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Abstract

The lymphatic system is an important component of the circulatory network,
responsible for the transportation of interstitial fluid throughout the body. The
interstitial fluid is called lymph when inside the lymphatics. The movement of
lymph plays a key role in transporting immune cells, proteins, cancer metastasis,
drugs, and so on. Moreover, impaired lymph transport can result in lymphœdema,
a condition that consists of an accumulation of interstitial fluid in the tissues.

The goal of this thesis is to develop mathematical models that describe the
lymph behavior in the lymphatic system, in particular its flow through lymphan-
gions and lymph nodes. We analyze these models, solve them explicitly in sim-
plified geometries, and propose numerical simulations to handle more general sce-
narios.

First of all, we propose a model of the lymph flow in a lymphangion, that is the
part of the lymphatic vessel between two valves. Due to its geometry, we are able
to develop a 1D model using the theory of quasilinear hyperbolic systems. Several
models try to describe the lymph flow in a lymphangion; we proposed a model
with a phenomenological description of the wall behavior, taking into account the
shear stress inhibition and regulation phenomena related to the contractions.

After that, we focus most of our attention to model the lymph flow through a
lymph node because, to our knowledge, it has not been extensively explored from
a mechanical perspective. Moreover, there is evidence that the lymph nodes are
essential for regulating lymph transport due to the fluid exchange with the blood
vessels within them. Indeed, secondary lymphœdema often results from damage
to or removal of lymph nodes. Due to the complex structure and functioning
of the lymph node, the attempt to describe the motion of the lymph within it
has inspired us with some very interesting mathematical models which have been
worth studying in detail.
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Sommario

Il sistema linfatico è una componente importante del sistema circolatorio, respon-
sabile del trasporto del fluido interstiziale in tutto il corpo. Il fluido interstiziale si
chiama linfa quando si trova all’interno del sistema linfatico. Il movimento della
linfa svolge un ruolo chiave nel trasporto di cellule immunitarie, proteine, metas-
tasi tumorali, farmaci e così via. Inoltre, un trasporto linfatico compromesso può
causare linfedema, una patologia che consiste in un accumulo di fluido interstiziale
nei tessuti.

L’obiettivo di questa tesi è quello di sviluppare modelli matematici che de-
scrivono il comportamento della linfa nel sistema linfatico, in particolare il suo
flusso attraverso linfangioni e linfonodi. Analizziamo questi modelli, li risolviamo
esplicitamente in geometrie semplificate e proponiamo simulazioni numeriche per
affrontare scenari più generali.

Innanzitutto proponiamo un modello del flusso linfatico in un linfangione, cioè
la parte del vaso linfatico compresa tra due valvole. Grazie alla sua geometria,
siamo in grado di sviluppare un modello 1D utilizzando la teoria dei sistemi iper-
bolici quasilineari. Diversi modelli tentano di descrivere il flusso linfatico in un
linfangione; abbiamo proposto un modello con una descrizione fenomenologica del
comportamento della parete, tenendo conto dei fenomeni di inibizione e regolazione
dello shear stress legati alle contrazioni.

Successivamente, ci concentriamo nel modellare il flusso linfatico attraverso un
linfonodo perché, per quanto ci risulta, non è stato ampiamente esplorato da un
punto di vista meccanico. Inoltre, alcune evidenze suggeriscono che i linfonodi
sono essenziali per la regolazione del trasporto della linfa a causa dello scambio
di fluidi con i vasi sanguigni al loro interno. In effetti, il linfedema secondario
spesso deriva dal danneggiamento o dalla rimozione dei linfonodi. A causa della
struttura e del funzionamento complessi del linfonodo, abbiamo elaborato alcuni
modelli matematici interessanti per descrivere il movimento della linfa all’interno
di esso, che è stato interessante approfondire.
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Introduction

Motivation of the Thesis
The lymphatic system is a crucial component of the circulatory system, responsible
for lymph transport throughout the body. Lymph flow plays a crucial role in trans-
porting immune cells, proteins, cancer metastasis, drugs, and so on. Moreover,
inadequate lymph transport leads to lymphœdema, a condition that consists of an
accumulation of interstitial fluid in the tissues, leading to distension, inflamma-
tion, fatty tissue proliferation, and fibrosis [1]. Despite its importance, the study of
the lymphatic system has received much less attention than the study of the blood
circulation system, particularly in the realm of mathematical modeling. Mathe-
matical models of the blood circulation system have been extensively researched
and developed over the years, providing valuable insights into the dynamics and
functions of this system (see [2]). Instead [3], one of the first mathematical models
of the lymphatic vessels, was published only in 1975.

The scope of this thesis is to propose and analyze mathematical models that
describe the lymph flow through the lymphatic system, in particular through
lymphangions and lymph nodes. We direct most of our attention on modeling
the lymph flow through a lymph node (LN) because, as far as we know, only
a few models in the literature try to describe the behavior of the LN from a
mechanical point of view [4–10] or mimic the LN mechanical properties in a LN-on-
a-chip model [11–13]. The intricate structure and function of the lymph node have
generated interesting mathematical questions about the lymphatic flow within it,
making it a valuable subject for detailed study. The mathematical models in
this thesis are designed to be as general as possible for potential use in other
applications.

However, we also present a model describing the lymph within the lymphan-
gions, taking into account previous works. Indeed, as we mentioned before, the
first model of the lymphatic system [3] refers to lymphangions treated as a 0D
model. Ref. [14] is the first that takes into account the spatial dimension of the
lymphangion using a 1D simplified model. In [15–18] they use a 0D model solved
taking into account real physiological data obtained by experiments. The 1D
extension of these models using the theory of quasilinear hyperbolic systems is
considered in [19–21]. Moreover, some recent works use finite element simulations
to take into account more spatial dimensions [22–27], but with several simplifica-
tions given by the complexity of the problem. Finally, some models focus more on
the wall behavior of the lymphangions [28–30].
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Organization of the Thesis
The thesis is organized as follows. In Chapter 2 we recall well-known theoretical
aspects that we will use in the entire work. In particular, in Section 2.1 we recall
the equations of motion that govern the fluid flow. In Section 2.2 we summarize
the main properties and definitions related to the Gegenbauer functions. In Section
2.3 we explain some aspects of the axisymmetric flow and stream function given
in [31]. In Section 2.4 we recall the asymptotic homogenization technique with an
example. Finally, in Section 2.5 we use the well-known theory of quasilinear hy-
perbolic systems to derive the governing equations that describe an incompressible
Newtonian fluid flowing in a compliant pipe in 1D.

In Chapter 3 we propose a model of a 1D lymphangion using the theory of
quasilinear hyperbolic systems. First of all, we found the critical thresholds, which
refer to certain critical values or conditions that determine whether a system will
exhibit a global in-time regular smooth solution or whether it will experience a
finite-time singularity formation, with a general pressure in a simplified setting
(we do not consider the valve behavior). Moreover, we highlight the role of the
viscosity µ in the singularity of the solution. After that, we study a general 1D
mathematical model that describes the lymphangion. We take into account the
valve behavior and the contractions (with the inhibitory effect due to eNOS -shear
stress) of the lymphangion. We use a largely phenomenological description of the
wall behavior; we choose this type of approach because we are more interested
in the fluid behavior and we want to run more feasible numerical simulations.
In general, there can be other terms that influence and are important for the
contraction of the lymphangion wall due to high deformations of the latter and
that it would be worth studying in detail [28–30]. The results presented in this
chapter are not yet complete, hence they may be subject to future modifications
or updates.

In Chapter 4 we advance a mathematical model for the lymph flow in a lymph
node in a cylindrical geometry with a laminar flow and driven by a pulsatile
pressure gradient [9]. The model proposed here is very idealized and is a starting
point for more advanced studies on the subject.

In Chapter 5 we put forward a mathematical model for the flow of the inter-
stitial fluid (lymph) in an idealized spherical and spheroidal popliteal lymph node
[10]. We assume a small Reynolds number as a result of the small velocities within
the lymph nodes [1], hence we can model the flow into the LC by Darcy-Brinkman
equation, and the flow inside the SCS by Stokes equation (see Section 2.1). As we
mentioned before, the lymph has a relevant pulsatile behavior, and we take it into
account in our model. We obtain an explicit solution in spherical geometry using
the stream function approach (see Section 2.3). Then we solve it numerically in a
more general setting and geometry (using a numerical scheme validated with the
explicit solution).

So far, we did not take into consideration the blood vessels (and the consequent
exchange of fluids) inside the lymphoid compartment (LC) of the latter; hence,
in Chapter 6 we use the asymptotic homogenization technique (see Section 2.4) to
couple two different phases: the matrix phase (described by the Darcy-Brinkman

6



equation) and the blood vessel phase (described by the Darcy equation), both
in a steady setting, with inhomogeneous body forces. First of all, we analyze
the obtained macroscale model in a more general setting. After that, we find
an explicit solution in a spherical domain, describing the interaction between the
matrix phase and the blood vessel phase in the LC: we analyze this solution with
physiological data obtained from the literature of an idealized spherical mouse
popliteal lymph node. Moreover, we couple the free-fluid region (the subcapsular
sinus, SCS) and the porous region (LC) using numerical simulations.

Finally, in Chapter 7 we present a multiscale model using the asymptotic ho-
mogenization technique with a time-dependent Darcy-Brinkman equation that
describes the fluid flow in both phases (matrix phase and blood vessel phase)
with inhomogeneous body forces as our starting point. We consider the Darcy-
Brinkman equation’s time dependence because we have that the inlet flow is time-
dependent (see Section 1.1). The time-dependent term leads to the macroscopic
Darcy’s law with memory [32, 33]. After that, we solve the problem using nu-
merical simulations. The results presented in this chapter are recent and not yet
complete, and we present them as a future research direction.
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Chapter 1

Physiology of the Lymphatic
System

The primary function of the lymphatic system is to transport excess interstitial
fluid from the interstitial space back to the blood circulation, via the thoracic
duct. Interstitial fluid is mainly composed of water and contains sugars, salts,
fatty acids, amino acids, coenzymes, hormones, neurotransmitters, white blood
cells, and cell waste products (it accounts for 26% of the water in the human
body). Along with the excess interstitial fluid, excess proteins and waste are
transported back to circulation [1, 34].

The lymphatic system is composed of a network of vessels, capillaries, and
organs [35]. The interstitial fluid (called lymph when inside the lymphatics) enters
through the small lymphatic capillaries (also called initial or terminal lymphatics);
the interstitial fluid absorbed by the terminal lymphatics is pumped by passive and
active contractions of the larger lymphatic vessels. These vessels are the results of
a gradual combination of the terminal lymphatics, which are called pre-collectors
and collectors lymphatics, trunks and ducts [34]. Moreover, inside the lymphatic
vessels there is a series of one-way valves which prevent retrograde flows. The
part of the vessel between two valves is called lymphangion. Lymphangions can
perform rhythmic contractions because their walls are innervated with sympathetic
and parasympathetic nerves [28, 29, 34].

The lymphatic system acts as a priority way for the carriage of the immune
cells, facilitating the immune response, and it plays an important role in the
dissemination of cancer and transplantation [34, 36]. Indeed, the lymphatic system
is an integral part of the immune system thanks to the lymph nodes: they are
organs scattered all across the lymphatic system and their function is to filter the
interstitial fluid and break down bacteria, viruses, and waste [34, 37].

Lymph transport has an important function in transporting immune cells, pro-
teins, cancer metastasis, and so on [12, 37]. The lymphatic system can be a route
to deliver drugs to the lymph nodes (LNs) in case of certain pathologies; recent
evidence shows that nanotechnology is one of the main approaches to improve the
lymphatic uptake of drugs [38].

Inadequate lymph transport can lead to a condition called lymphœdema, where
excess interstitial fluid accumulates in the tissues, causing swelling, inflammation,
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an increase in fatty tissue, and fibrosis [1]. This condition can be caused by
congenital disorders (primary lymphœdema), or damage to or removal of lymph
nodes (secondary lymphœdema) [39]. This is one of the diseases that emphasizes
the importance of studying the lymph flow through the whole lymphatic system.

We refer to [1, 34, 35, 37] to have a more detailed review of the lymph flow in
the lymphatic system.

1.1 Lymphatic Vessels
The lymphatic vessels are divided into three macro-categories: lymphatic capillar-
ies (or terminal lymphatics), pre-collecting lymphatics, and collecting lymphatics
[34]. The primary function of the lymphatic capillaries is to act as a one-way valve
system, allowing interstitial fluid to flow into them from the interstitial space when
the interstitial pressure is high and then to close in order to stop back-flow when
the interstitial pressure is low [40]; they are supported by anchoring filaments
(6 − 10 nm in diameter) that help them not to collapse when interstitial fluid
pressure increases [34].

The interstitial fluid that is drained by the lymphatic capillaries flows into the
pre-collecting lymphatics. The walls of the pre-collectors are formed by smooth
muscle that allows these vessels to perform spontaneous contractions. However,
portions without muscle exist, and in these parts, the endothelial layer is similar
to that of lymphatic capillaries; thus, these parts of pre-collectors are allowed to
absorb fluid. So, the pre-collectors have a dual role: absorption and propulsion of
lymph. Moreover, the pre-collecting lymphatics contain bicuspid one-way valves
like the capillary vessels, but their distribution is more irregular [34].

From the pre-collecting lymphatics the lymph goes to the collecting lymphatics.
These vessels are larger than the pre-collecting and initial lymphatics, and the
primary lymphatic valves are absent. They contain another type of valve that
prevents retrograde flow: the secondary valve [34].

The mechanical behavior of lymphatic vessels is nonlinear, nearly elastic, and
varies in properties between different regions. They also have a tendency to expe-
rience large deformation under normal physiological loading [28, 41].

The lymphatic vessel wall is lined by lymphatic endothelial cells (LECs), spe-
cialized cells of the lymphatic system [30, 37].

The part of the vessel between two valves is known as lymphangion (Figure 1.1).
Lymphangions are innervated with sympathetic and parasympathetic nerves that
can perform rhythmic contractions. Lymphangions are essential in the regulation
of the lymph flow through the lymphatic system: indeed, the combination of
lymphangion contractions and valves action is the main feature that helps fluid to
move against a pressure gradient given by the pulsation of the heart and to return
into the blood circulation [1, 19, 34].

Collecting lymphatics contraction begins when tension (rather than stretch)
surpasses a threshold [1]. The frequency and strength of the contraction depend
on a lot of factors, such as the circumferential stretch of the vessel wall and the
wall shear stress [19, 28, 29, 41, 43].

11



Figure 1.1: A schematic image of a lymphangion, taken from [34, 42].

The lymphangion has a pump-conduit dual role. When the lymph flows against
an adverse pressure gradient, it has a pump behavior: it means that the lymphan-
gion contracts and pushes the lymph towards the next lymphangion, and the valves
prevent retrograde flow given by this adverse pressure gradient. Instead, if there
is a favorable pressure gradient, the contractions are inhibited by nitric oxide NO
and the lymphangion has a conduit function [18, 43]. The most important sources
of NO in the lymphatic system (and in particular in the lymphangions) are [30]:

• eNOS : production of NO via lymphatic endothelial cells (LECs) due to the
shear stress;

• iNOS : production of NO via inducible NO synthase in immune cells [44,
45];

• nNOS : production via nerve tissue.

The inhibition is motivated by the fact that, if we have a favorable pressure gra-
dient, the contractions of the lymphangion wall can be an obstacle that leads to
non-optimal fluid transport.

