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Abstract
Microbiome data analysis often relies on the identification of a subset of potential 
biomarkers associated with a clinical outcome of interest. Robust ZeroSum regres-
sion, an elastic-net penalized compositional regression built on the least trimmed 
squares estimator, is a variable selection procedure capable to cope with the high 
dimensionality of these data, their compositional nature, and, at the same time, it 
guarantees robustness against the presence of outliers. The necessity of discovering 
“true” effects and to improve clinical research quality and reproducibility has moti-
vated us to propose a two-step robust compositional knockoff filter procedure, which 
allows selecting the set of relevant biomarkers, among the many measured features 
having a nonzero effect on the response, controlling the expected fraction of false 
positives. We demonstrate the effectiveness of our proposal in an extensive simula-
tion study, and illustrate its usefulness in an application to intestinal microbiome 
analysis.

Keywords  False discovery rate (FDR) · High-dimensional regression · Knockoffs · 
Variable selection · Robustness

1  Introduction

Understanding the microbiome and how it is related to several aspects of the human 
health, including a wide range of diseases, is an intensive research area (The Human 
Microbiome Project Consortium 2012; Li 2015). The rapid advancement of human 
microbiome research resulted in the development of high-throughput sequencing 
technologies which enable to collect huge amounts of data. Due to great variation 
in the library size, the raw data have traditionally been normalized to allow for a 
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comparison among different samples. What is relevant for the analysis is the taxo-
nomic relative abundance. This is precisely the concept of compositional data analy-
sis, namely that (only) relative information counts for the analysis (Aitchison 1986). 
In fact, nowadays it is widely recognized that a proper analysis of microbiome data 
requires an appropriate compositional data analysis methodology (Gloor et al. 2017; 
Weiss et al. 2017; Nearing et al. 2022).

Different approaches have been proposed for a compositional analysis of these 
high-dimensional data. One interesting methodology is the linear log-contrast model 
for regression analysis (Lin et al. 2014; Shi et al. 2016), which accounts for the fact 
that the number of microbial taxa is usually bigger than the number of observations. 
This model is a natural extension of the log-contrast model, as it has been intro-
duced in the seminal work of Aitchison and Bacon-Shone (1984), to address the 
issues derived from the compositional nature of the microbiome data, such as the 
collinearity and the non-Gaussian distribution of the compositional covariates.

A critical challenge to improve clinical research quality and reproducibility is to 
reliably select those microbial taxa, among a massive number of measured features, 
that are truly associated with a clinical outcome of interest. At the same time, how-
ever, there is the requirement to control the number of false positives, i.e., variables 
which have been selected by the method, but which actually do not have any signifi-
cant effect on the outcome. Using false discovery rate (FDR)-controlling methods 
allows scientists to decide on the maximum threshold of the expected proportion 
of errors among the rejections they are willing to accept among all the discoveries, 
i.e., the significant results. A wider adoption of the FDR-controlling strategies has 
been recommended as a natural way for improving the power of association stud-
ies for complex phenomena of interest (Storey and Tibshirani 2003; Brzyski et al. 
2017). Different methods for controlling the FDR have been presented in the litera-
ture: methods for marginal FDR control that examine each relative abundance taxa 
at a time followed by multiple comparison procedures (Benjamini and Hochberg 
1995; Storey 2002), or the knockoff filter (Barber and Candés 2015; Candés et al. 
2018; Barber and Candés 2019). The latter method gained popularity recently, and 
it is designed to control the expected fraction of false positives in a set of selected 
biomarkers.

The main idea behind the original fixed-X knockoff procedure (Barber and Can-
dés 2015) was to construct a set of ‘knockoff copy’ variables which are not associ-
ated with the response, conditionally on the original variables, but with a correlation 
structure that mimics the one of the original variables. Knockoff variables act as 
controls for the original variables in the variable selection process. The knockoff 
filter procedure achieves an exact finite-sample FDR control in the homoscedastic 
Gaussian linear model when the number of observations is at least twice as big as 
the number of variables. Since this is not the case for microbiome data, the number 
of candidate variables is first reduced in a screening procedure.

However, these methods are not specifically designed for compositional data, 
thus they do not honor their nature, and can lead to inappropriate conclusions. In 
particular, the marginal method is often highly conservative, controlling the prob-
ability of any false positives, at the price of considerably reduced power in detecting 
true positives given the high dimension of the design matrix.
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Candés et al. (2018) extended the idea of knockoff in the case of p > n and treat-
ing the covariates as random, namely the model-X knockoff, which is based on the 
assumption that the distribution of the original features is completely specified in 
order to allow for the construction of the knockoff copies. The most used sampling 
scheme for knockoff generation is the sequential conditional independent pairs algo-
rithm, whose implementations were only available for Gaussian distributions and 
discrete Markov chains (Candés et al. 2018; Sesia et al. 2019). However, for a com-
positional design matrix, the assumption of a Gaussian distribution is violated, and 
constructing exact or approximate knockoff features that do not follow a Gaussian 
distribution is nontrivial and still an open problem (Bates et al. 2021).

