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Abstract
It has been recently remarked that focusing only on accuracy in searching for optimal 
Machine Learning models amplifies biases contained in the data, leading to unfair pre-
dictions and decision supports. Recently, multi-objective hyperparameter optimization has 
been proposed to search for Machine Learning models which offer equally Pareto-efficient 
trade-offs between accuracy and fairness. Although these approaches proved to be more 
versatile than fairness-aware Machine Learning algorithms—which instead optimize accu-
racy constrained to some threshold on fairness—their carbon footprint could be dramatic, 
due to the large amount of energy required in the case of large datasets. We propose an 
approach named FanG-HPO: fair and green hyperparameter optimization (HPO), based 
on both multi-objective and multiple information source Bayesian optimization. FanG-
HPO uses subsets of the large dataset to obtain cheap approximations (aka information 
sources) of both accuracy and fairness, and multi-objective Bayesian optimization to 
efficiently identify Pareto-efficient (accurate and fair) Machine Learning models. Experi-
ments consider four benchmark (fairness) datasets and four Machine Learning algorithms, 
and provide an assessment of FanG-HPO against both fairness-aware Machine Learning 
approaches and two state-of-the-art Bayesian optimization tools addressing multi-objective 
and energy-aware optimization.
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1 Introduction

1.1  Rationale and motivations

A low misclassification/prediction error is not the only performance metric of interest in 
searching for the most suitable Machine Learning (ML) model to use in a successful deci-
sion support application. Additional metrics like fairness, interpretability, and privacy 
have been increasingly becoming important during last years. This paper focuses on fair-
ness, a desired property of the decision support provided by a ML model: it must not be 
“biased” towards a specific person or groups of individuals (Barocas et al., 2017; Buolam-
wini & Gebru, 2018; Pessach & Shmueli, 2022). The topic is known as FairML (Mehrabi 
et  al., 2021), with approaches organized into three different families: (i) post-processing 
to modify a pre-trained model to increase the fairness of its outcomes, (ii) in-processing 
to enforce fairness constraints during training, and (iii) pre-processing to modify the data 
representation and then apply standard ML algorithms (Friedler et al., 2019; Hort et al., 
2022). These approaches regard the design of fairness-aware (or fair-by-design) ML algo-
rithms, but they suffer from one or more of the following drawbacks (Perrone et al., 2021): 
the intervention performed to deal with biases is (i) specific to the model class (e.g., lin-
ear models only), (ii) limited to a specific definition of fairness, (iii) limited to a single, 
binary sensitive feature, (iv) requires access to sensitive feature information at prediction 
time, and (v) results in a randomized classifier that may generate different prediction for 
the same input at different times.

These considerations have recently led to a new strategy: instead of designing fairness-
aware ML algorithm, FairML can be addressed as the hyperparameter optimization (HPO) 
of a ML algorithm, by also considering fairness. Two mechanisms have been recently pro-
posed to include fairness into HPO: (i) constrained optimization—aimed at minimizing 
the misclassification error while satisfying some fairness constraint (Perrone et al., 2020, 
2021) – and (ii) multi-objective optimization—aimed at minimizing, simultaneously, 
misclassification error and some unfairness metric (Schmucker et al., 2020).

More recently, the topic has been named Fairness-aware AutoML (Weerts et al., 2023), 
where automated Machine Learning (AutoML) generically refers to automatizing the 
design of a ML pipeline (aka workflow), in which HPO of ML algorithms is a specific task 
(Hutter et al., 2019; He et al., 2021).

It is important to remark that fairness-constrained HPO could not be viable in many 
real-life settings, because a suitable threshold on fairness could be difficult to be estab-
lished a-priori. According to this consideration, and to recent trends in the research field 
(Nguyen et al., 2023), we have decided to focus on the multi-objective HPO approach.

In addition to fairness, this paper also addresses the issue of energy-efficiency of HPO. 
Nowadays, it has become crucial to consider the dual role of artificial intelligence (AI) 
and ML in the climate crisis. On the one hand, they can support more sustainable and 
low-emission decisions, from design to management of critical systems such as smart 
energy-grids, transportation, healthcare and water utilities, and they can also provide accu-
rate climate change predictions. On the other hand, AI and ML are themselves energivo-
rous and, consequently, significant CO2 emitters, leading to the concept of Red-AI (Dhar, 
2020). Prevalence of Red-AI is also quantified in Schwartz et al. (2020), reporting that the 
total cost of producing accurate ML models increases linearly with (i) the cost of execut-
ing the model on a single example, (ii) the size of the training dataset and (iii) the number 
of HPO experiments, which controls how many times the model is trained on the dataset. 
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Astonishing results are also reported in Strubell et al. (2019) and Hao (2019), which ana-
lysed the training process of many natural language processing (NLP) models to estimate 
the energy cost in kilowatts required. When these figures are converted into approximate 
carbon emissions it comes out that the carbon footprint of training a single large NLP 
model is equal to the amount of CO2 emitted by 125 round-trip flights between New York 
and Beijing or, equivalently, five American average cars in their lifetimes, including their 
manufacturing processes.

Consequently, the research community has been focusing on the Green-AI topic and 
also starting to propose novel approaches to make HPO—and more generally AutoML—
“greener”, for instance by using smaller portions of the available databases/datasets, as pro-
posed in the seminal work of Swersky et al. (2013) up to the most recent ones, such as in 
Klein et al. (2017), Candelieri et al. and (2021). Another possibility consists into early dis-
carding unpromising hyperparameter configurations to save and re-allocate computational 
resources (aka, successive halving, first proposed in Jamieson & Talwalkar 2016). A well 
known example is Hyperband (Li et al., 2017). A wider overview about Green AutoML is 
given in Tornede et al. (2023), along with an indication of future research directions.

Bayesian optimization (BO) is a sample-efficient, sequential, model-based, global opti-
mization method, well-suited for optimizing black-box, expensive, and multi-extremal 
objective functions (Frazier, 2018; Archetti & Candelieri, 2019; Garnett, 2023). Thanks 
to its sample-efficiency, BO is the core component of most of the current AutoML solu-
tions, both open-source and commercial. BO has been recently extended to also deal with 
multiple objectives (Hernández-Lobato et al., 2016; Paria et al., 2020), as well as multiple 
information sources which can queried under different costs (Ghoreishi & Allaire, 2019; 
Belakaria et al., 2020a; Candelieri et al., 2021; Candelieri & Archetti, 2021; Khatamsaz 
et al., 2020). A special case is when information sources can be organized hierarchically 
depending on their quality of approximation (aka fidelity), leading to the so-called multi-
fidelity optimization, originally proposed in Kennedy & O’Hagan (2000). Both in multiple 
information source and multi-fidelity optimization energy efficiency is achieved by suitably 
using the less expensive (as well as low-fidelity) sources to keep low the cumulative query 
cost, that is a proxy of energy consumption and, consequently, CO2 emissions.

1.2  Contributions

The main contributions of our paper are: 

1. A comparative analysis between fairness-aware ML and Fairness-aware AutoML (spe-
cifically, HPO) algorithms, on a set of four relevant benchmark (fairness) datasets.

2. A new fair and green hyperparameter optimization algorithm, namely FanG-HPO, 
based on both multi-objective and multiple information source Bayesian Optimizations 
to simultaneously address Fairness-aware and Green AutoML.

