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1

Introduction

In this chapter, I introduce the framework of my research. After an overview, I focus
on the properties of nuclear clusters, tidal disruption events and extreme mass ratio
inspirals. Then, I introduce the theory of loss cone, the theory that deals with the
stochastic origin of tidal disruptions and extreme mass ratio inspirals in nuclear star
clusters and dense stellar system. Finally, I present the considerations that motivate
the scientific research I conducted during my doctoral studies.

1.1 | Overview
Black Holes (BHs) are among the fascinating and mysterious subjects of the most recent
and advanced research in Astrophysics and Cosmology. They are objects so dense that
neither massive nor massless particles can escape their horizon. BHs were proposed as
the first solution of Einstein field equations by Karl Schwarzschild, and their origin is
one of the most puzzling questions that the scientific community has been investigating
for more than a century. Chandrasekhar proposed that stellar black holes (of mass below
≃ 100 M⊙) are the final stage of the evolution of massive star. Successive mergers among
stellar black holes may then result into a heavier intermediate-mass black hole (IMBH,
with mass ≃ 105 M⊙) that could grow by means of accretion. Larger black holes – found
at the centres of galaxies –are known as massive black holes (MBHs) or supermassive
black holes (SMBH), and their origin is not yet fully understood (Kormendy and Ho,
2013; Merritt, 2013).

The first indirect evidence of the existence of stellar BHs dates back to the early 70s
with the observations of Cygnus X1, and the first direct evidence of the existence of
stellar black hole binaries came in 2015 with GW150914 (LIGO Scientific Collaboration
and Virgo Collaboration et al., 2016). Ever since, more and more neutron star - black

1



Chapter 1. Introduction 1.1. Overview

Figure 1.1: (Credits: NASA) An artist’s concept of a tidal disruption event that happens
when a star passes fatally close to a supermassive black hole, which reacts by launching
a relativistic jet.

hole and black hole - black hole mergers have been detected via ground based grav-
itational waves (GWs) observatories: LIGO (Laser Interferometer Gravitational-Wave
Observatory) and Virgo.

Current facilities permit to observe the dramatic effects of SMBHs on their host en-
vironment, and in particular their accretion on the gas in the proximity. This process
emits light, which makes MBHs detectable as quasars or active galactic nuclei. In the
case of the MBH in the galactic centre of the Milky Way and in M87, it was also possible
to capture the glow of gas just outside the horizon thanks to the observations produced
by the EHT collaboration (Collaboration et al., 2019, Event Horizon Telescope).

In addition to constant accretion of gas, there is a class of transient events that hap-
pens in the proximity of MBHs and can be observed through its electromagnetic emis-
sion: the disruption of stars due to the strength of tidal forces exerted by the MBH itself
(see Fig. 1.1 for an artistic representation of a tidal disruption event, TDE). These events
are very luminous and emit over a broad range of frequencies with characteristic sig-
natures (Lodato and Rossi, 2011), and may happen often enough that their detection
rates can probe the underlying distribution of black holes (Stone and Metzger, 2016).
As of today, the number of observed transient events compatible with a Tidal Disrup-
tion Event (TDE) is of the order of 100, a number that is anticipated to rapidly grow
in the next years (Stone et al., 2020) thanks to high-sensitive time domain surveys like
LSST (Bricman and Gomboc, 2020, Large Synaptic Survey Telescope), and the dedicated
space probe ULTRASAT (Ultraviolet Transient Astronomy Satellite; Sagiv et al., 2014).
Based on theoretical predictions, these probes will yield a sufficient number of detec-

2



Chapter 1. Introduction 1.1. Overview

Figure 1.2: (Credits: NASA) Artist impression of the spacetime generated by an extreme
mass ratio inspiral.

tions to obtain statistically robust constraints on the underlying population of MBHs
and IMBHs that are generally not luminous enough to be detected as persistently ac-
creting sources.

Another class of transient events occurs when a compact object with zero tidal de-
formability, like a stellar black hole, approaches a MBH so deeply that it enters its event
horizon. In this case, one can have a direct plunge (DP), with a weak pulse of gravi-
tational waves emission, or a gradual emission of gravitational waves that shrink the
orbit of the stellar BH over many orbital periods, a phenomenon known as Extreme
Mass Ratio Inspiral (EMRI, see Fig. 1.2 for an artistic representation). Unfortunately, the
frequency of their signal is too low to be detected by ground-based interferometers, but
future Gravitational Waves detectors like LISA (Large Interferometer Space Antenna)
will likely detect a number of them (Amaro-Seoane, 2020; Babak et al., 2017), hopefully
contributing to our knowledge on the population of black holes (Barack and Cutler,
2007).

The origin of the stellar objects that will end up in a TDE, a DP or an EMRI is the
subject of active research. At the moment, a promising mechanism for their origin hap-
pens in the so-called nuclear star clusters. Those are extremely dense distributions of
stellar objects often found in the nucleus of galaxies, surrounding the MBH hosted by
the nucleus itself. While the properties of nuclear clusters are still uncertain (Neumayer

3



Chapter 1. Introduction 1.2. Plunges and TDEs in Galactic Nuclei

et al., 2020), their typical size is around 0.1 − 1% of the observed size of a galaxy and
extend over the regions dominated by the gravitational influence of the central black
hole. These environments are so crowded that stars will often cross each other in their
motion. These random encounters can change the orbital parameters of stellar objects,
and some of them may be pushed by these interactions on deeply penetrating orbits
resulting in a TDE, a DP, or an EMRI.

The theoretical framework to study the stochastic evolution of a stellar system has
been developed in the 70s of the 20th century for TDEs, and was later adapted to account
for the formation of DPs and EMRIs at the beginning of the 21st century. The theory is
capable of predicting the rate of these events from a model of the stellar distribution,
even accounting for nuclear evolution. In this work, we will present the first public
implementation of the state-of-the-art loss cone theory. Moreover, we will explore some
attempts towards a deeper understanding of the discrepancy between theoretical and
observed rates, and we will consistently build an advanced theory for assessing EMRI
rates.

1.2 | Plunges and TDEs in Galactic Nuclei
Massive black holes (MBHs) with masses in the range 104 − 1010M⊙ are found to reside
in the centre of many galaxies (Kormendy and Ho, 2013) and they are often surrounded
by very dense, compact stellar systems, whose densities can reach 107 M⊙ pc−3, named
nuclear star clusters (Neumayer et al., 2020). It is hard to detect and distinguish the
properties of the nucleus, but current observations suggest correlations with the struc-
ture of the galaxy and the central massive black hole. More in general, observations
show a correlation between the velocity dispersion σ of galaxies and the mass M• of
their central MBHs, generally known as the mass–sigma relation (Gültekin et al., 2009;
Kormendy and Ho, 2013)

σ ≃ 70 Km/s
(︃

M•
1.53 106 M⊙

)︃1/4.24

(1.1)

which can be used to define the influence radius, rh, delimiting the region where the
influence of the central MBH will mostly contribute to the orbital energy of a star

GM•
2 rh

=
1
2

σ2 ⇒ rh =
G M•

σ2 ≃ 1.4 pc
(︃

M•
1.53 106M⊙

)︃0.53

. (1.2)

We therefore expect the nuclear stellar cluster to have this typical length-scale.
Within such a crowded environment, stars and compact objects are randomly de-

flected by relaxation processes and can be scattered onto very low angular momentum
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Chapter 1. Introduction 1.2. Plunges and TDEs in Galactic Nuclei

orbits, closely approaching the central MBHs, and giving rise to violent and exotic phe-
nomena (Merritt, 2013).

1.2.1 | Tidal disruption events
One of the processes through which a massive black hole (MBH) can reveal itself and
increase its mass is via a so-called stellar tidal disruption event (Evans and Kochanek,
1989; Hills, 1988; Phinney, 1989). A TDE occurs when a star gets too close to the MBH
so that the MBH tidal shear overcomes the star self-gravity, resulting in the disruption
and accretion of the star by the MBH (e.g. Lodato et al., 2009; Rees, 1988). The event
produces an extremely bright electromagnetic flare, observable up to cosmological dis-
tances. TDEs are very interesting phenomena in many ways: in particular, they can
probe the dynamical properties of the galactic nuclei in which they are generated (see
e.g. the recent review by Stone et al., 2020). Theoretical works focusing on the dynami-
cal origin of TDEs typically assess their occurrence rate given the properties of the MBH
and host environment (e.g. Magorrian and Tremaine, 1999; Merritt and Wang, 2005; Ul-
mer, 1999). If the central MBH exceeds the limit known as Hills mass (∼ 108M⊙ for
main sequence stars), stars will plunge into the horizon without producing detectable
flares (Stone et al., 2020).

Several TDEs have been observed in recent years in the optical, UV and X-ray band
(Saxton et al., 2021; van Velzen et al., 2021). This growing body of TDE observations
(now of the order of ∼ 100) has sparked growing interest in assessing TDE rates and
has recently allowed to compare predicted TDE rates to the actually observed ones.
In particular, recent comparisons between theoretical (Stone and Metzger, 2016; Stone
et al., 2020) and observational (Lin et al., 2022; Sazonov et al., 2021; van Velzen et al.,
2021; Yao et al., 2023) TDE rate estimates suggest that current detections are on the lower
end of the predicted ones (e.g. French et al., 2020), that have been computed according
to the classical loss cone theory (see Section 1.3).

1.2.2 | Extreme mass ratio inspirals and Plunges
Compact objects, in particular stellar black holes (sBHs), cannot be torn apart by tidal
forces, but if they find themselves on an orbit that reaches a close enough separation
to the MBH, they may eventually enter its horizon emitting gravitational waves (GWs)
along the way in a plunge.

If a compact object gets deflected on an orbit for which GW emission is significant,
but the orbital decay is slow, it may give rise to a detectable, long-lasting GW signal,

5



Chapter 1. Introduction 1.3. Relaxation and Loss cone theory

eventually plunging onto the MBH after many cycles (see Amaro-Seoane, 2018; Amaro-
Seoane et al., 2007, for comprehensive reviews). If the MBH mass is in the range of
∼ 104 − 107M⊙, the emitted GW signal falls in the mHz frequency window and is an-
ticipated to be one of the primary sources for LISA, (Amaro-Seoane et al., 2017; Babak
et al., 2017). Because of the very unequal mass of the two objects involved in the system,
those GW sources are called extreme mass ratio inspirals (EMRIs). Besides producing
EMRIs, sBHs can also be deflected onto head on collisions with the central MBHs, in a Di-
rect Plunge in the event horizon without experiencing any significant inspiral (and GW
emission). EMRIs will offer an unprecedented way to probe the immediate vicinity of
an MBH, allowing to test General Relativity in the strong field regime through the anal-
ysis of the emitted GW signals (Barack and Cutler, 2007; Gair et al., 2013), unveiling the
cosmic population of dormant MBHs (Gair et al., 2010), and providing a powerful tool
to measure the expansion rate of the Universe (Laghi et al., 2021; MacLeod and Hogan,
2008). These sources can be detected by LISA either as single events (e.g Barack and
Cutler, 2004b) or as a cumulative background signal (Barack and Cutler, 2004a; Bonetti
and Sesana, 2020).

1.3 | Relaxation and Loss cone theory
Several physical processes can contribute to the cosmic rate of TDE, EMRI and DP, in-
cluding: tidal separation of binaries (Miller et al., 2005), perturbations due to a MBH
binary (Bode and Wegg, 2014; Chen et al., 2011; Mazzolari et al., 2022; Naoz et al., 2022),
capture and migration within AGN accretion disks (Levin, 2007; Pan and Yang, 2021)
and supernovae explosions (Bortolas and Mapelli, 2019). Still, the main formation mech-
anism is expected to be associated with dynamical relaxation processes within dense
galactic nuclei (e.g. Amaro-Seoane, 2018, and reference therein.). The idea is to combine
a statistical treatment of random encounters, with a simple model of TDEs/Plunges
where the stellar object is destroyed as soon as it reaches a pericentre inside the loss
cone radius (see Fig. 1.3 for a diagrammatic representation of the model). In this con-
text, rates can be obtained via different approaches, perhaps the most popular one be-
ing solving the steady-state Fokker-Planck (FP) equation for the distribution function
(DF) of the system (Amaro-Seoane and Preto, 2011; Bar-Or and Alexander, 2016; Mer-
ritt, 2015; Pfister et al., 2020). In the underlying physical model, by setting the inflow of
objects in the galactic nucleus, the steady-state FP equation is solved to obtain a constant
DF. The latter is generally constructed in the energy-angular momentum space in a 2D
treatment, or in an effective 1D treatment by integrating over angular momentum. An-
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Chapter 1. Introduction 1.3. Relaxation and Loss cone theory

Figure 1.3: Diagrammatic representation of how TDEs and Plunges are modelled in clas-
sical loss cone theory. Particles (stars or a compact objects) found in the central regions
of galactic nuclei are continuously subject to random encounters that alter their orbits;
and some will be deflected on orbits penetrating the loss cone radius. The pericentre of
these orbits can be so small that motion is nearly radial, and stochastic kicks are ineffi-
cient due to the small cross-section. Therefore, they are likely to complete their orbit up
to the pericentre, where they are destroyed.

other possibility widely explored in literature is the solution of the stochastic evolution
equation with Monte Carlo methods (Fragione and Sari, 2018; Hopman and Alexander,
2005; Sari and Fragione, 2019; Shapiro and Marchant, 1978; Zhang and Seoane, 2023).

The statistical model of collisional evolution of stellar systems in the gravitational
field of a central massive black hole is based on the work by Chandrasekhar (1942),
later complemented with the loss cone theory by Lightman and Shapiro (1977), Shapiro
and Marchant (1978) and Cohn and Kulsrud (1978). This theory has been developed
to address the problem of computing the TDE rate in a stellar cluster surrounding an
MBH, relying on the assumption that the disruption of a star happens as soon as the
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star reaches a pericentre smaller than

rTDE ≈ η r⋆

(︃
M•
m⋆

)︃1/3

(1.3)

known as the tidal disruption radius. Here m⋆ and r⋆ respectively represent the stellar
mass and radius, while M• is the MBH mass. The form factor η is of order 1 and depends
on the structure of the star considered.

The same approach has been later applied to the process of gravitational captures of
a compact object, since the process happens as soon as the pericentre is smaller than the
closest parabolic approach1 (Hopman and Alexander, 2005; Merritt, 2013)

rPlunge = 4
G M•

c2 (1.4)

where c is the speed of light.
The threshold radius of these phenomena is known as the loss cone radius rLC, since

from any point in space, the locus of orbits entering this radius appears as a cone. The
literature on the subject is vast, and a nice summary can be found in Amaro-Seoane
(2018); Stone et al. (2020). As mentioned, FP (and other approximate) models are gen-
erally used to describe equilibrium solutions for spherically symmetric systems in the
energy-angular momentum space, and sBHs capture rates are derived in the steady-
state approximation.

The classical loss cone theory has been used to predict a rate of ≳ 10−4 yr−1 TDEs
per galaxy (Stone and Metzger, 2016; Stone et al., 2020). This has been achieved by
modelling the stellar distribution function of observed local galaxies and assuming the
expected relaxed distribution of angular momentum at each energy, derived by Cohn
and Kulsrud (1978). Early estimates from detections of TDEs are of ∼ 10−5 − 10−4 yr−1

TDEs per galaxy, on the lower end of the predictions.

1.4 | Motivation for this work
Constraining the distribution of compact objects in galactic nuclei is extremely challeng-
ing (Kormendy and Ho, 2013; Neumayer et al., 2020), therefore the current estimates for
the EMRI detection rate are based on steady-state solutions of the FP equation. This as-
sumption, however, is problematic when transferred to realistic astrophysical systems.
Most notably, sBHs capture rates diverge for small MBHs and are inconsistent with the

1The closest parabolic approach is studied in the framework of General Relativity. When far from the
central black hole, and the potential is locally Keplerian, the angular momentum of the orbit corresponds
to a pericentre rPlunge, Kep = J2/(2 G M•) = 8 G M•/c2.
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continuous supply of compact objects needed. For example, standard EMRI rates de-
rived with those models are of the order of 103 Gyr−1 for a 105M⊙ central MBH, and
direct plunge rates are estimated to be at least an order of magnitude higher (Bar-Or
and Alexander, 2016). This poses two issues to the steady-state picture. First, the need
of supplying MBHs in the low mass end with 104 sBHs per Gyr. Second, the significant
mass growth of the central MBH, which violates the condition of fixed central potential
assumed in FP calculations. Moreover, such high rates would exclude the existence of
intermediate MBHs (below 105M⊙) in galaxy nuclei at the present day because of the
large mass accretion. Such rates will require further modelling before they can be com-
bined with theoretical MBH population models to compute LISA detection rates. This
is currently done by artificially capping the EMRI rate to avoid MBH overgrowth at the
faint end of the mass function, as described in Babak et al. (2017). This is obviously
unsatisfactory, and a more consistent approach, able to account for the mass growth of
the MBH and the finite supply of sBHs, is particularly desirable. Such a framework will
be critical in order to make detailed LISA predictions and to prepare the tools needed
to extract those intricate, overlapping signals from the data stream (Babak et al., 2010).
As the typical orbital parameters for the production of EMRIs correspond to regions of
phase space where the anisotropy of the DF due to the loss cone is relevant (Pan and
Yang, 2021), the effective 1D treatment of the system (Vasiliev, 2017) may be inadequate
for these phenomena, suggesting that a 2D approach is preferable. This compelling
call motivated us to develop the first public code to solve the time-dependent 2D orbit-
averaged Fokker-Planck equation.

In parallel to the numerical implementation of the 2D FP on models of nuclear star
clusters, we started a careful revision of the classical loss cone theory. A key result of
Cohn and Kulsrud (1978) is the prediction of the distribution in angular momentum of
the stars, that is crucial to the 2D FP evolution since it determines the rate of particles
crossing rLC. The model relies on a simple prescription: either the pericentre is smaller
than rLC and a total disruption or plunge occurs, otherwise stellar objects with larger
pericentres are assumed to remain unperturbed. However, reality is more complex:
a star that is fully destroyed at pericentre closer than rTDE, will not be unperturbed
if the pericentre is larger: a portion of the star may be accreted by the MBH, with the
stellar remnant surviving the interaction giving rise to a partial disruption (e.g. Mainetti
et al., 2017; Ryu et al., 2020a). This event can be repeated if two-body relaxation allows
the stellar remnant to fall back again onto the MBH and the first disruption did not
substantially perturb the original orbit; only for sufficiently large pericentres, the star
would remain unperturbed. This motivated us towards a revision and extension of
classical loss cone theory to include the effects of partial tidal disruptions.
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The expected relaxed profile in angular momentum is crucial for the applications of
loss cone theory. With our code, we are able to test the agreement of this prediction with
solutions of the orbit averaged Fokker-Planck equation, showing that the distribution of
stellar black holes strongly deviates from the Cohn-Kulsrud profile. We have identified
the flaw in the original argument, and extended loss cone theory for reliable estimates
of plunge rates.

The manuscript is organized as follows: in Chapter 2 I derive the Fokker-Planck
equation for stellar systems and its 2D and 1D approximations, we compute in de-
tail the diffusion coefficients for all these equations, and discuss the application of the
Fokker-Planck formalism to multi-mass stellar systems; in Chapter 3 I present the re-
sults of classical loss cone theory relative to the computation of the rate of TDEs, DPs
and EMRIs, with a detailed solution of the Fokker-Planck equation inside the loss cone;
in Chapter 4 I present a 2D Fokker-Planck solver, together with the results of simula-
tions of galactic nuclei and the rate of TDEs, DPs, and EMRIs produced; in Chapter 5 I
present an approach for the inclusion of partial TDEs in classical loss cone theory, and
some preliminary results on the extension of standard loss cone theory to include the
phenomenon; in Chapter 6 I show the limits of classical loss cone theory when com-
pared to 2D Fokker-Planck simulations, and some preliminary work on the discrepancy
to consequently improve the boundary conditions of the 2D FP solver at the loss cone.
Finally, an overview of the scientific conclusions reached with our work is presented in
Chapter 7.
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2

Stochastic description of 2-body
encounters

At once Dantes resolved to follow the brave example of his energetic companion,
and to remember that what has once been done may be done again.

— Alexandre Dumas, The Count of Monte Cristo

This chapter begins with a review of the current models of the relaxation of galac-
tic nuclei based on the local Fokker-Planck equation, that describes the stochastic
evolution of particles in nuclear star clusters. We will then derive from the local
equation some approximate analogues: the orbit averaged Fokker-Planck equation –
that describes the evolution of particles in the space of orbital parameters, and the
ergodic Fokker-Planck equation – that describes the evolution of a system of parti-
cles fully characterized by their energy distribution. After deriving the advection
and diffusion coefficients for the equations aforementioned, the Fokker-Planck for-
malism will be applied self-consistently to a system of stars, where the advection and
diffusion coefficients will be computed from the distribution of the same stars.

2.1 | Orbits in galactic nuclei
The prototypical system we consider is composed of these three essential components:

■ a central MBH of mass M•,

■ a spherical distribution of stars with mass ms,

■ a spherical, subdominant distribution of stellar mass compact objects with mass
mBH.
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Chapter 2. Stochastic description of 2-body encounters 2.1. Orbits in galactic nuclei

To describe the system with a clear notation, we introduce polar coordinates for
positions {r, θ, ϕ} such that a particle at a distance x = (x1, x2, x3) from the central
MBH is described by

r =
√︂

x2
1 + x2

2 tan ϕ =
x2

x1
cos θ =

x3√︂
x2

1 + x2
2

. (2.1)

The velocity v = (v1, v2, v3) can be expanded in a cartesian set with one axis coinciding
with the position x, namely {vr, vt,1, vt,2} such that

vr =
x · v

r
v2

t,1 + v2
t,2 =

|x × v|2
r2 (2.2)

where the relative size of vt,1 and vt,2 depends on the specific orientation of the free axes
in the tangential plane. To better show this dependence, we introduce the set {vr, vt, α}
such that

vt =
√︂

v2
t,1 + v2

t,2 tan α =
vt,1

vt,2
. (2.3)

The Jacobian of the transformation from Cartesian coordinates is

d3x d3v = r2 vt cos ϕ dr dθdϕ dvrdvtdα (2.4)

Neglecting relativistic corrections, the integrals of motion for this problem are the
energy per unit mass E and the angular momentum per unit mass J, defined by:

E = ϕ(r)− v2

2
v2 = v2

r +
J2

r2 (2.5)

where ϕ(r) is the positive potential1. It is common to rescale the squared angular mo-
mentum to its circular-orbit value at energy E, introducing the variable

R =
J2

r3
c ϕ′(rc(E))

(2.6)

where ϕ′(r) = dϕ(r)/dr, and rc(E) is the radius of a circular orbit for a test mass with
energy E, which can be obtained by solving

ϕ(r) + r
ϕ′(r)

2
− E = 0. (2.7)

The quantities E and R completely characterise an orbit in a given potential. All the
properties of the orbit can be derived from these parameters.

1With this definition, the energy of a bound orbit is positive.
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Among them, notable quantities are the pericentre and apocentre of the orbit, i.e. the
values of r that solve the equation

E = ϕ(r)− J2

2 r2 ; (2.8)

another relevant quantity is the radial period of the orbit

P(E,R) = 2
∫︂ r+

r−

dr
vr

(2.9)

where r− and r+ are the pericentre and the apocentre of the orbit. For a circular orbit
the integral does not exist, but it can be defined by continuity. Expanding around a
given energy on an orbit with angular momentum J2

c the equation for the apocenter and
pericenter becomes

E − δE = ψc +
ψ′′

c
2
(r − rc)

2 ⇒ r − rc = ±
√︄

2 δE
|ψ′′

c |
(2.10)

where ψ ≡ ϕ − J2/(2r2). The explicit value of ψ′′
c can be written using the fact that

J2
c = −r3

c ϕ′
c

ψ′′
c = ϕ′′

c − 3
J2

r4
c
= ϕ′′

c + 3
ϕ′

c
rc

; (2.11)

the radial period of a circular orbit is therefore

Pc(E) = lim
δE→0

∫︂ r+

r−

(︃
δE − ψ′′

c
2

(r − rc)
2
)︃−1/2

= 2π

√︄
1

−ψ′′
c
= 2π

√︄
−rc

3ϕ′
c + ϕ′′

c
. (2.12)

2.2 | Fokker-Planck equation
Typical stellar densities in nuclear clusters are high enough that mutual interactions
between particles can significantly modify the original orbits (Merritt, 2013). The evolu-
tion of the orbital parameters of an object can be described as a Brownian motion in the
(E, J) space with fluctuations that depend on the physics of relaxation, but are more pro-
nounced along the J direction for small J, efficiently directing compact objects toward
the MBH at the centre of the system (Bar-Or and Alexander, 2014).

The random nature of these objects can be studied statistically through classical
stochastic approaches. A fundamental tool to characterize the properties of a set of
particles is the distribution function

f (x, v) d3x d3v = dN(x, v) (2.13)
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where dN(x, v) is the number of objects whose phase space coordinates are within an
infinitesimal volume d3x d3v centered at (x, v).

Since we are considering spherical distributions of stellar objects, their distribution
function in phase space only depends on {vr, vt, α, r}. Since vr can be positive and
negative, and we can then map each branch into a value of energy, we first split the
distribution function in the two branches:

f (vr, vt, r) =

⎧⎨⎩ f out(vr, vt, r) vr > 0

f in(−vr, vt, r) vr < 0
(2.14)

so that both f out and f out are defined for a positive first argument. Considering each
branch separately, we can then change variable to {E, R, r}. Only at equilibrium, when
the system will be steady and f out = f in, the set of varibles to describe the whole distri-
bution of our particles reduces to {E,R, r} (and does not depend on the sign of vr).

We will now derive the Fokker-Planck equation that describes the evolution of f
due to stochastic interactions. There is a key assumption we will make to derive the
equation:

■ The stochastic deflections due to 2-body encounters are Gaussian, which means
that the expectation value of any combination of δvi of order greater than two can
be neglected.

