researching real-world applications of urban
walking, specifically, walkability. The use of pedestrians’ bodily
responses to the environment, known as the people-centric sensing
strategy, has been demonstrated to be more suitable for detecting
challenging environmental conditions and enhancing walkability.
However, the extent to which such data may accurately pinpoint
environmental distress in a particular demographic, such as older
adults, has not been thoroughly investigated. The purpose of this in-
progress systematic review of the literature is to outline the strategy
employed and highlight some preliminary findings on the use of
wearable sensors or sensor-based technologies in gathering the bod-
ily responses of older adults and/or their family caregivers to stimuli
originating from real urban walking scenarios. Our preliminary
findings showed that the current research on usingwearable devices
to detect bodily responses in older adults (or informal caregivers)
population in relation to walkability in outdoor environments tends
to exhibit a uniform strategy, that is, collecting physiological and
location data from older adults through controlled outdoor walking
routes using wrist-wearable and GPS; training supervised classifiers
to differentiate between physiological stress and non-stress signals
to environmental conditions of external interaction; and finally,
using hotspot analysis to group together individual physiological
responses in areas with high-stress interactions with the external
environment using GIS. Although the body of literature appears to
be still in its early stages, using wearable sensors and a GIS-based
approach could be a promisingmethod for spatio-temporally captur-
ing people’s direct bodily responses to the environmental stressors,
and this offer rooms for potential integration of simulation-based
models into Digital Twins environments with GIS-based analysis
to further enhance our understanding of older adults mobility in
urban settings. However, our preliminary findings indicates a gap
in the research regarding the detection of bodily responses to stim-
uli on outdoor walking paths using wearable sensors, specifically
among informal carers.
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1 INTRODUCTION
Research on wearable devices and sensors applied to older adults
has witnessed significant growth, primarily focusing on health mon-
itoring but also on researching real-world applications of urban
walking, specifically, walkability (e.g., [2, 3, 41]). This emerging
field aims to improve the quality of life for older adults by monitor-
ing their movements and collecting valuable data to gain a deeper
understanding of their perception of the environment (e.g., [19]).
Indeed, the increasing number of older adults in our society has
brought attention to the issue of senior mobility [14]. Older adults
mobility, referring to an individual’s ability to achieve access to
preferred people or locations [29, 34], is a crucial determinant of
their quality of life [29]. As individuals age, their mobility tends
to decline, leading to increased reliance on urban services that are
easily accessible by walking [4, 31]. Therefore, an age-friendly envi-
ronment should prioritise the provision of urban facilities that are
conveniently located within a walkable distance [4]. Nevertheless, a
crucial first step in promoting a walkable environment is to identify
environmental issues that may limit a person’s ability to access and
utilise the outdoor environment [16, 44]. The use of pedestrians’
bodily responses to the environment, known as the people-centric
sensing strategy [16, 44], has been demonstrated to be more suitable
for detecting challenging environmental conditions and enhancing
walkability [26, 44]. Bodily responses refer to the natural and in-
voluntary physiological, behavioural, and cognitive reactions that
humans display when they interact with a stimuli in their environ-
ment [44]. Recently, there has been a growing body of research that
has utilised wireless sensors worn on the wrist to monitor physio-
logical signals of humans in real-world environments (e.g.,[11, 42])
[43]. However, the extent to which such data may accurately pin-
point environmental distress in a particular demographic, such as
older adults, has not been thoroughly investigated [1].
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The purpose of our systematic review is to investigate the use of
wearable sensors or sensor-based technologies in gathering the bod-
ily responses of older adults and/or their family caregivers to stimuli
originating from real urban walking scenarios. A previous system-
atic literature review [35] found that sensor-based technologies
are primarily used indoors as part of an intervention approach to
support older adults in aging in place and family caregivers in their
supervision duties. Moreover, a similar review [36] found that the
use of advanced technological interventions to create age-friendly
outdoor areas can provide further assistance to informal carers who
support adults in need of care. Hence, incorporating informal car-
ers, also known as unpaid or family caregivers, into our analysis’s
target population could provide valuable insights into the ongoing
discourse on age-friendly environments. Accessibility to care is
indeed currently being discussed in a user-centered context and is
being integrated with a personal mobility dimension [30] that refers
to measures of the age-friendliness of the urban environment based
on the concept of walkability [4]. Therefore, learning about how
the current research address the use of wearable sensors or sensor-
based technology to collect physiological, behavioral, or cognitive
responses of older adults and/or their family caregivers throughout
outdoor walks may offer also valuable insights for enhancing the
physical accessibility to care. Since this study is currently in the
process of reviewing existing literature, it will outline the strategy
employed for the systematic review and highlight some preliminary
findings. The paper is structured as follows: Section 2 describes the
methodology used in this study; Section 3 presents the preliminary
results of the study, while Section 4 offers a concise summary of
the main findings and some closing remarks. Section 5 describes
future steps for the review study.