3. A computational assessment of FanG-HPO against other two state-of-the-art BO suites 
enabling both multi-objective and energy efficient HPO, specifically:

• autogluon-FairBO (Schmucker et al., 2020), in which HPO is addressed as a bi-
objective optimization task (i.e, simultaneously minimizing misclassification error 
and unfairness on 10 fold cross validation) and using successive halving to reduce 
energy consumption, and consequently CO2 emissions.

• BoTorch-MOMF (multi-objective and multi-fidelity) (Irshad et  al., 2021), imple-
menting a generic multi-objective and multi-fidelity BO framework. We have used 
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it to target HPO as a bi-objective task and to address energy efficiency by selec-
tively using the entire dataset (high-fidelity source) or a portion if it (low-fidelity 
source) to compute the misclassification error and the unfairness metric of every 
hyperparameter configuration, on 10-fold cross validation. BoTorch-MOMF has 
been released only quite recently, within the BoTorch suite.

The rest of the paper is organized as follows: Sect.  2 provides the main background on 
multi-objective and multiple information source optimization, along with the definition of 
the unfairness metric adopted in this study. In Sect. 3 the FanG-HPO approach is detailed. 
Section 4 describes the experimental setting and Sect. 5 reports the results. Finally, Sect. 6 
provides conclusions and perspectives.

1.3  Related works

As far as fairness in ML is concerned, recent reviews are given in Barocas et al. (2017), 
Pessach & Shmueli (2022) and Weerts et  al. (2023). Specifically, (Weerts et  al., 2023) 
aims at raising awareness among AutoML researchers and developers about limitations of 
Fairness-aware AutoML, while remarking the potential of AutoML as a tool enabling the 
research on fairness in ML.

With respect to the energy efficiency, a recent review is given in Tornede et al. (2023), 
providing important hints about quantifying sustainability of AutoML systems, along with 
an overview and taxonomy of currently available energy-efficient AutoML systems.

Our paper represents a contribution to the effort of providing AutoML practitioners with 
tools enabling the development of more societal—both fair and green—decision support 
systems based on ML.

Although BO has been extended to deal with multiple objectives (Svenson & Santner, 
2016; Feliot et al., 2017; Yang et al., 2019; Iqbal et al., 2020; Daulton et al., 2020) as well 
as multiple fidelities and multiple information sources (Lam et al., 2015; Poloczek et al., 
2017; Ghoreishi & Allaire, 2019; Candelieri & Archetti, 2021, 2021a; Ariafar et al., 2021), 
there is a still lack of solutions jointly addressing the two problems. On the other hand, the 
research interest on this specific challenge has been quickly increased, especially because 
its applicability to many other real-life problems than fair and green ML, as demonstrated 
by very recent works (Sun et al., 2022; Irshad et al., 2021).

The only two available research tools—at the authors’ knowledge—are autogluon-
FairBO (Schmucker et al., 2020), combining multi-objective and multi-fidelity optimiza-
tion by building upon Hyperband (Li et  al., 2017), and BoTorch-MOMF (Irshad et  al., 
2021). Although an implementation of autogluon-FairBO is still under review to be 
included into the autogluon1 suite, the code is freely available2 and it has been used to 
implement the first competitor of FanG-HPO. On the contrary, BoTorch-MOMF is already 
integrated and freely available in the BoTorch suite,3 and is considered in this paper as the 
second competitor of FanG-HPO.

Finally, with respect to fairness-aware ML algorithms, relevant works are Komiyama 
et al. (2018), Zafar et al. (2019) and Scutari et al. (2021).

1 https:// auto. gluon. ai/ stable/ index. html.
2 https:// github. com/ awsla bs/ autog luon/ tree/0. 3.1.
3 https:// botor ch. org/ tutor ials/ Multi_ objec tive_ multi_ fidel ity_ BO.

https://auto.gluon.ai/stable/index.html
https://github.com/awslabs/autogluon/tree/0.3.1
https://botorch.org/tutorials/Multi_objective_multi_fidelity_BO
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2  Background

This paper addresses FairML as a multi-objective problem and, at the same time, uses 
multiple information sources (i.e., a small portion of the large target dataset) to improve 
energy-efficiency and, consequently, reduce CO2 emissions. Here, we briefly summarize 
the basic background about multi-objective optimization, fairness metrics, and multiple 
information source optimization.

2.1  Multi‑objective optimization

Multi-objective optimization (MO) concerns solving problems with more than one 
objective function to be optimized simultaneously, that is:

where Ω is the search space, typically box-bounded in ℝd , and f ∶ Ω → ℝ
M is the vec-

tor-valued function of the multiple objectives. In MO, due to the conflicting nature of the 
objectives, it does not exist a unique solution �∗ ∈ Ω to the problem (1). The final aim is 
to identify a set of equally efficient trade-offs among the objectives. This set of efficient 
trade-offs can be depicted within the space spanned by the M conflicting objectives, allow-
ing for drawing the so-called Pareto front (aka frontier or boundary). The associated set of 
solutions—into the search space Ω - is instead known as Pareto set. An example is shown 
in Appendix A.1. Formally, the Pareto set consists of only dominant (aka not-dominated) 
solutions, where a solution x is said to dominate another solution �′ if their objectives, 
respectively f(x) =

(
f1(x), ..., fM(x)

)
 and f(��) =

(
f1(�

�), ..., fM(�
�)
)
 , satisfy the following two 

conditions:

Equation (2) means that x is not worse than �′ in all the objectives, and Eq. (3) means that x 
is strictly better than �′ in at least an objective. The Pareto dominance symbol, ≺ , is used to 
synthesize (2–3): f(x) ≺ f(��).

If the objectives are black-box, their values can only be known point-wise by query-
ing f(x) at specific locations. Given all the queries performed so far, the set of non-dom-
inated solutions (respectively, outcomes) is the current approximation of the Pareto 
set (respectively, front). If the objectives are also expensive to evaluate, in terms of 
time or resources, then (1) must be solved efficiently, meaning that a good Pareto front/
set approximation has to be found within a limited number of queries. Thus, sample-effi-
ciency of BO was the driver of its successful extension to the MO setting (i.e., MOBO), 
mainly along three different strategies:

• Scalarization which maps the vector of all objectives into a scalar parametrized 
function whose optimizer, computed by a single objective method, can span, as the 
parameters vary, the whole Pareto set (Paria et al., 2020; Zhang & Golovin, 2020). 

(1)min
x∈Ω

f(x)

(2)fm(x) ≤ fm(�
�) ∀ m ∈ {1, ...,M}

(3)∃ j ∈ {1, ...,M} ∶ fj(x) < fj(�
�)
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The key drawback of scalarization is that it does not consider the geometry of the 
Pareto front approximation.

• Maximization of some index related to the quality of the Pareto front approximation. A 
common choice is the dominated hypervolume indicator (HV), that is the volume of the 
region dominated by a Pareto front approximation.

• Information theoretic based, which aims at reducing the uncertainty/entropy about the 
Pareto front (Belakaria et al., 2019; Suzuki et al., 2020; Belakaria et al., 2020b), recently 
also considering the multi-fidelity setting (Belakaria et al., 2020a).

