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ABSTRACT
The covalent modification of RNA molecules is a pervasive feature of all classes of RNAs and has 
fundamental roles in the regulation of several cellular processes. Mapping the location of RNA modifica-
tions transcriptome-wide is key to unveiling their role and dynamic behaviour, but technical limitations 
have often hampered these efforts. Nanopore direct RNA sequencing is a third-generation sequencing 
technology that allows the sequencing of native RNA molecules, thus providing a direct way to detect 
modifications at single-molecule resolution. Despite recent advances, the analysis of nanopore sequen-
cing data for RNA modification detection is still a complex task that presents many challenges. Many 
works have addressed this task using different approaches, resulting in a large number of tools with 
different features and performances. Here we review the diverse approaches proposed so far and outline 
the principles underlying currently available algorithms.
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Introduction

In contrast to DNA, which contains only a dozen epigenetic 
modifications, RNA is decorated with almost 170 different 
modifications [1], collectively referred to as the ‘epitranscrip-
tome’[2], which has emerged as an important regulatory layer 
of RNA metabolism and general cell homoeostasis. Our view 
of the epitranscriptome has dramatically changed in recent 
years, starting with the discovery that the fat-mass and obe-
sity-associated (FTO) enzyme could demethylate the N6- 
methyladenosine (m6A) RNA modification [3]. The first 
assays coupling antibody immunoprecipitation to Next- 
Generation Sequencing (NGS) for studying RNA modifica-
tions appeared in 2012 (MeRIP-seq or m6A-seq) [4,5], pro-
viding new avenues to examine the post-transcriptional 
regulatory world transcriptome-wide. These pioneering 
works revealed that RNA modifications are far more wide-
spread than previously thought, are subjected to dynamic 
regulation [6], and have a major impact on RNA processing, 
stability [7], translation [8,9] and localization [10]. Following 
studies have demonstrated that RNA modifications are key 
regulators of a wide range of biological processes, including 
cellular differentiation [11,12] sex determination [13,14] and 
maternal-to-zygotic transition in vertebrate embryos [15,16], 
among others.

Despite the major achievements of NGS technologies, one 
of their major limitations is that they require an initial con-
version of the RNA molecule into complementary DNA 
(cDNA). Thus, these methods will typically erase RNA mod-
ifications. This removes the ability to directly detect the mod-
ifications in the cDNA sequences, and requires other indirect 
assays to infer modified positions. There are some exceptions, 
such as inosine [17,18], where modifications can be detected 
in the cDNA because they cause misincorporations during 
retrotranscription [17,18]. Nevertheless, to identify the major-
ity of RNA modifications genome-wide, two alternative indir-
ect strategies are commonly used: i) antibody-based detection, 
where the antibody specifically recognizes the modified ribo-
nucleotide [4,5,19–21]; and ii) chemical-based detection, 
using chemical compounds that will selectively react with 
the modified ribonucleotide of interest, followed by reverse 
transcription of the RNA fragment, leading to accumulation 
of reads with identical ends [22–28]. However, the limited 
repertoire of commercial antibodies [29] or lack of chemicals 
that can selectively recognize RNA modifications [30] cur-
rently leaves 90% of known RNA modifications unmapped 
with NGS-based detection methods [29], hindering our 
understanding of their biological function and dynamics. 
Moreover, even when these reagents are available, NGS- 
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based methods suffer from severe caveats: i) they are often not 
quantitative, ii) have high false-positive rates [31], iii) are 
inconsistent when using distinct antibodies [32], iv) do not 
provide isoform-specific information, v) often lack single 
nucleotide resolution [4,5,19] and vi) require multiple ligation 
steps and extensive PCR amplification, introducing strong 
biases in the data [23,33,34].

A promising alternative to sequencing-by-synthesis- 
technologies is the direct RNA nanopore sequencing (dRNA- 
seq) platform offered by Oxford Nanopore Technologies 
(ONT) (Fig. 1A). This technology allows direct sequencing 
of native RNA molecules; therefore, in contrast to present 
antibody-based or chemical-based methods, it is in principle 
able to detect any RNA modification of interest at single 
nucleotide resolution and in individual full-length native 
RNAs [35,36]. To date, dRNA-seq has been proven capable 
of detecting a wide range of RNA modification types, includ-
ing N6-methyladenosine (m6A), N7-methylguanosine (m7G), 
5-methylcytosine (m5C), 5-hydroxymethylcytosine (hm5C), 
pseudouridine (Y) and 2މ-O-methylations (Nm), among 
others [35,37–44].

ONT sequencing relies on the use of membrane-embedded 
protein nanopores, which are coupled to highly sensitive 
ammeters that measure ionic current passing through the 
pore. As an RNA or DNA molecule translocates through the 
nanopore, the sensor measures disruptions in the ionic cur-
rent, which can in turn be used to identify the transiting 
nucleotide sequences using machine learning algorithms 
(also known as ‘base-calling algorithms’). In particular, the 
level of ionic current recorded at any point in time is a 
function of the set of k nucleotides residing within the pore 
(kmer), with k typically modelled as 5 for dRNA-seq. As 
output, nanopore sequencing runs will produce FAST5 files, 
which is an HDF5 file format that contains the per-read ionic 
current information, as well as other metadata. Base-calling 
algorithms will then take as input the FAST5 files, and pro-
duce as output FASTQ files that contain the base-called 
sequences and quality scores for each individual read.