The secondary lymphatic valves that are in the collecting lymphatic vessels
(and separate the lymphangions) have a complex structure and functionality.
These valves are biased to stay open, and the threshold needed to open/close
these valves depends on the transmural pressure (that is the difference between
the pressure and the external pressure given by the interstitial space) near the
valve [15, 16, 24, 46]. Moreover, these valves present a small gap that stays open
[22–24]. It follows that, when a contraction of the wall occurs, there is a small
retrograde flow that happens before the valve closure [47, 48].
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Figure 1.2: A schematic image of a lymph node (adapted from Wikipedia).

1.2 Lymph Nodes
The structure of the lymph node is highly complex and not easily visualized: a
schematic image is shown in Figure 1.2.

Lymph nodes are lymphoid organs that are important for the immune response
of our system. The lymph enters the lymph node from the afferent lymphatic
vessels with a pulsatile behavior (due to the contraction of the lymphangion wall),
and goes into the subcapsular sinus (SCS), which is composed of two layers of
specialized lymphatic endothelial cells (LECs); here we can find macrophages and
antigen-presenting cells (APCs), known as Dentritic cells (DCs), that regulate
antigens, bacteria, etc... [37].

Macrophages are a type of white blood cells of the immune system which
carry out a process called phagocytosis, which consists of digesting pathogens,
such as cancer cells, microbes, cellular debris, and foreign substances, which do
not have proteins that are specific to healthy body cells on their surface. This
process acts to defend the host against infection and injury. Besides phagocytosis,
macrophages play a critical role in innate immunity (nonspecific defense) and help
initiate adaptive immunity (specific defense) by recruiting other immune cells such
as lymphocytes.

Dendritic cells (DCs) are antigen-presenting cells (APCs) of the immune sys-
tem. Their main function is to process antigens and present them to the T cells
of the immune system to start the adaptive immune response.

The main difference between DCs and macrophages is that DCs function is to
process antigen material and present it to the T cells and to start the adaptive
immune response; on the other hand, macrophages clean up waste and remove
pathogens, and then present their peptide to other cells for further help.

LECs are formed by vascular endothelial growth factor receptor-3 (VEGFR-
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3), lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1), mucin type-
1 protein podoplanin (podoplanin), and lymphatic-specific transcription factor
(PROX-1) [36].

The majority of the lymph (about ≈ 90% [5]) flows in the SCS, and the re-
maining part enters into the lymphoid compartment (LC) through a conduit system
network formed by fibroblastic reticular cells (FRC), which form the parenchyma
of the LN; due to this conformation, LNs are organs with high resistance to flow
[49]. We can see a representation of the FRC network in Figure 1.3. Moreover, it
seems that the LNs have also the function to regulate the lymph transport between
a high-pressure zone (afferent lymphatic vessel) and a low-pressure zone (efferent
lymphatic vessel), due to the fluid absorption of the lymph into the blood vessels
in the node to establish an equilibrium of forces across the blood vessels membrane
given by the Starling’s law [39, 50–52]. Indeed, the secondary lymphœdema often
results from damage to or removal of lymph nodes [1, 39].

The LN is a highly vascularized organ [53, 54]. The blood vessels inside the LN
are important for giving nutrients and oxygen to the cells; during an infection, the
vascularization must increase to ensure support for the increasing number of cells
(creating new blood vessels, which will be destroyed at the end of the infection).
Due to this vascularization inside the LN, there is a fluid exchange between the
lymph (inside the FRC network) and the fluid inside the blood vessels of the
lymph node; this is generally driven by Starling’s law [55, 56], which regulates the
fluid exchange between two phases separated by a membrane. This fluid exchange
depends on the difference of pressure between the phases and the osmotic pressure,
i.e., the concentration difference of proteins between the two phases. This fluid
exchange is demonstrated by the fact that the concentration of proteins in the
efferent lymphatic vessel is higher than in the afferent one [34, 50–52].

Lymph flow inside LNs has an important function; indeed, fluid flow biases
macromolecular distribution, enhances ligand expression, aligns extracellular ma-
trix, and shapes active mechanisms of cell migration [37]. Fluid flow through
endothelial monolayers and FRC network enhances the expression of chemokines
that direct leucocyte localization and migration patterns [37]. Moreover, increased
flows enhance proliferation and drug sensitivity in diffuse large B cell lymphoma
[57]. Fluid flow is important to study tumor metastasis [12] and drug transport
too [38, 58].

Part of the DCs (in particular the migratory DC) is carried by lymphatic
vessels to help the LN, thanks also to the chemokines.

When the lymph enters the SCS, it transports antigens, signal molecules, and
immunological cells. The SCS wall is formed by LEC, and the “roof” contains
the receptor CCRL1 (ACKR4) and, bonding with the chemokines CCL19 and
CCL21, creates a chemokine gradient that moves the DC from the SCS into the
LC (parenchyma) [36]. Spatially confined expression of CCRL1 was necessary and
sufficient for the creation of functional chemokine gradients [60]. Moreover, the
SCS is an important site for preventing the systemic spread of microorganisms and
viruses [61]. The lymph flow plays an important role in tumor transport through
the lymphatic system and in tumor metastasis, and the lymphatic endothelium of
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Figure 1.3: A reconstruction of the conduit system inside the lymphoid compart-
ment of the lymph node. The figure on the left is taken from [59], the figure on
the right is taken from [49].

the sinus represents a barrier to the entry of tumor cells into the lymph node [62].
Just under the “floor” of the SCS, there are the B-cell follicles (formed by B-

type lymphocytes, they respond to chemokine CXCL13), and the remaining part
is formed by the T-cell zone (formed by T-type lymphocytes) [34, 37]. The SCS
floor protects the above mentioned zone from the direct contact of the afferent
lymph; LECs in the sinus floor possess tight junctions and a basal membrane,
indicating a diffusion barrier. The LECs lining the SCS and the LECs that form
the peripherical lymphatics (lymphatic capillaries) are different (for example the
surface markers and junctional molecules expression are different) [62].

The bigger particles (> 70 kDa) cannot enter the conduits formed by FRC and
remain in the SCS, where they are confined and filtered by specialized cells of the
LEC (in the boundary), see Figure 1.3. However, there is some evidence indicating
that the selectivity of the FRC network is not based solely on the size of the
molecules; indeed, selected macromolecules (such as antibodies) can gain access
to the LN parenchyma [63]; antibodies and large molecules that are physically
unable to enter the conduit system may get transported by dynamin-dependent
vesicular transcytosis across LECs lining the SCS into the LN parenchyma [64].
Moreover, throughout the conduit system there are antigen presenting cells (APC)
that filter the lymph from antigens and present them to the lymphocytes [49].

The FRCs that ensheet the conduits in which the lymph flow sometimes have
openings in which we can find a DC that searches antigens and bacteria in the
conduit system (see Figure 1.3). Once the DC has found an antigen, they need to
present it to the T-cells to start the immunological response; here the FRC in the
T-cell zone produces chemokines CCL19 and CCL21 that drive T cells and DC to
facilitate the interaction between them [49, 65–67].

While the DCs crawl against the FRC network searching for antigens, the
interaction between PDPN+ in FRC and CLEC-2 in DC induces the remodeling
of the cytoskeleton of the FRC [65–67]. There is an elongation of the FRC, the
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LN gets bigger to make more room for the lymphocytes, thanks also to the LTβR
(derived from DC) that promotes the survival of FRC’s modulating PDPN (PDPN
holds off the elongation of the FRC) [37, 49, 65–67].

It has been shown that B cells do not get instantly stimulated when encoun-
tering antigens. Instead, they accumulate antigens over time, suggesting multiple
rounds of antigen acquisition. The extremely low velocity in the porous region
is highly desirable as it allows sufficient time for antigens and/or antigen-bearing
cells to find and interact with lymphocytes and triggers their activation [11].
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Chapter 2

Theoretical Background

In this chapter we recall some well-known theoretical backgrounds that we use to
model and study the fluid flow in lymphangions and lymph nodes.

In Section 2.1 we recall the classical fluid flow equations for a Newtonian fluid
that flows in a free-fluid region and a porous medium. In Section 2.2 we summarize
the definitions and properties of the Gegenbauer functions [31, 68, 69], and we
will use these properties in Section 2.3 (and further on), where we describe the
stream function approach used to solve a creeping fluid motion. As a reference to
this theory, we use [31]. In Section 2.4 we describe the asymptotic homogenization
technique, which is used to study multiscale problems and to derive the macroscale
one, saving information about the microscale as the derived models encode the role
of the microstructure in their coefficients. As a reference, we use [70]. Finally,
in Section 2.5 we briefly describe the well-known theory of quasilinear hyperbolic
systems [71, 72] and we derive the simplified 1D model used to describe the fluid
flow in a deformable tube, referring to [56, 73, 74].

2.1 Equations of Motion
In this section, we recall the equations of motion that we will use in the whole
thesis.

To describe the motion of a fluid, the classical choice is to use Eulerian for-
malism. The classical system of differential equations that describe the balance of
momentum and the balance of mass without any source or sink is

ρ
dv

dt
= ρf + ∇ · T,

∂ρ

∂t
+ ∇ · (ρv) = 0,

(2.1)

in the whole domain Ω ⊂ R3, where v is the velocity of the fluid, f is the density
of force per unit of mass, T is the Cauchy stress tensor, and ρ is the fluid density.
We can assume the lymph to be a homogeneous and incompressible fluid, which
means that the fluid can change its shape but not its volume; it follows that the
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second equation of (2.1) becomes

∇ · v = 0, (2.2)

where ρ = ρ0 is constant.
Since the particles in the lymph have little influence on the lymph flow [1],

we can assume that the fluid is Newtonian, which means that the local strain
rate depends linearly on the viscous stresses arising from its flow (an example
of Newtonian fluid is water). The Cauchy stress tensor for an incompressible
Newtonian fluid is

T = −pI + 2µD(v), (2.3)
where p is the pressure of the fluid and it is the Lagrange multiplier associated
with the constraint of incompressibility, I is the identity tensor, µ is the viscosity
of the fluid and

D(v) = 1
2
(
∇v + ∇vT

)
is a traceless second-order tensor field and it is the symmetric part of the velocity
gradient. By the chain rule the material derivative of the velocity is

dv

dt
= ∂v

∂t
+ (∇v) v. (2.4)

Substituting (2.3) and (2.4) into (2.1), we obtain the Navier-Stokes equation
ρ0
∂v

∂t
+ ρ0 (∇v) v = ρ0f − ∇p+ ∇ · (µD(v)) ,

∇ · v = 0,
(2.5)

that is closed by a set of boundary conditions and an inital condition

v(x, 0) = v0(x), (2.6)

that must verify
∇ · v0(x) = 0. (2.7)

In the case where µ is constant, the system (2.5) becomes
ρ0
∂v

∂t
+ ρ0 (∇v) v = ρ0f − ∇p+ µ∆v,

∇ · v = 0.
(2.8)

We define the Reynolds number as [31, 56]

Re = ρ0LU

µ
, (2.9)

where L is a characteristic length and U is a characteristic velocity. The Reynolds
number is a measure of how much the viscous term is relevant with respect to the
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inertial term. In the case where Re ≪ 1, we have that the system (2.5) can be
approximated as 

ρ0
∂v

∂t
= ρ0f − ∇p+ µ∆v,

∇ · v = 0;
(2.10)

this is called Stokes equation, and it is often used to describe flow with slow velocity
or with small characteristic length.

2.1.1 Porous Media
A porous medium is a solid material in which there are pores (i.e. voids) topolog-
ically connected [75, 76]. The description of the fluid flow governed by the Stokes
equation inside a porous medium is in general very complex; hence here we formu-
late the macroscale description of the fluid flow inside a porous medium obtained
by smoothing out the microscopic complexity given by the pore structure.

The main equation used to describe a fluid flow inside a porous medium is
the Darcy’s law, which was formulated by Henry Darcy based on the results of
experiments on the flow of water through beds of sand [77]; Darcy’s law linearly
relates the fluid discharge to the pressure difference (or pressure gradient) via the
hydraulic conductivity tensor and the volume loads (applied externally). Hence
we have

v = −W (∇p− ρ0f) , (2.11)
where v is the average velocity of the fluid, W is the hydraulic conductivity tensor
which takes into account the geometrical and viscous properties of the porous flow,
and is given by

W = K
µ
, (2.12)

where K is the permeability tensor and takes into account the microscale geometry
of the porous medium, and µ is the viscosity. We highlight that the velocity de-
scribed by the Darcy’s law (2.11) is different than in the previous Section; indeed,
here we have an average velocity, and it is the velocity relative to that of the solid,
which in our case is zero (we are assuming that the matrix is non-deformable).

Darcy’s law can be obtained using the homogenization theory (for more de-
tails, see Section 2.4). Equation (2.11) comes together with the incompressibility
condition (2.2), and it follows that Darcy’s law can be rewritten as

∇ · (−W∇p) = ρ0∇ · (Wf) , (2.13)
that is a diffusion differential equation in terms of the pressure p and needs to be
closed by some boundary conditions for the pressure.

There is another important differential equation that describes the fluid flow
of an incompressible Newtonian fluid inside a rigid porous matrix: the Darcy-
Brinkman equation, that is

ρ0
∂v

∂t
= ρ0f − ∇p+ µe∆v − W−1v,

∇ · v = 0,
(2.14)
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where µe is the effective viscosity and satisfy [78]

µe

µ
≈ 1. (2.15)

This equation has been introduced by Brinkman adding a Laplacian (viscous)
term (called Brinkman term) to the classical Darcy equation [79], weighed by an
effective viscosity µe, and has been used widely to analyze high-porosity porous
media. Moreover, if we have an interaction between a free-fluid region and a
porous region, we have that the Darcy-Brinkman equation allows us to study in
more detail the interface (and the boundary layer) between them [80]; in general,
the Darcy-Brinkman formulation allows us to specify in more details the boundary
conditions [81], having a differential form similar to the Stokes’ one.

2.2 Gegenbauer Functions
In this section we summarize the main properties and definitions related to the
Gegenbauer functions. We refer to [31, 68, 69].

The Gegenbauer functions G(λ)
n (x) of the first kind are polynomials and are

solutions of the Gegenbauer differential equation of integer n:

(1 − x2)y′′(x) − (2λ+ 1)xy′(x) + n(n+ 2λ)y = 0. (2.16)

If λ = 1
2 , the Gegenbauer equation reduces to the Legendre equation, whose

solutions are the Legendre polynomials P (µ)
ν (x); if λ = 1, the equation reduces to

the Chebyshev differential equation, and the Gegenbauer polynomials reduce to
the Chebyshev polynomials of the second kind. Now we focus on the λ = −1

2 case.
We have:

G0(x) = 1, (2.17)
G1(x) = −x, (2.18)

Gn(x) = 1
2n− 1 [Pn−2(x) − Pn(x)] = 1

(n− 1)!
dn−2

dxn−2

(
x2 − 1

2

)n−1

, (2.19)

for n ≥ 2, where we denote by Gn(x) the Gegenbauer polynomial G(− 1
2 )

n (x) and
by Pn(x) the Legendre polynomial P (0)

n (x). There is another linear independent
solution of the Gegenbauer equation, that is the Gegenbauer function of the second
kind H(λ)

n (x), given by:
H0(x) = −x = G1(x), (2.20)
H1(x) = −1 = −G0(x), (2.21)

Hn(x) = 1
2n− 1 [Qn−2(x) −Qn(x)] = 1

2Gn(x)


ln
(1 + x

1 − x

)
+Kn(x), |x| < 1,

ln
(
x+ 1
x− 1

)
+Kn(x), |x| > 1,

(2.22)
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for n ≥ 2, where we denote by Hn(x) the Gegenbauer function of the second kind
H

(− 1
2 )

n (x), by Qn(x) the Legendre polynomial Q(0)
n (x) of the second kind and we

have:

Kn(x) = −
n/2,(n+1)/2∑

k=1

2n− 4k + 1
(2k − 1)(n− k)

[
1 − (2k − 1)(n− k)

n(n− 1)

]
Gn−2k+1(x). (2.23)

We recall some important properties of the Gegenbauer polynomials [31, 68,
69, 82]:

d

dx
G(λ)

n (x) = 2λG(λ+1)
n−1 (x), (2.24)

(n+ λ)G(λ)
n (x) = λ

(
G(λ+1)

n (x) −G
(λ+1)
n−2 (x)

)
, (2.25)

4λ(n+ λ+ 1)(1 − x2)G(λ+1)
n (x)

= −(n+ 1)(n+ 2)G(λ)
n+2(x) + (n+ 2λ)(n+ 2λ+ 1)G(λ)

n (x), (2.26)

d

dx

[(
1 − x2

)λ− 1
2 G(λ)

n (x)
]

= −(n+ 1)(n+ 2λ− 1)
2(λ− 1)

(
1 − x2

)λ− 3
2 G

(λ−1)
n+1 (x), (2.27)

d2

dx2Gn(x) = −n(n− 1)
1 − x2 Gn(x), (2.28)

x2Gn(x) = αnGn−2(x) + γnGn(x) + βnGn+2(x), (2.29)
where

αn = (n− 2)(n− 3)
4(n− 1

2)(n− 3
2) ,

βn = (n+ 1)(n+ 2)
4(n− 1

2)(n+ 1
2) ,

γn = (2n2 − 2n− 3)
4(n+ 1

2)(n− 3
2) .