The BO methods considered in this paper rely on the first or the second strategy.
It is important to remark that, while in “vanilla” BO a probabilistic surrogate model is used 

to approximate the black-box objective function, almost all the MOBO approaches in literature 
adopt a probabilistic surrogate model for each one of the objectives, assuming independence 
among them. This is a reasonable assumption, because in MO the objectives should be com-
peting and uncorrelated. Exactly as in BO, every new query contributes to better approximate 
the objective function—which is vector-valued in MOBO – through the update of the proba-
bilistic surrogate model. The second key component of BO is the acquisition function, which 
deals with the well-known exploration-exploitation dilemma. All the “vanilla” BO acquisi-
tion functions can be used in the case of scalarization— because the multi-objective problem 
is mapped into a single-objective one—on the contrary, expected hypervolume improvement 
(EHVI) is an acquisition function specifically designed for vector-valued MOBO, basically 
extending the idea underlying the well-known Expected Improvement (EI) to the multi-objec-
tive setting.

In this paper we consider HPO of a classification model, with two different objectives to 
minimize: the misclassification error (MCE) and the unfairness metric known as differential 
statistical parity (DSP), which is detailed in the next section. Both the objectives are computed 
through stratified 10-fold cross validation (10FCV), so they are black-box, expensive, multi-
extremal, and possibly noisy (depending on the specific ML algorithm to be optimized or the 
cross-validation procedure).

2.2  Differential statistical parity as unfairness metric

There is not a unique definition—and consequently metric—of fairness (Verma et al., 2018). 
Instead, different alternatives have been proposed depending on application domains and spe-
cific use cases. In this paper we consider the DSP—which has been also recently considered in 
Schmucker et al. (2020). We refer to the standard framework where FL denotes the true labels 
for the target feature, FSens is the sensitive feature, and F̂L denotes the predicted labels. Statisti-
cal parity (SP) requires that positive predictions are unaffected by the value of the sensitive 
feature, independently of the actual label:

Finally, the absolute value of the difference between the two terms is the DSP, that is a 
measure of the violation of the above condition and, consequently, a measure of unfairness.

P
(
F̂L = 1|FSens = 0

)
= P

(
F̂L = 1|FSens = 1

)

DSP =
||||
P
(
F̂L = 1|FSens = 0

)
− P

(
F̂L = 1|FSens = 1

)||||
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2.3  Multiple information source optimization

Multiple information source optimization (MISO) aims at searching for the global opti-
mum of a black-box, expensive and multi-extremal function, namely the ground-truth, 
given the possibility to also query less expensive information sources which are its approx-
imations. The final goal is to find an optimal solution for the ground-truth while satisfy-
ing some constraint on the query cost accumulated along the search process, by effectively 
and efficiently using the cheap information sources. MISO has been defined for single-
objective problems: differently from multi-objective, here the subscript is used to denote a 
specific information source, where f1(x) is the ground-truth and fs(x) , with s ∈ {2, ..., S} , 
are the cheap information sources.

The MISO problem can be formulated as:

where Z1∶n =

{(
s(i), x(i)

)}

i=1∶n

 denotes the set of source-location pairs sequentially que-

ried, cs is the cost for querying fs(x) , and Cmax is the maximum query cost that can be 
cumulated along the optimization process.

BO has been also successfully extended to deal with MISO problems, where each infor-
mation source is individually modelled through a probabilistic surrogate model—usually 
a Gaussian process (GP)—fitted on the queries performed on that source. Then, all the 
individual models are combined into a single one, which is used to drive the choice of the 
next promising source-location pair to query, such as in Ghoreishi & Allaire (2019) and 
Candelieri & Archetti (2021).

3  FanG‑HPO

The proposed fair and green HPO approach aims at solving the problems (4-5), but with 
the scalar objective function replaced by a vector-valued one, that is:

where �
�
 is the vector-valued ground-truth, while all the other cheaper information sources 

are �
�
 , with s ∈ {2, ..., S}.

3.1  Modelling objectives and information sources

In FanG-HPO, both objectives and information sources are modelled independently via 
GP regression (Williams & Rasmussen, 2006; Gramacy, 2020). A GP is a probabilistic 

(4)�
∗ = argmin

x∈Ω

f1(x)

(5)subject to:
∑

(s,x)∈Z1∶n

cs ≤ Cmax

(6)�
∗ = argmin

x∈Ω

�
�
(x)

(7)subject to:
∑

(s,x)∈Z1∶n

cs ≤ Cmax
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regression model whose predictive mean, �(x) , and uncertainty, �(x) , are conditioned on 
previous observations. A brief introduction to GP regression is provided in the Appendix 
A.2.

Thus, at a generic iteration, FanG-HPO learns S ×M GP models, leading to the follow-
ing set of predictive means and uncertainty functions:

Then, a single GP model is fitted, for each objective, by combining the GPs which individ-
ually model that specific objective on every information source. In FanG-HPO this opera-
tion is performed by using the Augmented Gaussian Process (AGP) methodology recently 
proposed in Candelieri & Archetti (2021). More precisely, a set of indices identifying 
“reliable” observations from cheaper sources is computed for each pair source - objective, 
where “reliable” means they are not too discrepant with respect to the ground-truth:

where � is a technical parameter to tune reliability of the observations from cheap informa-
tion sources. In Candelieri & Archetti (2021) the suggested value is � = 1.

Then, the observations on the ground-truth are “augmented” with those identified by 
Ism , separately for each objective m ∈ {1, ...,M}:

where Xs are the locations queried on source s and �̂[m] are the values observed for the 
objective m and associated to the set �̂m (i.e., the symbol [m] is the operator selecting only 
the column m of the ns ×M matrix Ysm , with ns the number of queries performed on the 
source s).

Finally, FanG-HPO fits M independent AGPs, with predictive means and uncertainty 
respectively denoted with �̂m(x) and �̂m(x) , and both conditioned to 

{
�̂m, �̂m

}
.

3.2  Deriving the next source‑location to query

The next source-location pair to query, namely (s�, x�) , is derived by solving a multi-
objective problem whose objectives are approximated by the AGPs obtained as previ-
ously described. Having M independent AGPs is in line with recent results in literature: as 
reported in Zhan et al. (2017) considering a separate GP modelling each objective indepen-
dently makes easy the implementation of multi-objective optimization approaches, while 
using dependent GP models—such as multi output GPs—does not provide any relevant 
benefit against independent GPs (Svenson & Santner, 2016).

More precisely, (s�, x�) is obtained according to the following two-steps procedure: 

{
�sm(x), �sm(x)

}

s = 1 ∶ S,

m = 1 ∶ M

(8)
Ism =

{
i ∶ ||�1m(x) − �sm

(
x(i)

)|| ≤ ��1m
(
x(i)

)
, x(i) ∈ Xs

}
,

∀ s ≠ 1,∀ m ∈ {1, ...,M}

(9)�̂m ← X1 ∪
{
x(i) ∈ Xs ∶ i ∈ Ism,∀s ≠ 1

}

(10)�̂m ← Y1[m] ∪
{
y(i) ∈ Ys[m] ∶ i ∈ Ism,∀s ≠ 1

}
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1. Selecting x′ . First, the location x′ is selected depending on the well-known expected 
hypervolume improvement (EHVI). Hypervolume Improvement (HVI) is defined as the 
relative increase in the hypervolume indicator, when an outcome y , associated to a solu-
tion x , is added to the current Pareto front approximation. In BO, the HVI is a random 
variable because y is a (set of) random variable itself, and this leads to the EHVI. 

 where P is the current approximated Pareto front and r is the reference point. In 
this paper r is the worst point, with both MCE and DSP equal to 1. Although a closed 
formula for the EHVI exists (Feliot et al., 2017), it is expensive to calculate. In FanG-
HPO the fast calculation proposed in (Zhao et al., 2018) is used, that is an extension, 
to the EHVI computation, of the Walking Fish Group (WFG) technique (While et al., 
2011), one of the fastest algorithms for calculating the hypervolume of a Pareto front 
approximation.