Defining the transition probability ψ(vr, vt, r; δv) as the probability density of δv at a
given point of phase space, the evolution of the distribution is

f (vr, vt, r, t + δt) = f (vr − ϕ′δt, vt, r − vrδt, t)

+
∫︂

dδv f (vr − δvr, vt − δvt, r, t)ψ(vr − δvr, vt − δvt, r, δv)
(2.15)

since when the evolution is non-collisional (i.e. when 2-body relaxation is negligible) the
distribution function evolves according to the Hamiltonian flow, the integral includes
all the other physical effects, that collectively go under the name of “collisional terms”.

Expanding now the product ( f ψ)(vr − δvr, vt − δvt, r, δv) around (vr, vt, r, δv) we
get

( f ψ)(vr − δvr, vt − δvt, r, δv) = ( f ψ)(vr, vt, r, δv)

− δvr
∂

∂vr
f ψ − δvt

∂

∂vt
f ψ

+
1
2

[︃
δv2

r
∂2

∂v2
r

f ψ + 2 δvrδvt
∂2

∂vt ∂vr
f + δv2

t
∂2

∂v2
t

f ψ

]︃
+ . . .

(2.16)
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we remark that δvr and δvt are independent variables, so that we can move them inside
the derivatives. Substituting now in Eq. (2.15) we get terms of the form∫︂

dδv
∂

∂vx

[︁
δvy f (vr, vt, r, t)ψ(vr, vt, r; δv)

]︁
=

∂

∂vx

[︃
f (vr, vt, r, t)

∫︂
dδvψ(vr, vt, r; δv)δvx

]︃
(2.17)

and we see that the integral is the expectation value of δvx, that we represent as ⟨δvx⟩.
Therefore, the evolution equation is

f (vr, vt, r, t + δt) = f (vr − ϕ′δt, vt, r − vrδt, t)

− ∂

∂vr
f ⟨δvr⟩ −

∂

∂vt
f ⟨δvt⟩

+
1
2

[︃
∂2

∂v2
r

f
⟨︁
δv2

r
⟩︁
+ 2

∂2

∂vr ∂vt
f ⟨δvt δvr⟩+

∂2

∂v2
t

f
⟨︁
δv2

t
⟩︁]︃

+O(
⟨︁
δv3⟩︁)

(2.18)

and given the assumption of a Gaussian profile in δv, the last term is zero. We can
finally write

δt
[︃

∂

∂t
f + ϕ′ ∂

∂vr
f + vr

∂

∂r
f
]︃
= − ∂

∂vr
f ⟨δvr⟩ −

∂

∂vt
f ⟨δvt⟩

+
1
2

[︃
∂2

∂v2
r

f
⟨︁
δv2

r
⟩︁
+ 2

∂2

∂vr ∂vt
f ⟨δvt δvr⟩+

∂2

∂v2
t

f
⟨︁
δv2

t
⟩︁]︃
(2.19)

dividing by δt and introducing the notation

D [y] =
⟨y⟩
δt

(2.20)

we can write the local Fokker-Planck equation for spherical galactic nuclei

∂

∂t
f + ϕ′ ∂

∂vr
f + vr

∂

∂r
f = − ∂

∂vr
f D [δvr]−

∂

∂vt
f D [δvt]

+
1
2

[︃
∂2

∂v2
r

f D
[︁
δv2

r
]︁
+ 2

∂2

∂vr ∂vt
f D [δvt δvr] +

∂2

∂v2
t

f D
[︁
δv2

t
]︁]︃
(2.21)

At the left-hand side we recognize the convective derivative of f , whose form natu-
rally depends on the choice of coordinates.

Repeating the steps above with (E,R) as coordinates in the velocity space, we get
for f in and f out two equations with the same structure:

∂

∂t
f x + vr

∂

∂r
f x = − ∂

∂E
f x D [δE]− ∂

∂R f x D [δR]

+
1
2

[︃
∂2

∂E2 f xD
[︁
δE2]︁+ 2

∂2

∂E ∂R f xD [δE δR] +
∂2

∂R2 f xD
[︁
δR2]︁]︃ ,

(2.22)
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for x = in, out. With future applications in mind, we introduce the flux conservation
form of the local Fokker-Planck equation

∂

∂E
FE ≡ ∂

∂E

[︃(︃
D [δE] +

1
2

∂

∂E
D
[︁
δE2]︁+ 1

2
∂

∂RD [δEδR]

)︃
f x

+
1
2

D
[︁
δE2]︁ ∂

∂E
f x +

1
2

D [δEδR]
∂

∂R f x
]︃ (2.23)

that suggests defining

DE ≡ −D [δE] +
1
2

∂

∂E
D
[︁
δE2]︁+ 1

2
∂

∂RD [δE δR] (2.24)

DEE =
1
2

D
[︁
δE2]︁ (2.25)

DER =
1
2

D [δE δR] (2.26)

similarily, proceeding with FR one can introduce

DR ≡ −D [δR] +
1
2

∂

∂RD
[︁
δR2]︁+ 1

2
∂

∂E
D [δE δR] (2.27)

DRR =
1
2

D
[︁
δR2]︁ (2.28)

finally giving (with ∇ = (∂E, ∂R))

d
dt

f x +∇ · F = 0 (2.29)

where we the flux vector F has components

F =

(︄
FE

FR

)︄
= −

(︄
DEE ∂E f x + DER ∂R f x + DE f x

DRE ∂E f x + DRR ∂R f x + DR f x

)︄
. (2.30)

2.2.1 | The orbit averaged Fokker-Planck equation
In this section we will derive the orbit-averaged Fokker-Planck equation, that describes
directly the evolution for the differential distribution n in the (E,R) space. This equa-
tion has been used to study the evolution of stellar systems (Cohn and Kulsrud, 1978;
Drukier et al., 1999), and the computation of loss cone rates (Bar-Or and Alexander,
2016; Pan and Yang, 2021). The definition of n also shows how it is related to the distri-
bution function f :

Ntot =
∫︂

dE dR n(E,R) =
∫︂

d3x d3v f (x, v) (2.31)
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Moving to the suitable set of coordinates (2.3) and marginalizing over the angles we get∫︂
d3xd3v f (E(x, v),R(x, v), r(x)) =

∫︂
drdvrdvt8 π2 vt r2 f (E(r, vr, vt),R(r, vr, vt), r) .

(2.32)
since f only depends on v2

r through the energy, we restrict the domain from vr ∈
(−∞,+∞) to |vr| ∈ [0,+∞). Thus∫︂

d3xd3v f (E(x, v),R(x, v), r(x)) =
∫︂

drd|vr|dvt16 π2 vt r2 f avg(E(r, vr, vt),R(r, vr, vt)) .
(2.33)

where we f avg = ( f in + f out)/2. Dropping the superscript avg from now on, we change
variable from |vr| to the energy, and at fixed energy from vt to R.∫︂

d3xd3v f (E(x, v),R(x, v), r(x)) =
∫︂ dE dvt dr√︂

2(ϕ − E)− v2
t

16 π2 vt r2 f (E,R(r, E, vt), r)

=
∫︂ dE dR dr√︁

2(ϕ − E)− RJ2
c /r2

8 π2 J2
c f (E,R, r)

(2.34)

Assuming now that f does not explicitely depend on r, that would correspond to a
steady configuration in collisionless dynamics according to Jeans’ theorem, we can write∫︂

d3xd3v f (E(x, v),R(x, v)) =
∫︂

dE dR f (E,R) 4 π2 J2
c P(E,R) . (2.35)

And defining J (E,R) ≡ 4 π2 J2
c P(E,R), we get

n(E,R) = J (E,R) f (E,R) . (2.36)

We repeat now the same derivation we did for deriving the local Fokker-Planck equation
in the reduced space of (E,R). The equation for n is

∂

∂t
n(E R, t) = − ∂

∂E
nD [δE]− ∂

∂RnD [δR]

+
1
2

∂2

∂E2 nD
[︁
δE2]︁+ ∂2

∂E ∂RnD [δE δR] +
1
2

∂2

∂R2 nD
[︁
δR2]︁ (2.37)

And inserting n = J f one gets the evolution equation for f . The reader should note
the difference in the notation wrt the local Fokker-Planck equation: D [δE] depends on
(E,R, r), while D [δE] does not depend on r. In fact, unlike Eq. (2.21), the dynamics
described by this equation does not reduce exactly to the dynamics of a set of particles
in any sense nor limit, since 2-body scattering are always local (the diffusion coefficients
may strongly depend on r to account for the spatial distribution of stars) and generally
do not preserve the steady form f (E,R).
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It is possible to reorganize the equation in the so-called flux conservation form for f
defining

DE ≡ −J D [δE] +
1
2

∂

∂E
J D

[︁
δE2]︁+ 1

2
∂

∂RJ D [δE δR] (2.38)

DEE =
1
2
J D

[︁
δE2]︁ (2.39)

DER =
1
2
J D [δE δR] (2.40)

DR ≡ −J D [δR] +
1
2

∂

∂RJ D
[︁
δR2]︁+ 1

2
∂

∂E
J D [δE δR] (2.41)

DRR =
1
2
J D

[︁
δR2]︁ (2.42)

so that recalling ∇ = (∂E, ∂R)
∂

∂t
f +∇ ·F = 0 (2.43)

where

F =

(︄
−DE f −DEE∂E f −DER∂R f
−DR f −DER∂R f −DRR∂R f

)︄
(2.44)

2.2.2 | The ergodic Fokker-Planck equation
We will now derive a 1-D evolution equation for ergodic or isotropic systems2, fully de-
scribed by their distribution function f (E) or, equivalently, their differential distribution
in the energy space n̄(E). This is perhaps the most widely used equation in literature,
and has proven to be a powerful tool for the computation of loss cone rates with numer-
ical methods (Bondani et al., 2023; Bortolas et al., 2023; Cohn, 1980; Stone et al., 2018),
and more in general for modelling stellar systems (Alexander and Hopman, 2009; Bah-
call and Wolf, 1977; Bortolas, 2022; Linial and Sari, 2022; Preto and Amaro-Seoane, 2010;
Stone et al., 2018; Vasiliev, 2017).

Once again, direct computation shows the relationship among n̄ and f

Ntot =
∫︂

dE n̄(E) =
∫︂

d3xd3v f (x, v) . (2.45)

Repeating the steps for the orbit averaged equation, we get to∫︂
dEn̄(E) =

∫︂
dEdRJ f (E) = f (E)

∫︂
dRJ (2.46)

2The two notions are equivalent in the context of stellar distributions. In the jargon of Statistical Me-
chanics, ergodic refers to systems whose distribution function depends exclusively on energy, and ergodic
stellar systems have an isotropic velocity dispersion tensor (Binney and Tremaine, 2008).
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which suggests defining

g(E)
8π2 J2

c
=

1
2

∫︂ 1

0
dR P(E,R)

=
∫︂ 1

0
dR

[︃∫︂ rc

r−
dr

1
vr(E,R, r)

+
∫︂ r+

rc

dr
1

vr(E,R, r)

]︃
=
∫︂ rc

0
dr
∫︂ R−

0

dR
vr(E,R, r)

+
∫︂ ϕ−1(E)

rc

dr
∫︂ R+

0

dR
vr(E,R, r)

(2.47)

where R±(E, r) is such that the corresponding orbit has its pericenter/apocenter at r.
Since vr =

√︁
2ϕ(r)− 2E −RJ2

c /r2, the inner integral can be performed.

∫︂ R±

0

dR√︁
2ϕ(r)− 2E −RJ2

c /r2
= −2 r2

J2
c

[︃√︂
2ϕ(r)− 2E −RJ2

c /r2

]︃R±

0

=
2 r2

J2
c

√︂
2 (ϕ(r)− E)

(2.48)

finally giving

n̄(E) = g(E) f (E) g(E) = 16π2
∫︂ ϕ−(E)

0
dr r2

√︂
2 (ϕ(r)− E) . (2.49)

In this case we only need two diffusion coefficients

∂

∂t
n̄ = − ∂

∂E
n̄D̄[δE] +

1
2

∂2

∂E2 n̄ D̄
[︁
δE2]︁ (2.50)

and the coefficients for the flux conservation form in terms of f are

D̄E = −gD̄[δE] +
1
2

∂

∂E
g D̄

[︁
δE2]︁ (2.51)

D̄EE =
1
2

f D̄
[︁
δE2]︁ (2.52)

so that
∂

∂t
g f +

∂

∂E
F̄ = 0 (2.53)

and
F̄ = −

(︃
D̄E f + D̄EE

∂

∂E
f
)︃

(2.54)

2.3 | Diffusion coefficients
We will now compute the diffusion coefficients starting from some basic assumptions:

1. When a test particle m moves, the distribution of the other particles appears to be
locally uniform and isotropic.
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2. The velocity distribution of scatterers does not depend on angular momentum,
but only on their energy.

Under these assumptions one can derive analytical expressions for the diffusion coeffi-
cients starting from the study of a single, two-body encounter.

There is a wide use of notation in literature for the quantities we will present. We
will here show the full and complete derivation of all the diffusion coefficients (in the
standard and in the flux conservation form) of the three Fokker-Planck equations we
presented before.

2.3.1 | Diffusion coefficients for the local Fokker-Planck equation
We will now derive the diffusion coefficients for Eqs. (2.21) and (2.22). The notation in
this section may look confusing to the reader, since we will consider different reference
frames. In order to avoid confusing the diffusion coefficients, we will use the notation
vr to indicate the relative velocity3 between the scattered object m and the field of scat-
terers ms. The diffusion coefficients D [δvr], D [δvt] correspond to the expectation value
of δv parallel and orthogonal to the relative velocity. On the other hand, we will use the
notation D

[︁
δv∥
]︁

and D [δv⊥] to refer to the expectation value of δv parallel and orthog-
onal to the velocity of m. Textbooks on the subject use the same symbols v∥ and v⊥ in
both situations, that may cause some ambiguity.

Single encounter The equation for the relative distance r among two bodies is com-
pletely described in the reference frame of the center of mass as⎧⎨⎩r̈ = G M

r2 − J2

r3

φ̇ = J
r2

(2.55)

where φ is the polar angle, M is the sum of the two masses and J the total angular
momentum of the system, whose conservation implies the presence of an effective po-
tential. See Fig. 2.1 for a plot of a prototypical trajectory and the parameters involved.
One can combine the two to find the equation r = r(φ) that describes the motion of the
particle

1
r
= C cos(φ + φ0) +

GM
J2 . (2.56)

3In all the other subsections, the symbol vr refers to the radial velocity
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Figure 2.1: Sketch of the two body encounter of two objects with reduced mass µ and
total mass M in the center of mass frame. We show the trajectory corresponding to the
scattering approximation, where we assume that the particles move on straight lines
and interact instantaneously when their relative velocity is orthogonal to the relative
distance. In the reduced problem, µ instantaneously passes from A to B.

Applying the time derivative we get

ṙ
r2 = −C sin(φ + φ0)

J
r2 (2.57)

ṙ = −C sin(φ + φ0) J (2.58)

once again

r̈ = −C cos(φ + φ0)
J2

r2 (2.59)

r̈ = −
[︃

1
r
− GM

J2

]︃
J2

r2 . (2.60)

We see that φ = φ0 corresponds to the pericenter of the system, since ṙ = 0 there, and
in general the transformation φ → 2π − 2 φ0 − φ acts as a time reflection.

Setting the initial conditions φ = 0 and ṙ = v0 when t = −∞, we obtain:

C cos(φ0) = −GM
J2 (2.61)

v0 = −C sin(φ0)J (2.62)

and solving for φ0

tan φ0 =
J v0

G M
. (2.63)
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We now define the impact parameter

b ≡ J
v0

, (2.64)

that is the distance between the directions of the intial velocities of the particles. In this
description, it is the distance between the inital direction of v0 and the center.

The total deflection of the particle is therefore determined by the symmetry of the
system:

θd = 2φ0 − π (2.65)

giving

tan
θd

2
=

G M
b v2

0
≡ b0

b
(2.66)

Where we introduced b0 that corresponds to θd = π/2. Since the initial speed equals
the final speed, we can estimate the variation δv

δv =

(︄
v0(cos θd − 1)
−v0 sin θd

)︄
=

⎛⎝− 2 v0
1+b2/b2

0

− 2v0 b/b0
1+b2/b2

0

⎞⎠ ≡ −
(︄

δv∥
δv⊥

)︄
(2.67)

where the first component is the variation parallel to the initial direction v, the second
component the orthogonal one.

This process is usually referred to as hyperbolic encounter, since the resulting orbit
is not bound (indeed the initial conditions imply negative binding energy E = −v2

0/2).

We further proceed to model this time-extended two body encounter as a scattering
event fully characterized by b and v0 and happening as soon as the relative distance is
orthogonal to the relative velocity.

In a system where the center of mass has velocity vCDM, the parameter v0 in Eq. (2.67)
must be recovered from the velocities v1 and v2 of the two binaries considered. In par-
ticular we have

vCDM =
m1 v1 + m2 v2

m1 + m2
(2.68)

and in the reference frame of the center of mass, the velocity of the two particles is such
that

m1v′
1 = −m2v′

2 ⇒ v′
1 = − m2

m1 + m2
v0 (2.69)

where we used the definition v0 = v2 − v1. This means the variation of the velocity v1 is
µ/m1 times the variation of the velocity v0 in any (inertial) reference frame, since vector
differences are invariant.
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Encounter with an ergodic distribution of scatterers. Starting from the variation δv
due to a single encounter, we will now estimate what happens when a particle with mass
m is subject to multiple encounters in a time δt, with scatterers placed on an isotropic
distirbution (with respect to the moving body). The key assumption is:

■ The distribution of scatterers appears to be isotropic and spatially uniform on a
timescale of δt and length |vt|δt, where vt is the typical relative velocity between
m and the bulk velocity of the scatterers.

The effect of a single encounter is fully characterized by the relative velocity v0 and
the impact parameter; if we assume that the change in velocity due to a single encounter
happens on a timescale shorter than δt, we can therefore describe the statistical effect on
the distribution of particles.

A uniform and isotropic distribution of particles can only depend on the absolute
value of the velocity, or equivalently its squared value v2. Defining as fs(v2) the distri-
bution function of scatterers, v0 is the relative velocity of the moving body m and the
center of mass of the scatterers. We assume that the particle will undergo a scattering
event with all the particles inside the volume covered by the transverse plane in δt.
Naturally it is unrealistic to assume that the particles will interact up to b = ∞, since (i)
realistic systems do not have an infinite spatial extent, and (ii) the scattering approxima-
tion for the 2-body encounter holds until the interaction time is larger than, at least, the
time for a significant change of v. The integration must therefore be limited to b < bmax,
where the latter must be estimated from the system.

The number of particles with impact parameter between b and b + db and velocity
between v′ and v′ + dv′ is

dN = 2 π b db fs(v′) d3v′ vrδt . (2.70)

where vr is the relative velocity

vr = v′ − v0 . (2.71)

Since the distribution of scatterers is spatially symmetric, the cumulative effect of
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the transverse kicks δvt orthogonal to vr is zero. The relevant quantities result in:

dδvr =
ms

m + ms

4π b v2
r

1 + b2/b2
0

fs(v′) db d3v′ δt . (2.72)

dδvt = 0 (2.73)

dδv2
r =

(︃
ms

m + ms

)︃2 8π b |vr|3
(1 + b2/b2

0)
2

fs(v′) db d3v′ δt (2.74)

dδv2
t =

(︃
ms

m + ms

)︃2 8π b3 |vr|3
b2

0 (1 + b2/b2
0)

2
fs(v′) db d3v δt . (2.75)

Note that b0 depends on the total mass of the two bodies participating in the scattering,
that is m+ms, and on the relative velocity vr. We can now marginalize over b integrating
from b = 0 to b = bmax and we get:

dδvr = 2π b2
0 log

b2
max

b2
0

ms

m + ms
v2

r fs(v′)d3v′ δt +O((b2/b2
0)

0) (2.76)

dδvt = 0 (2.77)

dδv2
r = O((b2/b2

0)
−1) (2.78)

dδv2
t = 4π b2

0 log
b2

max

b2
0

(︃
ms

m + ms

)︃2

v3
r fs(v′)d3v′ δt +O((b2/b2

0)
0) (2.79)

dδvrδvt = 0 . (2.80)

Keeping only the leading terms, we can now move to the reference frame parallel to v0,
defining the versor e∥ = v0/|v0|, and two versors e⊥,1 and e⊥,2 in the orthogonal plane.
This will allow us to use the same reference frame for all the particles and integrate over
the distribution. In general, we have

δv = δv∥ e∥ + δv⊥ (cos φ e⊥,1 + sin φe⊥,2) (2.81)

= δvr er + δvt (cos α et,1 + sin αet,2) (2.82)

therefore

δv∥ = δvr e∥ · er + δvt
(︁
cos α e∥ · et,1 + sin α e∥ · et,2

)︁
(2.83)

δv⊥,1/2 = δvre⊥,1/2 · er + δvt (cos α e⊥,1/2 · et,1 + sin α e⊥,1/2 · et,2) (2.84)

Since we are interested in the effects of a spherical distribution of scattering particles,
we average over the orientation of e⊥,1/2 or, equivalently, the value of φ. This means that
when considering the fluctuations due to the axisymmetric distribution of particles, we

24



Chapter 2. Stochastic description of 2-body encounters 2.3. Diffusion coefficients

account for the average over the angle φ, namely ⟨e⊥,1/2 · et,1/2⟩φ = 0. Inserting then the
explicit expressions

dδv∥ = er · e∥ dδvr (2.85)

dδv⊥,1/2 = 0 (2.86)

dδv2
∥ =

1
2
(︁
1 − (e∥ · er)

2)︁ dδv2
t (2.87)

dδv2
⊥,1/2 =

1
2
(︁
1 − (e⊥,1/2 · er)

2)︁ dδv2
t (2.88)

dδvr dδv⊥,1/2 = 0 . (2.89)

Considering for example δv∥, and assuming that Λ ≡ bmax/b0 does not depend on
vr, we find ⟨︁

δv∥
⟩︁
= 4π δt log Λ G2 ms(ms + m)

∫︂
d3v′

1
v2

r
fs(v′)er · e∥ (2.90)

The quantity er · e∥ = vr · e∥/|vr| can be deduced from its definition

vr =
√︂
(v0∥ − v′∥)

2 + (v0⊥,1 − v′⊥,1)
2 + (v0⊥,2 − v′⊥,2)

2 (2.91)

∂

∂v0
vr =

v0 − v′∥
vr

= −er · e∥ (2.92)

(and we have v0⊥,1 = v0⊥,2 = 0); inserting this result we compute the expected kick:

⟨︁
δv∥
⟩︁
= 4π δt log Λ G2 ms(ms + m)

∫︂
d3v′

∂

∂v0

1
vr

fs(v′)d3v′

= 4π δt log Λ G2 ms(m + ms)
∂

∂v0

∫︂
d3v′

fs(v′)

|v0 − v′|

(2.93)

To approach the integrals for δv2
∥ and δv2

⊥,1/2 we can show that

∂2

∂v2
0∥

vr =
1 − (er · e∥)2

vr

∂2

∂v2
0⊥,1/2

vr =
1 − (er · e⊥,1/2)

2

vr
(2.94)

giving ⟨︂
δv2

∥

⟩︂
= 4πδt G2 m2

s log Λ
∫︂

d3v′ f (v′)
∂2

∂v2
0∥

vr

= 4πδt G2 m2
s log Λ

∂2

∂v2
0

∫︂
d3v′ f (v′) |v0 − v′| (2.95)

⟨︁
δv2

⊥,1/2
⟩︁
= 4πδt G2 m2

s log Λ
∂2

∂v2
0⊥,1/2

∫︂
d3v′ f (v′) |v0 − v′| (2.96)
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We have therefore written all the diffusion coefficients in terms of the so-called Rosen-
bluth potentials (Binney and Tremaine, 2008). Since the integration covers the whole
space, it is clear that the result will only depend on v0. It is possible to expand 1/|v0 − v′|
in the basis of Legendre Polynomials (see e.g. Arfken and Weber (2012) sec. 15.3) to per-
form the integral. However, we perform the integration directly in the spherical system
with azimuthal angle θ from the direction of v0

h(v0) ≡
∫︂

d3v′
fs(v′)

|v0 − v′|

= 2π
∫︂ ∞

0
d|v′||v′|2 fs(v′)

∫︂ 1

−1

d cos θ√︂
v2

0 + v′2 − 2v0 v′ cos θ

= 2π
∫︂ ∞

0
dv′v′2 fs(v′)

√︂
v′2 + v2

0 + 2 v0 v′ −
√︂

v′2 + v2
0 − 2 v0 v′

v0 v′

= 2π
∫︂ ∞

0
dv′v′2 fs(v′)

|v′ + v0| − |v′ − v0|
v0 v′

= 4π

[︃∫︂ v0

0
dv′

v′2

v0
fs(v′) +

∫︂ +∞

v0

dv′v′ fs(v′)
]︃

.

(2.97)

Similarily

g(v0) ≡
∫︂

d3v′ fs(v′) |v0 − v′|

= 2π
∫︂ ∞

0
d|v′||v′|2 fs(v′)

∫︂ 1

−1
d cos θ

√︂
v2

0 + v′2 − 2v0 v′ cos θ

= 2π
∫︂ ∞

0
dv′v′2 fs(v′)

√︂
v′2 + v2

0 + 2 v0 v′
3
−
√︂

v′2 + v2
0 − 2 v0 v′

3

3 v0 v′

=
2
3

π
∫︂ ∞

0
dv′v′2 fs(v′)

|v′ + v0|3 − |v′ − v0|3
v0 v′

=
4
3

π

[︃∫︂ v0

0
dv′v′2

3v2
0 + v′2

v0
fs(v′) +

∫︂ +∞

v0

dv′v′(3v′2 + v2
0) fs(v′)

]︃
.