We have that the Gegenbauer polynomials are orthogonal polynomials for x ∈
[−1, 1], normalized by:
∫ 1

−1
(1 − x2)λ− 1

2
[
G(λ)

n (x)
]2
dx = 21−2λπ

Γ(n+ 2λ)
(n+ λ) [Γ(λ)]2 Γ(n+ 1)

for λ > −1
2 ,

(2.30)
where Γ is the Gamma function. For λ = −1

2 we have:

∫ 1

−1

[Gn(x)]2

1 − x2 dx = 2
n(n− 1)(2n− 1) . (2.31)
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This allows the expansion of an arbitrary function in series. In the case of Gegen-
bauer polynomials of order λ = −1

2 we have:

f(x) =
∞∑

n=0
anGn(x), (2.32)

and the orthogonality condition leads to

an = 1
2n(n− 1)(2n− 1)

∫ 1

−1

f(x)Gn(x)
1 − x2 dx. (2.33)

If we fix the case λ = 1
2 , we can write the expansion of an arbitrary function

in a series of Legendre polynomials:

g(x) =
∞∑

n=0
bnPn(x), (2.34)

and the orthogonality condition leads to

bn = 1
2(2n+ 1)

∫ 1

−1
g(x)Pn(x)dx. (2.35)

Furthermore, we have that the even-order Gegenbauer polynomials are even
function of x, and the odd-order ones are odd function of x. Hence we have:

G0(x) = −H1(x) =
∞∑

n=1
(4n− 1)G2n(x), (2.36)

G1(x) = H0(x) = −
∞∑

n=1
(4n+ 1)G2n+1(x); (2.37)

this means that the Gegenbauer functions G0(x), G1(x), H0(x) and H1(x) are
linearly dependent of the Gegenbauer functions of n ≥ 2, and the Gegenbauer
functions Gn(x) with n ≥ 2 are linearly independent and orthonormal thanks
to equation (2.31). These properties can be generalized for every λ using the
orthogonal property (2.30).

2.3 Axisimmetric Flow and Stream Functions
In this section we recall some aspects of the axisymmetric flow and stream function
given in [31]. Indeed, thanks to the property of axisymmetry, a 3D problem can
be treated introducing the stream function, reducing the equations of motion to
the search of a single scalar function.

We have that an axisymmetrical fluid motion is one for which

∂v

∂ϕ
= 0, eϕ · v = 0, (2.38)

where v is the fluid velocity and ϕ is the azimuthal angle. It follows that the
velocity v is independent of the azimuthal angle ϕ and the azimuthal component
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Figure 2.1: Definition drawing for axisymmetric flow. The Figure is taken from
[31].

of the velocity is everywhere zero. If we assume this property, we can neglect the
azimuthal coordinate and study the flow only with respect to the other coordinates.

We suppose the incompressibility of the fluid (equation (2.2)):

∇ · v = 0. (2.39)

The definition of the stream function ψ for the incompressible velocity field
is as follows [31]. Given a point R, we call a the curve that connects this point
to any point R0 lying along the axis of symmetry (see Figure 2.1 (a)). Upon
rotation of this curve through an angle of 2π, we generate a surface (see Figure
2.1 (b)). We denote with Q the instantaneous volumetric flow rate through this
surface. Thanks to the incompressibility assumption, we have that Q, at any
instant, is therefore uniquely determined by a position vector X. In particular, it
is independent of the choice of the curve a joining X to the axis. We define the
quantity called stream function, at some point X, as [31]:

ψ = ψ(X; t) = Q

2π . (2.40)

According to this definition, ψ = 0 on the axis of revolution. This quantity
is often referred to as Stokes stream function (or Stokes current function). The
existence of a stream function depends on certain hypotheses of symmetry and
incompressibility.

We focus on the spherical coordinate system (see [31] for a generic coordinate
system):

v = vrer + vθeθ + vϕeϕ, (2.41)
where r is the radial coordinate, θ is the polar coordinate and ϕ is the azimuthal
coordinate. Due to the axisymmetric assumption, we have that

v = v(r, θ) = vr(r, θ)er + vθ(r, θ)eθ. (2.42)
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In spherical coordinates, the connection between the velocity v and the stream
function ψ is given by

Q =
∫

A
v · ndS =

∫ R

R0

∫ 2π

0
v · nr sin θdϕds, (2.43)

where s is the arc length and n is a unit outer normal to the surface. The stream
function is (remembering that ψ = 0 on the axis of revolution)

ψ =
∫ R

R0
dψ =

∫ R

R0
∇ψ · dR =

∫ R

R0
t · ∇ψds, (2.44)

where t is a unit tangent vector to the meridian curve. From equation (2.43), it
follows that

ψ =
∫ R

R0
v · nr sin θds, (2.45)

hence we have, thanks to the arbitrariness of s:

v · nr sin θ = t · ∇ψ. (2.46)

Recalling that
t = n × eϕ, (2.47)

we have
n · (vr sin θ − eϕ × ∇ψ) = 0, (2.48)

and, due to the arbitrariness of n, we have

vr sin θ − eϕ × ∇ψ = 0, (2.49)

so that
v = −∇ ×

(
ψ

r sin θeϕ

)
. (2.50)

Starting from the classical steady Stokes equation:

µ∆v = ∇p, (2.51)

where v is the velocity and p is the pressure, we can rewrite the Laplacian term
∆v as

∆v = ∇ (∇ · v) − ∇ × (∇ × v) , (2.52)
and, due to the incompressibility, we have

∆v = −∇ × (∇ × v) . (2.53)

Hence we have
∇p+ ∇ × (∇ × v) = 0. (2.54)

If we call the vorticity
ω = ∇ × v, (2.55)

24



we have

ω = ∇ × v = ∇ × ∇ ×
(

− ψ

r sin θeϕ

)
= − 1

r sin θ

[
∂2ψ

∂r2 + sin2 θ

r2
∂

∂θ

(
1

sin θ
∂ψ

∂θ

)]
eϕ,

(2.56)
and, if we define

E2 = ∂2

∂r2 + sin θ
r2

∂

∂θ

(
1

sin θ
∂

∂θ

)
(2.57)

we have
ω = − eϕ

r sin θ E2 ψ. (2.58)

Moreover, we have
∇ × ∇ × ω = − eϕ

r sin θ E2
(
E2 ψ

)
. (2.59)

Hence, if we apply ∇× to the equation (2.54), we obtain the following equation
of motion (note that ∇ × ∇p = 0):

E2
(
E2 ψ

)
= 0. (2.60)

In the case of the Darcy-Brinkman equation (with constant permeability) or
the pulsatile Stokes equation (see Section 5), we have the following differential
equation for the motion:

µ∆v + qv = ∇p, (2.61)
where q is a constant. Following the computations above, we obtain the following
equation of motion:

E2
(
E2 ψ

)
+ q E2 ψ = 0. (2.62)

Once ψ has been found, from equation (2.50) we can determine the components
of v with these relations

vr = − 1
r2 sin θ

∂ψ

∂θ
= 1
r2
∂ψ

∂ζ
, vθ = 1

r sin θ
∂ψ

∂r
= 1
r
√

1 − ζ2
∂ψ

∂r
, (2.63)

where ζ = cos θ.
The pressure may be obtained from equation (2.61):

∇p = µ (∆v − σv) = −µ (∇ × ω + σv)

= −µ
[
∇ ×

(
eϕ

r sin θ E2 ψ
)

− σ∇ ×
(

eϕ

r sin θψ
)]

= −µ
[

eϕ

r sin θ × ∇
(
E2 ψ

)
− σ

eϕ

r sin θ × ∇ψ
]
, (2.64)

hence we can find the pressure by integrating the following relations, respectively
(with ∇ = ∂

∂r
er + 1

r
∂
∂θ

eθ) [31, 83]:
∂p

∂r
= µ

r2
∂

∂ζ
[(E2 −σ)ψ]

∂p

∂ζ
= − µ

1 − ζ2
∂

∂r
[(E2 −σ)ψ] .

(2.65)
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2.3.1 Steady General Solution
We want to find the general solution of the equation (2.60) following [31].

We have that the solution of (2.60) is in the form:

ψ = ψ(1) + ψ(2), (2.66)
where ψ(1) and ψ(2) solve:

E2 ψ(1) = 0, (2.67)
and

E2 ψ(2) = W, (2.68)
where W solves

E2 W = 0. (2.69)
We start by finding the solution of equation (2.67). We use the separation

of variables ψ(1) = R(r)Z(ζ) (where ζ = cos θ) and, substituting into equation
(2.67), we have:

r2

R

d2R

dr2 + 1 − ζ2

Z

d2Z

dζ2 = 0. (2.70)

This equation can be true only if the terms in r and in ζ are equal to a constant,
say n(n− 1), with n ∈ N. This leads to the second-order equations

r2d
2R

dr2 − n(n− 1)R = 0, (2.71)

(1 − ζ2)d
2Z

dζ2 + n(n− 1)Z = 0. (2.72)

Degenerate cases occur for n = 0, 1. The solution of (2.71) is:

R(r) = αnr
n + βnr

−n+1. (2.73)

The second equation (2.72) is in the form of the Gegenbauer equation of order −1
2

(see Section 2.2) and has the solution

Z(ζ) = νnGn(ζ) + δnHn(ζ), (2.74)

where Gn is the Gegenbauer polynomial of the first kind of order −1
2 and Hn is the

Gegenbauer function of the second kind of order −1
2. The Gegenbauer function

of the second kind degenerate at ζ = ±1; for this reason, we have that δn = 0.
Hence, by putting together the above equations, we obtain:

ψ(1) =
∞∑

n=0

(
αnr

n + βnr
−n+1

)
Gn(ζ). (2.75)

Remark 1. The choice of the constant as n(n− 1), n ∈ N is due to the fact that
the Gegenbauer polynomials of the first kind G−1/2

α (ζ) have a singularity at ζ = −1
except for α integer [84].
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For the solution of equation (2.68), we have (using the separation of variables):

ψ(2) =
∞∑

n=0
π(r)Gn(ζ); (2.76)

applying the operator E2 to the above equation, using the Gegenbauer differential
equation (Section 2.2) and using equations (2.68) and (2.69), we have:

d2πn

dr2 − n(n− 1)πn

r2 = anr
n + bnr

−n+1, (2.77)

for which a particular solution is

πn(r) = anr
n+2

2(2n+ 1) − bnr
−n+3

2(2n− 3) = Cnr
n+2 +Dnr

−n+3. (2.78)

Hence, a complete solution for the equation (2.60) is of the form:

ψ(r, θ) =
∞∑

n=0

(
Anr

n +Bnr
−n+1 + Cnr

n+2 +Dnr
.n+3

)
Gn(ζ). (2.79)

Furthermore, the values n = 0 and 1 lead to infinite tangential velocities. Hence
we have

ψ(r, θ) =
∞∑

n=2

(
Anr

n +Bnr
−n+1 + Cnr

n+2 +Dnr
.n+3

)
Gn(ζ). (2.80)

From the equation for the pressure (2.65), we have (removing the terms with
n = 0, 1):

1
µ
p = −

∞∑
n=2

[
2(2n+ 1)
n− 1 Cnr

n−1 + 2(2n− 3)
n

Dnr
−n

]
Pn−1(ζ), (2.81)

where Pn is the Legendre function of order n (see Section 2.2).

2.4 Asymptotic Homogenization
The asymptotic homogenization technique allows the modeling of multiscale phe-
nomena. In general, we can have different scales in which our problem is defined,
but it is impossible (analytically and computationally) to take into account all
the information of the microscale; moreover, experimental measurements usually
provide average information on a macroscale. The asymptotic homogenization
technique allows us to describe a multiscale phenomenon on the macroscale, sav-
ing microscale information. In this subsection we recap the main assumptions that
we need to use the technique. The asymptotic homogenization technique is based
on the two-scale convergence [32, 85–88]. To write this section, we refer to [70].
To perform the asymptotic homogenization, we need the following assumptions:
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• length scale separation: We assume that there exist two distinct spatial
scales, referred to as the microscale d and the macroscale L, such that their
ratio is

ϵ = d

L
≪ 1. (2.82)

When ϵ ∼ 1 we have a poor separation of scale [78].

• spatial variations decoupling: We call the non-dimensional physical spatial
coordinate x̃. We assume that the unknowns and the coefficients in our
boundary value problem (BVP) are functions of two formally independent
spatial variables x,y such that

x = x̃, y = x̃

ϵ
, (2.83)

where x is referred to as the macroscale variable and y is referred to as the
microscale variable. In particular, all the unknowns of our BVP depend on
the variables (x,y), with x ∈ (0, 1)n and y ∈ (0,+∞)n. This means that in
the one-dimensional case:

d(·)
dx̃

= ∂(·)
∂x

dx

dx̃
+ dy

dx̃

∂(·)
∂y

= ∂(·)
∂x

+ 1
ϵ

∂(·)
∂y

. (2.84)

Instead, for the multidimensional case, we have:

∇x̃ = ∇x + 1
ϵ
∇y. (2.85)

• power series expansion: We assume that all the multiscale unknowns u(x,y)
can be formally represented by a regular expansion in power series of ϵ:

u(x,y) ≡ uϵ(x,y) =
∞∑

l=0
u(l)(x,y)ϵl. (2.86)

The hypotheses above are the essential assumptions that we need for using
the asymptotic homogenization technique. Typically, other assumptions are also
made, which are:

• local periodicity: This hypothesis means that the unknowns and the coeffi-
cients of our problem are y-periodic. This assumption allows us to study fine
scale variations of the fields on a restricted portion of the domain. For this
reason, we can define an average operator only in a portion of the microscale
domain Ω:

⟨(·)⟩Ω = 1
|Ω|

∫
Ω
(·)dy. (2.87)

This hypothesis can be replaced by the weaker hypothesis of local bounded-
ness and regularity by introducing a new average operator

⟨(·)⟩Ω = lim
R→∞

1
4
3πR

3

∫
Ω∩BR

(·)dy, (2.88)
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where Ω is the domain and BR is a ball of radius R (see [89]). The strength
of the local-periodicity hypothesis is that we can focus our attention only to
a small portion of the domain, and this is computationally less expensive.
When the separation of scales is obvious, i.e. ϵ ≪ 1, whatever the organi-
zation on the local scale, the macroscopic behavior of the material will be
qualitatively the same and, for this reason, we can justify the use of the lo-
cal periodicity assumption for treating real non-periodic materials. Instead,
the closer the macroscopic scale gets to the microscopic scale, i.e. ϵ → 1,
the more sensitive it becomes to local fluctuations, and consequently to the
organization of the microstructure (see [90], Chapter 3).