Base-calling algorithms typically rely on hidden Markov 
models (HMM) or recurrent neural networks (RNN). Early 
basecallers were based on the former architecture, while most 
recent implementations use the latter. Neural networks are 

composed of nodes, which can receive and carry out calcula-
tions, organized in layers. After being trained with specific 
datasets, they can identify patterns and generate predictions. 
During the basecalling process, they recognize patterns in the 
ionic current intensity to predict the nucleotide sequence. At 
present, the most widely used basecaller is Guppy, which was 
developed by Oxford Nanopore Technologies (ONT) and is 
available to all members of the ONT community. This algo-
rithm uses an RNN to identify the underlying nucleotide 
sequence from the raw signal and recent works have shown 
that it has good performance in terms of speed and accuracy 
[45]. However, its training was agnostic to RNA modifications 
and, as a consequence, its output is limited to the four cano-
nical bases.

To identify RNA modifications in nanopore direct RNA 
sequencing data, two major strategies have been proposed: i) 
identification of RNA modifications through the analysis of 
FAST5 features and ii) identification of RNA modifications 
through the analysis of base-called ‘error’ features (Fig. 1B). 
The first approach typically identifies RNA modifications in 
the form of altered ionic current intensities [35,37,41]. 
However, several works have recently pointed out that the 
absolute change of differential ionic current intensity between 
modified and unmodified reads, for some specific RNA mod-
ifications or sequence contexts, is often too small to identify 
RNA modifications or bin reads into two groups [44]. 
Therefore, additional features such as ‘trace’ (the probability 
reported by the base-calling software that a nucleotide 
matches a model for a canonical nucleotide) or ‘dwell time’ 
(the amount of time a kmer persists in the sensitive region of 
the nanopore) are needed to improve the detection of RNA 
modifications across a variety of sequence contexts [44,46]. 
The second approach to detect RNA modifications in dRNA- 
seq data relies on the use of systematic base-calling errors that 
are caused by the presence of RNA modifications. 
Considering the error rate of nanopore direct RNA sequen-
cing base-calling algorithms, it is strongly encouraged to use a 
control condition to remove systematic errors that are unre-
lated to the presence of RNA modifications, as these could 
otherwise lead to increased false positive rates. Notably, the 
‘error signature’ can also be exploited to identify which RNA 
modification type is present in the dRNA-seq data. For 

Figure 1. Schematic overview of direct RNA nanopore sequencing and the strategies to detect RNA modifications. (A) Direct RNA sequencing allows the 
sequencing of native RNA molecules. As the molecule goes through the nanopore, it causes alterations in the ionic current that is going through the nanopore. These 
disruptions can be converted into their corresponding nucleotide sequences using machine learning algorithms, such as hidden Markov models or recurrent neural 
networks. (B) Schematic representation of the two major approaches used to detect RNA modifications in nanopore sequencing data: the detection of RNA 
modifications in the form of alterations of raw signal intensities (upper panel), or systematic base-calling ‘errors’ (lower panel).
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example, pseudouridine typically appears in the form of U-to- 
C mismatches [41], whereas m5C modifications appear in the 
form of insertions or deletions in the +1 position [44].

In the last few years, the scientific community has been 
actively engaged in the development of novel algorithms to 
detect and quantify RNA modifications from nanopore direct 
RNA sequencing data (Fig. 2). While some of the available 
tools have been compared to each other within the individual 
manuscripts, a systematic review of capabilities, advantages 
and limitations of each available tool is presently missing. 
Here, we provide a systematic review of the extant algorithms 
and tools that have been developed in the last few years to 
detect RNA modifications from dRNA-seq data. Moreover, 
we provide an exhaustive overview of the features, datasets 
and RNA modification types used to benchmark each indivi-
dual algorithm, thus providing a comprehensive resource of 
the algorithms to date and their capabilities, strengths and 
limitations (Supplementary Table 1).

Ionic current/signal intensity based methods

All algorithms that directly use the electrical signal to detect 
the presence of modifications need to access the ionic current 
data for each sequenced kmer. Unfortunately, the Guppy 
base-calling algorithm does not presently return the ionic 
current data matching each kmer. For this reason, a pre- 
processing step is necessary, where the continuous ionic cur-
rent intensity data (also known as the squiggle) is segmented 
into discrete blocks corresponding to each kmer and then 
aligned to the base-called sequence. This resquiggling process 
permits comparisons among the ionic current for all nano-
pore reads associated with each particular kmer. After 
resquiggling, there are two basic schemes that comparative 
algorithms follow. The first scheme compares the observed 
ionic current for a kmer to the expected ionic current for the 
same kmer composed of only canonical bases. If there is a 
significant difference between observed and expected ionic 
currents, the kmer is labelled as containing a modified nucleo-
tide. This approach has the advantage of being independent 

from a reference sample and can potentially identify any 
modified position in the entire transcriptome, but does not 
provide information about which modification was present. 
Alternatively, the observed ionic current could be directly 
compared to available signal models for modified bases 
when they are known (at present, the only such model avail-
able is for m5C and is only implemented in Tombo [43]). The 
second scheme uses additional sequencing information from a 
matched sample that is devoid of one or more modifications, 
such as a knockdown (KD) or knockout (KO) experiment for 
a modification writer enzyme or an in vitro transcribed RNA 
(IVT). This strategy has the advantage that each kmer is 
compared against a reference unmodified kmer in exactly 
the same sequence context, and that the type of modification 
can be identified based on how they were removed from the 
reference sample. The main drawbacks of this second 
approach are that they require sequencing at least two samples 
for each experiment (e.g. wild type and knockout) and that 
the modification must be easily removed from the reference 
sample. The following paragraphs will provide an overview of 
the tools that implement one or both these approaches.

