
Transformer-based Language Models and Homomorphic
Encryption: An Intersection with BERT-tiny
Lorenzo Rovida

lorenzo.rovida@unimib.it

University of Milano-Bicocca

Milan, Italy

Alberto Leporati

alberto.leporati@unimib.it

University of Milano-Bicocca

Milan, Italy

ABSTRACT

In recent years, emerging and improved Natural Language Process-

ing (NLP) models, such as Bidirectional Encoder Representations

from Transformers (BERT), have gained significant attention due

to their performance on several natural language tasks. However,

inappropriate focus is usually given to the critical problems of secu-

rity and data privacy, since these models require access to plain data.

To address these issues, we suggest a solution based on Fully Ho-

momorphic Encryption (FHE), which allows for computations to be

performed on encrypted data. In particular, we propose a FHE-based

circuit that, by implementing the smallest existent BERT model,

namely BERTtiny, enables the extraction of encrypted sentences

representations and encrypted text classifications. Considering the

nature and the depth of this circuit, we used the Cheon-Kim-Kim-

Song (CKKS) scheme, along with the bootstrapping operation. We

also propose to use precomputations for the Layer Normalization,

in order to lighten computations. The experiments, which can be

replicated using our open-source code, are conducted on the Stan-

ford Sentiment Treebank (SST-2) dataset. They show that errors

introduced by precomputed Layer Normalizaion, approximate FHE

operations and polynomial approximations do not produce a sig-

nificant performance loss.

CCS CONCEPTS

• Computing methodologies→ Natural language processing; •
Security and privacy→ Privacy-preserving protocols; Cryp-
tography.

KEYWORDS

Homomorphic Encryption; Secure Machine Learning; Natural Lan-

guage Processing

ACM Reference Format:

Lorenzo Rovida and Alberto Leporati. 2024. Transformer-based Language

Models and Homomorphic Encryption: An Intersection with BERT-tiny. In

Proceedings of the 10th ACM International Workshop on Security and Privacy
Analytics (IWSPA ’24), June 21, 2024, Porto, Portugal. ACM, New York, NY,

USA, 11 pages. https://doi.org/10.1145/3643651.3659893

This work is licensed under a Creative Commons Attribution

International 4.0 License.

IWSPA ’24, June 21, 2024, Porto, Portugal
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0556-4/24/06

https://doi.org/10.1145/3643651.3659893

1 INTRODUCTION

Bidirectional Encoder Representations from Transformers (BERT)

[12] is a revolutionary Natural Language Processing (NLP) model

that employs the Transformer [27] architecture. One of the key

features of Transformers is the Attention mechanism, which allows

to capture contextual information about words and to focus on

different relationships among them. Models based on Attention

have demonstrated very high performance inmany NLP tasks, since

they overcome the previous limitations of traditional sequential

models. Despite this, insufficient attention is currently given to

ensuring data security and privacy.

In this context, Homomorphic Encryption (HE) emerges as a

possible solution, as it allows for computations to be performed on

encrypted data. The security of almost all known HE schemes is

based on the hardness of solving the Learning with Errors (LWE)

[24] problem, which is also considered one of the most promising

candidates for post-quantum cryptography [3]. Many HE schemes

have been proposed in the literature, each having advantages and

drawbacks; a good overview is given in [1]. In particular, the Cheon-

Kim-Kim-Song (CKKS) scheme [10] well-suits the context of neural

networks [11] since it works on complex numbers and has the very

beneficial property of batchingmultiple values in a single ciphertext.

It therefore takes advantage of fast Single Instruction, Multiple Data

(SIMD) operations, meaning that additions and multiplications are

performed slot-wise between encrypted vectors, leading to fast

parallel computations. In particular, this work uses the OpenFHE

library [2], which offers an error reduced implementation [19] of

the Residual Number System (RNS) version of the CKKS scheme.

Since HE adds significant overhead in computations, we propose

an implementation of the smallest existing BERT model, called

BERTtiny [7]. It is a scaled-down version of the BERT model, which

consists of 𝐿 = 2 encoders of 𝐻 = 128 hidden units, designed to

be more compact and computationally efficient compared to the

original BERT. Such efficiency is obtained through the so-called

distillation process [26], that trains the smaller model (BERTtiny)

using the outputs or representations of the larger model (BERT) as

“teacher” signals.

1.1 Related works

The intersection between NLP and HE schemes has been some-

what explored in the last years. In this section we review the most

relevant works that explore this intersection, highlighting the dif-

ferences with respect to our approach. The main issue, currently

unsolved, is the overhead introduced by HE computations, which

prevents Large Language Models (LLM) to be implemented.

In 2020, [6] proposed PrivFT, perhaps the first work that showed

practical text classification using the fasttext [17] architecture and

3

https://orcid.org/0000-0001-5093-7932
https://orcid.org/0000-0002-8105-4371
https://doi.org/10.1145/3643651.3659893
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3643651.3659893
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3643651.3659893&domain=pdf&date_stamp=2024-06-19

IWSPA ’24, June 21, 2024, Porto, Portugal Lorenzo Rovida and Alberto Leporati

the first RNS variant for CKKS accelerated by GPU. The implemen-

tation showed very good performance. Nevertheless, the fasttext
architecture is much simpler than Transformers, and the evaluation

of softmax function is performed by the client.

A couple of years later, [9] introduced THE-X, a HE implemen-

tation of the Transformer architecture. The main problems of this

approach are the introduction of many approximations, simplified

computations, and the workflow in which the client has to get in-

volved in some computations (especially in the evaluation of some

activation functions). One of our main contribution is, on the other

hand, to outsource all the computational tasks to the server.

Recently, [28] introduced Primer, a privacy preserving architec-

ture which allows fast Transformer inference. In that work, HE is

used for polynomial operations and MPC for non-polynomial oper-

ations, so the whole architecture is hybrid and involves multiple

actors. Our architecture, on the other hand, involves only a service

provider and a client.

One key point in our work is the evaluation of the softmax

function, which requires the evaluation of 𝑒𝑥 and 1/𝑥 . In [16], the

exponential function is evaluated using the limit definition by Euler,

and the inverse function is approximated using Goldschmidt algo-

rithm. In [21] 𝑒𝑥 is approximated using the least-squares method

and, as before, Goldschmidt algorithm is applied. Our proposal takes

instead advantage of the Maclaurin series for 𝑒𝑥 and of Chebyshev

polynomial for 1/𝑥 , which provides a polynomial approximation

close to the best [25].

As far as we are aware, the only intersection between HE and

BERT is explored in [20], where a HE-based Logistic Regression

model is trained using BERT embeddings. Nevertheless, BERT is

only slightly involved in such work, since the main goal is the

implementation of the Logistic Regression model. The inference

from BERT, on the other hand, is performed by the client, and not

by the service provider, as in our proposal.

1.2 Our contribution

In this work, the following points are explored and presented:

• An implementation of the BERT encoder using FHE primitives,

executed exclusively by the server. The initial embeddings, obtained

as values from a look-up table, are computed by the client. To the

best of our knowledge, this is the first BERT circuit based on HE.