To address this problem, Srinivasan et  al. (2021) proposed an FDR-controlled 
variable selection method, named compositional knockoff filter (CKF), specifically 
designed for the analysis of microbiome compositional data. However, the presence 
of anomalies in the data, such as observations that deviate from the majority, can 
undermine the CKF ability to control the FDR. This motivates us to propose a two-
step robust compositional knockoff filter (RCKF) with the aim to control the finite-
sample FDR, while maintaining robustness against outliers in the data.

This contribution is organized as follows: Sect. 2 details our proposal, the robust 
compositional knockoff filter (RCKF). Section 3 reports simulation studies to com-
pare the RCKF with its non robust competitor CKF. A real data example on intesti-
nal microbiome analysis is presented in Sect. 4. The final Sect. 5 concludes.

2 � Robust compositional knockoff filter

In this section we introduce the robust compositional knockoff filter (RCKF), a 
robust version of the compositional knockoff filter (CKF) proposed by Srinivasan 
et al. (2021), to perform FDR-controlled variable selection for microbiome compo-
sitional data. The goal is to select a final subset of the originally measured biomark-
ers which are truly associated with the clinical outcome of interest by a procedure 
which is robust against vertical outliers and leverage points in the data. It is based 
on the recycled fixed-X knockoff procedure (Barber and Candés 2015, 2019), which 
requires that the number of observations used for the filtering procedure is at least 
twice as big as the number of variables. It consists of a two-step procedure: a robust 
compositional screening step, followed by a robust selection step. The main idea of 
the fixed-X knockoff is to construct for each feature Xj , screened in the first step, a 
synthetic fake copy X̃j , which can play the role of a control covariate. Knockoff cop-
ies X̃1,… , X̃p mimic the correlation structure of the original features X1,… ,Xp and 
are conditionally independent of Y if they were null.

Before continuing describing the new methodology, we have to provide more 
background on regression modeling of compositions. Thus, in Sect. 2.1 we briefly 
review the log-contrast regression model in its original version (Aitchison and 
Bacon-Shone 1984) and its extension to high dimensions (Lin et  al. 2014). In 
Sects.  2.2 and 2.3 we describe the two-step RCKF procedure, consisting of the 
robust compositional screening procedure and the subsequent robust controlled vari-
able selection.
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2.1 � Log‑contrast regression model

Let � ∈ ℝ
n be the response vector and � ∈ ℝ

n×p the compositional data matrix, 
where each row �i of � lies in the simplex

where � is a constant, usually taken to be one. Let �p ∈ ℝ
n×(p−1) be the matrix of a 

log-ratio transformation of � , where z
p

ij
= log(xij∕xip) , for i = 1,… , n and 

j = 1,… , p − 1 , and p is the chosen reference component (Aitchison 1986).
To overcome the rank deficiency of the compositional design matrix �p , 

Aitchison and Bacon-Shone (1984) formulated the log-contrast model defined 
as � = �p��p + � , where ��p = (�1, �2,… , �p−1)

T is the vector with the (p − 1) 
regression coefficients, and � ∼ N(�, �2�) contains the error terms. Lin et  al. 
(2014) extended the log-contrast model to the high-dimensional setting, and they 
reformulated it into a symmetric form, which allows to avoid the choice of a ref-
erence component:

where � ∈ ℝ
n×p is the log-composition matrix with zij = log xij , for i = 1,… , n and 

j = 1,… , p , and � = (�1, �2,… , �p)
T is the vector of coefficients. Due to the zero-

sum linear constraint on the regression coefficients, model (1) is known as Zero-
Sum regression; it preserves the simplex structure, and it treats all the components 
equally. In the high-dimensional setting, where the number of explanatory variables 
p is much larger than the number of observations n, Lin et al. (2014) suggested to 
estimate the regression coefficients � ∈ ℝ

p , which are supposed to be sparse, by a 
penalized estimation procedure with linear constraints,

where yi and �i are the i-th observations of the response � and the explanatory 
matrix � , respectively, 𝜆 > 0 is a tuning parameter to control sparsity, and ||.||1 is the 
�1 or lasso penalty.