Tombo [43] is the successor to nanoraw, the first publicly 
available software for detection of modified bases in nanopore 
DNA sequencing data. In its present implementation, Tombo 
automatically runs sequence alignment to the reference as well 
as sequence-to-signal assignment (resquiggling). The align-
ment is performed using minimap2 [47], whereas resquiggling 
is done through a multi-step procedure that performs i) signal 
normalization, ii) event detection and iii) sequence-to-signal 
assignment per se, which uses a banded dynamic time warping 
algorithm to find the optimal chain of matches between 
segmented events and the reference sequence. After these pre- 
processing operations, Tombo performs modified bases detec-
tion. This functionality is implemented using three alternative 
strategies: i) using pre-computed models of the signal for 
specific non-canonical bases, ii) using a de novo method that 
detects any non-canonical base or iii) through the comparison 
with an unmodified sample. For the first strategy (i.e. model- 
based alternate base detection), Tombo presently only 

Figure 2. Chronological overview of the community efforts to develop tools to detect and quantify RNA modifications using direct RNA nanopore sequencing.
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provides an RNA model for m5C, which was generated from 
in vitro transcribed E. coli RNAs spiked-in with m5C (Marcus 
Stoiber, personal communication). The second approach is 
instead model-free and consists in calculating a statistical 
test for each kmer of each read comparing the measured 
electrically signal to the expected signal based on the canoni-
cal model. This strategy is readily applicable since it does not 
require a model nor a control sample; however, it does not 
provide information about the identity of the non-canonical 
bases that it detects. Furthermore, the authors warn that this 
method is prone to a high number of Type I errors. Lastly, the 
third strategy detects modifications in a sample of interest 
through the comparison with a reference sample. The refer-
ence sample can be a completely unmodified RNA (e.g. 
obtained by IVT) and in this case Tombo uses it to locally 
adjust the canonical model before using the de novo approach 
described above. As a third approach, Tombo can perform a 
per kmer comparison between the signal distribution in the 
experimental and control samples. In this case, testing is 
performed using a Kolmogorov-Smirnoff, Mann-Whitney or 
Student’s t-test. According to the authors, this is usually the 
most reliable Tombo mode to detect modification for direct 
RNA data when a reference sample is available. By default, 
this method requires a coverage of at least 50 reads per 
transcript, but a higher threshold value is recommended to 
properly control for the false positive rate.

Nanocompore [37] is a python package that implements a 
comparative strategy for modification detection where the 
raw electrical signal for a sample of interest is compared, 
kmer-wise, to the signal generated by a sample devoid of 
RNA modifications, e.g. a knock-out of an RNA modifying 
enzyme or an IVT. The pre-processing steps required to 
generate input data suitable for Nanocompore analysis con-
sist of base-calling, mapping to the reference transcriptome 
and sequence-to-signal assignment (resquiggling) with 
Nanopolish [48]. Users can choose to run these steps manu-
ally or they can be executed automatically using the 
Nanocompore pipeline, an automated workflow implemented 
in Nextflow that runs the entire analysis. Nanocompore first 
collapses the output of Nanopolish by calculating the median 
signal intensity and dwell time for each kmer of each read. 
After grouping reads based on the reference transcript that 
they map to, this data is then analysed kmer-wise with a 
statistical test to detect differences between the experimental 
condition and the unmodified reference. In terms of statistics, 
Nanocompore implements multiple tests, giving the user the 
option to decide which ones to use: a two components 
Gaussian Mixture Modelling (GMM) followed by a logistic 
regression or a number of parametric/non-parametric uni-
variate tests on signal intensity or dwell time alone. All these 
tests operate at the level of individual kmers. For a given kmer 
of a given transcript, the GMM method first aggregates med-
ian signal intensity and dwell time from all the samples 
provided, disregarding the experimental condition. Then a 
two components GMM is fit to the data using both the 
median signal intensity and dwell time. The rationale for 
this approach is that, in this bivariate space, modified sites 
would form two clusters, with one consisting of modified 
reads (from the experimental condition and, potentially, 

from residual modifications in the control condition) and 
the other of unmodified reads (from the control condition 
and, in addition, from a variable number of unmodified reads 
from the experimental condition, depending on modification 
stoichiometry). Alternatively, if a site is unmodified, the two 
clusters will have no biological interpretation and the reads 
from experimental and control conditions will be randomly 
distributed among the two. Therefore, to formally test for the 
presence of a modification, Nanocompore calculates whether 
the reads from experimental and control conditions are dif-
ferentially distributed among the two clusters. To this end, 
first it fits a discrete logit model using the GMM cluster 
assignment as the response variable and condition label as 
the predictor. Then, it calculates the t-statistic for the pre-
dictor’s parameter. As mentioned above, Nanocompore also 
implements a number of parametric (t-test) or non- 
parametric (Kolmogorov-Smirnoff, Mann–Whitney) tests on 
median signal intensity or dwell time alone. Unlike the GMM 
method, which simultaneously captures differences on inten-
sity, dwell time or both, these tests are univariate and as such 
are separately calculated for the median signal intensity and 
dwell time. After completing the statistical calculations 
Nanocompore corrects all p-values with the Benjamini- 
Hochberg method, saves the results in text format and gen-
erates BED tracks for the modification sites identified. 
Nanocompore has been applied to profile METTL3- 
dependent m6A sites in human cells, where the sites were 
validated by an orthogonal antibody-based technique (m6A 
individual-nucleotide-resolution cross-linking and immuno-
precipitation, miCLIP [34]) and recapitulated known features 
of this modification. The authors also used a targeted sequen-
cing strategy to profile m6A in the 7SK snRNA, identifying 
multiple novel m6A sites.

