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ABSTRACT

Eye movement data has been extensively utilized by researchers interested in studying decision-making within the strategic
setting of economic games. In this paper, we demonstrate that both deep learning and support vector machine classification
methods are able to accurately identify participants’ decision strategies before they commit to action while playing games. Our
approach focuses on creating scanpath images that best capture the dynamics of a participant’s gaze behaviour in a way that
is meaningful for predictions to the machine learning models. Our results demonstrate a higher classification accuracy by 18
percentage points compared to a baseline logistic regression model, which is traditionally used to analyse gaze data recorded
during economic games. In a broader context, we aim to illustrate the potential for eye-tracking data to create information
asymmetries in strategic environments in favour of those who collect and process the data. These information asymmetries
could become especially relevant as eye-tracking is expected to become more widespread in user applications, with the
seemingly imminent mass adoption of virtual reality systems and the development of devices with the ability to record eye
movement outside of a laboratory setting.

Introduction
The use of eye-tracking as a means of information acquisition for automated systems is ever-increasing due to technological
advances such as the ability of front-facing cameras on smartphones1, 2 and laptops3, 4 to accurately record eye-movements at
scale. Other developments, including the growing presence of virtual and augmented reality devices in everyday life5, have
also contributed to the development of eye-tracking software and devices. Further, recent advances in Machine Learning (ML)
techniques have led to a significant increase in the accuracy of prediction when modelling gaze data1, 6–8. ML techniques have
been applied to eye-tracking data to model human cognition in a variety of settings, including – but not limited to – detecting
sarcasm9, identifying when a participant is in a state of confusion7, classifying the relevance of a passage text to a user10, and
predicting where a participant will focus their attention during location-based games11. Further, humans are more frequently
interacting with automated systems when engaging in strategic contexts, which is a phenomenon that has been noticed by policy
makers12, 13. Taken together, these factors seem to suggest that gaze data may soon be incorporated into online automated
systems that will be able to anticipate future decisions of a user based on their gaze behaviour.

Numerous studies have demonstrated that gaze patterns can be effectively used to model the decision-making process of
individuals operating in strategic contexts (e.g., economic games), which can, in turn, be used to form a prediction regarding if
they will choose an optimal strategy or not14–16. As eye-tracking becomes more widespread in user applications, it follows
that an Artificial Intelligence (AI) system will be able to incorporate gaze data in order to anticipate the choices of a human
agent across a broader range of strategic contexts introducing an information asymmetry in favor of the automated system
and those who control the technology. The onset of gaze-aware systems may bring many potential benefits to the user. An
example of this benefit is providing a means to create early detection systems which can be used to warn users before they
make sub-optimal choices or to provide, in training scenarios, adaptive feedback based on the analysis of the users’ pattern of
eye-movements8, 17, 18.

Under the tightly controlled environment of economic games, we explore a method of anticipating the decision strategy of
an individual by modelling the pattern of their eye movements. We analyze gaze data recorded during an experiment where
participants play a set of games commonly used in the field of economics to study interactions in strategic settings (see "The
Games" subsection for a complete description). Participants play the games on a computer screen against an algorithm that



simulates the behavior of a rational player who aims to maximize their profit by choosing the Nash equilibrium strategy, which
is the optimal strategy under the assumption that the counterpart is also rational and profit-oriented. The participants are
informed that the algorithm is rational and profit-oriented before the game starts. Therefore any deviation from the equilibrium
solution, which assumes rationality and profit maximization from both agents, can be exclusively attributed to the participant’s
inability to identify the optimal strategy19. In this setting, deviations from equilibrium can be systematically categorised as
different types of sub-optimal strategies. To model the decision-making process associated with different decision strategies, we
create images that express gaze patterns. These images are generated from raw eye-tracking data, which capture the temporal
sequences of eye fixations and are commonly referred to as scanpaths20, 21. We consider each scanpath image as a viable proxy
measurement for the temporal evolution of the decision process with which participants acquire and integrate information.

We use the scanpath images in two machine learning Classification Tasks (CTs). In CT 1, we set up a simple binary
classification task aimed at determining if the participant chooses the equilibrium strategy or not. In CT 2, we classify the exact
strategy of the participant from the three available options in the game (see Results Section for a detailed description of how
these options relate to strategic profiles). To demonstrate a clear example of how this method can produce an information
asymmetry, we expand our analysis by running a series of machine learning experiments after each CT by using the trained
models to classify scanpaths created from only a subsequence of the available gaze data starting from the beginning of the
recording (see Figure 1 for an overview of our approach). The results of these experiments provide evidence that the gaze
patterns of participants who chose the equilibrium action, as well as actions consistent with different strategic profiles, are
detectable with very little gaze data and critical to our hypothesis, using data recorded before the participant committed to a
choice in the game. This, in principle, would allow an algorithm capable of processing this information in real-time to anticipate
the future choice of a player. We achieve these results by predicting the choices of participants unseen by the model during
training and validation since the model has only been trained using scanpaths generated from full sequences. Using a modeling
method that only requires gaze data, we provide evidence that the decision strategy of an individual is detectable independently
of the specific strategic structure of the game under consideration. Moreover, we show that our approach in principle would be
able to predict the decision strategy of an individual also in strategic environments that were never seen by the algorithm.