2. Selecting s′ . Then, the information source s′ is selected according to both its query cost 
and its discrepancy with respect to the ground-truth at x′ , with respect to all the objec-
tives, that is: 

Contrary to other recent approaches which propose to query the ground-truth on a regular 
basis, such as in Khatamsaz et al. (2020), at each iteration FanG-HPO adaptively chooses 
among all the sources, including the ground-truth. However, just to ensure a sufficient 
quality of the approximation provided by the AGPs, before solving (12) FanG-HPO checks 
if the number of augmenting observations coming from cheap sources is larger than those 
from the ground-truth: in that case s� = 1 is selected, instead of solving (12).

4  Experimental setting

4.1  Datasets and Machine Learning algorithms

To select a suitable set of benchmark datasets on fairness, we have based our choice on the 
paper (Le Quy et al., 2022) which provides a detailed overview and analysis of real-world 
tabular datasets frequently used in fairML. Specifically, Bayesian networks were used to 
model and analyse the relationship between protected attributes and target class, for each 
considered dataset. We limited our selection to four binary classification datasets, result-
ing difficult in terms of achievable accuracy and statistical parity, according to the results 
reported in table 15 of Le Quy et al. (2022). It is important to anticipate that our results 
on the four selected datasets are homogeneous, suggesting that was useless to extend the 
analysis to other—easier—datasets. [i.e., a more extended experimental campaign is out of 
the scope of this paper. For a wider set of experiments on effectiveness of Fainess-aware 
ML one can refer to very recent studies, such as Nguyen et al. (2023)].

(11)x� = argmax
x∈Ω

EHVI(x,P, r)

(12)s� = argmin
s∈{1...,S}

cs ⋅

M∑

m=1

|||�1m(x
�) − �sm(x

�)
|||
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More specifically, the four selected datasets are known with the names: ADULT, COM-
PAS, GERMAN CREDIT, and LAW SCHOOL ADMISSIONS. They are taken from the 
R package fairml,4 which also provides implementations of a set of fairness-aware algo-
rithms. The same datasets are also available on the well-known UCI Repository,5 but the 
versions available in the R package could be slightly different due to some basic pre-pro-
cessing operations. It is important to clarify that these operations are related to common 
data pre-processing (e.g., identifiers removal) and not to any fairness-oriented pre-process-
ing technique. As follows we report, for each dataset, some details relevant for our experi-
ments. A brief description of the four datasets is reported in the following.

• ADULT—the aim of the associated classification task is to predict whether personal 
income exceeds 50K$ per year, using the U.S. 1994 Census data. The dataset consists 
of 30,162 instances and 14 features (among them, two are sensitive: “gender” and 
“race”).

• COMPAS—data refers to criminal offenders screened in Florida (US) during 2013–
2014. The aim of the associated classification task is to predict the recidivism of crime 
in two years. The dataset consists of 5855 instances and 16 features (among them, two 
are sensitive: “gender” and “race”).

• GERMAN CREDIT—data refers to credit scoring and the aim of the associated clas-
sification task is to predict defaults on consumer loans in the German market. The data-
set consists of 1000 instances and 21 features (among them, one is sensitive: “gender”).

• LAW SCHOOL ADMISSIONS—data refers to a survey among students attending 
law school in the U.S. in 1991. Although the original task associated to this dataset 
is a regression task (i.e., predicting the Undergraduate Grade Point Average), we have 
decided to consider a different target feature, specifically the one assessing whether the 
student has passed the bar exam on the first try. Thus, the classification task we consider 
in our experiments is to predict this outcome. The dataset consists of 20,800 instances 
and 11 features (among them, two are sensitive: “gender” and “race”).

Before performing HPO, all the datasets have been (further) pre-processed by apply-
ing one-hot-encoding on all the nominal features, increasing the final number of features 
(including the target feature) to: 52 for ADULT, 20 for COMPAS, 47 for GERMAN 
CREDIT, 51 for LAW SCHOOL ADMISSIONS. Pre-processing has also increased the 
number of sensitive features for some dataset. As better detailed in Sect. “Availability of 
data and material”, all the pre-processed datasets, as they have been used in this study, are 
available for replicability, along with the code.

With respect to the HPO of the ML algorithms, we have selected four completely differ-
ent ML algorithms: multi-layer perceptron (MLP), random forest (RF), eXtreme Gradient 
Boosting (XGB), and support vector machine (SVM) with an RBF kernel. The number of 
hyperparameters to be optimized is respectively: 10 for MLP, 2 for RF, 7 for XGB, and 2 
for SVM. The details about their associated search spaces are reported in the following four 
Tables 1, 2, 3, and 4. For MLP and XGB we have used the same search spaces defined in 
Schmucker et al. (2020), while RF and SVM are defined by us, because they were not con-
sidered in the quoted study.

4 https:// www. rdocu menta tion. org/ packa ges/ fairml/ versi ons/0. 6.1/ topics/ fairml- packa ge.
5 https:// archi ve. ics. uci. edu/ ml/ index. php.

https://www.rdocumentation.org/packages/fairml/versions/0.6.1/topics/fairml-package
https://archive.ics.uci.edu/ml/index.php
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4.2  Compared methods

We have compared our approach, FanG-HPO, against two state-of-the-art BO suites 
enabling both multi-objective and energy efficient optimization, specifically autogluon-
FairBO and BoTorch-MOMF.

Table 1  sklearn MLP’s search 
space

Hyerparameter Type Domain Scaling

n_Layers Integer {1,2,3,4} Linear
Layer_1 Integer {2,...,32} Linear
Layer_2 Integer {2,...,32} Linear
Layer_3 Integer {2,...,32} Linear
Layer_4 Integer {2,...,32} Linear
Alpha Real [10−6,10−1] Log10
Learning_rate_init Real [10−6,10−1] Log10
Beta_1 Real [0.001,0.99] Log10
Beta_2 Real [0.001,0.99] Log10
Tol Real [10−5,10−2] Log10

Table 2  sklearn RF’s search space. The range of the hyperparameter MAX_FEATURES depends on the 
dataset: |F| denotes the number of features, excluded the target one

Hyerparameter Type Domain Scaling

n_Estimators Integer {100,...,1000} Linear
Max_features Integer {2, ..., |F|} Linear

Table 3  sklearn XGBoost’s 
search space

Hyerparameter Type Domain Scaling

n_Estimators Integer {1,...,256} Linear
Learning_rate Real [0.01,1.0] Log10
Gamma Real [0.0,0.1] Linear
Reg_alpha Real [10−3,103] Log10
Reg_alpha Real [10−3,103] Log10
Subsample Real [0.01,1.0] Linear
Max_depth Integer {1,2,...,16} Linear

Table 4  sklearn SVM’s search 
space

Hyerparameter Type Domain Scaling

C Real [0.0001,10,000] log10
Gamma Real [0.0001,10,000] log10
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Bi-objective optimization (i.e., simultaneous minimization of 10FCV MCE and 10FCV 
DSP), is addressed via scalarization in autogluon-FairBO and via EHVI maximization in 
both FanG-HPO and BoTorch-MOMF.

Another important difference regards the strategies adopted to deal with energy-effi-
ciency. According to the taxonomy in Tornede et al. (2023):

autogluon-FairBO belongs to the family of “early discarding of unpromising candi-
dates” methods and is based on Hyperband (Li et al., 2017).