xPore [49] is a python tool that, similarly to 
Nanocompore, operates on signals realigned to sequence 
with Nanopolish and implements GMM to detect modified 
sites throughout the comparison of an experimental sample 
with an unmodified reference. Specifically, for each sample, 
xPore calculates the mean signal corresponding to each kmer, 
and then fits a multi-sample two Gaussian mixture model 
using the theoretical signal distribution of the unmodified 
kmer as a prior. Using such a prior is an important innova-
tion of xPore as it allows assignment of the two distributions 
obtained from the GMM to the modified or unmodified state, 
thus also estimating the fraction of modified reads at each site. 
Finally, xPore performs a z-test on the fraction of modified 
reads in each sample to prioritize differentially modified sites. 
In their pre-print, the authors analyse a METTL3 KO human 
cell line to profile m6A. By comparing the xPore results with 
reference m6A sites obtained by m6A-Crosslinking- 
Exonuclease-sequencing (m6ACE-seq), the authors report a 
precision of 0.6 (AUC 0.86) when limiting the analysis to 
kmers containing a central A (NNANN). On the other 
hand, when the authors extended the analysis to all kmers, 
they reported lower precision at the same level of sensitivity. 
An additional feature of xPore is its intrinsic capacity to 
estimate modification stoichiometry, which was validated by 
the sequencing of mixtures of RNA from wild-type (WT) and 
METTL3 KO cells.
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NanoRMS [44] is a python software to predict RNA mod-
ification stoichiometry in dRNA-seq datasets, and is in prin-
ciple applicable to any given RNA modification type. As 
input, NanoRMS requires two samples in FAST5 format and 
a BED file with a list of sites to predict the modification 
stoichiometry (typically candidate RNA-modified sites). If 
one of the samples is a knockout condition, NanoRMS can 
be used to determine the absolute stoichiometry values of the 
second sample. Alternatively, it will report the difference in 
modification stoichiometry between the two samples for each 
candidate RNA-modified site. Briefly, NanoRMS extracts per- 
read features (signal intensity, dwell time and trace) from 
reads resquiggled with Tombo [43] and stores them in the 
BAM file. By default, the algorithm performs both unsuper-
vised (k-means) and supervised (KNN) clustering of the read 
features to bin the reads into modified and unmodified popu-
lations. Based on this binning, NanoRMS then computes the 
modification stoichiometry for each RNA modified site and 
condition, as well as the difference in stoichiometry between 
the two conditions. Noteworthy, if neither of the two condi-
tions are knockout/knockdown, NanoRMS can identify the 
difference in stoichiometry but not its directionality. 
NanoRMS was benchmarked on pseudouridine (Y) and 2-O’- 
methylated (Nm) sites, using both in vitro as well as in vivo 
constructs with different stoichiometries (3–100%). The 
authors found that the choice of features used to distinguish 
modified and unmodified reads severely affected the predic-
tion of RNA modification stoichiometry, and that combina-
tion of ‘signal intensity’ and ‘trace’ from positions −1, 0, +1 
(being 0 the modified site) led to the most accurate stoichio-
metry predictions in Y and Nm sites. The selected features 
often captured non-redundant information; for example, the 
authors found that certain Y sites did not lead to significant 
alterations in signal intensity values, but that at these posi-
tions, RNA modification information could be captured in the 
form of altered ‘trace’. Finally, it is important to note that 
stoichiometry predictions were severely affected by the choice 
of resquiggling algorithm. Specifically, the authors reported 
that Nanopolish biased up to 7X the unmodified:modified 
read proportion, due to its lower ability to resquiggle reads 
with modifications. By contrast, the authors found that 
Tombo was relatively robust in terms of even resquiggling of 
modified and unmodified reads. NanoRMS is publicly avail-
able in GitHub, and includes test data to quantify Pus1- 
dependent Y modifications in mRNAs, as well as a collection 
of R scripts for visualization of the results.

Nanom6A [50] is a python software developed to identify 
m6A within RRACH 5-mers (R = G/A, H = A/U/C) accord-
ing to the associated ionic current intensity signal. 
Specifically, dRNA-seq raw data are resquiggled with Tombo 
[43] and for each 5-mer of interest the mean and median 
ionic current intensity, its standard deviation, and the length 
of the signal are retrieved. A set of fully methylated and 
unmethylated synthetic oligos were processed according to 
the aforementioned protocol, and the resulting dataset was 
used to train and test an Extreme Gradient Boosting classifier. 
The authors reported an accuracy higher than 0.9 using a 
modification probability threshold of 0.5 to call a 5-mer as 
methylated within individual reads. Leveraging the same 

dataset, the authors investigated the ability of Nanom6A to 
estimate the stoichiometry of m6A sites with known stoichio-
metry varying from 0 to 100% and at different coverage levels. 
They reported a correlation of ~0.97 between expected and 
inferred m6A stoichiometry with just 20 reads (by default, 
5-mers with a lower coverage are not processed by the algo-
rithm). Finally, to call for the presence of m6A in a given 
genomic position, the authors required the corresponding 
kmer to be detected as methylated in at least 20 reads. By 
using this approach, they were able to recapitulate the 40% 
loss in m6A following the METTL3 KD in HEK293 cells. 
Moreover, modified sites detected by Nanom6A across differ-
ent biological systems were compared to and partially over-
lapped with the sites identified by other approaches, such as 
miCLIP, MeRIP-seq and MAZTER-seq [51], and other meth-
ods, such as EpiNano, MINES, and DiffErr. Nanom6A is 
available on GitHub accompanied by a dedicated Docker 
image and, alternatively, a .yml file to build the required 
conda environment. The authors also released a toy-dataset 
to test the pipeline, and a manual to guide the user.