• A precomputation of Layer Normalization, in which precom-

puted values for mean and variance are used in order to reduce the

complexity of the circuit. We demonstrate that this approach does

not result in a significant reduction in the model performance.

• A performance evaluation of the encrypted circuit, fine-tuned

on the Stanford Sentiment Treebank (SST-2) [22] dataset, which is

used for a sentiment analysis task.

1.3 The proposed setting

We propose a setting composed of two parties: a server that offers

a machine learning service based on BERT and a client (or user)

which asks for a classification. The communication between the

server and the client (or the user) is described by Figure 1.

The client computes a set of embeddings of a tokenized sen-

tence using look-up tables. This set is encrypted and the cipher-

texts are sent to the server. The latter evaluates a HE circuit which

User

Server

"Cinema Paradiso is

literally a gem."

[[0.31, 0.23, . . . , 0.55],
[0.65, 0.01, . . . , 0.15],

.

.

.

[0.72, 0.44, . . . , 0.94]]

FHE Ciphertext Transformer

Encoder

Transformer

Encoder

Pooler

ClassifierFHE Ciphertext

[−3.12, 4.51]

Positive sentiment

Figure 1: High-level architecture of our proposal

implements two BERTtiny encoders, a pooling layer and a binary

classification layer. The result is thus a ciphertext containing two

values, one for each output neuron. The client is able to get the

result of the classification by decrypting the ciphertext and verify-

ing whether the value contained in the first slot is greater than the

value contained in the second slot.

1.4 Approximate Homomorphic Encryption

Our circuit is based on the CKKS [10] scheme, which is an approxi-

mate HE scheme that allows computations on encrypted vectors of

complex numbers. Let R := Z[𝑋]/(Z𝑁 +1) be a cyclotomic ring for

a power of two 𝑁 , and R𝑄 be the quotient ring of R. Given a plain

vector v ∈ C𝑁 /2, the encryption informally follows the following

process:

v ∈ C𝑁 /2 encode−−−−−−→ R
encrypt

−−−−−−→ R2𝑄
Since values are discretized in Z, a parameter Δ is introduced in

order to control the precision of the encoding procedure. Vectors

are encoded in polynomials in such a way that polynomial multi-

plications result in Hadamard multiplication (i.e., slot-wise) in the

clear space C𝑁 /2.
We refer to the level of a ciphertext as the number of multipli-

cations that has been performed on it. A multiplication between

two ciphertexts result in a ciphertext with a doubled scale equal to

Δ2
; therefore, a so-called rescaling operation is performed. Never-

theless, this operation reduces the modulo 𝑄 of the polynomial by

multipliying by a factor Δ−1.

4

Transformer-based Language Models and Homomorphic Encryption: An Intersection with BERT-tiny IWSPA ’24, June 21, 2024, Porto, Portugal

The modulus 𝑄 = 𝑞1 · 𝑞2 · . . . 𝑞𝑛 is built as a moduli chain using

multiple 𝑞𝑖 , so that when a rescaling is performed, the modulo 𝑄

“loses” a modulus 𝑞𝑖 . When𝑄 reaches the minimum level𝑄 = 𝑞1, it

can not be rescaled anymore. A bootstrapping operation is required

in order to bring back the modulus to the original𝑄 (equivalently, to

reduce the level of a ciphertext).We use the bootstrapping technique

described in [8]. We refer the reader to [19] for further information

about the workings of the CKKS scheme.

This paper uses the following primitives, using OpenFHE API

notation:

• EvalAdd(𝑐𝑡1, 𝑐𝑡2): performs a slot-wise addition between two

ciphertexts/plaintexts 𝑐𝑡1 and 𝑐𝑡2.

• EvalMult(𝑐𝑡1, 𝑐𝑡2): performs a slot-wise multiplication be-

tween two ciphertexts/plaintexts 𝑐𝑡1 and 𝑐𝑡2.

• EvalRotate(𝑐𝑡, 𝑖): the positions of the encrypted values in 𝑐𝑡

are rotated to the left by 𝑖 positions.

• EvalBootstrap(𝑐𝑡): performs the bootstrap operation on the

ciphertext 𝑐𝑡 .

Since the bootstrapping operation theoretically enables the evalua-

tion of circuits of any depth, the term Fully Homomorphic Encryp-

tion (FHE) is used.

2 METHODOLOGY

This section contains the design of the proposed FHE circuit, and

the definition of the basic algorithms on which the circuit is based.

2.1 Some basic HE algorithms

Efficient computations in a HE circuit, particularly matrix multipli-

cations, require adequate methods for encoding and packing data.

In literature, it is possible to find many approaches to vector-matrix

multiplication. For instance, [13] presented a so-called diagonal

form for multiplications, while [18] an even better hybrid approach.

When building an encrypted version of a feed-forward or con-

volutional neural network, it is usually possible to apply any pre-

processing (i.e., moving and repeating elements) to weight matrices,

since they are almost always stored as plaintexts. Nevertheless, in

the Self-Attention layer of Transformers, many matrix multiplica-

tions are performed betweenmatrices that can not be pre-processed.

For instance, the first multiplication is performed between Q and

K which are, in turn, obtained as matrix multiplications. In this

case pre-processing is not possible, and reshaping ciphertexts is

an expensive operation. We therefore propose two algorithms to

perform matrix-vector multiplication, depending on how the argu-

ments are packed. The main idea is that, in order to avoid reshaping,

procedures are adapted to data, and not vice versa. Given a vector

of length 𝑘 , and ciphertexts of 𝑠 slots, where 𝑘 < 𝑠 and both are

powers of two, we define:

• Repeated packing: the plain vector is repeated 𝑘/𝑠 times along

the ciphertext.

• Expanded packing: each of the 𝑘 elements of the plain vector is

repeated 𝑘/𝑠 times.

This is a required redundancy, needed to take full advantage of

SIMD computations. Notice that in our implementation 𝑘 is equal

to the hidden size 𝐻 of the model (in BERTtiny the hidden size is

𝐻 = 128), while the number of slots in each ciphertext is 𝑠 = 2
14
.

Matrices, on the other hand, are encoded in Row-major packing or

in Column-major packing.

2.1.1 Vector-matrix multiplications. We introduce two distinct pro-

cedures, namely VecMatER and VecMatRC. Both work on vectors

of length𝑛 and square matrices of size𝑛×𝑛, and they share the same

semantic. Plus, they both rely on the RotSum procedure, that given

𝑏 and 𝑡 as input, sums the elements in positions {𝑖 · 𝑏 : 0 ≤ 𝑖 < 𝑡}
by rotating the input ciphertext. The first one, VecMatER, is per-

formed between an Expanded vector and a Row-major matrix (as

the name suggests), and is presented in Algorithm 1.

Algorithm 1 Vector-Matrix in Expanded and Row-major shapes

multiplication

1: procedure VecMatER(𝑐𝑡1, 𝑐𝑡2)

2: 𝑐𝑡𝑟𝑒𝑠 ← EvalMult(𝑐𝑡1, 𝑐𝑡2)
3: 𝑐𝑡𝑟𝑒𝑠 ← RotSum(𝑐𝑡𝑟𝑒𝑠 , 𝑡 = 128, 𝑏 = 128)
4: return 𝑐𝑡𝑟𝑒𝑠
5: end procedure

Figure 2 provides a visual representation of the procedure.

