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Abstract

In 1939, H. Zassenhaus introduced the dimension subgroups Dn(G) over a field of char-
acteristic p, a specific type of composition series for a group G connected to the lower
central series, along with the associated p-restricted graded Lie algebra L(G). Jennings
and Lazard later demonstrated that for any group G, this series coincides with the fastest
descending series starting at G and closed under commutators and p-powers.

M. Lazard significantly contributed to elucidating the connection between pro-p groups
and p-restricted Lie algebras. He established that a free pro-p group G, is finitely gener-
ated and free if and only if L(G) shares these properties. Furthermore, he proved that G
is p-adic analytic if and only if L(G) is nilpotent.

In 1966, J. P. May introduced a trigraded spectral sequence linking the homology
of a locally finite, connected, filtered algebra to that of its associated graded algebra.
A subsequent contribution came in 1980 when A. I. Lichtman demonstrated that the
Zassenhaus p-restricted Lie algebra functor preserves free products.

This thesis investigates the potent tool represented by this functor, consolidating
existing knowledge and introducing new results. May’s technique is employed to construct
a spectral sequence that establishes a relationship between the cohomology ring of L(G)
for a finitely generated pro-p group G and that of G. This construction defines a class of
pro-p groups whose spectral sequence collapses on the first page. We characterize such
groups in terms of the lifting of minimal graded free resolutions of F as a gr(F[[G]])-module
to minimal filtered free resolutions of F as an F[[G]], providing examples such as uniform
or mild pro-p groups and proving closure under direct products and free products.

The main result extends the pro-p version of Lichtman’s Theorem to the amalgamated
free pro-p product of finitely generated pro-p groups with strongly embedded amalgam.
This tool is applied to partially answer a question posed by S. Blumer, C. Quadrelli, and
T. Weigel regarding the Zassenhaus p-restricted Lie algebra associated with an oriented
right-angled Artin pro-p group.



Abstract

Nel 1939, H. Zassenhaus introdusse i sottogruppi dimensionali Dn(G) su un campo
di caratteristica p, un tipo specifico di serie di composizione per un gruppo G legato alla
serie centrale inferiore, e insieme l’algebra di Lie p-ristretta graduata associata L(G). In
seguito, Jennings e Lazard dimostrarono che per qualsiasi gruppo G, questa serie coincide
con la serie discendente più veloce chi inizia da G e chiusa per commutatori e potenze di
p.

Lazard contribùı significativamente a chiarire la connessione tra gruppi pro-p e algebre
di Lie p-ristrette. Stabil̀ı che un gruppo pro-p libero G è finitamente generato e libero
se e solo se L(G) condivide queste proprietà. Inoltre, dimostrò che G è p-adicamente
analitico se e solo se L(G) è nilpotente.

Nel 1966, J. P. May introdusse una successione spettrale trigradata che collega l’omologia
di un’algebra localmente finita, connessa e filtrata a quella della sua algebra graduata as-
sociata. Un contributo successivo avvenne nel 1980 quando A. I. Lichtman dimostrò che
il funtore algebra di Lie p-ristretta di Zassenhaus preserva i prodotti liberi.

Questa tesi investiga lo strumento potente rappresentato da questo funtore, consol-
idando le conoscenze esistenti e introducendo nuovi risultati. La tecnica di May viene
utilizzata per costruire una successione spettrale che stabilisce una relazione tra l’anello
di coomologia di L(G) per un gruppo pro-p finitamente generato G e quello di G. Questa
costruzione definisce una classe di gruppi pro-p la cui successione spettrale collassa alla
prima pagina. Caratterizziamo tali gruppi in termini di sollevamento di risoluzioni libere
gradate minimali di F come modulo gr(F[[G]]) a risoluzioni libere filtrate minimali di F
come F[[G]], fornendo esempi come gruppi pro-p uniformi o miti e dimostrando la chiusura
sotto prodotti diretti e prodotti liberi.

Il risultato principale estende la versione pro-p del Teorema di Lichtman al prodotto
libero pro-p amalgamato di gruppi pro-p finitamente generati con un amalgama stretta-
mente incluso. Questo strumento è utilizzato per fornire una risposta, parziale ma pos-
itiva, a una domanda posta da S. Blumer, C. Quadrelli e T. Weigel riguardo all’algebra
di Lie p-ristretta associata a un gruppo pro-p di Artin ad angolo retto orientato.



Introduction

Lie algebras from groups

Lie algebras, introduced by Marius Sophus Lie in the 1870s to explore infinitesimal trans-
formations, have played a pivotal role in understanding the interplay between algebraic
structures and groups. Initially termed ”infinitesimal groups,” Lie algebras revealed their
significance by providing a more manageable framework compared to groups.

This intrinsic property led to a natural interest in studying Lie algebras derived
from groups. One purely algebraic construction, studied by W. Magnus in the 1930s
and further developed by E. Witt and P. Hall, was the N0-graded Lie algebra Lγ(G) =⊕

n γn(G)/γn+1(G)⊗Q, whose homogeneous components are quotients of successive terms
of the lower central series {γn(G)}n of G, and whose Lie bracket is induced from the group
commutator. Among its applications, in the context of rational homotopy theory, it was
used by A. I. Suciu and H. Wang to characterize 1-formal groups, i.e. finitely generated
groups whose classifying space K(G, 1) is 1-formal in the sense of D. Sullivan.

Theorem 1 (Suciu, Wang, [20],[22]). A finitely generated group G is 1-formal (over Q)
if and only if the following hold.

1. G is graded-formal, i.e. Lγ(G) is quadratic.

2. G is filtered-formal, i.e. the completion of the universal enveloping algebra of Lγ(G)
is isomorphic to the completion of the group algebra Q[G], which induces the identity
on their graded objects.

Meanwhile, their usefulness in many fields gained them the right to a study on their
own. By mimicking the behavior of derivations of algebras, N. Jacobson in 1937 intro-
duced the concept of p-restricted Lie algebras. Not long after, this twisted version found
a use in the hands of H. Zassenhaus [1], who, using the dimension subgroups Dn(G) over
a field of characteristic p, a particular type of composition series over a group G related
to the lower central series, introduced the p-restricted graded Lie algebra L(G), which
is the subject of this thesis. Later Jennings provided a characterization of Zassenhaus’
series.

Theorem 2 (Jennings, [2]). Let G be a finite p-group. The dimension subgroup series
{Dn(G)}n is the fastest descending series satisfying

1. D1(G) = G,

2. [Dn(G), Dm(G)] ≤ Dn+m(G) for every n,m.

3. Dn(G)
p ≤ Dpn(G) for every n.
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But it was M. Lazard who showed the power of this connection. He extended Jennings’
result to any group, and applied in particular the construction of Zassenhaus to pro-p
groups, establishing several results connecting a pro-p group G to and its Zassenhaus
p-restricted Lie algebra L(G).

Theorem 3 (Lazard, [3]). G is a free pro-p group over n generators, if and only if L(G)
is the graded free p-restricted Lie algebra over n generators.

Theorem 4 (Lazard, [5]). Let G be a finitely generated pro-p group, the following are
equivalent.

1. G is p-adic analytic.

2. L(G) is nilpotent.

In an effort to compute the cohomology of the Steenrod algebra, which appears as the
E2 page of the Adams Spectral Sequence to calculate the mod-p stable homotopy groups
of spheres, J. P. May constructed a trigraded spectral sequence that links the homology
of a locally finite, connected, filtered algebra, to that of its associated graded algebra.
The same construction can be used to relate the cohomology ring of L(G) for a finitely
generated pro-p group G with that of G.

Some progress has been made on investigating the Zassenhaus functor G 7→ L(G).
For example, A. I. Lichtman proved in 1980 that apart from direct product it preserves
also free products.

Theorem 5 (Lichtman, [8]). Let G be a free product of groups G1 and G2. Then L(G)
is isomorphic to the free product of p-restricted Lie algebras L(G1) and L(G2).

For an arbitrary pro-p group G, it is quite difficult to determine the isomophism type
of L(G). For example, the following question, asked by A. Shalev in a discussion with T.
Weigel in 1994 in Istanbul is, to the author’s knowledge, still open.

Question 6. Let L be a 1-generated N0-graded finite dimensional p-restricted Lie algebra
L. Is it always possible to find a finite p-group G for which L(G) is isomorphic to L?

Structure of the thesis and main results

Chapter 1 deals with filtered, profinite, augmented algebras, and with modules and min-
imal resolutions, outlining a suitable algebraic framework to deal with filtrations over
finitely generated pro-p groups.

Chapter 2 introduces the tools from the theory of spectral sequences necessary to
restate May’s result in more suitable terms.

In Chapter 3 we define the concept of strongly collapsing pro-p groups, provide several
examples and prove that such class is closed under direct products and free products.

In Chapter 4 we extend the pro-p version of Lichtman’s result to amalgamated free
pro-p product of groups, under the minimal additional requirement that the amalgam is
strictly embedded in each factor, i.e. the inclusion of the amalgam in each factor induces
an inclusion of the corresponding restricted Lie algebras.
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Theorem 7. Let H, G1 and G2 be finitely generated pro-p groups such that H is strictly
embedded in G1 and G2, and let G = G1 ⨿H G2 be their amalgamated free pro-p product.
Then the natural morphism of p-restricted Lie algebras

L(G1)⨿L(H) L(G2) → L(G).

is an isomorphism.

In Chapter 5 we restrict our attention to a particular subclass of strongly collapsing
pro-p groups which, in accordance with the terminology of Suciu and Wang will be called
filtered-formal. We will provide several examples, and use our previous result to prove
that this subclass is closed under free product with amalgamation with strongly embedded
amalgam.

In order to investigate on Shalev’s question it will be useful to introduce the concept
of genus of a finitely generated pro-p group G, as

gen (G) = {G′ | L(G′) ≃ L(G)} .

Finally, using again Theorem 7, we give a partial answer to a question posed by Blumer,
Quadrelli and Weigel ([25]) about oriented right-angled Artin pro-p groups.

Question 8 (Blumer, Quadrelli, Weigel). Let Γ be a specially oriented graph, let λ :
Zp → Z×p be a continuous homomorphism and let GΓ,λ be the oriented pro-p right-angled
Artin group associated to Γ and λ. Is it true that L(GΓ,λ) is quadratic?

We prove that L(GΓ,λ) ≃ L(GΓ̈), where GΓ̈ denotes the right-angled Artin pro-p group
associated GΓ,λ.

An affermative answer to Question 8 shows that in general gen (GΓ,λ) contains more
than one isomorphism class of pro-p groups when λ is not trivial, i.e. GΓ̈. Note however
that GΓ,λ is not filtered formal. We are then lead to asking the following question.

Question 9. Let G be a finitely generated pro-p group G. Is it true that gen (G) contains
at most one isomorphism class of filtered formal pro-p groups?
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Chapter 1

Algebras and modules

In this chapter, we will develop the concept of complete profinite augmented algebras and
modules that are entirely free over such algebras. The context created allows us, on the
one hand, to employ tools such as Pontryagin duality, connected to the realm of profinite
groups, and Serre’s Lemma (Proposition 1.3.10), linked to that of complete filtrations.
On the other hand, it enables us to defer the use of pro-p groups to another chapter
(specifically, the third one).

1.1 Filtered modules

1.1.1 Filtered abelian groups

Definition 1.1.1. We say that an abelian group E is filtered if it has a (decreasing)
filtration, that is a function νE : E → Z := Z ∪ {±∞} such νE(0) = +∞ and such that,
for any x, y ∈ E,

νE(x− y) ≥ inf(νE(x), νE(y)).

Example 1.1.2. The constant map νE(x) = 0 defines the trivial filtration on E.

If E is filtered, for any n consider the set

F nE := {x ∈ E | νE(x) ≥ n} .

It is nonempty, as it contains 0. If x and y are elements of F nE, so is x − y, therefore
F nE is a subgroup of E, and clearly F n+1E ≤ F nE. Viceversa, if {F nE}n is a decreasing
series of subgroups, then νE(x) := sup {n ∈ Z | x ∈ F nE} is a filtration.

Definition 1.1.3. Given filtered abelian groups E and E ′, we say that a morphism ϕ :
E → E ′ is

• filtered, if and only if for all x ∈ E,

νE′(ϕ(x)) ≥ νE(x),

• strictly filtered, or strict, if for all x ∈ E, there is an element y ∈ E with ϕ(y) = ϕ(x)
such that

νE′(ϕ(x)) = νE(y).
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Remark 1.1.4. In particular, if ϕ : E → E ′ is injective, it is strict if and only if for all
x ∈ E,

νE′(ϕ(x)) = νE(x).

Lemma 1.1.5. If ϕ : E → E ′ and ψ : E ′ → E ′′ are strict morphisms of filtered abelian
groups and either ϕ is surjective or ψ is injective, then ψ ◦ ϕ is strict.

Proof. Take x ∈ E. By strictness of ψ, there is an element y′ ∈ E ′ such that ψ(ϕ(x)) =
ψ(y′) and νE′′(ψ(ϕ(x))) = νE′(y′).

If ϕ is surjective, there is an element y ∈ E such that ϕ(y) = y′. By strictness of ϕ,
there is an element z ∈ E such that ϕ(y) = ϕ(z) and νE′(ϕ(z)) = νE(z). Therefore,

ψ(ϕ(x)) = ψ(y′) = ψ(ϕ(y)) = ψ(ϕ(z),

νE′′(ψ(ϕ(x))) = νE′(y′) = νE′(ϕ(y)) = νE′(ϕ(z)) = νE(z).

If ψ is injective, ϕ(x) = y′. By strictness of ϕ, there is an element y ∈ E such that
ϕ(x) = ϕ(y) and νE′(ϕ(x)) = νE(y). Therefore

ψ(ϕ(x)) = ψ(ϕ(y),

νE′′(ψ(ϕ(x))) = νE′(y′) = νE′(ϕ(x)) = νE(y).

Definition 1.1.6. We say that a filtered abelian group E is

• bounded from above, if νE(x) ≥ n for all x ∈ E for some n ∈ Z;

• exhaustive, if ν−1E (−∞) = ∅;

• separated, if ν−1E (+∞) = {0}.

Example 1.1.7. Let E be a filtered abelian group and ϕ : E → E ′ be a surjective
morphism. Then we can induce a filtration on E ′ with respect to which ϕ is strict, as

νE′(y) = sup
y=ϕ(x)

(νE(x)) ∀y ∈ E ′.

If ν is another filtration on E ′ for which ϕ is filtered, then νE′(y) ≥ ν(y) for every y ∈ E.

Example 1.1.8. Let ({Ei}i , {ϕij}i≥j) be an inverse system of filtered abelian groups

whose morphisms ϕij : Ej → Ei are filtered. Then their inverse limit
{
Ê, ϕi

}
is filtered,

with filtration

νÊ(x) := inf
i
(νEi

(ϕi(x)).

Let E be a filtered abelian group. The quotients πn : E → E/F nE form an inverse
system of filtered abelian groups and the natural morphism α : E → Ê induced that
sends an element x ∈ E into (πn(x))n ∈ Ê is strict.

Definition 1.1.9. We say that E is complete if α is an isomorphism.

Remark 1.1.10. Let E be a filtered abelian group.
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• If E is complete, it is also separated.

• E can be endowed with a topological group structure, with the subgroups F iE forming
a local basis of neighborhoods of 0. As a topological group, Ê is complete.

For any filtered morphism of abelian groups ϕ : E → E ′, there is a unique filtered mor-
phism ϕ′ : Ê → Ê ′ such that the following diagram commutes.

E E ′

Ê Ê ′

ϕ

α α′

ϕ′

1.1.2 Filtered modules

Definition 1.1.11. We say that a ring R is a filtered ring if it has a filtration such that

1. νR(rr
′) ≥ νR(r) + νR(r

′) ∀r, r′ ∈ R

2. νR(1) = 0.

We say that an R-module M is a filtered R-module if it has filtration such that

νM(rm) ≥ νR(r) + νR(m) ∀r ∈ R, ∀m ∈M.

If F is a field, we say that an F-algebra is a filtered algebra if it has filtration such that
it is a filtered ring and a filtered F-module, where we consider F as a filtered ring with
trivial filtration.

As before, a filtered ring R is a ring which is filtered as an abelian group and
(F nR)(FmR) ⊆ F n+mR for all n,m ∈ Z.

Similarly, a filtered R-module is an R-module which is is filtered as an abelian group
and (F nR)(FmM) ⊆ F n+mM for all n,m ∈ Z.

Definition 1.1.12. Let R be a filtered ring andM an R-module. ThenM can be endowed
with a filtered structure by F iM = (F iR)M . We call it the filtration induced by R.

