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Abstract 24 

Detrital geochronology employing the widely-used zircon U-Pb proxy is biased towards 25 

igneous events and metamorphic anataxis; additionally, zircon is highly refractory and 26 

frequently polycyclic. Garnet, a rock-forming and thus commonly-occuring mineral, is 27 

predominantly metamorphic and much less refractory. Here, we report in-situ U-Pb and Lu-Hf 28 

ages from detrital garnet hosted in ancient and modern sediments of the European Alps. Both 29 

geochronometers are biased towards the most recent garnet-crystallising metamorphic event in 30 

the source area, with fewer inherited ages. This likely reflects efficient removal of inherited 31 

garnet during diagenesis and metamorphism, and is in contrast to detrital zircon, apatite, and 32 

rutile U-Pb data which largely record pre-Alpine ages. Neither the U-Pb nor Lu-Hf system in 33 

garnet exhibits a relationship between age recovery and composition. However, the Lu-Hf 34 

system in garnet yields significantly better age recovery than the U-Pb system. Estimated initial 35 
238U/206Pbc values at the time of crystallization are near unity for the garnet analysed in this 36 

study, suggesting that garnet does not significantly partition U from Pb during crystallization, 37 

at least for the generally almandine-rich garnets analysed in this study. Hence, Lu-Hf 38 

geochronology of detrital garnet offers an effective method to detect and date the most recent 39 

phase of mid-grade metamorphism in sub-anatectic source areas, in which detrital zircon U-Pb 40 

analysis may be of less utility.   41 

Plain Language Summary 42 

Mountain ranges are characterized by rapid changes in their constituent rocks as these undergo 43 

metamorphism to adjust to increasing pressure and temperature during burial. These 44 

metamorphic processes drive mineral crystallization. Once cooled, each mineral acts as a 45 

geochemical reservoir isolated from the surrounding environment. Therefore, if a mineral has 46 

incorporated a radioactive isotope during crystallization, it can be dated to constrain the timings 47 

and rates of metamorphism. As erosion ultimately converts crystalline bedrock to sediment, 48 

the geological histories of these processes are preserved in the sediment shed during erosion. 49 

Consequently, these histories can be read from sedimentary rocks in adjacent sedimentary 50 

basins. Minerals traditionally used to study the sources of these sediments, such as zircons, 51 

largely grow from molten rock rather than during metamorphism, and are tough enough to be 52 

recycled through multiple tectonic events. The mineral garnet more commonly grows under 53 

metamorphic conditions and is more thus more effective at directly recording the most recent 54 

phases of significant mountain building. Here, we present uranium-lead and lutetium-hafnium 55 

ages of garnet in modern and ancient sediment from the Alps. We show that garnet 56 

preferentially records Alpine events, and is thus suitable for provenance studies targeting the 57 

most recent mountain building event.  58 

1 Introduction 59 

1.1 The utility of detrital garnet in sedimentary provenance analysis 60 

Detrital geochronology is a powerful tool for interrogating the sedimentary archive of 61 

paleo-hinterland tectonic, metamorphic, and climatic processes, and can also be applied to 62 

modern river sediment as a first-pass tool to establish regional bedrock ages (e.g., von Eynatten 63 

& Dunkl, 2012; Ledent et al., 1964; Machado & Gauthier, 1996; Najman, 2006). The zircon 64 

U-Pb detrital geochronometer has seen widespread adoption in provenance analysis (3,626 of 65 

4,471 results for the search term detrital geochronology also contain the term zircon U-Pb; 66 

Clarivate Analytics Web of Science). However, zircon fertility is strongly biased towards 67 

intermediate to felsic source rocks (Boehnke et al., 2013). Moreover, zircon neocrystallization 68 

is volumetrically limited in metamorphic terranes which do not achieve anatexis (e.g., Moecher 69 

& Samson, 2006), and is typically restricted to rim overgrowths which are vulnerable to 70 
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mechanical destruction during fluvial transport, and which are also challenging to detect and 71 

analyse (e.g., Campbell et al., 2005).  72 

Therefore, it is desirable to develop complementary provenance tools to identify 73 

metamorphic source rocks in the detrital record (Zack et al., 2011). Garnet group minerals are 74 

rock-forming in several common metamorphic lithologies and are also present as accessory 75 

minerals in a wide range of igneous and metamorphic rocks. Garnet is therefore a common 76 

constituent of clastic detritus from orogens. Here and throughout, we use the term garnet as a 77 

synonym for garnet group silicates in the garnet supergroup. These have the general formula 78 

X3Y2Z3O12 in which the Z-site is occupied by Si; the fourteen known end members of this 79 

complex solid solution include the geologically common varieties almandine Fe3Al2(SiO4)3, 80 

andradite Ca3Fe2(SiO4)3, grossular Ca3Al2(SiO4)3, spessartine Mn3Al2(SiO4)3, pyrope 81 

Mg3Al2(SiO4)3, and uvarovite Ca3Cr2(SiO4)3 (Grew et al., 2013).  82 

The wide range of documented stoichiometry, and potential for correlation to source 83 

rock type, has resulted in extensive use of garnet composition as a detrital provenance tool 84 

(Connally, 1964; Morton, 1985; Schönig et al., 2021; Stutenbecker et al., 2017; Suggate & 85 

Hall, 2014). Importantly, the broad P-T stability range of garnet in most bulk rock compositions 86 

means that neocrystalline garnet is shed to the sediment routing network during almost every 87 

orogenic exhumational phase, beginning with epidote-garnet dominated heavy mineral 88 

assemblages from upper-greenschist-facies-grade metasedimentary cover units, through 89 

gneissose hornblende-garnet-epidote-aluminosilicate suites, culminating in debris from garnet-90 

cordierite bearing leucogranites generated by anataxis (Andò et al., 2013; Garzanti et al., 91 

2010a). Garnet group minerals comprise 5-42 % of the heavy mineral fraction in the bedload 92 

of rivers draining major modern orogens where sediment production is dominated by rapid 93 

exhumation of metamorphic crystalline bedrock, including the Po, Ganges-Brahmaputra, and 94 

Indus (Garzanti et al., 2005; Garzanti and Andò, 2007; Garzanti et al., 2010a; Garzanti et al., 95 