MINES [52] (m6A Identification using Nanopore 
Sequencing) is a python software that identifies m6A sites 
within DRACH motifs (D = G/A/U, R = G/A, H = A/U/C), 
the most common m6A sequence context [34]. MINES uses 
the Tombo detect modifications de novo algorithm to find sites 
that are likely modified, and filters the modification stoichio-
metry values for only those positions within a 20 nucleotide 
window centred on the A of each DRACH motif with at least 
five reads (at the time of writing this manuscript, the code has 
been updated to a 30 nucleotide window). This lowered the 
search space and reduced computational resources required to 
identify modified positions. These stoichiometry values are 
used by a random forest to classify the central A of the 
DRACH motif as either modified or canonical. The random 
forest model was trained on 70% DRACH sites identified as 
modified by miCLIP and an equal number of unmodified 
DRACH sites from HEK293T and HeLa cell lines. The 
model was tested with the remaining 30% of modified 
DRACH sites and they found their accuracy ranged from 
67% to 83% and the precision ranged from 40 to 92%. Four 
of eighteen possible DRACH motifs accounted for the highest 
accuracy for identifying modifications, suggesting that the 
other twelve possible DRACH motifs either were false posi-
tives from miCLIP or the m6A-to-A ratio was below the limit 
of MINES to detect. The authors used MINES to evaluate all 
28,925 DRACH sites that did not have a miCLIP signal and 
found that 13,034 (45.06%) were likely modified. The signal 
for these modified sites was compared to the signal from a 
METTL3 KD condition, revealing that roughly half of the sites 
missed by miCLIP were sensitive to the writer KD. The 
authors were able to leverage the long-read capabilities of 
nanopore sequencing to evaluate the isoform-specific m6A 
calls from MINES, and found that 6,168 (7.85%) sites had 
isoform-specific methylation. Since MINES starts with the 
quantifications of the modification stoichiometry from 
Tombo and limits its model to DRACH sites, it does not 
require a KD or other canonical nucleotide reference experi-
ment (such as IVT) to identify which modifications are 
likely m6A.
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nanoDoc [53] is a python software designed to identify 
RNA modifications by comparing, for each 5-mer, the raw 
electrical signals derived from unmodified IVT RNAs against 
the counterpart obtained from a sample of interest. 
Specifically, dRNA-seq data are resquiggled through Tombo 
and both ionic current intensity and dwell time are obtained 
for each nucleotide. After a step of data formatting and 
normalization, the two signals are extracted for each 5-mer 
and given in input to a Convolutional Neural Network (CNN) 
for classification with 1024 possible classes. Then, a second 
classifier (Deep One-Class – DOC) is defined coupling two 
CNNs with shared weights. One network is used to process a 
uniform batch of target 5-mers while the other is used to 
analyse a dataset composed of sequences close to the target 
one. After this final training step, the classification layer of the 
CNN is removed to obtain from the algorithm a 16- 
dimension vector instead of one label; i.e. from classification 
to dimensional reduction. For each site, the IVT data are 
divided into two equal batches, processed, and the resulting 
16-dimension vectors are compared using the mean Euclidean 
distance from the five closest neighbours. The same procedure 
is repeated by substituting one of the two IVT batches with 
the corresponding data from the sample of interest. A differ-
ence in the resulting distance distributions would reveal the 
presence of an RNA modification; the authors convey this 
information through a custom score, based on their percen-
tiles, ranging from 0 (no difference) to 1 (maximum differ-
ence). NanoDoc was applied to identify known RNA 
modification sites in rRNA and resulted in a global AUC of 
0.96 (presence vs absence of a nucleotide analogue). They also 
focused on m6A analysing 81 BBABB 5-mers from a public 
synthetic dataset obtaining an AUC of 0.68. Finally, the tool 
was applied to study the epitranscriptional landscape of 
SARS-CoV-2. In this case, a limited overlap with orthogonal 
techniques was reported. Noticeably, NanoDoc is suitable to 
detect the presence of a generic RNA modification, however, 
it does not provide the identity of the base analogue. The tool 
is available on GitHub with limited documentation.

Penguin [54] is a python based tool which provides multi-
ple machine learning models (e.g. Support Vector Machine, 
Neural Network and Random Forest) to identify 5-mers con-
taining pseudouridine. The classifiers are based on four fea-
tures extracted through Nanopolish: reference 5-mer, mean 
ionic current, ionic current standard deviation and dwell time. 
They were trained using a set of human modified locations 
from the literature, 2987 in total, and two dRNA-seq datasets 
from distinct cell lines, Hek293 and HeLa, which resulted in 
13,072 and 1354 examples respectively (50% pseudouridine). 
Depending on the algorithm, the authors report an AUC 
between 0.85 and 0.93 using 80% of the available data for 
training and 20% for testing. A similar performance was 
achieved using one dRNA-seq dataset for training and the 
other one for testing: AUC between 0.92 and 0.95. All the 
analyses were performed on 5-mers with a U in third position, 
and using the code available on GitHub.