Example 1.1.13. If R is a ring and I an ideal of R, then I induces a filtration on R by

νR(r) = sup {n | r ∈ In} .

Such filtration is bounded from above and it is separated if and only if
⋂
i I

i equals 0.

Example 1.1.14. If M and M ′ are a right and a left filtered R-module respectively, then
we can define a filtration on their tensor product as

F n(M ⊗RM
′) :=

∑
i+j=n

F iM ⊗R F
jM ′.
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Filtered free modules

Definition 1.1.15. Let R be a separated filtered ring and M a separated filtered R-
module. We say that a set of elements (xi)i∈I of M is a filtered R-basis if for any family
(ri)i∈I of elements of R where almost all ri’s are zero,

νM

(∑
i∈I

rixi

)
= inf(νR(ri) + νM(xi)).

A module that is generated by a filtered basis is called filtered free.

Remark 1.1.16. A filtered basis is linearly independent. Indeed,

∑
i∈I

rixi = 0 =⇒ ν

(∑
i∈I

rixi

)
= +∞ =⇒ ν(ri) + ν(xi) = +∞ ∀i ∈ I.

Since R is separated, if ri ̸= 0 for some i then ν(ri) < +∞. It follows that ν(xi) = +∞.
But as M is also separated, xi = 0.

Remark 1.1.17. If R is a separated filtered ring and M is a free R-module with basis
(xi)i∈I , we may endow M with a filtered R-module structure by assigning to νM(xi) a
nonnegative integer for every i ∈ I, and defining for any m ∈M , with m =

∑
i rixi,

νM(m) := inf(νR(ri) + νM(xi)).

With such filtration, (xi)i∈I is a filtered R-basis for M and M is separated.
If additionally M = A is an algebra and, for any i and j,

νA(xixj) ≥ νA(xi) + νA(xj)

then A is a filtered algebra.

Remark 1.1.18. A morphism of filtered algebras ϕ : C → A induces a filtered C-module
structure on A by a · c := aϕ(c).

νA(a · c) = νA(aϕ(c)) ≥ νA(a) + νA(ϕ(c)) ≥ νA(a) + νA(c).

Definition 1.1.19. We say that morphism of filtered algebras ϕ : C → A is filtered free
if A is filtered free as a filtered C-module.

Remark 1.1.20. If ϕ : C → A is filtered free, it is injective and strict.

• ϕ is injective. Let c ∈ C such that ϕ(c) = 0 and take any element ai of the basis.
In particular νA(ai) < +∞.

+∞ = ν(aiϕ(c)) = ν(ai · c) = νA(ai) + νC(c),

so νC(c) = +∞ and therefore c = 0.

• ϕ is strict. Let c ∈ C and take any element ai of the basis. By comparing

νA(ai · c) = νA(ai) + νC(c),

νA(ai · c) = νA(aiϕ(c)) ≥ νA(ai) + νA(ϕ(c)),

it follows that νA(ϕ(c)) ≤ νC(c).
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Completely free modules

Definition 1.1.21. Let R be a completely filtered ring and M a separated filtered module.
We say that a family of elements of M is a topological basis if it is a filtered basis and if
M is the completion of the submodule generated by such family.

A module that admits a topological basis is called completely free.

Lemma 1.1.22. Let R be a completely filtered ring and I a set, and N the filtered R-
module

N :=
∐
i∈I

R.

Then the completion N̂ of N is contained in the product
∏

i∈I R and consists of the
elements (ri)i ∈ I such that

νR(ri) → −∞

with respect to the cofinite topology.

Proof. By definition of completion, an element of N is m = (mn + F nN)n∈Z such that
for every n, the element mn+F n+1N = mn+1 +F nN and mn is a element (rn,i)i∈I of N .
Therefore,

1. for every n and i we have rn,i + F n+1R = rn,i + F n+1R;

2. for every n, the elements rn,i are zero for almost all i.

Since R is complete, by 1) it follows that for every i there is a unique ri in R such that
ri + F nR = rn,i + F nR for every n. So we may write m as m = (ri)i∈I . Also, for any n,
the element ri + F nR = rn,i + F nR is zero for almost all i, i.e. ri ∈ F nR for almost all i
or, equivalently, νR(ri) ≤ n for almost all i. So (ν(ri))i∈I converges to −∞ in the cofinite
topology.

Viceversa, let m be an element (ri)i∈I of
∏

i∈I R such that ri ∈ F nR for almost all i.
Then m can be written as

m = (mn + F nN)n∈Z,

where mn := (ri)i∈I .

Proposition 1.1.23. Let R be a complete filtered ring and M a completely free R-module
with topological basis (xi)i∈I . Then the elements of M can be uniquely written as∑

i∈I

rixi

where the family (ri)i∈I is such that

νR(ri) + νMi
(xi) → −∞

with respect to the cofinite topology.

Proof. Let N be the the filtered free R-module generated by (xi)i∈I and apply the Lemma
1.1.22 using the fact that νMi

(rixi) = νR(ri) + νMi
(xi).
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1.2 Graded modules

1.2.1 Graded abelian groups

Definition 1.2.1. We say that an abelian group E is graded if it can be written as a
direct sum over the integers of abelian groups

E =
⊕
n∈Z

En.

If x ∈ En, we say that x is a homogeneous element of degree n, and we write degE(x) = n.

Example 1.2.2. Any group E may be endowed with the trivial grading E = E0.

Definition 1.2.3. Given graded abelian groups E =
⊕

nEn and E ′ =
⊕

nE
′
n we say that

a family of morphisms ϕn : En → E ′n is morphism of graded abelian groups ϕ : E → E ′.

Definition 1.2.4. We say that a graded abelian group E =
⊕

nEn is

• bounded from above, if there is some k for which En = 0 for all k ≥ n;

• bounded from below, if there is some k for which En = 0 for all k ≤ n.

1.2.2 Graded modules

Definition 1.2.5. A graded ring R =
⊕

nRn is a ring which is graded as an abelian
group, 1 ∈ R0, and R

nRm ⊆ Rn+m for any n,m ∈ Z.
A graded R-module M =

⊕
nMn is an R-module which is graded as an abelian group

and RnMm ⊆Mn+m for any
If F is a field, we say that an F-algebra is a graded algebra if is graded as a filtered

ring and as a graded F-module, where we consider F as a graded ring with trivial graded
structure.

Definition 1.2.6. If R is a graded ring and M a graded R-module, we say that M is
graded free over R if it admits an R-basis of homogeneous elements.

Definition 1.2.7. We say that morphism of graded algebras ϕ : C → A is graded free if
A is graded free as a graded C-module.

1.3 The functor gr

Definition 1.3.1. Let E be a filtered abelian group. For every i ∈ N0 define the abelian
group

griE :=
F iE

F i+1E

We denote by grE :=
⊕

i griE the graded abelian group induced by the filtered abelian
group E.

If ϕ : E → E ′ is a filtered morphism of filtered abelian groups, we denote by grϕ :
grE → grE ′ the morphism of graded abelian groups induced by ϕ.

9



If x is an element of E, we denote by x the corresponding element in grE.
Note, that since E is separated, x = 0 if and only x = 0, and that if x is a non zero

element, deg(x) = νE(x).

Remark 1.3.2. If R is a filtered ring, grR is a graded ring.
If M is a filtered R-module, grM is a graded grR-module.
If A is a filtered algebra, grA is a graded algebra.

Lemma 1.3.3. Let be R is a filtered ring, M a filtered R-module and X a set of elements
of M . Then X is a filtered R-basis for M if and only if X is a homogeneous grR-basis
for grM .

As a consequence, a morphism ϕ : C → A of filtered algebras is filtered free if and
only if grϕ : grC → grA is graded free.

Proof. Suppose that X = (xi)i∈I is a filtered R-basis for M . Let (ri)i∈I be a family of
elements of R where almost all ri’s are zero, such that∑

i

ri · xi =
∑
i

(ri + F niR) (xi + FmiM) =
∑
i

(rixi + F ni+mi+1M) = 0

We may assume that ri · xi are homogeneous elements of the same degree k. Then

∑
i

ri · xi = 0 ⇐⇒
∑
i

rixi ∈ F k+1M ⇐⇒ νM

(∑
i

rixi

)
≥ k + 1

But since (xi)i∈I is a filtered basis, for every i ∈ I

νM

(∑
i

rixi

)
= νR(ri) + νM(xi) = deg(ri) + deg(xi) = deg ri · xi = k,

against the hypothesis. Viceversa, suppose that (xi)i∈I is a homogeneous grR-basis for
grM . Let (ri)i∈I be a family of elements of R where almost all ri’s are zero, such that

νM

(∑
i

rixi

)
> min

i
{νR(ri) + νM(xi)} =: k.

Let J ⊆ I the subset of indexes i such that νR(ri) + νM(xi) = deg(r)k, i.e. the set of
indexes corresponding for which the elements ri · xi are homogeneous of degree k.(∑

i

ri · xi

)
k

=
∑
i∈J

ri · xi =
∑
i∈J

rixi + F k+1M = 0,

against the hypothesis.

1.3.1 The Lifting Lemma

In the following we prove a Lemma to lift graded free resolutions to completely free
resolutions. The idea is due to Lazard, who attributes it to Serre ([3], Lemma 2.1.1), but
the proof follows P. Day’s approach ([10], Theorem 1).
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Definition 1.3.4. We say that an exact sequence of groups

0 → E
ϕ−→ E ′

ψ−→ E ′′ → 0.

is strict exact if the maps ϕ and ψ are strict.

The following result can be easily verified.

Lemma 1.3.5. If the sequence

0 → E
ϕ−→ E ′

ψ−→ E ′′ → 0.

is strict exact, then for every n the sequence

0 → F nE
ϕ−→ F nE ′

ψ−→ F nE ′′ → 0.

is exact. If the filtrations are exhaustive, the converse also holds.

Lemma 1.3.6. If

0 → E
ϕ−→ E ′

ψ−→ E ′′ → 0

is a strict exact sequence of filtered abelian groups, then

0 → grE
grϕ−−→ grE ′

grψ−−→ grE ′′ → 0

is an exact sequence of graded abelian groups.

Proof. By Lemma 1.3.5, the first two rows of the following diagram are exact:

0 0 0

0 F nE F nE ′ F nE ′′ 0

0 F n+1E F n+1E ′ F n+1E ′′ 0

0 grnE grnE
′ grnE

′′ 0

0 0 0

The columns are exact by definition. By the 3× 3-lemma, it follows that the bottom row
is exact too.

Lemma 1.3.7. Let ϕ : E → E ′ and ψ : E ′ → E ′′ be morphisms of filtered abelian groups,
and assume that the sequence

0 → grE
grϕ−−→ grE ′

grψ−−→ grE ′′ → 0

is exact.

11



• If E is separated, then ϕ : F nE → F nE ′ is a monomorphism;

• If E ′ is separated and E ′′ is complete, then ψ : F nE → F nE ′ is an epimorphism.

• If E, E ′ and E ′′ are complete and exhaustive, then the sequence

0 → E
ϕ−→ E ′

ψ−→ E ′′ → 0

is strict exact.

Proof. By Lemma 1.3.6 the sequence

0 → grnE
grn ϕ−−−→ grnE

′ grn ψ−−−→ grnE
′′ → 0

is exact for every n. We show that, for any j ≥ 1, the sequence

0 → F nE

F n+jE

ϕj−→ F nE ′

F n+jE ′
ψj−→ F nE ′′

F n+jE ′′
→ 0

is exact. We proceed by induction. The case j = 1 is true by hypothesis.

0 0 0

0 grn+j−1E
′ FnE′

Fn+jE′
FnE′

Fn+j−1E′ 0

0 grn+j−1E
FnE
Fn+jE

FnE
Fn+j−1E

0

0 grn+j−1E
′′ FnE′′

Fn+jE′′
FnE′′

Fn+j−1E′′ 0

0 0 0

grn+j−1 ϕ ϕj ϕj−1

grn+j−1 ψ ψj ψj−1

If j > 1, in the above diagram

• the rows are exact;

• the first column is exact by hypothesis

• the the third column is exact by inductive hypothesis.

By the 3× 3-lemma, it follows that the second column is exact too. Passing to the limit,
we obtain that the following sequence is exact

0 → F nÊ → F nÊ ′ → F nÊ ′′ → 0

12



Consider the following commutative diagram.

0 0 0 0

0
⋂
j F

n+jE F nE F nÊ coker(αn) 0

0
⋂
j F

n+jE ′ F nE ′ F nÊ ′ coker(α′n) 0

0
⋂
j F

n+jE ′′ F nE ′′ F nÊ ′ coker(α′′n) 0

0 0 0 0

αn

ϕ

α′
n

ψ

α′′
n

If the first and fourth column are exact, so is the second.
The result follows from the 4-lemma and the second part of Lemma 1.3.6.

Lemma 1.3.8. Let S be bounded from below graded free grA-module. Then there is a
bounded from above, completely free A-module M such that grM = S.

Proof. Let (wi)i∈I be a homogeneous grA-basis for S. Consider the formal A-module M ′

over free a basis (xi)i∈I for i ∈ I. We can endow M with a filtered module structure by
defining

νM ′(xi) := deg(wi).

Clearly M ′ is bounded from below. Since grM ′ = S is graded free, M ′ is filtered free by
Lemma 1.3.3. We conclude by taking M as the completion of M ′.

Lemma 1.3.9. Let M be a completely free A-module, N a completely filtered A-module
and ϕ : grM → grN a graded morphism. Then there is a filtered morphism ϕ : M → N
such that grϕ = ϕ.

Proof. Let (xi)i∈I be a topological basis for M , so that (xi)i∈I is a homogeneous basis for
grM by Lemma 1.3.3. For every i ∈ I, with νM(xi) = n,

ϕ(xi) = yi + F n+1N

for some yi in N with νN(yi) = n. Define ϕ :M → N by

ϕ(xi) := yi.

Proposition 1.3.10. Let M be a complete filtered A-module and (Q•, ∂) a bounded from
below graded free grA-resolution for grM . Then there exists a bounded from above com-
pletely free strict A-resolution (P•, ∂) for M such that grP• = Q• and gr ∂ = ∂.

13



Proof. For every n, Lemma 1.3.8 provides a bounded from above, completely free A-
module Pn such that grPn = Qn. By Lemma 1.3.9, each ∂n lifts to some morphism
∂n : Pn → Pn−1. Since ∂0 : P0 → M induces an epimorphism ∂0 : gr(Q0) → gr(M), it
must be strict by Lemma 1.3.7. Therefore the sequence

0 → ker ∂0 → P0
∂0−→M → 0

is strict exact. Hence, by Lemma 1.3.6,

0 → ker ∂0 → Q0
∂0−→ grM → 0

is exact, and we may identify ker(∂0) with gr(ker ∂0). Iterating, we see that P must be
strict and exact.

1.4 Complete profinite augmented algebras

1.4.1 Profinite augmented algebras

Let A be a profinite F-algebra. Then there is a direct set I and an inverse system
({Ai}i∈I , {ϕij}i≤j∈I) an inverse system of finite dimensional algebras such that

A = lim←−
i

Ai.

Proposition 1.4.1. The following are equivalent.

1. There is a continuous map ε : A→ F.

2. For any i the algebra Ai is augmented and for any i ≤ j the morphism ϕij : Aj → Ai
is augmented.

Definition 1.4.2. In either case we call A a profinite augmented algebra.

Proof.

1 ⇒ 2. If ε : A → F is a continuous morphism and F is finite, there is k ∈ I such that
ε = εk ◦ ϕk. In particular Ak is augmented. If k ≤ j, the algebra Aj is also augmented,
with augmentation εj = εk ◦ ϕkj. Since the subset {j ∈ I | k ≤ j} is cofinal in I,

A = lim←−−
j≤k

Aj.

2 ⇒ 1. If i ∈ I and εi : Ai → F is the augmentation map of Ai, define ε : A → F as
ε := εi ◦ ϕi. Such morphism doesn’t depend on the choice of i.

Consider the filtration on A induced by the augmentation ideal A+. Since F is discrete,
A+ is open in A.

Definition 1.4.3. If the topology on A is induced by such filtration induced by A+ we
say that A is a complete profinite augmented algebra.

Proposition 1.4.4. Let A be a profinite augmented algebra. Assume the following.

1. (A+)n is open for every n.
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2. A+
i is nilpotent for every i ∈ I.

Then A is a complete profinite augmented algebra.