2 METHODS
This section outlines the methodology used to carry out this study.
A systematic review of the literature (SRL) was chosen as review
approach to address the following research questions, as it is a com-
monly employed approach for identifying, evaluating, and combin-
ing all available evidence pertaining to a certain research question
with explicit and systematic methods [17, 21]. The review protocol
was defined following the guidelines by Moher et al [37]; as the
review of the literature is still in progress, this study will only out-
line the methodological steps required to present the preliminary
findings currently available.

2.1 Research questions
The following research questions were formulated to aid in con-
ducting the literature review for this study:

(1) What are the main studies on wearable sensors or sensor-based
technology utilized for gathering data from older adults or
their family caregivers in real urban walking scenarios? ;

(2) What are the main stimuli and responses collected by wearable
sensors or sensor-based technologies that are currently used to
study the personal mobility of older adults or their informal
caregivers?

2.2 Search strategy
The SLR was conducted using the Scopus database that is currently
the largest existing multidisciplinary database [10]. The question
regarding the essential databases for retrieving all pertinent refer-
ences in a systematic review remains unresolved [8]. Prior research
has examined the additional benefit of multiple databases in re-
view studies [8]: some studies have investigated the sufficiency of
searching a single database, and have found that searching multiple
databases does not impact the results (e.g., [48]), while alternative
research has determined that depending solely on one database is
insufficient for obtaining all the essential references for systematic
reviews (e.g.,[7]). Developing a search strategy involves balancing
comprehensiveness and relevancy, but the decision on the level of
effort put into the search strategy also depends on the topic of the
review [20]. Considering the cross-relevance of our topic in mul-
tiple field, employing a bibliographic database that encompasses
multiple fields can be deemed suitable. Nonetheless, the Scopus
database covers a wide range of highly-cited documents in the field
of Engineering and Computer Science [33], making it suitable for
researching wearable technologies in the context of human health
monitoring [12]. The first reviewer (FM) conducted the search on
the Scopus database using the final search string on December 26,
2023. The database search was conducted on the title, abstract, and
keywords, with a restriction to publications from 2000 to 2023, in-
cluding only journal articles and conference papers. The search
was also restricted to articles published in the English language. A
total of 4214 articles were found. Table 1 displays the search string
employed for querying the digital source.

Table 1: Search query

Query Database
((TITLE-ABS-KEY("wearable sens*") OR TITLE-
ABS-KEY("wearable") OR TITLE-ABS-KEY("sens*")))
AND ((TITLE-ABS-KEY("physiolog*") OR TITLE-
ABS-KEY("behav*") OR TITLE-ABS-KEY("cognitive")
OR TITLE-ABS-KEY("physiolog* response*") OR
TITLE-ABS-KEY("behav* response*") OR TITLE-
ABS-KEY("cognitive response*") OR TITLE-ABS-
KEY("bodily response*"))) AND ((TITLE-ABS-
KEY("outdoor*") OR TITLE-ABS-KEY("outdoor
environment") OR TITLE-ABS-KEY ("built envi-
ronment") OR TITLE-ABS-KEY("environment") OR
TITLE-ABS-KEY("outdoor mobility") OR TITLE-ABS-
KEY("mobility") OR TITLE-ABS-KEY("walkability")
OR TITLE-ABS-KEY("walk*"))) AND ((TITLE-ABS-
KEY("older adult*") OR TITLE-ABS-KEY("older
people") OR TITLE-ABS-KEY("elderly") OR TITLE-
ABS-KEY("senior*") OR TITLE-ABS-KEY("informal
caregiver*") OR TITLE-ABS-KEY("unpaid care-
giver*")))