(2.98)

We can compute now the derivatives needed in the computation of the diffusion coeffi-
cients:

∂

∂v0∥
h(v0) =

v0∥
v0

∂

∂v0
h(v0)

= 4π
v0∥
v0

[︃
v0 fs(v0)−

∫︂ v0

0
dv′

v′2

v2
0

fs(v′)− v0 fs(v0)

]︃
= −4π

v0∥
v0

∫︂ v0

0
dv′

v′2

v2
0

fs(v′) ,

(2.99)
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and

∂2

∂v2
0∥

g(v0) =
∂

∂v0∥

v0∥
v0

∂

∂v0
g(v0)

=
1
v0

(︃
1 −

v0∥
v0

)︃
∂

∂v0
g(v0) +

(︃v0∥
v0

)︃2 ∂2

∂v2
0

g(v0)

=
4
3

π

(︃
1 −

v0∥
v0

)︃ [︃∫︂ v0

0
dv′

v′2

v0

(︃
3 − v′2

v2
0

)︃
fs(v′) + 2

∫︂ ∞

v0

dv′ v′ fs(v′)
]︃

+
4
3

π

(︃v0∥
v0

)︃2 [︃
2
∫︂ v0

0
dv′

v′4

v3
0

fs(v′) + 2
∫︂ ∞

v0

dv′v′ fs(v′)
]︃

.

(2.100)

Computing then the expected values of
⟨︂

δv2
∥

⟩︂
and

⟨︁
δv2

⊥
⟩︁

and dividing by δt, we get the
complete set of non-vanishing diffusion coefficients:

D
[︁
δv∥
]︁
= −Γ ms(m + ms)

I2

v0
(2.101)

D
[︂
δv2

∥

]︂
=

2
3

Γ m2
s [Is,4 + Js,1] (2.102)

D
[︁
δv2

⊥
]︁
= 2 D

[︁
δv2

⊥,1/2
]︁
=

2
3

Γ m2
s [3Is,2 − Is,4 + 2Js,1] (2.103)

Is,k(v0) =
∫︂ v0

0
dv′

v′k

vk−1
0

fs(v′) (2.104)

Js,k(v0) =
∫︂ ∞

v0

dv′
v′k

vk−1
0

fs(v′) (2.105)

Γ = 16π2 G2 log Λ (2.106)

that enter directly into Eq. (2.21).

2.3.2 | Local diffusion coefficients for E and R
We are now ready to propagate the fluctuations on v to fluctuations of any quantity we
are interested in. Specifically, we are interested in the diffusion coefficients of energy E
and angular momentum J (or equivalently R). We will make yet another useful change
of coordinates that will allow us to better represent δE, δJ and δR. In this subsection,
as in the rest of the manuscript and unlike in the previous section, vr refers to the radial
velocity.

First, we can choose the radial direction to define our set of coordinates, introducing
an axis parallel to the position vector er, an axis parallel to the tangential velocity et and
a random direction e3 orthogonal to the previous ones. The velocity is then

v = vr er + vt et + 0 e3 (2.107)
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while the variation δv has components

δv =
[︂
δv∥

vr

v
− δv⊥,1

vt

v

]︂
er +

[︂
δv∥

vt

v
+ δv⊥,1

vr

v

]︂
et + δv⊥,2 e3 (2.108)

The energy fluctuation is readily computed

δE = − (v + δv)2

2
+

v2

2
= −δv2

2
+ v · δv

= −v δv∥ −
1
2

δv2
∥ −

1
2

δv2
⊥

(2.109)

The (vector) fluctuation of angular momentum is

δJ = rer × δv = −rδv⊥,2 et + r
[︂
δv∥

vt

v
+ δv⊥,1

vr

v

]︂
e3 (2.110)

giving the fluctuation of J = |J|

δJ = |J + δJ| − |J|

= r

(︄√︃
δv2

⊥,2 +
(︂

vt + δv∥
vt

v
+ δv⊥,1

vr

v

)︂2
− vt

)︄

= rvt

⎛⎜⎝
⌜⃓⃓⎷1 + 2

δv∥
v

+ 2δv⊥,1
vr

v vt
+ 2 δv∥δv⊥,1

vr

vt v2 +
δv2

∥
v2 +

δv2
⊥,1 v2

r

v2
t v2

+
δv2

⊥,2

v2
t

− 1

⎞⎟⎠
= J

(︄
δv∥
v

+ δv⊥,1
vr

v vt
+ δv∥δv⊥,1

vr

vt v2 +
1
2

δv2
∥

v2 +
1
2

δv2
⊥,1 v2

r

v2
t v2

+
1
2

δv2
⊥,2

v2
t

− 1
2

δv2
∥

v2

−1
2

δv2
⊥,1

v2
r

v2v2
t

)︃
+O(δv3)

= J

(︄
δv∥
v

+ δv⊥,1
vr

vt v
+ δv∥δv⊥,1

vr

v vt
+

1
2

δv2
⊥,2

v2
t

)︄
+O(δv3)

(2.111)

We remark here that, as emerges from the derivation of the Fokker-Planck equa-
tion, the second order diffusion coefficients D

[︁
δx2]︁ are indeed related to the expectation

value
⟨︁
(δx)2⟩︁. We can use the above expressions to compute the second order diffusion

coefficients

δE2 = v2δv2
∥ +O(δv3) (2.112)

δJ2 = J2

(︄
δv2

∥
v2 + δv2

⊥,1
v2

r

v2
t v2

+ 2 δv∥ δv⊥,1
vr

vt v2

)︄
+O(δv3) (2.113)

δE δJ = −J
(︃

δv2
∥ + δv∥ δv⊥,1

vr

vt vr

)︃
+O(δv3) (2.114)
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so that

D [δE] = −v D
[︁
δv∥
]︁
− 1

2
D
[︂
δv2

∥

]︂
− 1

2
D
[︁
δv2

⊥
]︁

(2.115)

= Γm2
s

[︃
−Js,1 +

m
ms

Is,2

]︃
D [δJ] = J

(︄
D
[︁
δv∥
]︁

v
+

D
[︁
δv2

⊥
]︁

4 v2
t

)︄
(2.116)

= Γm2
s J
[︃

1
3 v2

t
Js,1 +

(︃
1

2 v2
t
− m + ms

ms

1
v2

)︃
Is,2 −

1
6 v2

t
Is,4

]︃
D
[︁
δE2]︁ = v2D

[︂
δv2

∥

]︂
(2.117)

=
2
3

Γ m2
s v2 [Js,1 + Is,4]

D
[︁
δJ2]︁ = J2

v2

(︃
D
[︂
δv2

∥

]︂
+

1
2

v2
r

v2
t

D
[︁
δv2

⊥
]︁)︃

(2.118)

=
2
3

Γ m2
s

J2

v2

[︃
v2

v2
t

Js,1 +
3
2

(︃
v2

v2
t
− 1
)︃

Is,2 +

(︃
3
2
− v2

2 v2
t

)︃
Is,4

]︃
D [δE δJ] = −J D

[︂
δv2

∥

]︂
(2.119)

= −2
3

Γ m2
s J [Js,1 + Is,4] . (2.120)

When moving to R = J2/J2
c , we need to include the variation of J2

c . Using the
equation for the energy of the circular orbit, we can derive both sides

1 = − 1
2 r2

c

∂J2
c

∂E
+

∂

∂r

(︃
ϕ(r)− J2

c
2 r2

)︃
∂rc

∂E

−2 r2
c =

∂J2
c

∂E

(2.121)

and using the equation for rc[︃
3
2

ϕ′ + r
ϕ′′

2

]︃
r=rc

∂rc

∂E
= 1

∂rc

∂E
=

1
3
2 ϕ′

c + rc
ϕ′′

c
2

= − P2
c

2 π2 rc
(2.122)

Giving

δJ2
c = −2 r2

c δE +
P2

c
π2 δE2 (2.123)

δ
1
J2
c
= − 1

(J2
c )

2 δJ2
c +

1
(J2

c )
3 (δJ2

c )
2 =

1
J2
c

(︃
2
v2

c
δE +

(︃
P2

c
π2 J2

c
+

4
v4

c

)︃
δE2
)︃

(2.124)
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The variation of R is therefore:

δR =
(J + δJ)2

J2
c − 2 r2

c δE + P2
c

π2 δE2
− J2

J2
c

(2.125)

=
J2 + 2J δJ + δJ2

J2
c

(︃
1 +

2
v2

c
δE +

(︃
4
v4

c
− P2

c
J2
c π2

)︃
δE2
)︃
− J2

J2
c
+O(δv3)

= 2R
(︃

δJ
J
+

δE
v2

c
+ 2

δJδE
J v2

c
+

1
2

δJ2

J2 +

(︃
2
v4

c
− P2

c
2 J2

c π2

)︃
δE2
)︃
+O(δv3)

δR2 = 4R2
(︃

δJ2

J2 +
δE2

v4
c
+ 2

δJ δE
J v2

c

)︃
+O(δv3) (2.126)

And we can then compute the diffusion coefficients in terms of the functions Js,1, Is,2 and
Is,4.

D [δR] = 2 ΓRm2
s

[︃(︃
2

3 v2
t
− 7

3 v2
c
+

4 v2

3 v4
c
− v2 P2

c
3 J2

c π2

)︃
Js,1 (2.127)

+

(︃
1
v2

t
−
(︃

m
ms

+
3
2

)︃
1
v2 +

m
ms

1
v2

c

)︃
Is,2

+

(︃
− 1

3 v2
t
− 4

3 v2
c
+

1
2 v2 +

4 v2

3 v4
c
− v2 P2

c
3 J2

c π2

)︃
Is,4

]︃
D
[︁
δR2]︁ = 8

3
ΓR2m2

s

[︃(︃
1
v2

t
+

v2

v4
c
− 2

v2
c

)︃
Js,1 (2.128)

+

(︃
3

2 v2
t
− 3

2 v2

)︃
Is,2 +

(︃
3

2 v2 − 1
2 v2

t
+

v2

v4
c
− 2

v2
c

)︃
Is,4

]︃
D [δEδR] =

4
3

ΓRm2
s

[︃(︃
−1 +

v2

v2
c

)︃
Js,1 +

(︃
−1 +

v2

v2
c

)︃
Is,4

]︃
(2.129)

Before proceeding to assembly the coefficients for the flux-conservative form, we
introduce some useful expressions.

Is,k(E, r) =
∫︂ ϕ(r)

E
dE′ fs(E′)

(︃
ϕ(r)− E′

ϕ(r)− E

)︃(k−1)/2 ∂

∂E
Isk = − fs(E) +

k − 1
2(ϕ − E)

Is,k

(2.130)

Js,k(E, r) =
∫︂ E

−∞
dE′ fs(E′)

(︃
ϕ(r)− E′

ϕ(r)− E

)︃(k−1)/2 ∂

∂E
Jsk = fs(E) +

k − 1
2(ϕ − E)

Js,k

(2.131)
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so that using ∂Rv2
t = v2

t /R we have

1
2

∂ED
[︁
δE2]︁ = 2

3
Γm2

s (−Js,1 + Is,4) (2.132)

1
2

∂RD [δEδR] =
2
3

Γ m2
s

[︃(︃
−1 +

v2

v2
c

)︃
Js,1 +

(︃
−1 +

v2

v2
c

)︃
Is,4

]︃
(2.133)

1
2

∂RD
[︁
δR2]︁ = 8

3
ΓRm2

s

[︃(︃
1

2 v2
t
+

v2

v4
c
− 2

v2
c

)︃
Js,1 (2.134)

+

(︃
3

4 v2
t
− 3

2 v2

)︃
Is,2 +

(︃
− 1

4 v2
t
+

3
2 v2 +

v2

v4
c
− 2

v2
c

)︃
Is,4

]︃
(2.135)

1
2

∂ED [δE δR] =
2
3

ΓRm2
s

[︃(︃
− 2

v2
c
+

2 v2

v4
c

− v2 P2
c

π2 J2
c

)︃
Js,1 (2.136)

+

(︃
1
v2

c
+

2 v2

v4
c

− v2 P2
c

π2 J2
c
− 3

v2

)︃
Is,4

]︃
And we can finally derive the coefficients of the flux conservative form Eq. (2.22):

DE = Γm2
s

[︃(︃
−1

3
+

2 v2

3 v2
c

)︃
Js,1 −

ms

m
Is,2 +

2 v2

3 v2
c

Is,4

]︃
(2.137)

DR = 2 ΓRm2
s

[︃(︃
− 1

v2
c
+

2 v2

3 v4
c

)︃
Js,1 (2.138)

+

(︃(︃
m
ms

− 1
2

)︃
1
v2 − m

ms

1
v2

c

)︃
Is,2

+

(︃
− 1

v2
c
+

1
2 v2 +

2 v2

3 v2
c

)︃
Is,4

]︃
DEE =

1
3

Γ m2
s v2 [Js,1 + Is,4] (2.139)

DRR =
4
3

ΓR2m2
s

[︃(︃
1
v2

t
+

v2

v4
c
− 2

v2
c

)︃
Js,1 (2.140)

+

(︃
3

2 v2
t
− 3

2 v2

)︃
Is,2 +

(︃
− 1

2 v2
t
+

3
2 v2 +

v2

v4
c
− 2

v2
c

)︃
Is,4

]︃
DER =

2
3

Γ m2
s R

(︃
v2

v2
c
− 1
)︃
[Js,1 + Is,4] (2.141)

Γ = 16π2 G2 log Λ

2.3.3 | Orbit averaged diffusion coefficients
As we discussed under Eq.(2.37), the diffusion coefficients of the Fokker-Planck equa-
tion for n(E,R) describe the expectation value of δE and δR (and their products) for
an orbit described by (E,R) in an infinitesimal timestep δt. It is clear that, according
to our previous calculations, such a variation depends in general on the distance r from
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the center of the system, since all the diffusion coefficients we derived in the previous
section depend on the instantaneous value of v and vt. We will now consider an aver-
aged description of the system where the distribution function only depends on E and
R. Specifically, we compute the diffusion coefficients D [δx] as the orbital average of
their local counterparts D [δx].

⟨δx⟩orb =
∫︂

orb

⟨δx⟩
δt

dt ≃ PD [δx] ⇒ D [δx] ≃ 1
P

∫︂
orb

D [δx] dt . (2.142)

Therefore we will use the formula

D [δx] =
1
P

{︃∫︂ r+

r−

dr
vr

D [δx] (vr > 0) +
∫︂ r−

r+

dr
vr

D [δx] (vr < 0)
}︃

(2.143)

basically applying it to all of the corresponding coefficients. The variation of the orbital
integral defined in this way is simply

δPD [δx] = δr+D[δx](vr = 0)− δr−D[δx](vr = 0)

+ δr−D[δx](vr = 0)− δr+D[δx](vr = 0)

+

{︃∫︂ r+

r−

dr
vr

δ
D [δx] (vr > 0)

vr
+
∫︂ r−

r+
drδ

D [δx] (vr < 0)
vr

}︃ (2.144)

and since the diffusion coefficients do not depend on the sign of vr, we simply get

D [δx] =
2
P

∫︂ r+

r−

dr
vr

D [δx] (2.145)

We will now proceed to compute the last result of this section, that is the set of the
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coefficients for the flux conservation form of the orbit averaged equation.

D [δE] =
2 Γm2

s
P

∫︂ r+

r−

dr
vr

[︃
−Js,1 +

m
ms

Is,2

]︃
(2.146)

D [δR] =
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3 v2
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4 v2

3 v4
c
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c
3 J2

c π2

)︃
Js,1 (2.147)

+
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(︃
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(︃
− 1

3 v2
t
− 4

3 v2
c
+

1
2 v2 +

4 v2

3 v4
c
− v2 P2

c
3 J2

c π2

)︃
Is,4

]︃
D
[︁
δE2]︁ = 4 Γ m2

s
3 P

∫︂ r+

r−

dr
vr

v2 [Js,1 + Is,4] (2.148)

D
[︁
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s
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(2.150)

Γ = 16π2 G2 log Λ .

Since J = 4π2 J2
c P, we can immediately start computing the derivatives needed. A

key result is

∂

∂E
1
vr
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1
v3

r

(︃
1 − v2

t
v2

c

)︃
∂
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1
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so that
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∂E
JD

[︁
δE2]︁ = 8π2 ∂

∂E
J2
c
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(2.152)
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∂
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giving

DE = −8 Γ π2 J2
c m ms

∫︂ r+

r−
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vr

Is,2 (2.156)

DR = −16 Γπ2 m ms J2
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]︃
Γ = 16π2 G2 log Λ .

2.3.4 | Ergodic diffusion coefficients
We will now consider the ergodic case, where the distribution function only depends
on E. In order to compute the kicks received by the set of particles with energy E, we
average over all the kicks received by each orbit (thus in the period of the orbit) in one
period. This means that we will define the diffusion coefficients from the equation

⟨δx⟩orb,R =
∫︂ 1

0
dRP(E,R) ⟨δx⟩orb ≃ P̄(E)D̄[δx] D̄[δx] =

∫︂ 1

0
dRP(E,R)

P̄(E)
D [δx]

(2.161)
where the quantity P̄ is

P̄(E) ≡
∫︂ 1

0
dRP(E,R) =

g(E)
4 π2 J2

c
(2.162)

giving

D̄[δE] =
∫︂ 1

0
dRD [δE] (2.163)

= 2
Γ m2

s
P̄

∫︂ 1

0
dR
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dr
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(︃
−Js,1 +

m
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)︃
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[︁
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dRD
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=
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s
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dr
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v2 (Js,1 + Is,4)

(2.165)
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Figure 2.2: Potential ϕ(r) and effective potential ψ(r) for an orbit with angular mo-
mentum J. We marked on the axes the notable quantities r− and ϕ− = ϕ(r−), r+ and
ϕ+ = ϕ(r+), rc and ψc = ϕ(rc)− J2/(2 r2

c ).

We can now perform the integrals involved in the computations by inserting the
explicit form of Is,k and Js,k. We will reorder the integration, so it is useful to keep Fig.2.2
in mind to follow the changes.

Since Js,1 does not depend on r, the integral simply gives

J1,E =
∫︂ 1

0
dR

∫︂ r+

r−

dr
vr

Js,1(E) =
g

8 π2 J2
c

Js,1(E) . (2.166)

When considering Is,2, on the other hand, we want to reorder the integration moving
the integral over E′ outside of the integration in r and R. The same of course applies to
Is,4, so we will do it operating on the integration operators. Therefore we define

I2,E =
∫︂ 1

0
dR

∫︂ r+

r−
dr
∫︂ ϕ(r)

E
dE′ 1

vr

(︃
ϕ(r)− E′

ϕ(r)− E

)︃ k−1
2

≡
∫︂
D

1
vr

(︃
ϕ(r)− E′

ϕ(r)− E

)︃(k−1)/2

(2.167)
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and inverting the order of integration of R and r∫︂
D
=
∫︂ rc

0
dr
∫︂ R−

0
dR

∫︂ ϕ(r)

−∞
dE′ +

∫︂ ϕ−1(E)

rc

dr
∫︂ R+

0
dR

∫︂ ϕ(r)

E
dE′ (2.168)

Where R±(E, r) are such that the pericenter of the corresponding orbit is at r. The
integration domain over E′ does not depend on R, so we can swap the two integration
order ∫︂

D
=
∫︂ rc

0
dr
∫︂ ϕ(r)

E
dE′

∫︂ R−

0
dR+

∫︂ ϕ−1(E)

rc

dr
∫︂ ϕ(r)

E
dE′

∫︂ R+

0
dR (2.169)

and, since ϕc ≡ ϕ(rc) > E, we split the first integration in two∫︂
D
=
∫︂ ϕc

E
dE′

∫︂ rc

0
dr
∫︂ R−

0
dR+

∫︂ ϕ(0)

ϕc

dE′
∫︂ ϕ−1(E′)

0
dr
∫︂ R−

0
dR

=
∫︂ ϕc

E
dE′′

∫︂ ϕ−1(E′)

rc

dr
∫︂ R+

0
dR .

(2.170)

We are now ready to perform the integral

I2 =
∫︂ ϕc

E
dE′ fs(E′)

∫︂ rc

0

2 r2

J2
c

√︁
2ϕ − 2 E′

+
∫︂ ϕ(0)

ϕc

dE′ fs(E)′
∫︂ ϕ−1(E′)

0
dr

2 r2

J2
c

√︁
2ϕ − 2E′

+
∫︂ ϕc

E
dE′ fs(E′)

∫︂ ϕ−1(E′)

rc

2 r2

J2
c

√︁
2ϕ − 2 E′

=
1

8π2 J2
c

∫︂ ϕ(0)

E
dE′ fs(E′)g(E′)

(2.171)

When considering the integrals involved in D̄
[︁
δE2]︁, the one involving Js,1 is:

J1,EE = Js,1

∫︂ 1

0
dR

∫︂ r+

r−

dr
vr

v2

= Js,1

[︄∫︂ rc

0
dr(2ϕ − 2E)

∫︂ R−

0

dr
vr

+
∫︂ ϕ−1(E)

rc

dr(2ϕ − 2E)
∫︂ R−

0

dr
vr

]︄

= Js,1

∫︂ ϕ−1(E)

0
dr

2 r2

J2
c

√︁
2ϕ − 2 E

3

=
3

8 π2 J2
c

Js,1

∫︂ ϕ(0)

E
dE′g(E′)

(2.172)

where we used the fact that

∂

∂E

∫︂ ϕ−1(E)

0
drr2

√︁
2ϕ − 2 E

3
= −3

∫︂ ϕ−1(E)

0
dr r2

√︁
2ϕ − 2E =

−3
16π2 g(E) (2.173)
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The integral involving Is,4 on the other hand is simplified by the factor v2 since

v2 Is,4 =
∫︂ ϕ(r)

E
dE′(2ϕ − E′) fs(E′) (2.174)

so that the term can be combined with the factor
√︁

ϕ − E′ coming from the inner inte-
gration over R:

Is,4 =
∫︂ ϕc

E
dE′ fs(E′)

∫︂ rc

0

2 r2

J2
c

√︁
2ϕ − 2 E′3

+
∫︂ ϕ(0)

ϕc

dE′ fs(E)′
∫︂ ϕ−1(E′)

0
dr

2 r2

J2
c

√︁
2ϕ − 2E′3

+
∫︂ ϕc

E
dE′ fs(E′)

∫︂ ϕ−1(E′)

rc

2 r2

J2
c

√︁
2ϕ − 2 E′3

=
3

8π2 J2
c

∫︂ ϕ(0)

E
dE′ fs(E′)

∫︂ ϕ(0)

E′
dE′′g(E′′)

(2.175)

so that we can assembly all the terms

D̄[δE] = Γ m2
s

[︃
−Js,1 +

m
ms

1
g(E)

∫︂ ϕ(0)

E
fs(E′)g(E′)

]︃
(2.176)

D̄
[︁
δE2]︁ = 2 Γ m2

s
g(E)

[︃
Js,1

∫︂ ϕ(0)

E
dE′g(E′) +

∫︂ ϕ(0)

E
dE′ fs(E′)

∫︂ ϕ(0)

E′
dE′′g(E′′)

]︃
(2.177)

and we can therefore compute the coefficients for the flux conservation form:

1
2

∂

∂E
g D̄

[︁
δE2]︁ = Γ m2

s

[︃
fs(E)

∫︂ ϕ(0)

E
dE′g(E′)− Js,1g − fs(E)

∫︂ ϕ(0)

E
dE′g(E′)

]︃
= −Γm2

s Js,1(E)g(E)

so that

D̄E = −Γm ms

∫︂ ϕ(0)

E
fs(E′)g(E′) (2.178)

D̄EE = Γ m2
s

[︃
Js,1(E)

∫︂ ϕ(0)

E
dE′g(E′) +

∫︂ ϕ(0)

E
dE′ fs(E′)

∫︂ ϕ(0)

E′
dE′′g(E′′)

]︃
(2.179)

2.4 | Averaging of equations to reduce dimensions
The different equations we have considered, the local, the orbit averaged and the er-
godic Fokker-Planck equation can be formally obtained one from the other. More specif-
ically, one needs to promote the averaging of the DF to all the equation. For example,
considering the local and the orbit averaged equation, the orbit averaging operation is:

⟨ f (E,R)⟩ = 2
P

∫︂ r+

r−

dr
vr

f (E,R, r) =
1
J

∫︂ dr
vr

8π2 J2
c f (E,R, r) =

n(E,R)

J (E,R)
(2.180)
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with zero endpoints variations. Then, one needs to

1. Replace f with its average ⟨ f ⟩

2. Apply the averaging operator to all the terms

From the local to the orbit averaged equation we have:⟨︃
d
dt

⟨ f ⟩
⟩︃

=

⟨︃
∂

∂E
⟨ f ⟩ D [δE] +

1
2

∂2

∂E2 ⟨ f ⟩ D
[︁
δE2]︁+ . . .

⟩︃
1
J

d
dt

⟨ f ⟩
∫︂ dr

vr
8π2 J2

c =
1
J

∫︂ dr
vr

8π2 J2
c

(︃
∂

∂E
⟨ f ⟩ D [δE] +

1
2

∂2

∂E2 ⟨ f ⟩ D
[︁
δE2]︁+ . . .

)︃
d
dt
J ⟨ f ⟩ = ∂

∂E
⟨ f ⟩ 8π2 J2

c

∫︂ dr
vr

D [δE] +
1
2

∂2

∂E2 ⟨ f ⟩ 8π2 J2
c

∫︂ dr
vr

D
[︁
δE2]︁+ . . .

d
dt

n =
∂

∂E
⟨ f ⟩ J D [δE] +

1
2

∂2

∂E2 ⟨ f ⟩ J D
[︁
δE2]︁+ . . .

d
dt

n =
∂

∂E
nD [δE] +

1
2

∂2

∂E2 nD
[︁
δE2]︁+ . . .