Proof. We need to prove that the powers of the augmentation ideal form a basis for
A. This is true if and only if for any i ∈ I there is a natural number n for which
(A+)n ⊆ kerϕi, where ϕi : A → Ai is a natural projection. But A+

i is nilpotent if and
only if there exist some n for which (A+

i )
n = 0, i.e. for which precisely (A+)n ⊆ kerϕi.

Example 1.4.5. If G is a finitely generated pro-p group, its complete group algebra F[[G]]
is a complete profinite augmented algebra.

By definition

F[[G]] = lim←−−−−
N⊴oG

F [G/N ] .

The augmentation ideal of the group algebra of a finite p-group over a field over charac-
teristic p is nilpotent.

Lemma 1.4.6. Let A be a complete profinite augmented algebra and M a completely
filtered A-module. Let X be a subset of elements of M . The following are equivalent.

1. M is a free profinite A-module, with profinite basis X.

2. M is a completely free A-module, with topological basis X.

Proof. We only need to prove that if it is completely free, then it is free profinite. By
definition of complete module, we can write

M = lim←−
k

M

F kM
,

and it is enough to show that, for any k, the A-module M/F kM is finitely generated.
But M/F kM is generated by those elements of X = {xi}i∈I for which xi + F k ̸= 0. By
definition of topological basis, νM(xi) tends to −∞ in the cofinite topology of I, i.e. the
set

{i ∈ I | νM(xi) > k} =
{
i ∈ I | xi + F kM ̸= 0

}
is finite.

1.5 Minimal resolutions

The filtered case

Definition 1.5.1. Let A be a completely filtered algebra. A surjective morphism of com-
plete augmented A-modules ϕ : P → M , with P completely free (graded free) is minimal
if the induced map

P

A+P
→ M

A+M

is bijective. A completely free A-resolution (P•, ∂) for M is minimal if the morphisms

Pp → Kp := Im ∂p

are minimal for all p.
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Lemma 1.5.2. If F considered as an A-module, then P0 ≃ A. To see this, write P0 = V ⊗̂
A, for some completely filtered F-vector space V . Then there is a chain of isomorphisms

V ≃ P0

A+P0

≃ M

A+M
≃ F.

Lemma 1.5.3. Let A be a complete augmented algebra. Then F admits a minimal com-
pletely free A-resolution if and only if A+ does.

Proof. Let (P•, ∂) be a minimal completely free A-resolution for F. Then P0 = A and
P• ↠ ker d0 = A+.

Viceversa, let (P ′•, ∂
′) be a minimal completely free A-resolution for A+. Combine the

two exact sequences

. . .→ P ′0 → A+ → 0,

0 → A+ → A→ F → 0.

to get a completely free A-resolution for F.

· · · → P ′0 → A→ F → 0.

To see that it is minimal, it is enough to note that the map

P ′0 ⊗A F → A⊗A F

splits through A+ ⊗A F = 0, so it is zero.

Lemma 1.5.4. Let A be an augmented algebra, M a complete A-module and (P•, ∂) a
completely free A-resolution for M . The following are equivalent.

1. (P•, ∂) is minimal.

2. For every p, ∂(Pp) ⊆ A+Pp−1.

3. For every p, the induced map ∂ ⊗A 1 : Pp ⊗A F → Pp−1 ⊗A F is zero.

Proof.

(1) ⇒ (2): For every p, the composition

Pp
∂−→ Pp−1

∂−→ Kp−1

is zero, and so is

Pp
A+Pp

→ Pp−1
A+Pp−1

→ Kp−1

A+Kp−1
.

As the second map is an isomorphism, the first one is zero, so ∂(Pp) ⊆ A+Pp−1.

(2) ⇒ (1): We need to show that, for every p, the map

Pp
A+Pp

→ Kp

A+Kp
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is injective. Let x ∈ Pp and assume that ∂(x) ∈ A+Kp. We need to prove that x ∈ A+Pp.
We can write

∂(x) =
∑
i

ai∂(yi) =
∑
i

∂(aiyi),

for some ai ∈ A+ and yi ∈ Pp. Since, by hypothesis, Kp+1 ⊆ A+Pp,

x−
∑
i

aiyi ∈ Kp+1 ⊆ A+Pp,

we conclude that

x = (x−
∑
i

aiyi) +
∑
i

aiyi ∈ A+Pp.

(2) ⇐⇒ (3): For any p, in the commuting diagram

Pp

A+Pp

Pp−1

A+Pp−1

Pp ⊗A F Pp−1 ⊗A F∂⊗1

the left and right ones are strict isomorphisms. So the top map is zero if and only if the
bottom one is zero.

Lemma 1.5.5. Let (P ′•, ∂
′) be a minimal completely free A-resolution for M ′ and C a

complete augmented algebra which is also a completely free A-module. Then (P•, ∂) is a
minimal completely free C-resolution for M , where

P• := P ′• ⊗̂A C,

M :=M ′ ⊗̂A C,

∂ := ∂′ ⊗̂ 1.

Proof.

• (P•, ∂) is a C-resolution for M . It follows from the flatness of C.

• (P•, ∂) is completely free. For all n, we can write P ′p ≃ Vp ⊗̂ A. Therefore,

Pp ≃ Vp ⊗̂ A ⊗̂A C ≃ Vp ⊗̂ C,

which is a completely free C-module.

• (P•, ∂) is minimal. For any p, in the commuting diagram

Pp ⊗C F P ′p ⊗A F

Pp−1 ⊗C F P ′p−1 ⊗A F,

∂⊗1 ∂′⊗1

the top and bottom maps are strict isomorphisms, while the right one is zero. It
follows that ∂ ⊗ 1 : Pp ⊗̂C F → Pn−1 ⊗̂C F is zero as well.
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In an analogous way we can prove the following.

Lemma 1.5.6. For i = 1, 2, let (P i
•, ∂

i) be a completely free minimal A-resolution for
Mi. Then (P•, ∂) is a a completely free minimal A-resolution for M , where

P• := P 1
• ⊕ P 2

• ,

M :=M1 ⊕M2,

∂ := ∂1 + ∂2.

Lemma 1.5.7. Let A be a profinite augmented algebra, M a completely filtered profinite
A-module and (P•, ∂) a completely free A-resolution for M . The following additional
condition is equivalent to the others of Lemma 1.5.4.

4. For every p, the induced map d : HomA(Pp,F) → HomA(Pp+1,F) is zero.

Proof. By Lemma 1.4.6, for every p the A-module Pp is free profinite. The induced map
d : HomA(Pp,F) → HomA(Pp+1,F) is the compositon of the natural morphisms

HomA(Pp,F) ≃ HomF(Pp ⊗A F,F) (∂⊗1)∧−−−−→ HomF(Pp+1 ⊗A F,F) ≃ HomA(Pp+1,F),

so by Pontryagin duality ([12], Theorem 2.9.6) it is zero if and only if the map

(∂ ⊗ 1)∧ : (Pp ⊗A F)∧ → (Pp+1 ⊗A F)∧

is zero. Since Pp ⊗A F is profinite abelian group, it is equivalent to the induced map

(∂ ⊗ 1) : (Pp ⊗A F) → (Pp+1 ⊗A F)

being zero.

The graded case

Definition 1.5.8. Let A be a graded algebra. A surjective morphism of graded augmented
A-modules ϕ : P →M , with P graded free is minimal if the induced map

P

A+P
→ M

A+M

is bijective. A completely free A-resolution (P•, ∂) for M is minimal if the morphisms

Pp → Kp := Im ∂p

are minimal for all p.

We state, without proof, the analogous results for the graded case.

Lemma 1.5.9. Let A be an graded augmented algebra. Then F admits a minimal graded
free A-resolution if and only if A+ does.

Lemma 1.5.10. Let A be an augmented graded algebra,M a graded A-module and (P•, ∂)
a graded free A-resolution for M . The following are equivalent.
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1. (P•, ∂) is minimal.

2. For every p, Kp ⊆ A+Pp−1.

3. For every p, the induced map ∂ ⊗A 1 : Pp ⊗A F → Pp−1 ⊗A F is zero.

Lemma 1.5.11. Let A be a locally finite graded augmented algebra, M a locally finite
graded A-module and (P•, ∂) a locally finite graded free augmented A-resolution for M .
The following additional condition is equivalent to the others.

4. For every p, the induced map d : HomA(Pp,F) → HomA(Pp+1,F) is zero.

Lemma 1.5.12. Let (P ′•, ∂
′) be a minimal graded free A-resolution for M ′ and C an

algebra which is also a graded free A-module. Then (P•, ∂) is a minimal graded free
C-resolution for M , where

P• := P ′• ⊗̂A C,

M :=M ′ ⊗̂A C,

∂ := ∂′ ⊗̂ 1.

Lemma 1.5.13. For i = 1, 2, let (P i
•, ∂

i) be a minimal graded free A-resolution for Mi.
Then (P•, ∂) is a minimal graded free A-resolution for M , where

P• := P 1
• ⊕ P 2

• ,

M :=M1 ⊕M2,

∂ := ∂1 + ∂2.
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Chapter 2

May-type spectral sequences

2.1 Basic definitions

Definition 2.1.1. A May-type spectral sequence (Er, dr) consists of

1. A family of abelian groups {Epq
r }, with p, q, r ∈ Z and r ≥ 0,

2. For all p, q, r, morphisms dpqr : Epq
r → Ep+1,q−r

r such that dpqr ◦ dp−1,q+rr = 0,

3. For all p, q, r, an isomorphism

αpqr :
Zpq
r+1

Bpq
r+1

→ Epq
r+1,

where Zpq
r+1 = ker(dpqr ) and B

pq
r+1 = Im(dp−1,q+rr ).

Definition 2.1.2. A morphism of May-type spectral sequences f : (Er, dr) → (E ′r, d
′
r)

is a family of morphisms fpqr : Epq
r → E ′pqr such that, for any p, q and r, the following

diagrams commute

Epq
r Ep+1,q−r

r

E ′pqr E ′p+1,q−r
r ,

dpqr

fpqr fp+1,q−r
r

d′pqr

Epq
r+1 E ′pqr+1

Zpq
r+1(E)

Bpq
r+1(E)

Zpq
r+1(E

′)

Bpq
r+1(E

′)
.

fpqr+1

αpq
r α′pq

r

fpqr

2.1.1 Convergence

Definition 2.1.3. We say that a May-type spectral sequence is regular if, fixed p and q,
there exist a t such that dpqr = 0 for r ≥ t.

Under such hypothesis, the morphism

αpqr : Epq
r → Epq

r

Bpq
r+1

=
Zpq
r+1

Bpq
r+1

≃ Epq
r+1.

is surjective. It follows that

({Epq
r }r≥t , {α

pq
r }r≥t)

is a direct system of abelian groups. We define

Epq
∞ := lim−−→

r≥t
Epq
r
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Definition 2.1.4. Let H• = {Hp}p∈Z be a family of filtered groups. We say that a
regular May-type spectral sequence (Er, dr) converges to H• if, for every p, q, there are
isomorphisms

βpq : grq(H
p) → Epq

∞

and the filtration of Hp is exhaustive and complete for all p.

2.2 May-type spectral sequence associated to an ex-

act couple

Definition 2.2.1. An exact couple E = (D,E, i, j, k) is a couple of abelian groups (D,E)
with morphisms i : D → D, j : D → E and k : E → D such that the following diagram
is exact.

D D

E

i

jk

Proposition 2.2.2. Given an exact couple E = (D,E, i, j, k), then E ′ = (D′, E ′, i′, j′, k′)
is an exact couple,

D′ D′

E ′

i′

j′k′

where

D′ = i(D), E ′ = H(E) =
ker(j ◦ k)
Im(j ◦ k)

,

and

i′ = i|D′ , j′(i(d)) = [j(d)], k′([e]) = k(e).

Proof. We first note that, if we set d := j ◦ k, then

d ◦ d = j ◦ (k ◦ j) ◦ k = 0

and E ′ is well defined.
Also k(j(d)) = 0, so d ∈ ker(j ◦ k). In addition, if i(d) = i(d′), then d− d′ = k(e) for

some e ∈ E, and [j(d)] = [j(d′)], so j′ is well defined.
To show that k′ is well defined too, consider e′ ∈ ker(j ◦ k) such that [e] = [e′], i.e.

e′ = e+ j(k(f) for some f ∈ E. Then k′(e′) = k(e+ j(k(f)) = k(e).
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Now we will prove that the diagram is exact.

ker i′ = ker i ∩ Im i = Im k ∩ ker j

= k(E) ∩ ker j = k(k−1(ker j)) = k(ker(j ◦ k))
= Im k′,

ker k′ = {[e] ∈ E ′ | e ∈ ker k} = {[e] ∈ E ′ | e ∈ Im j} = {[j(d)] ∈ E ′ | d ∈ D}
= Im j′,

ker j′ = {i(d) ∈ D | j(d) ∈ Im(j ◦ k)}
= {i(d) ∈ D | d− k(e) ∈ ker j = Im i}
= {i(d) ∈ D | d ∈ Im i}
= Im i′.

We may iterate this process.

Definition 2.2.3. Given an exact couple E = (D,E, i, j, k), we define the r-th derived
couple Er = (Dr, Er, ir, jr, kr) as

E1 = E ,
Er+1 = Er ′.

Lemma 2.2.4. For r ≥ 2, we have Er ≃ Zr/Br, where Zr, Br ⊆ E are defined as

Zr = k−1(ir−1(D)), Br = j(ker ir−1)

Proof. If r = 2,

Z2 = k−1(i(D)) = k−1(Im i) = k−1(ker j)

= ker(j ◦ k) = ker d,

B2 = j(ker i) = j(Im k) = Im(j ◦ k) = Im d.

Therefore

E2 = H(E) =
ker d

Im d
=
Z2

B2

.

If r ≥ 2, by induction we obtain

Er+1 =
ker (d′)r

Im (d′)r
≃ Z ′r
B′r
,

where

Z ′r = (k′)−1(Im i′
r−1

) = (k′)−1(Im ir)

= {[e] ∈ E ′ | ∃d ∈ D s. t. k(e) = ir(d)}
= Zr+1/ Im d,

B′r = j′(ker i′
r−1

) = j′{i(d) ∈ i(D) | ir(d) = 0}
= {[j(d)] ∈ E ′ | ir(d) = 0}
= Br+1/ Im d.
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We conclude that

Er+1 ≃
Zr+1

Br+1

.

Notice that

Zr+1 = k−1(ir(D)) ⊆ k−1(ir−1(D)) = Zr,

Br = j(ker ir−1) ⊆ j(ker ir) = Br,

Br = j(ker ir−1) ⊆ Im j = ker k ⊆ k−1(ir−1(D)) = Zr.

Lemma 2.2.5. Given an exact couple E = (D,E, i, j, k) in which D = Dpq and E = Epq

are bigraded abelian groups, and i, j and k have bidegrees (a, a′), (b, b′) and (c, c′), the
induced maps i′, j′ and k′ have bidegrees (a, a′), (b− a, b′ − a′) and (c, c′).

Proof. Let d′ ∈ D′pq, i.e. d′ = i(d), for some d ∈ Dp−a,q−a′ . Since inclusions have bidegree

(0, 0), it follows that i′(d′) = i(i(d)) ∈ D′p+a,q+a
′
, so i′ has bidegree (a, a′).

Let d′ ∈ D′pq, with d′ = i(d) as before, then j′(d′) = [j(d)], and j(d) ∈ Ep+b−a,q+b′−a′ .
Since quotients have bidegree (0, 0), then j′ has bidegree (b− a, b′ − a′).

Let [e] = e + Im(j ◦ k) ∈ E ′pq, where j(k(e)) = 0, for some e ∈ Epq. Then k′([e]) =

k(e) ∈ D′p−c,q−c
′
⊆ Dp−c,q−c′ , and k′ has degree (c, c′).

Definition 2.2.6. A morphism of exact couples (ϕ, ψ) : E → F is a couple of morphisms
of abelian groups ϕ : D → D and ψ : E → E that make the following diagram commute.

E

D D

D′ D′

E ′

ψ

k

i

ϕ ϕ

j

i′

j′k′

Proposition 2.2.7. An exact couple E = (D,E, i, j, k) in which D = Dpq and E = Epq

are bigraded, and i, j and k have bidegrees (0, 1), (0, 0) and (1,−1) determines a May-type
spectral sequence {Epq

r } starting with Epq
1 = Epq. A morphism of exact couples induces a

morphism of May-type spectral sequences.

Proof. By the previous lemma and induction, we see that ir, jr and kr have bidegree
(0, 1), (0,−(r − 1)) and (1,−1), so the map dr : Er → Er defined as dr := jr ◦ kr has
bidegree (0,−r + 1) + (1,−1) = (1,−r).