BoTorch-MOMF and FanG-HPO belong to the family of the “multi-fidelity perfor-
mance measurements” methods, but with a significant methodological difference. BoT-
orch-MOMF uses a multi-output Gaussian process (GP) to model three objectives: not 
only 10FCV MCE and 10FCV DSP, but also the query costs associated to the sources. 
Moreover, the fidelity is also included as an additional decision variable (i.e., it is treated 
just like a hyperparameter of the ML to be optimized). On the contrary, Fang-HPO uses 
an independent Augmented Gaussian Process (AGP) for each objective, fitted by merg-
ing observations on the different information sources. This difference is even more impor-
tant in terms of acquisition function: although both BoTorch-MOMF and FanG-HPO use 
EHVI, the first penalizes the associated value depending on the cost of the source (the 
higher the fidelity the higher the cost) while the second adopts the two steps mechanism 
explained in Sect. 3.2.

Another important comparison performed in our study is between the three HPO meth-
ods, all together, and two well known FairML algorithms, both available in the R package 
fairml. The two algorithms are named zlrm and fgrrm (Scutari et  al., 2021). This 
comparison is important to evaluate, in terms of fairness, the effectiveness of Fairness-
aware AutoML with respect to fairness-aware (aka fairness-by-design) ML algorithms.

4.3  Performance metrics

As previously mentioned, in this paper HPO is aimed at simultaneously minimize 10FCV 
MCE and 10FCV DSP), separately for every pair ML algorithm - dataset. It is important to 
remark that, given a specific dataset, DSP is computed for every sensitive feature, accord-
ing to what previously reported in Sect. 2.2. To obtain a single value—instead of a vec-
tor—we have decided to consider DSP= max

i=1∶nSens
{DSPi} , where nSens is the number of sensi-

tive features and DSPi is DSP value associated to the i-th sensitive feature. Basically, we 
minimize the worst DSP over all the sensitive features.

Being respectively a multi-fidelity and a multiple information source optimization 
approach, it is quite simple to define sources and their query costs for BoTorch-MOMF and 
FanG-HPO. Specifically, 10FCV MCE and 10FCV DSP are computed on the high fidelity / 
expensive source (i.e., the ground-truth) when the associated hyperparameter configuration 
is evaluated on the entire dataset, otherwise they are computed on the low fidelity / cheap 
source if the hyperparameter configuration is evaluated on a stratified sample (i.e., 50%) of 
the original dataset. Just for the sake of simplicity, we can assume that the nominal query 
cost of the two information sources are, respectively, c1 = 1 and c2 = 0.5 . It is important to 
remark that nominal query cost is not a direct proxy of energy consumption and CO2 emis-
sions, but it drives energy-efficient choices in the two approaches.

Being based on Hyperband, autogluon-FairBO adopts successive halving on the 
validation folds. In brief, if a configuration of the hyperparameters is not promising 
according to the results iteratively collected on the folds, it is discarded and the 10 
fold cross validation procedure is early stopped. As a consequence, we cannot define 
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in advance the cost of evaluating a hyperparameter configuration in autogluon-FairBO. 
Thus, we cannot define information sources and their query costs a-priori: if the 
10FCV procedure terminates with success, then we consider that the query has been 
performed on the ground-truth, and we use c1 = 1 , otherwise we consider c2 = nf∕10 , 
with nf  the number of folds analysed before halving.

As far as energy consumption and CO2 emissions are concerned, we decided to con-
sider runtime (i.e., query time) as a suitable proxy, as better detailed and motivated in 
Sec. 5.3.

Finally, it is important to remark that the query cost is not applicable in the case of 
the fairness-aware algorithms (i.e., HPO is not performed on them because they have 
not hyperparameters to be optimized).

4.4  Experimental protocol

Autogluon-FairBO does not allow to specify a maximum cumulative query cost as a 
termination criterion. The only option is to provide a maximum number of queries, 
that is a maximum number of hyperparameter configurations to evaluate. To have a 
fair comparison against the other two approaches, namely BoTorch-MOMF and FanG-
HPO, we have decided to implement the following experimental protocol (for all the 
ML algorithms and datasets): 

1. Executing autogluon-FairBO with a limit of 200 queries;
2. Computing the cost of each query as nf∕10 , with nf  the number of folds considered 

before halving (if any);
3. Computing the resulting overall query cost accumulated by autogluon-FairBO on that 

run (call it budget);
4. Selecting the first 2(d + 1) hyperparameter configurations queried by autogluon-FairBO 

and divide them, randomly, in two sets of size d + 1 each, with d the number of hyper-
parameters to optimize.

5. Running BoTorch-MOMF by initializing the multi-output GPs with the two sets men-
tioned above (i.e., it is important to recall that fidelity is treated as an additional hyperpa-
rameter to be optimized and the associated query cost is part of the acquisition function). 
The previously computed budget is set as a threshold for the cumulative query cost (i.e., 
termination criterion).

6. Running FanG-HPO by initializing the two AGPs with the two sets of observations 
mentioned above. The same termination criterion of BoTorch-MOMF is used also for 
FanG-HPO.

To mitigate the randomness of the initialization in autogluon-FairBO, ten independent 
runs have been performed for each pair ML algorithm - dataset. The experimental pro-
tocol has been applied for each one of the independent runs. Analogously, five inde-
pendent runs have been performed for zlrm and fgrrm, separately. A constraint on 
the unfairness must be provided for these two algorithms: we set this value to 0.1 (for 
each sensitive feature).

All the experiments have been performed on a Microsoft Azure virtual machine, 
Standard D16ds v5 (16 vcpus, 64 GiB memory) Ubuntu 18.04 LTS.



2714 Machine Learning (2024) 113:2701–2731

1 3

5  Results

In this section we summarize the most relevant results of our study. Every result is first 
stated and then commented, to make more easy-to-read this section. Moreover, results 
are organized into three subsections:

• the first is related to a comparison between FairML and Fairness-aware AutoML 
algorithms,

• the second is related to the cost-effectiveness of the three BO-based approach con-
sidered in the paper,

• and finally the third subsection illustrates the ecological profiles of the three BO-
based methods.

5.1  Fairness related results

As a first step we have performed a comparison, in terms of Pareto optimality, between 
Fairness-aware ML and Fairness-aware AutoML algorithms. To achieve this, for every 
pair dataset - ML algorithm, we have selected the dominant hyperparameter configura-
tions among all those generated by the three BO-based approaches over all the 10 
independent runs. It is important to remark that only hyperparameter configurations 
evaluated on the entire datasets are considered in this operation. We call the result-
ing approximated Pareto front “super Pareto front”. Figure 1 depicts the super Pareto 
fronts along with the MCE–DSP trade-offs provided by the Fairness-aware ML algo-
rithms. In the following, the main results derived from it.

Result 1. Fairness-aware AutoML (Pareto) dominates Fairness-aware ML algorithms.

With respect to the four datasets, it always exists at least one super Pareto front 
dominating the MCE–DSP trade-offs of the two Fairness-aware ML algorithms. This 
result is also in line with what recently reported in (Cruz & Hardt, 2023) about post-
processing of Fairness-aware ML algorithms.

Result 2. Bi-objective HPO of RF leads to super Pareto fronts smaller than those of HPO 
of other ML algorithms, in terms of both HV and number of Pareto optimal hyperparam-
eter configurations.