𝑤1,1 𝑤1,2 . . . 𝑤1,𝑛

𝑤2,1 𝑤2,2 . . . 𝑤2,𝑛

.

.

.
.
.
.

. . .
.
.
.

𝑤𝑛,1 𝑤𝑛,2 . . . 𝑤𝑛,𝑛

©«

ª®®®®®®®®®®¬ 𝑎1 𝑎2 . . . 𝑎𝑛

()

𝑤1,1 𝑤1,2 . . . 𝑤1,𝑛 𝑤2,1 𝑤2,2 . . . 𝑤2,𝑛 . . .

)(𝑎1 𝑎1 . . . 𝑎1 𝑎2 𝑎2 . . . 𝑎2 . . .

)(

∑ ∑
. . .

∑
.

)(

×

=

Figure 2: Visual representation of the VecMatER procedure

The procedure performs only one multiplication, meaning that

only one level is consumed. The output is a ciphertext in Repeated

shape, ready to be used by the following procedure, without any re-

shaping. TheVecMatRC procedure takes as input a Repeated vector

and a Column-major matrix. It is described in Algorithm 2 and it is

represented in Figure 3. The output of this algorithm is a ciphertext

that contains the resulting values in positions 𝑖 : 𝑖 mod 128 = 0. By

repeating these values 128 times, we obtain an Expanded ciphertext,

that can be ideally used again by the VecMatER procedure. Since

the repetition of values requires a mask procedure, this procedure

consumes a total of two levels.

5

IWSPA ’24, June 21, 2024, Porto, Portugal Lorenzo Rovida and Alberto Leporati

Algorithm 2 Vector-Matrix in Repeated and Column-major shapes

multiplication

1: procedure VecMatRC(𝑐𝑡1, 𝑐𝑡2)

2: 𝑐𝑡𝑟𝑒𝑠 ← EvalMult(𝑐𝑡1, 𝑐𝑡2)
3: 𝑐𝑡𝑟𝑒𝑠 ← RotSum(𝑐𝑡𝑟𝑒𝑠 , 𝑡 = 128, 𝑏 = 1)
4: 𝑐𝑡𝑟𝑒𝑠 ← Repeat(𝑐𝑡𝑟𝑒𝑠 , 𝑡 = 128, 𝑏 = 1)
5: return 𝑐𝑡𝑟𝑒𝑠
6: end procedure

𝑤1,1 𝑤1,2 . . . 𝑤1,𝑛

𝑤2,1 𝑤2,2 . . . 𝑤2,𝑛

.

.

.
.
.
.

. . .
.
.
.

𝑤𝑛,1 𝑤𝑛,2 . . . 𝑤𝑛,𝑛

©«

ª®®®®®®®®®®¬ 𝑎1 𝑎2 . . . 𝑎𝑛

()

𝑤1,1 𝑤2,1 . . . 𝑤𝑛,1 𝑤1,2 𝑤2,2 . . . 𝑤𝑛,2 . . .

)(𝑎1 𝑎2 . . . 𝑎𝑛 𝑎1 𝑎2 . . . 𝑎𝑛 . . .

)(

∑
.

∑
.

)(

×

=

Figure 3: Visual representation of the VecMatRC procedure

2.1.2 Vector wrapping algorithms. We present two procedures that,

combined with vector-matrix multiplications, enable actual matrix-

matrix multiplications. The idea is to perform 𝑛 times a vector-

matrix multiplications and to wrap the results up in a single cipher-

text. The first procedure is calledWrapUpExpanded, and it is used

to wrap at most 𝑛 Expanded shape ciphertexts, see Algorithm 3 and

Figure 4 for a visual representation. The output of this procedure

Algorithm 3 Wrap up Expanded

1: procedure WrapUpExpanded(v, 𝑛)

2: for 𝑖 ← 0 to 𝑙𝑒𝑛(v) − 1 do
3: v

masked
[𝑖] ← MaskMod(v𝑖 , 𝑖, 𝑛)

4: end for

5: return EvalAdd(v
masked

)
6: end procedure

is a ciphertext containing a Column-major matrix. The MaskMod

procedure takes as input an index 𝑖 and selects the values in posi-

tions 𝑗 such that 𝑗 ≡ 𝑖 mod 𝑛 by applying a binary mask encoded

as a plaintext. All the masked ciphertexts are then summed using

the EvalAdd procedure.

On the other hand, WrapUpRepeated is used to wrap 𝑛 Re-

peated shape ciphertexts, where 𝑛 is the number of repetitions. The

output is a ciphertext containing a Row-major matrix consisting

𝑎1 𝑎1 𝑎1 𝑎2 𝑎2 𝑎2 𝑎3 𝑎3 𝑎3

()
𝑏1 𝑏1 𝑏1 𝑏2 𝑏2 𝑏2 𝑏3 𝑏3 𝑏3

()
𝑐1 𝑐1 𝑐1 𝑐2 𝑐2 𝑐2 𝑐3 𝑐3 𝑐3

()

𝑎1 𝑏1 𝑐1 𝑎2 𝑏2 𝑐2 𝑎3 𝑏3 𝑐3

()

𝑎 :

𝑏 :

𝑐 :

𝑀 :

Figure 4: Visual representation of the WrapUpExpanded

procedure;𝑀 is the resulting Column-major matrix

of the 𝑛 row vectors; see Algorithm 4 and Figure 5 for a visual

representation. The MaskBlock procedure is used to extract the

Algorithm 4 Wrap up Repeated

1: procedureWrapUpRepeated(v, 𝑛)

2: for 𝑖 ← 0 to 𝑙𝑒𝑛(v) − 1 do
3: v

masked
[𝑖] ← MaskBlock(v𝑖 , 𝑛 · 𝑖, 𝑛 · (𝑖 + 1))

4: end for

5: return EvalAdd(v
masked

)
6: end procedure

𝑖-th repetition of the 𝑖-th ciphertext, as shown in Figure 5. In the

actual implementation the value of 𝑛 is always equal to 128.

𝑎1 𝑎2 𝑎3 𝑎1 𝑎2 𝑎3 𝑎1 𝑎2 𝑎3

()
𝑏1 𝑏2 𝑏3 𝑏1 𝑏2 𝑏3 𝑏1 𝑏2 𝑏3

()
𝑐1 𝑐2 𝑐3 𝑐1 𝑐2 𝑐3 𝑐1 𝑐2 𝑐3

()

𝑎1 𝑎2 𝑎3 𝑏1 𝑏2 𝑏3 𝑐1 𝑐2 𝑐3

()

𝑎 :

𝑏 :

𝑐 :

𝑀 :

Figure 5: Visual representation of the WrapUpRepeated

procedure;𝑀 is the resulting Row-major matrix

2.2 Circuit design

A classification model based on BERT is composed of four parts:

Embeddings, Encoders, Pooler and Classifier. The first one (Embed-

dings) consists of a couple of lookup tables and a normalization,

and is executed by the client, which stores the tables for 31036 · 128
float real numbers (a total of ≈ 16MB). The other three parts are

homomorphically evaluated server-side, and this section introduces

and analyzes them as a circuit based on FHE primitives.