Many different classification approaches have been previously applied to gaze patterns in order to model the decision-making
process of individuals and classify their decision strategy in economic games14–16, 19, 22, 23. We contribute to this literature
by investigating if presenting the data as a scanpath image, and thus accounting for the spatiotemporal patterns of the data,
provides any additional benefits to increasing the accuracy of prediction. More generally, significant work has gone into creating
systems with the capability of adaptive feedback using gaze data as model input. Notable work includes distinguishing between
novice and expert dentists8, 24, a tool for training radiologists17, and detecting drivers’ state while operating a vehicle25, 26. We
contribute to this literature concerning human scanpath classification by demonstrating that in some environments, scanpaths
generated from subsequences, or in other words partial scanpaths, are sufficient for a model trained on full scanpaths to classify
a user’s strategy in complex strategic contexts.

Our study has three objectives. First, we aim to present a new method to analyse eye patterns recorded during economic
game playing with a higher classification accuracy when compared to traditional methods. Second, we intend to provide a clear
example of gaze data being used to create an information asymmetry in favour of those that in the future might develop this
technology in real-time scenarios. From a policy perspective, we hope to highlight the clear need for regulation surrounding
how gaze data and, more generally, biometric data are processed and used as technology becomes rapidly more immersive,
making this type of data more available to AI systems. Third, we aim to present a method of early detection via the creation of
scanpath images from subsequences of the data, which may be useful to the more general literature focused on creating an
adaptive online system that incorporates eye-tracking data.
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Figure 1. Overview of approach: i.) In this eye-tracking study, the gaze behavior of the participants was recorded as they
played games presented on a computer screen, using a tower mount eye-link with a sample rate of 1000 HZ ii.) An example of
how we presented the games during the eye-tracking experiment. The payoffs of the Row player are coloured in blue and the
payoffs of the Column player are in red. The payoffs are separated by the maximum distance allowing for the clearest possible
distinction between ocular events that happened in different areas of interest. In this example, the raw gaze recording of a
single participant is displayed on the game board in order to highlight the difference between the raw gaze data and the
scanapath images used as model input iii.) An example of how a two-player strategic interaction can be represented using
games presented in normal-form. The Row player (the human participant in our experimental task) can choose between the
actions “Top”, “Middle" and “Bottom". The Column player (the algorithm in our experimental task) can choose between the
actions “Left", “Middle", and “Right". The action selected by the Row player affects the payoff received by the Column player
and vice-versa. The game’s outcome is the cell given by the intersection between the action selected by the Row player and the
action selected by the Column player. The Row player receives the payoff located in the bottom-left part of the cell, and the
Column player gets the payoff located in the upper-right part. The equilibrium of the game is highlighted in gray. iv.) Before
performing any analysis, we split the data into three sets of participants. We allocated approximately 70% of the participants
for training the model, 20% for validation of the results, and kept 10% of the participants as a hold-out test set. v.) Using the
hold-out test, we consider a series of independent model tests where we create sets of shortened scanpaths based on criteria
such as percentage, or only allowing scanpaths to be created within a certain amount of time (e.g., 2 seconds or 5 seconds). vi.)
We pass these sets of scanpaths through our fully trained model, testing its predictive ability. vii.) A stylised graphical
representation of our findings, we used model accuracy as the main metric to compare the results and noticed only a small
decrease in accuracy relative to the amount of data we removed from the scanpath.

Results

Models of choice and behavioral results
The games used in this study are characterized by a unique game theoretical optimal solution known as the Nash Equilibrium27.
We used data from participants playing with an algorithm that always selects the equilibrium strategy. At the beginning of the
experiment, participants are informed that the algorithm will play rationally by trying to maximize its own payoff and that it
cannot modify its strategy during the experiment nor adjust its choices to those of the human player. In all games, equilibrium
play requires the participant to use strategic sophistication. Strategic sophistication is defined as an attempt to predict the
behavior of the counterpart by taking its incentives into account28. Equilibrium play in this type of games is commonly
associated with an information search pattern focused on evaluating the incentives of the counterpart, detection of the possible
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presence of dominant strategies, and identification of the other player’s action with the highest average payoff. Deviations
from equilibrium are consistent with decision rules such as Naïve and Coordination strategies. A Naïve strategy predicts if
the participant selects the action with the highest average payoff. This strategy is commonly associated with a search pattern
focused on the payoffs of the participant while the payoffs of the counterpart are barely considered. A Coordination strategy
predicts if the participant selects the action consistent with the outcome that yields the largest payoff sum for the two players
minimizing the difference between the two payoffs. This strategy requires the participant to compare the payoffs of the two
players for each possible outcome of the game16, 19, 23, 29–31.

Looking at the entire pool of data (243 participants, 2 430 choices) the proportion of choices consistent with the Equilibrium
strategy is equal to 0.48, whereas the proportion of choices consistent with Naïve and Coordination strategies is equal to 0.31
and 0.21, respectively. The average response time is 15 980 ms (SD = 13 320 ms) but this value changes significantly based on
the strategy used by the participant. Equilibrium choices (18 050 ms, SD = 13 200 ms) take longer than choices consistent with
Naïve (13 770 ms, SD = 16 780 ms) and Coordination (15 660 ms, SD = 15 400 ms) strategies. This is supported by the results
of a mixed-effects logistic regression with Equilibrium Response (1, 0) as the dependent variable, logarithmic transformation of
the Response Time data as the independent variable, and Subject as Random effect (B = 0.38, p < 0.001). This difference in the
average response time is well documented and reflect the different level of complexity of the three strategies. Response times
are not affected by the game type: on average, participants take 15 840 ms (SD = 13 380 ms) to make a decision in games that
are solvable through iterated dominance and 16 120 ms (SD = 13 840 ms) in games that are not.