The zero-sum constraint is essential to ensure some desirable properties of the 
�̂ZS estimator: the scale invariance, namely the regression coefficients are inde-
pendent of an arbitrary scaling of the basis counts from which a composition is 
obtained; the permutation invariance, i.e. the estimator is invariant under any 
arbitrary permutation of the p components; and the selection invariance, that is 

S
p =

{
�i = (xi1,… , xip)

T , xij > 0,

p∑

j=1

xij = 𝜅

}
,

(1)� = �� + �, s.t.

p∑

j=1

�j = 0 ,

(2)�̂ZS = argmin
�∈ℝp

{
1

2n

n∑

i=1

(yi − �
T
i
�)2 + �||�||1

}
, s.t.

p∑

j=1

�j = 0,
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the estimator remains unaffected by correctly excluding some or all of the zero 
components (Lin et al. 2014).

With the aim to detect outlying observations, whose presence can seriously affect 
the prediction accuracy of the estimated log-contrast model, especially for high-dimen-
sional data, Monti and Filzmoser (2021) introduced the Robust ZeroSum estimator 
(RZS), which is a compositional lasso version of the sparse least trimmed squares 
(SLTS) estimator (Alfons et al. 2013). RZS first tries to identify a homogeneous subset 
of the data, consisting of the majority of the observations, which best corresponds to 
the model. Then a weight is assigned to every observation which depends on the size of 
its residual to the fitted model. RZS is defined as

where nw =
∑n

i=1
wi is the sum of the binary weights wi computed to reduce the 

influence of outliers detected by the final optimal solution of the minimization prob-
lem. If wi = 1 , the i-th observation is considered a regular one, and if wi = 0 , the i-th 
observation is identified as an outlier.

In its original formulation, estimator (3) added an elastic-net penalty for the coef-
ficients to the objective function, but, for the purpose of this contribution, we limit the 
attention only to the lasso penalty.

2.2 � Robust compositional screening procedure

To avoid selection bias in the screening step we split the sample into two halves: the 
first half ( n0 samples) is used to screen variables, and the second half ( n1 = n − n0 ) is 
used for variable selection. The benefit of data splitting in implementing the two-step 
scheme of variable screening and a subsequent variable selection has been discussed 
and demonstrated by several authors (Fan and Lv 2008; Zhang and Xia 2008; Zhu and 
Yang 2015).

Following this idea, we randomly split the original data (�,�) into (�(0),�(0)) and 
(�(1),�(1)) where �(0) ∈ ℝ

n0×p and �(0) ∈ ℝ
n0 , �(1) ∈ ℝ

n1×p and �(1) ∈ ℝ
n1.

The subset (�(0),�(0)) is used to perform the screening step in order to obtain a sub-
set of features Ŝ0 ∈ {1,… , p} such that |Ŝ0| ≤

n1

2
 , where |Ŝ0| denotes the cardinality of 

set Ŝ0 , whereas the subset (�(1),�(1)) is used to perform the selection step. It is desirable 
that in the screening step all relevant features are selected, and various procedures have 
been proposed with this goal. However, common methods such as the Pearson correla-
tion (Fan and Lv 2008) or the distance correlation (Szekely et al. 2007) do not take into 
account the compositional nature of the features. To this aim, Srinivasan et al. (2021) 
proposed a compositional screening procedure (CSP) adapting best-subset selection to 
the log-contrast model, that is

(3)�̂RZS = argmin
�∈ℝp

( n∑

i=1

wi(yi − �
T
i
�)2 + nw𝜆||�||1

)
, s.t.

p∑

j=1

𝛽j = 0,

(4)�̂BSS = argmin
�∈ℝp

{
1

2n

n∑

i=1

(yi − �
T
i
�)2

}
, s.t. ||�||0 ≤ k and

p∑

j=1

�j = 0 ,
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where k is the size of the cardinality of the final set of the selected features. The 
objective function (4) could be interpreted as an �0-constrained sparse least-squares 
estimation problem. Common choices for the screening set size are k = c⌊ n0

log(n0)
⌋ , for 

some c > 0 (Fan and Lv 2008; Li et al. 2012). The minimization problem (4), which 
is NP-hard, could be solved by using mixed integer optimization (Konno and Yama-
moto 2009; Bertsimas et al. 2016).

As the presence of anomalies in the data could seriously affect the mentioned 
likelihood-based compositional screening procedure, we present a novel robust com-
positional screening procedure (RCSP) that simultaneously attains variable screen-
ing and robustness against outliers.