Let (ϕ, ψ) : E → F be a morphism of exact couples. Then

ψp+1,q ◦ dpq1 = ψp+1,q ◦ jp+1,q ◦ kpq = j′
p+1,q ◦ ϕp+1,q ◦ kpq = j′

p+1,q ◦ k′pq ◦ ψpq

= d′1
pq ◦ ψpq,

therefore there exist a map ψ2 : E2 → E2 such that ψ2 ◦ d2 = d′2 ◦ ψ2. Iterating we get a
morphism (ψr) : (Er, dr) → (E ′r, d

′
r) of spectral sequences.
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In the graded case, for r ≥ 2, Epq
r ≃ Zpq

r /B
pq
r , where Zpq

r , B
pq
r ⊆ Epq are, according to

their grading,

Zpq
r = (kpq)−1(Im(ip+1,q−2 ◦ · · · ◦ ip+1,q−r))

Bpq
r = jpq(ker(ip,q+r−2 ◦ · · · ◦ ipq))

2.3 May-type spectral sequence associated to a fil-

tered complex

Proposition 2.3.1. Given an ascending filtration on a complex (A•, ∂), there is an exact
couple E = (D,E, i, j, k) whose maps i, j and k have bidegrees (0, 1), (0, 0) and (1,−1).

Proof. The short exact sequence

0 → F q−1A•
m→ F qA•

e→ grq(A
•) → 0

induces a long exact sequence

· · · → Hp(F q−1A•)
i−→ Hp(F qA•)

j−→ Hp(grq(A
•))

k−→ Hp+1(F q−1A•) → . . .

where i = H(m), j = H(e) and k is the connecting morphism. Define the bigraded
objects D and E as

Dpq = Hp(F qA•),

Epq = Hp(F qA•/F q−1A•).

We then have the exact sequence

· · · → Dp,q−1 ip,q−1

−−−→
(0,1)

Dpq jpq−−→
(0,0)

Epq kpq−−−→
(1,−1)

Dp+1,q−1 → . . .

We can write each term of our spectral sequence Epq
r in a more explitic way (cfr. [11]

Section 3.2).

In this case, ip+1,q−2◦· · ·◦ip+1,q−r is the map Hp+1(F q−rA•) → Hp+1(F q−1A•) induced
by the short exact sequence

0 → F q−rA• → F q−1A• → F q−1A•/F q−rA• → 0.

It follows that

Zpq
r = (kpq)−1(Im(Hp+1(F q−rA•) → Hp+1(F q−1A•)))

= (kpq)−1(ker(Hp+1(F q−1A•) → Hp+1(F q−1A•/F q−rA•)))

= ker(Hp(F qA•/F q−1A•)
kpq−−→ Hp+1(F q−1A•) → Hp+1(F q−1A•/F q−rA•))

= ker(Hp(F qA•/F q−1A•) → Hp+1(F q−1A•/F q−rA•))

= Im(Hp(F qA•/F q−rA•) → Hp(F qA•/F q−1A•)),
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where the last two maps are induced by the exact sequence

0 → F q−1/F q−r → F q/F q−r → F q/F q−1 → 0.

In an analogous way, ip,q+r−2 ◦ · · · ◦ ipq is the map Hp(F qA•) → Hp(F q+r−1A•), so

Bpq
r = jpq(ker(Hp(F qA•) → Hp(F q+r−1A•)))

= jpq(Im(Hp−1(F q+r−1A•/F qA•) → Hp(F qA•)))

= Im(Hp−1(F q+r−1A•/F qA•) → Hp(F qA•)
jpq−→ Hp(F qA•/F q−1A•))

= Im(Hp−1(F q+r−1A•/F qA•) → Hp(F qA•/F q−1A•))

= ker(Hp(F qA•/F q−1A•) → Hp(F q+r−1A•/F q−1A•)).

The following lemma is an immediate application of the first theorem of isomomor-
phism of groups.

Lemma 2.3.2. If the first line of the commutative diagram

D

A B C

γ

α β

is exact, then β induces an isomorphism

Im γ Im(β ◦ γ)

Im γ

Imα

β

β̂

It follows that

Proposition 2.3.3.

Epq
r ≃ Im(Hp(F qA•/F q−rA•) → Hp(F q+r−1A•/F q−1A•)).

Proof. It follows from the previous lemma applied to the diagram

Hp(F qA•/F q−rA•)

Hp−1(F q+r−1A•/F qA•) Hp(F qA•/F q−1A•) Hp(F q+r−1A•/F q−1A•).

2.3.1 Convergence

Remark 2.3.4. If F sA• = 0 for some s, then dpqr = 0 for all r ≥ q − s − 1, and the
induced spectral sequence is regular.
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Proposition 2.3.5. The filtration over a chain complex (A•, ∂), induces, for every p, a
filtration over its p-th cohomology group Hp(A•, ∂) as

F qHp(A•, ∂) = (F q ker ∂p + Im ∂p−1)/ Im ∂p−1 = Im(Hp(F qA•) → Hp(A•)).

Moreover, such filtration is exhaustive if that on A• is, and it is bounded from below if
that on A• is.

Proof. The inclusions ker(∂p : F qAp → F qAp+1) ⊆ ker ∂p and Im(F qAp−1 → F qAp) ⊆
Im ∂p−1 induce a well defined map

Hp(F qA•) =
ker(∂p : F qAp → F qAp+1)

Im(∂p−1 : F qAp−1 → F qAp)
→ ker ∂p

Im ∂p−1
= Hp(A•),

whose image is (F q ker ∂p + Im ∂q+1)/ Im ∂p+1. If the filtration over Ap is exhaustive,⋃
q

F qHp(A•) =

⋃
q(F

q ker ∂p) + Im ∂p−1

Im ∂p−1
= Hp(A•).

Finally, if F qA• = 0 for some q,

F qHp(A•) =
(F q ker ∂p + Im ∂p−1)

Im ∂p−1
= 0.

Proposition 2.3.6. Let (A•, d) be a filtered complex, with exhaustive and bounded from
below filtration. Then its associated spectral sequence converges to H•(A•).

Proof.

Epq
∞ = lim−→r

Epq
r

= lim−→r
(Im(Hp(F qA•/F q−rA•) → Hp(F q+r−1A•/F q−1A•)))

= Im(lim−→r
Hp(F qA•/F q−rA•) → lim−→r

Hp(F q+r−1A•/F q−1A•))

= Im(Hp(F qA•) → Hp(A•/F q−1A•)).

By applying the preceding lemma to the diagram

Hp(F qA•)

Hp(F q−1A•) Hp(A•) Hp(A•/F q−1A•),

we obtain the isomorphism

Epq
∞ ≃ F qHp(A•)

F q−1Hp(A•)
.

We proved that the associated spectral sequence weakly converges to H•(A•), which by
Proposition 2.3.5 is exhaustive and bounded from below, so it converges to H•(A•).

Remark 2.3.7. Note that Epq
∞ ≃ Zpq

∞/B
pq
∞, where

Zpq
∞ = lim−→r

Zpq
r = Im

(
Hp (F qA•) → Hp

(
F qA•

F q−1A•

))
,

Bpq
∞ = lim−→r

Bpq
r = ker

(
Hp

(
F qA•

F q−1A•

)
→ Hp

(
A•

F q−1A•

))
.
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2.4 May-type spectral sequence associated to a dif-

ferential graded algebra

2.4.1 Differential algebras

Definition 2.4.1. A differential algebra (E,m, d, ϵ) is an algebra (E,m) together with
maps d, ϵ : E → E such that

1. d2 = 0 (derivation)

2. ϵ2 = 1E (involution);

3. d(m(x⊗ y)) = m(d(x)⊗ y) +m(ϵ(x)⊗ d(y)) (Leibniz rule).

Lemma 2.4.2. Let (E, d,m, ϵ) be a differential algebra. Then H(A) = ker d/ Im d is an
algebra, with multiplication induced by m.

Proof. Application of the Leibniz rule.

Definition 2.4.3. A differential graded algebra A• = (A•, ∂•,m•,•), or DGA, is a graded
complex equipped with a homogeneous map m•,• : A

•⊗A• → A• such that, for any a ∈ An

and b ∈ An
′
,

∂n+n′(mn,n′(a⊗ b)) = mn+1,n′(∂n(a)⊗ b) + (−1)nmn,n′+1(a⊗ ∂n′(b)).

2.4.2 Involutions of exact couples

Typically, multiplicative structures existing within exact couples may not be extended
to their derived couples. W. S. Massey, in [4], introduced a condition that serves as a
criterion for determining when such extensions are possible.

Definition 2.4.4. An involution (δ, ϵ) of an exact couple E = (D,E, i, j, k) is a couple
of maps δ : D → D and ϵ : E → E such that δ2 = 1D, ϵ

2 = 1E and

1. i ◦ δ = δ ◦ i;

2. j ◦ δ = ϵ ◦ j;

3. k ◦ ϵ = −δ ◦ k.

Lemma 2.4.5. If an exact couple E = (D,E, i, j, k) has an involution, so does its derived
couple E ′ = (D′, E ′, i′, j′, k′)

Proof. Let (δ, ϵ) be an involution for E = (D,E, i, j, k). Consider the restriction δ :
i(D) → D. As a consequence of 1), the image of such map is contained in i(D) = D′.
We may define a map δ′ : D′ → D′.

Similarly the image of the restriction of ϵ to ker d is contained in ker d by 2) and 3),
and therefore it induces a map ker d → E ′. Again by 2), this in turn induces a map
ϵ′ : E ′ → E ′. Explicitly, ϵ′([e]) = [ϵ(e)].

1′. [i′ ◦ δ′](i(d)) = i(δ(i(d))) = [δ′ ◦ i′](i(d)).

2′. [j′ ◦ δ′](i(d)) = j′(i(δ(d))) = [j(δ(d))] = [ϵ(j(d))] = ϵ′([j(d)]) = [ϵ′ ◦ j′](i(d)).
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3′. [k′ ◦ ϵ′]([e]) = k′([ϵ(e)]) = k(ϵ(e)) = −δ(k(e)) = [−δ′ ◦ k]([e]).

Definition 2.4.6. Consider an exact couple E = (D,E, i, j, k) with involution (δ, ϵ),
together with a map m : E ⊗ E → E. We say that E satisfies µn if, for any x ∈ E such
that k(x) = in(a) for some a ∈ D and y ∈ E such that k(y) = in(b) for some b ∈ D,
there exists c ∈ D such that

1. k(m(x⊗ y)) = in(c);

2. j(c) = m(j(a)⊗ y) +m(ϵ(x)⊗ j(b)).

We say that E satisfies µ if it satisfies µn for every n ≥ 0.

Lemma 2.4.7. In the previous notation, E satisfies µ0 if and only if (E, d,m, ϵ) is a
differential algebra.

Proof. It follows by noticing that c = i0(c) = k(m(x⊗y)) and the following two equations.

d(m(x⊗ y)) = j(k(m(x⊗ y)),

m(d(x)⊗ y) +m(ϵ(x)⊗ d(y)) = m(j(k(x))⊗ y) +m(ϵ(x)⊗ j(k(y))).

Lemma 2.4.8. Let E = (D,E, i, j, k) an exact couple with involution (δ, ϵ) such that
(E, d,m, ϵ) is a differential algebra. Then E satisfies µn if and only if E ′ satisfies µn−1.

Proof. Suppose E satisfies µn. Take elements x′, y′ ∈ E ′ and a′, b′ ∈ D′ such that k′(x) =
(i′)n−1(a′) and k′(y) = (i′)n−1(b′). It means that there are x, y ∈ ker d and a, b ∈ D such
that x′ = [x], y′ = [y], a′ = i(a) and b′ = i(b). Therefore

k(x) = k′([x]) = (i′)n−1(a′) = in(a),

k(y) = k′([y]) = (i′)n−1(b′) = in(b).

By assumption, there is c ∈ D such that k(m(x⊗ y)) = in(c) and j(c) = m(j(a)⊗ y) +
m(ϵ(x)⊗ b). Define c′ = i(c). By construction

k′(m(x′ ⊗ y′)) = k′(m([x]⊗ [y])) = k′([m(x⊗ y)]) = k(m(x⊗ y))

= in(c)(i′)n−1(c′),

j′(c′) = [j(c)] = [m(j(a)⊗ y)] + [m(ϵ(x)⊗ j(b))]

= m([j(a)]⊗ [y]) +m([ϵ(x)]⊗ [j(a)])

= m(j′(a′)⊗ y′) +m(ϵ′(x′)⊗ j′(a′)).

The converse follows reversing the equalities, noticing that if k(x) = in(a), then x ∈
ker d.

Corollary 2.4.9. If E satisfies µ, then En is a differential graded algebra for every n ≥ 0.
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2.4.3 May-type spectral sequences of algebras

Definition 2.4.10. A differential graded algebra (E,m, d) is a differential algebra which
is a (bi-)graded object, and whose involution map ϵ : E → E is ϵ(e) = (−1)|e|e.

Definition 2.4.11. A May-type spectral sequence of algebras is a May-type spectral se-
quence {Epq

r , d
pq
r } together with graded maps mr : E

pq
r ⊗ Ep′q′

r → Ep+p′,q+q′
r such that, for

every r ≥ 0, we have that (Er,m, d) is a differential graded algebra and mr+1 is induced
by mr as

Ep,q
r+1 ⊗ Ep′,q′

r+1 = H(Ep,q
r ⊗ Ep′,q′

r )
H(mr)−−−−→ H(Ep+p′,q+q′

r ) = Ep+p′,q+q′

r+1

where H(Ep,q
r ⊗ Ep′,q′

r ) = H(Ep,q
r )⊗H(Ep′,q′

r ).

Definition 2.4.12. A we say that a differential graded algebra A• = (A•, ∂,m) is fil-
tered if it is endowed with a filtration, as a filtered complex {F qA•}, that agrees with the
differential and the multiplication, i.e. for any p, q

• ∂p(F qAp) ⊆ F qAp+1.

• m(F qAp ⊗ F q′Ap
′
) ⊆ F q+q′Ap+p

′
.

Theorem 2.4.13. Let A• = (A•, ∂,m) be a filtered differential graded algebra. Then its
associated spectral sequence is a spectral sequence of algebras.

Proof. Recall the following.

Dpq = Hp (F qA•) , Epq = Hp

(
F qA•

F q−1A•

)
,

and j : Dpq → Epq is j([x]) = [x], for x ∈ F qAp, while kpq : Epq → Dp+1,q−1 is k([x̄]) =
[∂x]. Also dpq = kp+1,q−1 ◦ jpq. With the previous notation, the following diagram
commutes,

Ep,q ⊗ Ep′q′

Dp+1,q−1 ⊗ Ep′q′ Ep+p′+1,q+q′−1,

Em
jp+1,q−1⊗1

Dm

(2.1)

where the maps ”Dm” and ”Em” are induced by m.
Consider the following diagram.

Ep+1,q−1 ⊗ Ep′q′

Dp+1,q−1 ⊗ Ep′q′

Ep,q ⊗ Ep′q′ Ep+p′,q+q′ Ep+p′+1,q+q′−1

Ep,q ⊗Dp′+1,q′−1

Ep,q ⊗ Ep′+1,q′−1

Em

jp+1,q−1⊗1

Dm

m

1⊗kp′q′

kpq⊗1

dp+p′,q+q′

mD

1⊗jp′+1,q′−1

mE

29



Let x ∈ F qAp, y ∈ F q′Ap
′
. Then

(dp+p
′,q+q′ ◦m)([x]⊗ [y]) = dp+p

′,q+q′([m(x⊗ y))]

= jp+p
′+1,q+q′−1(kp+p

′,q+q′([m(x⊗ y))]))

= jp+p
′+1,q+q′−1([∂(m(x⊗ y))])

= jp+p
′+1,q+q′−1([m(∂x⊗ y)] + (−1)p[m(x⊗ ∂y)])

= [(m(∂x⊗ y))] + (−1)p([m(x⊗ ∂y)]).

On the other hand,

(Em ◦ dpq ⊗ 1)([x]⊗ [y]) = (Em ◦ (jp+1,q−1 ⊗ 1) ◦ (kpq ⊗ 1))([x]⊗ [y])

= (Dm ◦ (kpq ⊗ 1))([x⊗ y])

= Dm([∂x]⊗ [y]) = [m(∂x⊗ y)].

Similarly, (mE ◦ (1⊗ dp
′q′))([x]⊗ [y]) = mD([x]⊗ [∂y]) = [m(x⊗ ∂y)].

We proved that m : Epq ⊗ Ep′q′ → Ep+p′,q+q′ satisfies the Leibniz rule. We need to
show that the induced exact couple satisfies µ.