2010b). In rivers draining tectonically quiescent continental interiors characterized by 96 

widespread ancient sedimentary cover, the garnet fraction is typically < 7 %, including the 97 

Amazon, Congo, Mississippi, Nile, and Zambezi (Garzanti et al., 2015, 2019, 2021; Mange & 98 

Otvos, 2005; do Nascimento et al., 2015).  99 

Despite the abundance of garnet in recent surficial sediments,  it is only moderately 100 

stable during burial and diagenesis. Studies of Cenozoic-Mesozoic depocenters in the North 101 

Sea, Nile Delta, Bay of Bengal and Gulf of Mexico indicate that near-complete dissolution of 102 

sand-grade garnet occurs at burial depths of 4-5 km (Andò et al., 2012; Garzanti et al., 2018; 103 

Milliken, 2007; Morton & Hallsworth, 2007). Garnet is also rapidly destroyed by prolonged 104 

residence in soils (Velbel, 1984; Andò et al., 2012). As a result, garnet is considerably less 105 

refractory than other commonly-used detrital U-Pb geochronometers including zircon, rutile, 106 

apatite, but more so than titanite, which is typically removed at 3-4 km burial depths (Andò et 107 

al., 2012; Garzanti et al., 2018; Morton & Hallsworth, 2007). Recycling of detrital garnet into 108 

younger orogens is thus expected to be rare, although it has been reported (Manzotti & 109 

Ballèvre, 2013). Garnet is also commonly eliminated from metasediment during the early 110 

stages of metamorphism (Cave et al., 2015), but preservation of inherited garnet retained in 111 

polycyclic crystalline bedrock has also been reported (Walker et al., 2021; Argles et al., 1999). 112 

Significantly, a compositional control on garnet diagenetic stability has been documented, with 113 

a decrease in the Ca content of bulk garnet separates with burial depth and an increase in Fe 114 

content (Morton & Hallsworth, 2007). As Mn and Mg contents in that example remained 115 

unchanged, this could indicate higher diagenetic vulnerability of grossular- and uvarovite-rich 116 

garnets.  117 

 118 
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1.2 Garnet geochronology  119 

 In crystalline bedrock, garnet is datable using the Rb-Sr, Sm-Nd, Lu-Hf, and U-Pb 120 

radioisotope systems. As with many geochronometers, the garnet host seldom completely 121 

excludes the daughter element during crystal growth: the isotopic composition of the initial 122 

daughter component must therefore be corrected during age calculation, normally by the 123 

isochron method (Nicolaysen, 1961). Garnet typically has very low Rb/Sr ratios, so the 124 
87Rb/86Sr  age is normally calculated as a model age from 87Sr/86Sr, requiring assumptions 125 

regarding matrix Rb/Sr during garnet growth which cannot easily be verified in a detrital 126 

context (Christensen et al., 1989). Typical 147Sm/144Nd ratios, while higher than 87Rb/86Sr, are 127 

also low (typically < 3 except in highly fractionated rocks such as pegmatites; Thöni, 2003). 128 

Coupled with the long half-life of 147Sm, analysis of a co-crystallising phase with lower initial 129 

Sm/Nd is required to anchor the Sm-Nd isochrons (e.g., Baxter & Scherer, 2013). Low Sm/Nd 130 

and slow radiogenic ingrowth probably renders impractical the use of detrital single-garnet Sm-131 

Nd analyses coupled with initial 143Nd/144Nd estimates obtained from Nd isotope terrestrial 132 

evolution models (e.g., DePaolo & Wasserburg, 1976). This hinders application of the Sm-Nd 133 

technique to detrital studies. Although co-analysis of either bulk sediment hosting the detrital 134 

grains (Oliver et al., 2000) or garnet-hosted inclusions have been employed to allow 135 

construction of single-grain isochrons (Maneiro et al., 2019), both methods are somewhat 136 

laborious.   137 

In contrast, the half-lives of 176Lu and 238,235U are shorter than for 87Rb and 147Sm, 138 

leading to faster radiogenic ingrowth. More importantly, initial 176Lu/176Hf in garnet is typically 139 

high (Duchêne et al., 1997) and the terrestrial range of initial Hf isotopic compositions is small 140 

(e.g., Vervoort et al., 1999), such that correction for initial Hf becomes relatively trivial at the 141 

level of precision typically required for detrital studies (Simpson et al., 2021). Empirical and 142 

experimental studies show that the initial U/Pb ratio in garnet can be high (Haack & Gramse, 143 

1972; Hauri et al., 1994); moreover, the relatively predictable isotopic evolution of crustal Pb 144 

(Stacey & Kramers, 1975) facilitates correction of single-analysis U-Pb ages for initial Pb using 145 

the same approach typically employed for detrital analysis of other common-Pb hosting phases 146 

(e.g., Chew et al., 2020). Both techniques are therefore suitable in principle for detrital single-147 

grain analysis.  148 

Lu-Hf dating of garnet, initially by solution and now by in-situ methods, is 149 

uncontroversial (Duchêne et al., 1997; Simpson et al., 2021). In contrast U-Pb dating of garnet, 150 

despite having a longer history (Burton et al., 1995; Mezger et al., 1989), has been the subject 151 

of debate centered around whether U is hosted in the garnet lattice, or as inclusions which may 152 

be inherited (DeWolf et al., 1996). However, multiple lines of evidence support incorporation 153 

of U in garnet as a trace element, although the mechanisms of incorporation and extent of 154 

possible stoichiometric controls remain unclear. Dissolution of bulk detrital garnet separates 155 

obtained from modern bedload of the Brahmaputra river indicated an average U content of 3.5 156 

µg/g, although co-dissolution of U-hosting inclusions cannot be excluded (Garçon et al., 2014). 157 

In-situ empirical studies by etching of spontaneous fission tracks or ion microprobe analysis 158 

have demonstrated homogeneously-distributed U in garnet up to several hundred µg/g (Haack 159 

& Gramse, 1972; Smith et al., 2004),  with andradite and spessartine typically containing higher 160 

U concentrations than almandine, pyrope, or grossular. Experimental synthesis of pyrope-rich 161 

and pyrope-grossular garnet from silicate melts yield U concentrations up to 60 µg/g; 162 

garnet/melt partitioning coefficients are non-zero, demonstrating that garnet does not 163 

completely reject U during formation (Hauri et al., 1994; Van Westrenen et al., 1999).   164 