Each Encoder is composed by four sequential parts: BertSelfAt-
tention, BertSelfOutput, BertIntermediate and BertOutput.

6

Transformer-based Language Models and Homomorphic Encryption: An Intersection with BERT-tiny IWSPA ’24, June 21, 2024, Porto, Portugal

𝑛 inputs

Expanded

VecMat

ER

𝑊𝐾 , 𝑏𝐾

VecMat

ER

𝑊𝑉 , 𝑏𝑉

VecMat

ER

𝑊𝑄 , 𝑏𝑄

Wrap

Rep

Wrap

Rep

MatMul

Scores

Eval

𝑒𝑥
Eval

𝑒𝑥

Rot

Sum

Eval

1/𝑥
Eval

1/𝑥

Eval

Mult

Un-

wrap

VecMat

ER

𝑄𝐾𝑇√︁
𝑑𝑘 𝑒𝑥𝑖

∑
𝑖 (𝑒𝑥𝑖) 1∑

𝑖 (𝑒𝑥𝑖)

𝑒𝑥𝑖∑
𝑖 (𝑒𝑥𝑖)

Section: 1 2 3 4 5 6 7 8 9

Figure 6: Circuit diagram illustrating the HE implementation of the BertSelfAttention layer

2.2.1 BertSelfAttention. The first layer computes the following

function:

Self-Attention(Q,K,V) = softmax

(
QK

𝑇√︁
𝑑𝑘

)
V (1)

whereQ,K andV are the query, key and value representations of the

input, respectively, obtained as a result of an affine transformation

𝐴𝑥 + 𝑏. The dimension 𝑑𝑘 of the keys is, in the case of BERTtiny,

equal to 64. Lastly, softmax(𝑥) is defined as:

softmax(𝑥) = 𝑒𝑥𝑖∑𝑛
𝑗=1 𝑒

𝑥 𝑗
(2)

In particular, 𝑒𝑥 is evaluated in two phases. First, an interval [−𝑟, 𝑟]
that contains all possible input values is experimentally determined.

To prevent instability when working with large numbers, we ap-

proximate 𝑒𝑥 as 𝑒𝑥/𝑟 in the interval [−1, 1], then the result is raised

to the power of 𝑟 , obtaining (𝑒𝑥/𝑟)𝑟 = 𝑒𝑥 . We will use 𝑛 to indicate

the number of input tokens. Figure 6 gives a visual representation

of the HE circuit of BertSelfAttention, whose sections are explained
below.

• Section 1 – this is the input of the algorithm: 𝑛 ciphertexts

representing 𝑛 token embeddings in Expanded packing shape.

• Section 2 – the matrices Q,K and V are derived by evaluating

an affine transformation 𝐴𝑥 + 𝑏 using the respective weights and

biases. In particular, each VecMatER operation returns a set of 𝑛

ciphertexts, each representing a row of the resulting matrix.

• Section 3 – the ciphertexts containing the rows of the key ma-

trix K are wrapped up in a single ciphertext using the WrapUpRe-

peated procedure. We proceed in the same way with the rows of

V. This produces two matrices encoded in Column-major order.

• Section 4 – at this stage the so–called scores (in particular, the dot
product attention scores) are computed. The MatMulScores pro-

cedure takes as input the matrix K, stored in a single ciphertext in

Row-major packing, and the vectorsQ𝑖 (with 0 ≤ 𝑖 < 𝑛) containing
the rows

1
of matrix Q. It computes VecMatRC(K, Q𝑖) and wraps

the results up. The masking phase is done using (1/8) · (1/𝑟) as the
mask value: the first term reproduces the

√︁
𝑑𝑘 division, the second

one prepares the values for the upcoming 𝑒𝑥/𝑟 approximation.

• Section 5 – the two heads, contained in a single ciphertext, are

given as input to the first seven terms of the Maclaurin series of

𝑒𝑥 . In particular, as stated above, the approximated function is 𝑒𝑥/𝑟

in the interval [−1, 1]. The result is then raised to the power of

𝑟 , consuming log(𝑟) levels. Next, the two heads are wrapped in a

single ciphertext that is then cloned: the first copy is kept as-is,

while the second one is given as input to the RotSum procedure.

At this point, the sum of all the required terms 𝑒𝑥𝑖 for the 𝑘-th

softmax denominator (Eq. (2)) is placed in positions 𝑖 such that

𝑖 ≡ 𝑘 mod 128, as shown in Figure 8.

𝑒𝑥1 𝑒𝑦1 𝑒𝑧1 . . . 𝑒𝑥2 𝑒𝑦2 𝑒𝑧2 . . .

∑𝑛
𝑗 𝑒

𝑥 𝑗
∑𝑛

𝑗 𝑒
𝑦 𝑗

∑𝑛
𝑗 𝑒

𝑧 𝑗 . . .
∑𝑛

𝑗 𝑒
𝑥 𝑗

∑𝑛
𝑗 𝑒

𝑦 𝑗
∑𝑛

𝑗 𝑒
𝑧 𝑗 . . .

𝑘 = 0 𝑘 = 1 𝑘 = 2 𝑘 = 0 𝑘 = 1 𝑘 = 2

Figure 8: Example of ciphertexts content after RotSum of 𝑒𝑥

1
Eq. (1) shows that the matrix K is transposed, but transposing is not required since

the matrix is in Row-major order as a consequence of the first VecMatER procedure.

7

IWSPA ’24, June 21, 2024, Porto, Portugal Lorenzo Rovida and Alberto Leporati

𝑛 inputs

Repeated

VecMat

RC

𝑊,𝑏

Wrap

Exp

Eval

Sub

𝐸

Eval

Mult

𝑉𝑝𝛾

Eval

Add

𝛽

Un-

wrap

𝑋𝑖

(𝑋𝑖 − 𝐸𝑝) (𝑋𝑖 − 𝐸𝑝) · (𝑉𝑝𝛾) (𝑋𝑖 − 𝐸𝑝) · (𝑉𝑝𝛾) + 𝛽

Section: 1 2 3 4 5 6 7

Figure 7: Circuit diagram illustrating the HE implementation of the BertSelfOutput layer

We use 0 ≤ 𝑘 < 𝑛 to index the different denominators, since the

ciphertext wraps all the 𝑛 inputs.

• Section 6 – since each softmax requires the inverse of the sum∑𝑛
𝑗=1 𝑒

𝑥 𝑗
, these values are given as input to a polynomial approxi-

mation of 1/𝑥 .
• Section 7 – to finalize the division, the numerators 𝑒𝑥𝑖 (the first

clone) are multiplied by 1/∑𝑛
𝑗=1 𝑒

𝑥 𝑗
.

• Section 8 – 𝑛 vectors are unwrapped in separate ciphertexts.

The UnwrapExpanded procedure does the opposite of WrapUp-

Expanded.