In terms of search patterns, equilibrium responses are characterized by a high proportion of transitions (defined as eye
movements from one payoff to the next) among the payoffs of the counterpart (0.29) and a lower proportion of transitions
among the payoffs of the participant (0.18). Choices consistent with the Naïve strategy are characterized by a higher proportion
of transitions among the participant’s payoffs (0.36) and a lower amount of transitions among the payoffs of the counterpart
(0.11). Finally, choices consistent with the Coordination strategy are associated with a more balanced proportion of the two
types of transitions (participant = 0.26; counterpart =0.22). The analysis of fixation times yields results that are identical to
those obtained with transitions: the average amount of time participants spend looking at the payoffs of the counterpart is
longer than the amount of time they spend looking at their own payoffs when they play equilibrium (own =5 516 ms; other =
7 695 ms), shorter when they play the Naïve strategy (participant =5 996 ms; counterpart = 3 549 ms), and almost identical
when they play the Coordination strategy (participant = 5 822 ms; counterpart = 5 520 ms).

Modelling cognition in games using scanpaths
To untangle the participants’ decision-making process we first transform the raw eye-tracking data into scanpath images. We
use the following techniques to increase the salience of features that are predictive of choice behavior in the scanpath images.
These features include the temporal evolution of the visual analysis and the number of times a particular piece of information is
acquired. We first define 18 Areas of interest (AOIs) centered on the matrix payoffs and distinguish between fixations that
happened inside or outside of these areas. AOIs centered on player’s own payoffs (payoffs the participant could receive) are
light-gray circles and AOIs centered on the counterpart’s payoffs are dark-gray circles. See Figure 2 for an illustration of a
standard representation of eye-tracking data and how we represent recorded data into a scanpath.

When creating the scanpaths a black background was used with the AOIs superimposed on top. We provide no information
regarding the game environment other than the spatial coordinates of the AOIs, as this method allows us to isolate the
relationship between the information acquisition process of a player and the resulting choice without taking into account any
feature of the game structure. This is important because often the last fixations of a player fall on the expected outcome for the
player, or on the label of the chosen option. We believe that this would be the primary source of information used by the model
to make its prediction. Therefore, we hypothesized that providing information relating to the last fixation made on the game
matrix would facilitate the prediction of the model when an image with the full visual pattern is available. However, when the
images are generated from subsequences, where the last fixations are missing, this task would be much more difficult.

To prevent overcrowding in the scanpath design, a single shape located in the center of each AOI represents the fixations
occurring within each AOI. We use a triangle for own payoff and a diamond for when the participant gazes at the counterpart’s
payoff. We use changes in colour from a perceptually uniform sequential colour map to represent when multiple fixations
occurred within an AOI; this means that the lightness value increases monotonically throughout the colourmaps32. For example,
if there was a single fixation in an AOI, the colour of the fixation shape would be black, and if there were ten fixations in the
area of interest, the colour of the shape would be pink, following the “Magma” colour map, as illustrated in Figure 3vii. All
fixations outside of the AOIs are represented by Fuchsia Dots that are 57% the size of the fixation shapes within an AOI. We
use linear saccades to represent the transitions between consecutive fixations taking the direct linear distance between fixation
points. To capture the temporal evolution of the decision process, we colour-code each saccade. Earlier saccades are coloured a
dark blue, RGB (0, 0, 255), and later saccades are coloured a light green RGB (0, 1, 254.5) as illustrated in Figure 3ii. The
saccades were designed using start-screen position (pixel), end-screen position (pixel), start-time of the saccade (ms), and
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(i) (ii)

Figure 2. 2i.) A prototypical representation of a scanpath displaying fixation locations, fixation duration, and saccades. 2ii.)
An example of how we represent the data using scanpaths to increase the salience of information to the models. The circles
represent the location of the payoffs for both the participant (light grey) and the opponent (dark grey). We use sequential
colourmaps to represent the temporal evolution of the linear saccades and to display information regarding fixations to the
model.

end-time of the saccade (ms).
To create the sets of partial scanpaths we use the following methods. First, we create scanpaths using a percentage of the

total gaze at the following intervals 15%, 30%, 50% and 80%, See Figure 3 (3iii, 3iv, 3v,3vi) for an example of how partial
scanpaths at each percentage interval compares to the participant’s full scanpath as illustrated in Figure 3i. This method ensures
that all the test scanpaths are equally reduced but with the drawback of needing to be calculated post-hoc. Second, partial
scanpaths were created based on the length of time (2s, 5s, 10s and 15s). While this method is a more realistic representation of
an online setting, it comes with a disadvantage that the amount of time it takes each participant to play a single game varies.
This problem leads to situations occurring, such as when a participant finishes in a given game within the first 8 seconds, the
partial scanpaths in the 10 seconds and 15 seconds sets are identical and are indeed full scanpaths. This feature of creating
partial scanpaths by the length of time makes an overall comparison between the experiments difficult. See Figure 3 (3viii, 3ix,
3x,3xi) for an example of how partial scanpaths created at each recorded time interval for a given participant compares to the
participant’s full scanpath as illustrated in Figure 3i. The average time taken per trial was 16 seconds, with the median time per
trial being 11 seconds. To minimise the situation where test scanpaths are identical across test sets, the timings were chosen to
be below the average time taken per trial.