In addition to experimental studies documenting the presence of U in the lattice, 165 

mineralogical mechanisms for U-incorporation have also been articulated. Structural modelling 166 
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of ferrite garnet, in which the Z-site Si is partially replaced by Fe, indicates that the resulting 167 

lattice distortion permits weight-percent U concentrations, in agreement with the natural 168 

occurrence of elbrusite (Ca3(Zr1.5 U0.5
6+)Fe3

3+O12), a ferrite garnet in which U is a major element 169 

(Galuskina et al., 2010; Rak et al., 2011). One possible mechanism for U incorporation is the 170 

type of co-substitution found in elbrusite of U6+ with a 2+ species at the Y- and Z-sites of 171 

schorlomite group garnet; schorlomite itself (Ca3Ti2(SiO4)(Fe3+O4)2) forms a solid solution 172 

with the silicate garnet group (Grew et al., 2013). This hypothesized mechanism makes the 173 

useful prediction that U should co-occur with Ti or Zr, and Fe3+ in garnet group minerals, 174 

although these need only occur in trace quantitites as only trace quantities of U are required for 175 

U-Pb analysis. However, as Pb may directly substitute for Fe2+, Mn, Ca, and Mg in the garnet 176 

group X-site (subject to ionic radius constraints), it follows that initial U/Pb ratios during 177 

crystallization may be undesirably low unless Pb has been sequestered in another phase (e.g., 178 

K-feldspar), or bulk rock U/Pb ratios are high (e.g., garnet crystallising in mantle rocks). 179 

Additionally, as with any U-host, garnet is also amenable to fission track and (U-Th-Sm)/He 180 

dating, although these lower-temperature thermochronometers have seen limited use (Aciego 181 

et al., 2003; Haack & Potts, 1972).   182 

Early garnet U-Pb studies employed low-throughput bulk solution analyses, which also 183 

rendered screening for U-hosting inclusions challenging (e.g., Burton et al., 1995; Mezger et 184 

al., 1989). Recent studies employing laser ablation inductively coupled plasma mass 185 

spectrometry (LA-ICPMS) have pioneered the use of large spots to compensate for typically 186 

low U concentrations (Gevedon et al., 2018; Millonig et al., 2020; Salnikova et al., 2018, 2019; 187 

Seman et al., 2017; Yang et al., 2018). Together with identification of matrix-matched 188 

reference materials, this approach has enabled in-situ garnet U-Pb analysis. In-situ Lu-Hf 189 

analysis, previously hampered by insurmountable isobaric interference of 176Lu on 176Hf, has 190 

been enabled by use of an online mass-filtered reaction cell, (LA-ICPMS/MS) which mass-191 

shifts 176Hf by reaction with ammonia to form an interference-free higher-mass polyatomic ion 192 

(Simpson et al., 2021; Woods, 2016). In-situ analysis enables the high analytical throughput 193 

necessary for routine detrital provenance analysis; if a quadrupole instrument capable of rapid 194 

peak jumps is employed, co-monitoring of relevant elemental masses (eg Zr, Ti, P, LREE) 195 

during analysis also enables efficient screening for U- or Lu-hosting inclusions.  196 

Here, we present results from U-Pb and Lu-Hf double-dating, acquired by LA-Q-197 

ICPMS(/MS) for detrital garnet recovered from the Oligo-Miocene pro-foreland basin of the 198 

European Alps, as well as modern Alpine river bedload. We integrate these with Raman 199 

spectroscopic data and discuss the implications for Alpine tectonics and metamorphism, as well 200 

as the future scope of detrital garnet geochronometry. 201 

 202 

1.3 Geological background of the study area 203 

A detailed review of the geological evolution of the eastern Alps is beyond the scope 204 

of this study and the following section is intended only as a brief synopsis. Readers are directed 205 

elsewhere for in-depth discussion (Handy et al., 2010, 2015; Schmid et al., 2008; Stampfli & 206 

Hochard, 2009). Following the prolonged Variscan orogenic cycle (c. 480-290 Ma; Matte, 207 

2001), development of Neotethyan oceanic basins (including the Piedmont-Liguria and Meliata 208 

oceans) led to the separation of Africa from Europe during Late Triassic to Jurassic time, 209 

producing an intervening assemblage of continental microplates and ocean basins. 210 

Reconstructions of this complex tectonic mosaic remain subject to debate, but recent studies 211 

show consensus that the Adria microplate was the southernmost microplate, remained 212 

kinematically linked to Africa, and was separated from the adjacent microcontinent to the 213 

north, termed Alcapia, by a shear zone rather than an ocean basin (Handy et al., 2010, 2015).  214 
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Figure 1. Location map showing (a) tectonic affiliation and (b) metamorphic grade attained 215 

during the Alpine orogen, after Bousquet et al. (2012a,b). Internal massifs: GP – Gran Paradiso; 216 

MR – Monte Rosa; and LD – Lepontine dome and Gotthard nappe. Modern catchments 217 

(italicised labels): TRI –  Trient; BOR – Borgne; ÄRG – Ärgera; and GON – Goneri. White 218 

stars indicate molasse sampling sites, with deposition ages.  219 

 220 

  221 
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Shortening of the Adria-Europe tectonic system led to the mid-Cretaceous Eoalpine 222 

event (c. 140-85 Ma; Handy et al., 2010), comprising partial intra-continental subduction of 223 

Alcapia beneath Adria, followed by accretion. Post-Eoalpine, shortening of the Adria-Europe 224 

system was accommodated by subduction of the Piedmont-Ligurian ocean north of Adria 225 

(Handy et al., 2010), culminating in the Alpine orogen (c. 48-15  Ma). The Eoalpine is restricted 226 

to units east of the Arosa Zone, with the exception of the autochthonous Sesia-Dent Blanche 227 

units of the western Alps. The central and western Alps are characterised by broadly orogen-228 

parallel metamorphic zones, and include twin parallel chains (internal and external) of 229 

crystalline basement massifs (Fig.1). The External Massifs comprise polymetamorphic 230 

gneisses which attained amphibolite-granulite facies during the Eo-Variscan and Variscan 231 

orogens (c. 480-290 Ma; Matte, 2001) followed by Permo-Triassic magmatism and 232 

metamorphism (c. 290-245; (Schuster & Stüwe, 2008), but experienced only moderate (sub-233 

greenschist to greenschist-facies) Alpine metamorphism (Bousquet et al., 2012a). The Internal 234 