Yanocomp [55] (yet another nanopore modification com-
parison tool) is a python software that compares two samples 
against each other: one being a sample of interest and the 
other being a reference sample without modifications. In 

order to detect modified sites, Yanocomp models the mean 
ionic current amplitudes for a sliding window of five kmers 
using multivariate Gaussian Mixture Models. Yanocomp uses 
two Gaussian components and a third uniform component to 
account for outliers, which is claimed to reduce overfitting. 
Yanocomp has the option to model the signal distributions to 
make single molecule predictions of modified sites. 
Yanocomp was tested on a WT strain of A. Thaliana com-
pared against a low m6A expression strain. In this context the 
authors reported the identification of 20,033 m6A sites, of 
which 84.1% were within five nucleotides of m6A sites iden-
tified by miCLIP. These m6A sites were then correlated with 
polyadenylation site usage, demonstrating how single- 
molecule modification detection can be used to understand 
and phase related biological processes. At present, Yanocomp 
has not been compared against other RNA modification 
detection tools, nor has it been tested on modifications 
other than m6A. However, the framework allows the detec-
tion of potentially any RNA modification.

Nano-ID [46] is a R/python software that, following RNA 
metabolic labelling, relies on the detection of RNA modifica-
tions to profile nascent RNA and quantify RNA half-lives 
[56]. Reads from nascent RNA are identified based on the 
incorporation of the exogenous nucleotide analogue 
5-Ethynyluridine (5EU). A neural network is adopted for 
the identification of 5EU containing reads, which has to be 
trained on fully labelled and unlabelled datasets. The former 
could be obtained by dRNA-seq following 24 h 5EU labelling 
to create a modified dataset composed of reads containing, 
with high probability, at least one 5EU nucleotide (as 
expected according to the typical half-life of transcripts), 
the latter could be obtained by dRNA-seq of unlabelled 
RNA. These data were processed to extract information 
about: the associated ionic current intensity signal, the base- 
caller performance (i.e. confidence of the called bases), and 
the alignment (i.e. read length, bases occurrences, and simi-
larity to the reference). The result is a vector of 4694 features 
for each read in the two samples. On an independent test set, 
Nano-ID achieved an AUROC of 0.94 without constraints 
on read length and 0.96 for reads longer than 1kb. This 
method represents the first attempt to merge information 
about ionic current intensity signal, base-calling and align-
ment to perform RNA modifications classification. The cou-
pling of this method with the identification of endogenous 
RNA modifications, such as m6A, was proposed as a way for 
comprehensively quantifying the effect of those modifica-
tions on RNA fate [57]. The main drawback of Nano-ID is 
the lack of positional information on the modified bases. 
This tool is released as a collection of R scripts on GitHub, 
however, no documentation is available, and the set-up of 
the pipeline requires a certain amount of effort from the 
user.

Base-calling and alignment-based methods

The impact of RNA modifications on the ionic current signal 
indirectly affects the performance of the base-caller increasing 
the probability for mismatch and indels which can be detected 
when nanopore reads are aligned against a reference. Due to 
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the intrinsic limited accuracy of the base-caller, a single error 
is not sufficient to claim the presence of a non-canonical 
nucleotide. However, systematic accumulation of mismatches 
or indels on a specific site of a transcriptional unit suggests 
the presence of an RNA modification. Several tools were 
developed to identify anomalous error frequencies compared 
to a background which can be profiled just for the training of 
the algorithm or ad hoc. As previously mentioned, the first 
approach is more flexible and simpler but the second one, 
which has a heavier experimental design, offers a better con-
trol on the results of the analyses. In general, these approaches 
provide the location of modified sites given multiple reads but 
not at single-molecule resolution.

EpiNano [39] was the first algorithm to exploit systematic 
base-calling ‘errors’ present in direct RNA sequencing as a 
strategy to detect RNA modifications in dRNA-seq data. In its 
initial version (1.0), EpiNano used Support Vector Machines 
(SVMs) to predict m6A-modified sites transcriptome-wide, 
which had been previously trained with m6A-modified and 
unmodified RRACH kmers. While this approach had the 
advantage of not requiring a KO condition to predict RNA 
modifications, the authors found that the relatively high error 
rate in RNA base-calling algorithms led to high false positive 
rates. Thus, the authors recommend using EpiNano in paired 
conditions (e.g. wild type and KO), to remove possible false 
positives. Later versions of EpiNano (version 1.2 and later) 
can be ran in two different modes: i) EpiNano-SVM, which 
uses pre-trained SVMs to predict RNA modifications in a 
given dataset as explained above, and ii) EpiNano-Error, 
which can be used to study virtually any given RNA modifi-
cation, and does not require pre-trained SVM models [58], 
but does require paired conditions to be compared. EpiNano- 
Error has been recently used to identify novel pseudouridy-
lated sites in a transcriptome-wide fashion both in yeast 
mitochondrial rRNAs and mRNAs, and several of them 
were validated using CMC-probing based orthogonal meth-
odologies [44]. As a general rule, a minimum coverage of 30 
reads is recommended to use EpiNano. However, the authors 
showed that the coverage required was strongly dependent on 
the stoichiometry of modification. EpiNano source code can 
be downloaded from GitHub, but can be also executed 
directly as part of the MasterOfPores [59] NextFlow work-
flow, which is aimed at facilitating the analysis of direct RNA 
nanopore sequencing data, and performs data pre-processing, 
mapping, RNA modification detection and poly(A) tail length 
estimation.