Scopus

2.3 Selection criteria
Criteria for inclusion and exclusion were chosen according to the
research goals of the study. The studies included in the subsequent
analysis were selected based on their adherence to the following
inclusion criteria:

(1) The target population was older adults (aged over 65) or
informal caregivers;
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(2) The article used wearable-sensors or sensor-based technolo-
gies to gather bodily responses (ie physiological, behavioural
or cognitive responses) of the target population against walk-
ability in a real outdoor environment.

Conversely, the articles were excluded if they met any of the subse-
quent exclusion criteria:

(1) The targeted population was exclusively composed of people
aged less than 65 or without any caregiving responsibility;

(2) The article exclusively employed non-wearable or non-sensor-
based technologies;

(3) The article measured bodily responses which are not strictly
responses to stimuli derived from the walkable outdoor en-
vironment or for the purpose of getting insights on walkable
outdoor settings;

(4) The article measured the bodily responses of the target popu-
lation against walkability not in a real outdoor environment;

(5) The article focused on the usability or qualitative appraisal
of the use of wearable-sensors or sensor-based technologies
even though in the context of interest;

(6) Articles were reviews, book proceedings, theoretical frame-
works, editorial, letters.

2.4 Study selection
The first reviewer (FM) retrieved all the detected articles from the
database and uploaded them to the web-based tool Rayyan [38] to
facilitate the process of identifying and removal of duplicates. Dupli-
cates were removed using the systematic auto resolver, an AI-based
function integrated into Rayyan that automates the deduplication
process according to the reviewer-defined criteria for resolving
duplicates. The resolving criteria for this study included the title,
authors, and DOI, which remained unchanged throughout the pro-
cess. The minimal threshold for articles similarity was first set at
95%, and later raised to 100% to conduct two consecutive iterations.
Eighteen remaining articles that did not meet the deletion criteria
were manually reviewed for similarity.

Title and abstract screening phase of the study selection process
was then executed via ASReview (version 1.4) [46], an AI tool-
assisted screening system using active learning approach. Active
learning is a machine learning approach where a model has the abil-
ity to select specific data points, such as records obtained through
systematic search, for learning purposes [27]. While traditional ma-
chine learning approaches require previously labelled data, active
learning actively questions the user to classify a desirable and rele-
vant subset of the data, achieving comparable performance with less
labelled data [40]. Active learning models are particularly suitable
for the screening step in systematic reviews because of the availabil-
ity of huge unlabeled datasets [18], as proven by their growing use
in academic literature (e.g., [23, 24, 49, 51]). A recent research by
Wang et al. [50] revealed that human reviewers have an error rate
of 10.76% during abstract screening (equivalent to approximately
one error in every nine abstracts), with variations ranging from
5.76% to 21.11% across different clinical areas and question types.
Therefore, automating or semi-automating the process of title and
abstract screening is a potentially beneficial step in the review pro-
cess [5, 45] in light of the error-prone [46] and time-consuming

nature of systematic reviewing [9, 46]. ASReview employs an ac-
tive research-in-the-loop machine learning algorithm to prioritize
articles based on their likelihood of meeting the inclusion criteria
using text mining [47]. When used alongside well-selected stopping
criteria, it can effectively decrease the number of papers that need
to be reviewed, while also minimizing the risk of overlooking any
important studies [52]. Therefore, implementing active learning
in screening prioritizing enables substantial time savings [18] and
enhancing the overall quality of the review screening [23], since
the reviewer can choose to halt screening once a sufficient number
of relevant publications have been identified [53].

Two reviewers worked independently on the title and abstract
screening phase, which was organized into three steps. First, the
first reviewer uploaded the set of articles with duplicates removed to
EndNote (version 2.4) for the purpose of a cross-verification, that is
a critical step prior to employing the AI tool for the filtering of titles
and abstracts [47]. No further deduplication was required. How-
ever, an additional 46 records, which had already been classified as
document types to be excluded in Scopus, were eliminated. This
additional cross-check process against the exclusion criteria was
necessary due to Rayyan’s no option for selecting exclusion fields
other than keywords. The resulting dataset articles was uploaded
to ASreview.