Let x ∈ Hp(F qA•/F q−1A•), y ∈ Hp′(F q′A•/F q′−1A•), a ∈ Hp+1(F q−n−1A•) and b ∈
Hp′+1(F q′−n−1A•) such that k(x) = in(a) and k(y) = in(b). Let H (̂i) = i and H(ĵ) = j.
Choose representatives x̂ ∈ F qAp, ŷ ∈ F q′Ap

′
, â ∈ F q−n−1Ap+1 and b̂ ∈ F q′−n−1Ap

′+1.
Then ∂x ∈ F q−1Ap+1, ∂y ∈ F q′−1Ap

′+1, ∂â = 0 and ∂b̂ = 0. Moreover,

[∂x̂] = k(x) = in(a) = [̂in(â)].

So there is z ∈ F q−1Ap such that ∂x̂ = în(â) + ∂z. Similarly, ∂ŷ = în(b̂) + ∂w for some
w ∈ F q′−1Ap

′
. Consider

k(m(x⊗ y)) = k(m([x̂]⊗ [ŷ])) = k([m(x̂⊗ ŷ)]) = [∂m(x̂⊗ ŷ)].

Define

ĉ = m(â⊗ ŷ)− (−1)pm(z ⊗ b̂) + (−1)pm(x̂⊗ b̂)−m(â⊗ w).

Then

∂m(x̂⊗ ŷ) =m(∂x̂⊗ ŷ) + (−1)pm(x̂⊗ ∂ŷ)

=m(̂in(â)⊗ ŷ) +m(∂z ⊗ ŷ) + (−1)pm(x̂⊗ în(b̂)) + (−1)pm(x̂⊗ ∂w)

=m(̂in(â)⊗ ŷ) + ∂m(z ⊗ ŷ)− (−1)pm(z ⊗ ∂ŷ)

+ (−1)pm(x̂⊗ în(b̂)) + ∂m(x̂⊗ w)−m(∂x̂⊗ w)

=m(̂in(â)⊗ ŷ) + ∂m(z ⊗ ŷ)− (−1)pm(z ⊗ în(b̂))− (−1)pm(z ⊗ ∂w)

+ (−1)pm(x̂⊗ în(b̂)) + ∂m(x̂⊗ w)−m(̂in(â)⊗ w)−m(∂z ⊗ w)

= m(̂in(â)⊗ ŷ) + ∂m(z ⊗ ŷ)− (−1)pm(z ⊗ în(b̂))− ∂m(z ⊗ w)

+(−1)pm(x̂⊗ în(b̂)) + ∂m(x̂⊗ w)−m(̂in(b̂)⊗ w)

= în(ĉ) + ∂(m(z ⊗ ŷ)−m(z ⊗ w)),
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where, in the last passage, we used the commutativity of the diagram

F q′+1Ap
′ ⊗ F q′Ap

′

F qAp ⊗ F q′Ap
′

F q+q′Ap+p
′

F q+q′+1Ap+p
′

F q′Ap
′ ⊗ F q′+1Ap

′

mî⊗1

1⊗î

î

m

Define c = [ĉ]. Then

k(m(x⊗ y)) = [̂in(ĉ)] = in([ĉ]) = in(c).

By the commutativity of the diagram

F qAp

F q−1Ap
⊗ F q′Ap

′

F qAp ⊗ F q′Ap
′

F q+q′Ap+p
′ F q+q′Ap

′

F q+q′−1Ap+p′

F q′Ap
′ ⊗ F q′Ap

′

F q′−1Ap′

m
ĵ⊗1

1⊗ĵ

ĵ

m

we have

ĵ(m(â⊗ ŷ)) = m(ĵ(â)⊗ ŷ),

ĵ(m(x̂⊗ b̂)) = m(x̂⊗ ĵ(b)).

Since m(z ⊗ b̂) and m(â⊗ w) lie in F q+q′−n−2Ap+p
′+1, then

ĵ(m(z ⊗ b̂)) = ĵ(m(â⊗ w)) = 0.

We conclude that

j(c) = [ĵ(ĉ)] = m(j(a)⊗ y) + (−1)pm(x⊗ j(b)),

and we may apply Corollary 2.4.9.

2.4.4 Convergence

If a May-type spectral sequence of algebras (Er, dr) is regular, for any p, q

Epq
∞ ⊗ Ep′q′

∞ = lim−→r

(
Epq
r ⊗ Ep′q′

r

)
.
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It follows that there is a unique morphism m∞ : Epq
∞ ⊗Ep′q′

∞ → Ep+p′,q+q′
∞ that makes, for

all r, the following diagram commute

Epq
∞ ⊗ Ep′q′

∞ Ep+p′,q+q′
∞

Epq
r ⊗ Ep′q′

r Ep+p′,q+q′
r .

m

βpq⊗βp′q′

mr

Definition 2.4.14. Let H• = {Hp}p∈Z be a family of filtered groups. We say that a
regular May-type spectral sequence of algebras (Er, dr) converges to H

• as an algebra if it
converges to H• and

grq(H
p)⊗ grq′(H

p′) grq+q′(H
p+p′(A•))

Epq
∞ ⊗ Ep′q′

∞ Ep+p′,q+q′
∞ .

m̂

βpq⊗βp′q′

m∞

Lemma 2.4.15. For i = 1, 2, 3, consider the commuting diagrams

Di

Ai Bi Ci

γi

αi βi

Suppose the following hold.

1. The sequences

Ai
αi−→ Bi

βi−→ Ci

are exact for i = 1, 2, 3.

2. there are maps mB : B1 ⊗ B2 → B3, mD : D1 ⊗D2 → D3 and mC : C1 ⊗ C2 → C3

that make the following diagram commute.

D1 ⊗D2 D3

B1 ⊗B2 B3

C1 ⊗ C2 C3.

mD

γ1⊗γ2 γ3

mB

β1⊗β2 β3

mC

.

Then, there is a morphism

m̂ :
Im γ1
Imα1

⊗ Im γ2
Imα2

→ Im γ3
Imα3

that makes the following diagram commute.

Im γ1
Imα1

⊗ Im γ2
Imα2

Im γ3
Imα3

Im(β1 ◦ γ1)⊗ Im(β2 ◦ γ2) Im(β3 ◦ γ3)

m̂

β̂1⊗β̂2 β̂3

mC
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where, for i = 1, 2, 3, the isomorphism β̂i is the unique map that makes the following
diagram commute.

Im γi Im(βi ◦ γi)

Im γi
Imαi

.

β

πi

β̂i

Proof. For i = 1, 2, 3, the morphisms β̂i are well defined as the maps that satisfy the
following equality.

β̂i ◦ πi = βi. (β̂i)

Condition (2) reads

γ3 ◦mD = mB ◦ (γ1 ⊗ γ2), (γ)

β3 ◦mB = mC ◦ (β1 ⊗ β2). (β)

The image of the the restriction of mB to

Im γ1 ⊗ Im γ2 → B3

is in Im γ3 by (γ). We will denote again by mB such restriction. We have to prove that
mB(Imα1 ⊗ Im γ2 + Im γ1 ⊗ Imα2) ⊆ Imα3 = ker β3.

Since β1 ◦ α1 = 0,

β3(mB(Imα1 ⊗ Im γ2)) = Im(β3 ◦mB ◦ (α1 ⊗ γ2))

(β)
= Im(mC ◦ (β1 ⊗ β2) ◦ (α1 ⊗ γ2))

= Im(mC ◦ ((β1 ◦ α1)⊗ (β2 ◦ γ2)) = 0,

Analogously, β3(mB(Im γ1 ⊗ Imα2)) = 0.
So there is a unique map m̂ that makes the following diagram commute.

Im γ1 ⊗ Im γ2 Im γ3

Im γ1
Imα1

⊗ Im γ2
Imα2

Im γ3
Imα3

.

mB

π1⊗π2 π3

m̂

(2.2)

We need to prove that mC ◦ (β̂1 ⊗ β̂2) = β̂3 ◦ m̂.

[mC ◦ (β̂1 ⊗ β̂2)] ◦ (π1 ⊗ π2)
(β̂1,β̂2)
= mC ◦ (β1 ⊗ β2)

(β)
= β3 ◦mB

(β̂3)
= β̂3 ◦ π3 ◦mC

(2.2)
= [β̂3 ◦ m̂] ◦ (π1 ⊗ π2).

Since π1 ⊗ π2 is an epimorphism, we are done.

Proposition 2.4.16. Let (A•, d) be a filtered differential algebra, with exhaustive and
bounded from below filtration. Then its associated May-type spectral sequence converges
to H•(A•) as an algebra.
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Proof. Apply Lemma 2.4.15 to following commuting diagrams.

Hp(F qA•)

Hp(F q−1A•) Hp(A•) Hp(A•/F q−1A•),

Hp′(F q′A•)

Hp′(F q′−1A•) Hp′(A•) Hp′(A•/F q′−1A•),

Hp+p′(F q+q′A•)

Hp+p′(F q+q′−1A•) Hp+p′(A•) Hp+p′(A•/F q+q′−1A•),

and

Hp(F qA•)⊗Hp′(F q′A•) Hp+p′(F q+q′A•)

Hp(A•)⊗Hp′(A•) Hp+p′(A•)

Hp(A•/F q−1A•)⊗Hp′(A•/F q′−1A•) Hp+p′(A•/F q+q′−1A•).

Then Lemma 2.4.15 produces a map

m̂ : grq(H
p(A•))⊗ grq′(H

p′(A•)) → grq+q′(H
p+p′(A•))

that makes the following diagram commute.

grq(H
p(A•))⊗ grq′(H

p′(A•)) grq+q′(H
p+p′(A•))

Epq
∞ ⊗ Ep′q′

∞ Ep+p′,q+q′
∞ .

m̂

m
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Chapter 3

Strongly collapsing pro-p groups

3.1 Strongly collapsing modules

Let A be a complete ring and M a complete A-module. Let (P•, ∂) be a completely free
bounded from above strict A-resolution for M .

For n ≥ 0 we will denote the n-th group of continuous cohomology ([12], Chapter 6)
by

ExtnA(M,F) = Hn(Hom(P•,F)).

Define the (increasing) discrete bounded from below filtered F-complex (C•, d) as

C• := HomA(P•,F),

with the filtration

F qCp = F qHomA(Pp,F) =
{
ϕ ∈ HomA(Pp,F) | ϕ(F q+1Pp) = 0

}
.

The following Lemma provides the requirements of Theorem 2.3.6.

Lemma 3.1.1. For every p the filtration on Cp is bounded from below and exhaustive,
and grCp is isomorphic to HomgrA(Qp,F).

Proof. For any p, the filtration on Cp is bounded from below, as that on Pp is bounded
from above. To show that it is exhaustive, take a morphism of A-modules f : Pp → F.
Since f is continuous and F is finite, f factorizes through an element of the basis F q+1Pp,
i.e. there is a morphism

f̂ :
Pp

F q+1Pp
→ F

that makes the following diagram commute

Pp F

Pp

F q+1Pp

f

f̂
.
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Since f̂ ∈ F qCp, we established an isomorphism

Cp −→
⋃
q

F qCp,

f 7−→ f̂ .

Consider now a morphism f : Pp → F whose image F q+1Pp is zero. It induces a morphism
of grA-modules from grq C

p to F by

F qPp
F q+1Pp

→ P p

F q+1P p

f̂−→ F.

All elements of Homq
grA(Qp,F) may be obtained this way, so we defined a surjective

morphism of F-vector spaces whose kernel consists of those morphisms of A-modules that
send F qCp to zero, i.e. those that belong to F q−1Cp.

By Proposition 2.3.6 we obtain the following.

Proposition 3.1.2. Let A be a complete profinite augmented algebra over F, and M be
a complete A-module. Then there is a May-type spectral sequence (Epq

r , d
pq
r ) starting with

Epq
1 = ExtpgrA(grqM,F)

that converges to ExtpA(M,F).

Definition 3.1.3. We say that M is a strongly collapsing A-module if the maps

dpq1 : Epq
1 → Ep+1,q−1

1

are zero for all p, q.

Remark 3.1.4. M is a strongly collapsing A-module if and only if ExtpgrA(grqM,F) is
isomorphic to ExtpA(M,F) as F-vector spaces.

Proposition 3.1.5. Let A be a complete profinite augmented algebra over F, and M be
a complete A-module. The following are equivalent.

1. M is strongly collapsing.

2. If (Q•, ∂) is a bounded from below locally finite graded free minimal grA-resolution
for grM , there is a bounded from above completely free minimal A-resolution (P•, ∂)
for M such that (grP•, gr ∂) = (Q•, ∂).

3. If (P•, ∂) is a bounded from above completely free minimal A-resolution for M ,
the complex (grP•, gr ∂) is a bounded from below locally finite graded free minimal
grA-resolution for grM .

Proof. 3 ⇒ 1. Consider the complex (C•, d). If we assume that (P•, ∂) is minimal, so is
(grP•, gr ∂) by hypothesis. By Lemma 1.5.4, that is equivalent to d and gr d being zero.
Therefore Hp+1(F q−1C•) = 0 for p > 0. It follows that kpq1 = 0 for all p, q and so

dpq1 = jp+1,q−1
1 ◦ kpq1 = 0.
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1 ⇒ 2. Let (Q•, ∂) be a resolution as above. By Proposition 1.3.10 there exists a
bounded from above completely free A-resolution (P•, ∂) for M such that

(grP•, gr ∂) = (Q•, ∂).

We need to prove that (P•, ∂) is minimal. Denote by (C•, d) the filtered complex
HomA(P•,F), so that grC• = HomgrA(Q•,F). We need to prove that d = 0. Consider
the exact couple

D1 D1

E1

i1

j1k1

that induced the spectral sequence. By hypothesis, d1 = j1 ◦ k1 = 0. For all n, it follows
that dn = jn ◦ kn = 0 in the n-th derived exact couple

Dn Dn

En

in

jnkn

By exactness,

jn ◦ kn = 0 ⇐⇒ Im kn ⊆ ker jn ⇐⇒ ker in ⊆ Im in.

Since the map i1 : Hp(F qC•) → Hp(F q+1C•) is induced by the inclusion F qC• ↪→
F q+1C•, the map in : Hp(F qC•) → Hp(F q+nC•) is induced by the inclusion F qC• ↪→
F q+nC•.

In the diagram below,

F q−nCp−1 F q−nCp F q−nCp+1

F qCp−1 F qCp F qCp+1

F q+nCp−1 F q+nCp F q+nCp+1

d d

d d

d d

take x ∈ F qCp with dx = 0, so that [x] ∈ Hp(F qC•). Then

• [x] ∈ ker in if ∃y ∈ F q+nCp−1 such that dy = x,

• [x] ∈ Im in if x ∈ F q−nCp.

From the inclusion ker in ⊆ Im in, for any n and for any p, q it follows that

y ∈ F q+nCp−1 and dy ∈ F qCp =⇒ dy ∈ F q−nCp,

or, equivalently, that

y ∈ F qCp−1 and dy ∈ F q−nCp =⇒ dy ∈ F q−2nCp.
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By iterating, we obtain that, for any p, q

y ∈ F qCp−1 and dy ∈ F q−1Cp =⇒ dy ∈
⋂
m≥1

F q−2mCp,

and since the filtration is separated, dy = 0. But as the map

grCp = HomgrA(Qp,F) → HomgrA(Qp−1,F) = grCp−1

is zero, by minimality of (Q•, ∂), we obtain that d(F qC) = 0 for any q. By exhaustivity
of the filtration, d = 0.

2 ⇒ 3. Let (P•, ∂) be a bounded from above completely free minimal A-resolution
for M . Consider a bounded from below locally finite graded free minimal grA-resolution
(Q•, ∂) for grM . By hypothesis there is a bounded from above completely free minimal
A-resolution (P ′•, ∂

′) for M such that (grP•, gr ∂) = (Q•, ∂). By minimality, P• and P
′
•

are isomorphic, and so are grP• and grP ′•. Since grP ′ is minimal, grP• is minimal as
well.

Lemma 3.1.6. Let A1, A2 and C be complete profinite augmented algebras such that C,
for i = 1, 2, is a completely free Ai-module.

For i = 1, 2, let Mi be a strongly collapsing Ai-module.
Then M :=M1 ⊗̂A1 C ⊕M2 ⊗̂A2 C is strongly collapsing as a C-module.