• Section 9 – using the VecMatER procedure, the 𝑛 Expanded

vectors obtained by unwrapping softmax results are multiplied by

V. Notice that the results will be in Repeated shape.

2.2.2 BertSelfOutput. This layer computes a dense layer followed

by a Layer Normalization [5], which is defined as:

LayerNorm(𝑋) = 𝑋𝑖 − E[𝑋]√︁
Var[𝑋] + 𝜀

· 𝛾 + 𝛽 (3)

Each𝑋𝑖 , with 0 ≤ 𝑖 < 128, represents a feature of the input token𝑋 .

E[𝑋] is the mean of these values, while Var[𝑋] the variance. The
weight and the bias of the layer are referred to 𝛾 and 𝛽 , respectively.

One of the main bottlenecks when building HE-based circuits is

the evaluation of non linear functions; notice that the Layer Nor-

malization implies the evaluation of an inverse square root. Taking

inspiration from Residual Networks [14], where the Batch Normal-

ization is evaluated using precomputed values, we implemented a

Precomputed Layer Normalization, where the values of E[𝑋] and
1/

√︁
Var[𝑋] + 𝜀 are experimentally observed and precomputed. We

therefore computed vectors of mean values (represented as blue

and red lines in Figure 9) and simplified Eq. (3) as follows:

LayerNorm(𝑋) =
(
𝑋𝑖 − 𝐸𝑝

)
·
(
𝑉𝑝𝛾

)
+𝛽 (4)

where 𝐸𝑝 is the precomputed mean vector for E[𝑋], and 𝑉𝑝 is the

precomputed mean vector for 1/
√︁
Var[𝑋] + 𝜀. See Figure 9 for a

visual example. This approach simplifies a lot the circuit, and it

does not significantly affect the accuracy of the classifications, as

will be shown in the experiments presented in Section 3. Let us

now describe each section of Figure 7.

0 2 4 6 8

0

0.5

𝑖–th token

𝑉𝑝

𝐸𝑝

Figure 9: Example of distribution of 1/
√︁
Var[𝑋] + 𝜀 (top) and

E[𝑋] (bottom) for the first ten tokens in the very first Layer

Normaliztion

• Section 1 – 𝑛 Repeated ciphertexts coming from the previous

layer.

• Section 2 – the 𝑛 MatVecRC procedures evaluate the first dense

layer. The output rows are in Expanded shape.

• Section 3 – a wrapping operation is executed in order to create

a single ciphertext containing all the 𝑋𝑖 needed by the following

blocks.

• Section 4 – the computation of Eq. (4) starts here. The value

of 𝑋𝑖 − 𝐸𝑝 is obtained by using the precomputed mean values for

E[𝑋]. By taking advantage of SIMD computations, this is feasible

in a single subtraction.

• Section 5 – the previous result is then multiplied by 𝑉𝑝𝛾 , which

contains the precomputation of 𝛾/
√︁
Var[𝑋] + 𝜀.

• Section 6 – the evaluation of the Layer Normalization ends with

the addition of the bias 𝛽 .

• Section 7 – The vectors contained in the ciphertext are un-

wrapped in 𝑛 Expanded ciphertexts.

2.3 BertIntermediate

This layer is composed of two parts: a dense layer with 512 hidden

units and the Gaussian Error Linear Unit (GELU) [15] activation

function.

The first matrix multiplication needs further investigation, since

the size of the weight matrix is 128 × 512, which of course can not

8

Transformer-based Language Models and Homomorphic Encryption: An Intersection with BERT-tiny IWSPA ’24, June 21, 2024, Porto, Portugal

𝑛 inputs

Expanded

VecMatER
VecMatER
VecMatER

VecMatER
VecMatER
VecMatER

VecMatER
VecMatER
VecMatER

VecMatER
VecMatER
VecMatER

Block 1

Block 2

Block 3

Block 4

EvalRot

by −128

EvalRot

by −256

EvalRot

by −384

Concat

Blocks

WrapUp in

4 containers

Eval

GELU(𝑥)
Eval

GELU(𝑥)
Un-

wrap

Section: 1 2 3 4

Figure 10: Circuit diagram illustrating the HE implementation of the BertIntermediate layer

be encoded in a single plaintext. The approach is to split the matrix

in four parts, so that they can be individually encoded. Remark

that the input values are Repeated, meaning that the vector-matrix

procedure to be used is VecMatER. The weight matrix, thus, must

be split by columns and encoded by rows (Figure 11).

𝑤1,1 . . . 𝑤1,128 𝑤1,129 . . . 𝑤1,256 𝑤1,257 . . . 𝑤1,384 . . .

𝑤2,1 . . . 𝑤2,128 𝑤2,129 . . . 𝑤2,256 𝑤2,257 . . . 𝑤2,384 . . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

𝑤128,1 . . . 𝑤128,128 𝑤128,129 . . . 𝑤128,256 𝑤128,257 . . . 𝑤128,384 . . .

©«
Block 1 Block 2 Block 3

Figure 11: Splitting a 128×512matrix into four 128×128 square
matrices. The dashed squares represent the split over the

columns, the highlight represents the Row-major encoding

This approach allows one to perform the actual vector-matrix

multiplication by executing four times VecMatRC, each time with

a different block. The first procedure returns the first 128 results,

the second procedure the second 128 results, and so on.

All the obtained values will then be concatenated and fed as

input to the GELU(𝑥) activation function, which is defined as:

GELU(𝑥) = 𝑥 · 1
2

(1 + erf(𝑥/
√
2)) (5)

where erf(𝑥) is the so-called Error Function erf(𝑥), defined as:

erf(𝑥) = 2

√
𝜋

∫ 𝑥

0

𝑒−𝑡
2

d𝑡 (6)

In the following, all the sections from Figure 10 will be reviewed.

• Section 1 – 𝑛 Expanded ciphertexts received as input from the

previous layer.

• Section 2 – the VecMatER procedure is executed four times, one

for each block of the weight matrix. The results obtained in the 128

positions are masked, so that the values can later be concatenated.

Specifically, the first part calculates values ranging from 0 to 127, the

second part computes values from 128 to 255, and so on. Rotations

are needed because results are always located in the first 128 slots,

hence they need to be shifted to be merged. By combining these

parts together, we obtain the complete set of 512 resulting values

for each vector.

• Section 3 – the 4𝑛 ciphertexts need to be wrapped before evalu-

ating GELU(𝑥). Since each vector now contains 512 values, a single

ciphertext will not be enough. Thus, we build four containers con-

taining the wrapped up values. In general, ⌊𝑛/32⌋ containers are
required. Since results are already masked, the wrapping opera-

tion can be performed without further masking (hence, no levels

consumption). Lastly, it is possible to evaluate GELU(𝑥) on each

container.

• Section 4 – the results are unwrapped in 4𝑛 ciphertexts, four for

each input. In particular, each block of 128 values in each ciphertext

is stored in Repeated packing shape.