Massifs experienced eclogite- to amphibolite-facies grade metamorphism during the Alpine. 235 

Alpine-age HP metamorphism up to eclogite-facies grade occurred between c. 37-30 Ma in the 236 

Internal Massifs; and at c. 48-42 Ma in the surrounding Penninic metasedimentary and meta-237 

ophiolitic units (Liati et al., 2009; Beltrando et al., 2010). The Lepontine Dome subsequently 238 

experienced an amphibolite-facies Barrovian overprint from c. 32-27 Ma which was terminated 239 

by rapid exhumation between c. 22-15 Ma (Boston et al., 2017; Janots et al., 2009).  240 

 241 

2 Materials and Methods 242 

2.1 Sampling strategy 243 

 Here, we report data for samples collected both from the bedload of modern rivers 244 

draining small, quasi-monolithologic catchments, as well as from the Oligo-Miocene pro-245 

foreland molasse basin. These samples were originally collected by Stutenbecker et al. (2017; 246 

2019), who reported major element chemistry acquired using energy-dispersive X-ray 247 

spectrometry and electron microprobe analysis (Fig.2). Sample locations are indicated on 248 

Figure 1 and reported in Table 1. The 63-250 µm size fraction was targeted for garnet 249 

separation.    250 

 251 

2.2 Garnet U-Pb and trace-element analysis by LA-Q-ICPMS 252 

 Analyses were conducted at the National Centre for Isotope Geochemistry (NCIG) at 253 

University College Dublin using a Teledyne Cetac Analyte G2 ArF 193 nm excimer 254 

nanosecond laser ablation system equipped with a HelEx II two-volume cell, coupled to a 255 

ThermoScientific iCAP Qc quadrupole ICPMS. Masses monitored comprised 25Mg, 27Al, 29Si, 256 
31P, 43Ca, 49Ti, 53Cr, 55Mn, 57Fe, 60Ni, 89Y, 91Zr, 139La, 140Ce, 141Pr, 146Nd, 147Sm, 153Eu, 157Gd, 257 
159Tb, 163Dy, 165Ho, 166Er, 169Tm, 172Yb, 175Lu, 177Hf, 202Hg, 204Pb, 206Pb, 207Pb, 208Pb, 232Th, 258 

and 238U. A spot size of 75 µm was employed; further analytical parameters are fully reported 259 

in supplementary table S1. Spikes of P, Ti, Y, Zr, or LREE masses in the time-resolved data 260 

were used to identify and exclude U-hosting inclusions during data reduction (supplementary 261 

Fig.S1). Conventional sample-standard bracketing was employed, with Odikhincha garnet 262 

(Salnikova et al., 2019) used as the primary reference material to correct for intra-session 263 

analytical drift, mass bias, and downhole fractionation. Data reduction employed the 264 

VisualAge_UComPbine data reduction scheme in Iolite 3 (Chew et al., 2014; Paton et al., 265 

2011). Ages were corrected for common-Pb using the 207Pb method, implemented using the 266 

iterative approach of Mark et al. (2016) which employs the terrestrial Pb-isotope evolution 267 

model of Stacey & Kramers (1975). Age calculations were performed using Isoplot (Ludwig,  268 
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Table 1. Samples used in this study, taken from (Stutenbecker et al., 2017; 2019). MRS – 269 

modern river sediment; UFM – upper fluvial molasse; UMM – upper marine molasse; LFM – 270 

lower fluvial molasse. Deposition ages from magnetostratigraphy of Schlunegger et al. (1996).  271 

 272 

Sample Type Lat Long Description 
Deposition 

age (Ma) 

Principal units 

in catchment 

LS2017-3 
Molasse 

bedrock 
47.0057 7.9713 UFM - Napf 14 - 

LS2018-5 
Molasse 

bedrock 
46.9391 7.9508 

UMM - 

Luzern 
19 - 

LS2016-18 
Molasse 

bedrock 
46.7746 7.7324 LFM - Thun 25 - 

LS2018-12 MRS 46.7203 7.2455 
Ärgera 

catchment 
- Gurnigel flysch 

LS2014-19 MRS 46.2242 7.4072 
Borgne 

catchment 
- 

St Bernard-

Combin-Dent 

Blanche nappes 

LS2014-29 MRS 46.5330 8.3574 
Goneri 

catchment 
- Gotthard nappe 

LS2014-37 MRS 46.1323 7.0463 
Trient 

catchment 
- 

Mont Blanc - 

Aiguilles 

Rouges external 

crystalline 

massif 

  273 



manuscript submitted to Journal of Geophysical Research: Earth Surface 

9 

 

Figure 2. Compositions of garnet analysed in this study, from Stutenbecker et al. (2017; 2019). 274 

Andradite-rich garnets are excluded (n = 2). Yellow – double-dated; magenta – acceptable Lu-275 

Hf age only; purple – acceptable U-Pb age only; blue – no acceptable age recovered. 276 

 277 

  278 
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2012). As many analyses were discordant due to the incorporation of common-Pb during 279 

crystallization, a discordance filter was not applied. However, many analyses exhibited 280 

undesirably high age uncertainty. An uncertainty filter was therefore applied following the 281 

approach of Chew et al. (2020), such that: 282 

2𝜎(%) 𝑙𝑖𝑚𝑖𝑡 = (5 × 𝑎𝑔𝑒−0.5) × 100 283 

Afrikanda, Dashkesan, and Chikskii garnets were used as secondary reference materials 284 

and treated as unknowns throughout the data reduction process (reference U-Pb TIMS ages 285 

377 ± 3 Ma, 147 ± 2 Ma, and 492 ± 2 Ma respectively; Salnikova et al., 2018; Salnikova et al., 286 

2019; Stifeeva et al., 2019). Afrikhanda yielded a lower-intercept U-Pb age of 368.1 ± 2.6 Ma 287 