More specifically, the super Pareto front associated to bi-objective HPO of RF 
is quite limited in terms of 10FCV DSP, for all the four datasets considered. Thus, 
although accurate, the final RF models obtained via HPO are not so fair.

Result 3.  Overall, the bi-objective HPO of XGB has led to the best results.

The super Pareto front associated to XGB is always larger than the others in terms 
of both HV and number of Pareto optimal hyperparameter configurations.
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5.2  Cost‑effectiveness of fairness‑aware HPO methods

When comparing AutoML systems, it is not correct to just consider the final performances 
at the end of their run. Instead, one has to look at the performance curves, usually given by 
the best observed value of a metric with respect to the number of queries performed or the 
cumulative query cost.

In this section we report the curves of the best HV (of the approximated Pareto front) 
with respect to the cumulative query cost: one curve for every BO-based approach and run, 
and separately for each pair ML algorithm - dataset. These curves allow us to compare the 
three BO-based approaches in terms of their cost-effectiveness.

It is important to remark that, in this case, we do not deal with the super Pareto front: 
instead, we consider the HV of approximated Pareto front consisting of the dominant 
hyperparameter configurations – evaluated on the entire dataset, only (i.e., queries on the 
groud-truth)—at increasing values of the cumulative query cost. It is also important to 

Fig. 1  Comparison, on each dataset, between MCE–DSP trade-offs provided by Fairness-aware ML algo-
rithms and super Pareto fronts obtained through HPO of four ML learning algorithms. Super Pareto fronts 
refers to all the dominant hyperparameter configurations identified by the three BO-based approaches all 
together (i.e., autogluon-FairBO, BoTorch-MOMF, and FanG-HPO), over 10 independent runs
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recall that, in this subsection, we refer to the nominal query costs, associated to the two dif-
ferent sources and defined in Sect. 4.3.

Result 4. HPO of MLP on the four datasets: successive halving (i.e., autogluon-FairBO) 
is less cost-effective than multi-fidelity and multiple information source BO (i.e., BoTorch-
MOMF and FanG-HPO).

Although autogluon-FairBO starts from higher initial values of HV (due to the differ-
ent type of initialization of the approaches, as described in the experimental protocol), 
both BoTorch-MOMF and FanG-HPO are able to overcome it within a small cumulative 
nominal cost (Fig. 2).

Result 5. The “pathological” behaviour of RF (previously reported in Result 2) affects 
all the three BO-based methods.

Fig. 2  Cost-effectiveness of the three BO-based approaches for bi-objective HPO of a MLP classifier over 
10 independent runs, separately for the four datasets
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As depicted in Fig.  3, although BoTorch-MOMF and FanG-HPO are both able to 
improve with respect to their initial HV values, they could not close the gap with auto-
gluon-FairBO (except for BoTorch-MOMF on the GERMANCREDIT dataset). Moreover, 
on average, the improvement with respect to the initial HV value is not so relevant, for all 
the approaches. The main motivation underlying these two issues is the degenerate shape 
of the associated approximated Pareto front for RF (as shown in the previous subsection).

Result 6. HPO of XGB on the four datasets: successive halving (i.e., autogluon-FairBO) 
is less cost-effective than multi-fidelity and multiple information source BO (i.e., BoTorch-
MOMF and FanG-HPO).

Basically, this result is aligned with what previously obtained on MLP: the multi-fidel-
ity and the multiple information source BO approaches (i.e., BoTorch-MOMF and FanG-
HPO) are more cost-effective than the successive halving mechanism of autogluon-FairBO 
(Fig. 4).

Fig. 3  Cost-effectiveness of the three BO-based approaches for bi-objective HPO of a RF classifier over 10 
independent runs, separately for the four datasets



2718 Machine Learning (2024) 113:2701–2731

1 3

Result 7. HPO of SVM on the four datasets: FanG-HPO is the most cost-effective 
approach.

Although there is not a clear winner between autogluon-FairBO and BoTorch-MOMF, 
FanG-HPO is always among the most cost-effective approach, on all the four datasets con-
sidered (Fig. 5).

5.3  Ecological performance profiles

Computing the cost-effectiveness in terms of cumulative nominal query cost does not pro-
vide a direct quantification of the energy consumption and, consequently, the carbon foot-
print of the three BO-based approaches.

As reported in Tornede et al.(2023), although runtime is a poor measure of energy 
efficiency—basically because it is hardware-dependent—it can be straightforward 

Fig. 4  Cost-effectiveness of the three BO-based approaches for bi-objective HPO of a XGB classifier over 
10 independent runs, separately for the four datasets
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measured on most hardware, contrary to other measures. Moreover, it is a quite practi-
cal proxy of the environmental impact whenever any additional information, such as the 
energy consumption of used hardware (per time unit) and the composition of the energy 
mix, is not available. Runtime also depends on other factors, such as the degree of paral-
lelism and heterogeneity of the execution environment, but when the same hardware is 
used for running a set of competing approaches—just like in our case—it can be consid-
ered a good proxy of the CO 2 footprint of each competitor, at the location and time it 
was executed.

According to these considerations, we have decided to redraw the previous cost-effec-
tiveness curves in terms of cumulative query time (i.e., runtime), instead of cumulative 
nominal query cost. It is also important to remark that, to guarantee a fair comparison, we 
have only considered the runtime required to evaluate hyperparameter configurations (i.e., 
query time), ignoring the computational time of the approaches themselves (which is in 
any case negligible with respect to the query time). When runtime is considered instead of 
the cumulative nominal query cost, the curves are named ecological performance profiles 

Fig. 5  Cost-effectiveness of the three BO-based approaches for bi-objective HPO of a SVM classifier over 
10 independent runs, separately for the four datasets
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(Tornede et al., 2023). They are reported in the following Figs. 6, 7, 8 and 9, one for each 
ML algorithm.

Result 8. Overall, successive halving (i.e., autogluon-FairBO) resulted less “ecological” 
than multi-fidelity and multiple information source bi-objective HPO (i.e., BoTorch-MOMF 
and FanG-HPO, respectively).

As it can be noticed in Figs. 6, 7, 8 and 9, the cumulative query time of BoTorch-
MOMF and FanG-HPO are significantly lower than autogluon-FairBO’s one. Only in 
the case of HPO RF – whose pathological behavior has been already commented – the 
cumulative query time of BoTorch-MOMF is larger than the autogluon-FairBO’s one.

Result 9. XGB is the ML algorithm on which performing bi-objective HPO yields the best 
results; FanG-HPO is the most effective and green method for HPO.

Fig. 6  HPO of MLP on the four datasets: ecological performance profiles of the three BO-based approaches
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From a ML developer and practitioner, this is one of the most valuable result from our 
research. As widely proven, XGB is usually among the most performing ML algorithms, 
on a number of datasets. Moreover, performing bi-objective HPO on it (i.e., accuracy and 
fairness) leads to the the richest set of Pareto optimal models. Finally, performing HPO of 
XGB through FanG-HPO will result into the best ecological performance profile.

5.4  Additional results and considerations

Finally, we have investigated how much frequently every BO-based approach queries the 
high-fidelity / expensive information source to deal with energy efficiency. As follows, the 
most relevant results.

Result 10. On average, FanG-HPO is the approach that more frequently uses the expen-
sive source.