2.3.1 BertOutput. This is the last layer of the Transformer Encoder.

It first reduces the number of features for each input from 512 back

9

IWSPA ’24, June 21, 2024, Porto, Portugal Lorenzo Rovida and Alberto Leporati

𝑛 inputs

Repeated

VecMatRC
VecMatRC
VecMatRC

VecMatRC
VecMatRC
VecMatRC

VecMatRC
VecMatRC
VecMatRC

VecMatRC
VecMatRC
VecMatRC

Block 1

Block 2

Block 3

Block 4

Add and

WrapUp

Eval

Sub

𝐸

Eval

Mult

𝑉𝛾

Eval

Add

𝛽

Un-

wrap

Figure 12: Circuit diagram illustrating the HE implementation of the BertOutput layer

to 128 by evaluating a dense layer using a weight matrix of size

512 × 128. Like in the previous layer, performing this operation is

not trivial because the weight matrix does not fit a single plain-

text. Since the input ciphertexts are packed in Repeated mode, the

corresponding matrix-vector multiplication to be performed is Vec-

MatRC. The weight matrix is thus split along the rows and encoded

by columns. Each column is split into four parts, and the results of

these four multiplications must be added together in order to get

the final results. In doing so, we obtain 𝑛 ciphertexts in Expanded

packing shape.

The subsequent part of the layer is a precomputed Layer Nor-

malization, which has already been analyzed in Section 2.2.2 under

the same input shapes (𝑛 Expanded ciphertexts).

2.3.2 Pooler. After two stacked encoders, BERTtiny implements a

pooling layer, whose purpose is to provide a fixed-size represen-

tation of the entire input sequence. In particular, the Pooler layer

operates on the final layer’s hidden states and uses the output of

the special [CLS] token, which is inserted at the beginning of the

input sequence by the tokenizer. A fully connected layer is then

evaluated on this vector, followed by the computation of the hy-

perbolic tangent tanh(𝑥) = sinh(𝑥)/cosh(𝑥) activation function.

It is possible to obtain a close approximation of this function by

utilizing Chebyshev polynomials, even with a relatively low degree,

since the observed interval of approximation required is [−20, 20],
which is pretty small.

2.3.3 Classifier. The output of the Pooler layer is a ciphertext in
Repeated shape. The last operation is a VecMatRC procedure, in

order to evaluate the last Classifier layer, composed of a single dense

layer with two output neurons. This is the output of the circuit,

which is sent back to the client.

3 EXPERIMENTS

We now aim to assess the performance of the FHE circuit. All the

experiments have been carried out according to the security level of

128 bits established by the Homomorphic Encryption Standards [4].

The reference dataset is the Stanford Sentiment Treebank (SST-2),

which is a dataset composed of 67.3k training sentences extracted

from movie reviews, each labeled with a positive or negative senti-

ment. The FHE circuit has been evaluated on a M1 Pro CPU, and it

requires approximately 18GB of memory. The source code used for

the experiments is freely available as an open-source repository
2
.

3.1 Parameters

The parameters for the CKKS scheme have been chosen considering

two constraints: 𝜆 = 128 bits of security and ciphertexts containing

𝑠 = 2
14

values. The set of parameters is the following:

• Ring of dimension 𝑁 = 2
16

• Ciphertext slots 𝑠 = 𝑁 /4
• Precision factor Δ = 55 bits

• Moduli chain values 𝑞𝑖 = 52 bits

• Circuit depth 𝑑 = 24

• Ciphertext modulus 𝑄 = 1767 bits

We refer the reader to Kim et al. [19] for the details about the

parameters. Since each embedding spans 128 dimensions, the circuit

is able to handle at most 𝑠/128 = 128 tokens.

At first, the plain BERTtiny circuit has been evaluated on the

whole training set, and the inputs of the non-linear functions have

been experimentally observed. This step is required in order to

2https://github.com/narger-ef/FHE-BERT-Tiny

10

https://github.com/narger-ef/FHE-BERT-Tiny

Transformer-based Language Models and Homomorphic Encryption: An Intersection with BERT-tiny IWSPA ’24, June 21, 2024, Porto, Portugal

determine the intervals in which Chebyshev polynomials will ap-

proximate the non-linear functions, and also to determine their

degree, see Table 1.

Table 1: Chebyshev polynomials parameters of approximated

non-linear functions in pre-trained HE model

Layer Function Interval Degree

Encoder 1 – Self-Attention 1/𝑥 [2, 5000] 119

Encoder 1 – Intermediate GELU(𝑥) [−14, 11] 119

Encoder 2 – Self-Attention 1/𝑥 [3, 130000] 200

Encoder 2 – Intermediate GELU(𝑥) [−18, 8] 59

Pooler tanh(𝑥) [−20, 20] 300

3.2 Plain circuit

The chosen plain BERTtiny model
3
has been fine tuned on the

sentiment analysis task over the SST-2 training set, and it achieved

an accuracy of 0.837 on the validation set (we remark that the test

set labels are not publicly available).

The first experiment aims to understand the performance loss

introduced by using precomputed values for mean and variance

in Layer Normalization. As discussed in Section 2.2.2, we first ob-

tained mean vectors for E[𝑋] and 1/
√︁
Var[𝑋] + 𝜀 using the training

set, then we used these values when evaluating the model on the

validation set.

A performance drop from 0.837 to 0.815 has been observed, which

is considered to be acceptable for our task, since the introduction

of precomputed Layer Normalization allows one to avoid the evalu-

ation of four inverse square roots (two for each encoder), resulting

in faster encrypted computations.

3.3 Encrypted circuit

The encrypted circuit is evaluated server-side, and the client re-

quests for a classification as shown in Figure 1.

In our setting, the client has to tokenize the sentence and to

encrypt the initial embeddings. The ciphertexts are then sent to

the service provider, which we assume to be an honest-but-curious

server. Then, the FHE circuit is evaluated and the output of the net-

work will be a ciphertext containing two values. This is decrypted

by the user, that is able to see the result of the classification.

When building a deep FHE circuit using a so-called levelled
scheme

4
, one must carefully consider the ciphertexts level growth,

and choose when to perform the bootstrapping operations. In par-

ticular, this procedure must be performed when all the embeddings

are wrapped in a single ciphertext and ideally when values are close

to the interval [−1, 1], in order to obtain more accurate results.

Figure 13 presents how the level of the ciphertexts grows during

the evaluation of the circuit, and where we decided to perform a

bootstrapping. The operation is not always performed at the last

level (24) because it could happen that, at that level:

• The embeddings are not wrapped in a single ciphertext.

3
Available at https://huggingface.co/philschmid/tiny-bert-sst2-distilled

4
A levelled scheme allows for a fixed number of multiplications (in our case 𝑑) before

requiring a bootstrapping.

Self-Attention

Self-Output

Intermediate

Output

Self-Attention

Self-Output

Intermediate

Output

Pooler

Classifier

Levels chain

0→ 21

21→ 24→14 → 15

15→ 24→14 → 15

15→ 19

19→ 23→14 22→14 24→14 → 22

22→ 24→14 → 16

16→ 24→14 → 15

15→ 19

19→ 20→14 → 23

23→ 25

Figure 13: Ciphertexts levels progress during the evaluation

of the circuit. An orange block means that a bootstrapping

operation is performed.

• There is an evaluation of a Chebyshev polynomial, which

can not be discontinued by a bootstrapping operation because of

the recursive nature of the Paterson-Stockmeyer [23] polynomial

evaluation algorithm.