(2.181)

Using now the average

f̄ ≡ 2
P̄

∫︂ 1

0
dR

∫︂ r+

r−

dr
vr

f (E,R, r) =
1
g

∫︂ 1

0
dR

∫︂ r+

r−

dr
vr

8π2 J2
c f (E,R, r) (2.182)

on the local Fokker-Planck equation we proceed as before. When the integral arrives at
terms with at least ∂R we can evaluate the corresponding terms at the endpoints.

d
dt

f̄ g =
∂

∂E
f̄ 4π2 J2

c

∫︂ 1

0
dRPD [δE] +

1
2

∂2

∂E2 f̄ 4π2 J2
c

∫︂ 1

0
dRPD

[︁
δE2]︁

+
1
2

∂

∂E
⟨ f ⟩ 4π2 J2

c [ PD [δEδR] ]10 +FR(1)−FR(0)

d
dt

n̄ =
∂

∂E
n̄D̄[δE] +

1
2

∂2

∂E2 n̄D̄
[︁
δE2]︁

(2.183)

where we have used the fact that the diffusion coefficients of involving δR vanish for
both R = 0 and R = 1, and so does FR.

2.5 | Relaxation Timescales
The flux-conservative form of the orbit-averaged Fokker-Planck equation allows one to
understand the dynamical evolution of the system. As already shown by Cohn and
Kulsrud (1978), relaxation in R for eccentric orbits is more efficient than relaxation in E.
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For small R, the diffusion coefficients involving δR are dominated by the contribu-
tions from δJ, in particular by the terms weighted by 1/v2

t . Therefore

RD [δR] ∼ D
[︁
δR2]︁ ∼ R

v2
c

∫︂ ϕ−1(E)

0
dr

r2

r2
c

D
[︁
δv2

⊥
]︁

(2.184)

while the energy diffusion coefficients behave like

D [δE] ∼
D
[︁
δE2]︁
E

∼
∫︂ ϕ−1(E)

0
drD

[︁
δv2

⊥
]︁

(2.185)

The contribution of the two integrals is of the same order of magnitude, at least in the
Keplerean approximation. In this case ϕ−1(E) = 2rc(E) and E = v2

c . Therefore we have

D
[︁
δR2]︁ ∼ R D [δE]

E
⇒ tR ≃ R tE . (2.186)

Now, since E ∝ 1/rc, tE is representative of the relaxation of the spatial density and,
therefore, of the stellar potential. For this reason, the quantity tE is usally referred to as
the relaxation timescale of galactic nuclei.

Given this hierarchy in relaxation timescales for eccentric orbits, the flux of particles
whose pericenter r− is driven below the critical value of the loss cone rLC is set by the
relaxation in R, that for a highly eccentric Keplerian orbit corresponds to R ≃ 2 r−/a.

2.6 | Multi-mass systems in galactic nuclei
As we anticipated at the beginning of our overview on orbits in galactic nuclei, we will
apply the formalism we developed to systems where

■ We have m = 2 stellar components or stellar species, each described by the corre-
sponding distribution function fk, with k = 1, . . . , m.

■ Each object is subject to stochastic interactions with all the m species.

Considering a time δt that is significantly smaller than the relaxation timescale of the
system (that can be estimated directly from the various diffusion coefficients, for exam-
ple R/D [δR] for the local Fokker-Planck equation), one can derive for each component
fk a Fokker-Planck equation:

d
dt

f k +∇ · Fk = 0 (2.187)

where the diffusion coefficients must include the contribution from all the m species.
The insertion of the various contributions from the different species happens during the
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integration over the distribution of the diffusion coefficients for δvr and δvt in Eq.(2.72)
and following. There, one should merely sum all the diffusion coefficients over the
various scatterer distributions, which means

D [δx]k =
m

∑
j=1

D [δx]kj (2.188)

where D [δx]ks is the diffusion coefficient computed with m = mk and ms = mj, fs = f j

in the notation of this chapter.
After a time δt, however, the diffusion coefficients might have changed, since the

distribution of the particles has evolved. The evolution equation (2.187) acquires a fur-
ther dependence on f through the diffusion coefficients, and formally ceases to be a
Fokker-Planck equation (whose coefficients only depend on (E,R), and not on f ).

2.7 | Additional physics
In this work, we model the diffusion coefficients to include 2-body relaxation in the
scattering approximation. Naturally, this effective treatment neglects some important
physics that plays an important role in the evolution of inner regions of galactic nuclei.
In general, inside the influence radius of a galaxy (that typically ranges from 10−6 pc
up to 1 pc), one can identify three main classes of interactions that can contribute to the
evolution of orbital parameters (Bar-Or and Alexander, 2014; Merritt, 2013).

1. Short-time interactions. In addition to two body scatterings, other phenomena
participate energy and momentum exchange between stars: three-body and multi-
body interactions, extremely close (strong) scattering events, and destructive col-
lisions. These events typically require a single close approach of two orbits, which
means that the participating objects can move on very different orbits in terms of
energy and angular momentum. Therefore, these phenomena dominate the over-
all relaxation of galactic nuclei since alter significantly the orbital parameters.

2. Long-time interactions. This class of interactions affects particles moving on sim-
ilar orbits, where the scattering approximation does not hold: particles in their
orbital motion are never so distant that their mutual force is negligible. This is the
case, for example, of stars close to the central massive black hole in galactic nuclei.
Here, orbits are almost Keplerian and the mutual interaction can be effectively de-
scribed treating each orbit as a whole as a disc or - if the orbits are eccentric - as
a massive rod. These interactions are typically faster than short-time interactions
and are responsible for the relaxation of particles with similar orbital parameters.
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3. General relativistic effects This class of phenomena is stronger on orbits with
pericenters on the scale of the gravitational radius of the central massive black
hole. Among them, there are mostly deterministic effects like relativistic preces-
sion of the orbital axis, and gravitational waves emission. These deterministic
effects change the orbital shape and can affect the efficiency of short-time and
long-time interactions.

In the work by Bar-Or and Alexander (2014), the authors examine the interplay of
gravitational scatterings, resonant relaxation and gravitational waves emission in the
steady state orbit averaged Fokker-Planck equation. They solve directly the differential
equation and test their results against Monte Carlo simulations. One of the main conclu-
sions of this work is that resonant relaxation and gravitational wave emission become
relevant in the same region of phase space. Here, they mostly cancel and the flux in
phase space basically reduces to that of gravitational scatterings only.
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3

Classical loss cone theory

Impulsive actions led to trouble, and trouble could have unpleasant consequences.

— Stieg Larsson, The Girl with the Dragon Tattoo

This chapter is devoted to the classical theory of loss cone, and in particular to the
effects of the loss cone on the stochastic evolution of galactic nuclei. The theory is
vast, and I focus on the key results employed and/or challenged by the results of my
research, that will be presented in the subsequent chapters.

3.1 | The loss cone
The evolution of the orbital parameters of an object can be described as a Brownian mo-
tion in the (E,R) space that is more pronounced along R for eccentric orbits; therefore,
relaxation efficiently directs compact objects toward small pericentres close to the MBH
at the centre of the system (Bar-Or and Alexander, 2014).

A compact object like a stellar BH can be considered captured once it crosses the
closest parabolic approach (Merritt, 2013)

rPlunge = 4
GM•

c2 . (3.1)

Conversely, an extended object (e.g. a regular star) will be disrupted because of the tidal
forces induced by the MBH gravitational field at a distance known as tidal radius (Stone
and Metzger, 2016), given by

rTDE ≃ r⋆

(︃
M•
ms

)︃1/3

, (3.2)
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Figure 3.1: Schematic representation of the loss cone for a particle with velocity v
around a massive black hole M•. The orbit of the particle is blue; the yellow dashed
circle surrounding M• represents the loss cone radius rLC; the light gray lines show the
orbits grazing rLC where the particle could be placed by random encounters. The lines
tangent to the grazing orbits delimit a cone, known as the loss cone: any orbit with a
velocity within this region will approach closer than rLC.

where r⋆ is the typical radius of the extended object. At this point, the star is disrupted
and a fraction of the stellar debris is captured by the MBH, with the rest escaping on
unbound orbits.

The radii rPlunge and rTDE are therefore thresholds below which compact and ex-
tended objects are respectively captured or destroyed by the central MBH. In practice,
regardless of its initial orbit, any object can be driven below its relevant threshold sepa-
ration rLC by the cumulative effect of two-body relaxation. This occurs when the veloc-
ity vector of the object is scattered within a small solid angle of the size of rLC around
the central MBH, which defines a cone-like region in the velocity space, named the ’loss
cone’ because whatever enters this region is ’lost’ to the surrounding stellar system; see
Amaro-Seoane (2020) for a more complete description. In the (E, R) space, the loss cone
is defined by the region below the curve set by the condition on the orbit pericentre

r−(E, R) ≤ rLC, (3.3)

where rLC = rPlunge for compact objects and rLC = rTDE for extended objects. This
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condition gives:

RLC(E) ≤ R ≤ 1 RLC(E) = 2 r2
LC

E − ϕ(rlc)

J2
c (E)

(3.4)

for E < ELC, where the latter is the energy of the circular orbit at rLC. In Fig. 3.1 we
show a graphical representation of the loss cone in the (r, v) and the (E,R) space.

In the now classical treatment of the loss cone in the Fokker-Planck approach, one
assumes that

■ Orbits with percenter larger than the critical value rLC are unaffected by the pres-
ence of the loss cone.

■ Orbits with pericentre smaller than the critical value rLC will be either disrupted
or captured gravitationally at the first pericentre passage.

The different timescale of relaxation in E and R means that the two relaxation pro-
cesses will detach for small R; as a consequence we expect f (E, R) to be well represented
at low R by the separated form f (E, R) ≃ fE(E) fR(R). This fact has been exploited by
Cohn and Kulsrud (1978) to derive the expected relaxed profile in R at small R corre-
sponding to expected flux of particles that will have pericentre r− < rLC. A boundary
condition for the orbit-averaged Fokker-Planck equation can be derived to consistently
include the loss cone effects.

Moreover, by assuming the Cohn-Kulsrud relaxed profile one can relate the flux
across the loss cone at a given energy and the average value (in R) of the distribution
function. This allows one to complement the ergodic Fokker-Planck equation with a
sink term effectively including the presence of the loss cone.

3.2 | Cohn Kulsrud distribution in angular momentum
The Cohn boundary layer and the corresponding Cohn-Kulsrud steady profile are ob-
tained under the following assumptions:

1. The flux in energy is steady on the relaxation timescales of R (thus E is treated as
a parameter and ∂EFE neglected).

2. The flux in angular momentum is dominated by DRR ∂R f .

3. RLC is so small that we can take the R → 0 limit.
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By taking the R → 0 limit of the FR coefficients we have1

DR ∼ O(R) (3.5)

DRR

R ∼ 8π2
∫︂ ϕ−1(E)

0

dr
v

r2 D
[︁
δv2

⊥
]︁
≡ D(E) (3.6)

DER

E
∼ O(R) (3.7)

The three assumptions immediately give the analytical form of the equation right
above the loss cone

∂

∂t
J fR = D(E)

∂

∂RR ∂

∂R fR (3.8)

and the form of the flux FR and the steady solution fR just above the loss cone.

FR,LC = RD f ′R(RLC) , fR(R) =
FR,LC

D log
R
R0

. (3.9)

The value of the flux across the loss cone is then set according to the expected rate of
particles with R < RLC that complete the orbit until r− = rLC without being scattered
away. Therefore, we need to solve the local Fokker-Planck equation in the neighbour-
hood and inside the loss cone with proper boundary conditions. By choosing a domain
R ∈ [0,Rmax], with Rmax ≳ RLC, we need to apply some boundary conditions summa-
rized in Fig. 3.2.

i f out(E,R, r−) = 0 for R < RLC, since no particle is generated at the loss cone.

ii f out(E,R, r+) = f in(E,R, r+) for RLC < R < Rmax since particles complete the
pericentre without being destroyed.

iii f out(E,Rmax, r) = f in(E,Rmax, r) ≡ fLC
logRmax/RLC

logRLC/R0
, matching the orbit-averaged

solution

iv f out(E,R, r+) = f in(E,R, r+), since particles not penetrating the loss cone start a
new orbit at the pericentre passage.

v Fout
R (r, E, 0) = F in

R (r, E, 0) = 0, since crossing the R = 0 boundary physically corre-
sponds to flipping sign in angular momentum, i.e. a reflection in R.

1In chapter 6 of Merritt (2013) the quantity D refers to the quantity used here divided by g(E) =
4 π2 J2

c P̄.

46



Chapter 3. Classical loss cone theory 3.2. Cohn Kulsrud distribution in angular momentum

The local coefficients of FR in the R → 0 limit are

DR ∼ O(R) (3.10)

DRR

R ∼ r2

J2
c

D
[︁
δv2

⊥
]︁
≡ D(E, r) (3.11)

D [δE]
E

∼ O(R) (3.12)

The local equation in the steady state approximation takes the shape

vr
∂

∂ r
f in = D

∂

∂RR ∂

∂R f in vr
∂

∂ r
f out = D

∂

∂RR ∂

∂R f out (3.13)

where vr = −|vr| with f in and vr = |vr| with f out. The steady state assumption implies
that the total flux FR,LC entering the region must equate the flux crossing r = r− in the
solution of f in. In order to see it explicitely, we integrate both the equations over the
orbit

f in(R, r+)− f in(R, r−) =
∂

∂RR ∂

∂R

∫︂ r+

r−

dr
vr

D f in(R, r) (3.14)

and on the domain of R∫︂ RLC

0
dR( f in(R, r+)− f in(R, r−)) = RLC

[︃
∂

∂R

∫︂ r+

r−

dr
vr

D f in(R, r)
]︃

LC
(3.15)

doing the same for f out∫︂ RLC

0
dR f out(R, r+) = RLC

[︃
∂

∂R

∫︂ r+

r−

dr
vr

D f out(R, r)
]︃

LC
(3.16)

subtracting the two equations and using the boundary conditions∫︂ RLC

0
dR f in(E,R, r−) =

D
4 π2 J2

c
RLC

∂

∂R fR(RLC)

=
FR,LC

4π2 J2
c

(3.17)

finally giving

FR,LC = 4π2 J2
c

∫︂ RLC

0
dR f in(E,R, r−) . (3.18)

3.2.1 | Qualitative trends: full and empty loss cone regime
Armed with these equations, we can already identify two limiting cases. The structure
of the equation shows that the expected magnitude of the kick along one orbit is⟨︁

δR2⟩︁
2

=
D

4 π2 J2
c
≡ qRLC (3.19)
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Figure 3.2: Boundary conditions for the solution inside the loss cone at fixed energy.
For each value of the angular momentum (vertical axis), we track on the horizontal axis
the motion along the orbit from the pericentre, to the apocenter, and back to the peri-
centre. For angular momentum larger than the loss cone value, particles approaching
the pericentre will start another orbit, therefore the distribution function has periodic
boundary conditions. For angular momentum smaller than the loss cone value, instead,
particles approaching the pericentre will be disrupted / captured. Therefore, on the left
of the diagram the function is forced to be zero, and on the right one can compute the
capture rate. At the maximum value of angular momentum considered, the function is
matched with the soultion of the orbit-averaged Fokker-Planck equation and therefore
the function does not depend on the position along the orbit. The lower edge is a re-
flecting boundary condition, since it corresponds to perfectly radial orbits.
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that means that when q ≫ 1 the particles are likely to escape the loss cone in a time P/q,
but when q ≪ 1 particles can escape the capture, on average, only if their initial angular
momentum is R ≳ RLC(1 −

√
q). We define the two regimes:

A. Full loss cone regime When q ≫ 1. In this case the distribution is expected to be
flat inside the loss cone, since the fluctuations ⟨δR⟩ will let particles enter and exit
the interested area many times. Therefore we expect the function to be uniform in R
inside the loss cone; using the boundary condition fR(R, r) = fR(RLC) everywhere,
meaning

FR,LC = 4π2 J2
c RLC f (E,RLC) , (3.20)

and inserting this expression in (3.9) we get

log
RLC

R0
= q

R0

RLC
≃ 0 . (3.21)

B. Empty loss cone or diffusive regime, where RLC is much larger than the average
fluctuations δR. In this case ∂R f in ∝ fLC/(qRLC) ≫ fLC/RLC. Approximating
f in(r−, E,R) as a line with slope f ′LC ≡ ∂R f (E,RLC), the flux conservation equation
then becomes

FR,LC = 2π2 J2
c

f 2
LC

f ′LC
(3.22)

since the integral is restricted by the condition f in > 0. Inserting this expression in
(3.9) we get

f ′LC =
fLC

RLC
√︁

2 q
FR,LC = D

fLC√︁
2 q

(3.23)

and, finally

log
RLC

R0
=
√︁

2 q R0 ≃ RLC (3.24)

The boundary condition, then, is obtained setting either FR,LC or f ′LC depending on fLC;
the two prescriptions are equivalent if assumptions 2 and 3. hold. The factor of

√
2 in

front of
√

q comes from assuming a straight line inside the loss cone; the correct factor
should be

√
π/2, as presented in L.E. Strubbe’s thesis.

3.2.2 | Analytic estimate
The solution inside the loss cone is better obtained by changing variable to

τ =
4π2 J2

c
D ×

⎧⎨⎩
∫︁ r

r−
dr D

vr
u ≥ 0

D
4π2 J2

c
−
∫︁ r

r−
dr D
|vr | vr < 0

(3.25)
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where we have used the fact that

2
∫︂ r+

r−

dr
|vr|

D ∼ D
4π2 J2

c
R → 0 (3.26)

With this change of variable Eq. (3.13) becomes

∂

∂ τ
f out(R, τ) = qRLC

∂

∂RR ∂

∂R f out(R, τ) 0 ≤ τ <
1
2

(3.27)

∂

∂ τ
f in(R, τ) = qRLC

∂

∂RR ∂

∂R f in(R, τ)
1
2
< τ ≤ 1 (3.28)

(3.29)

and returning to from f in and f out to f :

∂

∂τ
f = qRLC

∂

∂R

[︃
R ∂

∂R f
]︃

τ ∈ [0, 1], R ∈ [0;Rmax] . (3.30)

An analytic expansion of the solution can be obtained if we take Rmax = RLC. Then, we
rescale R to

y =
R

qRLC
(3.31)

so that the equation becomes

∂

∂τ
f =

∂

∂y
y

∂

∂y
f 0 ≤ τ ≤ 1 0 ≤ y ≤ 1

q
. (3.32)

Since the differential equation is first order in τ, we interpret this as an evolution
equation with the initial conditions set to f (R, 0) = 0 (that is boundary condition (i)),
and bound to have f = fLC at y = 1/q for τ > 0. As in the problem of heat transfer,
we express the solution in terms of a basis of separable solutions. First, we realize that
the constant function is a solution of the differential equation, so that we can look for a
solution of the form

fR = fLC [1 − gR(y, τ)] (3.33)

where gR satisfies the same differential equation. The problem for g has initial condi-
tions g(y, 0) = 1 and g(1/q, τ > 0) = 0. We dub the basis for gR with a label λ, so
that

∑
λ

cλgλ gλ = Tλ(τ)Yλ(y) (3.34)

and the differential equation becomes

T′
λ

Tλ
=

Y′
λ + y Y′′

λ

Yλ
= λ (3.35)

50



Chapter 3. Classical loss cone theory 3.2. Cohn Kulsrud distribution in angular momentum

so that T = exp(λ τ) and Y is the solution of

−λYλ + Y′
λ + y Y′′

λ = 0 (3.36)

with the boundary condition Y(1/q) = 0 and Y′
λ + y Y′′

λ = 0 at y = 0. The equation can
be turned into Bessel equation of the first kind by with ν = 0 by changing variable to
z =

√︁
−λy, so that the general solution is

Yλ = C J0

(︂
2
√︁
−λ y

)︂
(3.37)

which satisfies BC (v) for any negative λ, and vanishes at y = 1/q when

λ = −
q α2

k
4

(3.38)

where αk is one of the infinitely many, countable zeros of J0(x). The basis for the function
gR is then {︃

C e−
q α2

4 τ J0(αk
√

q y)
}︃

k=1,2,...
(3.39)

and it is orthogonal with respect to the weight w(y) = 1. We will use the following
properties of the Bessel plynomials J1 and J0:

d
dz

z J1(c z) = c z J0(c z)
d
dz

J0(c z) = −c J1(c z) J1(0) = 0 . (3.40)

Thus, we can expand the intiial conditions gR = 1 in this basis as (Arfken and Weber,
2012, Eq. (14.48) with ν = 0, a2 = 1/q, ρ2 = y)

ck =
2 q

J2
1(αk)

∫︂ 1/
√

q

0
dρ ρ J0(αk

√
q ρ) =

2
αk J1(αk)

(3.41)

and the general solution becomes

f = fLC

[︄
1 − 2

∞

∑
k=1

exp{−τ q α2/4}
αk J1(αk)

J0(αk
√

q y)

]︄
. (3.42)

We now impose the boundary condition at RLC to find the value of R0. By imposing
(3.18) and using (3.9)

D
4π2 J2

c logRLC/R0
= RLC − qRLC

∞

∑
k=1

2
αk J1(αk)

exp

(︄
−

q α2
k

4

)︄ ∫︂ 1/q

0
dy J0 (αk

√
qy)

= RLC − qRLC

∞

∑
k=1

4
αk J1(αk)

exp

(︄
−

q α2
k

4

)︄ ∫︂ 1/
√

q

0
dρ ρ J0 (αk

√
q ρ)

= RLC

[︄
1 −

∞

∑
k=1

4
α2

k
exp

(︄
−

qα2
k

4

)︄]︄
(3.43)
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Figure 3.3: Solution of the
local Fokker-Planck equation
inside the loss cone (i.e. for
R < RLC). We show the av-
erage distribution inside the
loss cone for three cases in the
empty (upper panel), inter-
mediate (middle panel) and
full loss cone regime (lower
panel). The numerical solu-
tion (blue line) to the prob-
lem with Rmax = 2RLC
agrees well with the ana-
lytic estimate by Merritt (yel-
low line). For comparison,
we also show the standard
Cohn-Kulsrud branch (pink
line), that is proportional to
logR/R0, and the distribu-
tion at τ = 1 from the numer-
ical solution (green line), i.e.
the distribution at the peri-
centre (captured by the loss
cone).
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finally giving

log
R0

RLC
= −q

[︄
1 −

∞

∑
k=1

4
α2

k
exp

(︄
−

qα2
k

4

)︄]︄−1

≡ α(q) (3.44)

By directly computing this function, one can check the fact that α ∼ √
q for small q and

α ∼ q for large q, as predicted by our qualitative approaches. Moreover, an estimate that
holds over all the typical values of q is 4

√︁
q2 + q4 (Merritt, 2013; Vasiliev, 2017).

In Fig. 3.3 we plot some solutions, together with a numerical counterpart with the
methods explained in Chap. 6. We can see that for q ≃ 2 both the average distribution
and the distribution at rc do not vanish at R = 0, which means that we can have tidal
disruptions and plunges at highly eccentric orbits even in this regime.

Eq. 3.9 is one of the most powerful results of classical loss cone theory, since it can
directly relate the spatial distribution of a spherical system with loss cone rates. By
assuming an ergodic model f (E), one can compute the distribution function from the
spatial density of a stellar system using Eddington’s formula (Binney and Tremaine,
2008; Stone and Metzger, 2016, see Chapter 4 for an example). Then, computing q and
R0, the flux FLC(E) entering the loss cone is computed from the specific Cohn-Kulsrud
profile such that

f (E) =
FLC

D

∫︂ 1

RLC

dR logR/R0 . (3.45)

The total rate of loss cone events ṄLC is then computed as

ṄLC =
∫︂ ELC

0
dEFLC(E) (3.46)

where ELC is the energy of the circular orbit at the loss cone radius. The same approach
can be used with solutions of the ergodic Fokker-Planck equation to compute loss cone
rates (Vasiliev, 2017).

3.3 | Direct Plunges, EMRIs and 2-body relaxation
In a work by Hopman and Alexander (2005), the formalism developed in Chapter 2 has
been applied to a compact object in a Monte Carlo fashion to compute the rate of loss
cone phenomena. The authors also included the effects of gravitational wave emission,
effectively evolving each orbit period-by-period with fluctuations given by:

δJ = ⟨δJ⟩+ ξ
√︂
⟨δJ2⟩+ δJGW (3.47)

δE = δEGW . (3.48)
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where ξ randomly takes value −1 or 1. δEGW = and δJGW are computed according to
Peters formulas

δEGW =
8 π

5
√

2
1 + (73/24) e2 + (37/96) e4

(1 + e)7/2
m c2

M•

(︃
rS

r−

)︃7/2

(3.49)

δJGW = −16π

5
1 + (7/8) e2

(1 + e)2
G m

c

(︃
rS

r−

)︃2

(3.50)

where m is the mass of the compact object, e ≃
√

1 −R is the eccentricity of the orbit
and rS = 2 G M•/c2 the Schwarzschild radius of the central MBH.

The key result of this work is that you can identify a critical value of the semimajor
axis rGW that distinguishes between two qualitatively different types of trajectory in the
(E, J).

■ DPs: the particle starts with semimajor axis a > aGW ≃ 0.01 rh. Stochastic interac-
tions completely dominate the evolution of orbital parameters, mostly changing
the angular momentum of the orbit. Once the particle approaches the loss cone,
stochastic kicks may drive it on a deadly orbit.

■ EMRIs: the particle starts with semimajor axis a < aGW. Stochastic interactions
are significant to orbital evolution up until the pericentre becomes sufficiently low.
For this value of a, stochastic kicks are very small and the deterministic drift in
energy angular momentum due to GW emission becomes dominant.

Since the evolution due to GW emission keeps the pericentre approximately con-
stant, trajectories dominated by this process will move parallel to the loss cone bound-
ary – that is the locus of orbits with pericentre rLC – towards a lower and lower semima-
jor axis. Eventually, the compact object will merge with the central MBH as shown in
Fig. 3.4. A crucial consequence of the work presented by Hopman and Alexander (2005)
is that direct plunges are generated only in regions dominated by two body relaxation
and with semimajor axis a > aGW. Assuming a quasi steady system inside the influence
radius, particle conservation implies that

■ in a system evolving only due to two-body scatterings, the flux of EMRI and direct
plunges can be computed by integrating the flux across the loss cone for a > aGW

and a < aGW respectively.