Fig. 7  HPO of RF on the four datasets: ecological performance profiles of the three BO-based approaches
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From Table 5 it is easy to notice that FanG-HPO queries the expensive information 
source (i.e., the ground truth) significantly more frequently than the other approaches. 
This is quite obvious with respect to autogluon-FairBO: indeed, halving occurs quite 
frequently and, even if it happens at 9 out of 10 folds, the associated query is not on 
counted as “on the ground truth”. Then, except for HPO on SVM, BoTorch-MOMF 
shows a quite constant behaviour, that is querying the high-fidelity source around 40% 
of the times.

It is important to remark that, although FanG-HPO performs more queries on the 
expensive source, its cumulative query time (i.e., runtime) is not so higher than the 
BoTorch-MOMF’s one; actually, it is even smaller in many cases, given the same termi-
nation criterion. This means that FanG-HPO is “clever” in using the different sources, 
as clearly stated in the next—and last—result of this paper.

Result 11. On average, FanG-HPO is the approach providing the largest sets of Pareto 
optimal models.

Fig. 8  HPO of XGB on the four datasets: ecological performance profiles of the three BO-based approaches
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Table 6 reports the percentages of Pareto optimal hyperparameter configurations with 
respect to the total number of configurations evaluated—averaged on 10 independent runs.

6  Conclusions and perspectives

Although it is not the main goal, this paper empirically proves the highest effectiveness of 
Fairness-aware AutoML approaches (specifically bi-objective HPO) with respect to fair-
ness-aware ML algorithms (a more recent and extended experimental campaign is offered 
by Nguyen et al. (2023)).

From a ML developer/practitioner’s point of view, one of the most practical result is that 
XGB is the best algorithm to address FairML via HPO. On the four datasets considered, 
the Pareto optimal hyperpamater configurations obtained for XGB dominate, almost com-
pletely, those of the other ML algorithms as well as those from two well-known fairness-
aware ML algorithms.

Fig. 9  HPO of SVM on the four datasets: ecological performance profiles of the three BO-based approaches
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As far as Fairness-aware AutoML (i.e., bi-objective HPO) is concerned, the 
two approaches belonging to the so-called family of multi-fidelity performance 

Table 5  Percentage of queries on the ground-truth (i.e., hyperparameter configurations evaluated on the 
entire dataset): mean and standard deviation on 10 independent runs

ML algorithm Dataset autogluon-FairBO BoTorch-MOMF FanG-HPO

MLP ADULT 3.64% (0.90%) 40.47% (3.86%) 60.24% (6.68%)
COMPAS 3.97% (0.36%) 40.37% (4.05%) 55.33% (8.72%)
GERMAN CREDIT 3.74% (0.37%) 41.20% (4.04%) 61.36% (7.28%)
LAW SCHOOL ADMISSIONS 4.36% (0.48%) 41.52% (3.82%) 58.12% (5.34%)

RF ADULT 4.91% (0.97%) 41.30% (4.28%) 91.25% (1.88%)
COMPAS 4.55% (0.66%) 45.67% (6.58%) 92.69% (0.81%)
GERMAN CREDIT 4.09% (0.33%) 40.43% (4.45%) 84.18% (4.50%)
LAW SCHOOL ADMISSIONS 4.41% (0.94%) 43.12% (4.85%) 90.17% (1.76%)

XGB ADULT 3.73% (0.82%) 44.88% (6.30%) 84.09% (3.71%)
COMPAS 4.22% (0.66%) 41.55% (5.56%) 73.28% (10.62%)
GERMAN CREDIT 3.84% (0.24%) 38.28% (6.61%) 53.73% (9.78%)
LAW SCHOOL ADMISSIONS 4.85% (0.74%) 41.60% (5.25%) 66.38% (14.78%)

SVM ADULT 5.67% (0.13%) 8.05% (6.77%) 68.06% (13.65%)
COMPAS 4.78% (0.35%) 16.23% (7.41%) 53.50% (6.38%)
GERMAN CREDIT 4.67% (1.30%) 8.33% (3.52%) 47.87% (1.69%)
LAW SCHOOL ADMISSIONS 5.28% (1.03%) 11.12% (7.45%) 52.14% (7.54%)

Table 6  Percentage of Pareto optimal hyperparameter configurations: mean and standard deviation on 10 
independent runs

The highest (mean) values are in bold

ML algorithm Dataset autogluon-FairBO BoTorch-MOMF FanG-HPO

MLP ADULT 0.81% (0.26%) 12.02% (2.97%) 16.02% (3.66%)
COMPAS 0.90% (0.24%) 10.37% (2.04%) 12.96% (3.30%)
GERMAN CREDIT 0.36% (0.15%) 1.97% (0.86%) 1.76% (0.56%)
LAW SCHOOL ADMISSIONS 1.21% (0.35%) 10.63% (2.15%) 13.90% (1.92%)

RF ADULT 1.00% (0.24%) 2.96% (0.75%) 4.16% (0.95%)
COMPAS 0.88% (0.37%) 7.39% (2.27%) 5.72% (1.40%)
GERMAN CREDIT 0.60% (0.09%) 4.62% (1.69%) 7.60% (2.35%)
LAW SCHOOL ADMISSIONS 0.75% (0.18%) 7.41% (1.41%) 3.82% (2.72%)

XGB ADULT 1.14% (0.23%) 8.06% (1.09%) 19.07% (3.34%)
COMPAS 0.55% (0.18%) 7.77% (1.61%) 11.22% (1.72%)
GERMAN CREDIT 0.76% (0.11%) 8.99% (2.08%) 9.30% (2.21%)
LAW SCHOOL ADMISSIONS 1.01% (0.33%) 7.61% (1.51%) 14.98% (2.58%)

SVM ADULT 2.64% (0.16%) 4.46% (1.46%) 19.67% (2.75%)
COMPAS 0.81% (0.07%) 2.45% (0.82%) 7.17% (2.75%)
GERMAN CREDIT 0.18% (0.02%) 0.98% (0.13%) 1.35% (0.17%)
LAW SCHOOL ADMISSIONS 1.56% (0.18%) 0.90% (0.17%) 7.74% (2.36%)
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measurements methods Tornede et al. (2023), that is BoTorch-MOMF and FanG-HPO 
(proposed in this paper), offer better ecological performance profiles than successive 
halving (i.e., autogluon-FairBO). Specifically, defining the information sources—
as done in BoTorch-MOMF and FanG-HPO—instead of using successive halving, 
improves the ability to learn from different information sources and to take advantage 
of that over the sequential optimization process. This consideration is also in line with 
other results recently reported in Candelieri et al. (2021), where single-objective HPO, 
based on multiple information source optimization, resulted more effective and efficient 
than FABOLAS Klein et al. (2017) which instead addresses multi-fidelity by including 
the size of the dataset as a further hyperparameter to optimize.

Although they belong to the same family, the underlying methodological background 
of BoTorch-MOMF and FanG-HPO is significantly different (as clarified in Sect. 4.2). 
This is at the basis of the better performances provided, on average, by FanG-HPO. Cur-
rently, one of the most important practical advantages is that ML developers can choose 
among BoTorch-MOMF and FanG-HPO according to their programming skills, specifi-
cally coding in Python or R. On the other hand, we are currently working on porting our 
code in Python for evaluating its integration into the BoTorch platform.

It is important to remark that, whenever a real-life decision support system has to 
be developed, the choice of the most appropriate metrics, both in terms of error and 
fairness, must be carefully chosen depending on the specific problem/dataset. In this 
study we have just selected misclassification error and DSP for all the experiments in 
order to have a homogeneous experimental setting, even if they could be not the most 
appropriate choices for each one of the dataset. On the other hand, it is also interesting 
to remark that all the three approaches are agnostic to the underlying semantic of the 
adopted metrics, so they show similar behaviours also in the case that different metrics 
could be used.