• The values of the ciphertext are much larger than 1.

If one of these cases occur, bootstrapping must be performed be-

forehand.

To begin with, we first want to give an interpretation of the result

given by the FHE circuit. The first aspect that is analyzed is indeed

the error introduced by the approximate computations, and how it

impacts the final classification. We remark that the classification

is performed by finding the most active between the two final

neurons (i.e., which one contains the largest value). Therefore, a

classification is considered to be correct unless the approximations

cause an inversion of the order between the two output values. A

visual representation of the impact of approximations is given in

Figure 14.

More formally, a classification is incorrect if 𝑑𝑛 < (𝑒1 − 𝑒2)/2.
In that case, 𝑛1 might become larger than 𝑛2 (or vice versa). To

summarize, the probability to obtain a correct classification depends

on:

• The amount of error introduced by approximations ((𝑒1 −
𝑒2)/2).
• The distance between the values of the two output neurons

(𝑑𝑛).

The first aspect can be controlled by carefully selecting the param-

eters Δ and 𝑞𝑖 of the CKKS scheme (defined in Section 3.1) and by

11

https://huggingface.co/philschmid/tiny-bert-sst2-distilled

IWSPA ’24, June 21, 2024, Porto, Portugal Lorenzo Rovida and Alberto Leporati

𝑛1 𝑛2

𝑑𝑛 = |𝑛2 − 𝑛1 |

𝑒1
𝑒2

Figure 14: Example of two output values 𝑛1, 𝑛2 and errors

𝑒1, 𝑒2 added by the approximate FHE circuit.

the approximations of the non-linear functions (see Table 2). The

second aspect, on the other hand, is an intrinsic characteristic of

the model.

Before presenting the results, we want to emphasize that small

approximations are not always indicative of correct classification,

and vice versa. For example, by considering the sentence “it ’s a
work by an artist so in control of both his medium and his message
that he can improvise like a jazzman.”, the output values have a dis-
tance 𝑑𝑛 ≈ 0.018. This could happen because the features extracted

by BERTtiny are not enough for the classifier to well distinguish

between the two sentiments. In this case, even a small error could

cause a wrong classification. On the other hand, the output values

for the sentence “the best film about baseball to hit theaters since field
of dreams.” have a distance 𝑑𝑛 ≈ 3.897, meaning that even large

errors could result in correct classification. We define the function

used to evaluate the overall error between the expected (plain) and

obtained (FHE) values as:

error(𝑣,𝑢) =
|𝑣 |∑︁
𝑖=1

(���� 𝑣𝑖 − 𝑢𝑖𝑚𝑎𝑥 (𝑣)

����) ·| |𝑣 | |−1 (7)

where 𝑣 represents the expected vector, and 𝑢 the obtained one.

We present in Figure 15 the distances between the output values

(𝑑𝑛) computed in plain on the entire validation set, and the errors

obtained by the FHE circuit, evaluated on the same set.

1 2 3 4 5

error

𝑑𝑛

0

Figure 15: Errors, relative to the FHE circuit, and the distance

between the output values (𝑑𝑛) obtained from evaluating the

validation set.

We observed that the main cause of errors is the Chebyshev

approximation of the 1/𝑥 function, evaluated in the Self-Attention

layer of the second encoder, since its approximation interval is very

large, as shown in Table 1. Nevertheless, errors are usually below

the output values, meaning that the FHE circuit should achieve a

similar performance to the plain one. To complete the evaluation,

we present the accuracy obtained by the FHE circuit in Table 2.

The loss in accuracy, with respect to the BERTtiny model with

Table 2: Accuracy for the three considered models, on the

SST-2 validation set. LN stands for Layer Normalization

Model Accuracy Loss

BERTtiny 0.837 (reference)

BERTtiny with precomputed LN 0.815 0.022

FHE-BERTtiny 0.790 0.047

precomputed Layer Normalization, is −0.025.
Then, we concentrate on computational times; in particular, we

want to highlight the correlation between the execution time and

the number of tokens 𝑛.

10 20 30 40

200

400

600

Tokens (𝑛)

Runtime (seconds)

Figure 16: Linear correlation between the FHE circuit run-

time and the number of tokens

As confirmed by Figure 16, there is a strong linear correlation

between computational time and the number of tokens.

4 CONCLUSION

In this paper, we proposed a circuit which implements BERTtiny

[7] based on FHE primitives, precisely on the RNS-CKKS scheme

[19]. In particular, the setting is composed of an honest-but-curious

server that offers the language model as a service to a client, which

has to tokenize and create token embeddings of a sentence. These

vectors are then encrypted and sent to the service provider, that

computes the Transformer encoder layers, a pooling layer and

a classification layer in a privacy-preserving environment. The

circuit has been implemented using the OpenFHE library on a

M1 Pro CPU, and it requires 18GB of RAM. The source code of

the circuit is available at our open-source repository. Results are

promising, although this proposal is a baseline from which various

improvements can be carried out. First of all, it would be interesting

to scale the architecture to support larger BERT models, but also

to test this circuit on more accurate polynomial approximations of

activation functions, to see how the results change. In HE literature

it is possible to find references to HE-friendly networks, in the

sense that they are not based on non-linear functions. Considering

a wider context, it would be also interesting to study a class of

neural networks which output well-separated logits, so that the

same results could be obtained using less accurate HE computations.

This would translate in faster and lighter calculations.

12

Transformer-based Language Models and Homomorphic Encryption: An Intersection with BERT-tiny IWSPA ’24, June 21, 2024, Porto, Portugal

REFERENCES

[1] Abbas Acar, Hidayet Aksu, A. Selcuk Uluagac, and Mauro Conti. 2018. A Survey

on Homomorphic Encryption Schemes: Theory and Implementation. ACM
Comput. Surv. 51, 4, Article 79 (jul 2018), 35 pages.

[2] Ahmad Al Badawi, Jack Bates, Flavio Bergamaschi, David Bruce Cousins, Saroja

Erabelli, Nicholas Genise, Shai Halevi, Hamish Hunt, Andrey Kim, Yongwoo

Lee, Zeyu Liu, Daniele Micciancio, Ian Quah, Yuriy Polyakov, Saraswathy R.V.,

Kurt Rohloff, Jonathan Saylor, Dmitriy Suponitsky, Matthew Triplett, Vinod

Vaikuntanathan, and Vincent Zucca. 2022. OpenFHE: Open-Source Fully Ho-

momorphic Encryption Library. In Proceedings of the 10th Workshop on En-
crypted Computing & Applied Homomorphic Cryptography (Los Angeles, CA,

USA) (WAHC’22). Association for Computing Machinery, New York, NY, USA,

53–63. https://doi.org/10.1145/3560827.3563379

[3] Gorjan Alagic, Daniel Apon, David Cooper, Quynh Dang, Thinh Dang, John

Kelsey, Jacob Lichtinger, Carl Miller, Dustin Moody, Rene Peralta, et al. 2022.

Status report on the third round of the NIST post-quantum cryptography stan-

dardization process. US Department of Commerce, NIST (2022).