RCSP is based on an adaptation of the RZS algorithm to obtain a subset of fea-
tures Ŝ0 ∈ {1,… , p} such that |Ŝ0| ≤

n1

2
 , to allow for an application of the fixed-X 

knockoff scheme, which requires that the number of observations is at least twice 
as big as the number of variables. The features in Ŝ0 are obtained as the set of active 
predictors which correspond to a sparsity parameter �k , closest to the minimum � in 
(3), associated to the minimum cross-validated mean squared error (MSE), such that 
the number of selected variables, 𝛽RZS,j∈Ŝ0 ≠ 0 as solution of problem (3), is in the 
neighborhood of a fixed screening set size k. The choice of k could be considered a 
further tuning parameter in the model.

The reduced log-contrast model after RCSP is yi =
∑

j∈Ŝ0
zij𝛽

r
j
+ 𝜖i , s.t. ∑

j∈Ŝ0
𝛽r
j
= 0 . A further normalization step of the screened features is necessary to 

ensure model identifiability, thus zij = log x⋆
ij
= xij∕

∑
j∈Ŝ0

xij , where for simplicity 
we use the same notation for (the elements of) the compositional design matrix.

2.3 � Robust controlled variable selection

We would like to estimate how many of the RZS discoveries in the first step are, in 
fact, null, i.e. 𝛽RZS,j∈Ŝ0 = 0 . To this aim we consider the recycled knockoff procedure 
as follows (see Barber and Candés 2019, for more details).

Let �(1)

Ŝ0
∈ ℝ

n1×|Ŝ0| , denote the columns of �(1) corresponding to Ŝ0 , the selected 
set from the computed solution of the robust compositional screening procedure. 
The knockoff matrix �̃(1)

Ŝ0
 , which has a “negative control” rule in the variable selec-

tion procedure, is built from �(1)

Ŝ0
 using the fixed-X knockoff procedure (Barber and 

Candés 2015). A review of the knockoff construction under the fixed-X design is 
briefly reported in Appendix A. Basically, the variables in the knockoff matrix hold 
the same correlation structure as the original variables, except that they are con-
structed to be conditionally independent from the response � . Note that to apply 
fixed-X knockoff it is necessary that the number of observations used is at least 
twice as big as the number of variables, which has to be guaranteed by the first 
screening step, but no further assumptions on the distribution of �(1) are required.

To increase the selection power, we consider the data recycling mechanism (Bar-
ber and Candés 2019) to construct the knockoff matrix, that is we concatenate the 
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original compositional design matrix �(0)

Ŝ0

 of the first n0 observations with the knock-

off matrix �̃(1)

Ŝ0
 related to the remaining n1 observations,

Then the knockoff filter described below is applied to the whole dataset of n sam-
ples. This procedure will involve the compositional design matrix �Ŝ0

 , the knockoff 
matrix �̃Ŝ0

 , and the original response � . The term “data recycling” refers to the fact 
that (�(0)

Ŝ0
,�(0)) has already been used in the screening step.

For the knockoff filter we need to work with the augmented design matrix 
ℤŜ0

= [�Ŝ0
, �̃Ŝ0

] ∈ ℝ
n×2|Ŝ0| . We denote the rows of this matrix by zi . To account for 

possible outliers in the response variable as well as for outliers in the predictor space 
in the augmented data we propose to apply a robust penalized regression procedure, 
involving �Ŝ0

, �̃Ŝ0
 and � , by means of the sparse least trimmed squares (SLTS) esti-

mator (Alfons et  al. 2013), which has been demonstrated to exhibit good perfor-
mance with respect to model selection and prediction in presence of contaminated 
data.

Consider 𝜷 = (𝜷
T
, 𝜷

T
)T as the solution of the robust lasso optimization problem,

where ri = yi − z
T
i
� are the regression residuals, (r2(�))(1∶n) ≤ ⋯ ≤ (r2(�))(n∶n) are 

the order statistics of the squared residuals, and h ≤ n is a truncation number. The 
solution 𝜷 appends the first |Ŝ0| components, the coefficients for the original vari-
ables, to the last |Ŝ0| coefficients for the knockoffs features. Note that in the aug-
mented robust lasso problem (5) the zero-sum constraint on � is no longer needed as 
the associated microbiome matrix 𝕏Ŝ0

= exp(ℤŜ0
) is no more compositional due to 

the augmented design matrix ℤŜ0
.