The dataset
In total, we use data from 243 individuals, with each participant playing 10 games, leading to a total of 2 430 scanpaths which
we use as input to the model. We do not discard any of the 2 430 scanpaths from our study. We implement an approximate
70-20-10 train-validate-test split at the participant level. Previous studies have shown that both the strategy and visual analysis
used by the same participant are consistent in different games. We observed this consistency in our data (see Supplementary
Table 4), therefore we decided to split the data at the participant level. Moreover, we hypothesized that scanpaths recorded from
the same participant and game type could cause an accidental leakage of signal across the training and testing sets. For an even
comparison, we use the same data split for each experiment across our analysis, as we hypothesized that some participants
would create harder-to-classify scanpaths. 1 700 scanpaths were randomly placed into the training set, 480 scanpaths into the
validation set, and 250 scanpaths were placed into the test set.

Model selection, machine learning modelling tasks and performance metrics
After generating the scanpaths we use the resulting images as model input into a VGG-19 model pre-trained on the Imagenet
dataset. VGG-19 is a variant of the VGG architecture of convolutional neural networks consisting of 16 convolutional layers and
is a standard model architecture used in computer vision tasks due to excellent performance that was conducive to its success
in the 2014 Imagenet Challenge33. The VGG-19 architecture was chosen as it is a relatively shallow network with multiple
small kernels which we hypothesised would be optimal for capturing any nuanced differences between the input images. Our
hypothesis stems from results in an earlier paper that tests similarly a scanpath design on a wide range of out-of-the-box
neural network models during a reading task10. To further validate our preferred VGG-19 method, we also report the results
of two benchmark cases: a Support Vector Machine (SVM) configured for image classification, commonly used in scanpath
classification tasks and a logistic regression model which is the most common method of traditional analysis to test the link
between gaze data and choice behavior in games presented in normal-form.
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(i)

(ii) (iii) (iv) (v) (vi)

(vii) (viii) (ix) (x) (xi)

Figure 3. Scanpaths generated from the full sequence and subsequences of the data from one participant in a single game. In
total, there are 8 sets of test scanpaths made subsequences. 3i.) Example of a full image, 3ii.) The colour-map used for
saccades. The left side would correspond to colours of earlier saccades with the right side corresponding to later saccades. 3iii,
3iv, 3v, 3vi.) Images generated from subsequences stemming from the same participant-game at increasing percentage
intervals. 3vii.) The colourmap chosen for fixations. The upward threshold of 20 fixations was chosen because 99% of the area
of interest across trials across participants had 20 fixations or less. 3viii, 3ix, 3x, 3xi.) Images generated from subsequences
stemming from the same participant-game at increasing time intervals.
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Table 1:Performance Results of Image Classifiers on Test Set

VGG-19 VGG-19 SVM SVM
(CT 1) (CT 2) (CT 1) (CT 2)

Accuracy 0.783 0.648 0.728 0.612
AUC 0.824 0.78 0.734 0.682
F1- Score* 0.757 0.616 0.727 0.575
Percentage Accuracies
80% Percent 0.716 0.648 0.696 0.596
50% Percent 0.684 0.564 0.704 0.592
30% Percent 0.604 0.436 0.608 0.476
15% Percent 0.524 0.328 0.576 0.376
Time Cut Off Accuracies
15 seconds 0.776 0.64 0.756 0.616
10 seconds 0.728 0.604 0.696 0.620
5 seconds 0.684 0.544 0.652 0.524
2 seconds 0.608 0.32 0.592 0.384

Table 1. * For Classification Task 2, weighted average metrics are reported. Total number of test observations = 250. The best
result of each trial is highlighted in bold.

We configure all the models employed for two independent Machine Learning Classification Tasks (CTs). CT 1 is a binary
classification task, where the models are tasked with detecting if a participant selects Nash-Equilibrium or not. CT 2 is a
multi-class classification problem where the models are asked to identify the exact strategy profile of the participant (Naïve,
Coordination, Nash-Equilibrium). Importantly, the equilibrium location change in different games and each decision strategy is
independent of the three available actions ("Top", "Middle", "Bottom"). A full description of the games, the spatial location
of the equilibrium and of the three different strategies are available in Figure 2 of the Supplementary Material. A convenient
feature of our dataset is that in CT 1 the class labels are almost naturally balanced, making it easier to train the model34. As an
initial pre-processing step in CT 1, we create a fully balanced dataset by randomly under-sampling the majority class, removing
a total of 46 scanpaths (corresponding to 1.89% of the data). In CT 2, the labels create an imbalanced dataset with almost
double the responses in the majority class (Nash-Equilibrium) compared to the other two classes. This second CT allows us to
test our approach on a small imbalanced dataset, which is more indicative of real-world problems34–36.

We assess model performance using a set of widely used accuracy measurements including Accuracy, Area Under the
Curve (AUC), and F1-Score. Model accuracy is a metric that reflects the proportion of correct predictions made by a model and
is calculated by the number of correct predictions divided by the total number of predictions made by the model. F1 score is a
metric that combines both precision and recall, with higher scores indicating better performance. Precision is a measure of the
accuracy of a model when it correctly predicts a positive outcome, while recall is a measure of the ability of a model to find
all of the positive cases within the dataset. The area under the curve (AUC) measures the ability of a classifier to distinguish
between positive and negative classes. It does this by comparing the true positive rate (TPR) against the false positive rate
(FPR) at various classification thresholds. Like the F1 score, AUC ranges from 0 to 1, with a higher value indicating a better
classifier37. We also present a full table of results for the logit model, along with confusion matrices for all models in the
Supplementary Material.