• macroscopic uniformity: We neglect geometrical variations of the cell with
respect to the coarse scale variable x. Therefore, it is sufficient to consider
one periodic cell at each macroscale point x to completely capture the fine
scale structure, and we have (since Ω does not depend on the macroscale x):

∇x ·
∫

Ω
(·)dy =

∫
Ω

∇x · (·)dy. (2.89)

If this assumption does not hold, we have to be careful in using the right
type of Reynolds transport theorem.

Remark 2. The two-scale asymptotic expansion presented in (2.86) is of fun-
damental importance for the asymptotic homogenization technique, but, unfortu-
nately, from a mathematical point of view, there is no reason for the expansion
(2.86) to hold true. Therefore, an additional step is necessary to provide a rig-
orous justification of the homogenization result achieved heuristically through this
expansion approach. This is the purpose of the two-scale convergence. Essen-
tially, the two-scale convergence provides a rigorous justification for the first term
of the expansion (2.86) when applied to any bounded sequence uϵ. This implies
that a two-scale limit u(0)(x,y) exists. Indeed, any sequence uϵ which admits an
asymptotic expansion of the type

uϵ(x) = u(0)(x, x

ϵ
) + ϵu(1)(x, x

ϵ
) + ...,

where the functions u(i)(x,y) are smooth and Y -periodic in y, two-scale converges
to u(0)(x,y) (the first term of the expansion). The first term u(0)(x,y) of the
asymptotic expansion can be rigorously justified to exist through two scale conver-
gence, even if the expansion itself does not hold. We refer to [32, 85–88] for more
information about the two scale convergence.

2.4.1 Example: Asymptotic Homogenization of the
Stokes Problem - Darcy’s Law

Here we propose an example taken from [70] to see how asymptotic homogenization
can be used to describe the fluid flow through a porous medium. We identify the
whole physical domain with the open set Ω ∈ R3, Ω = Ωf ∪ Ωs, where Ωf is
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Figure 2.2: The domain microstructure (left) and macrostructure (right) with the
geometrical variations smoothed out. The picture is taken from [70].

the fluid region and Ωs is the solid region (that represents the structure of the
porous domain). As we mentioned above, we need two scales d and L such that
ϵ = d

L
≪ 1. We identify our microscale d with the pore radius, and the macroscale

L with the average size of the whole domain. We can see a representation of the
geometry in Figure 2.2.

We suppose that the fluid that flows through the pores is a Newtonian fluid
described by the steady Stokes equation, see Section 2.1:

µ∆xv = ∇p x ∈ Ωf , (2.90)

∇x · v = 0 x ∈ Ωf , (2.91)
v = 0, on Γ, (2.92)

where µ is the fluid viscosity, v is the fluid velocity, p is the fluid pressure and
Γ = ∂Ωf ∩ ∂Ωs.

To proceed with the asymptotic homogenization technique, we need to non-
dimensionalize equations (2.90–2.92); hence we rescale our relevant quantities in
the following way:

x = Lx′, v = Cd2

µ
v′, p = CLp′, (2.93)

where C is the magnitude of the characteristic pressure gradient. The rescaling
of the velocity is suggested by the parabolic profile of a viscous fluid flowing in a
straight cylindrical channel of radius d:

Cd2

µ
. (2.94)

30



The differential operators become:

∇x = 1
L

∇x′ , ∆x = 1
L2 ∆x′ , (2.95)

and the non-dimensional Stokes problem reads (leaving the primes):

ϵ2∆xv = ∇p x ∈ Ωf , (2.96)

∇x · v = 0 x ∈ Ωf , (2.97)
v = 0 on Γ. (2.98)

Substituting the power series expansion (2.86) for v and p and the spatial
variations decoupling, we have

v(x,y) ≡ vϵ(x,y) =
∞∑

l=0
v(l)(x,y)ϵl, (2.99)

p(x,y) ≡ pϵ(x,y) =
∞∑

l=0
p(l)(x,y)ϵl; (2.100)

moreover, substituting (2.85) into equations (2.96–2.98), we obtain:

ϵ3∆xvϵ + ϵ2∇x · (∇yvϵ) + ϵ2∇y · (∇xvϵ) + ϵ∆yvϵ = ∇yp
ϵ + ϵ∇xp

ϵ in Ωf , (2.101)

∇y · vϵ + ϵ∇x · vϵ = 0 in Ωf , (2.102)
vϵ = 0 on Γ. (2.103)

Now we equate the same powers of ϵ of the above equations. Equating the
terms of order ϵ0 of equation (2.101), we have

∇yp
(0)(x,y) = 0 =⇒ p(0) = p(0)(x), (2.104)

which means that the pressure term of order ϵ0 does not depends on the microscale
y. If we equate the terms of order ϵ0 from equations (2.102) and (2.103), we have

∇y · v(0) = 0 in Ωf (2.105)

v(0) = 0 on Γ. (2.106)
Equating the terms ϵ1 in equations (2.101-2.103) we get to the following equa-

tions:
∆yv(0) = ∇yp

(1) + ∇xp
(0) in Ωf , (2.107)

∇y · v(1) + ∇x · v(0) = 0 in Ωf , (2.108)
v(1) = 0, on Γ. (2.109)

If we collect the equations (2.107), (2.105) and (2.106) together, we obtain the
following auxiliary Stokes problem for the fields (v(0), p(1)):

∆yv(0) = ∇yp
(1) + ∇xp

(0) in Ωf ,

∇y · v(0) = 0 in Ωf ,

v(0) = 0, on Γ,
(2.110)
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with the property of y-periodicity on the external boundary of the cell ∂Ωf \Γ. We
note from equation (2.104) that the term ∇xp

0 only depends on the macroscale x
and this term is the forcing term of the motion. From the linearity of the system
(2.110), we formulate the following ansatz for the solution

v(0) = −W∇xp
(0), (2.111)

p(1) = −p · ∇xp
(0) + p̄(x); (2.112)

the above expressions represent the unique solution (up to a y-constant arbitrary
function p̄(x)) of the auxiliary Stokes problem (2.110), provided that W and p
solve the following cell problem

∆yW = (∇yp)T − I in Ωf ,

∇y · W = 0 in Ωf ,

W = 0 on Γ,
(2.113)

and we close the problem (2.113) imposing y-periodic conditions on ∂Ωf \ Γ and
the condition

⟨p⟩Ωf
= 0

to ensure the solution uniqueness, where ⟨(·)⟩Ωf
is the average operator defined as

⟨(·)⟩Ωf
= 1

|Ωf |

∫
Ωf

(·)dV. (2.114)

If we apply the average operator (2.114) to the ansatz of the solution (2.111),
we obtain the macroscale governing equation relating the leading order velocity
and pressure, namely

⟨v0⟩Ωf
= −⟨W⟩Ωf

∇xp
0, (2.115)

i.e., the Darcy’s law. Moreover, applying (2.114) to equation (2.108) and using
the divergence theorem and the local periodicity assumption (see Section 2.4), we
have

∇x · ⟨v0⟩Ωf
= 0. (2.116)

Moreover, we have

∇x · ⟨v0⟩Ωf
= ∇x ·

(
−⟨W⟩Ωf

∇xp
0
)

= 0, (2.117)

that is a Darcy’s law with permeability ⟨W⟩Ωf
, where W results from the problem

(2.113) on the periodic cell Ω.

2.5 Quasilinear Hyperbolic Systems for Balance
Law

In this section we briefly recall the theory of the quasilinear hyperbolic system for
balance law, and then we will apply it to the case of an incompressible Newtonian
fluid flowing in a deformable pipe.
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In general, we have

d

dt

(∫
Ω(t)

udV

)
=
∫

Ω(t)
fdV, (2.118)

where u(x, t) is a density, f(x, t) is the density source and Ω is the domain. Using
the Reynolds transport theorem, we have that a balance law has the form:∫

Ω(t)

∂u

∂t
dV = −

∫
∂Ω(t)

J · ndS +
∫

Ω(t)
fdV, (2.119)

where J(x, t) = vu is the current density. The first quantity represents the vari-
ation over time of a certain quantity, the second term represents the flux of the
quantity at the boundary and the third is a source/sink term. Using the localiza-
tion theorem, we have:

∂u

∂t
+ div J = f. (2.120)

If we have several balance laws, we can write a system of balance laws in this
form [71, 72]

∂U
∂t

+ ∂Fα(U)
∂xα

= B(U) (2.121)

and setting
Hα(U) = ∂Fα

∂U
(U), (2.122)

we have:
∂U
∂t

+ Hα(U)∂Uα

∂xα
= B(U). (2.123)

The system is called linear if the matrix Hα is constant and B is linear in U ,
semilinear if the matrix Hα is constant and quasilinear otherwise.

Definition 1. A system (2.123) of m equations is said to be hyperbolic at a
point (x, t) if Hα has m real eigenvalues λ1, ..., λm and a corresponding set of m
linearly independent right eigenvectors K(1), ..., K(m). The system is said to be
strictly hyperbolic if the eigenvalues λi are all distinct.

The eigenvalues λ are called characteristic velocity and represent the velocity
of the front waves. In the quasilinear case, they depend on the solution u (hence
the system can lose the hyperbolicity for some values). The physical interpretation
of the properties of the eigenvalues is as follows [71, 72]:

• The eigenvalues λ must be real so that the propagation can actually happen;

• det H0 ̸= 0 excludes the fact that there is some λ → ∞, that means an
infinite velocity of propagation of the front waves;
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2.5.1 Derivation of the Equations for the Motion of the
Fluid

We derive the governing equations that describe an incompressible Newtonian
fluid flowing in a compliant pipe. We follow the approach using the asymptotic
analysis described in [73, 74], but the derivation of these equations with other
approaches is possible [56].

The incompressible axisymmetric Navier-Stokes equations without body forces
in cylindrical coordinates (r, θ, z), where the z coordinate is aligned with the axis
of symmetry of the channel and, assuming that the angular velocity is zero, are
(where v = vrer + vzez is the velocity of our motion):

∂vr

∂t
+ vr

∂vr

∂r
+ vz

∂vr

∂z
+ 1
ρ0

∂p

∂r
= ν

[
∂2vr

∂r2 + 1
r

∂vr

∂r
− vr

r2 + ∂2vr

∂z2

]
, (2.124)

∂vz

∂t
+ vr

∂vz

∂r
+ vz

∂vz

∂z
+ 1
ρ0

∂p

∂z
= ν

[
∂2vz

∂r2 + 1
r

∂vz

∂r
+ ∂2vz

∂z2

]
, (2.125)

and the incompressibility condition

∂vz

∂z
+ 1
r

∂ (rvr)
∂r

= 0. (2.126)

If we introduce Vr and Vz the characteristic radial and axial velocities, L the
characteristic length, and R the characteristic inner vessel radius, we have the
following non-dimensional variables:

r′ = r

R
, z′ = z

L
, t′ = Vz

L
t, v′

z = vz

Vz

, v′
r = vr

Vr

, p′ = p

ρ0v2 , (2.127)

noticing that, for our flow regime

R

L
= Vr

Vz

= ϵ ≪ 1. (2.128)

The incompressibility condition (2.126) in non-dimensional variables is (leaving
the primes)

∂ (rvr)
∂r

+ VzR

VrL

∂ (rvz)
∂z

= 0; (2.129)

noting that
VzR

VrL
= 1, (2.130)

we have
∂ (rvr)
∂r

+ ∂ (rvz)
∂z

= 0. (2.131)

The momentum equations (2.125) and (2.124) in non-dimensional variables are
(leaving the primes)

∂vz

∂t
+ vz

∂vz

∂z
+ vr

∂vz

∂r
+ ∂p

∂z
= Lν

VzR2

(
∂2vz

∂r2 + 1
r

∂vz

∂r
+ ϵ2∂

2vz

∂z2

)
, (2.132)
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−∂p

∂r
= ϵ2

[
∂vr

∂t
+ vz

∂vr

∂z
+ vr

∂vr

∂r
− Lν

VzR2

(
∂2vr

∂r2 + 1
r

∂vr

∂r
− vr

r2 + ϵ2∂
2vr

∂z2

)]
.

(2.133)
From equation (2.133), we obtain

∂p

∂r
= 0. (2.134)

Using the following relations

∂ (rvrvz)
∂r

= vz
∂ (rvr)
∂r

+ rvr
∂vz

∂r
, (2.135)

∂ (rv2
z)

∂z
= vz

∂ (rvz)
∂z

+ rvz
∂vz

∂z
, (2.136)

and by using the incompressibility condition (2.131), we observe that the first
terms of these relations on the right-hand side are the same but with opposite
sign; hence we can rewrite (2.132) in the form

∂ (rvz)
∂t

+ ∂ (rv2
z)

∂z
+ ∂ (rvrvz)

∂r
+ ∂ (rp)

∂z
= Lν

VzR2

(
∂

∂r

(
r
∂vz

∂r

))
. (2.137)

We can integrate equations (2.137) and (2.131) over r from r = 0 to r = R̃
(where R̃ is the inner radius), and we obtain

∂

∂t

[∫ R̃

0
rvzdr

]
− [rvz]R̃

∂R̃

∂t
+ ∂

∂z

[∫ R̃

0
rv2

zdr

]
−
[
rv2

z

]
R̃

∂R̃

∂z
+ [rvrvz]R̃

+
∫ R̃

0
r
∂p

∂z
dr = Lν

VzR2

[
r
∂vz

∂r

]
R̃

, (2.138)

and
∂

∂z

[∫ R̃

0
vzrdr

]
− [vzr]R̃

∂R̃

∂z
+ [rvr]R̃ = 0. (2.139)

We assume the streamline condition at the wall, that means

[vr]R̃ = ∂R̃

∂t
+ ∂R̃

∂z
[vz]R̃ . (2.140)

If we define the average velocity

ū = 1
R̃2

∫ R̃

0
2rvzdr, (2.141)

and the parameter α (called Coriolis coefficient)

α = 1
R̃2ū2

∫ R̃

0
2rv2

zdr, (2.142)
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equations (2.138) and (2.139) become

∂
(
R̃2ū

)
∂t

+
∂
(
αR̃2ū2

)
∂z

+ R̃2∂p

∂z
= 2 Lν

VzR2 R̃

[
∂vz

∂r

]
R̃

, (2.143)

and
∂
(
R̃2ū

)
∂z

+ 2R̃∂R̃
∂t

= 0. (2.144)

In terms of dimensional quantities, these equations are:

∂Aū

∂t
+ ∂ (αAū2)

∂z
+ A

ρ0

∂p

∂z
= 2πνR

[
∂vz

∂r

]
R̃

, (2.145)

∂A

∂t
+ ∂ (Aū)

∂z
= 0, (2.146)

where A > 0 is the cross-sectional area of the tube.
To obtain the equations written in terms of the averaged quantities we need

to specify the axial velocity profile vz. A typical approximation for the velocity
profile is [91]

vz = γ + 2
γ

ū
[
1 −

(
r

R

)γ]
, (2.147)

with γ = 2 for a Newtonian fluid. From equations (2.142) and (2.147), we obtain
the relationship

γ = 2 − α

α− 1 (2.148)

and equation (2.145) becomes

∂ (Aū)
∂t

+ ∂ (αAū2)
∂z

+ A

ρ0

∂p

∂z
= −2π α

α− 1νū. (2.149)

If we introduce the quantity
Q = Aū, (2.150)

we can rewrite equations (2.146) and (2.149) in the form

∂A

∂t
+ ∂Q

∂z
= 0, (2.151)