Second, the algorithm was trained by the first reviewer using
a set of labeled examples. This collection consisted of 7 papers
that were classified as "relevant" and an additional set of 10 pa-
pers that were classified as "irrelevant". The anchoring documents
were identified during the initial search conducted in Scholar on
the topic, while the irrelevant papers were selected from the ones
randomly suggested by ASReview based on the uploaded dataset.
Once the prior knowledge was established for training, the first
reviewer implemented the active learning model by selecting a fea-
ture extraction approach, a classifier, a query strategy, and a balance
strategy. Considering the low computation time [46], the default
settings were chosen. This includes using the frequency-inverse
document frequency (TF-IDF) for the feature extraction strategy, the
naive-Bayes as classifier, the certainty-based sampling (maximum in
ASReview [46]) for the query strategy and the dynamic resampling
to deal with the unbalancedness of the data. After being trained
using labeled examples, ASReview generated an initial ranking of
unlabelled articles based on their probability of relevance, with the
highest-ranked articles being the most likely to be relevant [47].
The first reviewer evaluated and categorized the highest-ranked
article according to the inclusion criteria (see Section 2.3). Hence,
a new model was trained based on those additional information,
subsequently resulting in a updated ranking and the identification
of a new top-ranked article the first reviewer again evaluated and
categorized for its pertinence. The process of AI generating rank-
ings and the first reviewer making decisions was iterated until a
specified data-driven halting condition of consecutive irrelevant
articles was met. A user-specified optimal halting criterion has not
been established in the literature; however, a considerable number
of the articles retrieved on the subject employ values varying from
50 (e.g., [6, 23, 49]) to 100 consecutive irrelevant articles (e.g., [47])
or set the cut-off value between 5% (e.g., [51]) and 10% (e.g., [52]) of
the dataset. In light of the substantial amount of data generated by
the search string, a 10% threshold value (394 consecutive excluded
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papers) was deemed suitable for determining when to stop the
process, as it might be an acceptable trade-off between screening
efficiency and accuracy. The stopping criterion was met when 862
articles (22% of the total dataset) were labeled.

Third, to ensure the accuracy of the selection process, the second
reviewer (MO) performed a cross-check of the selection process
using 20% of the labeled articles (172 articles) that were extracted
at random and examined for title and abstract, as suggested in
other studies on the topic [23, 47]. Inter-reviewer agreement in
study identification was assessed using Cohen’s kappa statistic
[13], which quantifies the level of agreement beyond what would be
expected by chance alone [15]. This statistic is commonly employed
when two raters are involved and there are two categories [32]. The
inter-rater agreement was 0.988, with a Cohen’s kappa coefficient of
0.894 (z-score = 11.8, p=0), indicating a very good level of agreement
[13]. Hence, it can be inferred that the algorithm was properly
trained by the first reviewer. The analysis was performed in RStudio
(version 4.2.1).

The first reviewer and the second reviewer separately analyzed
the whole text of the publications that could potentially contribute
to the review to assess their pertinence against the inclusion criteria.
Disagreements on the inclusion of studies were discussed until a
consensus was reached. The full-text screening was performed in
Rayyan to streamline the subsequent comparison of the selection
process for relevant articles.

3 RESULTS
A total of 4214 articles was retrieved through the search in Scopus
database. From this, 225 duplicate articles were excluded using the
AI-based auto resolver integrated into Rayyan and additional 46
articles were eliminated through the cross-check process against
the exclusion criteria in EndNote. A total of 28 articles were deemed
eligible for the inclusion using ASReview. After full text screening,
a total of 7 articles were included in the analysis. Figure 1 shows
the flow chart of the study selection process.

Figure 1: The flow chart shows the selection procedure of the
included papers.