In CT 1, the VGG-19 model achieves a test accuracy well above chance with a classification accuracy of 78% on the test set.
The VGG-19 model can be considered an excellent discriminator between the two classes, with an AUC score of 0.8239 on
the test set. Moving to the SVM, we observe a lower accuracy score (73%) and a lower AUC (0.7380). Logistic regression
provides the worst performance with an accuracy of 67% and an AUC of 0.6796. When comparing the two image classification
models, the VGG-19 achieves an F1-score of 0.7567 compared to 0.7265 from the SVM classifier. When analysing data from
the test set during CT 2, we observe a similar pattern of results. We found that, in both cases, the test accuracy was well above
chance, with the VGG-19 achieving an accuracy score of 65% and SVM scoring 61%, note that the weighted Average Area
Under the Curve (wAUC) is reported for CT 2, where we can report wAUC scores of 0.7800 and 0.7114, respectively. Logistic
regression falls short again with a performance of 0.5787 (wAUC) and an accuracy of 60%. Table 1 depicts the results for all
the performance metrics for both CTs for VGG-19 and SVM. A full table of results for the logit model (Supplementary Tables
1-3) along with confusion matrices (Supplementary Figures 3-8) for all models are reported in the Supplementary Material.

When evaluating our trained models’ ability to classify partial scanpaths, we note the trend of a small decrease in model
accuracy relative to the amount of data removed from the analysis, as illustrated for CT 1 in Figure 4 below. Results for
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CT 2 are similar and reported in Supplementary Figure 1 in the Supplementary Material. The results suggest that the gaze
behaviour of different strategies forms distinguishable patterns early on in the visual search process despite the stochastic nature
of inter-participant eye movements during game play. In CT 1, during model experiments using the sets of scanpaths created
from a percentage of the total recorded sequence, we observe model accuracies at the following intervals: 80% interval (71%
Accuracy, 0.7799 AUC), 50% interval (68% Accuracy, 0.7486 AUC), 30% interval (60% Accuracy, 0.6338 AUC), and the 15%
interval (52% Accuracy, 0.4978 AUC). To put these findings into perspective, we observe a reduction of only 10% Accuracy
when comparing the 50% interval to full scanpaths from the test set and perform better than chance from the 30% interval
on-wards. During the experiments where arbitrary time points were formed, we observe a model accuracy of 72.8% with the
VGG-19 model when using 10 seconds as the cutoff point, a reduction of close to 5%.

We are able to report a similar trend for the SVM classifier: 80% interval (69% Accuracy, 0.6925 AUC), 50% interval (70%
Accuracy, 0.6882 AUC), 30% interval (60% Accuracy, 0.5576 AUC), 15% interval (58% Accuracy, 0.5074 AUC). We note that
with very little data in both the 2-second trial and the 15 percent trial the SVM outperforms the VGG-19 model in terms of
accuracy. While it is out of the scope of this paper, it remains an open question as to why this occurs.

We observed similar results during CT 2 where we found a 9% decrease in model accuracy when using the scanpaths created
with 50% of the data and VGG-19 model. Due to the class imbalance, the small sample size of our data, and more nuanced
differences between playing types, CT 2 is a much harder classification task for both models. During CT 2, when conducting
the model experiments using the sets of scanpaths created from a percentage of the total recorded sequence, we observe model
accuracies at the following intervals for the VGG-19 model: 80% interval (65% Accuracy, 0.7569 wAUC), 50% interval (56%
Accuracy, 0.7141 wAUC), 30% interval (44% Accuracy, 0.6489 wAUC), and the 15% interval (33% Accuracy, 0.5406 wAUC).
Again, we are able to report similar results of the SVM outperforming the VGG model when using shorter subsequences for the
SVM observing model accuracy at the following intervals: 80% interval (59% Accuracy, 0.6714 wAUC), 50% interval (59%
Accuracy, 0.6761 wAUC), 30% interval (48% Accuracy, 0.6069 wAUC), and the 15% interval (37% Accuracy, 0.5343 wAUC).

Interpretation of model predictions
We aim to identify the features that contribute most significantly to the confidence of the model’s predictions in the two
classification tasks (CT 1 and CT 2). To do so, we evaluate the relationship between the model’s Confidence Estimation (CE)
and three features expressing the type and amount of information acquired: (1) the proportion of fixations on the other player’s
payoffs, (2) the proportion of transitions between the other player’s payoffs, and (3) the natural logarithm of the response time as
a proxy for the total amount of information acquired by the participant. Confidence estimation (CE) involves assessing the level
of certainty that a deep learning model has in its own predictions, which is commonly achieved via computing a probability
score38. We expect the CE to be directly linked to the characteristics of the visual analysis and only partially linked to the
amount of information acquired (RT). In CT 1, we find that the CE of the model is positively correlated with the proportion of
fixations on the other player’s payoffs (Pearson’s r = 0.76, p < 0.001) and with the proportion of transitions between the other
player’s payoffs (Pearson’s r = 0.66, p < 0.001). We also find a significant, yet weaker, correlation between CE and response
times (Pearson’s r = 0.31, p < 0.001).