∂Q

∂t
+ ∂

∂z

(
α
Q2

A

)
+ A

ρ0

∂p

∂z
= −2π α

α− 1ν
Q

A
. (2.152)

To close the system (2.151)–(2.152), the pressure term needs to be specified
and, in general, it is a function of the cross-sectional area A. From the fact that
∂p

∂r
= 0 (the pressure is constant along the r coordinate), we have that the pressure

here takes into account the wall effect and contraction. Hence we have that the
pressure is in the form

p = pext + ϕ(A;A0, β1, ...., βm), (2.153)
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where ϕ is a suitable function of the vessel area A, the initial datum A0 and some
mechanical parameters β1, ..., βm and must have the following properties

∂ϕ

∂A
> 0, ϕ(A0;A0, β1, ...., βm) = 0. (2.154)

For an analysis of the pressure, we refer to [56, 92].
We can rewrite the equations (2.151) and (2.152) in the form of (2.123):

∂U

∂t
+ H(U)∂U

∂z
+B(U) = 0, (2.155)

where
U =

[
A
Q

]
, (2.156)

H(U) =

 0 1

c2
1 − α

(
Q

A

)2
2αQ
A

 , (2.157)

c1 =
√
A

ρ0

∂ϕ

∂A
, (2.158)

B(U) =

 0
2πα
α− 1ν

Q

A
+ A

ρ0

∂ϕ

∂A0

dA0

dz
+ A

ρ0

∂ϕ

∂β1

dβ1

dz
+ ...+ A

ρ0

∂ϕ

∂βm

dβm

dz

 . (2.159)

The eigenvalues of (2.157) are

λ1,2 = α
Q

A
±
√
c2

1 +
(
Q

A

)2
α(α− 1), (2.160)

and, from the fact that α ≥ 1, A > 0 and ∂ϕ

∂A
> 0, we have that the two eigenvalues

are real and distinct, hence we have that system (2.155) is strictly hyperbolic.
We can rewrite the system (2.155) in terms of the characteristic variables. Let

(l1, l2) and (r1, r2) be two pairs of sets of right and left eigenvectors of the matrix
H, respectively. The matrices L, R and G are defined as

L =
[

lT
1

lT
2

]
, R =

[
r1 r2

]
, G = diag (λ1, λ2) , (2.161)

and we have
LR = I, H = LGR. (2.162)

System (2.155) can be rewritten as

L
∂U

∂t
+ GLH(U)∂U

∂z
+ LB(U) = 0; (2.163)

if there exist two variables W1 and W2 such that

∂W1

∂U
= l1,

∂W2

∂U
= l2, (2.164)
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we will call them the characteristic variables of our hyperbolic system. By setting
W = [W1,W2], we have

∂W

∂t
+ G

∂W

∂z
+G = 0, (2.165)

where
G = LB − ∂W

∂A0

dA0

dz
− ∂W

∂β1

dβ1

dz
− ...− ∂W

∂βm

dβm

dz
. (2.166)
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Chapter 3

One-Dimensional Model of a
Lymphangion

The part of the vessel between two valves is known as lymphangion. Lymphan-
gions are innervated with sympathetic and parasympathetic nerves that can per-
form rhythmic contractions. Lymphangions are essential in the regulation of the
lymph flow through the lymphatic system: indeed, the combination of lymphan-
gion contractions and valve action is the main device that helps lymph move
against a pressure gradient given by the pulsation of the heart and to return into
the blood circulation. We refer to Chapter 1 for a more complete description of
the lymphatic system and lymphatic vessels.

In this chapter we propose a 1D model using the theory of quasilinear hyperbolic
systems exposed in Section 2.5 to describe the fluid flow in a lymphangion. First
of all, in Section 3.1 we find the critical thresholds, which refer to certain critical
values or conditions that determine whether a system will exhibit a global in-time
smooth solution or it will experience a finite-time singularity formation, with a
general pressure in an infinitely long cylindrical domain. Moreover, we highlight
the role of the viscosity µ in the singularity of the solution. The novelty of the
critical thresholds that we find with respect to the ones found in [93] is that
we take into account a generic constitutive law for the pressure. In Section 3.2
we study a general 1D mathematical model that describes the lymph flow in
a lymphangion and takes into account the valve behavior and the contractions
(with the inhibitory effect due to eNOS – shear stress) of the lymphangion. For
the valve behavior, we use the model presented in [94] and used in [19] with
physiological parameters given in the literature [15, 46]. For the wall contraction
behavior, we fit physiological data found in [17, 18]: the description of the wall
behavior is largely phenomenological, but we choose this type of approach because
we are more interested in the fluid behavior, and we want to run more feasible
numerical simulations. In Section 3.3 we describe the numerical schemes that we
use to solve the models presented in Section 3.2. In Section 3.4 we recap the
physiological parameters from the literature. Finally, in Section 3.5 we show the
numerical results of our problem and compare them with results and data found
in the literature. The results presented in this chapter are not yet complete and
have to be considered preliminary. Since the research is ongoing, further analysis
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is needed before any definitive conclusions can be reached. We are still working
on the subject.

3.1 Critical Thresholds
In this section we want to find the critical threshold related to a 1D flow problem
(presented in Section 2.5) with a general pressure and in an infinitely long cylin-
drical domain. This threshold is related to certain critical values or conditions
that determine whether a system will exhibit a global in-time smooth solution or
it will experience a finite-time singularity formation. In [93] the authors found the
critical threshold for this flow with a specific constitutive law for the pressure of
the form p(A) = G0

((
A
A0

)1/2
− 1

)
, where G0 describes the stiffness of the vessel

wall. This pressure choice is typical to the aorta and blood vessels [56, 74, 93]. We
want to find the critical thresholds with a generic constitutive law for the pressure.

We recall equations (2.151) and (2.152):

∂A

∂t
+ ∂Q

∂z
= 0, (3.1)

∂Q

∂t
+ ∂

∂z

(
α
Q2

A

)
+ A

ρ0

∂p

∂z
= −2πν (γ + 2) Q

A
, (3.2)

where the constants are introduced in Section 2.5. The eigenvalues of our problem
are

λ1,2 = Q

A
∓
√
A

ρ0

∂p

∂A
= ū∓ c1(A), (3.3)

where
c1(A) =

√
A

ρ0

∂p

∂A
. (3.4)

We need some hypothesis to start with:

• we fix α = 1;

• we impose ∂p

∂A
> 0 to have hyperbolicity (see Section 2.5);

• we call f̄ = 2(γ + 2)πν and we assume f̄ > 0;

• we need to choose the constitutive pressure law such that ∂λ2

∂A
> 0 and

∂λ1

∂A
< 0.

System (3.1)–(3.2) becomes

∂A

∂t
+ ∂Q

∂z
= 0, (3.5)
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∂Q

∂t
+ ∂

∂z

(
Q2

A

)
+ A

ρ0

∂p

∂z
= −f̄ Q

A
, (3.6)

and has the following Riemann invariants [56, 93]:

R± = Q

A
±m(A) = ū±m(A), (3.7)

where
m(A) =

∫ A

A0

c1(τ)
τ

dτ, (3.8)

ū = 1
2
(
R+ +R−

)
, (3.9)

A = m−1
(1

2
(
R+ −R−

))
, (3.10)

and they satisfy 
∂R−

∂t
+ λ1

∂R−

∂z
= −f̄ ū

A
t > 0, z ∈ R,

∂R+

∂t
+ λ2

∂R+

∂z
= −f̄ ū

A
t > 0, z ∈ R,

(3.11)

with the initial data

R±(z, 0) = R±
0 (z) = ū0(z) ±m (A0(z)) . (3.12)

Thanks to the reformulated system (3.11), there exists a uniform invariant
region for the system (3.5)–(3.6), see [93, 95]. Hence there exist 0 < Amin < Amax
and Qmin < Qmax dependent on the initial data (A0, Q0), such that

(A(z, t), Q(z, t)) ∈ D = [Amin, Amax] × [Qmin, Qmax] , ∀z ∈ R, t > 0.

We introduce the quantities

s± := ∂R±

∂z
, (3.13)

differentiate the system (3.11) with respect to z and use the definition (3.13):
∂s−

∂t
+ λ1

∂s−

∂z
+
(
∂λ1

∂A

∂A

∂z

)
s− = ∂

∂z

(
−f̄ ū

A

)
,

∂s+

∂t
+ λ2

∂s+

∂z
+
(
∂λ2

∂A

∂A

∂z

)
s+ = ∂

∂z

(
−f̄ ū

A

)
.

(3.14)

Differentiating (3.8) with respect to z, we have

m′(A)∂A
∂z

= 1
2

(
∂R+

∂z
− ∂R−

∂z

)
,

and hence we have
∂A

∂z
= A

2c1(A)
(
s+ − s−

)
. (3.15)
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We differentiate A along the characteristic x′
1(t) = λ1 and we obtain

A′ :=
(
∂

∂t
+ λ1

∂

∂z

)
A = (R+)′ − (R−)′

2∂m
∂A

=
(λ1 − λ2)

∂R+

∂z

2c1(A)
A

=
−c1(A)∂R

+

∂z
c1(A)
A

= −As+. (3.16)

We define the quantities

g :=
∫ A

Amin

f̄

2ξ2 (1 + δ) eh(ξ)dξ (3.17)

where
h = ū

c1(A) , δ ≪ 1, (3.18)

and we have
g′ = f̄

2A (1 + δ) eh(ξ)A′; (3.19)

b± := f̄

2A (1 + δ) − w± = f̄

2A

(
1 ∓ ū

c1(A)

)
, (3.20)

where
w± = f̄

2A

(
δ ± ū

c1(A)

)
. (3.21)

Moreover, we assume that ∣∣∣∣ ūmax

c1(Amin)

∣∣∣∣ < δ ≪ 1, (3.22)

and hence we have
|w±| =

∣∣∣∣ f̄2A
(
δ ± ū

c1(A)

) ∣∣∣∣ ≪ 1. (3.23)

We note that, due to the low velocities of the flow in the lymphatic system,
the above assumption is valid in the lymphangion case.
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We can rewrite the term ∂

∂z

(
−f̄ ū

A

)
as:

∂

∂z

(
−f̄ ū

A

)
= ∂

∂z

(
− f̄

2A(R+ +R−)
)

= − f̄

2A

(
1 + ū

c1(A) − ū

c1(A)

)(
s+ + s−

)
+ f̄

2A2
∂A

∂z

(
R+ +R−

)
= − b−s− − f̄

2As
+ − f̄

2A
ū

c1(A)s
+ + f̄

2A
ū

c1(A)
(
s+ − s−

)
+ f̄

2A
ū

c1(A)
(
s+ + s−

)
= −b−s− − f̄

2As
+ + f̄

2A
ū

c1(A)s
+

= − b−s− − f̄

2A(1 + δ − δ)s+ + f̄

2A
ū

c1(A)s
+

= − b−s− − f̄

2A(1 + δ)s+ + f̄

2Aδs
+ + f̄

2A
ū

c1(A)s
+

= − b−s− − f̄

2A(1 + δ)s+ + w+s+. (3.24)

Substituting (3.15)–(3.16)–(3.23)–(3.24) into the first equation of (3.14), we
obtain(

s−
)′

− ∂λ1

∂A

1
2c1(A)A

′s− − ∂λ1

∂A

A

2c1(A)
(
s−
)2

= −b−s− − f̄

2A(1 + δ)s+. (3.25)

Recalling (3.4), we define

h̄ = 1
2 ln (c1(A)) , (3.26)

r± = eh̄s±; (3.27)
multiplying (3.25) by eh̄, using the definitions (3.17)–(3.19) and after some com-
putations, we obtain(

r− − g
)′

− ∂λ1

∂A

A

2c1(A)eh̄

(
r−
)2

+ b−r− = 0. (3.28)

The case with r+ is similar, and the final equation is(
r+ − q

)′
+ ∂λ2

∂A

A

2c1(A)eh̄

(
r+
)2

+ b+r+ = 0. (3.29)

We recall Lemma 4.1 from [93]

Lemma 1. Consider an equation of the form

dB

dt
+ a(t) (B − b1(t)) (B − b2(t)) = 0, B(0) = B0, (3.30)

with inf a > 0, b1 ≤ b2 and such that a, b1 and b2 are uniformly bounded. We have:
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I) If the initial data B0 is such that B0 < min b1, then the solution of (3.30)
has a finite time blow up at t∗, 0 < t∗ ≤ t∗ < ∞

lim
t→t∗

B(t) = −∞,

where t∗ satisfies∫ t∗

0
a(s)ds = 1

min b2 − min b1
ln
(

1 + min b2 − min b1

min b1 −B0

)
,

which equals to 1
min b2 −B0

if min b2 = min b1.

II) If there exists a constant b̄ such that

b1(t) ≤ b̄ ≤ b2(t),

then (3.30) admits a unique global bounded solution satisfying

b̄ ≤ B(t) ≤ max{B0,max b2}

provided that B0 ≥ b̄.

Setting
a−(t) = −∂λ1

∂A

A

2c1(A)eh̄
> 0, (3.31)

a+(t) = ∂λ2

∂A

A

2c1(A)eh̄
> 0, (3.32)

B(t) = r± − q, b2 = −g, b1 = −g − b±

a
, (3.33)

we can use Lemma 1 to obtain the main result of this section.
Theorem 1. Assume that the initial data (A0, Q0) are such that (3.22) holds.

I) If at least at one point z ∈ R, either

r± (0, z) < g(A0) + inf
(A,Q)∈D

(
−g(A) − b±(A,Q)

a±(A)

)
(3.34)

holds, then the solution of system (3.28)–(3.29) must develop a singularity
at finite time.

II) If

inf
(A,Q)∈D

(
b±(A,Q)
a±(A)

)
≥ sup

A∈I
g(A) − inf

A∈I
g(A) + Cf̄δ, (3.35)

where δ > 0, and C > 0 depending only on initial data (A0, Q0)(z), and
I = [Amin, Amax], then the solution of system (3.28)–(3.29) remains smooth
for all time, provided that for every z ∈ R

r±(0, z) ≥ g(A0(z)) + sup
(A,Q)∈D

(
−g(A) − b±(A,Q)

a±(A)

)
+ Cf̄δ. (3.36)

Moreover, the right hand side of (3.36) is non-positive.
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Proof. We first prove that under condition (3.35), the right hand side of (3.35) is
non-positive:

g(A0(z)) + sup
(A,Q)∈D

(
−g(A) − b±(A,Q)

a±(A)

)
+ Cf̄δ

≤ g(A0(z)) + sup
(A,Q)∈D

(−g(A)) + sup
(A,Q)∈D

(
−b±(A,Q)

a±(A)

)
+ Cf̄δ

≤ sup
A∈I

g(A) − inf
A∈I

g(A) − inf
(A,Q)∈D

b±(A,Q)
a±(A) + Cf̄δ ≤ 0. (3.37)

Under the conditions (3.22)–(3.23), equations (3.28)–(3.29) for r± are perturba-
tions of ordinary differential equations of the form

d

dt
(r − g) + ar2 + br = 0, r(0) = r0. (3.38)

The above equation can be written as

dB

dt
+ a(t) (B − b1(t)) (B − b2(t)) = 0, B(0) = B0, (3.39)

where
B(t) = r± − q, b2 = −g, b1 = −g − b±

a
, (3.40)

and we can use Lemma 1.

We found specific limits when singularities occur in solutions and when smooth
solutions can exist globally in a 1D model of fluid flow through a deformable pipe
with a generic pressure. These limits are determined by the initial slope of the
Riemann invariants and the initial cross-section. Our results confirm previous
findings [93] that the presence of viscous damping delays shock formation and
that the class of initial data for which global smooth solutions exist is richer than
the one predicted by inviscid theory. As in [93], we can extend our results to the
case where α is not equal to 1 but the difference α− 1 is small.