A preliminary analysis of the included papers was conducted to
gain initial insights into the two research questions (see Section
2.1). First, our analysis revealed a significant similarity in the scope
of the studies. The largest proportion of the included articles (5 out
of the 7) mostly pertained to the older adults stressful interaction
with their physical environment [29, 43], as well as the use of
wearable-based collective sensing to identify the environmental
barriers encountered by older adults [28] or the environmental
constraints associated with the mobility of older people [1, 42].
However, two of the included studies expanded the rationale of the
research including the effects of outdoor exposure also on subjective
well-being and cognitive functioning [39] or behavioural responses
[44]. From an overall perspective, the publication timeline spans
only four years, from 2019 to 2022. In 2022, 43.9% of the chosen
articles were published, while there was a significant peak in 2020
with 28.6% of the total publications. Furthermore, it is noteworthy
that most of the articles share the same first authors [28, 29, 42–44],
with only two articles having different first authors [1, 39].

Second, the main data collected by wearable sensors used in
studying the personal mobility of target users consists of physiolog-
ical response data, such as electrodermal activity (EDA) [1, 28, 29, 43,
44], gait patterns [1], photoplethysmogram (PPG) [29, 42–44], and
electroencephalography (EEG) [44]. However, most of the research
(4 out of 7) combine visual sensing data [1], location [29, 42, 43]
and environmental data [43] to explore the potential of using multi-
modal data to capture and evaluate environmental distress related
to the mobility of older persons in urban areas (e.g., [1, 29]) or the
influence of visuospatial configurations of urban space on older
adults’ physiological stress (e.g., [42]). One of the included study
integrates physiologic health data with real-time air quality and
noise data to analyse the activation of stress levels in older indi-
viduals while walking in neighbourhoods with varying spatial and
environmental conditions [39]. In the majority of the articles (5
out of 7) physiological signals, including PPG and EDA, were col-
lected using wrist-worn biometric sensors. The sensors used for
this purpose included the Empatica E4 [1, 42–44] and an in-house
built app android smartwatch [39] with EDA data sampled at 4Hz
[1, 29, 44], and PPG data at 64 Hz [29, 42] or at 100Hz [39]. EEG data
were recorded during experimental outdoor environmental walks
using the wearable EMOTIV EPOC+ headset at a frequency of 128
Hz [44]. Additionally, data on foot plantar pressure distribution,
contact forces, and three-axis acceleration were collected using the
Moticon OpenGo insole sensor at a frequency of 50 Hz [44], while
the GPS data were collected using a smartphone [1, 39] or wore
a belt-clip-type GPS sensor Qstarz BT-Q1000XT [42–44] at 1Hz
[42, 43]. However, two out of the seven articles did not specify the
smart wristband used to monitor the physiological responses from
older adults and the sensor used to gather GPS data [28, 29].

Third, four out of seven articles employed hot-spot analysis, a
Geographic information system (GIS)-based mapping clustering
tool, to pinpoint high-demanding locations along the path where
multiple older adults’ physiological responses were recorded during
outdoor walks using their respective GPS coordinates [29, 44]; to
spatially correlate hot spots and cold spots with older adults’ per-
ceived responses, in order to identify stressful person-environment
interactions caused by spatial factors [42]; to identify locations
with high-risk clusters of stressful interactions, thus identifying
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risk stress hotspots for older adults through simulation-based risk
hotspot analysis [43]. Training of machine learning classifiers was
also integrated to predict individual stress levels based on physio-
logical signals [29], as well as location and environmental data such
as temperature and humidity [43], by including the informativeness
of the bodily responses [44]. One of the seven chosen articles exam-
ines the impact of spaziovisual indicators on stress and non-stress
physiological responses in older adults using Self-Organizing Maps
(SOM) [42].

Fourth, none of the chosen articles specifically focus on informal
carers who provide support to older adults, as the study samples
solely consisted of older adults. The study’s sample sizes are typi-
cally small, averaging around 10 participants [28, 42–44]. The lower
bound is 9 [1], while the upper bound is 11 [39], with the exception
of the work by [29] that recruited 30 participants. Three articles
focus on the elderly population aged over 65 [42–44], with one
study [39] reporting an average age of 65 years. Only three of the
included articles do not provide specific age information for older
adults participants [1, 28, 29].

4 DISCUSSION AND CONCLUSIONS
This section examines some specific issues that have arisen in the
ongoing literature study and draws the first conclusions.