This result has been later tested for M• ≥ 106 M⊙ in the comprehensive work by
Bar-Or and Alexander (2014), where it is shown that these results hold even with more
sophisticated treatments of two body relaxation. However, the validity of this prescrip-
tion for the computation of DP and EMRI rates has been recently challenged by Qunbar
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Figure 3.4: (Adapted from Mancieri et al, in prep). Qualitatively different orbits for
compact objects: direct plunges for a > aGW and EMRIs for a < aGW. The plot assumes
a prototypical system with M• = 4 × 106 M⊙ and a model of the nuclear star cluster
with light stars and heavier black holes as presented in Chapter 4.

and Stone (2023). In this work it is shown that for M• ≤ 106 M• the distinction be-
tween the regions were DPs are produced and the region where EMRIs are produced
disappears: both can be produced at any semimajor axis.

In a work led by D. Mancieri (in preparation), we have tested independently the
prescription of aGW with a few-body integrator. We included the effect of two body
encounters without relying on the orbit averaged assumption, and accounted for rela-
tivistic precession and gravitational waves emission by including Post Newtonian cor-
rections to the Hamiltonian of the particle up to order 2.5. Preliminary results agree
with the conclusions of Qunbar and Stone (2023).

55





4

Two-dimensional Fokker-Planck
evolution

Being able to read and write did not provide answers to all questions.
It led to other questions, and then to others.

— Margaret Atwood, The Testaments

This chapter presents the code I developed for the solution of the orbit averaged
Fokker-Planck equation with two stellar species: a light distribution of stars possi-
bly producing tidal disruption events and a heavier distribution of compact objects
producing direct plunges and extreme mass ratio inspirals. The results here reported
have been published in Broggi et al. (2022).

4.1 | Initial conditions and algorithm
In this section, we will present the initial conditions for the simulated systems and the
algorithm used to perform the simulation. The general framework is based on the work
of Pan and Yang (2021).

We consider a simple model of a galactic nucleus composed by:

■ a central MBH of mass M•,

■ a spherical distribution of stars with mass ms,

■ a spherical, subdominant distribution of stellar mass compact objects with mass
mBH.
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4.1.1 | Initial conditions
We fix the total mass of extended objects (stars hereinafter) in the distribution to Ms =

20 M•, composed by stars of mass ms = 1 M⊙ each, and the total mass of compact
objects (sBHs hereinafter) to MBH = 0.2 M•, composed by sBHs of mBH = 10 M⊙ each.
For a uniform notation, in the next sections we will use the symbols RBH

LC , EBH and rBH

when considering the loss cone relative to gravitational capture of compact objects, and
Rs

LC, Es and rs when considering the loss cone relative to TDEs.
Both distributions initially follow the same Dehnen profile with γ = 1.5 (Tremaine

et al., 1994)

ni(r) =
3

8π
Ni

ra

r3/2 (r + ra)5/2 θ(r − ri). (4.1)

Here ra sets the radius at which the distribution changes its behaviour from r−1.5 to r4

and the Heaviside function θ is introduced to truncate the distribution at r = ri, where
ri = rBH for sBHs and ri = rs for stars. In order to adequately scale ra with the properties
of the system, we set it to a multiple of the influence radius of the MBH rh (Merritt, 2013)

ra = 4 rh. (4.2)

Then, we use the M• − σ relation (Gültekin et al., 2009) to finally set the scale radius of
the distribution

σ = 70 Km/s ·
(︃

M•
1.53 106M⊙

)︃1/4.24

. (4.3)

The ratio ra/rh is somewhat arbitrary, since the velocity dispersion in the central region
in our model is not constant and diverges as ∼ r−1 at the centre. For a comparison,
the stellar radial velocity dispersion of the initial conditions can be computed (see Sec.
4.3.1). Neglecting the sBHs contribution, we obtain

σ2
r (rh) ≃ 4.6

G M•
ra

, σ2
r (ra) ≃ 2.4

G M•
ra

(4.4)

and even more sophisticated estimates – e.g. averages in the central regions – give sim-
ilar numerical factors. For an MBH of M• = 4 × 106M⊙ our model has a density of
6 × 104M⊙/pc3 at the influence radius rh = 2.23 pc, which is consistent with observa-
tional estimates for the Milky Way (e.g. Schodel et al., 2014). The total potential of the
MBH plus the extended star and sBH nuclear cluster is

ϕ(r) =
GM•

r
+ 2 G(Ms + MBH)

(︃
1 −

√︃
r

r + ra

)︃
(4.5)

and is not evolved during the simulation. The initial distribution function f i(E, R) of
stars and sBHs is set by computing the isotropic distribution function of equation (4.1)
using the Abel transform (Binney and Tremaine, 2008)
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f i(E, R, t = 0) =

√
2

4 π2
d

dE

∫︂ E

0
dϕ

dni(r(ϕ))
dϕ

1√︁
E − ϕ

, (4.6)

and restricting only to the phase space region of bound orbits outside the loss cone.
In order to numerically integrate equation (2.37), we represent the distribution func-

tion on a uniform grid in the variables (s, R), where s reads

s = log
(︃

1 +
E
E0

)︃
. (4.7)

Here E0 is a reference energy scale set to σ2/5 in the simulations. Due to the loss cone,
the support of f i is naturally compact and is a subregion of the square domain s ∈ [0, slc]

and R ∈ [0, 1]. To numerically compute f i(s, R, 0) we rearrange equation (4.6) in the
form

f i(s, R, 0) =
√

2 E0

4π2

∫︂ s

0
dw

ew
√

es − ew

d2 ni

dϕ2 (4.8)

and we use Gauss-Legendre quadrature to compute the function at the grid values of s.
We represent the distribution function of each component on a uniform grid Ns × NR.

4.1.2 | Coefficients computation and boundary conditions
The complete expressions for the flux conservation coefficients and the auxiliary func-
tions needed for their computation are available in Chapter 2. For a unified notation,
we define the auxiliary functions F0(E) = Js,1(E), F1(E, r) = Is,2(E, r) and F2(E, r) = Is,4.
Here we schematically report the set of equations and steps needed for their computa-
tion in our numerical approach:

i marginalise f i over R

f̄ i
(s) =

∫︂ 1

0
dR f (s, R) (4.9)

and build a linear interpolation of the function;

ii compute a set of auxiliary functions that depend on the variable w = log(1 +

ϕ(r)/E0)

Fk
i (s, w) =

∫︂ w

s
ds′ hk(s, w, s′) f̄ i

(s′) (4.10)

where hk(s, w, s′) is a smooth and compact weighting function. We compute these
integrals at a uniform grid s × w; the values of s are the same as those of the grid of
f i and the values of w have the same spacing of s, covering the domain [0, w(rLC)].
The integration is performed with the Gauss-Legendre quadrature technique;
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iii compute the FP coefficients

D j
i (s, R) =

∫︂ w−

w+

dw
i

∑
j,k

µ
j
i,k(s, R, w) Fk

i (s, w) (4.11)

on the original grid of f i. The weights µ
j
i,k have a divergent denominator propor-

tional to vr that behaves like
√︁
|w − w−/+| at the endpoints. The divergences have

been treated using the Gauss-Chebyshev quadrature technique after explicit extrac-
tion.

For both point (ii) and point (iii) we used 300 nodes for Gauss quadrature. Since the
potential is fixed, for a given point of the grid of f the value of the weights µi

jk at the
Chebyshev points of [w−, w+] does not change during the evolution; we compute them
in advance to make the computation of the coefficients faster.

The boundary conditions for each component are:

■ At s = 0 all the coefficients vanish and the function does not evolve with time. In
our case, this fixes the value f i(0, R) = 0 at all times.

■ The line R = 1 is the locus of circular orbits. Since at fixed energy a particle cannot
exceed J2

c (E), the flux along R vanishes by construction for circular orbits and all
the Di

Rx coefficients vanish.

■ At the loss cone boundary the dominant coefficient is Di
RR and one can compute

the boundary behaviour of f i(s,R) (and, in particular, of its derivative) at fixed s
(Cohn and Kulsrud, 1978; Merritt, 2013)

f i ≈ f (Ri
LC)

[︄
1 +

lnR/Ri
LC

lnRi
LC/Ri

0

]︄
for R → Ri

LC (4.12)

where R0 is given by the following approximate relation

Ri
0 ≃ Ri

LC exp
(︃
− 4
√︂

q4
i + q2

i

)︃
(4.13)

and

qi =
1

4 π2 J2
c Ri

LC(si)
lim

R→Ri +
LC

DRR
i
R . (4.14)

The limit at a given value of s is numerically performed by evaluating the quantity
q at the first grid point above the loss cone curve.
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4.2 | Simulations
In this section we present the results of the simulations that we have run leveraging
on the Julia (Bezanson et al., 2017) implementation of the algorithm described in the
previous section1.

4.2.1 | Performed simulations
We considered seven values of M• evenly spaced in log scale in the range 104M⊙ –
107M⊙. For each M• we computed the density ρ0 corresponding to the value of σ0

obtained from (4.3) and consider the values ρ = {0.01, 0.1, 1, 10} ρ0 (which correspond
to σ = {0.464, 0.681, 1, 1.468} σ0), for a total of 28 simulations.

We performed convergence tests simulating a Milky Way like system with M• =

4× 106 M⊙ using grids of different resolutions (see Fig. 4.1) and we opted for Ns × NR =

200 × 200 to balance accuracy and computational time.
The time step is set by limiting the maximum relative variation of the DF on the grid

max
grid

∆ f
f

= 0.03. (4.15)

We run each simulation for a total time

t f = min (10 tE, 10 Gyr) (4.16)

where tE is the time when the EMRI rate peaks (see section 4.2.3 for details) and 10 Gyr
has been chosen as representative of the Hubble time.

4.2.2 | Final state
In Fig. 4.2 we show the DF at the beginning (t=0 Gyr) and at the end (t=10 Gyr) of the
simulation for our model with M• = 4 × 106 M⊙. The colour maps highlight the effect
of mass segregation, which pushes the BHs towards high values of s while relegating
stars to small s, far from the central object. This is more evident when marginalizing
the DF over the angular momentum variable R, as shown in Fig. 4.3. At the end of
the simulation, the sBHs distribution is more concentrated at circular orbits and higher
energies, located at smaller distances from the centre. In Fig. 4.4 we show the radial
distribution nr of the two components in our system at t = 0 Gyr and t = 10 Gyr, which
is defined as

ni
r =

d
dr

Ni(r) = 4πr2 ni(r) , (4.17)

1The interested reader can find a first version of the code at the following repository: https://gitlab.
com/j2970/juliafokkerplanck
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Figure 4.1: Top panel: EMRI formation rate for the same simulation at different reso-
lutions with NR = Ns. The system simulated has M• = 4 · 106 M⊙ with σ taken from
the M• − σ relation. The highest resolution is represented as a point series for better
readability. Bottom panel: the maximum of each curve as a function of Ns. In the rest of
this work, we set NR = Ns = 200.
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Figure 4.2: Distribution functions for a system with M• = 4× 106 M⊙ and stellar objects
distributed as a Dehnen profile with γ = 1.5 and scale radius ra = 4 rh. The left panel
shows the initial distribution of sBHs; the initial distribution of stars is larger by a factor
of 1000 and vanishes below the stellar loss cone (upper red line). The middle and the
right panels show the distribution of stars and sBHs respectively at t = 10 Gyr. The
maps show the effects of mass segregation (see the main text for details).

where Ni(r) is the total number of the corresponding objects inside the sphere of radius
r. Both at the beginning and at the end, we can identify a power-law trend nr ∼ rα at
r ≃ 10−3rh and a different power-law trend rβ with β = −2 at r ≳ 102rh. The latter
corresponds to the n ∼ r−4 trend of the Dehnen profile, which barely evolves over the
considered timescales. The lighter stellar component increases the central slope from
α = 0.5 to α = 0.7, while the heavier sBHs component shows a milder behaviour (α ≃
0.3). These slopes correspond to a 3D particle density that behaves like n ∝ r−γ with
γ = 1.3 for the light component and γ = 1.7 for the heavy one. This mass segregation
effect is due to the fact that 2-body interactions explicitly depend on the mass of the
components. In the FP equation, mass segregation is encoded in the coefficients: while
diffusion coefficients are identical for the two components, advection coefficients are
proportional to the mass mi . The inner slopes of stars and sBHs we find at the end of our
integrations are slightly shallower than the expectations based on the 1D FP equation
Merritt (2013). The presence of the loss cone requires a non-zero (positive) flux towards
the central regions, compatible with lower power-law indices. Moreover, the strong
anisotropy of the DF in the E → ELC region may contribute to the flux via the cross-
term, which is neglected in the 1D equation.
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Figure 4.3: Distribution function f̄ (s) marginalised over R for the two components at
the beginning (0 Gyr) and at the end of the simulation (10 Gyr) for the DFs in Fig. 4.2.
The vertical solid black line at Ex corresponds to the circular orbit at rx; we consider
the influence radius rh, the EMRIs-DPs delimiter rGW, and the capture radius for the
components rs and rBH
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Figure 4.4: Initial and final radial distribution nr = dN(r)/dr of stars and sBHs at t = 0
Gyr and t = 10 Gyr for the DFs in Fig. 4.2. The parameters of the simulation are M• =
4 × 106 M⊙, NR = Ns = 200. We report a power-law fit at r ∼ 10−3 rh (index α) and at
r ≳ 102 rh (index β).
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Figure 4.5: Flux of each of the two considered species entering the loss cone as a function
of the semimajor axis at 10 Gyr for a system with M• = 4 × 106M⊙ on the M• − σ (the
correspondent DFs are shown in the central and right panels of Fig. 4.2).

66



Chapter4.
Tw

o-dim
ensionalFokker-Planck

evolution
4.2.

Sim
ulations

MBH [M⊙ ] rh [pc] ρs(rh) [M⊙/pc3] Γ̂E [1/yr] tE [Gyr] NE Γ̂P [1/yr] tP [Gyr] NP Γ̂T [1/yr] tT [Gyr] NT t• [Gyr] t f [Gyr] τ

104 0.44 2.0 × 104 5.8 × 10−8 0.089 2.6 5.2 × 10−7 0.017 37 1.4 × 10−4 0.0036 6.7 × 103 0.23 0.090 10
104 0.2 2.0 × 105 1.9 × 10−7 0.0029 2.7 1.6 × 10−6 0.0054 38 4.4 × 10−4 0.0011 7.3 × 103 0.071 0.029 10
104 0.094 2.0 × 106 6.0 × 10−7 0.00092 2.8 5.1 × 10−6 0.0017 38 0.0015 5.3 × 10−4 7.5 × 103 0.022 0.0092 10
104 0.44 2.0 × 107 2.0 × 10−6 0.00030 3.0 1.6 × 10−5 5.5 × 10−4 38 0.0047 2.0 × 10−4 7.9 × 103 0.0068 0.0030 10

3 × 104 0.78 1.1 × 104 4.5 × 10−8 0.037 8.5 3.8 × 10−7 0.070 1.1 × 102 1.0 × 10−4 0.015 2.1 × 104 0.93 0.37 10
3 × 104 0.36 1.1 × 105 1.4 × 10−7 0.012 8.3 1.2 × 10−6 0.022 1.1 × 102 3.3 × 10−4 0.0048 2.2 × 104 0.29 0.12 10
3 × 104 0.17 1.1 × 106 4.7 × 10−7 0.0038 9.0 3.7 × 10−6 0.0070 1.1 × 102 0.0011 0.0015 2.3 × 104 0.90 0.038 10
3 × 104 0.78 1.1 × 107 1.5 × 10−6 0.0012 9.4 1.2 × 10−5 0.0022 1.1 × 102 0.0035 8.1 × 10−4 2.4 × 104 0.028 0.012 10

105 1.5 5.3 × 103 3.2 × 10−8 0.18 29 2.7 × 10−7 0.33 3.8 × 102 7.2 × 10−5 0.072 7.2 × 104 4.4 1.77 10
105 0.69 5.3 × 104 1.0 × 10−7 0.056 29 8.4 × 10−7 0.10 3.8 × 102 2.3 × 10−4 0.023 7.4 × 104 1.4 0.56 10
105 0.32 5.3 × 105 3.3 × 10−7 0.018 30 2.7 × 10−6 0.033 3.8 × 102 7.8 × 10−4 0.0072 7.7 × 104 0.42 0.18 10
105 0.15 5.3 × 106 1.1 × 10−6 0.0057 32 8.4 × 10−6 0.011 3.8 × 102 0.0026 0.0023 9.0 × 104 0.13 0.57 10

3 × 105 2.6 2.8 × 103 2.4 × 10−8 0.73 88 2.0 × 10−7 1.4 1.1 × 103 5.2 × 10−5 0.3 2.1 × 105 18 7.3 10
3 × 105 1.2 2.8 × 104 7.9 × 10−8 0.23 90 6.2 × 10−7 0.43 1.1 × 103 1.7 × 10−4 0.095 2.2 × 105 5.7 2.3 10
3 × 105 0.57 2.8 × 105 2.6 × 10−7 0.075 97 1.9 × 10−6 0.14 1.2 × 103 5.6 × 10−4 0.030 2.3 × 105 1.8 0.75 10
3 × 105 0.26 2.8 × 106 8.7 × 10−7 0.023 1.0 × 102 6.1 × 10−6 0.044 1.2 × 103 0.0019 0.0095 2.4 × 105 0.54 0.24 10

106 5 1.4 × 103 1.8 × 10−8 3.5 1.8 × 102 1.4 × 10−7 6.5 1.1 × 103 3.6 × 10−5 1.43 3.0 × 105 61 10 2.9
106 2.3 1.4 × 104 6.0 × 10−8 1.1 3.1 × 102 4.4 × 10−7 2.1 3.5 × 103 1.2 × 10−4 0.46 6.9 × 105 26 10 9.1
106 1.1 1.4 × 105 2.0 × 10−7 0.35 3.5 × 102 1.4 × 10−6 0.65 3.8 × 103 3.9 × 10−4 0.14 7.5 × 105 8.3 3.46 10
106 0.5 1.4 × 106 6.8 × 10−7 0.11 3.7 × 102 4.3 × 10−6 0.21 3.8 × 103 0.0013 0.45 7.8 × 105 2.6 1.1 10

3 × 106 8.9 7.3 × 102 1.2 × 10−8 10 41 7.5 × 10−8 10 4.2 × 102 2.6 × 10−5 5.8 2.6 × 105 2.2 × 102 10 10 1
3 × 106 4.1 7.2 × 103 4.6 × 10−8 4.6 3.3 × 102 3.2 × 10−7 8.5 2.5 × 103 8.5 × 10−5 1.84 7.5 × 105 74 10 2.2
3 × 106 1.9 7.3 × 104 1.6 × 10−7 1.5 9.3 × 103 1.0 × 10−6 2.7 8.5 × 103 2.8 × 10−4 0.60 1.8 × 106 30 10 6.9
3 × 106 0.89 7.3 × 105 5.6 × 10−7 0.46 1.3 × 103 3.2 × 10−6 0.85 1.2 × 104 9.2 × 10−4 0.19 2.3 × 106 11 4.6 10

107 17 3.6 × 102 4.0 × 10−10 10 2.4 1.9 × 10−8 10 1.8 × 102 1.8 × 10−5 9.9 2.0 × 105 1.0 × 103 10 0.090 1
107 7.8 3.6 × 103 1.4 × 10−8 10 41 1.1 × 10−7 10 7.6102 5.9 × 10−5 9.0 6.0 × 105 3.2 × 102 10 0100 1
107 3.6 3.6 × 104 1.2 × 10−7 6.9 8.1 × 102 7.0 × 10−7 10 4.9 × 103 1.9 × 10−4 2.7 1.8 × 106 1.0 × 102 10 1.4
107 1.7 3.6 × 105 4.4 × 10−7 2.1 2.8 × 103 2.2 × 10−6 4.0 2.0 × 104 6.4 × 10−4 0.87 4.6 × 106 40 10 4.7

Table 4.1: Table summarising the results of all the runs. For each simulation we report the physical parameters (MBH mass
M•, influence radius rh and the density of stars ρ(rh)); for the various rates Γx we report the critical point value, the time tx
when the value is reached and the total number of events Nx in the simulation. Finally, we report the typical time of growth
t•, the total time of the simulation t f and the ratio τ = t f /tE. The grid resolution is NR × Ns = 200 × 200.

γ rh [pc] ρs(rh) [M⊙/pc3] Γ̂E [1/yr] tE [Gyr] NE Γ̂P [1/yr] tP [Gyr] NP Γ̂T [1/yr] tT [Gyr] NT t• [Gyr] t f [Gyr] τ

1.2 2.2 4.6 × 104 5.2 × 10−8 5.6 1.3 × 103 6.0 × 10−7 8.7 2.4 × 104 1.2 × 10−4 3.2 3.9 × 106 1.0 × 102 57 10
1.5 2.2 6.1 × 104 1.5 × 10−7 2.1 1.5 × 103 9.2 × 10−7 3.9 1.5 × 104 2.6 × 10−4 0.93 3.0 × 106 51 21 10
1.8 2.2 7.9 × 104 7.0 × 10−7 0.44 1.8 × 103 1.7 × 10−6 1.0 6.6 × 103 9.5 × 10−4 0.05 1.9 × 106 17 4.4 10

Table 4.2: Data relative to the simulations with M• = 4 × 106 M⊙ and different central slope of the Dehnen profile γ. The grid
resolution is NR × Ns = 200 × 200.
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In Fig. 4.5 we plot the rate across the loss cone at t = 10 Gyr with M• = 4 ×
106M⊙. Most of the particles are captured by the MBH around the influence radius.
This is a direct consequence of the higher efficiency of diffusion in R rather than E.
As a consequence, objects are preferentially scattered into the loss cone orbit at very
large separations, of the order of rh, and captured by the central BH onto very eccentric
orbits. The effect of mass segregation is also evident here: the stellar rate within loss
cone is steeper than the sBHs rate, since the latter are driven towards the MBH.

4.2.3 | Rates
The differential capture rate dΓ/dlna can be integrated over a to evaluate the formation
rate of TDEs, EMRIs and plunges. As described in Chapter 3, the EMRI rate is obtained
by integrating the differential rate for a < aGW, whereas the plunge rate is obtained from
the integral at a > aGW, with aGW = 0.01 rh (Amaro-Seoane, 2020; Hopman and Alexan-
der, 2005). It should be noted that stars can also be swallowed by the central MBH
without being disrupted. Here, however, we do refer to TDEs only, without differenti-
ating between TDEs and swallowed stars. The fraction of the latter is simply given by
the ratio of the direct capture radius over the TDE radius, i.e. rBH/r⋆. Note that as the
MBH mass increases, the fraction of swallowed stars increases, accounting for all stellar
captures for MBHs with M• ≳ 108M⊙.

4.2.3.1 | Time evolution

Our formulation allows us to evaluate consistently the evolution over time of the star
and BH distribution function and of the rate of TDEs, EMRIs and plunges, since we do
not rely on the assumption of an equilibrium solution. TDE, EMRI and plunge rates as
a function of time are plotted in Figure 4.6 for all our simulations. For each run, the
time axis has been normalised to the peak time of the EMRI rate tE, whereas the peak of
the EMRI and plunge rate as well as the first inflection point of the TDE rate have been
normalised to unity. This specific rescaling shows that the time evolution of all rates
in all simulation is almost exactly the same. EMRIs and plunges initially grow up to a
maximum value reached at slightly different times tP/tE ≃ 1.8 and then start to decay
with a quasi-exponential trend. The TDE rate has no global maximum, but has a critical
point around tE.

One can interpret this picture by considering that advection is responsible for the
initial increase in the rates of the sBHs, since it moves BHs on orbits that dominate the
contribution to the flux into the loss cone. As the distributions of the two components
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Figure 4.6: Rates for EMRIs (red), plunges (blue) and TD (green) formation in the sim-
ulations on the M• − σ branch (refer to Table 4.1); saturation is used to label different
masses. The time evolution of the rates in all the simulations show self-similar trends
once scaled properly. We express time in units of tE, the EMRI peak time, EMRI and
Plunge rates in units of their maximum value and TDEs rate in units of their plateau
value.
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are rearranged, advection in the innermost regions becomes less effective until it can-
not sustain the capture rate anymore, resulting in the late quasi-exponential decline.
Since EMRIs are produced in the innermost region, advection slows down earlier and
the EMRI peak is reached before that of plunges. These effects have a smaller impact
on the depletion rate of TDEs, which has an inflection point at an early time tT < tE.
This is likely because the initial mass segregation pushes the stars out from the centre
increasing the density at the influence radius, where most of the TDEs happen.

4.2.3.2 | Scaling with black hole mass and stellar distribution properties

Table 4.1 summarizes our findings. For each simulation we report the main parameters
defining the system, namely MBH mass, rh and ρ(rh) and the main features of the TDE,
EMRI and plunge rates. For each species x, we report the rate at the critical point (either
the maximum or inflection point) Γ̂x, the corresponding time and the total number of
events occurred during the simulation. In order to estimate the rate of growth of the
central MBH, we compute for each simulation the typical time of growth

t• =
M•

0.5 ms NT + mBH (NE + NP)
t f , (4.18)

where t f is the total time of the simulation, which we also report in the table in units
of tE. The time t• can be interpreted as the time the MBH needs to double its mass
at the average rate of the simulations. In computing the latter, we made the simplify-
ing assumption that only half the mass of a star being tidally disrupted is captured by
the central MBH and thus contributes to its growth. On the other hand, a sBH being
captured is considered to contribute with its whole mass.