In CT 2, we observe similar results when the model predicts a choice consistent with the equilibrium strategy: the CE of the
model is positively correlated with both the proportion of transitions between the other player’s payoffs (Pearson’s r = 0.44, p <
0.001) and the proportion of fixations on the other player’s payoffs (Pearson’s r = 0.37, p < 0.001). However, we do not find a
positive relationship between response times and CE in this case (Pearson’s r = -0.16, p = 0.06). When the model predicts
a choice consistent with the Naïve strategy, we find that the proportion of transitions between the other player’s payoffs is
negatively correlated with CE (Pearson’s r = -0.36, p < 0.001), while the proportion of transitions between the participant’s
payoffs is positively correlated with CE (Pearson’s r = 0.40, p < 0.001). No relationship is observed between response times
and CE in this case (Pearson’s r = -0.06, p = 0.56). Finally, we find that none of the features examined is correlated with CE
when the model predicts a choice consistent with the Coordination strategy. This is in line with previous results showing that
participants using a Coordination strategy devote the same amount of attention (expressed in terms of the proportion of fixations
and transitions) to the incentives of the two players. Overall, our results are consistent with previous findings and suggest that
the level of attention given to the incentives of the other player is a predictive factor in the decision-making strategy used39.

Finally, we test the hypothesis that the model makes better predictions in some games compared to other games and that the
model is more accurate in predicting one strategy than another. We test the first hypothesis in CT 1 by running a mixed-effect
logistic regression with accuracy of the model as dependent variable, game type (dominant solvable games and games that do
not contain a dominant strategy) as independent variable, and Subject as random effect. Results of the model show no effects of
the game type (B = 0.49, p = 0.12). We test the second hypothesis in CT 2 by running another mixed effect logistic regression
analysis with the accuracy of the model as dependent variable, the type of strategy used by the participant (Equilibrium,
Naïve, and Coordination) as independent variable, and Subject as random effect. Results show that the model is more efficient
in predicting choices consistent with equilibrium strategy (Mean = 0.86) than choices consistent with Naïve (Mean = 0.67;
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Figure 4. Accuracy of VGG-19 model in CT 1 using subsequences via percentages (4i) and time points (4ii).

B = -1.11, p = 0.004) or Coordination (Mean = 0.20; B = -3.24, p < 0.001) strategies. In particular, results show that the
model underestimates the number of times participants choose in accordance with "Coordination" strategy (only 5% of the
time compared to 18% of choices observed). This may be due to the fact that the visual analysis required to implement the
Coordination strategy can also be used to implement different strategies16.

9/15



Discussion
In this work, we were able to successfully represent the cognitive process of participants’ playing economic games by
transforming the recorded gaze data into scanpath images thus accounting for the spatiotemporal sequence within the data.
This post-processing approach enables machine learning methods to accurately classify subsequences of the data from new
participants using a model trained on only full sequences stemming from the training set. We were surprised by the large
amount of data we could remove to form a subsequence and the resulting relatively small decrease in accuracy of prediction,
further confirming that distinguishable patterns are formed very early on in the decision process16, 29.

We focused our study on scanpath design showing its usefulness as model input by highlighting the results of both an
out-of-the-box CNN and an SVM image classifier. Using scanpaths as model input both of our models outperform traditional
methods to predict choice behavior from gaze data in games presented in normal form. Much like in previous studies we aimed
to classify gaze behaviour indicative of players who select the Nash-equilibrium and separately, the exact strategy used by
players in our games. We were able to anticipate choices accurately with very little data, with both models performing well over
chance with only 30% of the data available in the scanpath subsequences, and with CT 2 containing a moderate class imbalance.
Our findings support the well-established hypothesis that it is possible to classify participants by the depth of their strategic
abilities using the pattern of their eye-movements11, 14, 16, 23. Not only does our approach deliver a more accurate classification
of strategic types, but also contributes to the literature by providing a method that could be developed in future experiments to
create an adaptive counterpart that modifies its playing style based on the eye movements of the participant, opening the door to
a plethora of new experimental designs in this domain.

Generating scanpaths from the data seems to come with certain advantages when analyzing games presented in normal form.
In one of the most comparable studies14 the authors were unable to find a statistically significant relationship when investigating
if they could identify the equilibrium choice in two by two games using saliency maps as input to a Salience Attentive Model
(SAM). What makes this comparison so strong is that the games the authors used were created with the same experimental
design as in our experiment. Our hypothesis as to why the authors of this study were unable to identify equilibrium choices
using a saliency model is due to the loss of temporal information that occurs when creating saliency maps as fixations tend to
be aggregated over the temporal dimension40. In a separate study15 a Multilayer Perceptron (MLP) was used with the following
variables as input: reaction time, gaze dispersion and pupil deviation. The aim of the model was to detect whether a single trial
is of the “predictable" or “unpredictable" type. The authors were able to classify these types with an accuracy of 67%, which
is the most comparable analysis between the two papers. That being said, the two studies we compare our approach against
were conducted in the context of two-by-two games which are characterized by a lower relational complexity of the payoff
structure31, which may have effects on the classification difficulty of the patterns generated from recorded eye-movements.

When examining traditional modelling methods applied to players’ type classification, including cluster analysis and mixed
model approaches do not reach the same level of accuracy observed with our approach16, 23, 28, 29, 41. Further, in these studies the
accuracy of the models strongly depends on the strategic environment under consideration and the complexity of the decision
rule used by the decision-maker. On average, in the contest of three-by-three games, the highest level of accuracy reported is
around 68%,29. Results from our baseline regression model are in line with these results achieving an accuracy of 67%, an 11%
deficit when compared to our augmented VGG-19 model.

Much like in the field of vision research, experimental economists are searching for methods that can be used to predict
across domains11, 42. We are especially keen to use our scanpath design in different games to investigate the stability of levels
of cognition across strategic environments of different types and complexity. Future research could simply attempt to classify
scanpath images created from games with different structures using the fully trained model presented in this experiment, or
build more complicated ML models to analyse the data. To date, limited research has been conducted which incorporates
ML techniques, into economic games with a few notable exceptions11, 14, 15. We hope to continue to see developments of new
analysis types in this field, as historically game paradigms have provided a much needed laboratory setting to study cognition
in strategic environments which enables developments in theory that are then used to explain patterns in naturally occurring
data43, 44.