Firstly, our initial findings indicate that the current research on
using wearable devices to detect bodily responses in older adults
(or informal caregivers) population in relation to walkability in out-
door environments is still in its early stages. The selected scientific
literature on the topic appear to be limited, with only 7 identified
contributions, even though there has been an observable increase
in research output, particularly from 2022 onwards. Most of the
articles analysed in this ongoing review exhibit a minimal variation
in their research goals, which mainly focus on the use of wearable
sensors or sensor-based technologies to identify stressful person-
environment interactions that may restrict the mobility of older
adults in the built environment [1, 28, 29, 42, 43]. Furthermore, the
analyzed articles exhibit a uniform strategy, that is, collecting phys-
iological and location data from older adults through controlled
outdoor walking routes using wrist-wearable and GPS; training su-
pervised classifiers to differentiate between physiological stress and
non-stress signals to environmental conditions of external interac-
tion; and finally, using hotspot analysis to group together individual
physiological responses in areas with high-stress interactions with
the external environment using GIS [29, 42–44]. As an example, in
their study, Torku et al. [43] conducted a field experiment to mea-
sure the stress levels of older adults while interacting with the built
environment. They gathered data from participants’ physiological
responses, location, and environment using wearable sensors and
applying a multimodal information fusion technique (specifically,
feature level fusion of EDA signal, PPG signal, location and environ-
mental data using parametric or non-parametric machine learning
algorithms) [43] to reduce errors in data collection and provide ad-
ditional insights into how humans interact with their surroundings
in real-life situations. Several machine learning algorithms were
trained and tested to detect the older adults’ stressful interactions
from physiological signals, location and environmental data, with

Ensemble bagged tree achieving the best performance (98.25% ac-
curacy). Using the spatial relative risk (SRR) function to identify
clusters of high-stress hotspots that present an increased risk to
older adults, a simulation-based risk hotspot analysis was employed
to identify environmental barriers within the study area that pose
a high risk to older adults [43]. The utilisation of a simulation-
based methodology exhibits encouraging outcomes in producing
physiological point-level data that accurately represents the en-
tire study area. Researchers and urban planners will benefit from
the ability to identify risk hotspot locations with high statistical
power in order to identify actual urban stress hotspots that present
a greater risk to ageing adults and to comprehend the relationship
between the built environment and stress [43]. Furthermore, Torku
et al [42] specifically examined how the visuospatial arrangements
of urban environments impact the physiological stress levels of
older adults. The experimental study gathered physiological and
perceived stress responses of senior adults as they walked through
an urban environment. By employing spatial clustering and hot
spot analysis, areas exhibiting concentrations of physiological re-
sponses induced by spatial factors were identified and classified as
stress-free or stress-inducing, according to the perception of stress
among the participants. Isovist analysis was employed to extract
the perceived visual elements of the urban environment, whereas
machine learning algorithms, principal component analysis, and
self-organizing maps were utilised to comprehend the relationship
between these elements. The findings of the study indicated that
older adults exhibited a non-stress physiological response when
the environment provided a layout that allowed for a wider field
of vision (such as increased maximum visibility length, perimeter
and isovist area). However, two of the studies included in the anal-
ysis frame their proposal into the Digital Twins paradigm (DT),
proposing to combine wearable biosensors and geographical in-
formation systems (GIS)-based hotspot analysis to identify areas
where older adults experience stress when interacting with the built
environment [29], or using multiple urban sensing data to poten-
tially identify less demanding routes for older adults based on the
environmental factors that affect their mobility in a spatial context
[1]. To this respect, Ahn and his colleagues [1] conducted a field
experiment utilising an alternative processing method to analyse
physiological data in order to identify built environment elements
that induce distress to pedestrians. The study primarily examined
physiological signals, including EDA and gait patterns, which were
collected through wearable devices worn by older individuals while
walking at their preferred speeds on a predetermined path that con-
tained various environmental stressors at specific locations (POIs)
(e.g., a partially broken wall, a dumpster, an uneven sidewalk, and
overhanging dead branches and leaves). The physiological response
data were divided into segments using a bottom-up segmentation
approach, and a physiological saliency cue (PSC) was introduced
and utilised to calculate the uniqueness of physiological responses
within the segment of interest compared to others, and to compute
a collective PSC of each POI across all participants [25]. Visual
sensing data (i.e., images) were also gathered at a few locations,
and ranked using a pairwise comparison in which participants
scored the perceptual distress of each image by comparing a pair
of street-level images. The findings demonstrated that the com-
bination of physiological response data and crowdsourced visual
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sensing data effectively capture local environmental stressors, and
when incorporating into a 3D virtual city model with geospatial
localization, older pedestrians can potentially exploited the distress
detected from both data sources to simulate their convenient daily
trips using a virtual simulation environment. Similarly, in a pilot
study carried out by Lee et al [29], wristband-type biosensors were
employed to collect EDA and PPG signals from older adults as they
walked along a controlled route and in their daily trips that included
challenging environmental obstacles. Through the controlled route
data collection, a total of 22 features were extracted from EDA and
PPG and the best elderly individual stress classifier was selected
by comparing the validation accuracy of several machine learning
algorithms (ie Decision Tree, Gaussian Support Vector Machine,
bagging tree and ensamble subspace KNN), resulting in an accuracy
rate ranging from 79% to 92.5%. A bagging tree-based classifier
was used to categorise the EDA and PPG signals of senior subjects
collected during their daily trip into stress and no stress categories.
The stress data samples were then geocoded based on GPS data
simultaneously collected with physiological signals and distributed
among grid cells for hotspot detection. Using the GIS-based kernel
density estimation (KDE) technique, the significance of the density
stress samples on grid-cells was tested based on the Monte-Carlo
method, resulting in the identification of 40 grid cells (0.22% of the
tested grid cells) as stress hotspots (with a significance level higher
than the predetermined threshold of 0.01). A post hotspot investi-
gation in the pilot study revealed that the identified hotspots align
with older subjects’ stressful experiences in the built environment.
This information can enhance the Digital Twins’ analytics platform,
allowing for simulations of different scenarios and interventions to
gain a deeper understanding of how older adults interact with the
built environment in stressful ways. Interestingly, this paves the
way for future research on integrating simulation-based models
into Digital Twins environments with GIS-based analysis to further
enhance our understanding of older adults personal mobility in
urban settings.