A visual presentation of t•, the EMRI peak rate Γ̂E and total number NE for all the
simulations is given in Figure 4.7. It is clear that all these quantities have a power-law
dependence on the central black hole mass M• (and on the velocity dispersion), which
can be explained with analytical arguments once a M•− σ relation is assumed (Hopman
and Alexander, 2005). The average density of the system scales as

ρ ≃ Mi

r3
a

∝ M−2
• σ6 ∝ M−0.58

•

(︃
σ

σ0

)︃6

, (4.19)

which follows from the fact that the total mass of each component is proportional to M•

and the length scale ra is proportional to rh ∝ M•/σ2 ∝ M0.53
• (σ/σ0)2. Note that in the

last proportionality of equation (4.19) we made use of equation (4.3) to derive the M•

dependence. Moreover, we allow σ varying with respect to the scaling relation inferred
value σ0, keeping the σ/σ0 dependence. This is because, for each M•, we explored
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maximum EMRI rate Γ̂E and
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For each plot, we fit a two
variables power-law in M•
and σ to the M• < 106M⊙
simulations; we report the
case σ = σ0, and plot the
curve in solid black. The dot-
dashed line represents the
best-fit power law with the
theoretically estimated expo-
nents – see Table 4.3 for de-
tails. Colours mark the total
time of the simulations: in red
those ended at 10 times the
EMRI peak-time, and in blue
those ended at 10 Gyr. For
each mass, different shapes
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density at the influence ra-
dius ρ(rh) in units of ρ0, that
is the density corresponding
to σ0 from the M•−σ relation.
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Figure 4.9: Results of simulations for M• = 4 × 106M⊙ and stellar objects initially dis-
tributed as Dehnen profiles with γ = 1.2, 1.5, 1.8 with ra = 4 rh. The upper panel shows
the rates for EMRIs, plunges and TDEs scaled as in Fig. 4.6; the lower panel shows the
radial number distribution nr = dN/dr at t = 10 tE. A steeper γ = 1.8 profile corre-
sponds to no plateau in TDEs, while γ = 1.2 has a flex. The EMRI and plunge rates
show similar trends, with a slower late time decay for steep profiles.
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different σ as a way to study how the rates depend on the environment at a fixed black
hole mass. Since the scale radius of the stellar distribution depends on σ, by sampling
different values of σ we can simulate environments with different typical density, as
reported in the third column of Table 4.1.

Once we have the typical density, the relaxation timescale of the system at a given
radius is (see Merritt (2013))

trlx ≃ σ3

ρ
∝ M2

• σ−3 ∝ M1.29
•

(︃
σ

σ0

)︃−3

. (4.20)

Since the time evolution of the rate is driven by relaxation, this sets also the scaling of
the quantity t• plotted in the middle panel of Figure 4.7. Besides the almost perfect
scaling with MBH mass, t• spans a range of about 1.5dex for the different σ adopted, in
line with the scaling in equation (4.20). The typical rate then behaves like

Γx ∝
Mi

trlx
∝ M−1

• σ3 ∝ M−0.29
•

(︃
σ

σ0

)︃3

. (4.21)

This is shown for EMRIs in the lower panel of Figure 4.7.

It can be noted that deviations from the power-law trend appear in our results. This
is especially true for NE (upper panel in Figure 4.7), which is the total number of EMRIs
integrated over the simulation duration. Those deviations are due to the fact that the
corresponding simulations reached the time limit t f = 10 Gyr, possibly even before the
global maximum of ΓE is reached.

We fit the results of our simulations to the expected power-laws in the region M <

106M⊙ (in order to include only simulations that run for 10 tE). The general form is

y = a0

(︃
M•
M⊙

)︃b0
(︃

σ

σ0

)︃c0

(4.22)

where a0 is the fitting parameter, whereas b0 and c0 are the power-law exponent of M•

and σ predicted by the theoretical scaling for the quantity y under examination. We
report the trend line obtained on the M• − σ branches in Fig. 4.7. We also fit the general
power law with three free parameters

y = a
(︃

M•
M⊙

)︃b (︃ σ

σ0

)︃c

(4.23)

to find the best-fitting exponents and compare them to the expected theoretical scaling.
The results of all fits are reported in Tab. 4.3; the fitted slopes are close to the simple
scaling we derived.
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y a0 b0 c0 a b c
NE 3.0 × 10−4 1.00 0.00 2.0 × 10−3 1.03 0.11
t• 1.5 × 10−7 1.29 -3.00 1.5 × 10−7 1.29 -3.07
tE 6.3 × 10−9 1.29 -3.00 6.4 × 10−9 1.29 -2.97
Γ̂E 9.3 × 10−6 -0.29 3.00 6.2 × 10−6 -0.25 3.09

Table 4.3: Results of the least square fit of the data with a power law
y = a (M•/M⊙)b (σ/σ0)c. The subscript 0 refers to the single a0 parameter fit, while
non dubbed quantities are the result of a three parameters fit.

y a0 b0 c0 a b c
NT 2.5 × 103 1.00 0.00 2.7 × 103 0.97 7.1 × 10−3

NP 1.3 × 101 1.00 0.00 1.4 × 101 0.97 −8.9 × 10−2

t• 5.4 × 10−3 1.29 -3.00 6.0 × 10−3 1.24 -3.2

Table 4.4: Results of the least square fit of the data with a power law y = a Nb
E (σ/σ0)c.

The subscript 0 refers to the single a0 parameter fit, while non dubbed quantities are the
result of a three parameters fit.

Plunges and TDEs naturally show the same scaling with M• as EMRIs do since, for
all species, the total number of captures is proportional to the mass of the central MBH.
In Fig. 4.8, we show the trend of NT, NP and t• in terms of NE. The expected trends
scale as

NT ∝ NE NP ∝ NE t• ∝ N1.29
E

(︃
σ

σ0

)︃−3

. (4.24)

In this case we proceed as before and fit the data with a generic power-law in NE and
(σ/σ0). The results of the fits are summarised in Tab. 4.4; as in the previous case, the
scaling relations are close to the theoretical estimates.

Perhaps the most important feature of these results is that t•, shown in Fig. 4.7, be-
comes shorter than the Hubble time if M• is lower than 3 × 105M⊙–3 × 106M⊙ depend-
ing on the value of σ/σ0 (i.e. depending on the initial density of the stellar distribution).
This has two important implications. On the one hand, our assumption of a non evolv-
ing potential breaks down for low MBH masses, calling for a more sophisticated treat-
ment including the time evolution of the MBH mass and, consequently, of the overall
potential of the system. On the other hand, steady state EMRI rates largely used in the
literature to predict LISA detections are inapplicable exactly in the mass range where
LISA is most sensitive (i.e. 105M⊙ < M• < 106M⊙ Babak et al., 2017), which calls for a
major revision of the problem.
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4.2.3.3 | Dependence on the slope of the stellar distribution

In order to understand the dependence of the results on the shape of the stellar distri-
bution, for M• = 4 · 106M⊙ and σ from Eq. (4.3) we performed two simulations with
different initial conditions, initialising a Dehnen potential with γ = 1.2 and one with
γ = 1.8.

The main results of these runs are reported in Table 4.2 and visualized in Fig. 4.9. In
general, by increasing (in modulus) the central slope of the potential, we observe a slow-
down of the late quasi-exponential decay of the three rates we consider (upper panel
of Figure 4.9). Quantitatively, considering a reference time of 10 tE as in the previous
analysis, the ratio between the total number of plunges and the total number of EMRIs
decreases with γ. Since the threshold that distinguishes the two phenomena (i.e. rGW)
does not depend on γ, a steeper slope implies a relatively higher number of objects
inside rGW. It is also worth noting that regardless of the initial distribution, the systems
approach the same final density profiles: stars tend to n ∝ r−1.3 and stellar BHs to
n ∝ r−1.7 at the centre, as shown in the lower panel of Figure 4.9.

Overall, steeper density profiles lead to higher peak rates at earlier times, resulting
in an overall faster evolution of the system and mass growth of the MBH. As a direct
consequence, steady state rates are even less applicable to MBHs growing in steeper
density profiles.

4.2.4 | Comparison with literature
The evolved profile of the DF is in substantial agreement with Pan, Lyu, and Yang (2022),
at least until the end of their run (at 2 Gyr), despite their nuclear cluster is populated
with an additional third stellar component and the fact that they maintain the same loss
cone size for different stellar species.

In our runs, the EMRI formation peak rate on the M• − σ is best described by

Γ̂E = 140 Gyr−1
(︃

M•
4 · 106M⊙

)︃−0.25

. (4.25)

At the reference system M• = 4 · 106, this is compatible with other estimates found in
the literature (Bar-Or and Alexander, 2016; Pan and Yang, 2021; Pan et al., 2022; Preto
and Amaro-Seoane, 2010). The best-fit power-law exponent of ΓE(M•) is not far from
the predicted value of −0.29 (see Fig. 4.7). The best-fit to the number of EMRIs occurring
in a Hubble time, so long as tE ≪ tH (i.e. for small MBH masses, cf Figure 4.7) is well
described by

NE = 1.3 · 104
(︃

M•
4 · 106M⊙

)︃1.03

. (4.26)
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Figure 4.10: Inflow of particle in the E > EGW region FGW, total variation of sBHs in
the region ṄGW, and EMRI rate ΓE for the simulation with M• = 4 × 106 M⊙, σ = σ0
and γ = 1.5. When the steady state approximation better describes the system ṄGW =
FGW − ΓE = 0 and ΓE ≃ Γ̂E, showing why the peaks Γ̂x show trends similar to steady-
state rates.

Pan and Yang (2021) ran all the simulations for t f = 5 Gyr and compared the peak rate
with the average rate in the simulation

Γ̄E =
NE

t f
=

NE

5 Gyr
(4.27)

showing a trend compatible with ours, despite the fact of cutting the high mass end
earlier and the low mass end later than in our simulations. By stopping the evolution at
a time that scales with the system, the power-law describing NE emerges more clearly.

The reason why the steady-state results agree with the maximum in the steady-
potential simulations resides both in the properties of the systems we consider and in
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the conservation of mass implied by the FP equation. Considering the region E > EGW

the FP equation implies that the time derivative of the number of sBHs in this region is

ṄGW = FGW − ΓE (4.28)

where FGW is the rate of particles that enter the E > EGW region

FGW =
∫︂ 1

0
dR FE(EGW,R) . (4.29)

During the evolution, the number of sBHs in the region initially increases because of
advection and then decreases due to gravitational captures. When it is stationary, the
inflow of particles FGW equals the outflow of particles ΓE, as in the steady state condi-
tion. As shown in Fig. 4.10 at this time ΓE is around its peak.

As suggested by Pan and Yang (2021), the average rate Γ̄E over a suitable time in-
terval may provide realistic formation rates without the need of an artificial cap. The
capped rates derived in Babak et al. (2017) scale as M• for small M• and as the steady-
state rates at high M•; this trend is qualitatively resembled by that of Γ̄E. While at low
M• the trend of Γ̄E is linear, at high M• it strongly depends on the curve ΓE(t) and is
not, in general, a power-law when the Hubble time becomes comparable to tE. For a
better estimate, one could combine Γ̄E with a probabilistic treatment of galactic encoun-
ters, since they can replenish the nuclear cluster and could possibly restart the EMRI
production phase.

The time evolution of the EMRI rate may play a relevant role for LISA detection
rates forecasts, especially at high M• - where they are strongly dependent on the initial
conditions. In order to produce more reliable rates, the best strategy would be to account
for realistic initial conditions and a self-consistent evolution in order to directly compute
the number of events produced in the evolution of a representative galactic population.

4.3 | Additional material

4.3.1 | Velocity dispersion of the initial conditions
Assuming an isotropic distribution, in a Dehnen system with inner slope γ = 1.5, the
radial velocity dispersion in presence of a central MBH is (Tremaine et al., 1994)

σ2
r =

GM
ra

[︃
s1

(︃
r
ra

)︃
+

M•
Ms

s2

(︃
r
ra

)︃]︃
(4.30)
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where

s1(x) =x0.5(1 + x)3.5 − x1.5(1 + x)2.5
[︃

4 log
(︃

1 +
1
x

)︃
− 10

3

]︃
− 6x2.5(1 + x)1.5 + 2x3.5(1 + x)0.5 − 1

3
x4.5(1 + x)−0.5

(4.31)

s2(x) =− 256
15

x1.5 (1 + x)2.5 +
2
5
(1 + x)5

x
− 8

3
(1 + x)4 + 12x(1 + x)3

+ 8x2(1 + x)4 − 2
3

x3(1 + x) .
(4.32)

One can use this formula to compute the relation between the scale ra and the velocity
dispersion of the system at different radii. Another possibility is to average this value
in a central region, such as in a sphere with radius r = ra

⟨σ2⟩1 =

∫︁ 2 ra
0 dr 4π r2 n(r) σ2

r (r)∫︁ 2 ra
0 dr 4π r2 n(r)

≃
(︃

0.145 + 5.173
M•
Ms

)︃
G Ms

ra
(4.33)

or within r = 0.25 ra (which is rh in our model)

⟨σ2⟩0.25 =

∫︁ 2 ra
0 dr 4π r2 n(r) σ2

r (r)∫︁ 2 ra
0 dr 4π r2 n(r)

≃
(︃

0.164 + 1.729
M•
Ms

)︃
G Ms

ra
(4.34)

In the systems adopted in this work we considered (neglecting the sBHs) Ms =

20 M•, so that

⟨σ2
r ⟩0.25 ≃ 8.5

G M•
ra

⟨σ2
r ⟩1 ≃ 4.6

G M•
ra

(4.35)

4.3.2 | Derivatives on the grid and time integration
To compute the right-hand side of the orbit averaged Fokker-Planck equation (2.37) we
opted for a flux conservative scheme, which proved to be more stable than a simple
finite-difference approach. We compute each contribution to the divergence of F start-
ing from the value of its components on the grid. To compute ∂RFR on a cell centred at
(s̄, R̄), for example, we linearly interpolate the coefficients D j

i , the distribution function
f i and its partial derivative ∂E f i at the upper and lower edges of the cell (s, R ± ∆R/2),
we compute ∂R f i at the edges with the finite difference and assemble the ingredients to
give

∂RFR
i (s̄, R̄) =

FR
i (s̄, R̄ + ∆R/2)−FR

i (s̄, R̄ − ∆R/2)
∆R

. (4.36)
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An analogue scheme applies to ∂EFR
i . The boundary conditions are used to set f i and

its derivatives at the corresponding locus. At the loss cone, we rearranged the boundary
condition as an equation for the partial derivative of f i

∂R f i(s, R̃ − ∆R/2) =
f i(s, R̃)

log R̃/R0

1
R̃

(4.37)

where R̃ is the smallest point on the grid above the loss cone boundary at s.
We integrated the equation in time using an implicit Euler scheme. The flux conser-

vative approach we just described is formally linear in the values of the functions on the
grid, that is, for each component we can write

∂EF i
E(sj, Rl) + ∂RF i

R(sj, Rl) = ∑
k,m

Mi;k,m
j,l f i(sk, Rm). (4.38)

This means that the expression on the left is a linear combination of the values of f i. The
implicit Euler scheme consists in discretising the left-hand side of equation (2.43) at time
t with a forward derivative in time and plugging at the right-hand side expression (4.38)
evaluated at t+∆t. One obtains a linear system for the grid values of f (sj, Rl , t+∆t) that
can be recast in a more familiar way by linearising the matrix f i(sj, Rl , t + ∆t) forming
the vector fit

C
fit+∆t − fit

∆t
= Mi

t · fit+∆t (4.39)

where we also introduced C, the linearised version of C(s, R), and M, the matrix version
of the tensor M in (4.38). A time integration step consists in solving this equation for
fit+∆t, returning then to its matrix counterpart. The symbol · indicates matrix-to-vector
multiplication.

At each step, we choose the integration time step ∆t adaptively, by setting a con-
straint on the expected variation of f . In the vectorised notation

∆t = ϵ min
i,grid

(︄
ft

ḟ
i
t

)︄
ḟ
i
t =

Mi
t · fit
C

(4.40)

where ϵ is a threshold value.
The method we have chosen for the solution of this problem can be certainly im-

proved. As reviewed in Vasiliev (2017), the choice of time discretisation is crucial for
the stability and the accuracy of the solution at a fixed integration step dt. In particu-
lar, the inclusion of a Poisson step for the update of the stellar potential may require
more accurate techniques to ensure orbital energy is modified correctly, and numerical
heating is avoided. Even at the current stage of complexity, one can discretise time with
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Interface

s = log(1 + E/E0)

R

Figure 4.11: Discrete representation of part of the loss cone on the simulation grid.
The green line is the effective loss cone in the simulation, and the red cells are used to
compute the rate of particles entering the loss cone.

more accurate techniques, such as the method developed by Chang and Cooper (Chang
and Cooper, 1970) or predictor/corrector schemes. We aim at testing such improvements
in order to reduce the computational cost.

4.3.3 | Rate across the loss cone
In order to compute the various rates across the loss cone, we use the definition of the
current density. Defining the curves

ξE : E → (E, RBH
LC (E)) EGW ≤ E ≤ EBH (4.41)

ξP : E → (E, RBH
LC (E)) 0 ≤ E ≤ EGW (4.42)

ξT : E → (E, Rs
LC(E)) 0 ≤ E ≤ Es (4.43)

the rates are given by

Γx =
∫︂

ξx

dnx ·F (4.44)

where x stands for the desired event and nx is the normal to the curve ξx. The discretised
version of this curvilinear integral can be written as

Γx = −∑
i
FR,i ∆Ei + ∑

j
FE,j ∆Rj (4.45)
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where i runs along the cells at the interface of the loss cone for the x event whose neigh-
bour below is empty, j along the cells whose neighbour on the right is empty (see Figure
4.11); ∆E and ∆R indicate the sizes of the corresponding cell.

4.4 | Discussion and Conclusions
In this chapter we presented a two-population, two-dimensional time-dependent Fokker-
Planck formalism to study the capture of stars and sBHs by an MBH residing at the cen-
tre of a nuclear star cluster. We ran a number of simulations spanning a wide range of
MBH masses and properties of the surrounding stellar and sBH distribution, keeping
the gravitational potential of the system fixed. We analysed the time dependence of the
capture rate of stars and sBHs, their scaling with the properties of the systems and the
growth of the central MBH. Our main findings can be summarized as follows:

■ Segregation dominates the evolution of the system, causing sBHs to concentrate
in the centre, in agreement with theoretical expectations (Bahcall and Wolf, 1977).
The time dependent evolution of the distribution implies a time dependent evo-
lution of the TDE, EMRI and plunge rates (as also shown by e.g.Vasiliev 2017). In
particular, EMRIs and plunges initially have a steep rise, reach a peak and then
decline in a quasi-exponential fashion, whereas TDE rates experiences an initial
plateau and a slow late time decay.

■ Once normalized to the occurrence time and peak value of the EMRI rate (tE, Γ̂E),
the time evolution of all species (TDEs, EMRIs, plunges) in all simulations overlap
almost perfectly. We thus derived simple scalings for tE and Γ̂E which allows
reconstructing the whole time evolution of the rates of each species for any MBH
mass and density of the stellar distribution.

■ The peak of the TDE, EMRI and plunge rates is consistent with steady state esti-
mates from the literature (e.g. Bar-Or and Alexander 2016), however, those peak
rates cannot be sustained indefinitely and decay over a timescale that is depen-
dent on the MBH mass and on the properties of the nuclear star cluster (as also
shown in Bortolas 2022 for a complete stellar mass function).

■ The aforementioned rates are such that the MBH doubles its mass on a timescale
shorter than the Hubble time for M• ≲ 106M⊙.

These findings have profound implications for evaluating the rates of gravitational
capture of stars and stellar mass compact objects (especially sBHs) in galactic nuclei,
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which are a key element for building reliable estimates of the number of EMRI events
expected for future GW missions (such as LISA) and for interpreting TDEs in electro-
magnetic transient surveys. Moreover, these captures can contribute significantly to the
growth in mass of relatively light (M• < 106M⊙) MBHs, which is generally neglected in
theoretical and numerical models for the evolution of MBHs along the cosmic history.

In the literature, TDE, EMRI and plunge rates are often computed assuming steady
state models for Milky-Way like systems and then scaled to lower MBH central MBH
masses (e.g. Merritt, 2015). The underlying assumption is that a negligible fraction of
the star cluster mass is captured in the loss cone over the relevant system evolution
timescale (that in this case is the Hubble time). Although this might be true for heavy
MBHs (Milky Way-like or more massive), it is certainly not true for lower mass systems
that evolve significantly over much shorter timescales, invalidating the steady state as-
sumption.

Moreover, the inner region of the nuclear star cluster is dominated by the potential
of the central MBH itself, and the commonly made assumption of steady state requires
that this potential remains unaltered, i.e. that the MBH mass does not grow. Our sim-
ulations indicate that, for a central MBH of mass M• ≲ 106M⊙ on the M• − σ relation,
the mass M• would change significantly over a Hubble time if all the objects entering
the MBH loss cone are accreted, invalidating a fortiori the steady potential assumption.
The change in mass could relevantly alter the rates, since both the radius of influence
and the capture radius depend on it. Moreover, the mass distribution of these systems
at the end of the evolution has changed significantly, a fact that should be accounted by
changing the critical radius for the EMRI/plunges distinction.

At present time, LISA detection rates are built under the assumption that the rate ΓE

of a galaxy is equal to the steady-state rate computed from the mass of its central MBH
(Babak et al., 2017) – and thus require artificial capping for small MBHs. Our findings
show that those rates are likely to be biased, since the steady-state rates correspond to
the maximum rate of the associated steady-potential system. More specifically, the oper-
ation of associating the rates of a steady-potential simulation to a single value of the cen-
tral MBH mass is non-trivial, since they change over the same timescale. We conclude
that in order to reduce the uncertainty of the detection rates, it is necessary to study the
whole self-consistent system. In this sense, an aim of our work is to include the rates
obtained with our methods for anisotropic, time-dependent systems as in Polkas et al.
(2023), where solutions of the 1D Fokker-Planck equation with PHASEFLOW (Vasiliev,
2017) were combined with the powerful semi-analytical model L-Galaxies (Izquierdo-
Villalba et al., 2019; Springel et al., 2005).
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5

Loss cone theory and partial
disruptions

Everyone just keeps on disappearing. Some things vanish, like they were cut away.
Others fade slowly into the mist. And all that remains is a desert.

— Haruki Murakami, South of the Border, West of the Sun

This chapter is devoted to the presentation of a novel treatment of partial dis-
ruptions in the loss cone theory. First we will consider the determination of the
rate of full, and partial/repeated disruptions by choosing the loss cone radius rLC >

r⋆(M•/m⋆)1/3 that corresponds to a partial mass loss as in Bortolas et al. (2023). Then,
some original material will be presented, including a model to systematically quan-
tify the number of repeated partial disruptions and the possible implications on their
treatment with classical loss cone theory. The results of this section will be the main
body of a publication currently in preparation.

5.1 | Mass loss in partial disruptions
Simulations and theoretical models indicate that stars approaching an MBH will lose
part of their mass even when their pericentre is larger than the tidal disruption radius
(e.g. Rees, 1988; Ryu et al., 2020a,b). A number of recent works have addressed the ex-
pected emission and accretion features associated with the partial disruption of a single
star approaching the MBH (Coughlin and Nixon, 2019; Guillochon and Ramirez-Ruiz,
2013; Miles et al., 2020), and a growing body of literature is reporting observational
candidates for partial disruptions, which manifest themselves as repeating events (Liu
et al., 2023a,b; Malyali et al., 2023; Payne et al., 2021; Somalwar et al., 2023; Wevers et al.,
2023) over timescales of ∼ 0.3 − 3 yr if they happen in regions of phase space where
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2-body relaxation is inefficient. However, the theoretical modelling of the event rates
associated to partial TDEs is still in its infancy (Bortolas et al., 2023; Chen and Shen,
2021; Krolik et al., 2020; Stone et al., 2020; Zhong et al., 2022).

In fact, classical loss cone theory accounts only for total TDEs (TTDEs), adopting the
corresponding value for rTDE as a threshold between unperturbed and destroyed orbits
(this approximation has been discussed in Cohn and Kulsrud, 1978, and mantained in
derived works). Here we show some arguments that this solution should rather be
applied adopting a larger, partial TDE (PTDE) radius.

After a star undergoes a PTDE, its subsequent evolution can proceed in different
ways: if the star comes from the empty loss cone region, it can be entirely consumed
through a series of repeated PTDEs, or the (possibly repeated) PTDE can significantly
deflect the stellar orbit so that the star is scattered on a completely different trajectory
before being disrupted. If the star has q ∼ 1, its orbit may change appreciably after a
PTDE, so that the star either gets destroyed on the next passage(s) or gets pushed away
from the loss cone (e.g. Cufari et al., 2023). If the star comes from the full loss cone, its
orbit following the PTDE would be substantially deflected by relaxation processes so
that it will become statistically indistinguishable from other stars in the full loss cone
with the same energy. Either way, the theory developed so far for modelling TTDEs
(and described in Chapter 3) might be suited for computing TTDE plus PTDE rates in-
stead, assuming that the outcome of the process is virtually the same as in the traditional
TTDE-only treatment1. Below, we also argue that the same traditional treatment yields
an overestimated TTDE rate, if it is applied assuming that only TTDEs can occur. For
now, we do not account for the complication that each star can undergo a series of sub-
sequent PTDEs when computing the event rates; we focus on this aspect in the next
section.

We will now show a simple estimate of the fraction of total disruptions when one
assumes that classical loss cone theory applies for TTDEs+PTDEs and a specific value
of rTDE; with this in mind, we can extrapolate Eq. 3.9 up to R ≃ 0 to know what is the
probability of stars to be disrupted at each R inside this newly defined PTDE loss cone.

In the full loss cone limit, all values of R in the loss cone are equally probable, so that
the ratio of TTDEs to PTDEs can be simply estimated through the ratio between their
respective radii. In the empty loss cone limit, instead, all stars tend to be destroyed at
RLC, implying that all stars would undergo a PTDE, while TTDEs might be completely

1Assuming that the star is lost from the system, or it ends up far away from the the loss cone; even
if this process might not be as fast as in the traditional treatment that considers only TTDEs, we can still
consider it to be instantaneous as long as the star is lost from the loss cone within a timescale much smaller
than the relaxation timescale of the host system
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suppressed; this simply comes from the fact that stars approach the loss cone boundary
with very small steps in R, and they can only be (partially) destroyed at the first avail-
able radius that allows for this to occur, while it is virtually impossible for stars to reach
the smaller values of R at which TTDEs can occur.