(MSWD = 1.2, n = 51), and Dashkesan 146.0 ± 1.3 Ma (MSWD = 0.92, n = 50); both are 288 

slightly discordant. Chikskii analyses are over-dispersed (MSWD = 3.3) and show signs of 289 

both Pb-loss and common-Pb incorporation, so no meaningful age can be reported; this is in 290 

agreement with a previous report that the U-Pb system in Chikskii garnet is over-dispersed 291 

(O’Sullivan et al., 2023).   292 

 Trace element data were also reduced in Iolite using the Trace Elements DRS, 293 

employing 29Si as an internal standard to correct for yield variation. The primary reference 294 

material was NIST612. As no garnet trace element reference material was available, the 295 

komatiite glass GOR-132 was employed as a secondary reference material and treated as an 296 

unknown (Jochum et al., 2006). Reference values typically reproduced within 5% despite many 297 

being present at ng/g concentrations; an exception was Fe which was likely affected by a 298 

polyatomic Ca-based interference (e.g., Malinovsky et al., 2003). This was aggravated by the 299 

unnaturally high reference Ca/Fe ratio in the synthetic NIST glass. U-Pb and trace-element data 300 

are fully reported in supplementary table S2.  301 

 302 

2.3 Garnet Lu-Hf and trace-element analysis by LA-Q-ICPMS/MS 303 

A subset of 172 grains where sufficient material remained after U-Pb ablation were 304 

selected for Lu-Hf analysis. Analyses were conducted at Adelaide Microscopy, The University 305 

of Adelaide, using a RESOlution 193 nm laser ablation system (Applied Spectra) with a S155 306 

sample chamber (Laurin Technic), coupled to an Agilent 8900x tandem mass spectrometer 307 

(ICPMS/MS). The method involves the addition of NH3 (supplied as a 1:9 NH3:He mix for 308 

safety reasons) into the reaction cell of the mass spectrometer (at a rate of 3 mL min−1) to 309 

promote efficient formation of the Hf((NH)(NH2)(NH3)3)
+ reaction product as a direct proxy 310 

for 176Hf. Equivalent reaction products for isobars 176Lu and 176Yb are negligible, allowing 311 
176Hf and 176Lu to be effectively separated and measured free from isobaric interferences 312 

(Simpson et al., 2021; 2022; Glorie et al., 2023a). Following Simpson et al. (2021), 176+82Hf 313 

was measured as a proxy for 176Hf; 175Lu was measured as a proxy for 176Lu, and 178+82Hf was 314 

measured as a proxy for 177Hf. Isotope ratios were calculated in LADR (Norris and 315 

Danyushevsky, 2018) using NIST 610 as a primary standard (Nebel et al., 2009), and corrected 316 

for matrix-induced fractionation using Hogsbo garnet (1029 ± 1.7 Ma; Romer and Smeds, 317 

1996; Simpson et al., 2021). Resulting Lu-Hf dates were calculated as 2-point (inverse) 318 

isochron ages in IsoplotR (Vermeesch, 2018), where the second point comprised an initial 319 
177Hf/176Hf anchor of 3.55 ± 0.05, which spans the entire range of initial 177Hf/176Hf ratios of 320 

the terrestrial reservoir (e.g., Spencer et al., 2020; Glorie et al., 2023a). The obtained inverse 321 

isochon age for secondary reference material BP-1 garnet was 1752 ± 21 Ma (2σ uncertainty 322 

including propagated uncertainty from Hogsbo) is in good agreement with previously 323 

published Lu-Hf dates (1745 ± 14 Ma and 1744 ± 13 Ma; Simpson et al., 2023 and Glorie et 324 

al., 2023b, respectively). The same uncertainty filter applied to the U-Pb ages was employed.  325 
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Analytical parameters are fully reported in supplementary table S1. Lu-Hf and trace-326 

element data are fully reported in supplementary table S2.  327 

 328 

2.4 Garnet composition by Raman spectroscopy 329 

A subset of garnets (n = 45), including those grains yielding acceptable U-Pb or Lu-Hf 330 

ages where sufficient material remained after ablation, was selected for Raman spectroscopic 331 

analysis. The objective was to assess whether any Raman fingerprint could be used to rapidly 332 

and non-destructively identify grains amenable to dating. This Raman signature is archived in 333 

the entire spectrum as a combination of the Si-O stretching modes represented by “peak 6” (the 334 

main high-frequency band in the 870–927 cm−1 range of Bersani et al., 2009), OH stretching 335 

signals of the OH groups , and laser-induced luminescence bands. 336 

Raman spectra of garnet grains were collected at the Laboratory for Provenance Studies 337 

(University of Milano-Bicocca, Italy) using a Renishaw inVia confocal Raman spectroscope, 338 

equipped with a Leica DM2500 microscope. Non-polarized micro-Raman spectra were 339 

obtained in nearly backscattered geometry, with a green 532 nm line, solid-state laser, with a 340 

spectral resolution of ±0.5 cm-1, and power ≤ 10 mW at the sample. Before each experimental 341 

session, the system was calibrated using a silicon wafer, having its Raman peak at 520.6 ±0.3 342 

cm−1. A 50x LWD (long working distance) objective or, when applicable, a 20x objective were 343 

used. The acquisition of each spectrum was set at 1 second of exposure, 100% of laser power 344 

and 30 accumulations. Firstly, the analytical region was centered at 1090 cm−1 (corresponding 345 

to a 146-1912 cm−1 spectrum range) in order to detect the six characteristic Raman peaks of 346 

garnets, following Bersani et al. (2009). The spectra were elaborated using a Renishaw 347 

Windows®-based Raman Environment (WiRE, v. 4.4) software for determining the Raman 348 

frequencies of the peaks. Secondly, the analytical region was centered at 3700 cm−1, to observe 349 

any Raman bands related to occurrence of OH groups. Raman luminescence fingerprint was 350 

also analyzed in the high frequency region centered at 4300 cm−1. Raman spectroscopic data 351 

are fully reported in supplementary table S3. 352 

 353 

3 Results 354 

 Age spectra for all analysed garnets are shown in Fig. 3. The Lu-Hf data yield a major 355 

modal age peak at c. 25 Ma, plus a subordinate peak at c. 330 Ma; the U-Pb data yield 356 

corresponding peaks at c. 28 Ma and c. 332 Ma, plus a peak at c. 434 Ma. 27 acceptable U-Pb 357 

and 108 acceptable Lu-Hf ages were obtained, representing success rates of 8% and 63% 358 

respectively. Raman data showed no correlation with whether an acceptable U-Pb or Lu-Hf 359 

age could be recovered, so are not discussed further.  360 

  361 

4 Discussion 362 

Garnet U-Pb age recovery is poor, likely due to low initial U/Pb during crystallisation. 363 