Secondly, some articles discuss the environmental stressors that
are used to evaluate age-friendly walkability environments in the
field experiments (e.g., [1, 29]) or use the features affecting the
functionality, safety, or appearance of the walking path to grade
between high and low demanding environment [44]. Only two of
the selected articles examine the physiological responses to spatial
stimulus (ie the spatial configuration) [42] and to temporal stimuli
(ie weather and noise level) [39], while none of the included arti-
cles consider individual stimuli (ie health conditions or previous
experience [42]). None of the articles provide a comprehensive de-
scription of older adults participating in the experimental sessions.
They only briefly mention their socio-economic status (specifically
low income) [39] and assess their cognitive function using the Mini-
Mental State Examination (MMSE) screening tool (e.g. [42–44]).
However, our current review indicates a gap in the research regard-
ing the detection of bodily responses to stimuli on outdoor walking
paths using wearable sensors, specifically among informal carers.
Future research should focus on this target population, as they play
a significant role in providing health and social care services to
elderly or disabled individuals [22].

From an overall perspective, based on our ongoing literature
review, it would appear that using wearable sensors and a GIS-
based approach could be a promising method for spatio-temporally
capturing people’s direct bodily responses to the environmental
stressors [29]. As an example, the accuracy performance achieved
by the trained bagging tree algorithms as reported in two of the
included studies (ie accuracy ranging from 92.5% to 98.25% [29, 43]),
may effectively suggest the applicability of the wearable biosen-
sors in accurately identifying stress levels in elderly individuals
as they engage with the built environment (e.g.,[29]). Therefore,
future research ought to further investigate this people-centric
sensing approach [44] and expand its application to examine older
pedestrian-friendly environments in districts of different sizes and
characteristics.
5 NEXT STEPS
Once the initial findings have been presented, the next step of
action will involve delving deeper into the analysis of the full paper
obtained through the chosen methodology. This will aim to offer a
more comprehensive response to the research questions and can aid
in better understanding how such devices can collect meaningful
data during the daily activities of older adults and their related
carers, as well as their reliability and suitability for an age-friendly
urban environment.
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