DiffErr [38] was developed to identify m6A sites according 
to differential base-calling errors between a WT and a control 
sample with a lower modification level (e.g. METTL3 KD). 
This tool applies G-tests to a 2 × 5 contingency table contain-
ing, for each sample (rows), the number of: A, C, G, U, and 
indels (columns). For the sites with a p-value lower than 0.05, 
DiffErr performs a second set of G-tests to compare replicates 
of the same condition, if available. If the G statistic between 
replicates exceeds the G statistic between conditions the site is 
discarded. P-values are adjusted with Benjamini-Hochberg, 
and ratios of mismatches from reference genome over 
matches are computed. Sites with a significance level smaller 
than 0.05, and a log2 fold change in mismatch to match ratio 

between WT and KD greater than 1, are finally classified as 
methylated. DiffErr was applied to study the m6A landscape 
of Arabidopsis thaliana. From this analysis, established prop-
erties of the mark emerged (e.g. known m6A motifs), and 66% 
of the sites identified by the algorithm resulted closer than 5 
nucleotides from a miCLIP peak. DiffErr requires at least 10 
reads to process a specific site, however, a more stringent 
threshold is recommended, and 200 reads are required to 
obtain a reliable classification of sites with a methylation 
frequency higher than 50%. This software was released on 
GitHub as a collection of python scripts with a set-up file to 
instal the required dependencies but limited documentation is 
available.

DRUMMER [42], similarly to DiffErr, identifies m6A sites 
by comparing a WT and a low modified sample in terms of 
matches/mismatches frequency by means of a G-test on the 
2 × 5 contingency table previously described. A site is classi-
fied as methylated if the G-test adjusted p-value is lower than 
10−2 (Bonferroni’s correction method), and the matches over 
mismatches ratio decreases at least one-fold in the WT sample 
compared to the control one. m6A calls obtained with 
DRUMMER on a viral RNA dataset were compared with 
Nanocompore calls: DRUMMER identified 204 m6A sites, 
and 162 of these were also detected by Nanocompore, which 
reported 41 additional calls. More than 90% of DRUMMER 
predicted sites were closer than 5 nucleotides to the minimum 
m6A motif AC. Finally, replicates are considered independent 
samples, and the authors recommended a coverage higher or 
equal than 100 reads in both WT and control conditions. This 
python-based tool was released on GitHub with a yml file to 
build the correct conda environment to run the analysis, the 
required documentation, and a test dataset.

ELIGOS [40] identifies modified sites comparing matches 
and mismatches (i.e. substitutions, insertions and deletions) 
from a sample of interest against either a control with an 
expected differential modification level (e.g. IVT RNAs, 
cDNA, a generic second sample), or a background model 
obtained from the pre-processing of an unmodified IVT data-
set. Specifically, for each sample involved in the analysis, the 
mismatches frequency is computed for all the 5-mers in the 
genome covered by at least 50 reads using a reference 
sequence as groundtruth. Since each base is shared by five 
5-mers, the corresponding alignment statistics are merged. 
Then, to identify differential error profiles, Fisher’s exact test 
is applied to the 2 × 2 contingency table obtained comparing 
the sample of interest against the desired control. This proce-
dure is performed both at the single base resolution and 
merging the alignment statistics over the two adjacent bases 
for a total of three tests per nucleotide. All the resulting 
p-values are adjusted using the Benjamini–Hochberg method, 
and the maximum odd-ratio for each base determines the 
final result of the analysis. The authors tested the ability of 
ELIGOS to identify a set of 9 different RNA modifications 
exploiting synthetic modified IVT RNAs. Using the back-
ground model provided by the tool, the software reached an 
AUROC above 0.7 for all the RNA modifications except m5C 
(~ 0.54), with a performance up-to ~0.92 for Inosine. 
Although the builtin background model of ELIGOS can not 
detect the modification type, the authors also applied it to 
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study m6A in yeast and human comparing WT samples 
against low-methylated counterparts obtained through the 
KD of m6A writers. Known m6A motifs and the expected 
spatial distribution of this mark emerged from ELIGOS 
results. ELIGOS source code, a dedicated Docker image, and 
a detailed manual are available through GitHub.

Discussion and Perspectives

The epitranscriptome has emerged as a fundamental regula-
tory layer of RNA metabolism, and an increasing number of 
biological processes have been shown to depend on the 
dynamic modification of RNAs [11–16,60]. The recent surge 
in studies exploring the epitranscriptome has been largely 
enabled by the development of high throughput methods for 
modification profiling based on NGS. However, it is becom-
ing apparent that many of these indirect methods suffer from 
intrinsic limitations which hamper their performance and 
resolution. The direct RNA sequencing paradigm offered by 
the ONT platform provides a way to directly profile RNA 
modifications, overcoming several shortcomings of 
Sequencing-By-Synthesis techniques. For this reason, a signif-
icant amount of literature related to the development of 
computational methods for RNA modification profiling with 
dRNA-seq has been quickly produced since the first public 
release of this technology in 2017.