As shown in Fig. 4, garnet in this study is not significantly enriched in U relative to Pb during 364 

crystallization, unlike other common-Pb hosting geochronometers (e.g., rutile and apatite). 365 

Ideally the U-hosting phase effectively excludes common-Pb during crystallization (e.g., 366 

zircon), but at least some degree of U enrichment is required to permit sufficient ingrowth of 367 

radiogenic Pb over geologically relevant timescales. Lu-Hf age recovery is considerably better, 368 

but still hampered by relatively low Lu concentrations and the relative youthfulness of the 369 

Alpine orogen which reduces the time for ingrowth of 176Hf. There is no systematic relationship 370 

  371 
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Figure 3. Kernel density estimates for zircon, apatite, rutile, and garnet U-Pb ages, and garnet 372 

Lu-Hf ages. Zircon data are from Honegg-Napf molasse samples of Zimmermann et al. (2018), 373 

corresponding to Thun-Napf samples of this study; apatite and rutile data are from Honegg-374 

Napf molasse samples of Mark et al. (2018); and garnet data are from this study. Density plots 375 

generated using DensityPlotter (Vermeesch, 2012). Data are filtered after approach of Chew et 376 

al. (2020), except for zircon which are filtered using a concordance probability threshold as 377 

described by Zimmerman et al. (2018); n = number of acceptable ages/total analyses. A small 378 

number of ages >800 Ma are excluded for clarity (17 zircon; 1 apatite; 0 rutile; 1 garnet U-Pb; 379 

and 1 garnet Lu-Hf).   380 

  381 
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Figure 4. Distribution and modal values of initial 238U/206Pbc ratios at time of crystallization, 382 

calculated for Alpine rutile, apatite, and garnet. Rutile and apatite data are from Mark et al. 383 

(2018). Garnet data are from this study, and include all analyses for which a finite age could 384 

be calculated, regardless of uncertainty. 385 

 386 

  387 
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between garnet composition and whether or not an acceptable age could be obtained, in 388 

agreement with the Raman observations (Fig. 5).  389 

4.1 Interpretation of detrital garnet ages 390 

The observed garnet U-Pb and Lu-Hf age peaks fit well with known hinterland 391 

tectonometamorphic events. The c. 25-28 Ma age peak records the Barrovian overprint in the 392 

Lepontine Dome (Boston et al., 2017; Janots et al., 2009; Liati et al., 2009). The c. 330-332 393 

Ma age peak records Variscan metamorphism during the collision of Laurussia and Gondwana, 394 

which is widely preserved in polycyclic Alpine crystalline bedrock (e.g., von Raumer et al., 395 

2009). The c. 434 Ma U-Pb peak records a Siluro-Ordovician metamorphic event documented 396 

in polycyclic units of the external massifs (Schulz & von Raumer, 2011), probably caused by 397 

docking of Armorica and Gondwana (Matte, 2001). Preservation of pre-Alpine detrital garnet 398 

in sedimentary units incorporated into the Alpine orogen and subjected to blueschist facies 399 

metamorphism has also been documented (Manzotti & Ballèvre, 2013).  400 

However, the garnet U-Pb and Lu-Hf age spectra clearly differ, with the U-Pb system 401 

preserving more pre-Alpine ages. It is also important to consider that most garnets analysed 402 

here did not yield acceptable ages for both systems; therefore, some of the garnets yielding 403 

Carboniferous and Silurian U-Pb ages could be from sources which were not strongly affected 404 

by the Alpine orogen or which were otherwise shielded, and might have yielded compatible 405 

Lu-Hf ages had sufficient Lu been present. Nonetheless, as previously observed for other 406 

phases (e.g., the U-Pb and Lu-Hf systems in apatite; Glorie et al., 2022), garnet ages obtained 407 

from the same sample using multiple dating methods need not always agree within analytical 408 

uncertainty (e.g., Smit et al., 2013). Such disagreement is expected where radioisotope systems 409 

hosted in the same phase have differing diffusivities. Other causes of over-dispersion may 410 

include inclusions and parent zonation during geologically prolonged or polyphase mineral 411 

growth. Note that these mechanisms are not mutually exclusive. Where in-situ analysis is 412 

employed, as here, inclusions are readily detected and excluded by co-analysis of elements 413 

stoichiometric to the  phases. Parent isotope zonation effects may be induced either by Raleigh 414 

fractionation (Kohn, 2009) or by polyphase growth.  However, in detrital studies, the small age 415 

offsets caused by fractionation effects may be negligible where the objective is to distinguish 416 

between geological events well separated in time, e.g., different orogenies. Polyphase growth 417 

recording multiple orogenic events is likely to be less important in garnet than in more 418 

refractory geochronometers (e.g., the U-Pb system in zircon) because relict or detrital garnet is 419 

thought to seldom survive diagenesis and the early stages of prograde metamorphism (Garzanti 420 

et al., 2018; Cave et al., 2015; Manzotti & Ballèvre, 2013). However, inherited garnet which 421 

is retained in polycyclic crystalline bedrock without being released to the sedimentary system 422 

may record multiple metamorphic events (e.g., Walker et al., 2020; Argles et al., 1999). Thus, 423 

although anticorrelated U and Lu zoning in garnet has been documented (Raimondo et al., 424 

2017), it is unlikely to be a widespread cause of significantly different U-Pb and Lu-Hf ages. 425 

To assess whether the different U-Pb and Lu-Hf age spectra arise from diffusivity, we 426 

calculate the closure temperatures for both systems (Dodson, 1973) in Matlab®. The diffusivity 427 

of Lu and Hf has recently been experimentally re-evaluated in gem-quality natural spessartine 428 

garnet (Bloch et al., 2015, 2020). Unusually, both parent and daughter elements are proposed 429 

to diffuse at geologically reasonable cooling rates and grain sizes. While the closure 430 

temperature for Hf in garnet is typically > 730 °C, Lu may be mobile at temperatures as low as 431 