3.2 Mathematical Model
In this section we summarize the mathematical models we use to describe the
fluid flow inside a lymphangion and the action of the valves. First of all, we
assume the lymph to be a Newtonian incompressible fluid similar to water [1].
The one-dimensional flow equations for a deformable vessel (see Section 2.5) are

∂A

∂t
(z, t) + ∂Q

∂z
(z, t) = 0, (3.41)

∂Q

∂t
(z, t) + α

∂

∂z

(
Q(z, t)2

A(z, t)

)
+ A(z, t)

ρ0

∂p

∂z
(z, t) = −2(γ + 2)πµ

ρ0

Q

A
, (3.42)
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where A(z, t) is the cross sectional area,

Q(z, t) = A(z, t)ū(z, t) (3.43)

is the mean flux, ū(z, t) is the average velocity, ρ0 is the density, γ is a parameter
dependent on the chosen velocity profile, and µ is the viscosity.

To close the system formed by equations (3.41)–(3.42), an additional relation
between pressure p(z, t) and cross-sectional area A(z, t) is required and, inspired
by [19], we choose the tube law:

p(z, t) = K(z, t)ψ(A(z, t);A0(z)) + g(z, t) + pext(z, t),
∂p

∂A
> 0, (3.44)

with

ψ(A(z, t);A0(z)) =
(
A(z, t)
A0(z)

)m(t)

−
(
A(z, t)
A0(z)

)n(t)

+ C(t)
(A(z, t)

A0(z)

)x(t)

− 1
 ,

(3.45)
where p(z, t) is the internal pressure, pext(z, t) is the external pressure, p(z, t) −
pext(z, t) is the transmural pressure, A0(z) is the vessel cross-sectional area at zero
transmural pressure (equilibrium), K(z, t), g(z, t), m(t), n(t), x(t) and C(t) are
time-dependent coefficients that must satisfy the relations m ≥ 0, n ≤ 0, z ≥ 0,
and C ≥ 0 for every t to guarantee the hyperbolicity of the problem.

Since we suppose that the lymphangion contracts as a whole, the function K
is given by [14, 19]

K(t) = Kmin + s(t)(Kmax −Kmin), (3.46)

where s(t) is explicitly given as in [17, 18], and Kmin and Kmax are constants. We
suppose that pext is constant in space and time, which means a uniform external
pressure. Moreover, we have that the functions g, m, n, z and C depend only on
time in the following way:

g(t) = g1 + s(t)(g2 − g1),

m(t) = m1 + s(t)(m2 −m1),
n(t) = n1 + s(t)(n2 − n1),
x(t) = x1 + s(t)(x2 − x1),
C(t) = C1 + s(t)(C2 − C1),

where g1, g2, m1 ≥ 0,m2 ≥ 0, n1 ≤ 0, n2 ≤ 0, z1 ≥ 0, z2 ≥ 0, C1 ≥ 0, C2 ≥ 0
are constant parameters given by the literature and by fitting the data in [17]
(see Figure 3.2). We assume that g, m, n, z, and C depend on t to better fit the
contraction data found in [17]; indeed, we have that the form of the pressure curve
in the relaxation state is different with respect to the curve in the contracted state.
In general, there can be other terms that are important for the contraction of the
lymphangion wall due to the high deformations of the latter and that it would be
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worth studying in detail [28–30], but here we want to keep our model as simple as
possible to have a more computationally feasible simulation and because we want
to focus more on the fluid flow instead of the vessel wall.

The time-dependent parameter s(t) describes the pulsation of the lymphangion
and is taken as in [18]:

s(t) = mscal

2

[
1 − cos

(
2πf

(
t− tc
mscal

))]
, (3.47)

where 1
f

is the duration of systole (without the inhibitory effect given by the wall
shear stress), tc is the time in which the contraction starts, and mscal is given by

mscal =
(

1/f
1/f + td

)βm

, (3.48)

where βm is a parameter, and td is the time delay added to the relaxing time tr
(fitted by [17, 18]) due to the inhibition of the shear stress, and is given by [18]

td0 = ktW [τ̄(t0) − τthr] (3.49)

for the initial time t = t0 and

td(t1) = ktW
1

t1 − t0

∫ t1

t0
[τ̄(t) − τthr] dt (3.50)

for a general time step t = t1, where τ̄(t) is the average shear stress of the fluid
given by

τ̄(t) = 1
L

∫ L

0

ū(z, t)µ γ + 2√
A(z, t)/π

 dz, (3.51)

where L is the length of the lymphangion and τthr is a fixed threshold. Hence we
have that the relaxation time tr is given by, fitting the data in [17]:

tr = (60/((−1.39((ln(1+(∆p)))2)+12.6 ln(1+(∆p))+0.647))), ∆p < 0 (3.52)

where
∆p =

∫ tc+1/f

tc

∆pdt, (3.53)

or it is normalized as tr = 1 s when ∆p ≥ 0, as in [18]; hence the total relaxation
time Tr (the time in which the next pulsation starts) is

Tr = tr + td, (3.54)

where in the case ∆p ≤ 0 we have td = 0 (and in this case Tr = tr).
Using this type of contraction state s(t), we take into account the inhibition of

the active lymph pump due to the shear stress given by the lymph flow [18, 43].
To model the valves we use the same approach as [19, 94] but the parameters

are fitted to real data given by [15, 16, 24, 46]. The model is given by
dQv

dt
= 1
L(ξ) (∆p(t) −R(ξ)Qv −B(ξ)Qv|Qv|) ,

dξ

dt
= fξ(ξ, t),

(3.55)
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where Qv is the fluid flow passing through the valve, ξ(t) ∈ [0, 1] is the valve state
(ξ = 0 is close and ξ = 1 is fully open),

∆p(t) = pu(t) − pd(t), (3.56)

with pu the upstream pressure and pd the downstream pressure. Moreover, we
have that

B(ξ) = ρ0

2A2
eff(ξ) , (3.57)

L(ξ) = ρ0
Leff

Aeff(ξ) , (3.58)

R(ξ) = 2(γ + 2)πµ
A2

eff(ξ) , (3.59)

where B is the Bernoulli resistance, L is the lymphatic inertia, R is the viscous
resistance to flow, Leff is the effective valve length, Aeff is the effective area given
by

Aeff(ξ) = Aeff,min + ξ(t) (Aeff,max − Aeff,min) , (3.60)
Aeff,min = MrgA0, (3.61)
Aeff,max = MstA0, (3.62)

where 0 ≤ Mrg ≤ 1 is the minimum valve closure and 0 ≤ Mst ≤ 1 is the maximum
valve opening. Moreover, fξ is given by

fξ(ξ, t) =


Kvo (1 − ξ) (∆p(t) − ∆popen) ∆p(t) > ∆popen,

Kvcξ (∆p(t) − ∆pclose) ∆p(t) < ∆pclose,

0 elsewhere,
(3.63)

with Kvo is the valve opening rate and Kvc the valve closure rate, ∆popen is the
opening threshold pressure and ∆pclose is the closing threshold pressure.

3.3 Numerical Methods
This section describes the numerical methods adopted to solve the model exposed
in the previous section. The algorithm is the following:

I) Fix the inlet and the outlet pressure pin and pout; pin is the upstream pressure
for the inlet valve and pout is the downstream pressure for the outlet valve,
the remaining downstream and upstream pressure are calculated according
to equations (3.44) and (3.45).

II) Solve system (3.55) with the Lobatto IIIC method to obtain the flux value
Qv for the inlet and the outlet valve (we need to solve the system twice).

III) Use Qv to obtain the inlet and outlet condition on the flux (3.72) and (3.73)
and, consequently, the boundary cross-sectional area from equations (3.76)
and (3.77).
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IV) Solve system (3.41)–(3.42) with the two-step Lax-Wendroff method (3.69).

We implement these steps explicitly in Scilab.
As far as step (II) is concerned, the system of ODEs (3.55) is solved using the

Lobatto IIIC method (as in [19]), which is a second-order implicit Runge-Kutta
method.

For the system of equations (3.41) and (3.42) (step (IV)), we use the finite
difference method, in particular, the two step Lax-Wendroff scheme [92, 96, 97]; to
use this method, we need the conservative form of the system of equations (3.41)
and (3.42), that in our case is

∂U

∂t
+ ∂F

∂z
= S(U), (3.64)

where
U =

[
A
Q

]
, (3.65)

F =
 Q

α
(

Q2

A

)
+ K(t)

ρ0
A0

[
m

m+1

(
A
A0

)m+1
− n

n+1

(
A
A0

)n+1
+ C z

z+1

(
A
A0

)z+1
]  ,

(3.66)
and

S =
[

0
−2(γ+2)πµ

ρ0

Q
A

]
. (3.67)

We discretize the one-dimensional space variable with a uniform grid of width
∆z; the time variable is discretized with a time-step ∆t that must satisfy the
Courant-Friedrichs-Lewy condition to have the stability of the numerical method,
that is

∆t ≤ ∆z

max
(

|ū| +
√
A

ρ0

∂p

∂A

) . (3.68)

We call Un
j the discretization of U at the n-time node tn and j-space node xj.

The method takes the form

Un+1
j = Un

j − ∆t
∆x

(
F (Un+1/2

j+1/2 ) − F (Un+1/2
j−1/2 )

)
+ ∆t

2
(
S(Un+1/2

j+1/2 ) + S(Un+1/2
j−1/2 )

)
,

(3.69)
where

U
n+1/2
j+1/2 = 1

2
(
Un

j+1 + Un
j

)
− ∆t

2∆x
(
F (Un

j+1) − F (Un
j )
)

+ ∆t
4
(
S(Un

j+1) + S(Un
j )
)
,

(3.70)
U

n+1/2
j−1/2 = 1

2
(
Un

j + Un
j−1

)
− ∆t

2∆x
(
F (Un

j ) − F (Un
j−1)

)
+ ∆t

4
(
S(Un

j ) + S(Un
j−1)

)
.

(3.71)
We need to impose the boundary condition for the first space step z0 and for

the last space step zN (0 = z0 < z1 < ... < zN = L) (step (III)); for both, we
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impose as boundary condition the flux Qv passing through the valves, that is the
solution of the system (3.55). Hence we have

Qn+1
0 = Qi

v, (3.72)

Qn+1
N = Qo

v, (3.73)
whereQn+1

0 andQn+1
N are the fluxes evaluated at the points (z0, t

n+1) and (zN , t
n+1),

respectively; Qi
v is the flux passing through the inlet valve and Qo

v is the flux pass-
ing through the outlet valve.

The boundary conditions for the cross-sectional areas An
0 and An

N are then
calculated according to the first equation of (3.69) [98], and we have, for the inlet
condition,

An+1
0 = An

0 − ∆t
∆z

(
Q

n+1/2
1/2 −Q

n+1/2
−1/2

)
, (3.74)

where Qn+1
−1/2 can be calculated in this way:

Q
n+1/2
0 = 1

2
(
Q

n+1/2
−1/2 +Q

n+1/2
1/2

)
=⇒ Q

n+1/2
−1/2 = 2Qn+1/2

0 −Q
n+1/2
1/2 . (3.75)

Then (3.74) becomes

An+1
0 = An

0 − 2 ∆t
∆z

(
Q

n+1/2
1/2 −Q

n+1/2
0

)
, (3.76)

where Qn+1/2
0 is given by the flux boundary condition (3.72) and Q

n+1/2
1/2 is calcu-

lated by equation (3.70).
For the outlet condition, we have (by similar computations)

An+1
N = An

N + 2 ∆t
∆z

(
Q

n+1/2
N−1/2 −Q

n+1/2
N

)
, (3.77)

where Qn+1/2
N is given by the flux boundary condition (3.73) and Qn+1/2

N−1/2 is calcu-
lated by equation (3.71).

3.4 Parameters
In this section, we describe the physiological parameters used in the model given
in section 3.2. We suppose that the lymph is a Newtonian fluid similar to water,
with a viscosity µ of 0.01 g/(cm s) and a density ρ0 of 1 g/(cm3). Moreover, for a
Newtonian fluid, we have γ = 2 and α = 4

3 [74, 91].
For the parameters that describe the valve behavior, we use physiological or

estimated data of a mesenteric lymphangion of a mouse. For the parameters
∆popen and ∆pclose, we use the data found in [46] and fitted in [15]; the parameter
curves are shown in Figure 3.1. As we can see, we have that the parameters ∆popen
and ∆pclose depend on the transmural pressure p− pext in this way:

∆popen = ao − boptm,o − co

[
1 − exp(−do(p2

tm,o))
]
, (3.78)
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Figure 3.1: The variation of ∆popen/close with respect to the transmural pressure
(in dyne/cm2), where for the opening valve threshold is pin − pext, and for the
closing valve threshold is pout − pext.

∆pclose = Oscale
[
ac − bcptm,c − cc

(
1 − exp(−dv(p2

tm,c))
)]
, (3.79)

where ptm,o = pin − pext is the transmural pressure for the opening valve threshold
and ptm,c = pout − pext is the transmural pressure for the closing valve threshold.
The parameters ao = 106.14, bo = 0.01, co = 218.5, do = 4.6 × 10−7, Oscale =
0.22103, ac = −129.7, bc = 0.0479, cc = 1180.7498, and dc = 4.54 × 10−7 are
obtained fitting the curves to the data as in [15]. These data have physiological
meaning: first of all, we have that the opening and closing valve threshold both
depend on the transmural pressure; second, we have that the thresholds are mostly
negative, and this means that the valves are biased to stay open [16, 22, 24]. The
other valve parameters are Mrg = 0, Mst = 1 [19], Kvo = Kvc = 100 cm2/ (s dyne)
(estimated), Leff = 0.06 cm (estimated).

Now we need to find the parameters for the pressure described in (3.44) and in
(3.45). First of all, we need the value of A0, that is the value of the cross-sectional
area at zero transmural pressure. As we can see from the data obtained in [17]
and shown in Figure 3.2, the value of A0 changes in time because it is different for
the relaxed and contracted state. For this reason we added the term g(t) in the
relation (3.44). We assume a value of A0 in between the contracted and relaxed
value, that is A0 = π (4 × 10−3)2 cm2 = 5 × 10−5 cm2. To do this, we fitted the
curves to experimental data given in [17], and we found Kmin = 1150 dyne/cm2,
Kmax = 793 dyne/cm2, g1 = −500 dyne/cm2, g2 = 2526 dyne/cm2, m1 = 0.1,
m2 = 1.8, n1 = −0.8, n2 = −0.67, x1 = 15.4, x2 = 14.1, C1 = 10−10, and
C2 = 1.6 × 10−9. We can see the fitting curves in Figure 3.2.

The parameters that regulate the inhibitory effect [18] are f = 0.5 1
s , ktW =

1.2 s
dyne
cm2

, βm = 0.65, and τthr = 1.1 dyne
cm2 . We have that the value of the parameter

τthr is less than the one used in [18] (which is 3 dyne
cm2 ); indeed, they found that

this parameter may overestimate the value of any equivalent biological threshold
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Figure 3.2: The variation of the transmural pressure p− pext (in dyne/cm2) with
respect to the diameter D (in µm) in a relaxed (left) and in a contracted (right)
state, given by the experiments of [17] (dots) and the fitted curve from the tube
law described in equation (3.45).

which pertained to the circumstances of the mesenteric experiments of [43].
The values of the parameters are summarized in Table 3.1.

3.5 Numerical Results
In this section we show some numerical results of the models presented in the
previous sections and we compare the results with those found in the literature.