The idea is then to compare in the lasso path in which sequence the j-th variable 
of �Ŝ0

 and the j-th variable of the knockoff matrix �̃Ŝ0
 enter the model. Denote for 

simplicity these j-th variables by Zj and Z̃j , respectively.
Let 𝜷(�) = (𝜷(�)T ,𝜷(�)T )T be the set of robust lasso coefficients for each value 

of the tuning parameter � provided by the lasso path. 𝜷(�) is used to construct a 
feature importance statistic Wj for each variable in order to test the null hypothesis 
H0 ∶ 𝛽j = 0, ∀j ∈ Ŝ0 . This statistic Wj records the first time that Zj or its knockoff 
Z̃j enters the robust lasso path, i.e. the largest penalty parameter value � such that 
𝛽j ≠ 0 or 𝛽j ≠ 0 , that is

�̃Ŝ0
=

[
�
(0)

Ŝ0

�̃
(1)

Ŝ0

]
∈ ℝ

n×|Ŝ0|.

(5)𝜷 = argmin
𝜷∈ℝ2|Ŝ0 |

{ h∑

i=1

(r2(𝜷))(i∶n) + h𝜆||𝜷||1
}
,

(6)
Wj = (largest 𝜆 such that Zj or Z̃j enters the robust lasso path)

×

{
1 if Zj enters before Z̃j
−1 if Z̃j enters before Zj

.
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Each Wj measures the evidence against the null hypothesis, where large and positive 
values of Wj would advocate a strong evidence against the null for the j-th feature, 
in other words, as the coefficient �j stays for a long time in the lasso path, then most 
likely this feature is strongly associated with the clinical outcome. On the contrary, 
a negative or zero value of Wj would suggest that the j-th feature is irrelevant in the 
model, and the sign of Wj is independent coin flip (Barber and Candés 2015). The 
final knockoff selection set is calculated as Ŝ = {j ∶ Wj ≥ T} , where T is the knock-
off threshold,

Here, q ∈ [0, 1] is the nominal FDR threshold, a predetermined target error 
rate, W = {|Wj| ∶ j ∈ Ŝ0} ⧵ {0} are the unique nonzero values of |Wj|’s, 
and a ∨ b denotes the maximum of a and b. Another threshold is also sug-
gested in Barber and Candés (2015), namely the knockoff+ threshold, 
T = min{t ∈ W ∶ (1 + |{j ∶ Wj ≤ −t}|)∕(1 ∨ |{j ∶ Wj ≥ t}|) ≤ q} . However, for 
the purpose of this work we consider the threshold expressed in (7), because the 
knockoff+ threshold leads to more conservative solutions.

We call this robust FDR-control variable selection procedure the robust composi-
tional knockoff filter (RCKF), which could be summarized in the following algorithm:

RCKF Algorithm:
Input: compositional � , or log-compositional matrix � = log� , response � , FDR 

threshold q, screening sample size n0 , and screening set size |Ŝ0|.
Output: knockoff selection set Ŝ.
Procedure: 

1.	 Randomly split the data (�,�) into disjoint parts (�(0),�(0)) and (�(1),�(1)).
2.	 Screening step:

(a)	 Run the robust compositional screening procedure method on (�(0),�(0)) to 
identify Ŝ0.

(b)	 Apply the normalization procedure x⋆
ij
= xij∕(

∑
j∈Ŝ0

xij) and calculate the 
design matrix �Ŝ0

= log�⋆ which will be used in the following selection 
step.

3.	 Selection step:

(a)	 Generate the recycled knockoff matrix 𝐙̃Ŝ0
 to construct the augmented 

design matrix ℤŜ0
= [𝐙Ŝ0

, 𝐙̃Ŝ0
].

(7)T = min

{
t ∈ W ∶

|{j ∶ Wj ≤ −t}|
1 ∨ |{j ∶ Wj ≥ t}| ≤ q

}
.



279

1 3

A robust knockoff filter for sparse regression analysis of…

(b)	 Solve Equation (5) to calculate 𝜷(�) and then the feature importance statis-
tics Wj from 𝛽j(𝜆) according to (6).

(c)	 Generate the selection set Ŝ = {j ∶ Wj ≥ T} , where T is the knockoff thresh-
old (7).

3 � Simulation study

We compare RCKF with its classical counterpart CKF, which served as a bench-
mark for the evaluation of our procedure’s performance. We considered in our com-
parison also a hybrid solution: RCSP as described in Sect. 2.2, followed by a clas-
sical selection step, in which the knockoff statistic Wj is the lasso path statistic. A 
comparison with this version will provide information on the importance of robust 
estimation only in the first step, or in both steps of the procedure. The fully robust 
version will be denoted as RCKFrob, while the hybrid version is named as RCKFcl 
in the following.