A common rationale shared by most available tools is to 
detect RNA modifications by comparing the reads obtained 
from a sample of interest against a reference. Such reference 
can either be released together with the algorithm as a model 
that captures the modification features, or it can be created ad 
hoc for each experiment from a control sample. The first 
approach is cheaper, but modification detection is limited to 
the RNA modifications included in the training dataset. 
Furthermore, since these models are generally trained on a 
single modification, there is often no guarantee that they will 
not misclassify other modifications that are chemically similar 
to the one used for training. Conversely, the tools based on an 
experimental reference sample are more flexible since they 
can identify different RNA modifications according to the 
control used. This flexibility comes at the cost of a more 
expensive experimental design, but these methods tend to be 
more robust to eventual condition-specific confounding fac-
tors, such as difficult to base-call kmers or damaged RNA.

This type of comparative analyses can be based on different 
features derived from the ionic current intensity or on the 
alignment of base-called reads. The methods exploiting the 
first class of features can reach single molecule resolution, but 
they require the error-prone signal-to-sequence alignment 
(resquiggling), which in many cases requires transcriptome 
alignments and is thus limited to known transcripts (see 
Supplementary Table 1). Unlike methods that rely on the 
ionic current, methods based on base-calling errors do not 
require this computationally expensive step, but can be more 
sensitive to confounding factors and lack single-molecule 
resolution since classification is based on an ensemble of 
reads. Notably, an attempt to merge information derived 
from both the aforementioned classes of features has also 
been proposed [46].

A further limitation of nanopore-based methods for mod-
ification detection is the present challenge to study more than 
one, or at most a few, modifications at the same time. It is 
becoming increasingly clear that the repertoire of RNA mod-
ifications includes multiple modification types that can poten-
tially co-occur at the same time in the same RNA molecule. 
Although mass spectrometry data indicates that certain classes 
of RNA only contain a limited number of modification types 
(e.g. mRNAs), other classes (e.g. tRNAs) are affected by over 
ten different types of modifications. This scenario is even 
more complex when considering that distinct modifications 
might functionally interact with each other, for example lead-
ing to situations where the presence of one modified nucleo-
tide is required for or prevents the deposition of another 
modification on the same RNA [61]. Studying these complex 
mechanisms will require techniques that allow to profile mul-
tiple modifications – ideally all of them – at the same time. 
Since nanopore direct RNA sequencing data has the potential 
to contain information about all modifications, an ideal strat-
egy would be to develop a single classifier that directly detects 
all possible modifications. However, the large number of 
modifications combined with high electrical noise and a nar-
row feature space, make this an impossible strategy to pursue 
at present. However, future technical improvements on multi-
ple fronts could make this problem more tractable. 
Specifically, we envisage that the combination of a) improved 
machine learning models for basecalling modifications, b) 
reduction in the noise of raw signal, c) development of more 
sensitive nanopores and d) an expanded feature space that 
uses additional signal properties to detect modifications, will 
allow the future development of a unified platform that con-
currently detects a large number of modifications with single- 
molecule resolution.

Nanopore sequencing is still a relatively new technology, 
and ONT has been rapidly updating the performance of their 
platforms through changes to the enzymes, chemistry and 
software. This rapid pace of performance improvements 
makes nanopore sequencing more attractive, as per-read and 
consensus accuracy, throughput, and read lengths periodically 
improve, but it also causes downstream analysis tools, includ-
ing those designed for RNA modification detection, to quickly 
become obsolete. The error profiles of the base-called reads 
change with each new version of the base-calling algorithm, 
thus requiring that the tools that rely on errors update their 
models. Similarly, the models based on ionic current features 
must either change or also become obsolete each time ONT 
changes the nanopore, enzyme motor or buffer conditions. 
Therefore, it is important to use caution when analysing 
datasets generated with different versions of the ONT plat-
form than the tools were designed for. This may lead to 
artefacts or inaccurate conclusions that are a result of the 
dataset-to-tool version mismatch, and not to the biology of 
the dataset.

Researchers wishing to use nanopore dRNA-seq to profile 
RNA modifications have to face the task of choosing which 
approach to follow and which software to use. This review 
attempts to provide a systematic comparison of all the meth-
ods available, but the choice is still hard due to the lack of 
clear performance comparisons. We would recommend users 
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wishing to use any of these methods to thoroughly assess 
performance in their experimental setting and – when possi-
ble – to use multiple algorithms and compare the results. A 
systematic and independent benchmark of all methods avail-
able is urgently needed and we envisage that it could be 
achieved by a community effort inspired by well known 
machine learning competition platforms, where participants 
are provided with training data and the platform indepen-
dently manages the test of the algorithms. The performance 
should be measured according to high-quality datasets includ-
ing as many confounding factors affecting real biological 
samples as possible, e.g. presence of multiple modifications, 
and collected across different biological conditions. The 
benchmark should ideally also include datasets produced 
with different set-ups of the sequencing platform.

To conclude, in the last few years several valuable algorithms 
have been developed to detect RNA modifications from dRNA- 
seq data. Most of them showed good performance at detecting 
m6A as well as other modifications, however a systematic com-
parison of their sensitivity and specificity is still lacking. All these 
efforts and the resulting knowledge will eventually converge in a 
base-caller able to directly convert the output of the sequencer 
into a sequence using an extended dictionary that includes not 
only canonical bases but a vast number of non-canonical RNA 
bases. This will be a tremendous resource to shed light on the 
complex domain of RNA modifications.
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