The first simulation that we run is with the values pin = 2.5 cmH2O ≈ 2450 dyne
cm2 ,

pout = 5 cmH2O ≈ 4900 dyne
cm2 , and pext = 1 cmH2O ≈ 980 dyne

cm2 , as in [24]. We show
the results over time in Figure 3.3. The behavior and the values that we found
are in agreement with [24]. When a contraction starts, there is a small delay as
the inlet valve begins to close, and this implies a small retrograde flow at the
start; when the outlet valve opens, the flow starts to get out of the lymphangion
until the contraction starts to decrease and the outlet valve to close, in which case
there is a small outlet retrograde flow. After that, the lymphangion fills up with
an inlet positive flow when the contraction is about to end. There is a very steep
transition between the open and close valve state, hence the values of Kvo and Kvc
may overestimate the real ones (see [24]).

We note in Figure 3.3 that, when the valve are both closed, the diameter is
constant in time; this is due to the fact that, at these times, we have that Qi

v and
Qo

v are both zero, which implies that ∂Q
∂z

= 0, and we have, from equation (3.41)

∂A

∂t
= 0 =⇒ ∂D

∂t
= 0, (3.80)

where D is the lymphangion diameter, and it follows that D is constant in these
times.

To see the inhibition effect on our model, we perform the same experiments
presented in [18, 43]. We run the simulations with different (favorable) pressure
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Name Physiological Range/Value Description
L 0.3 cm Lymphangion length [19]
µ 0.01 g

cm s Viscosity [1, 17]
γ 2 Viscous Parameter [74, 91]
α 4

3 Coriolis parameter [74, 91]
ρ0 1 g

cm3 Density [1, 17]
∆popen equation (3.78) Valve opening threshold
∆pclose equation (3.78) Valve closing threshold
ao 106.14 Fitted parameter in equation (3.78)
bo 0.01 Fitted parameter in equation (3.78)
co 218.5 Fitted parameter in equation (3.78)
do 4.6 × 10−7 Fitted parameter in equation (3.78)
Oscale 0.22103 Fitted parameter in equation (3.79)
ac −129.7 Fitted parameter in equation (3.79)
bc 0.0479 Fitted parameter in equation (3.79)
cc 1180.7498 Fitted parameter in equation (3.79)
dc 4.54 × 10−7 Fitted parameter in equation (3.79)
Mrg 0 Minimum valve closure [22, 24]
Mst 1 Maximum valve opening [19, 94]
Kvo 100 1

s dyne
cm2

Valve opening rate (estimated)
Kvc 100 1

s dyne
cm2

Valve closing rate (estimated)
Leff 0.06 cm Effective valve length (estimated)
A0 5 × 10−5 cm2 Cross-sectional area at zero transmural pressure

(estimated and [17])
Kmin 1150 dyne

cm2 Fitted parameter in equation (3.45)
Kmax 793 dyne

cm2 Fitted parameter in equation (3.45)
g1 −500 dyne

cm2 Fitted parameter in equation (3.44)
g2 2526 dyne

cm2 Fitted parameter in equation (3.44)
m1 0.1 Fitted parameter in equation (3.45)
m2 1.8 Fitted parameter in equation (3.45)
n1 −0.8 Fitted parameter in equation (3.45)
n2 −0.67 Fitted parameter in equation (3.45)
x1 15.4 Fitted parameter in equation (3.45)
x2 14.1 Fitted parameter in equation (3.45)
C1 10−10 Fitted parameter in equation (3.45)
C2 1.6 × 10−9 Fitted parameter in equation (3.45)
f 0.5 1/s Systole frequency [17–19]
ktW 1.2 s

dyne
cm2

Inhibition parameter [18].
βm 0.65 Inhibition parameter [18]
τthr 1.1 dyne

cm2 Wall shear stress threshold (estimated)

Table 3.1: Physiological and estimated parameters.
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Figure 3.3: The numerical results with pin ≈ 2450 dyne
cm2 , pout ≈ 4900 dyne

cm2 , and
pext ≈ 980 dyne

cm2 , with respect to time. In the first plot we can see the fluid flow
passing through the valves (in cm3

s
), in the second the valve state (1 – open valve,

0 – close valve), in the third the lymphangion diameter (in cm), in the fourth the
contraction state, and in the last the pressure (inlet, outlet, and calculated at the
center of the lymphangion, in dyne

cm2 ). 54
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Figure 3.4: The data obtained by the results of our model compared with the
results found in [43], with favorable pressure difference calculated as in equations
(3.81) and (3.82) in cmH2O, with pext = 1 cmH2O ≈ 980 dyne

cm2 .

differences

∆p = pin − pout = 0, 1, 3, 5, 7 cmH2O ≈ 0, 980, 2940, 4900, 6865 dyne
cm2 , (3.81)

and
1
2 (pin + pout) = 5 cmH2O ≈ 4900 dyne

cm2 , (3.82)

with pext = 1 cmH2O ≈ 980 dyne
cm2 .

We can see the results in Figure 3.4. The normalized diameter is calculated as

Dsyst

Ddiast
× freq, (3.83)

where Dsyst is the systolic diameter (the diameter when the lymphangion is con-
tracted), Ddiast is the diastolic diameter (the diameter when the lymphangion is
relaxed), and freq is the frequency in the case ∆p = 0 cmH2O in [43]. As we can
see, the value of our numerical results are in agreement with the value found in
the mesenteric experiments of [43].

3.6 Conclusions
In this chapter we proposed a mathematical model for the flow of the interstitial
fluid (lymph) in a lymphangion. We assumed the lymph to be an incompress-
ible fluid similar to water so that we could use the governing equations derived
in Section 2.5. First of all, inspired by [93], we found the critical threshold re-
lated to the model of a fluid flow through a compliant pipe. In our more general
case we confirmed the results presented in [93], which says first of all that shock
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formation due to the viscous damping term is delayed compared with the shock
formation without viscous damping (which is physically expected) and second that
the class of initial data for which global smooth solutions exist is richer than the
one predicted by inviscid theory.

Moreover, we proposed a model in which we described a more realistic lym-
phangion; to describe the valve behavior we used the model presented in [94] with
physiological parameters found in the literature [15, 46] or estimated; the valve
behavior is in agreement with the literature [15, 17, 24, 46]. For the contraction
behavior, we fitted physiological data found in [17, 18]: as we mentioned before,
the description of the wall behavior is largely phenomenological; we chose this type
of approach because we were more interested in the fluid behavior and we wanted
to run more feasible numerical simulations, but keeping realistic wall behavior
results.

We compared our numerical results with experiments and results found in
literature [17, 24, 43], and we found that the proposed model agrees with those
data.
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Chapter 4

Simplified Cylindrical Model of a
Lymph Node

The aim of this chapter is to propose a mathematical model for the flow of the
interstitial fluid in a lymph node in a cylindrical geometry with a laminar flow
driven by a pulsatile pressure gradient [9]. The model proposed here is very
idealized and is a starting point for more advanced studies on the subject. To
begin with, we assume that the lymph node is essentially composed of two parts:
a porous medium, characterized by a permeability constant K, surrounded by
a thin channel in which lymph can flow freely. We describe the motion of the
interstitial fluid within the lymph node using the Darcy-Brinkman equation in the
porous core and the Navier-Stokes equation in the external channel. The motion
is induced by a pulsatile gradient of pressure, so it has to be non-stationary. The
lymph is composed mainly of water [1], hence we assume the incompressibility of
the fluid. The geometry of the problem is summarized in Figure 4.1.

In Sections 4.1 and 4.2 we find an explicit solution in the case of a cylindrical
lymph node with a laminar flow in the presence of a pulsatile pressure gradient.
More precisely, in Section 4.1 we employ the Fourier method in order to write the
solution as a series expansion of Bessel functions, while in Section 4.2 we find the
explicit solution for the long-time periodic behavior.

The results found in this chapter are published in [9].

4.1 Solving the Problem in a very Simplified Ge-
ometry

As mentioned in Section 1.2, the geometry of a lymph node is very complex. To
begin with, we will assume a much more simplified geometry, so that we can
find an explicit expression for the solution even in the presence of a pulsatile
pressure gradient. We can see the geometry of our problem in Figure 4.1. More
precisely, the lymph node is here represented by a cylinder and it is permeated by
an incompressible homogeneous Newtonian fluid. The incompressibility constraint
is motivated by the fact that the interstitial fluid is essentially a water solvent [1].

The region r ∈ [0, R1] represents the lymphoid compartment (LC), and the
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Figure 4.1: Physical configuration and coordinate system.

region r ∈ [R1, R2] represents the subcapsular sinus (SCS). For simplicity, we
assume that the boundaries do not perform any contraction. This assumption is
motivated by the fact that the contractions of the boundaries of the lymph node
have a very long period with respect to the pressure gradient [99].

We treat the part of the lymph inside the LC as a porous medium, describing
the flow by the Darcy-Brinkman equation, while outside the LC we use the Navier-
Stokes equation. Hence, the flow of the fluid in the absence of body forces is
governed by

ρ0
∂v

∂t
+ ρ0(∇v)v = −∇p− µ

K
v + µ∆v (4.1)

for r ∈ [0, R1] (inside the LC) and by

ρ0
∂v

∂t
+ ρ0(∇v)v = −∇p+ µ∆v (4.2)

for r ∈ (R1, R2] (outside the LC), together with the incompressibility constraint

∇ · v = 0.

Here ρ0 is the constant density of the lymph, µ the constant viscosity, K the
(constant) permeability of the LC and v and p are the velocity and the pressure
field of the lymph, respectively.

Thanks to the symmetry of this idealized problem, we look for a laminar ve-
locity field of the form

v = vz(r, t)ez, (4.3)
where ez is the axis of the cylinder and r the radial coordinate. In particular, the
incompressibility constraint ∇ · v = 0 is automatically satisfied.

Notice that the laminarity assumption is quite restrictive, especially because it
prevents any flow of the fluid from the LC to the external region, and vice versa.
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As far as the boundary and initial conditions are concerned, we assume:

vz(R2, t) = 0 (no-slip condition), (4.4)
vz(0, t) bounded, (4.5)
vz ∈ C1 (smoothness condition), (4.6)
vz(r, 0) = vz0(r) (initial condition). (4.7)

Then, equations (4.1)1 and (4.2)1 reduce to

∂vz

∂t
− ν

1
r

∂

∂r

(
r
∂vz

∂r

)
+ ν

K
vz = g(t) r ∈ [0, R1],

∂vz

∂t
− ν

1
r

∂

∂r

(
r
∂vz

∂r

)
= g(t) r ∈ (R1, R2],

(4.8)

where we put − 1
ρ0

∂p
∂z

= g(t) and ν = µ/ρ0. Introducing the characteristic function
of a set A

χA(x) =
1 if x ∈ A

0 if x ̸∈ A
(4.9)

then (4.8) can be written as

∂vz

∂t
− ν

1
r

∂

∂r

(
r
∂vz

∂r

)
+ χ[0,R1]

ν

K
vz = g(t). (4.10)

Denoting with v(1)
z the solution in [0, R1] and with v(2)

z the solution in (R1, R2],
the smoothness condition (4.6) implies that, for every t:

v(1)
z (R1, t) = v(2)

z (R1, t),
∂v(1)

z

∂r
(R1, t) = ∂v(2)

z

∂r
(R1, t). (4.11)

The problem is a linear PDE in the form

1
ν

∂vz

∂t
+ Lvz = 1

ν
g(t), (4.12)

where
Lu = −1

r

∂

∂r

(
r
∂u

∂r

)
+ χ[0,R1]

1
K
u (4.13)

is a linear operator; hence it is useful to characterize the eigenvalues (λk) and the
eigenfunctions (ϕk) of the operator L in (4.13):

Lϕk = λkϕk (4.14)

with ϕk(0) bounded, ϕk(R2) = 0 and ϕk of class C1 in R1.
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4.1.1 Eigenvalues of the Linear Operator
It is easy to prove that the eigenvalues λk are positive; however, it is convenient
to consider the two cases λk < 1/K and λk ≥ 1/K. Since by a standard change
of variables the equation Lϕk = λkϕk can be put in the form of a Bessel equation
with ν = 0, then the eigenfunctions can be written as a linear combination of J0
and Y0, the Bessel functions of order 0 of the first and second kind, respectively:

ϕk(r) :=


ĀkJ0

r
√
λk − 1

K

+ B̄kY0

r
√
λk − 1

K

 r ∈ [0, R1]

AkJ0

(
r
√
λk

)
+BkY0

(
r
√
λk

)
r ∈ (R1, R2].

(4.15)

Notice that in the case λk < 1/K the argument of the Bessel functions in the first
case is imaginary, hence we can rewrite it as

ĀkI0

r
√

1
K

− λk

+ B̄kK0

r
√

1
K

− λk

 r ∈ [0, R1], (4.16)

by using the modified Bessel functions I0, K0.
Now we impose the boundedness at r = 0, the smoothness at r = R1 and the

vanishing boundary condition at r = R2. Since Y0 and K0 are unbounded in the
origin, we must impose B̄k = 0, obtaining the following linear system:

ĀkJ0

(
R1

√
λk − 1

K

)
− AkJ0

(
R1
√

λk

)
− BkY0

(
R1
√

λk

)
= 0

−Āk

√
λk − 1

K
J1

(
R1

√
λk − 1

K

)
+ Ak

√
λkJ1

(
R1
√

λk

)
+ Bk

√
λkY1

(
R1
√

λk

)
= 0

AkJ0

(
R2
√

λk

)
+ BkY0

(
R2
√

λk

)
= 0
(4.17)

where we should replace

J0

R1

√
λk − 1

K

 with I0

R1

√
1
K

− λk

 (4.18)

−
√
λk − 1

K
J1

R1

√
λk − 1

K

 with
√

1
K

− λkI1

R1

√
1
K

− λk

 (4.19)

in the case λk < 1/K. The first two equations in (4.17) come from the smoothness
at R1 and the last equation from the boundary condition (and we used the fact
that J ′

0 = −J1, Y ′
0 = −Y1 and I ′

0 = I1). Then the eigenvalues of the linear
operator L defined in (4.13) can be found imposing that the linear system (4.17)
has nontrivial solutions, i.e.

det A = 0, (4.20)
where A is the 3 × 3 matrix of the linear system in the unknowns Āk, Ak, Bk.
Figure 4.2 represents a numerical plot of the curve y = det A: as one can see,
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Figure 4.2: The graph of the function y = det A for R1 = 0.9 cm, R2 = 1 cm,
K = 10−4 cm2. For a better presentation, we normalized the function dividing by
the quantity 1 + J0
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K

)
.

there is an increasing unbounded sequence (λk) of simple zeroes of the equation.
In that case there are three eigenvalues smaller than 1/K, the first eigenvalue
being λ1 ≃ 813.305.

Then, for every eigenvalue λk one can solve the linear system (4.17), finding
the coefficients Āk, Ak, Bk and hence the corresponding eigenfunction ϕk from
equation (4.15), up to a multiplicative factor.