600-700 °C for grain radii < 100 µm, provided cooling rates are below c. 1 °C/Ma (Fig. 6a & 432 

b). However, at the low concentrations typical in natural garnet, significant Lu diffusion was 433 

observed in experiments at atmospheric pressure but not where experimental pressures 434 

exceeded 1 GPa (Bloch et al., 2020). As experiments at intervening pressures were not  435 
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Figure 5. Principle component analysis plots illustrating the lack of correlation between garnet 436 

composition and age recovery (yellow – age obtained; blue – no age obtained) for (a) U-Pb 437 

and (b) Lu-Hf.   438 

 439 

 440 
 441 

  442 
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Figure 6. Closure temperature estimates for Hf (a), Lu (b), and Pb (c) in garnet, for cooling 443 

rates of 0.1 to 100 °C Ma-1.  444 

  445 
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performed it is unclear whether significant Lu diffusion may be expected at geologically 446 

plausible PT conditions. The documented preservation of oscillatory Lu zoning in garnet 447 

growing during prograde conditions > 600 °C and < 1 GPa suggests Lu diffusion in geologically 448 

relevant PT conditions may be less significant than experimental data suggest (Guilmette et al., 449 

2018). A pressure control was more definitively documented for Hf diffusivity, but the effect 450 

is relatively minor: a 1.5 GPa increase in pressure increases closure temperature by < 8% 451 

(Bloch et al., 2020). A dependence on Si activity is even more minor and is not considered 452 

here.  453 

For the U-Pb system in garnet, experimental diffusivity data are unfortunately not 454 

available and empirical data are limited. Therefore, we use Pb diffusivity documented in other 455 

phases and the empirical relationship between ionic porosity and diffusivity to estimate closure 456 

temperatures (Dahl, 1997; Zhao & Zheng, 2007). The resulting estimates show a strong 457 

compositional control, with the U-Pb system in pyrope having very high closure temperatures 458 

(Fig. 6c).  As the closure estimates presented here are for pure end-members, it is not clear how 459 

to quantify closure temperature for more commonly observed intermediate garnet 460 

compositions. However, the majority of garnets analysed  in the study are almandine-461 

dominated, which is the second most retentive end-member for Pb after pyrope. Thus, garnets 462 

dominated by almandine-pyrope conceivably have higher closure temperatures for U-Pb than 463 

for Lu-Hf, especially at low pressures where Lu may be mobile. Unfortunately, it is not possible 464 

to calculate Lu-Hf closure temperatures in other garnet end-members for direct comparison 465 

using the ionic porosity model, as Hf diffusivity has been determined only in a small number 466 

of phases, some of which exhibit very similar diffusivity (almandine, forsterite, rutile, 467 

spessartine, and zircon; Bloch et al., 2015, 2020; Cherniak, 2003; Cherniak et al., 2007; 468 

Jollands et al., 2014). However, measured diffusivities for these minerals do not display the 469 

linear relationship to ionic porosity identified by Zhao & Zheng (2007), and REE and Hf 470 

diffusivity was not observed to vary significantly between almandine and spessartine garnet 471 

(Bloch et al., 2015).   472 

However, for the small subset (n = 9) of garnets analysed here which yielded both 473 

acceptable Lu-Hf and U-Pb ages, the ages from both systems define a line with a slope and 474 

intercept within uncertainty of one and zero respectively, when plotted together (Fig. 7). The 475 

small sample size means that the relationship should be treated with some caution, and some 476 

ages are clearly in disagreement. Nonetheless, these double-dated grains suggest that ages 477 

obtained from both systems are likely to be in agreement, and do not indicate a systematic 478 

tendency for either radioisotope system to yield older ages, which would be expected if one 479 

system had significant diffusivity at Alpine metamorphic temperatures.    480 

4.2 Relationship of detrital garnet ages to other detrital geochronometers 481 

The detrital garnet Lu-Hf and U-Pb ages can also usefully be compared with the age 482 

spectra of other detrital geochronometers recovered from the same molasse units (Fig. 3). The 483 

Alpine orogen is essentially unrecorded by the U-Pb system in zircon, due to the very limited 484 

degree of anataxis which is restricted to the Periadriatic line plutons (e.g., the Bergell and 485 

Adamello). Outwith these volumetrically small intrusions, Alpine zircon neocrystallisation is 486 

limited to epitaxial overgrowth (Rubatto & Hermann, 2003). The U-Pb system in apatite also 487 

yields only a small number of Alpine ages, and is dominated by Variscan metamorphism and 488 

post-Variscan magmatism (c. 290 Ma; Cassinis et al., 2011). While Alpine rocks yield 489 

abundant apatite, the widespread greenschist to amphibolite facies grade metamorphism of the 490 

central Alps is associated with low-U apatite, likely rendering many Alpine-age apatite grains 491 

undatable by U-Pb (Henrichs et al., 2019; Malusà et al., 2017). The U-Pb system in rutile does  492 

  493 
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Figure 7. AgeU-Pb vs AgeLu-Hf for double-dated garnets (n = 9) yielding acceptable ages for both 494 

systems. These define a line with a slope and intercept within uncertainty of one and zero, 495 

respectively; however, some ages are not in agreement as indicated by the high MSWD. 496 

Consistent agreement between the two age systems is not necessarily expected given the 497 

differences in closure temperature.   498 

  499 
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yield subordinate Alpine age peaks, but at c. 77 Ma and c. 25 Ma; the former likely records  500 

Eoalpine metamorphism in the Sesia unit, and the latter likely records cooling through the Pb 501 

partial retention zone towards the end of the Lepontine Barrovian overprint. However, the 502 

dominant rutile U-Pb age peaks are Variscan.  503 

Thus, detrital garnet ages appear strongly biased towards the most recent garnet-504 

crystallising metamorphic event, with fewer pre-Alpine ages than other detrital 505 

geochronometers. This is probably due to garnet being much less refractory than rutile or 506 

zircon, although polycyclic garnet has been documented (e.g., Argles et al., 1999; Manzotti & 507 