This implies that systems in which TDEs mainly come from the empty loss cone
would have nearly all stars undergoing PTDEs, and their TTDE rates can be very small
in comparison.

More quantitatively, for a fixed value of E, we can use Eq. 3.9 to compute the ex-
pected ratio of TTDEs to PTDEs. If rTDE is the largest PTDE radius that guarantees an
event to occur (with its associated PTDE RLC), and rTDE/κ is the radius below which
only TTDEs occur (κ > 1), the fraction of TTDEs to the global event rate (PTDEs plus
TTDEs) can be estimated as

δTTDE(E) =

∫︁ RLC/κ
R0

dR ln(R/R0) θ(RLC/κ −R0)∫︁ RLC
R0

dR ln(R/R0)
(5.1)

where θ is the step function, yielding one if its argument is positive and zero other-
wise. We stress that all the relevant quantities (α, R0 etc.) in this framework should be
evaluated adopting the PTDE value of rTDE. The above equation can be evaluated to be

δTTDE =
1
κ

[︃
1 +

(κ − 1) e−α − ln κ

α + e−α − 1

]︃
θ(α − ln κ) (5.2)

that goes to zero with continuity as α → ln κ. As expected, δTTDE → 1/κ if q ≫ 1
(α ≫ 1), i.e. in the full-loss cone limit, while it becomes 0 through the θ function in
the empty loss cone regime. Finally, in the framework described so far, the classically
computed rate across the loss cone gives the total rate of PTDEs plus TTDEs; the rate
associated to TTDEs only can be computed as

ΓTTDE =
∫︂

δTTDE(E)F (E)dE, (5.3)

while the rate of PTDEs is

ΓPTDE =
∫︂

δPTDE(E)F (E)dE, (5.4)

where δPTDE(E) = 1 − δTTDE(E). As outlined in Chap. 3, the loss cone occupation
parameter q is the ratio between the average change ⟨∆R⟩ and R itself at the loss cone.
Therefore, its inverse

Nq(E) ≡ 1
q
=

RLC

PD [δR]
(5.5)
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is an estimate of the expected number of orbits that relaxation needs in order to alter
significantly an orbit on the edge of the newly defined loss cone. Therefore, one can
account for the possibility of repeated disruptions by using δPTDE = Nq (1 − δTTDE) in
Eq. 5.4 or, for best accuracy, define

Nrep =
Nq

RLC
R (5.6)

and compute

δrep(E) =

∫︁ RLC/κ
R0

dR log(R/R0) Nrep θ(RLC/κ −R0)∫︁ RLC
R0

dR ln(R/R0)
(5.7)

In Bortolas et al. (2023) we used this prescription to compute how the flux of total
and partial disruptions is affected by a different choice of rTDE. To relate the choice of
rTDE with ∆m, we employ a formula obtained by fitting the highly accurate, general-
relativistic magneto-hydrodynamical simulations by Ryu et al. (2020a,b):

∆m
m⋆

=

(︃
ηTTDE

rTDE

rp

)︃ζ

log10 ζ = 0.3 + 3.15 × 10−8
(︃

log10
M•

1 M⊙

)︃8.42

.

(5.8)

where η is a form factor of order 1 that depends on the details of the stellar model. The
value ηTTDE corresponding to the model we used is

ηTTDE(m, M•) =

(︄
0.80 + 0.26

√︄
M•

106M⊙

)︄ ⎛⎝ 1.47 + exp
(︂

m/M⊙−0.669
0.137

)︂
1 + 2.34 exp

(︂
m/M⊙−0.669

0.137

)︂
⎞⎠ . (5.9)

Fig. 5.1 shows how setting the value rTDE corresponding to ∆m = 3% affects the rate of
total disruptions: they are reduced by roughly an order of magnitude. All systems are
affected by the choice of rLC, with a larger impact on systems dominated by the empty
loss cone regime.

5.2 | Model of partial disruptions
Motivated by the results shown in the previous section, we proceed our study of partial
disruptions to constrain the choice of the effective loss cone radius. In fact, in the treat-
ment presented in the previous section, this value was assigned somewhat arbitrarily as
the radius stripping at least 3% of the original stellar mass. We build a simple model to
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Figure 5.1: (Courtesy of E. Bortolas) Cumulative TTDE+PTDE rates as a function of the
relative stellar mass stripped in the event, for a model of the Milky Way. The blue solid
curve does not allow for repeating PTDEs, while the cyan dotted one assumes a star
can undergo multiple PTDEs. The left-most value of the blue curve corresponds to the
effective TTDE rate in a system in which PTDEs are allowed to occur. For compari-
son, the horizontal grey lines mark the TTDE rate one would have estimated neglecting
PTDEs, and using either ηTTDE (dashed) or η = 1 (dotted). For reference, the top axis
shows the value of the PTDE radius with respect to the TTDE radius (computed with
ηTTDE) for the different values of ∆m/m. Remarkably, standard estimates of TTDE rates
(grey horizontal lines) can easily overestimate the real TTDE rate by almost one order
of magnitude, implying that properly accounting for PTDEs is crucial to obtain reliable
event rates, especially in systems (as the present one) in which a significant fraction of
the total flux comes from the empty loss cone. Details of the model: M• = 4 106M⊙
surrounded by stars of 1 M⊙ distributed in a bulge of mass 9.1 109 M⊙, effective radius
1 kpc and Sersic index 1.3 plus a nuclear star cluster with total mass 4 107 M⊙, effective
radius 2 pc and Sersic index 2.
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identify and characterize the key features of the process, in order to effectively include
– if possible – these phenomena in the Fokker-Planck evolution. We want to estimate
the typical timescale of mass changes and energy fluctuations, since we have seen in
the previous section that they must occur over a timescale much shorter than the relax-
ation timescale in order to apply the classical loss cone theory. We start by describing
how the mass loss experienced by partial disruptions can affect the orbital motion, then
considering the cumulative effect of repeated PTDEs.

5.2.1 | Single Partial Disruptions
We consider a star of mass m⋆ and radius r⋆ undergoing a partial disruption around a
massive black hole of mass M• on an orbit with binding energy E and angular momen-
tum J. Since we expect no significant density of stars inside rTDE, the local potential is
Keplerian and the pericentre of the orbit for J2 ≪ G2 M2

•/(2E) – as we expect for a tidal
disruption – is

rp =
J2

2 GM•
. (5.10)

In what follows, we assume the partial disruption only affects the orbital energy of
the subject star, and leave its angular momentum unaltered – de facto assuming that the
mass lost at the pericentre is lost by ejecting the corresponding mass radially; this is in
agreement with what found by Ryu et al. (2020b) through hydrodynamical simulations.

Assuming that the partial disruption corresponds to the deposition of the lost mass
∆m from Eq. (5.8), the change in orbital energy due to the mass loss itself is (Metzger
et al., 2022, eq. 32)

δEml ≃ −GM•
rTDE

(︃
r⋆

rTDE

)︃2 ∆m
m − ∆m

. (5.11)

Tidal forces may also alter the stellar structure, inducing oscillations of the star by
converting part of its orbital kinetic energy. This process, known as tidal excitation,
increases the binding energy in competition with the effects of mass loss. The energy of
the oscillations can be written as2 (Press and Teukolsky, 1977)

δEtid =

(︃
G M2

•
m⋆ r⋆

)︃ (︃
r⋆
rp

)︃6

T(ηp) (5.12)

where ηp ≡ (rp/rTDE)
3/2 and T(η) is an analytic function that depends on the polytropic

index assumed. Assuming that the oscillations are weak, one can treat them in the linear

2We use here ηp to clearly distinguish this quantity from the form factor in the definition of rTDE.
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regime, and the term can be expanded as a power law series in rp/rTDE, giving

δEtid =

(︃
G M2

•
m⋆ r⋆

)︃ (︃
r⋆
rp

)︃6
[︄

T2(ηp) +

(︃
r⋆
rp

)︃2

T3(ηp) + . . .

]︄
(5.13)

where T2, T3 are the first terms in the linear expansion of the tidal excitation term (Lee
and Ostriker, 1986), whose analytic approximants are available in Portegies Zwart and
Meinen (1993, eq. 7 and Tab.1), where the functions

log10 Tk(log10 ηp) k = 2, 3 (5.14)

are fitted by a 5th order polynomial. When the oscillations are strong – and the linear
regime for oscillations becomes inadequate – one should solve directly the hydrody-
namics of the oscillations. In the case of some polytrope models, an analytic fit of T(η)
has been presented in Generozov et al. (2018, eq. B1 and B2).

The energy changes presented here allow us to infer whether a star can undergo
multiple partial disruptions, and whether it becomes more or less bound at each pas-
sage.

5.2.2 | Partial disruptions in a prototypical system
We consider a system composed of a central black hole with mass M = 4 × 106M⊙

surrounded by a distribution of stars (total number 8 × 107, individual mass 1M⊙) and
stellar black holes (total number 8 × 104, individual mass 10M⊙) both on a Dehnen pro-
file with scale radius of 8.8 pc and inner slope 1.5, as in Broggi et al. (2022). This system
has an influence radius of rinf ≃ 2.2 pc and the velocity dispersion at the influence ra-
dius corresponds to σinf = 88 km/s, coming from the M − σ by Gültekin et al. (2009).
The function q = q(E) in this system is shown in Fig. 5.2.

In the central panel of Fig. 5.3 we show the cumulative effect of mass loss alone
(5.11), with tidal excitation according to the linear expansion (5.13) or according to the
non-linear theory (5.12) for a single passage at the pericentre rp of a star with mass
m⋆ = 1M⊙, radius r = 1 r⊙, and polytropic index γp = 1.5. Different values of the
initial binding energy can dramatically change the outcome of the single passage: when
q ∼ 10−2, the energy is substantially altered only when the pericentre is very close to
rTDE. As E decreases, energy modification becomes relevant at larger pericentre, and
in the case of E0 = 2.6 σ2

inf the ejection of the remnant core at rp = 1.2 rTDE becomes
possible for the (most conservative) case of the non-linear tidal excitation. Moreover, in
this case significant changes in E, and in the corresponding value of q(E), are reached
up to 2 or 3 rTDE.
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Figure 5.2: The value of the loss cone occupation fraction q as a function of energy
(in units of the velocity dispersion at the influence radius) in a system with a central
massive black hole of mass M• = 4 × 106. The upper axis shows the value of the radius
of the circular orbit at energy E. The details of the stellar distribution are in the text.

Overall, for rp ≳ 2 rTDE the energy loss due to mass loss dominates over the energy
gain due to tidal excitations, disregarding the specific model (linear and non-linear).
From this point onward, we take as our fiducial model for tidal excitation the non-
linear fit by Generozov et al. (2018); among the alternatives we considered, this is the
most conservative choice in terms of energy changes, since can be as strong as δEml at
small rp.

In Fig. 5.4 we show the qualitative effect of single passages at the pericentre as a
function of the initial energy E and angular momentum J for our fiducial model; we
also report the radius rc of a circular orbit at energy E for better interpretation. We plot
the contours that correspond to ∆E/E = −100%, |∆E/E| = 10% and δm/m < 1%,
identifying some notable outcomes.
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Figure 5.3: Summary of the
effects of mass-loss and tidal
excitation for a single pas-
sage of a partial disruption
for a star with different initial
energy in the empty (upper
figure), intermediate (middle
figure) and full (lower figure)
loss cone regime. In each
figure, the three panels re-
spectively show, as a function
of the stellar pericentre di-
vided by the tidal radius, the
ratio between the final and
the initial mass of the star
mfin/m0, the energy after the
disruption Efin, and the loss
cone filling factor for the fi-
nal energy q(Efin) (note that
this goes to infinite since for
Efin < 0 the star gets un-
bound; the original value of
q is marked with a horizon-
tal dashed line). In all plots
we show vertical dashed lines
at the pericentres correspond-
ing to 1%, 3%, 5% mass strip-
ping.
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Figure 5.4: Overview of the effect of a single pericentre passage due to tidal excitation
and mass-loss in phase space, where we express the angular momentum in units of the
critical value JTDE and energy in units of the squared velocity dispersion at the influence
radius σ2

inf. We identify here the regions corresponding to different effects on the orbit:
negligible effects (δm < 1%, δE < 10%), significant change in energy (|δE| > 10%
disregarding the mass change) and ejections (δE = −100%). We report some values of E
that might be of interest through dash lines, and the upper axis shows the corresponding
radius of the circular orbit rc with energy E.
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■ Negligible change in the orbit, negligible change in the mass. This happens
when ∆E/E < 10% and δm/m < 1%. This region includes the vast majority of
orbits at E ≳ 100 σ2

inf (corresponding to rc ≲ 0.01 pc) and a significant fraction
from E ≳ 25 σ2

inf (corresponding to rc ≲ 0.4 pc). In this region, mass loss is limited,
while the initial stellar orbital energy E is very large so that it is hardly affected.

■ Significant change in the orbit. This happens when 10% < |∆E| < 100% and it is
mainly driven by tidal excitation. Typically, it corresponds to δm/m > 1%, except
for E ≲ 3 σ2

inf and rc ≳ 10 pc. For rc > rinf a small range of J results in a tighter
orbit.

■ Ejection of the remnant. This happens when δE < −100% and affects orbits with
energy E ≲ 10 σ2

inf and particularly those with E ≲ 2 σ2
inf and rc ≳ 10 pc.

5.3 | Single vs Repeated disruptions
We will now try to assess the impact of single and repeated disruptions, first considering
the full loss cone regime, where repeated disruptions are unlikely to happen, and then
the empty loss cone regime, extending our previous analysis when Nq > 1.

5.3.1 | Full loss cone regime
When q ≳ 1, relaxation acts on timescales shorter than those of partial disruptions.
Therefore, the probability of staying on the same orbit and repeat the disruption is small,
and virtually negligible since q grows quickly as E decreases (see Fig. 5.2). In this regime,
single passages grazing or entering the loss cone radius will alter the orbital parameters
once per period P, while the timescale of relaxation in angular momentum is P/q. In this
regime, it is possible that partial disruptions mainly result in the ejection of the remnant,
and this may be compatible with classical loss cone theory. In fact, since they both
imply an instantaneous removal of the subject star from the distribution, ejections can
be treated together with total disruptions in the standard approach to loss cone, where
particles are removed when they reach a pericentre below a critical value. Therefore,
by identifying a suitable, larger threshold radius rLC > rTDE that roughly distinguish
the region of Ejections plus Total disruptions, classical loss cone theory may be simply
adapted to provide a good description of the system. However, relaxation in this regime
is so strong that partial disruptions are very unlikely to repeat in this regime.
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5.3.2 | Empty loss cone regime
In the empty loss cone regime, q ≲ 1 and repeated partial disruptions are expected. In
fact, the empty loss cone regime is defined as the region of phase space where relaxation
needs many orbits to alter significantly the orbital parameters of eccentric orbits.

Since we are interested in understanding whether the classical loss cone theory ap-
plies, we need to assess the cumulative effect of repeated partial disruption on the orbits
over the local relaxation timescale, that operates in Nq orbits; furthermore, this approach
allows us to estimate how many passages a star on a partial disruption orbits manages
to complete before being ejected, or surviving the interaction without escaping the sys-
tem, or being fully disrupted. For q = {0.1, 0.01, 0.001} we set up three simulations with
the following simple scheme.

1. We set the initial energy E0 corresponding to the chosen q. We set the initial mass
to m⋆ and the initial angular momentum J0 ∈ [JTDE, 5 JTDE], where JTDE is the
angular momentum of the orbit whose pericentre is rTDE.

2. We compute the pericentre rp and use Eq. (5.8) to determine the mass lost at each
pericentre passage.

3. We use Eq. (5.11) and Eq. (5.12) to compute the total energy variation

δE = δEml + δEtid (5.15)

4. We compute the new mass m⋆, the new tidal disruption radius rTDE, and the new
energy E.

We repeat steps 2− 4 until total disruption (rp < rTDE), ejection (E < 0), or survival (i.e.
the star completes Nq orbits). For each value of q we choose 30 equally spaced values in
log J

log Ji = x0 + i δ i = 0 . . . 29 (5.16)

with x0 = (log 5)/60 and δ = (log 5)/30.
We treat r⋆ = 1r⊙ as a fixed parameter throughout the evolution, since modelling the

readjustment of the star requires to directly solve the complex hydrodynamic evolution
of the stellar structure3. Finally, we remark that this procedure implies that the specific
angular momentum is constant throughout the repeated disruptions.

3While we are considering orbital periods of at most 104 yr, much less than the Kelvin-Helmholtz
timescale( 1 Myr, Binney and Tremaine (2008)), dramatic mass loss and strong tidal excitations may indeed
be relevant over the orbital period timescale
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Figure 5.5: Effects of repeated
partial disruptions with ini-
tial pericentre rp (in units of
rTDE) according to our sim-
ple step-by-step evolution for
q = 0.1 (upper figure), q =
0.01 (middle figure) and q =
0.001 (lower figure); the corre-
sponding energy for our fidu-
cial model is also reported
in units of σ2

inf. In the up-
per panel of each figure we
show the outcome of particles
completing less than Nq =
1/q orbits, distinguishing be-
tween total disruptions (rp <
rTDE) and ejections (Efin <
0); we dub as survival the
stars that complete Nq orbits.
In the middle panel, we re-
port the ratio between the fi-
nal and initial energy, mark-
ing the 90% line for reference.
In the lower panel, we show
the number of completed or-
bits in units of Nq. In all cases,
surviving particles show sig-
nificant energy decrease, with
Efin = 90% E0 at rp ≃ 4 rTDE
with q = 0.1, rp ≃ 6 rTDE with
q = 0.01 and rp ≃ 10 rTDE
with q = 0.001.
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In Fig. 5.5 we show the results of our simulations by reporting the outcome, the final
energy and the number of repeating partial disruption orbits for each simulation as a
function of its initial pericentre rp. In all the three cases, there is an effective larger radius
where a particle gets disrupted or ejected over the timescale of relaxation: rp/rTDE ≃
{2, 4, 8} respectively. As argued before, these two classes of events can be commonly
treated with classical loss cone theory with a suitable choice of rLC, given that they will
stop participating diffusion.

However, the results of our simulations show a more complex situation, where the
presence of the loss cone decreases the energy of the particles, thanks to the repeated
disruptions, up to large values of the initial pericentre, rp ≃ 4 rTDE, rp ≃ 6 rTDE and
rp ≃ 10 rTDE in the three cases. This unfortunately invalidates the assumption that ec-
centric orbits mainly evolve in eccentricity at fixed energy; as we have shown, over the
timescale of relaxation objects grazing the loss cone alter their orbital energy signifi-
cantly.

5.4 | Discussion and conclusions
In the first section of this chapter, we discussed the inclusion of the phenomenon of
partial disruptions in classical loss cone theory through a suitable choice of the loss cone
radius. We have seen how to compute in such a framework the expected fraction of total
disruptions, partial disruptions and repeated partial disruptions. The specific value
of this threshold radius can be related to the mass fraction lost at the first pericentre
passage, and we have shown that

■ The rate of total disruptions in systems dominated by loss cone events happening
in the empty loss cone regime can be significantly overestimated by classical loss
cone theory.

For a system with M• = 4 × 106 M⊙, a larger rLC corresponding to a mass loss of 3%
predicts an overestimation of the order of 10. An expanded version of what reported in
this chapter, assessing how different properties of galactic nuclei affect the relative rate
of partial and total disruptions, can be found in Bortolas et al. (2023).

The second part of the chapter was devoted to some preliminary results towards
extending the model of tidal disruptions at the base of classical loss cone theory with a
model of partial disruptions that accounts for the decrease of the orbital binding energy
due to mass loss δEml, and its increase due to tidal excitations δEtid. The possibility
of repeated disruptions is then explored in the empty loss cone regime, assessing the
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impact on orbits grazing the loss cone radius repeatedly before they are moved to a
different orbit by the stochastic interactions of two-body relaxation. The main findings
can be summarized as follows:

■ For pericentres very close to or much larger than the (total) tidal disruption radius,
the effect of mass loss is stronger than that of tidal excitations. Only in the non-
linear regime δEtid competes relevantly with δEml, with its maximum effect around
rp ≃ 1.3rTDE where it can increase the binding energy.

■ In agreement with the previous point, in the full loss cone regime, a large fraction
of partial disruptions may result in ejections of the remnant.

■ In the empty loss cone regime, the cumulative effect of repeated partial disrup-
tions over the local relaxation timescale can affect the energy of stars with peri-
centre larger than rTDE, where tidal excitations are subdominant and mass loss is
responsible for binding energy losses.

While the full loss cone regime can be treated with good approximations by classical
loss cone theory with a larger value of rLC (depending on the energy considered), in the
empty loss cone regime the treatment of classical loss cone theory is inadequate for the
computation of the rates.

In fact, the non-negligible decrease of the orbital binding energy calls for the inclu-
sion of the process into the diffusion coefficients, similarly to what is done for gravita-
tional waves emission in the case of EMRIs. However, there is a deep difference between
the two mechanisms: in the case of PTDEs, stars are pushed to regions where q is larger,
where the chances of being perturbed and leave the regions immediately close to the
loss cone are greater; in the case of EMRIs, the emission of gravitational waves pushes
the compact object towards regions of the nucleus with smaller q, where relaxation be-
comes more and more inefficient.

A general result of this chapter is that the classical theory of loss cone for extended
objects needs to be revised to include the phenomenon of partial disruptions. Systems
currently expected to produce most of TDEs in the empty loss cone regime will likely
see a suppression in the predicted rate.
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6

Improved boundary conditions for the
orbit averaged equation

Like all walls it was ambiguous, two faced.
What was inside it and what was outside it depended upon which side you were on.

— Ursula K. Le Guin, The Dispossessed: An Ambiguous Utopia

In this chapter is shown my preliminary work on the limits of the solution by
Cohn and Kulsrud (1978) when determining the expected relaxed distribution in an-
gular momentum at fixed energy. 2D solutions show strong deviations from the ex-
pected logarithmic trend in R as R → RLC, and this is due to a non-negligible con-
tribution to the flux entering the loss cone from the cross term. A new version of the
local Fokker-Planck equation will be derived, in order to solve the dynamics of par-
ticles inside the loss cone and match the solution of the orbit averaged equation at
the loss cone interface. The last part of the chapter shows the first attempts towards
defining revised boundary conditions for the orbit averaged FP equation and some
preliminary results on the impact on the loss cone rates. These results will be the
main body of a publication currently in preparation.

6.1 | Quasi stable profile in angular momentum
By using the integrator for the orbit averaged Fokker-Planck equation, one can test and
review some of the classical results of loss cone theory. Among these, a special role
is played by the prediction of the relaxed profile in angular momentum of particles at
a given energy E, that allows to connect the simpler treatment of the ergodic Fokker-
Planck equation with the expected rates of loss cone phenomena, including TDE rates
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Figure 6.1: The angular momentum distribution for stars (solid blue line) and stellar
black holes (solid red line) at the influence radius for a fiducial model with M• =
106 M⊙. Stars have a trend compatible with the Cohn-Kulsrud asymptotic profile
(dashed blue line) for low values of R; stellar black holes show significant deviations
from the corresponding expected trend (dashed red line).

and EMRI rates. This motivated us towards testing this basic assumption, by directly
checking the relaxation process in angular momentum for some systems.

In Fig. 6.1 we show the distribution at the influence radius (that is the energy such
that rc(E) = rh ≃ 1 pc) at t = 10 Gyr. This time is larger than the relaxation timescale in
energy (that for this system is of the order of 0.5 Gyr, see Tab. 4.3).

The reason why the stellar black holes do not relax towards the Cohn-Kulsrud dis-
tribution resides in the fact that the cross term DER ∂E f is not negligible with respect to
DRR ∂R.

Unfortunately, one cannot extend the derivation of the standard Cohn-Kulsrud pro-
file inside the loss cone – needed to derive the function R0(E) – to include the cross
term. The structure of the local Fokker-Planck equation 3.13 is not compatible with a
boundary condition that smoothly joins the solution inside the loss cone with the solu-
tion of the orbit averaged FP equation, and considering more than one contribution to
the flux along R.
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Figure 6.2: Contribution to the total flux in R at the influence radius for stellar black
holes (left) and stars (right). We can see that in the case of compact objects, the contri-
butions of −DER ∂E f (orange line) is non-negligible with respect to the contribution of
−DRR ∂R f (green line) at small values of R. The third contribution −DR f is subdomi-
nant in this regime.

6.1.1 | The Jeans compatible Fokker-Planck equation
In the derivation of the Cohn-Kulsrud relaxed profile in angular momentum, we were
able to match the steady state solution of the local Fokker-Planck equation with the
value fR(E) coming from the solution of the orbit averaged equation, meaning that it
had no explicit dependence on r. This was possible because, in the steady configuration,
we were considering only one contribution in the flux

vr
∂ f
∂r

=
∂

∂R

[︃
DRR(E, r)

∂

∂R f
]︃

(6.1)

and inserting f = f (E,R), one can find a solution that does not explicitly depend on r
if and only if DRR is separable; and this is the case as shown in Eq. (3.10). If one tries to
go to the next order in R, and has to include other terms in the expansion such as the
DER term, then one would have to solve an equation of the form

vr
∂ f
∂r

=
∂

∂R

[︃
DRR(E, r)

∂

∂R f (E,R, r) + DER
∂

∂E
f (E,R, r)

]︃
(6.2)
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and given that DRR and DER have a different dependence on r, the only solution to the
equation that is independent on r is the trivial solution f = 0, that of course cannot
match any solution different from zero in the orbit averaged equation.