[4] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser, Sergey

Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim Laine, Kristin Lauter, Satya Lokam,

Daniele Micciancio, Dustin Moody, Travis Morrison, Amit Sahai, and Vinod

Vaikuntanathan. 2018. Homomorphic Encryption Security Standard. Technical
Report. HomomorphicEncryption.org, Toronto, Canada.

[5] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. 2016. Layer Normaliza-

tion. arXiv:1607.06450 [stat.ML]

[6] Ahmad Al Badawi, Louie Hoang, Chan Fook Mun, Kim Laine, and Khin Mi Mi

Aung. 2020. PrivFT: Private and Fast Text Classification With Homomorphic

Encryption. IEEE Access 8 (2020), 226544–226556.
[7] Prajjwal Bhargava, Aleksandr Drozd, and Anna Rogers. 2021. Generalization in

NLI: Ways (Not) To Go Beyond Simple Heuristics. arXiv:2110.01518 [cs.CL]

[8] Jean-Philippe Boussat, Christian Mouchet, Juan Troncoso-Pastoriza, and Jean-

Pierre Habaux. 2021. Efficient Bootstrapping for Approximate Homomorphic

Encryption with Non-sparse Keys. In Advances in Cryptology – EUROCRYPT
2021, Anne Canteaut and François-Xavier Standaert (Eds.). Springer International
Publishing, Cham, 587–617.

[9] Tianyu Chen, Hangbo Bao, Shaohan Huang, Li Dong, Binxing Jiao, Daxin

Jiang, Haoyi Zhou, Jianxin Li, and Furu Wei. 2022. THE-X: Privacy-Preserving

Transformer Inference with Homomorphic Encryption. In Findings of the As-
sociation for Computational Linguistics: ACL 2022. Dublin, Ireland, 3510–3520.
https://aclanthology.org/2022.findings-acl.277

[10] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. 2017. Homomor-

phic Encryption for Arithmetic of Approximate Numbers. In Advances in Cryp-
tology – ASIACRYPT 2017, Tsuyoshi Takagi and Thomas Peyrin (Eds.). Springer

International Publishing, Cham, 409–437.

[11] Pierre-Emmanuel Clet, Oana Stan, and Martin Zuber. 2021. BFV, CKKS, TFHE:

Which One is the Best for a Secure Neural Network Evaluation in the Cloud?. In

Applied Cryptography and Network Security Workshops, Jianying et al. Zhou (Ed.).

Springer International Publishing, Cham, 279–300.

[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding.

ArXiv abs/1810.04805 (2019).

[13] Shai Halevi and Victor Shoup. 2014. Algorithms in HElib. In Advances in Cryptol-
ogy – CRYPTO 2014, Juan A. Garay and Rosario Gennaro (Eds.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 554–571.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. [n. d.]. Deep Residual

Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 770–778.

[15] Dan Hendrycks and Kevin Gimpel. 2023. Gaussian Error Linear Units (GELUs).

arXiv:1606.08415 [cs.LG]

[16] Seungwan Hong, Jai Hyun Park, Wonhee Cho, Hyeongmin Choe, and Jung Hee

Cheon. 2022. Secure tumor classification by shallow neural network using

homomorphic encryption. BMC Genomics 23, 1 (09 Apr 2022), 284.
[17] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. 2017. Bag

of Tricks for Efficient Text Classification. In Proceedings of the 15th Conference of
the European Chapter of the Association for Computational Linguistics: Volume 2,
Short Papers. Valencia, Spain, 427–431. https://aclanthology.org/E17-2068

[18] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. 2018.

GAZELLE: A Low Latency Framework for Secure Neural Network Inference. In

Proceedings of the 27th USENIX Conference on Security Symposium (Baltimore,

MD, USA) (SEC’18). USENIX Association, USA, 1651–1668.

[19] Andrey Kim, Antonis Papadimitriou, and Yuriy Polyakov. 2022. Approximate

Homomorphic Encryption with Reduced Approximation Error. In Topics in Cryp-
tology – CT-RSA 2022: Cryptographers’ Track at the RSA Conference 2022, Virtual
Event, March 1–2, 2022, Proceedings (San Francisco, CA, USA). Springer-Verlag,

Berlin, Heidelberg, 120–144.

[20] Garam Lee, Minsoo Kim, Jai Hyun Park, Seung-won Hwang, and Jung Hee Cheon.

2022. Privacy-Preserving Text Classification on BERT Embeddings with Homo-

morphic Encryption. In Proceedings of the 2022 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies. Seattle, USA, 3169–3175.

[21] Joon-Woo et al. Lee. 2022. Privacy-Preserving Machine Learning With Fully

Homomorphic Encryption for Deep Neural Network. IEEE Access 10 (2022),

30039–30054.

[22] Bo Pang and Lillian Lee. 2005. Seeing Stars: Exploiting Class Relationships for

Sentiment Categorization with Respect to Rating Scales. In Proceedings of the 43rd
Annual Meeting of the Association for Computational Linguistics (ACL’05), Kevin
Knight, Hwee Tou Ng, and Kemal Oflazer (Eds.). Association for Computational

Linguistics, Ann Arbor, Michigan, 115–124. https://doi.org/10.3115/1219840.

1219855

[23] Michael S Paterson and Larry J Stockmeyer. 1973. On the number of nonscalar

multiplications necessary to evaluate polynomials. SIAM J. Comput. 2, 1 (1973),
60–66.

[24] Oded Regev. 2009. On Lattices, Learning with Errors, Random Linear Codes, and

Cryptography. J. ACM 56, 6, Article 34 (sep 2009), 40 pages.

[25] Lloyd N. Trefethen. 2019. Approximation Theory and Approximation Practice,
Extended Edition. Society for Industrial and Applied Mathematics, Philadelphia,

PA.

[26] Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Well-

Read Students Learn Better: The Impact of Student Initialization on Knowledge

Distillation. CoRR abs/1908.08962 (2019). arXiv:1908.08962

[27] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is All

You Need. In Proceedings of the 31st International Conference on Neural Informa-
tion Processing Systems (Long Beach, California, USA) (NIPS’17). Red Hook, NY,

USA, 6000–6010.

[28] Mengxin Zheng, Qian Lou, and Lei Jiang. 2023. Primer: Fast Private Transformer

Inference on Encrypted Data. arXiv:2303.13679 [cs.CR]

13

https://doi.org/10.1145/3560827.3563379
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/2110.01518
https://aclanthology.org/2022.findings-acl.277
https://arxiv.org/abs/1606.08415
https://aclanthology.org/E17-2068
https://doi.org/10.3115/1219840.1219855
https://doi.org/10.3115/1219840.1219855
https://arxiv.org/abs/1908.08962
https://arxiv.org/abs/2303.13679

	Abstract
	1 Introduction
	1.1 Related works
	1.2 Our contribution
	1.3 The proposed setting
	1.4 Approximate Homomorphic Encryption

	2 Methodology
	2.1 Some basic HE algorithms
	2.2 Circuit design
	2.3 BertIntermediate

	3 Experiments
	3.1 Parameters
	3.2 Plain circuit
	3.3 Encrypted circuit

	4 Conclusion
	References