Ballèvre, 2013). The U-Pb system in detrital rutile also provides a proxy for metamorphism as 508 

rutile rarely forms as a primary igneous mineral (Force, 1980), but the much more refractory 509 

nature of rutile means that a larger number of polycyclic grains yielding inherited ages are 510 

likely to be analysed as well. Garnet is readily removed from heavy mineral assemblages during 511 

diagenesis; in contrast, rutile, together with zircon and tourmaline, is typically among the most 512 

persistant heavy minerals (Hubert, 1962). Both garnet and rutile are also likely to break down 513 

during the sub-greenschist-facies-grade stages of prograde metamorphism (Cave et al., 2015). 514 

Detrital garnet geochronology may thus hold potential as a proxy for the most recent mid-grade 515 

metamorphism in the source area, especially for less deeply eroded orogens preserving 516 

widespread metapelitic rocks which are likely to be rich in garnet. In this context, mid-grade 517 

metamorphic source rocks attain sufficiently high pressures and temperatures to crystallise 518 

garnet, but fall short of anataxis and therefore do not crystallise zircon. The PT conditions for 519 

the garnet-in isograd will evidently vary considerably depending on rock composition, but 520 

temperature estimates between c. 450 – 550 °C for metapelitic rocks are commonly reported, 521 

i.e., within the upper-greenschist-facies- and upper-blueschist-facies-grades (e.g., Florence & 522 

Spear, 1993). However, spessartine-rich garnet is stabilised in Mn-rich metapelites at 523 

temperatures at least as low as 400 °C (White et al., 2014) and potentially as low as 300-350 524 

°C (Kennan & Murphy, 1993), showing the importance of integrating garnet composition with 525 

age interpretion. These temperatures are lower than typical rutile formation temperatures of > 526 

c. 450 °C (Chambers & Kohn, 2012), illustrating that detrital garnet geochronology may be 527 

usefully applied to lower-grade orogens which did not extensively crystallise rutile. While such 528 

orogens may also be appropriate targets for 40Ar/39Ar or 87Rb/87Sr analysis of detrital mica, 529 

garnet is less prone to alteration or hydrodynamic fractionation during transport (Garzanti et 530 

al., 2008).    531 

The similarity of the garnet and rutile Alpine age peaks (c. 28-25 Ma vs c. 25 Ma, 532 

respectively) is in reasonable agreement with documented Alpine PT conditions. 533 

Pseudosection modelling using average bulk compositions of passive margin pelite and 534 

greywacke can be used to approximate global PT stability fields for these phases (Yakymchuk 535 

et al., 2018). Such modelling is evidently rather idealized and it is unclear if similar PT stability 536 

fields may be expected from metagranitoids, which are widespread in the western and central 537 

Alps, or in metasedimentary rocks which significantly deviate from average global 538 

compositions. Nonetheless, these models do provide at least some indication of likely mineral 539 

PT stability fields. For these bulk compositions, rutile is completely removed between c. 460-540 

670 °C at pressures < 1 GPa, with rutile stability increasing with pressure. In contrast, garnet 541 

is present throughout this temperature range. At pressures > 1 GPa, both rutile and garnet are 542 

stable (Yakymchuk et al., 2018). Assuming these metasedimentary rock types are reasonable 543 

approximations for Alpine source rocks, neocrystalline Alpine rutile and garnet can only yield 544 

similar ages if source rocks have equilibrated at peak PT conditions within the rutile stability 545 

field, i.e. at < c. 460-670 °C if pressure is < 1 GPa. These values agree reasonably well with 546 

documented PT conditions for Alpine Barrovian metamorphism of c. 350-700 C and ≤ 0.8 GPa 547 

(Todd and Engi, 1997).  548 
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Additionally, the overlap between Alpine garnet and rutile ages suggests that post-peak 549 

cooling to temperatures below the thermal sensitivity of the U-Pb system in rutile must have 550 

been geologically rapid. Diffusivity of Pb in rutile is well established, with experimental and 551 

empirical studies indicating a partial retention zone of c. 490 – 640 °C for geologically typical 552 

grain sizes and cooling rates (Cherniak, 2000; Kooijman et al., 2010). Thermal sensitivity of 553 

both the U-Pb and Lu-Hf systems in garnet is less well constrained, but considered to be c. 600 554 

- 1050 °C for the almandine-dominated garnets analysed here, of typical detrital grain size (50-555 

100 µm radius) subjected to geologically common cooling rates (e.g., Bloch et al., 2020; 556 

O’Sullivan et al., 2023; Smit et al., 2013). Therefore, prolonged residence at temperatures > 557 

490 °C would be expected to yield rutile U-Pb ages younger than garnet ages. Similar rutile 558 

and garnet Alpine ages agree with documented rapid cooling of the Lepontine Dome and 559 

southern Aar-Gotthard massif between c. 22-15 Ma (Boston et al., 2017; Janots et al., 2009).  560 

 561 

5 Conclusions 562 

Both the U-Pb and Lu-Hf isotope systems in garnet are biased towards the youngest 563 

garnet-crystallising metamorphic event in the source area, in agreement with the less refractory 564 

nature of garnet compared to rutile or zircon. Detrital garnet geochronology therefore shows 565 

utility where the objective is to identify sediment sourced from the youngest and, hence, likely 566 

most rapidly exhumed component of an orogen without co-analysis of large numbers of 567 

inherited ages. Age recovery for both systems is not compositionally biased, at least for the 568 

generally almandine-rich garnets analysed here. However, the Lu-Hf system shows 569 

considerably better age recovery than the U-Pb system (8% vs 63%), due to the failure of garnet 570 

to concentrate U relative to Pb during crystallisation. While possible compositional and 571 

pressure controls on both the U-Pb and Lu-Hf  system in garnet may complicate age 572 

interpretation, the ability of this study to reproduce the age of Alpine Barrovian metamorphism 573 

indicates that these complexities are generally unimportant. Detrital garnet Lu-Hf dating, 574 

coupled in future with compositional analysis and crystallisation pressure estimates using 575 

thermoba-Raman-try (Kohn, 2014) and Zr-in-rutile or –titanite detrital thermometry, may offer 576 

scope for rapid first-order reconstruction of source area pressure-time evolution, especially in 577 

areas difficult to access directly.  578 
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