Proof. For i = 1, 2, let (Qi
•, ∂

i) be bounded from below locally finite graded free minimal
grAi-resolution grMi. For i = 1, 2, grC is a bounded from below locally finite graded
free grAi-module. By Lemma 1.5.12, the complex

(Qi
• ⊗grAi

grC, ∂i ⊗ 1)

is bounded from below locally finite graded free minimal grC-resolution for grMi ⊗grAi

grC. Set

Q• := Q1
• ⊗grA1 grC ⊕Q2

• ⊗grA2 grC,

and ∂ = ∂1⊗1+∂2⊗1. By Lemma 1.5.13, (Q•, ∂) is a minimal graded free grC-resolution
for grM .

For i = 1, 2, by hypothesis, there exists a bounded from above completely free minimal
Ai-resolution (P i

•, ∂
i) for Mi such that (grP i

•, gr ∂
i) = (Qi

•, ∂i). Therefore, by Lemma
1.5.5, the complex (P i

• ⊗Ai
C, ∂i ⊗ 1) is a bounded from above completely free minimal

C-resolution Mi ⊗Ai
C. Define

P• = P 1
• ⊗A1 C ⊕ P 2

• ⊗A2 C.

and ∂ = ∂1 ⊗ 1 + ∂2 ⊗ 1. By Lemma 1.5.6, (P•, ∂) is a bounded from above completely
free minimal C-resolution M . We conclude noticing that grP• = Q• and gr ∂ = ∂.

Lemma 3.1.7. F is a strongly collapsing A-module if and only if A+ is.

Proof. It is the immediate consequence of Lemma 1.5.3 and Lemma 1.5.9.
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3.1.1 Multiplicative structure

For a completely filtered F-algebra A, we denote by (Bar•(A,M), ∂•) the complete unre-
duced bar complex

Barp(A,M) = A ⊗̂ A ⊗̂ · · · ⊗̂ A︸ ︷︷ ︸
p times

⊗̂M

with differentials dp : Barp (A) → Barp−1 (A) defined as

dp(a0 ⊗ a1 ⊗ · · · ⊗ ap ⊗m) = a0a1 ⊗ · · · ⊗ ap ⊗m+
p∑
i=1

(−1)i+1a0 ⊗ · · · ⊗ ai−1ai ⊗ · · · ⊗ ap+

(−1)pa0 ⊗ a1 ⊗ · · · ⊗ apm.

It is a completely free bounded from above A-resolution for M , and

C• = HomA(Bar•(A,F),F))

is a filtered differential graded algebra.
Therefore as an immediate application of Theorem 2.4.16 we obtain the following.

Proposition 3.1.8. Let A be a complete profinite augmented algebra over F. Then there
is a May-type spectral sequence of algebras (Epq

r , d
pq
r ) starting with

Epq
1 = ExtpgrA(F,F)

that converges, as an algebra, to ExtpA(F,F).

We obtain the following immediate corollary.

Corollary 3.1.9. The following are equivalent.

1. F is a strongly collapsing A-module.

2. ExtpgrA(F,F) is isomorphic to ExtpA(F,F) as an algebra.

3.2 Strongly collapsing pro-p groups

Definition 3.2.1. We say that a finitely generated pro-p group G is strongly collapsing
if F is strongly collapsing as an F[[G]]-module.

The previous discussions shows that a finitely generated pro-p group G is strongly
collapsing if and only if H•(G) is isomorphic as an algebra to H•(L(G)).

Definition 3.2.2. A graded algebra A is called Koszul if

ExtpqA (F,F) = 0 for p, q ≥ 1 and p ̸= q.

Proposition 3.2.3. Let G be a finitely generated pro-p group. If gr(F[[G]]) is Koszul,
then G is strongly collapsing.

Proof. For all p, q ≥ 1, either Extpqgr(F[[G]])(F,F) or Ext
p+1,q−1
gr(F[[G]])(F,F) is zero. In either case,

the map

dpq1 : Extpqgr(F[[G]])(F,F) → Extp+1,q−1
gr(F[[G]])(F,F)

is zero.
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3.3 Examples

3.3.1 Uniform pro-p groups

Definition 3.3.1. A finite p-group G is powerful if

• G′ ≤ G4, if p = 2;

• G′ ≤ Gp, if p ≥ 3.

A subgroup N ≤ G powerfully embeds in G, or simply p.e. G, if

• [N,G] ≤ N4, if p = 2;

• [N,G] ≤ Np, if p ≥ 3.

Remark 3.3.2. G is powerful iff it p.e. itself.

Proposition 3.3.3. If N p.e. G, so does Np.

Proof. See [16], Proposition 2.3.

Corollary 3.3.4. If G is powerful, then Gpk p.e. G for any k ≥ 0.

Proposition 3.3.5. If G is powerful,

Dn(G) = Dpk(G) = Gpk , pk−1 < n ≤ pk.

Proof. We assume that p is odd. The case p = 2 is analogous.
We first show that Dpk(G) = Gpk . Since Dn = Dp

⌈n
p⌉
[Dn−1, G], clearly G

pk ≤ Dpk .

For the converse, we proceed by induction on k.

• k = 0. Trivial.

• k > 0.

Dpk+1 = Dp
pk
[Dpk+1−1, G] = Gpk+1

[Dpk+1−1, G] ≤ Gpk+1

[Dpk , G]

= Gpk+1

[Gpk , G] ≤ Gpk+1

,

where in the last passage we used the fact that Gpk+1
p.e. G.

For pk < n ≤ pk+1, we have Dn(G) ≤ Dpk+1(G) = Gpk+1
. Viceversa, by induction,

Gpk+1

= (Gpk)p = (Dpk−1+1(G))
p ≤ Dpk+p(G) ≤ Dpk+1(G).

Definition 3.3.6. A pro-p group G is powerful if

• G′ ≤ G4, if p = 2;

• G′ ≤ Gp, if p ≥ 3.

A subgroup N ≤c G is powerfully embedded in G if
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• [N,G] ≤ N4, if p = 2;

• [N,G] ≤ Np, if p ≥ 3.

Remark 3.3.7.

• G is powerful if and only if it p.e. itself.

• N ≤c G p.e. in G iff NU/U p.e. in G/U for every U ⊴o G.

Lemma 3.3.8. Let G be a pro-p group. For any n ∈ N,

Dn(G) = lim←−−−−
U⊴oG

Dn

(
G

U

)
.

Proof. It follows from the fact that, for any N ≤c G and any n ∈ N,

Nn = lim←−−−−
U⊴oG

{
NU

U

}n
and that, for any N,H ≤c G,

[N,H] = lim←−−−−
U⊴oG

[
NU

U
,
HU

U

]
.

As a consequence,

Proposition 3.3.9. If G is powerful pro-p group,

Dn(G) = Dpk(G) = Gpk , pk−1 < n ≤ pk.

Remark 3.3.10. The restricted F-Lie algebra associated to G has shape

L(G) =
∐
k≥0

Gpk

Gpk+1 .

In particular, it is abelian.

Proposition 3.3.11. For any k, i, the map x 7→ xp
k
induces an epimorphism

Dpk(G)

Dpk+1(G)
→

Dpk+i(G)

Dpk+i+1(G)
.

Definition 3.3.12. A powerful pro-p group is uniform if such map is an isomorphism.

Remark 3.3.13. As a consequence, for a uniform pro-p group G, the p-restricted Lie
algebra power map −[p] : Li(G) → Lpi(G) is an isomorfism.

It follows that

Proposition 3.3.14. The graded algebra gr(F[[G]]) associated to a uniform pro-p group
G is graded free and commutative.

Since any graded free and commutative algebra is Koszul, we achieve the following.

Corollary 3.3.15. If G is a uniform pro-p group, it is strongly collapsing.
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3.3.2 Mild pro-p groups

Let V be an F-vector space of finite dimension and consider the tensor algebra A = T (V ).
It is a locally finite graded algebra. Let R ⊆ A be a homogeneous ideal.

Lemma 3.3.16. The following is an exact sequence of locally finite graded A/R-modules.

0 → R
RA+

→ A+

RA+
→ A

R
→ F → 0. (3.1)

Proof. Consider the short exact sequence of A-modules 0 → A+ → A → F → 0 and
apply the functor −⊗A A/R. We obtain the long exact sequence

TorA1 (A,A/R) → TorA1 (F, A/R) → A+ ⊗A A/R → A⊗A A/R → F⊗A A/R → 0,

for which the following hold:

• TorA1 (A,A/R) = 0, by definition;

• F⊗A A/R = F;

• A⊗A A/R = A/R;

• A+ ⊗A A/R = A+/A+R:

• TorA1 (A,A/R) = ker(A+/A+R → A/R) = R/A+R.

Definition 3.3.17. We say that R is strongly freely generated by A if R/A+R is a graded
free-A/R module.

Remark 3.3.18. If R is strongly freely generated by A, then (3.1) is an A/R-free reso-
lution for F.

Let G be a finitely generated pro-p group with minimal presentation

1 → R → F → G→ 1,

i.e. such that R ≤ Φ(F ). Consider the filtration Rn = R∩Dn(F ) on R, and define L′(R)
as the locally finite graded restricted Lie algebra induced by the filtration. It induces a
short exact sequence of locally finite graded restricted Lie algebras

0 → L′(R) → L(F ) → L(G) → 0.

Applying the universal enveloping algebra functor, we get a a short exact sequence of
locally finite graded algebras

0 → R → gr(F[[F ]]) → gr(F[[G]]) → 0,

where R is the ideal generated by the image of L′(R) in u(L(F )) = gr(Fp[[F ]]) =: A.
Since A is 1-generated and R ≤ Φ(F ) = D2(F ), it follows that R is 2-generated as an
A-module.

Definition 3.3.19. We say that G is mild if R is strongly freely generated by A.
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Proposition 3.3.20. If G is mild, it is strongly collapsing.

Proof. Since A+ is 1-generated as an A-module, so is A+/A+R as an A/R-module. Anal-
ogously, R/A+R is 2-generated. In addition, A+/A+R is graded free over A/R, for A+ is
free over A, while R/A+R is graded free over A/R by hypothesis. Therefore (3.1) is an
A/R-graded free resolution for F, and we can use it to compute the cohomology groups
of the A/R-module F, where A/R = gr(F[[G]]). Since the resolution has length 2,

Extpqgr(F[[G]])(F,F) = 0 for p ≥ 3.

Since L(G) is 1-generated,

Ext1,qgr(F[[G]])(F,F) = 0 for q ≥ 2.

It follows that for all p, q

dpq1 : Extpqgr(F[[G]])(F,F) → Extp+1,q−1
gr(F[[G]])(F,F)

is zero.

3.3.3 Powerful p-central p-groups

In the following, p is an odd prime.

Definition 3.3.21. A group G is p-central if Gp ≤ Z(G).

Definition 3.3.22. We say that a p-central p-group has the Ω-extension property, or
ΩEP , if there exists a p-central group K such that K/Kp = G.

Remark 3.3.23. Clearly an abelian p-group G is both powerful and p-central. Moreover,
if G is p-elementary abelian, it has the ΩEP , with K = G.

Lemma 3.3.24. Let G be a powerful p-group, with rank n and exponent s. Then L(G)
has a presentation

L(G) = ⟨x1, . . . , xn | x[p]
si

i , [xi, xj] for i, j = 1, . . . , n⟩.

for some si ≤ s.

Proof. By definition,

Dr(G) = (D⌈ r
p⌉(G))

p[G,Dr−1(G)].

Since G is powerful, Dpk+1(G) = Gpk+1
= · · · = Dpk(G), therefore

Lr(G) =

{
Gpk

Gpk+1 r = pk,

0 otherwise.

Since p is odd, it is abelian.
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Lemma 3.3.25. Consider the Fp-algebra

A =
Fp[x1, . . . , xn]
(xp

s1

1 , . . . , xp
sn

n )
.

Then

ExtA(Fp,Fp) = Λ[x1, . . . , xn]⊗ Fp[y1, . . . , yn],

where the xi’s have degree 1 and the yi’s have degree 2.

Proof. It follows by noticing that A corresponds to the Fp-group algebra of the group

G = Z/ps1Z× · · · × Z/psnZ,

which has the required cohomology.

Proposition 3.3.26. Let G be a powerful p-group. Then

H•(L(G)) = Λ[x1, . . . , xn]⊗ Fp[y1, . . . , yn],

where the xi’s have degree 1 and the yi’s have degree 2.

Proof. By Lemma 3.3.24,

u(L(G)) =
Fp[x1, . . . , xn]
(xp

s1

1 , . . . , xp
sn

n )
.

Therefore, we conclude applying Lemma 3.3.25.

T. Weigel provided of classification of finite groups with mod p cohomology isomorphic
to that of an abelian group ([14], Theorem A), from which, we can deduce the following
result.

Corollary 3.3.27. Let G be a p-group with p > 2, and n = dim(Ω1(G)), where

Ω1(G) = ⟨g ∈ G | gp = 1⟩.

The following are equivalent.

1. H•(G) = Λ[x1, . . . , xn] ⊗ Fp[y1, . . . , yn], where the xi’s have degree 1 and the yi’s
have degree 2.

2. G has the ΩEP .

Since G is strongly collapsing if and only if H•(G) ≃ H•(L(G)), we get the following.

Corollary 3.3.28. Let G be a powerful p-group. The following are equivalent.

1. G has the ΩEP .

2. G is strongly collapsing.
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3.4 Constructions

Proposition 3.4.1. If G1 and G2 are are strongly collapsing pro-p groups, then G1×G2

and G1 ⨿G2 are strongly collapsing pro-p groups.

Proof. By definition of strongly collapsing pro-p group, F is strongly collapsing as an
F[[G1]]-module and as an F[[G2]]-module. By Lemma 3.1.7, that is equivalent to saying
that I((G1)) is strongly collapsing as an F[[G1]]-module and I((G2)) is strongly collapsing
as an F[[G2]]-module.

If G = G1⨿G2, its group algebra is F[[G]] = F[[G1]]⨿F[[G2]]. Its augmentation ideal
is

I((G)) = I((G1)) ⊗̂F[[G1]] F[[G]]⊕ I((G2)) ⊗̂F[[G2]] F[[G]].

If G = G1×G2, its group algebra is F[[G]] = F[[G1]] ⊗̂F[[G2]] and its augmentation ideal
is

I((G)) = I((G1)) ⊗̂ F[[G2]]⊕ F[[G1]] ⊗̂ I((G2))

= I((G1)) ⊗̂F[[G1]] F[[G]]⊕ I((G2)) ⊗̂F[[G2]] F[[G]].

In either case, F[[G]] is completely free as a F[[G1]]-module and as a F[[G2]]-module,
and we fall under the hypotheses of by Lemma 3.1.6 I((G)) is strongly collapsing as a
F[[G]]-module. We conclude applying again Lemma 3.1.7.
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Chapter 4

A pro-p generalization of a result by
Lichtman

If G1 and G2 are pro-p groups, and H is a common (closed) subgroup, their amalgamated
free pro-p product with amalgamation G = G1 ⨿p

H G2 is the universal object that fits the
commuting diagram

H G1

G2 G.

It corresponds to the pro-p completion of their amalgamated free product as abstract
groups. Unlike with abstract groups, the induced maps G1 → G and G2 → G may not
be injective, as was shown by L. Ribes ([7]). We say that G is a proper amalgamated free
product otherwise.

When H is the trivial subgroup, G is called the free pro-p product of G1 and G2. Using
the fact that for a finitely generated pro-p group G the graded algebras gr(F[[G]]) and
gr(F[G]) are isomorphic (cfr. [16], chapter 12), Theorem 5 may be immediately adapted
to the category of pro-p groups.

Theorem 4.0.1. Let G1 and G2 be finitely generated pro-p groups and let G be free
product in the category of pro-p groups. Then L(G) is isomorphic to the free product of
p-restricted Lie algebras L(G1) and L(G2).

In this chapter we extend this result to amalgamated free pro-p product under the
mild and reasonable condition that the inclusion of the filtration on the amalgam fits
those on the factors.

To state this assumption, we introduce the notion of strict embedding, both for ab-
stract groups and for pro-p groups

Definition 4.0.2. A (closed) subgroup H of G is strictly embedded in G if, for all n,

Dn(H) = Dn(G) ∩H.

For finitely generated pro-p groups, that is equivalent to requiring that the inclusion
of H in G induces an inclusion of L(H) in L(G).
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Theorem 4.0.3. Let H, G1 and G2 be finitely generated pro-p groups such that H is
strictly embedded in G1 and G2, and let G = G1 ⨿p

H G2 be their amalgamated free pro-p
product. Then the natural morphism of p-restricted Lie algebras

L(G1)⨿L(H) L(G2) → L(G).

is an isomorphism.

An immediate consequence is that amalgamated free pro-p product is proper.