Future works are going to investigate the possibility to also consider cost-aware—aka 
location-dependent or frugal—optimization, recently proposed in Lee et al. (2020), Cande-
lieri & Archetti (2021a), Luong et al. (2021) and Wu et al. (2021), where nominal sources’ 
query costs are not fixed but depends on the hyperparameters configuration to evaluate and 
can be learned along the optimization process. Moreover, validating FanG-HPO on more 
realistic datasets and a larger set of ML algorithms will allow us and other research groups 
to further extend and improve it.

More in detail, the github repository contains:

• The four pre-processed (fairness) datasets.
• All the basic R scripts implementing AGP, EHVI, and the core functionalities of FanG-

HPO.
• One R script for each pair dataset - ML algorithm to run FanG-HPO starting from the 

associated autogluon-FairBO run.
• Python scripts (called from R scripts) for training MLP, RF, XGB, and SVM classifiers, 

given a specific configuration of their hyperparameters.
• All the results obtained with FanG-HPO: https:// drive. google. com/ drive/ folde rs/ 14o7F 

bZAwU WfJn2 QHn0f oqRdH tVCob 1tx? usp= shari ng

Moreover, from the following Google Drive folders it is possible to download:

https://drive.google.com/drive/folders/14o7FbZAwUWfJn2QHn0foqRdHtVCob1tx?usp=sharing
https://drive.google.com/drive/folders/14o7FbZAwUWfJn2QHn0foqRdHtVCob1tx?usp=sharing
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• Results of the autogluon-FairBO runs, used as a starting points for the associated 
FanG-HPO and BoTorch-MOMF runs: https:// drive. google. com/ drive/ folde rs/ 1qxSU 
2iuyv f1BZF fkDyr YPLSu eyFPc 3J3? usp= shari ng

• Results obtained with BoTorch-MOMF: https:// drive. google. com/ drive/ folde rs/ 1060Z 
v3YvK Lc840 1FPwV d9VSVg_ P- N57w? usp= shari ng

• The autogluon-FairBO based HPO code implemented and used to run experiments: 
https:// drive. google. com/ drive/ folde rs/1- 2PYP6 uS- r8Oe7 0ZwSx plJr6 kaWPd DCM? 
usp= shari ng (for installation and configuration, please use the official documentation 
of autogluon).

• The BoTorch-MOMF based HPO code implemented and used to run experiments: 
https:// github. com/ andre apont i5/ FanG- HPO- MOMF. git (for installation and configura-
tion, please use the official documentation of BoTorch).

• all the detailed results of all the FanG-HPO runs, along with results from the zlrml 
and fgrrm algorithms: https:// drive. google. com/ drive/ folde rs/ 1H_ l7yYq IC6Zy 2e7LR 
LznQK e2GZ2 sgPwe? usp= shari ng

Appendix A

A.1 Multi‑objective optimization

Figure 10 summarizes the main concepts of Pareto analysis in the multi-objective setting. 
For the sake of visualization, a two objectives problem, with a two dimensional search 
space Ω , is considered. On the left hand side the search space and the (unknown) Pareto 

Fig. 10  On the left: box-bounded search space Ω , (unknown) Pareto set, Pareto and not-Pareto solutions. 
On the right: (unknown) feasible space within the outcome space (i.e., consisting of all the outcomes asso-
ciated to solutions in the search space), Pareto (aka dominant) outcomes, not-Pareto (aka dominated out-
comes), and actual (unknown) Pareto front

https://drive.google.com/drive/folders/1qxSU2iuyvf1BZFfkDyrYPLSueyFPc3J3?usp=sharing
https://drive.google.com/drive/folders/1qxSU2iuyvf1BZFfkDyrYPLSueyFPc3J3?usp=sharing
https://drive.google.com/drive/folders/1060Zv3YvKLc8401FPwVd9VSVg_P-N57w?usp=sharing
https://drive.google.com/drive/folders/1060Zv3YvKLc8401FPwVd9VSVg_P-N57w?usp=sharing
https://drive.google.com/drive/folders/1-2PYP6uS-r8Oe70ZwSxplJr6kaWPdDCM?usp=sharing
https://drive.google.com/drive/folders/1-2PYP6uS-r8Oe70ZwSxplJr6kaWPdDCM?usp=sharing
https://github.com/andreaponti5/FanG-HPO-MOMF.git
https://drive.google.com/drive/folders/1H_l7yYqIC6Zy2e7LRLznQKe2GZ2sgPwe?usp=sharing
https://drive.google.com/drive/folders/1H_l7yYqIC6Zy2e7LRLznQKe2GZ2sgPwe?usp=sharing
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set are depicted; on the right hand side, the outcome space spanned by the two objectives is 
illustrated, along with the (unknown) feasible space (containing the outcomes associated to 
all the possible solutions in the search space) and the (unknown) actual Pareto front.

A.2 Gaussian process regression

A Gaussian process (GP) is a collection of random variables, any finite number of which 
have a joint Gaussian distribution, and it is completely specified by its mean function, �(x) , 
and covariance function, k(x, ��) . A GP is denoted with GP

(
�(x), k(x, ��)

)
 (Williams & 

Rasmussen, 2006; Gramacy, 2020). Importantly, these two scalar-valued functions can be 
conditioned on a set of available observations, leading to a probabilistic regression model 
which can be used to make predictions at any location x , according to the so-called GP’s 
predictive (aka posterior) mean and standard deviation. While the first represents the pre-
dicted value, the second represents the associated predictive uncertainty.

Consider to have performed n queries, then denote with X1∶n =
{
x(i)

}
i=1∶n

 the set of 
queried locations and with Y1∶n =

{
y(i)

}
i=1∶n

 the associated observed outcomes, possibly 
noisy (i.e., y(i) = f

(
x(i)

)
+ �(i) , where �(i) is assumed to be a zero-mean Gaussian noise, 

�(i) ∼ N
(
0, �2

�

)
,∀ i ∈ {1, ..., n} ). Then, the GP’s predictive mean and variance, conditioned 

to the n performed queries, are respectively computed as follows:

where K is an n × n matrix whose entries are kij = k
(
x(i), x(j)

)
 , and k(x,X1∶n) is the 

n-dimensional row vector 
(
k(x, x(1)), ..., k(x, x(n))

)
 . Just for completeness, k

(
X1∶n, x

)
 is the 

n-dimensional column vector k
(
x,X1∶n

)⊤ . The GP’s predictive uncertainty is the posterior 
standard deviation, that is �(x) =

√
�(x)2.

Before conditioning a GP to a set of observations, two priors must be provided, relatively 
to the mean and the covariance functions. Usually, the first is set to zero: this is not a limi-
tation because the posterior mean will be not confined to this value. However, it is possi-
ble to incorporate explicit basis functions for expressing prior information on the function to 
approximated by the GP model (Williams & Rasmussen, 2006). On the contrary, the covari-
ance function is chosen among a set of possible kernel functions, such as Squared Exponen-
tial, Power Exponential, and Matérn kernels, offering different modelling options with respect 
to structural properties of the function to be approximated, especially smoothness (Gramacy, 
2020; Archetti & Candelieri, 2019; Frazier, 2018; Williams & Rasmussen, 2006).
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