For each simulation scenario we generate microbiome data from the logistic nor-
mal distribution (Aitchison and Shen 1980; Lin et al. 2014; Srinivasan et al. 2021). 
We first generated an n × p data matrix � = (wij) from a multivariate normal dis-
tribution Np(�,�) , where all components of � are equal to 1, and the elements of 
� are �jk = 0.5|j−k|, j, k = 1,… , p . The matrix of covariates � = (xij) is obtained by 
the transformation xij = exp(wij)∕

∑p

k=1
exp(wik) . We set n = 250 and p = 400 as in 

Srinivasan et al. (2021). For the first selection step, n0 = 100 observations were ran-
domly considered, while n1 = 150 were used in the subsequent screening step. The 
response was generated according to the linear model (1), where � = log(�) is the 
log-compositional design matrix. The variance of the error term is chosen as �2 = 1 . 
We consider different sparsity levels |S⋆| ∈ {10, 15, 20, 25} for the vector of coef-
ficients � = (−3, 3, 2.5,−1,−1.5;3, 3,−2,−2,−2;1,−1, 3,−2,−1; − 1, 1, 2,−1,−1;3, 3,

−3,−2,−1;0,… , 0)T . For example, when |S⋆| = 15 , only the first 15 elements of � 
are used, and the remaining coefficients are set to zero.

We consider the following simulation settings: a scheme without contamination, 
as described above, and a contaminated scenario with two contamination levels. To 
introduce contamination, we add to the first �% (with � = 0.1, or 0.2 ) of the obser-
vations of the response variable a random error generated from a normal distribution 
N(10, 1), and we replace the first �% of the observations of the block of informa-
tive variables by values coming from a p-dimensional Logistic-Normal distribution 
with mean vector (20,… , 20) and uncorrelated components. The performance of the 
three methods is assessed by the empirical FDR and by the empirical power,

�FRD = aveR

[|{j ∶ 𝛽j = 0 and j ∈ Ŝ}|
|Ŝ| ∨ 1

]
,

�Power = aveR

[|{j ∶ 𝛽j ≠ 0 and j ∈ Ŝ}|
|Ŝ⋆|

]
,
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where aveR denotes the average over R = 100 simulation runs. In addition, we pro-
vide error bars to the results which cover the range from quantile 0.05 to 0.95 of 
the 100 replications. The results of the empirical FDR and empirical power under a 
nominal FDR = 0.1 are displayed in Figs. 1, 2, 3 and 4 for different sparsity levels.

In Fig. 1 the empirical FDR and power are reported in the most sparse model, 
i.e. |S⋆| = 10 . The dots give the average values over the 100 simulation runs, the 
error bars extend from the 5% to the 95% quantile. The dashed line represents the 
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nominal FDR of 0.1. In a non-contaminated scenario (left), CKF is on average 
very close to the nominal FDR, but also the robustified methods are close to that. 
The difference can be seen in the empirical power, where CKF is clearly superior 
compared to the robustified methods. In a contaminated scenario (with � = 0.1 ), 
the non-robust CKF method suffers from a highly inflated average FDR exceed-
ing 40%. RCKFrob is the only method that can control the nominal FDR level, 
while the empirical powers are quite comparable among all methods. In the more 
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extreme contaminated scheme (with � = 0.2 ) again RCKFrob is the best method, 
albeit it shows an inflated average FDR level slightly above the nominal rate.

Figure 2 presents the results for |S⋆| = 15 , and Fig. 3 those for |S⋆| = 20 . Also 
in these less sparse settings, the overall picture is the same as seen before. Figure 4 
highlights that as the model becomes dense, i.e., |S⋆| = 25 , the differences among 
methods become less marked.

Overall, our simulation results indicate that the robust compositional knockoff fil-
ter with the robust lasso statistic (RCKFrob) has FDR control in all scenarios and is 
the best under the contaminated scenarios. When the models become less sparse, the 
empirical power suffers, especially in the uncontaminated setting, where CKF still 
yields very high empirical power. The CKF method works well when there are no 
anomalies in the data, but fails for the other scenarios when outliers exist by show-
ing an extremely inflated FDR. In a contaminated scenario, RCKFcl performs better 
than CKF, though still clearly worse than RCKFrob. This empirically demonstrates 
the need to consider a robust second step in the compositional knockoff filter.