4.1 Amalgamated free products of algebras

Definition 4.1.1. Let A1, A2 and C be F-algebras, with morphisms λ1 : C → A1 and
λ2 : C → A2. Consider the algebra

T (A1, A2) =
⊕
n

Tn(A1, A2),

where

Tn(A1, A2) = sum of tensor products of n terms over A1 and A2,

and multiplication is linearly defined by juxtaposition of terms.
Let I ⊆ T (A1, A2) be the ideal generated by the elements

{a⊗ b− ab, λ1(c)− λ2(c) | a, b ∈ Ai, i = 1, 2, c ∈ C}

We define the amalgamated free product of A1, A2 with respect to C as the F-algebra

A1 ⨿C A2 := T (A1, A2)/I.

If we denote by ψ1 : A1 → A1 ⨿C A2 and ψ2 : A2 → A1 ⨿C A2 the natural morphisms

A1 ↪→ T (A1, A2) ↠ A1 ⨿C A2,

A2 ↪→ T (A1, A2) ↠ A1 ⨿C A2,

there is a commuting diagram

C A1

A2 A1 ⨿C A2.

λ1

λ2 ψ1

ψ2

As an algebra, A = A1 ⨿C A2 is characterized by the following universal property.
If D is an F -algebra and ϕ1 : A1 → D and ϕ2 : A2 → D are morphisms such that
ϕ1 ◦ i1 = ϕ2 ◦ i2, there exists a unique morphism ϕ : A → D such that ϕ1 = ϕ ◦ ψ1 and
ϕ2 = ϕ ◦ ψ2.

In general, the sole condition that C is a subalgebra of A1 and A2 does not guarantee
that their amalgamated free product is proper, i.e. that both A1 and A2 are subalgebras
of A, as the following example shows.
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Example 4.1.2. Consider the algebras C, A1 and A2, with C ⊆ A1 and C ⊆ A2, defined
by the following presentations.

C := ⟨c⟩,
A1 := ⟨c, x | xc = cx = 0⟩,
A2 := ⟨c, y | yc = cy = 1⟩.

Their amalgamated free product

A1 ⨿C A2 = ⟨c, x, y | xc = cx = 0, yc = cy = 1⟩.

is isomorphic to A2, because

x = x(cy) = (xc)y = 0.

In particular, A1 is not a subalgebra of A1 ⨿C A2.

However, that is true when both A1 and A2 are free over C, as we can establish a
normal form-type result.

Proposition 4.1.3. Let C, A1 and A2 be F-algebras, and λ1 : C → A1 and λ2 : C → A2

injective morphisms. Suppose, for i = 1, 2, that Ai is free as a right C-module, with basis
Bi, with 1 ∈ Bi. Consider the tuples

(v1, . . . , vn)

where n ∈ N and vl ∈ Bil, with il ∈ {1, 2} and vl ̸= 1, for l = 1, . . . , n. We say that the
tuple (v1, . . . , vn) is reduced if il ̸= il+1 for l = 1, . . . , n − 1. We denote by W the set of
reduced tuples together with 1 and define a map Ψ : W → A1 ⨿C A2 by

Ψ(v1, . . . , vn) = ψi1(v1) . . . ψin(vn).

Then A1⨿CA2 is a free C-right module, and the image of Ψ forms a C-basis for A1⨿CA2.

Proof of the Proposition. If we denote by W the free right C-module generated by the
reduced words W , we may extend Ψ to a monomorphism of right C-modules Ψ : W →
A1 ⨿C A2. We need to prove that such morphism is bijective.

First note that, by definition,

Ψ((v1, . . . , vn)c) = ψi1(v1) . . . ψin(vn)ψ1(λ1(c)).

By induction on n it can be shown that Ψ : W → A1⨿C A2 is surjective, so we need only
to prove that it is injective.

We define

W1 = {(v1, . . . , vn) ∈ W | in = 2}

and W1 := spanC {W1}. Consider the map θ1 : W1 ⊗ B1 → W defined as

θ1((v1, . . . , vn−1)⊗ v) :=

{
(v1, . . . , vn−1, v) v ̸= 1,

(v1, . . . , vn−1) v = 1.
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It is invertible, with inverse ψ1 : W → W1 ⊗ B1 defined as

ψ1(v1, . . . , vn) =

{
(v1, . . . , vn−1)⊗ vn in = 1,

(v1, . . . , vn)⊗ 1 in = 2.

Then θ1 extends to an invertible map of right C-modules θ1 : W1 ⊗ A1 → W . For any
a ∈ A1 we may then construct a linear map f1,a : W → W in the following way: any
element reduced word w has shape w = θ1(w

′ ⊗ v), for some w′ ∈ W1 and v ∈ B1. We
then define

f1,a(wc) := θ1(w
′ ⊗ vψ1(c)a).

Also, for any c ∈ C we define fc : W → W as fc(wc
′) = wc′c.

Such maps satisfy the following properties.

1. f1,a(θi(w
′⊗a′)) = θ1(w

′⊗a′a). It is a consequence of A1 being a free right C-module
and of the linearity of θ1.

2. f1,λ1(c) = fc. If w = θ1(w
′ ⊗ v),

f1,ψ1(c)(wc
′) = θ1(w

′ ⊗ vλ1(c
′c)) = θ(w′ ⊗ v)c′c = wc′c = fc(wc

′)

3. fi,1 = 1W . Obvious.

4. f1,aa′ = f1,a′ ◦ f1,a. It follows from 1).

5. f1,ra+ra′ = rf1,a + r′f1,a′ . It follows again by linearity of θ1.

Similarly, for any a ∈ A2 we may define maps f2,a : W → W enjoying the same properties.
Consider B = EndR(W ). It is an F-algebra, with operations

(r1f1 + r2f2)(w) := r1f1(w) + r2f2(w),

f1 · f2 := f2 ◦ f1.

For given i and a ∈ Ai we may define θi : Ai → B as θi(a) = fi,a. By 3), 4) and 5) every
θi is a F-algebra homomorphism. By 2) the following diagram commutes,

C A1

A2 B.

λ2

λ1

θ1

θ2

So by the universal property of the pushout, there is a unique morphism of F-algebras
ρ : A1⨿CA2 → B such that θi = ρ◦ψi for i = 1, 2. Take a reduced word w = (v1, . . . , vn).
For any c ∈ C

wc = (v1, . . . , vn)c = fc(v1, . . . , vn) = fc(θin((v1, . . . , vn−1)⊗ vn)

= fc(fin,vn(v1, . . . , vn−1)) = · · · = (fc ◦ fin,vn ◦ · · · ◦ fi1,v1)(1)
= (fi1,v1 · . . . fin,vn · fc)(1) = ρ(ψi1(v1) . . . ψin(vn)ψ1(λ1(c)))(1)

= ρ(Ψ(w)c)(1).

Take now x ∈ W such that Ψ(x) = 0. Write x =
∑

w∈W wcw.

0 = ρ(Ψ(x))(1) =
∑
w∈W

ρ(Ψ(w)cw)(1) =
∑
w∈W

wcw = x,

and Ψ is injective.
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Corollary 4.1.4. Under the previous hypotheses, the maps ψ1 and ψ2 are injective.

Proof. Let i = 1. Take a ∈ A1 such that ψ1(a) = 0. If a =
∑

v∈B1 vcv,

0 = ψ1(a) =
∑
v∈B1

ψ1(v)ψ1(λ1(cv)) =
∑
v∈B1

Ψ(v)cv.

Therefore cv = 0 for any v ∈ B1, and so a = 0.

As another immediate corollary, we retrieve a known result by Shirshov ([18]).

Corollary 4.1.5. In the pushout of p-restricted Lie algebras

L0 L1

L2 L1 ⨿L0 L2,

λ1

λ2

ψ2

ψ1

the morphisms ψ1 and ψ2 are injective.

Proof. By the p-restricted PBW Theorem,

1. a Lie algebra L is contained in its universal enveloping algebra u(L),

2. for any subalgebra L′ ⊆ L, the algebra u(L) is free as a u(L′)-module.

The functor L → u(L) has a right adjoint, therefore it preserves pushouts, and by 1)
it is faithful, so it reflects monomorphisms. By 2) we may apply Corollary 4.1.4 to the
diagram of algebras

u(L0) u(L1)

u(L2) u(L1)⨿u(L0) u(L2),

u(λ1)

u(λ2)

u(ψ2)

u(ψ1)

to obtain that u(ψ1) and u(ψ2) are injective, and so are ψ1 and ψ2.

4.1.1 Amalgamated free product of filtered algebras

Let C, A1 and A2 be filtered algebras, and λ1 : C → A1 and λ2 : C → A2 filtered free
morphisms, with filtered basis Bi, with 1 ∈ Bi. By Proposition 4.1.3 the image of Ψ form
a basis for A1 ⨿C A2. By Lemma 1.1.17, if we set

ν(ψi1(v1) . . . ψin(vn)) := νAi1
(v1) + · · ·+ νAin

(vn).

we can endow A1 ⨿C A2 with an algebra filtration in such a way that ψ1 ◦ λ1 = ψ2 ◦ λ2 :
C → A1 ⨿C A2 is filtered free, with filtered basis formed by the image of Ψ.

We call ν the standard filtration on A1 ⨿C A2.

Lemma 4.1.6. With the standard filtration, ψ1 and ψ2 are strict

Proof. For i = 1, 2, take an element a ∈ Ai, with a =
∑

v∈B1 vcv. Then

ν(ψi(a)) = ν

(∑
v∈Bi

ψi(v)ψi(λi(cv))

)
= ν

(∑
v∈Bi

Ψ(v)cv

)
= inf(νAi

(v) + νC(cv)) = νAi
(a).
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4.1.2 Amalgamated free product of graded algebras

Let C, A1 and A2 be graded algebras, and λ1 : C → A1 and λ2 : C → A2 graded free
morphisms, with homogeneous basis Bi, with 1 ∈ Bi. By Proposition 4.1.3 the image of
Ψ form a basis for A1 ⨿C A2. We can endow it with a grading

deg(ψi1(v1) . . . ψin(vn)) := degAi1
(v1) + · · ·+ degAin

(vn).

so that ψ1 ◦ λ1 = ψ2 ◦ λ2 : C → A1 ⨿C A2 is graded free, with homogeneous basis formed
by the image of Ψ.

4.2 Proof of Theorem 7

Proposition 4.2.1. Let C, A1 and A2 be filtered algebras, and λ1 : C → A1 and λ2 :
C → A2 filtered free morphisms. If B := A1 ⨿C A2 is filtered with the standard filtration,
the natural map τ : grA1 ⨿grC grA2 → grB is an isomorphism of graded algebras.

Proof. Consider, for i = 1, 2, the set Bi is a filtered C-basis for λi.
Proposition 4.1.3 produces a filtered C-basis V for ψ1◦λ1 = ψ2◦λ2, where B is filtered

by the standard filtration.
On the other hand, by Lemma 1.3.3 the set Bi is a graded grC-basis for grλi, and

Proposition 4.1.3 produces a graded grC-basis for grλ1 ◦ ψ′1 = grλ2 ◦ ψ′2 W . Since
ψ1 ◦ λ1 = ψ2 ◦ λ2 is strict, grC-basis of grψ1 ◦ grλ1 = grψ2 ◦ grλ2 is graded free, by
Lemma 1.3.3, with graded grC-basis V . Since τ induces a bijection between W and V ,
it is an isomorphism.

Lemma 4.2.2. Let ϕ : C → A be a morphism of augmented algebras. If ϕ is surjective,
it is strict.

Proof. Since εC = εA ◦ ϕ,

C+ = ker εC = ker(εA ◦ ϕ) = ϕ−1(ker εA) = ϕ−1(A+) =⇒ ϕ(C+) = A+.

Since ϕ is surjective, ϕ(C+) = ϕ(ϕ−1(A+)) = A+ and, for every n,

ϕ(F nC) = ϕ((C+)n) = ϕ(C+)n = (A+)n = F nA.

Proposition 4.2.3. Consider λ1 : C → A1 and λ2 : C → A2 be morphisms of augmented
algebras and B := A1 ⨿C A2. Then B is an augmented algebra and ψ1 and ψ2 are maps
of augmented algebras. If, in addition,

1. λ1 and λ2 are filtered free,

2. ψ1(A
+
1 ) and ψ2(A

+
2 ) generate B

+,

then the augmented filtration on B coincides with the standard filtration.

Proof. Since εA1 ◦ λ1 = εC = εA2 ◦ λ2, by the universal property of the pushout there
is a unique map of algebras ε : B → R such that ε ◦ ψ1 = εA1 and ε ◦ ψ2 = εA2 . So B
is augmented and ψ1 and ψ2 are augmented. Denote by ν ′ the filtration induced by the
augmentation ideal.

Let us assume now that 1) holds. Denote by ν ′ the filtration induced by the augmen-
tation ideal and by {F nB}n≥0 the subalgebras induced by the standard filtration ν, so
that, for any b ∈ B
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• ν(b) ≥ n ⇐⇒ b ∈ F nB, and

• ν ′(b) ≥ n ⇐⇒ b ∈ (B+)n.

Since ψ1 and and ψ2 are augmented, by Lemma 4.2.2 they are filtered with respect to ν ′.
Moreover, by Lemma 4.1.6 they are strict with respect to ν. It follows so both ψ1(A

+
1 )

and ψ2(A
+
2 ) are contained in F 1B. By 2) then B+ ⊆ F 1B, and

(B+)n ⊆ (F 1B)n ⊆ F nB,

from which it follows that ν(b) ≥ ν ′(b) for any b ∈ B. Combining this fact with

ν(ψi1(v1) . . . ψin(vn)) = νAi1
(v1) + · · ·+ νAin

(vn),

ν ′(ψi1(v1) . . . ψin(vn)) ≥ ν ′(ψi1(v1))) + . . . ν ′(ψin(vn)))

≥ νAi1
(v1) + · · ·+ νAin

(vn).

Chaining the inequalities, we obtain that

ν ′(ψi1(v1) . . . ψin(vn)) = νAi1
(v1) + · · ·+ νAin

(vn),

therefore ν = ν ′.

Proposition 4.2.4. Let G be a residually p group and H a subgroup of G. The following
are equivalent.

1. H is strictly embedded in G.

2. The inclusion map F[H] → F[G] is filtered free.

Proof. 1) holds if and only if the induced map L(H) → L(G) is injective. By the p-
restricted Poincaré-Birchoff-Witt Theorem ([9], Theorem 2.5.5.1) and Quillen’s Theorem
([6], Theorem 1), that is equivalent to the map gr(F[H]) → gr(F[G]) being graded free,
which by Lemma 1.3.3 is in turn equivalent to 2).

Proof of Theorem 7. Let G′ be the abstract amalgamated free product of G1 and G2

with respect to H, so that G is the pro-p completion of G′, and gr(F[G′]) is isomorphic
to gr(F[[G]]). Set

C = F[H], A1 = F[G1], A2 = F[G2], B = F[G′].

and let λ1 : C → A1 and λ2 : C → A2 be the inclusions, which are filtered free by
Proposition 4.2.4, while B is the pushout of A1 and A2 with respect to C.

For any element g ∈ G′, by the normal form theorem, g = g1 . . . gk for some gl ∈ Gil ,
where il ̸= il+1 for l = 1, . . . , k − 1, and possibly gk ∈ H. Therefore

(1− g) = (1− g1) + (1− g2 . . . gk)− (1− g1)(1− g2 . . . gk)

By induction it follows that B+ = I(G′) is generated by I(G1) = A+
1 and I(G2) = A+

2 . By
Proposition 4.2.3 the augmented filtration on F[G] coincides with the standard filtration,
and by applying Proposition 4.2.1 we establish that the natural map of graded algebras

gr(F[G1]⨿gr(F[H]) gr(F[G2]) → gr(F[G′]).

is an isomorphism. It follows that also that the map

gr(F[[G1]]⨿gr(F[[H]]) gr(F[[G2]]) → gr(F[[G]]).

is an isomorphism.
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Chapter 5

Filtered formality and genus of a
pro-p group

5.1 Filtered formal pro-p groups

Strongly collapsing pro-p groups are characterized by having cohomology isomorphic to
that of their p-restricted Lie algebra L(G). Perhaps the simplest case in which this
happens is represented by the following class of pro-p groups.

Definition 5.1.1. A finitely generated pro-p group G is said to be filtered formal if it
admits a strict isomorphism of filtered algebras ϕ : F[[G]] → ĝr(F[[G]]).

Filtered formal groups were introduced by A. I. Suciu and H. Wang to describe a
property of 1-formal groups related to its Malcev Lie algebra (details in [20]).