Outside of economic games, our method contributes towards the creation of interactive systems that incorporate gaze data45.
Considerable resources have already been allocated to incorporating eye-tracking research into website design46, making the
possibility of using a similar approach in more general domains by crafting AOIs into websites a priory quite a feasible task.
We can envisage our approach being adapted to contexts such as shopping websites, online games played using virtual reality
headsets, and in other strategic contexts where the cognitive state of the user is relevant such as stock trading, where this
approach could be adapted to create a cooling off system to prevent traders from over-trading when losses start to occur.

Scanpath analysis is receiving increased recent attention due to the rise of Virtual and Augmented Reality systems47. While
we made use of a VGG-19 pre-trained on the imagenet dataset largely for reasons of convenience, a number of deep learning
techniques could be used to drastically improve the performance of our model40. Additionally, it remains an open question
outside the scope of this paper as to why the SVM outperforms the VGG-19 model when minimal data is available. Outside
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of model selection, there are a few limitations to our study. First, our study suffers from a small sample size, for a study that
uses ML methods. Second, there is a quite serious concern surrounding the generalizability of our experiment. It is widely
accepted that task semantics greatly affect gaze behaviour48, it remains uncertain if our method of using subsequences to model
cognition would achieve the same result in more noisy and complex environments outside of a laboratory setting49. While we
are encouraged by results from previous studies18, 50 which demonstrate the ability to classify subsequences of eye-tracking
significantly above chance in a variety of settings, and in one instance using a similar kernel-based method, this remains an
open question. Further, cognitive strategies in real-world settings will most probably be more nuanced and therefore harder to
differentiate and classify using our approach.

From a policy perspective, our work demonstrates that gaze data can be used to provide an information advantage to
AI-endowed players in strategic settings. As with all technology, it is not hard to imagine cases where eye-tracking data can be
used to produce both good and bad outcomes for society. Trends such as the increase in the number of workers participating in
the gig economy via smartphone apps51, the increased adoption of VR headsets, and the integration of eye-tracking data into
online training and adaptive feedback systems, make it easy to envisage a world where eye-tracking data affect everyday life for
a large percentage of the population. Our work here is just the tip of the iceberg so to speak, projects with a larger sample size
could easily analyze gaze patterns at the participant level to customize user-based strategies. Much consideration and awareness
of potential issues are needed going forward if eye-tracking data is to be successfully regulated as it becomes part of everyday
life.

Methods
The games
To implement our ML classification method we used data from Marchiori et al.(2021)19. The authors conducted a behavioural
experiment recording eye movements of participants playing a set of games characterized by a unique game theoretical optimal
solution known as Nash Equilibrium27. In their study, the authors included three categories of games. In two of these categories,
strategic sophistication is required in order to identify the Nash equilibrium. Strategic sophistication is the attempt to predict
others’ decisions by taking their incentives into account28, 52. In the third category, the equilibrium strategy can be identified
without taking into account the other player incentives. In our experiment, we excluded games from this third category where
the equilibrium strategy and more simple decision strategies overlap focusing on the two categories of games requiring strategic
sophistication. Games in one selected category are called Dominant solvable Other (DO) games, and are characterized by
the computer having a dominant strategy. This means that the computer has a strategy that provides strictly higher payoffs
regardless of the strategy selected by the other player. Games in the second selected category are called Unique Equilibrium
(UE) games, these games also include a unique Nash Equilibrium but do not contain a dominant strategy for either player and
they are therefore not solvable by iterated dominance. Importantly, the Nash Equilibrium action and the actions corresponding
with the Coordination and Naïve strategies were randomized across games to avoid regular patterns which could be recognised
and exploited by a participant. See Supplementary Figure S2 in the Supplementary material for the full list of games.

Previous eye-tracking research has shown that the analysis of the lookup patterns can be used to reconstruct, at the trial level,
the decision process of different individuals and reveal the rationale behind their decisions16. In games, possible deviations
from equilibrium depend mainly on three components: (i) the social preferences of the players, (ii) their strategic thinking
ability, and (iii) their beliefs about the expected behavior of their counterparts. In their study, Marchiori et al.19 controlled
for the first of these three components by providing information to the participants about the strategy of the computer. By
telling the participants that the computer will play rationally with the aim of gaining as much as possible, they limited the
participants’ propensity to cooperate by reducing their uncertainty towards the intentions and the strategic abilities of the
counterpart. Possible deviations from equilibrium play are still possible and are mainly due to the inability of the player to
properly represent the strategic environment, anticipate the other player’s behavior, and best respond to it.

Analysis of information acquisition, strategic play
In our games, equilibrium play requires forming beliefs about the other player’s actions. In terms of information acquisition,
the belief formation process occurs through the use of saccades between the payoffs of the counterpart. Saccades express rapid
eye movements connecting consecutive fixations and can be viewed as a valid and reliable measure of how individuals acquire
and integrate different pieces of information23, 29. In the two categories of games selected for our experiment, looking at the
other player’s payoffs is not sufficient to identify the optimal solution of a game. Previous results show that equilibrium play, in
games that require strategic sophistication, is associated with a large use of vertical and horizontal saccades between the other
player’s payoffs which are necessary to form accurate beliefs about the possible action of the counterpart, and vertical saccades
between player’s own payoffs which are necessary to identify the best response to it16. Conversely, the implementation of a
Naïve strategy is characterized by a high proportion of horizontal saccades between the payoffs of the player and more generally
a high proportion of fixations on the player’s own payoffs. Finally, actions consistent with a coordination strategy are usually
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associated with a higher proportion of diagonal saccades between the payoffs of the two players for each possible outcome of
the game and in general balanced attention between own and other payoffs. Given their relevance for the identification of the
decision strategy used by the individual, information about saccades are made salient via the use of colour when creating the
scanpaths.