We conducted further simulations for each considered sparsity level to numeri-
cally evaluate the choice of the screening set size k, which can be viewed as a tuning 
parameter in the model as discussed in Sect. 2.2. For display purposes, we report 
in Figure 5 the empirical FDR and empirical power of the RCKFrob method under 
a nominal FDR of 0.1 based on 100 replicates, when |S⋆| = 20 , for data with 10% 
of contamination, and by varying k in the grid {20, 25,… , 45} . The results reveal 
that a screening set size equal to 20 is the best choice as it guarantees to achieve the 
nominal FDR with a higher power on average. However, the differences in F̂DR and 
P̂ower among the different choices of k are not substantial, which suggests that the 
choice of k does not crucially affect the RCKF performance.

4 � Application to microbiome data

The dataset considered here originates from a study presented in Altenbuchinger 
et  al. (2017), where the association between the microbiome composition of allo-
genic stem cell transplants patients and urinary 3-indoxyl sulfate levels has been 
investigated. The authors made a pre-selection of 160 operational taxonomic units 
(OTUs) which are associated with the 3-indoxyl sulfate levels. In total, there are 37 
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samples available, and thus we end up with a high-dimensional problem with low 
sample size. The OTUs contain many zeros, which we replaced by random uniform 
numbers independently generated in the interval [0.1, 0.5]. Different zero replace-
ment techniques in microbiome compositional data analysis could be considered, 
see Lubbe et al. (2021) for a comparison. The response variable has been logarith-
mically transformed in order to obtain a more symmetric distribution.

For this experiment we have set the FDR to 0.25. Since the number of observa-
tions n = 37 is rather low, we have selected the number of observations for screen-
ing as n0 = 20 . As the results of the knockoff filter could strongly depend on the 
n0 selected observations, we replicate the whole procedure 50 times, and then we 
count how often each variable has been selected by the classical CKF and the robust 
RCKF method. Afterwards we repeated the same experiment with contaminated 
data: we exchanged from the response variable the three smallest with the three big-
gest values.

The results are reported in Table 1. For every method we obtain 50 resulting var-
iable sets (for the original and for the contaminated data). Among the 50 results 
we count how often the individual variables occur, see first column of the table. 
The upper part of the table is for the original data, the bottom part for the contami-
nated data. For example, CKF applied to the original data gives 69 unique variables 
(occurring at least once) in all 50 runs, 31 variables appearing at least twice, and 
13 variables occur at least three times. The column “overlap” (numbers in italics) 
reports how many of these variables are in the overlap of the CKF and the RCKF 
results for the original data (top) and for the contminated data (bottom). Finally, 
the middle part of the table with the numbers in boldface shows the overlap for 
CKF original versus contaminated (left) and RCKF original versus contaminated 
(right). We can see that the overlap between CKF and RCKF is rather low, and quite 

Table 1   Number of variables selected at least once (twice, and three times) by the classical and robust 
method, and number of common variables (overlap) between the classical and the robust method (ital-
ics), and the methods for original and contaminated data (boldface)

At least CKF (orig.) Overlap RCKF (orig.)

Once 69 14 30
Twice 31 4 16
Three times 13 0 8

At least Overlap Overlap

Once 39 12
Twice 7 5
Three times 1 3

At least CKF (cont.) Overlap RCKF (cont.)

Once 53 17 43
Twice 19 2 12
Three times 5 0 4
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comparable whether we investigate the original or the contaminated data. Also when 
comparing the overlap for CKF for the original versus the contaminated data, we see 
a similar picture. However, this seems to be a bit different for the overlap for RCKF 
original versus contaminated: 12 variables in overlap if we just look at the unique 
variables, 5 variables in overlap among those which appear at least twice, and 3 
variables in overlap when considering variables that appear at least three times (for 
which we have 8-original, and 4-contaminated). Thus this overlap seems to be much 
more stable for the robust method.

The next step is to compare regression models with those variables which have 
been selected at least three times (see the corresponding rows in Table  1). Since 
we deal with compositional covariates, we first transform them by an isometric log-
ratio (ilr) transformation  (Egozcue et  al. 2003). For example, CKF applied to the 
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ilr-transformed selected variables from CFK (left) and RCFK (right) and the original (top) and contami-
nated (bottom) response
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original data resulted in 13 variables which occurred at least three times. The cor-
responding ilr-transformed variables lead to a matrix of dimensionality 37 × 12 , 
which is used to model the response by least-squares regression. Figure  6 (upper 
left) shows the resulting fitted values versus the response variable, with a very clear 
association. Thus, at least some of the 13 variables are related to the outcome vari-
able. The plot on the upper right side shows the corresponding outcome with robust 
MM regression (Maronna et al. 2019) based on the ilr-transformed 8 selected vari-
ables by RCKF (occurring at least 3 times). Since MM regression also gives weights 
in [0,  1] for the observations as an output, indicating the outlyingness, we repre-
sent these weights as symbol sizes, where small symbols refer to small weight and 
thus to outliers. The plot shows just one deviating observation, but the remaining 
points reveal a quite good model for the whole range of the response variable. The 
bottom plots show the results from least-squares (left) and MM regression (right) 
when using the contaminated response variable; the points of the response which 
have been exchanged are marked in blue. The classical procedure seems to fail com-
pletely. Note that only 1 variable is in the intersection of the CKF selection for the 
original and the contaminated scenario. In contrast, the intersection for RCKF are 3 
variables, and the lower right plot shows again a strong relationship between the fit-
ted values and the contaminated response, where the robust model also downweights 
to a certain extent the exchanged points.