From the local Fokker-Planck equation, however, it is possible to build an equation
that is compatible with Jeans’ theorem (that is, solutions can be independent on r), that
not enforce this form and can account for more than one contribution to the flux along
R. The procedure is conceptually simple: we retain only the part of each coefficient that
does not depend on r. In fact, we can decompose each diffusion coefficient as

D̃x =
Dx(E, R)

J + dx(E,R, r)

.
(6.3)

Given the definition of Dx, which is proportional to the orbital integral of the diffusion
coefficients, it is clear that ∫︂ r+

r−

dr
vr

dx(E,R, r) = 0 . (6.4)

Inserting this expansion in the local Fokker-Planck equation (we remind here that ∇
acts on (E,R) only):

d
dt

f = ∇ · FJ (E,R) +∇ · dF(E,R, r) (6.5)

given the formal linearity of the flux over its coefficients. Since the term at the right-
hand side explicitly depends on r, it is clear that the local Fokker-Planck equation has
no solutions that do not depend explicitly on r. In order to allow for the distribution
to have Jeans’ form (i.e. to not depend explicitly on r, as prescribed by Jeans’ theorem
for collisionless system; Binney and Tremaine, 2008), we will describe the phase space
inside the loss cone according to what we may call the Jeans compatible Fokker-Planck
equation

d
dt

f x(E,R, r, t) = ∇ · F̃x

J
(E, R, r) (6.6)

where

F̃x =

(︄
F̃x

E

F̃x
R

)︄
= −

(︄
DEE ∂E f x +DER ∂R f x +DE f x

DRE ∂E f x +DRR ∂R f x +DR f x

)︄
. (6.7)

for x = {in, out}. The solutions of this equation include functions with an explicit
dependence on r, and functions that are constant in r.
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6.2 | The cross term in the boundary conditions
We will now consider in detail the consequences of adding the cross term to the deriva-
tion of the relaxed profile in angular momentum.

6.2.1 | The cross term
The reason why the picture by Cohn and Kulsrud (1978) breaks down is that the DRR

term in the orbit averaged solution is not dominant for small R. Indeed, for small R the
flux of the orbit averaged equation is significantly contributed by the cross term DER,
due to the local coefficient DER. In fact, for R → 0

DRR ∼ 2
3
[2 F0(E) + 3F1(E, r)− F2(E, r)]

r2

J2
c
R (6.8)

DER ∼ 2
3

[︃
v2

v2
c
− 1
]︃
(F0(E) + F2(E, r))R . (6.9)

At fixed E and R, we can see that the two coefficients have a different trend in r, thanks
to the terms r2 and v2 = 2(ϕ(r)− E). Since the pericentre r− goes to zero when R → 0,
the cross term close to the pericentre is asymptotic to

DER ∼ 8
3

a
v2

c

G M•
r

r → r−, R → 0 . (6.10)

Its orbital integral may estimated by assuming the Keplerian potential due to the super-
massive black hole. The expansion of vr ∼ v around r−

v2

2
= ϕ(r)− E ≃ ϕ′(r−) (r − r−) r → r−, R → 0 (6.11)

and inserting it in the computation of DER we get

DER ∼ 8
√

2
3

π2 G M• r2
c

∫︂ r+

r−

dr
r
√︁

ϕ′(r−)(r − r−)

∼ 16
3

π3

√︃
G M• J2

c
E

r2
c

√
R R → 0.

(6.12)

The orbit average of DRR retains the linear trend in R. For small R we can write
DER∂E fE ∼ A(E)

√
R and DRR ∼ B(E)R, and the flux FR in the orbit averaged equa-

tion can be written as
FR ≃ A

√
R f + BR ∂

∂R
f . (6.13)

whose constant-flux solutions are

f =

[︄
c − FR

B

∫︂ 1

R
dx

e2 β
√

x

x

]︄
e−2 β

√
R (6.14)

where β = A/B.
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6.2.2 | The local equation with cross terms
The Jeans compatible FP equation Eq. 6.6 becomes, in the limit of small R

J vr
∂

∂r
f i =

∂

∂R

[︃
A
√
R f + BR ∂

∂R
f
]︃

. (6.15)

and it can be rewritten as

P vr
∂

∂r
f i =

∂

∂R

[︃
A

4π2 J2
c

√
R f +

B
4π2 J2

c
R ∂

∂R
f
]︃

. (6.16)

As we did in the case of the classical Cohn-Kulsrud solution, we define a variable to
describe the particle along the orbit (outwards and inwards):

τ(r) =

⎧⎨⎩ 1
P

∫︁ r
r−

dr
vr

out

1 − 1
P

∫︁ r
r−

dr
vr

in
(6.17)

so that the function

f (τ, R) =

⎧⎨⎩ f out(r, E,R) 0 < τ < 1
2

f in(r, E,R) 1
2 < τ < 1

(6.18)

summarizes the two branches. The boundary conditions in the domain of interest (0 <

τ < 1, 0 < R < Rmax with Rmax ≳ RLC) are:

■ f (τ,Rmax) = fmax matching the orbit-averaged solution

■ f (0,R) = 0 for R < RLC

■ f (0,R) = f (1,R) for RLC < R < Rmax

■ f smooth at τ = 1/2

■ FR(τ, 0) = 0

and the equation itself is written as

∂

∂τ
f =

∂

∂R

[︃
A

4π2 J2
c

√
R f +

B
4π2 J2

c
R ∂

∂R
f
]︃

. (6.19)

In order to study the solution of the equation parametrically, we introduce the pa-
rameter

p =
A

4π2 J2
c
√

RLC
(6.20)
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and the equation can be rewritten as

∂

∂τ
f = RLC

∂

∂R

[︄
p

√︄
R
RLC

f + qR ∂

∂R f

]︄
. (6.21)

Rescaling variable to y = R/RLC

∂

∂τ
f =

∂

∂y

[︃
p
√

y f + q y
∂

∂y
f
]︃

. (6.22)

Since the function can be freely rescaled, p and q are the sole parameters affecting the
solution.

In the |p| ≪ q limit, the equation recovers the standard solution of Cohn-Kulsrud.
In the |p| ≫ q limit, under the following transformation

x =
√

y f =
g
x

(6.23)

the equation can be mapped into the simple advection equation

∂

∂τ
g =

p
2

∂

∂x
g (6.24)

whose general solution is g = g(τ + 2 x/p).
Following the classical solution, we set Rmax and see if we can find the solution to

the equation. The boundary conditions set g(τ = 0, x) = 0 and g(τ, x = 1) = fLC, and
the functional form of g through z = τ + 2 x/p propagates these value to all the (τ, x)
space. When p is negative, one cannot impose both the boundary conditions. In fact,
the argument z of the function g assumes the values

τ= 0 boundary : − 2
|p| < z < 0 (6.25)

x = 1 boundary : − 2
|p| < z < − 2

|p| + 1 (6.26)

(6.27)

and the value of the function in the two intervals cannot be set independently. When p
is positive, on the other hand, the situation is different

τ= 0 boundary : 0 < z <
2
|p| (6.28)

x = 1 boundary :
2
|p| < z <

2
|p| + 1 (6.29)

(6.30)
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and one can apply the boundary conditions we are considering, obtaining

f (E, y, r) =

⎧⎨⎩
fLC√

y τ + 2
√

y
p > 2

p

0 τ + 2
√

y
p < 2

p

(6.31)

Unfortunately, this solution is discontinuous at τ = 1/2 and, more importantly, the
large value of p imply a non-vanishing flux at y = 0, that corresponds to R = 0.

The case |p| ≫ q with the boundary conditions for our problem needs therefore
to be solved through the complete partial differential equation Eq. 6.22. We could not
find an analytical solution to the general case, so we solved the differential equation
numerically to explore the space of parameters.

6.3 | Numerical solution of the equation inside the loss
cone

We solved Eq. (6.6) on a discrete grid in the (τ, y) space with dimension Nτ × Ny. We
discretized the left-hand side and the right-hand side, reducing the problem to the form

A · f = b (6.32)

where f is the coordinate vector with respect to the matrix basis

(ei)j,k = δj,i÷Nτ
δk,i%Nτ

f = ∑
i
fi ei (6.33)

where δi,j is the Kronecker delta, ÷ indicates the result of integer division and % its
modulus. The vector b is determined by the boundary conditions.

Please note that this method is expected to fail in the limiting case when |p| is too
large with respect to q. In this case, the matrix A becomes singular since the problem re-
duces to the advection equation, which is not compatible with the boundary conditions
as we have shown in the previous section. However, this does not happen in the range
of parameters we present here.

As a test, we compare the solution obtained numerically for the p = 0 case against
the expected solution. More in detail, we compare the function α = log(RLC/R0) as a
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Figure 6.3: Estimate of α = log(RLC/R0) as a function of q obtained by solving the
equation with our numerical method, by using the analytical expectation and the for-
mulas by Merritt and Cohn&Kulsrud. We also include the case p = 0 of the general fit
(fitted formula in the legend) that holds for any value of p and derived in the next Section.

function of q against three estimates

Analytical : αMM = q

[︄
1 − 4

∞

∑
m=1

e−α2
m q/4

α2
m

]︄−1

(6.34)

Merritt′s formula : αMV = 4
√︂

q2 + q4 (6.35)

C&K′s formula : αCK =

⎧⎨⎩q q ≥ 1

0.186 q + 0.824
√

q q < 1
(6.36)

where αk is the k-th zero of the Bessel function of first kind with J0(x).

6.3.1 | Overview of the solutions
In Fig. (6.4) we show the contour plots of the solutions of Eq. (6.6) by setting the function
to a constant value (in τ) at y = 2 and rescaling the obtained solution so that

f̄ (y) ≡
∫︂ 1

0
dτ f (τ, y) = 1 at y = 1 . (6.37)
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Figure 6.4: Contour plots of the solutions inside the loss cone in the plane (τ, y =
R/RLC). We set q = 1 and p = {0, 0.5, 1, 2} and Rmax = 2RLC. The solutions have
been rescaled to their average value in τ at R = RLC. The advective effect of the cross
term accumulates stars inside the region and favours captures at low R, meaning high
eccentricities.

The result corresponding to q = 1 are reported in Fig.6.4. As p increases, the derivative
of the function at τ = 1 increases, effectively transitioning from a bias towards higher
angular momentum to the opposite bias towards captures on radial orbits.

In Fig. 6.5 we show the solution inside and outside the loss cone, by solving the equa-
tion in the domain 0 < R < 10RLC with periodic boundary conditions for τ outside
the loss cone R > RLC. We show the performance of extrapolating the main solution
at R ∼ 10RLC with a function of the Cohn-Kulsrud form c1 logR+ c2 or its generali-
sation Eq. 6.14, as it is typically performed in numerical solutions in order to apply the
boundary conditions1. For higher values of p, the Cohn-Kulsrud extrapolations system-

1We remark that our code presented in Chapter 4 matches the function at the grid point Ri with the
Cohn-Kulsrud by imposing the slope of the partial derivative. This approach is equivalent to the extrapo-
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Figure 6.5: Performance of the matched Cohn-Kulsrud profile, that is the logarithmic
profile matching the function and its derivative according to Cohn-Kulsrud prescrip-
tion, and the corresponding solution from Eq. (6.14). Despite its better performance, the
predicted value at small R starts to differ from the real solution with p ̸= 0 because the
effects of the cross term are perceived farther away from the y = 1 region.

atically predict larger values of the distribution fLC at the loss cone due to the negative
derivative.

6.3.2 | Boundary condition for the orbit-averaged FP equation
In Fig. 6.6 we show the flux of disruptions as a function of p/q. We see that for any
value of p/q the asymptotic trends at q → 0 and q → ∞ recover the asymptotic trends
of the standard Cohn-Kulsrud solution. We now extract from this set of solutions an
analytical prescription for setting the generic boundary conditions in terms of p and q
in the orbit averaged Fokker-Planck formalism.

lation discussed here when the main solution follows a Cohn-Kulsrud, but imposes the expected value of
R0 even when the distribution does not approach the loss cone logarithmically.

111



Chapter 6. Improved BC for 2D FP 6.3. Numerical solution of the equation inside the loss cone

Figure 6.6: The upper panel shows the flux of captured objects as a function of the ratio
p/q, with colours representing different values of q. The lower panel shows the flux of
captured objects as a function of q, with colours representing different values of p/q. In
the lower panel, one can see that the limiting trends at low and large q for any value of
p/q are the same, including the classical solution corresponding to p = 0.
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At a given value of p/q, the flux FR of disruptions tends to a constant in q for large
q. We can estimate its asymptote by writing the corresponding equation as

FR

4 π2 J2
c R q

=
p
q
√

y f + y f ′ (6.38)

and we see that when q is large the equation resembles the zero flux solution in terms
of p and q. In the FR = 0 limit:

f (τ, y)
fLC

≃ e2 p
q e−2 p

q
√

y (6.39)

that does not depend on τ. The flux of disruptions will be

η(a) ≡
∫︂ 1

0
dy

f
fLC

= −−2a − e−2a + 1
2a2 , a =

p
q

(6.40)

which matches the horizontal asymptote reached for different values of p/q in Fig. 6.6.
As it is evident from their plots, the function F (q) at fixed p/q shows a nice piecewise
log-log plot, that corresponds to three different power law behaviours at different values
of q. By parametrizing the piecewise linear function as

G(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
q3 x > x2

m1 x + q1 x < min
(︂

q1+m2 x2−q3
m2−m1

, x2

)︂
m2 x + q3 − m2 x2 elsewhere

(6.41)

with free parameters {q1, m1, m2, x2, q3}, we provide formulas to obtain the function
F (q, p) at any value of q and p as

F (q, p) = 4 π2 J2
c RLC exp{G(q, p)} fLC (6.42)

where the parameters of G(q, p) are

q3 = η(p/q) (6.43)

m1 = 0.5 (6.44)

q1 = 0.107 + 0.0170
(︃

p
q

)︃
+ 0.00102

(︃
p
q

)︃2

(6.45)

x2 = 0.336 + 0.711
(︃

p
q

)︃
+ 0.037

(︃
p
q

)︃2

+ 0.0012
(︃

p
q

)︃3

(6.46)

m2 = 0.630 + 0.370
2
π

atan
[︃

0.575
(︃

p
q
− 2.08

)︃]︃
(6.47)

113



Chapter 6. Improved BC for 2D FP 6.4. Impact on capture rates

Figure 6.7: Maximum relative error obtained by estimating the flux of captures (see
Fig. 6.6) using the piecewise interpolation function detailed in the text.

In the range p/q ∈ [−5, 5] the maximum relative error of these estimates and the
value of q where it is reached are shown in Fig. 6.7. The piecewise representation ob-
tained for p = 0 is compared through the function α = q/F with the other estimates in
Fig. 6.3, where we can see that the performance is compatible with the other approxi-
mants, with a maximum error of 10% at q ≃ 1.

6.4 | Impact on capture rates
We now implement Eq. 6.42 as a boundary condition in the code presented in Chap. 4.
Inserting the expression of Forb

R we can write ∂R f as a function of fLC

∂R fLC =

[︃
exp{G(q, p)}

q
− p

q

]︃
fLC

RLC
. (6.48)

We evaluate the cross term parameter p on the first grid point above the loss cone (as
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Figure 6.8: Trend of the ratio β = p/q for a system in our fiducial model with central
mass M = 106 M⊙. At larger radii both the species have a positive, large β, while at
smaller radii star have negative β of order one, and stellar black hole positive β of order
one.

in the case of q).

We tested the impact on the rates for the case of M• = 106 M⊙ (with the environment
presented in Chap. 4). In Fig. 6.8 we show the value of the variable β = p/q as a function
of energy in the system. For the light component of stars β moves from values larger
than 30 at smaller energies, and reaches values of order 1 from E = σ2

inf with a local
maximum of β ≃ 5 around E = 10 σ2

inf, corresponding to Keplerian semimajor axis ∼ 0.2
pc. In general, for stars β in this system is always positive, since the partial derivative
∂E f is always increasing close to the loss cone interface. In the case of compact objects,
on the other hand, beta has a similar trend up to E ≃ 3σ2

inf, where it decreases reaching
negative values. Around E = 30σ2

inf (rc ≃ 0.01 pc), the minimum value of β ≃ −7 is
reached. Then, β remains negative and of order 1.

To see how β ̸= 0 affects the computation of the rates, we compare the flux entering
the loss cone after an evolution of ≃ 0.65 Gyr (twice the time to peak of the 2D code
in Broggi et al. (2022)) and compare the distribution of the flux entering the loss cone
with an estimate obtained with the ergodic Fokker-Planck equation. The public code
phaseflow (Vasiliev, 2017) computes all the quantities needed for this comparison, that
is shown in Fig. 6.9. In general, we can see that the peak of the flux is moved towards
larger binding energies, meaning that the contributions from inner regions are larger.

115



Chapter 6. Improved BC for 2D FP 6.4. Impact on capture rates

Figure 6.9: Flux entering the
loss cone according to the
2D Fokker-Planck solver with
our newly proposed bound-
ary conditions, and the code
phaseflow, that computes the
flux according to the Cohn-
Kulsrud profile. We plot
dṄ/d log E, so that compar-
ison at different energies is
easier. For both stars and
stellar black holes, the maxi-
mum of the flux entering the
loss cone is moved towards
smaller radii.

Therefore, we expect a bigger impact on EMRIs, that are produced for E > 50 σ2 (rc <

aGW ≃ 0.01 pc). Among the two species, the larger impact is on stellar Black Holes,
that are more concentrated at inner regions due to the effects of mass segregation. As
we have seen at the beginning of this chapter, this was expected since the deviations
from a logarithmic profile appear to be stronger for the heavier species, possibly due to
the negative slope of the distribution function due to mass segregation in energy, and
maybe a relevant contribution from mass segregation in angular momentum due to the
advective term DR of the orbit averaged equation.

In Fig. 6.10 we can compare the evolution of the rates in time when computed with
phaseflow, our 2D FP integrator with classical CK, and our integrator with the new
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Figure 6.10: A first example
of the effect of implement-
ing the revised boundary con-
ditions in our 2D FP solver,
showing the comparison with
the standard Cohn-Kulsrud
boundary conditions in the
2D FP solver and the 1D es-
timation with the code phase-
flow. The overall rate of TDEs
and Plunges (DP+EMRIs) is
slightly reduced by apply-
ing the new boundary con-
ditions, still not compatible
with 1D estimates when con-
sidering the captures of com-
pact objects. However, the
contribution of EMRIs to the
total capture rate is slightly
larger, and at their peak they
account for ∼ 30% of the to-
tal capture rate. In this re-
gion, the performance of the
1D approximation seems to
be worse and underestimates
the rate of EMRIs by a factor
of ≃ 5.
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boundary conditions. In agreement with our previous analysis, the total rate of TDEs
and DP+EMRIs computed with the 2D Fokker-Planck solvers are higher with respect
to the 1D counterpart, with more pronounced differences for stellar Black Holes and
in particular EMRIs. By comparing the results of the two 2D simulations, we see that
the new boundary conditions reduce by around 30 − 40% the total rate of TDEs and
Plunges. However, the impact on EMRI rates has the opposite trend: the fraction of
captures in this regime can be enhanced by 50% with the new BC.

6.5 | Discussion and conclusions
In this chapter, it was shown that the classical theory of loss cone is unable to predict
the quasi-stable, relaxed profile in angular momentum that arises in the solutions of
the orbit averaged Fokker-Planck equation with two components. This is due to the
relevance of the contributions to the flux usually neglected. At low R, where the the-
ory only includes the DRR term, the cross term DER cannot be neglected; this suggests
that the boundary conditions classically derived may be inadequate. Unfortunately,
the approach developed by Cohn-Kulsrud cannot be immediately extended to include
the cross term. The Jeans compatible Fokker-Planck equation was then introduced to
replace the local Fokker-Planck equation in the original derivation, and allow the in-
clusion of the cross term and the matching to the main solution of the orbit averaged
equation. By parametrising the contribution of the cross term with a parameter p, a set
of simulations in the relevant parameter was fitted to a semi-analytic formula for the
boundary conditions that include p, together with the loss cone occupation fraction q.
Thanks to the implementation of the revised boundary conditions in our solver for the
orbit averaged Fokker-Planck equation, it was possible to assess the impact of this new
prescription in a system with a central massive black hole of mass 106 M⊙. The main
findings of this chapter can be summarised as follows:

■ Solutions of the orbit averaged Fokker-Planck equation show a greater contribu-
tion from inner regions with respect to estimates coming from the ergodic Fokker-
Planck equation, since the value of p is comparable to that of q over most of the
energy range.

■ The revision of the boundary conditions in the solver for the orbit averaged equa-
tion marginally impacts the rate of loss cone events: the total number of TDEs and
Plunges is reduced by ∼ 30%, while the number of EMRIs is larger by ∼ 50%.
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These preliminary results suggest that the role of the empty loss cone, considered to
be dominant for (classical) TDE rates, seems to be enhanced; at least for central black
holes with masses around 106 M⊙. The solution to the orbit averaged equation shows
a smaller rate of loss cone events at large radii, and a larger rate at small radii, with
the extreme case of EMRIs that could be underestimated by a factor of 5 in the ergodic
approach.

As shown, the distribution of angular momentum inside the loss cone may be strongly
affected by the values of p, and can significantly enhance the rate of captures on nearly
radial orbits when it is positive. The distribution of particles at capture is of increas-
ing interest to compute the expected rates of total and partial disruptions for a direct
comparison against observations.
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7

Conclusions

In this chapter, I summarize the work presented in the main chapters of this manuscript,
with a focus on their results and the future perspectives they cast.

7.1 | Overview
In this thesis, I present the results of my work primarily focused on the dynamical origin
of tidal disruption events, direct plunges and extreme mass ratio inspirals. These tran-
sient events offer the opportunity to constrain the population of massive black holes,
giving information on their abundance and their properties. The majority of TDEs,
Direct Plunges and EMRIs are expected to happen in galactic nuclei, since in these
crowded environments close encounters may push a stellar object at the typical small
separations from the central black holes at which these events can occur.

The relaxation of stellar systems due to two body encounters can be described statis-
tically with a stochastic Fokker-Planck equation that models the evolution of the distri-
bution function due to two-body encounters. With increasing approximation, one can
assume specific analytic forms of the distribution function to obtain the orbit averaged
Fokker-Planck equation and the ergodic Fokker-Planck equation, that are increasingly
simpler to solve.

When the stochastic evolution of nuclear clusters is complemented with a simple
model of the transient events known as loss cone theory, one can estimate the rate
at which tidal disruptions (for deformable objects like stars) and plunges (for non-
deformable objects like stellar black holes) are expected to happen. Moreover, by look-
ing at the specific dynamics in nuclear cluster it is possible to distinguish between DPs
and EMRIs for compact objects, even in the absence of gravitational waves emission.

In this framework, my work has moved in three directions:
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1. I wrote the first public code for the solution of the orbit averaged Fokker-Planck
equation, that implements the classical theory for two species of stellar objects. I
used this code to compute the rate for a variety of models of galactic nuclei.

2. I carefully revised the theoretical foundations of the loss cone theory with the aim
of including a proper treatment of partial disruptions.

3. I extended the classical theory of angular momentum relaxation in the presence of
the loss cone to account for previously neglected effects, in particular in the case
of compact objects.

The three directions have often crossed, explicitly or not, and have offered me the op-
portunity to assess the capabilities and the limitations of the classical theory of loss cone,
the main tool for computing the expected cosmological rates of TDEs, DPs and EMRIs.

7.2 | Main results and future perspectives
With my studies on the solutions of the time dependent orbit averaged Fokker-Planck
equation, I was able to compute the rate of TDEs, DPs and EMRIs for a variety of galactic
nuclei, and to derive some scaling relations that fully characterize them. Mass segrega-
tion of the heavier component towards the centre of the stellar distribution is the phe-
nomenon that drives the stochastic evolution of galactic nuclei, and dictates the typical
timescale of rate evolution in time. By translating the total number of loss cone events
into an estimate of the mass accreted by the central black holes, I showed that massive
black holes with mass below 106 M⊙ may grow significantly through these transient
events over cosmological timescales, and I quantified their growth timescale.

With my studies on partial disruption events, I showed that their inclusion in clas-
sical loss cone theory requires an advection term acting on eccentric orbits with peri-
centres up to ten times larger than the tidal disruption radius. This term is mainly due
to the effect of weak mass-loss, that reduces the binding energy of stars for repeated
partial disruptions. This phenomenon prevents stars from reaching the loss cone radius
in the inner regions of galactic nuclei, typically found in the so-called empty loss cone
regime. Consequently, the rates of TDEs classically expected from these regions may be
suppressed by the inclusion of PTDEs in the theory.

I showed that classical loss cone theory fails to predict the relaxed profile in angular
momentum of the solution of the 2D Fokker-Planck equation with two-stellar compo-
nents. I proposed a revised version of the boundary conditions for the equation, deter-
mined by a more accurate relaxed profile that includes the contribution of the so-called
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cross term. Preliminary tests show that the different relaxed profile may significantly
impact the rate of EMRIs. The comparison with 1D estimates of the loss cone rates
shows a reduced contribution from distant regions of the galactic nucleus (in the full
loss cone regime) and an increased contribution from inner regions (in the empty loss
cone regime).

My work on PTDEs and the contribution of the cross-term suggests that the classical
theory of loss cone may fail in predicting the rate of TDEs coming from the empty loss
cone regime. The decreased relative importance of the full loss cone regime (due to
the cross term) and a suppression of the rates coming from the empty loss cone regime
(due to repeated PTDEs) may indeed explain why observed rate of TDEs are lower than
prediction.

The natural prosecution of this work is to derive an analytic expression for the ad-
vection due to repeated PTDEs, and include it together with the improved boundary
conditions in my code. The comparison with previous simulations will quantify the
combined effect of these improvements, hopefully giving more realistic predictions of
the formation rate of TDEs, PTDEs, DPs and EMRIs. This numerical implementation of
the orbit averaged Fokker-Planck formalism can be then complemented with a variety
of physical phenomena to increase the realism of the simulated evolution of stellar sys-
tems. Possible improvements include the emission of gravitational waves, and the evo-
lution of the stellar distribution due to the formation of new stars and their ageing. On
the long term, we envisage to derive accurate and realistic formation rates of loss cone
events in galaxies by exploiting self-consistent models of the evolution of the galactic
population of our Universe. The derived cosmological event rate of tidal disruption
events and plunges will serve as a guiding tool to interpret at best their detections in
order to get the highest scientific reward from forthcoming experiments.
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