Proposition 5.1.2. Let H, G1 and G2 be filtered formal pro-p groups such that H is
strictly embedded in G1 and G2, and let G = G1⨿HG2 be their amalgamated free product.
Then G is filtered-formal.

Lemma 5.1.3. Consider, in a category, the following commuting diagram

B1 B2

D1 A1 A2 D2.

C1 C2

b

h1 h2

a

g1

f1 f2

g2

c
l1 l2

If the left side is a pushout, then there is a unique map d : D1 → D2 that makes the
diagram commute.

If, in addition, the right side is a pushout and a, b and c are isomorphisms, then d is
an isomorphism.

Proof. Diagram chasing.

Proof of Proposition 5.1.2. The functor that sends a filtered algebra to its completion,
being left adjoint to the forgetful functor, preserves pushouts. Therefore the previous
morphism induces an isomorphism of F-algebras

F[[G1]]⨿F[[H]] F[[G2]] → F[[G]].
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Similarly, 7 induces an isomorphism of complete algebras

ĝr(F[G1])⨿ĝr(F[H]) ĝr(F[G2]) → ĝr(F[G]).

By hypothesis, there are also isomorphisms

ϕ1 : F[[G1]] → ĝr(F[G1]),

ϕ2 : F[[G2]] → ĝr(F[G2]),

ψ : F[[H]] → ĝr(F[H]).

We conclude applying Lemma 5.1.3 to the diagram

F[[G1]] ĝr(F[G1])

F[[G]] F[[H]] ĝr(F[H]) ĝr(F[G]).

F[[G2]] ĝr(F[G2])

ϕ1

ψ

ϕ2

And noticing that the isomorphism it produces F[[G]] → ĝr(F[[G]]) induces the identity
on gr(F[[G]]) by construction.

5.1.1 Free pro-p groups

The simplest class of filtered formal pro-p groups is formed by finitely free pro-p groups.

Proposition 5.1.4. Finitely generated free pro-p group are filtered formal.

Lemma 5.1.5 (([10], Lemma 25)). Let A be an algebra F⟨X1, . . . , Xn⟩/J ̸= 0, where J is
generated by homogeneous polynomial in the xi’s, and I = (X1, . . . , Xn)/J . With respect
to the filtration induced by I, the map x 7→ x defines a strict isomorphism of filtered
algebras.

A→ grA.

Proof. of the Proposition Let F be a finitely generated pro-p group and rk(F ) = n. Then
F is the pro-p completion of the free group F ′ generated over n elements.

Clearly gr(F[[F ]]) ≃ gr(F[F ′]) ≃ F⟨X1, . . . , Xn⟩, and Lemma 5.1.5 for J = 0 shows
that gr(F[F ′]) ≃ F[F ′]. Passing to the completions we obtain that F[[F ]] is isomorphic to
ĝr(F[[F ]]).

5.1.2 Uniform abelian pro-p groups

Proposition 5.1.6. Let G be a finitely generated pro-p group. Then G is uniform and
filtered formal if and only if it is abelian and torsion free.

Proof. If G is abelian and torsion free, G ≃ Znp where n = ∂(G), and

F[[G]] ≃ F[[X1, . . . , Xn]],

And clearly F[[G]] ≃ ĝr(F[[G]]). Viceversa, if G is uniform, from 3.3.14 it follows that

ĝr(F[[G]]) ≃ F[[X1, . . . , Xn]].

Since G is filtered free, F[[G]] is isomorphic to ĝr(F[[G]]), therefore F[[G]] is commutative
and torsion free, and so is G.

54



5.1.3 Right-angled Artin pro-p groups

Undirected graphs

A undirected graph Γ̈ = (V, Ë) consists of a non-empty set of vertices V and a set of edges
Ë ⊆ P2(V ), where P2(V ) denotes the set of subsets of V of cardinality 2. If Ë = P2(V )
we say that Γ̈ is complete.

Subgraphs are defined in the obvious way, and we say that a subgraph Γ̈′ = (V ′, Ë ′)
of an undirected graph Γ̈ = (V, Ë) is induced if

Ë ′ = Ë ∩ P2(V
′).

We say that such a subgraph is proper if V ′ ⊊ V .
A finite complete, and therefore induced, subgraph with n vertices is called an n-clique.

Let Γ̈1 = (V1, Ë1) and Γ̈2 = (V2, Ë2) be two undirected graphs, with a common induced
proper subgraph Λ = (V ′, Ë ′). The patching of Γ̈1 and Γ̈2 along Λ is the graph Γ̈ = (V, Ë)
with

V = V1 ∪ V2,
Ë = Ë1 ∪ Ë2,

where we identify the vertices lying in V1 ∩ V ′ and in V2 ∩ V ′, and the edges lying in
Ë1 ∩ Ë ′ and in Ë2 ∩ Ë ′.

A finite undirected graph Γ̈ = (V, Ë) is chordal if there are no induced subgraphs of
Γ̈ which are circuits of length at least 4.

Chordal graphs are characterized by the following property ([17], Prop. 5.5.1).

Proposition 5.1.7. A finite undirected graph Γ̈ is chordal if and only if one of the two
occurs.

• Γ̈ is complete

• Γ̈ decomposes as patching of two induced proper subgraphs Γ̈1 and Γ̈2, along with a
common clique ∆.

We will always assume graphs to be finite.

Pro-p right-angled Artin groups

Associated to an undirected graph Γ̈ = (V, Ë) we can define the following objects:

• the right-angled Artin group GΓ̈

GΓ̈ = ⟨V | [v, w], {v, w} ∈ Ë⟩,

• the right-angled Artin pro-p group ĜΓ̈, as the pro-p completion of GΓ̈,

• the right-angled Artin p-restricted Lie algebra LΓ̈

LΓ̈ = ⟨V | [v, w], {v, w} ∈ Ë⟩,
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• the right-angled Artin associative algebra AΓ̈

AΓ̈ =
{
V | vw = wv, {v, w} ∈ Ë

}
.

Inclusions of induced subgraphs induce split monomorphisms in each category.
We quote some results from [21].

Theorem 5.1.8 (Theorem 1.4i). AΓ̈ is a Hopf algebra, and the identity V → V induces
a natural isomorphism of Hopf algebras AΓ̈ → u(LΓ̈).

The powers of the augmentation ideal define a filtration on AΓ̈.

Theorem 5.1.9 (Theorem 1.3ii). The map v 7→ 1+v defines a strict morphism of filtered
algebras F[[GΓ̈]] → ÂΓ̈.

Theorem 5.1.10 (Theorem 1.4ii). The identity V → V induces a natural morphism of
p-restricted Lie algebras LΓ̈ → L(GΓ̈).

Proposition 5.1.11. If Γ̈ = (V, Ë) is an undirected graph, the pro-p group ĜΓ̈ is filtered
formal.

Proof. Theorem 5.1.8 and Theorem 5.1.10 tell us that AΓ̈ id the p-restricted enveloping
algebra of L(GΓ̈). Quillen’s isomorphism u(L(GΓ̈)) → gr(F[[GΓ̈]]) provides a strict iso-
morfism of filtered algebras gr(F[[GΓ̈]]) → AΓ̈, which induced an isomorphism on their
completions

ÂΓ̈ → ĝr(F[[GΓ̈]]).

Combining such isomorphism with that of Theorem 5.1.9, we obtain a strict isomorphism
of filtered algebras

F[[G]] → ĝr(F[[G]])

5.2 Genus of a pro-p group

Definition 5.2.1. Given an N0-graded locally finite p-restricted Lie algebra L we define
its genus as the set

gen (L) = {G pro-p group | L(G) is isomorphic to L} .

Given a finitely generated pro-p group G, we define its genus as the set of pro-p groups
gen (G) = gen (L(G)).

Question 6 can be rephrased in the following way.

Question 5.2.2. Is it true that for any N0-graded finite dimensional p-restricted Lie
algebra L the set gen (L) is non-empty?

Definition 5.2.3. A pro-p group G is said to be rigid when | gen (G) | = 1.
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Proposition 5.2.4. Free pro-p groups are rigid.

Proof. Let F be the free pro-p group over n generators. It was shown by Lazard that
L(F ) is a free p-restricted Lie algebra on n generators (details in [19], Theorem 1.3.8).
Viceversa, let G be a finitely generated pro-p group whose associated p-restricted Lie
algebra L(G) is free. In particular, L(G), so G is strongly collapsing and G has cohomo-
logical dimension 1. By a characterization of free pro-p groups ([15], Theorem 4.12), G
is free.

Rigidity is a strong property of a pro-p group, as generally some information is lost
in the linearization G 7→ L(G). In other cases, we are still able to characterize elements
of the genus of a pro-p group in in terms of other properties, such as cohomology.

Proposition 5.2.5. Let G be a uniform pro-p group. Then

gen (G)
a)
= {G′ | G′ is uniform and d(G) = d(G′)}
b)
= {G′ | G′ is uniform and H•(G) ≃ H•(G′)} .

Proof. We first prove a). Let G′ be a uniform pro-p group with

dim(L1(G)) = d(G) = d(G′) = dim(L1(G
′)).

By Proposition 3.3.11 it follows that L(G′) is isomorphic to L(G). Viceversa, let G′ be a
pro-p group and α : L(G′) → L(G) an isomorphism of graded p-restricted Lie algebras.
For every i ≥ 0 the following diagram

Li(G) Li(G
′)

Lip(G) Lip(G
′)

−[p]

αi

−[p]

αip

commutes, and the power map −[p] : Li(G
′) → Lip(G

′) is an isomorphism. We conclude
that G′ is uniform.

To prove b), we recall that G′ is uniform if and only if H•(G′) =
∧
•H

1(G′) ([13],
Theorem 5.1.5), and that dimH1(G′) = d(G′), and use part a).

Corollary 5.2.6. Let G be a uniform pro-p group and let G1, G2 ∈ gen (G). If G1 and
G2 are filtered formal, they are isomorphic.

Proof. By Proposition 5.1.6, we know that G1 and G2 are uniform and ∂(G1) = ∂(G2) =
n = ∂(G) =: n. Since they are filtered formal, by Proposition 5.1.6 they are abelian and
torsion free, so they are isomorphic.

Note that Corollary 5.2.6 gives a positive answer to Question 9 when G is a uniform
pro-p group.

Proposition 5.2.7. Let G be a mild pro-p group with quadratic cohomology. Then

gen (G) = {G′ | G′ is mild and H•(G) ≃ H•(G′)} .

Proof. If G is mild and H•(G) is quadratic, H•(G) is Koszul and u(L(G)) is isomorphic
to the quadratic dual of H•(G) ([23], Theorem 1.3). Since G′ is a finitely generated pro-p
group of cohomological dimension 2 and H•(G′) is Koszul, G′ is mild ([23], Proposition
1.4). Therefore u(L(G′)), being isomorphic to quadratic dual of H•(G′) ≃ H•(G), is
isomorphic to u(L(G)).
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5.3 Oriented right-angled Artin pro-p groups

5.3.1 Oriented graphs

An oriented graph Γ = (V,E) consists of a non-empty set of vertices V , which again
we assume finite, partitioned as a disjoint union V = Vs ⊔ Vo and a set of edges E ⊆
V × V \∆(V ), where

∆(V ) = {(v, v) ∈ V × V | v ∈ V } .

The projections onto the first and the second coordinate define two maps, the origin
o : E → V and the terminus t : E → V . The set E can be partitioned as E = Es ⊔ Eo,
where the set

Es = {e ∈ E | (t(e), o(e)) ̸∈ E}

is called the set of special edges, while Eo is the set of ordinary edges. The partition on
the vertices has to satisfy the following condition: if e ∈ E, then o(e) ∈ Vo.

We say that an oriented graph Γ is special if the terminus of every special edge is a
special vertex.

For every oriented graph Γ = (E, V ) there is an undirected graph Γ̈ = (V, Ë), where

Ë = {{o(e), v(e)} | e ∈ E} .

An oriented graph Γ is said to be chordal if Γ̈ is chordal.

5.3.2 Oriented pro-p groups

Definition 5.3.1. An oriented pro-p group is a couple (G, θ), where G is a pro-p group
and θ : G→ Z×p is a morphism, called the orientation of G.

A morphism of oriented pro-p groups ϕ : (G, θ) → (G′, θ′) is a morphism of pro-p
groups such that θ = θ′ ◦ ϕ.

Amalgamated free pro-p product of oriented pro-p groups

Let (G1, θ1) and (G2, θ2) be oriented pro-p groups with a common subgroup H on which
the orientations agree. The amalgamated free pro-p product G1 ⨿H G2 can be endowed
with the structure of a pro-p oriented group, whose orientation is induced by the universal
property.

H

G1 G1 ⨿H G2 G2

Z×p

θ1
θ

θ2

We say that

(G, θ) = (G1, θ1)⨿H (G2, θ2)

is the amalgamated free pro-p product of (G1, θ1) and (G2, θ2) with respect to H.
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5.3.3 Oriented pro-p right-angled Artin groups

Given an oriented graph Γ = (E, V ) and a continuous morphism λ : Zp → Z×p , called
linear orientation, we call the pro-p defined by the pro-p presentation

GΓ,λ = ⟨v ∈ V | [v, w] =

{
1 if e ∈ E0,

v1−λ(1) if e ∈ Es
∀e = (v, w) ∈ E⟩.

the oriented right-angled Arting pro-p group associated to Γ and λ (cfr. [24]). It naturally
carries the structure of oriented pro-p group, with orientation θΓ,λ : GΓ,λ → Z×p given by

θΓ,λ(v) =

{
1 if v ∈ Vo,

λ(1) if v ∈ Vs.

Proposition 5.3.2 ([25], Proposition 4.11). Let Γ = (V,E) be a specially oriented graph
and λ : Zp → Z×p a linear orientation. If ∆ = (V (∆), E(∆)) is a clique of Γ, then the
inclusion V (∆) → V induces a monomorphism of oriented pro-p groups

(G∆,λ, θ∆,λ) → (GΓ,λ, θΓ,λ).

Lemma 5.3.3 ([25], Fact 4.1). If Γ is the patching of two induced subgraphs Γ1, Γ2 along
a common induced subgraph ∆ and λ : Zp → Z×p any linear orienteation, the associated
oriented pro-p group GΓ,λ decomposes as an oriented free product of with amalgamation
of pro-p groups

(GΓ,λ, θΓ,λ) = (GΓ1,λ, θΓ1,λ)⨿G∆,λ
(GΓ2,λ, θΓ2,λ).

Proposition 5.3.4. If a special oriented graph Γ is chordal, for any linear orientation
λ,

GΓ,λ ∈ gen (GΓ̈)

Proof. We consider the two cases of Proposition 5.1.7. If Γ is complete, it has at most
one special vertex, say v. For any vertex w ∈ V ,

[v, w] = v1−λ(1) ∈ Dp(GΓλ
)

as Im(λ) ⊆ 1 + pZp (or Im(λ) ⊆ 1 + 4Zp if p = 2). Then the image of [v, w] in L(GΓλ
) is

zero, and L(GΓλ
) ≃ LΓ̈.

Otherwise the graph Γ decomposes as the patching of two induced proper subgraphs
Γ1 and Γ2, along a common clique ∆. By Lemma 5.3.3

(GΓ,λ, θΓ,λ) = (GΓ1,λ, θΓ1,λ)⨿G∆,λ
(GΓ2,λ, θΓ2,λ).

By Proposition 5.3.2 the inclusions ∆ ↪→ Γ1 and ∆ ↪→ Γ2 induce monomorphisms of
oriented pro-p groups µ1 : G∆,λ → GΓ1,λ and µ2 : G∆,λ → GΓ2,λ. By inductive hypothesis

L(GΓ1,λ) ≃ LΓ̈1
,

L(GΓ2,λ) ≃ LΓ̈2
,

L(G∆,λ) ≃ L∆̈ .
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As a consequence, L(m1) and L(m2) are injective, and G∆,λ is strictly embedded in GΓ1,λ

and in GΓ2,λ.
By theorem 7,

L(Gλ) ≃ L(GΓ1,λ)⨿L(G∆,λ) L(GΓ2,λ) ≃ LΓ̈1
⨿L∆̈

LΓ̈2
≃ LΓ̈ ≃ L(GΓ̈).

We are now able to provide a partial answer to Question 8.

Corollary 5.3.5. Let Γ be a specially oriented chordal graph, let λ : Zp → Z×p be a
continuous homomorphism and let GΓ,λ be the oriented pro-p right-angled Artin group
associated to Γ and λ. Then L(GΓ,λ) is quadratic.
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