Experimental procedure
We use data from the entire pool of participants (243) who took part in the assessment stage of Marchiori et al.(2021)19

experiment (81 males, mean age = 24.1, SD age = 4.6). In the assessment stage, the authors assessed the initial level of strategic
sophistication of each participant, and no feedback was provided to them. During this initial phase, each participant played five
DO games and five UE games for a total of 2430 games played.

They played a set of two-person 3x3 games presented in normal form against a computer programmed to always play the
action consistent with the equilibrium strategy. Participants were informed that the computer would always play rationally and
try to maximize its own payoff. To facilitate comprehension, the payoffs of the two players in the game matrix were presented
in different colours (see Figure 1). Participants were not subject to a time constraint during the experimental task. At the
end of the experiment, three trials were randomly chosen, and the participant was paid based on the outcome of the selected
games. The experiment was conducted at the Experimental Psychology Laboratory of the University of Trento (Italy). The
assessment stage of the experiment lasted about 15 minutes. The entire experiment lasted about 1 hour. The study was approved
by the Human Research Ethics Committee of the University of Trento (protocol title: “Transfer learning within and between
brains”). All participants gave informed consent. All experiments were performed in accordance with the relevant guidelines
and regulations. Informed consent was obtained from all participants before the start of the experiment.

Eye-tracking recording
Eye movements were monitored and recorded using an Eyelink 1000 tower mount (SR research, Ontario, Canada) at a sampling
rate of 1000 HZ. The authors used a custom-made calibration procedure with 13 points. Points were placed at the center of the
nine cells and in the four possible locations of the fixation cross. The point located at the center of the matrix (corresponding to
the central cell of the matrix) was repeated twice. After the calibration phase, a validation phase was performed to test the
accuracy of the calibration. Calibration was repeated if necessary. During the experimental task, and before the beginning
of each trial, a drift correction was performed in order to test whether participants looked at the current fixation location, by
means of a target stimulus that was randomly presented in one of four possible locations. The matrix game was presented to the
participant after the target stimulus was fixated for 300 milliseconds. This was done to ensure that each participant, in every
trial, was looking at one of four possible random points located outside the matrix before starting the game. To transform the
data into scanpaths, the data was processed using the PyGaze library53, with colour maps from Matplotlib32.

Model architectures & Training procedure
We implemented a transfer learning and fine-tuning strategy using a VGG-19 model pre-trained on Imagenet as the baseline
model. In both Classification Tasks, we freeze the convolutional base layers and replace the fully connected layers and final
classification layer of the model with a custom head. We used Stochastic Gradient Descent (SDG) as the optimiser. Initially, we
implemented Bayesian hyperparameter tuning via the Keras tuner54 to select: (i) the number of fully connected layers, (ii) the
number of nodes in each fully connected layer, and (iii) the dropout percentage between these layers. To improve classification
accuracy, we fined-tuned the model by unfreezing some of the convolutional layers of the model and lowering the learning rate.
To choose the optimal parameters during this stage, we used a random grid search which adjusts the number of frozen layers
and the learning rate at each iteration.

As the target dataset differs greatly from the source dataset a number of regularization steps were also included in the model
to help boost model performance and prevent overfitting. First, a Global Average Pooling (GAP) layer was inserted after the
convolutional layers of the model to be used as a structure regularizer55. Additional measures include a light amount of L1/L2
regularization (1e-5) which is applied to the model alongside an early stopping callback. For both CTs, the model was able to
train for a maximum of thirty epochs and up to ten further epochs during the fine-tuning stage.

In CT 2, to deal with the class imbalance problem, we implemented a focal loss function with the default values for the
alpha and gamma parameters. The focal loss was designed to deal with class imbalance by down-weighting well-classified
examples and focusing on harder examples56. All models were implemented using Tensorflow-Keras library57, which makes
the Imagenet weights available for the VGG-19 model from its applications module, hence reducing the computational cost and
time of running our experiments and making our experiments easier to reproduce.

Comparison with Baseline Models
We compared our model to two common approaches used for classification problems, namely, a Support Vector Machine
(SVM) image classifier and a logistic regression model. In the cases of the SVM, we implemented a Radial-Basis-Function
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(RBF) kernel SVM with the SVC estimator from the Python SkLearn library37. We used the same scanpaths as model input.
We apply a 5-fold cross-validated, exhaustive parameter grid search to select the values of the hyperparameters. We set the
kernel coefficient and regularization penalty to 0.0001 and 10, respectively, in the exact Machine Learning strategy task, the
penalty parameter was computed with adjusted weights inversely proportional to class frequencies in the input data. To fit the
logistic regression model to CT 1, we used a generalized linear model (GLM) from the R package stats (version 3.6.0). For
CT 2, we applied a multinomial regression model within the R package nnet (version 7.3.16)58. We fitted different models by
regressing the binary outcome on proportions of ‘Own’, ‘Other’ and ‘Intracell’ transitions recorded in intervals of the total
duration of the game (at 15%, 30%, 50%, 80%, 100%) or in fixed time spans of 2, 5, 10 and 15 seconds.
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