5 � Conclusions

In microbiome analysis we face the methodological and computational challenge to 
correctly identify those abundant microbial taxa that are truly associated with an 
outcome of interest. To focus clinical research efforts it is crucial that the false posi-
tive identifications are properly kept under a certain limit. This problem has been 
addressed by the knockoff filter (Barber and Candés 2015; Candés et al. 2018; Bar-
ber and Candés 2019), which is also designed for high-dimensional data. However, 
this method has not been developed for compositional data, and its naive use in the 
microbiome context can lead to inconsistent results. Another challenge is the pres-
ence of outliers in the data, which can seriously affect all the research results.

To this aim, we have proposed a robust compositional knockoff filter for con-
trolling the false discovery rate when performing variable selection with possibly 
contaminated microbiome data. For this method, the observations are randomly split 
into two groups, the first group serves to identify the set of possible relevant vari-
ables via a penalized robust linear log-contrast model (Monti and Filzmoser 2021), 
while the second is used for inference purposes by means of a robust version of 
the fixed-X knockoff filter procedure (Barber and Candés 2015) applied to the first 
screened set of features.

We have shown in numerical simulations that the RCKF ensures finite-sample 
FDR control under contaminated data. In such a setting, the non-robust compo-
sitional knockoff filter (CKF) of  Srinivasan et  al. (2021) produces a high number 
of false positives. Also in the uncontaminated case, and in settings with different 
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sparsity levels, the RCKF achieves an FDR comparable to the CKF. Although FDR 
control is of major concern in this context, we admit that the empirical power of the 
RCKF is clearly lower than for CKF in the uncontaminated case.

The application to a real microbiome dataset has shown that both, the CKF 
and the RCKF yield variable subsets that are strongly associated to the response. 
When we introduced artificial contamination, the obtained variables were more sta-
ble for the robust method than for the non-robust one. Most importantly, the subset 
obtained from CKF was only very weakly associated to the response, whereas the 
RCKF leads again to strong association, and to the ability to identify data outliers. 
The latter is achieved by the robust regression in the second step of the procedure. 
Thus, in contrast to the RCKF, outliers can seriously distort the selection abilities of 
the non-robust CKF.

For all these reasons we believe that the proposed RCKF based on a fixed-X 
knockoff machine is an attractive and feasible variable selection algorithm which 
guarantees a FDR control. This can bring great benefits in the analysis of high-
throughput biological experiments, leading to reproducible and reliable results.

Appendix

We briefly review the knockoff construction under the fixed-X design, adopting the 
general setting of Barber and Candés (2015) to the notation used in this paper. The 
key idea is to generate a set of artificial covariates that have the same structure as the 
original ones but are known to be null, that is �j = 0 . For each feature Z(1)

j
 , a knock-

off copy Z̃(1)

j
 is constructed to satisfy

where � = �(1)⊤�(1) is the Gram matrix of the original Z(1)

j
 features, and � ≥ � . In 

this way �̃(1) has the same covariance structure of the original design matrix �(1) and 
the cross-correlations are also preserved in the sense that Z(1)

j
⊤Z

(1)

k
= Z̃

(1)

j
⊤Z

(1)

k
 for all 

j ≠ k . A necessary and sufficient condition for �̃(1) to exist is that � is positive sem-
idefinite. Barber and Candés (2015) suggested to choose � ∈ ℝ

|Ŝ0|
+  satisfying 

diag{�} ⪯ 2� , and then a valid knockoff matrix is

where �̃ is an orthonormal matrix whose column space is orthogonal to �(1) , and 
�⊤� = 2diag{�} − diag{�}�−1diag{�} is a Cholesky decomposition. It can be 
shown that setting �̃(1) as in (9) yields the correlation structure given in (8).
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[
�(1) �̃(1)

]⊤ [
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]
=

[
�(1)⊤�(1) �(1)⊤�̃(1)
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� � − diag{�}

� − diag{�} �
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