4.1.2 Orthogonality of the eigenfunctions
By standard methods one can prove that two eigenfunctions ϕk, ϕh defined in (4.15),
corresponding to different eigenvalues λk, λh, are orthogonal with respect to the
weighted scalar product in L2 (keeping in mind that r is the radial coordinate),
namely:

λk ̸= λh ⇒
∫ R2

0
rϕk(r)ϕh(r) dr = 0. (4.21)

Indeed, the two eigenfunctions satisfy the equations

r
∂2ϕk

∂r2 + ∂ϕk

∂r
− rχ[0,R1]

1
K
ϕk + rλkϕk = 0, (4.22)

r
∂2ϕh

∂r2 + ∂ϕh

∂r
− rχ[0,R1]

1
K
ϕh + rλhϕh = 0. (4.23)
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Multiplying the first equation by ϕh and the second by ϕk and taking the difference,
we get

∂

∂r

(
r
(
ϕh
∂ϕk

∂r
− ϕk

∂ϕh

∂r

))
= (λh − λk)rϕkϕh. (4.24)

Integrating between 0 and R2 and keeping into account that ϕk(R2) = ϕh(R2) = 0,
we obtain

(λk − λh)
∫ R2

0
rϕk(r)ϕh(r) dr = 0, (4.25)

which gives the orthogonality whenever λk ̸= λh. Moreover, by using the formulas
(see [100, (10) p. 134]) ∫

xJ2
0 (x) dx = x2

2 [J2
0 (x) + J2

1 (x)], (4.26)∫
xY 2

0 (x) dx = x2

2 [Y 2
0 (x) + Y 2

1 (x)], (4.27)∫
xI2

0 (x) dx = x2

2 [I2
0 (x) − I2

1 (x)], (4.28)∫
xJ0(x)Y0(x) dx = x2

2 [J0(x)Y0(x) + J1(x)Y1(x)], (4.29)

one can prove that

∫ R2

0
rϕ2

k(r) dr = R2
1

2Kλk

ĀkJ1

(
R1

√
λk − 1

K

)2

+ R2
2

2

[
AkJ1

(
R2

√
λk

)
+BkY1

(
R2

√
λk

)]2
(4.30)

in case λk ≥ 1/K, and

∫ R2

0
rϕ2

k(r) dr = − R2
1

2Kλk

ĀkI1

(
R1

√
1
K

− λk

)2

+ R2
2

2

[
AkJ1

(
R2

√
λk

)
+BkY1

(
R2

√
λk

)]2
(4.31)

in case λk < 1/K. From now on we will assume that the sequence of eigenfunctions
is normalized, that is ∫ R2

0
rϕ2

k(r) dr = 1. (4.32)

4.1.3 Fourier Coefficients and Long-Time Behavior
In order to give an explicit form of the solution of the PDE (4.12), let us introduce
the Fourier coefficients

ck :=
∫ R2

0
rϕk(r) dr, (4.33)

so that ∞∑
k=1

ckϕk(r) = 1. (4.34)
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By using the formula (see [100, (1) p. 132])∫
rZ0(r) dr = rZ1(r), Z = J, Y, I (4.35)

we have

ck = R1Āk

Kλk

√
λk − 1

K

J1

(
R1

√
λk − 1

K

)
+ R2√

λk

[
AkJ1

(
R2

√
λk

)
+BkY1

(
R2

√
λk

)]
(4.36)

in case λk ≥ 1/K and

ck = R1Āk

Kλk

√
1
K

− λk

I1

(
R1

√
1
K

− λk

)
+ R2√

λk

[
AkJ1

(
R2

√
λk

)
+BkY1

(
R2

√
λk

)]
(4.37)

in case λk < 1/K.
Taking the solution in the form

vz(r, t) =
∞∑

k=1
vk(t)ϕk(r), (4.38)

we can rewrite (4.12) as

1
ν

∞∑
k=1

v′
k(t)ϕk(r) +

∞∑
k=1

λkvk(t)ϕk(r) = g(t)
ν

∞∑
k=1

ckϕk(r). (4.39)

Multiplying by rϕk(r) and integrating on [0, R2], we find the sequence of ODEs

1
ν
v′

k(t) + λkvk(t) = ck

ν
g(t), k ≥ 1, (4.40)

which can be easily solved:

vk(t) = e−νλkt
(
vk(0) + ck

∫ t

0
eνλkτg(τ) dτ

)
. (4.41)

The coefficients vk(0) can be computed by writing the Fourier coefficients of the
initial datum

vz(r, 0) = vz0(r), r ∈ [0, R2], (4.42)
that is

vk(0) =
∫ R2

0
vz0(r)ϕk(r) dr, (4.43)

∞∑
k=1

vk(0)ϕk(r) = vz0(r). (4.44)

Since λk > 0, it is easy to see that for t → +∞ one has

vk(t) ≈ e−νλktck

∫ t

0
eνλkτg(τ) dτ, (4.45)
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R1 0.9 cm
R2 1 cm
ρ0 1 g cm−3

µ 0.015 g cm−1 s−1

C 0.05 g cm−2 s−2

G 20 g cm−2 s−2

ω π
K 10−4 cm2

Table 4.1: Numerical values of the parameters inspired by the physical quantities
of the lymph node [6] or estimated.

hence the long-time behavior of the solution does not depend on the initial datum.

As an example, let us assume a harmonic pulsatile pressure gradient of the
form

∂p

∂z
= C +G cosωt, (4.46)

where C is the pressure drop of the basic flow and the constants G,ω determine
the pulsatility of the motion. Then

g(t) = − 1
ρ0

(C +G cosωt) (4.47)

and one can explicitly compute the Fourier coefficients for the long-time behavior:

vk(t) ≈ −Gνλkω sinωt+Gν2λ2
k cosωt+ Cω2 + Cν2λ2

k

νλkρ0(ω2 + ν2λ2
k) . (4.48)

The long-time solution then behaves as

−
∞∑

k=1

Gνλkω sinωt+Gν2λ2
k cosωt+ Cω2 + Cν2λ2

k

νλkρ0(ω2 + ν2λ2
k) ϕk(r), (4.49)

which is represented in Figure 4.3 using the first 40 eigenfunctions and the values
in Table 4.1. We can notice a periodic profile with a period of 2 s.

4.2 The explicit expression of the long-time so-
lution

In this section, we give an explicit form of the long-time periodic solution of the
problem. Actually, we look for an explicit solution of (4.10) of the form

vz(r, t) = vp(r) +Re
(
U(r)eiωt

)
, (4.50)

where U(r) has to be determined and vp is the velocity of the Poiseuille part of
the flow.
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Figure 4.3: The long-time behavior of the solution. The parameters are given in
Table 4.1.

We recall that the Poiseuille flow refers to the steady laminar solution of prob-
lem (4.1)-(4.2). Hence we search a solution v = vp(r)ez of

−ν 1
r

∂

∂r

(
r
∂vp

∂r

)
+ χ[0,R1]

ν

K
vp = − 1

ρ0
C, (4.51)

where C is the pressure drop in z-direction. Moreover, vp satisfies the following
boundary conditions

vp(R2) = 0 (no-slip condition), (4.52)
vp(0) bounded, (4.53)
vp ∈ C1 (smoothness condition). (4.54)

After some calculations, we get

vp(r) =


Re

(
−C

µ
K + c5J0(ξp(r))

)
r ∈ [0, R1],

Re

(
C

4µr
2 + c6 log r + c7

)
r ∈ (R1, R2],

(4.55)

where J0 is the Bessel functions of order 0 of the first kind,

ξp(r) = ir/
√
K, (4.56)
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Figure 4.4: Profile of the Poiseuille flow given in (4.55), for several values of the
permeability K.

and c5, c6, c7 are obtained by the boundary conditions and are

c5 = − 1
aJ1(ξp(R1))

(
C

2µR1 + c6

R1

)
, (4.57)

c6 = − C

4µ
4K +R2

1 −R2
2 + 2R1

J0(ξp(R1))
aJ1(ξp(R1))

J0(ξp(R1))
aR1J1(ξp(R1)) − log R2

R1

, (4.58)

c7 = − C

4µR
2
2 − c6 logR2, (4.59)

where a = i√
K

.
The behavior of vp is shown in Figure 4.4 for several values of K. One can see

that the profile of the velocity is similar to the classical Poiseuille profile for large
values of K, while if K ≤ 0.001 then the porous region LC slows the passage of
the flow.
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We now put (4.50) in (4.10) and simplify the exponential part, obtaining

U ′′(r) + 1
r
U ′(r) −

(
χ[0,R1]

1
K

+ iρ0ω

µ

)
U(r) = G

µ
, (4.60)

which is a second order ODE in the form of a Bessel equation. Hence, its solution
can be written in the form:

U(r) =


− GK

µ+ iρ0ωK
+ ĀJ0(ξK(r)) + B̄Y0(ξK(r)) r ∈ [0, R1],

iG

ωρ0
+ AJ0(ξ(r)) +BY0(ξ(r)) r ∈ (R1, R2],

(4.61)

with J0 and Y0 are Bessel functions of the first and second kind and ξK , ξ are
complex variables related to the radius r:

ξK(r) = i

√
1
K

+ iωρ0

µ
r, ξ(r) = i− 1√

2

√
ωρ0

µ
r. (4.62)

The constants Ā, B̄, A and B have to be determined using the boundary condi-
tions.

From the no-slip condition (4.4), we have

U(R2) = 0 ⇒ iG

ωρ0
+ AJ0(ξ(R2)) +BY0(ξ(R2)) = 0, (4.63)

while the boundedness in r = 0 (4.5) gives

B̄ = 0. (4.64)

Finally, we impose condition (4.6) and after some calculations we get

Ξ =ξ
′
K(r)
ξ′(r) =

√
2

2 (1 − i)
√
µ+ iKρ0ω

Kρ0ω
, (4.65)

d =J0(ξ(R2))Y1(ξ(R1)) − Y0(ξ(R2))J1(ξ(R1)), (4.66)
f =J0(ξ(R2))Y0(ξ(R1)) − Y0(ξ(R2))J0(ξ(R1)), (4.67)

A = − iG

ωρ0

Y1(ξ(R1))
d

− ΞĀY0(ξ(R2))J1(ξK(R1))
d

, (4.68)

B = iG

ωρ0

J1(ξ(R1))
d

+ ΞĀJ0(ξ(R2))J1(ξK(R1))
d

, (4.69)

Ā = iG

ωρ0

−d+ Y1(ξ(R1))J0(ξ(R1)) − J1(ξ(R1))Y0(ξ(R1))
ΞJ1(ξK(R1))f − J0(ξK(R1))d

(4.70)

− GK

µ+ iKρ0ω

d

ΞJ1(ξK(R1))f − J0(ξK(R1))d
. (4.71)

Plotting the solution (4.50) we obtain again the results of Figure. 4.3. In
Figure. 4.5 we show the velocity profile at a fixed time for some values of the
permeability K.
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Figure 4.5: Trend of the velocity when K varies at t = 1.2 s. The values of the
parameters not explicitly mentioned in the figure are given in Table 4.1.

4.3 Conclusions
We studied the interstitial fluid flow in a lymph node driven by a pulsatile pressure
gradient. The lymph node is here assumed to be essentially composed of a porous
core, where the fluid is governed by the Darcy-Brinkman equation and a thin
layer in which the lymph can flow freely following the Navier-Stokes equation. We
further assumed laminarity to get an explicit solution in terms of Bessel functions.
We studied the eigenvalues and the eigenvectors of the motion explicitly, and we
found an increasing unbounded sequence of eigenvalues. Moreover, we proved the
orthogonality of the eigenvectors.

The exact solution we found showed that the porous part slows the motion;
as expected, this behavior explains why the majority of the lymph entering the
lymph node does not enter the LC [34]. We remark that our results are qualitative:
the material parameters here are chosen according to [6] or estimated, and they
do not come from any medical or experimental data.
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Chapter 5

Simplified Spherical and
Spheroidal Model of a Lymph
Node

In this chapter we propose a mathematical model for the flow of the interstitial
fluid (lymph) in a lymph node. We assume the lymph to be an incompressible
fluid similar to water; moreover, we assume a small Reynolds number as a result
of the small velocities within the lymph nodes [1], hence we can model the flow
into the lymphoid compartment (LC) by Darcy-Brinkman equation (due to the
high porosity and the time-dependence of the flow [11, 101]), and the flow inside
the subcapsular sinus (SCS) by Stokes equation (see Section 2.1). The lymph
enters the lymph node from the lymphatic vessels, which have one-way valves
that prevent retrograde flow and a wall structure composed of sinus-lining cells:
such cells control and generate active pulsation of the wall, pumping the lymph
from a segment between two valves to another (see Chapter 1)[1, 35]. This means
that the lymph has a relevant pulsatile behavior, and we take it into account in
our model.

In Section 5.1 we describe the behavior of the lymph explicitly in a spherical
geometry, supposing that the fluid flow inside the lymph node is axisymmetric
with respect to the azimuthal angle, so that we can assume a simplified two-
dimensional geometry and we can use the stream function approach to find an
explicit solution (see Section 2.3 and [31]). We remark that the solution given in
Section 5.1.1 is quite general and can be used also for other choices of boundary
conditions. Finally, in Section 5.2 we compare our results with some finite element
simulations obtained using the open source software FreeFEM [102].

The results found in this chapter are published in [10].

5.1 Explicit result in a simplified case
Let us model the lymph node (LN) as a spherical region: the subcapsular sinus
(SCS) is a thin spherical shell with radii R1 < R2 of creeping fluid flowing near
the external wall of the LN, while the lymphoid compartment (LC) is a sphere
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of radius R1 of porous material. We use spherical coordinates (r, θ, ϕ), where r
is the radial distance, θ the polar angle and ϕ the azimuthal angle; moreover, we
suppose axial symmetry with respect to the azimuthal angle ϕ.

Assuming that the lymph, which flows inside the LN, is an incompressible
Newtonian fluid, and that the Reynolds number is small [1], we have the equations

ρ0
∂v

∂t
(r, θ, t) = −∇p(r, θ, t) + µe∆v(r, θ, t) − µ

k
v(r, θ, t) r ∈ [0, R1]

ρ0
∂v

∂t
(r, θ, t) = −∇p(r, θ, t) + µ∆v(r, θ, t) r ∈ [R1, R2]

∇ · v(r, θ, t) = 0

(5.1)

where ρ0 is the constant density, v the velocity, p is the pressure, µ the viscosity
of the lymph, µe the effective viscosity, k the permeability. The second equation
in (5.1) is the Stokes equation and describes the motion in the subcapsular sinus,
the first is the Darcy-Brinkman equation, which is used for modeling the flow in
the porous region of the LC, while the last equation models the incompressibility
of the fluid. Here we assume a constant homogeneous permeability k [11, 101].
The effective viscosity µe in general differs from the classical viscosity µ because
µe keeps into account the Brinkman correction [79, 103]. Furthermore, assuming
that the flow is time periodic with period T , we write the time dependence of the
velocity and of the pressure as a Fourier expansion

v(r, θ, t) =
∞∑

m=−∞
vm(r, θ)eimωt, p(r, θ, t) =

∞∑
m=−∞

pm(r, θ)eimωt, (5.2)

where ω = 2π/T .

5.1.1 Solving the equations
Now we want to compute the general solution of system (5.1) in terms of the
Fourier expansion (5.2). Here we try to be as general as possible, without impos-
ing any boundary condition, so that our solution can be used in several situations.
We will deal with suitable boundary conditions for our specific problem in Sec-
tion 5.1.3.

By using (5.2), system (5.1) becomes

∆vm(r, θ) −
(
µ

kµe

+ imωρ0

µe

)
vm(r, θ) = 1

µe

∇pm(r, θ) in [0, R1],

∆vm(r, θ) − imωρ0

µ
vm(r, θ) = 1

µ
∇pm(r, θ) in [R1, R2],

∇ · vm(r, θ) = 0,

(5.3)

which can be written in compact form as
∆vm(r, θ) − qm(r)vm(r, θ) = 1

µ
∇pm(r, θ)

∇ · vm(r, θ) = 0,
m ∈ Z, (5.4)
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where Z is the set of integers, while qm is given by

qm(r) =


µ

kµe

+ imωρ0

µe

in [0, R1],

imωρ0

µ
in [R1, R2].

(5.5)

Now, writing vm = vr,mer + vθ,meθ, we introduce the stream function ψm (see
Section 2.3 and [31]) as

vr,m(r, θ) = − 1
r2 sin θ

∂ψm

∂θ
, vθ,m(r, θ) = 1

r sin θ
∂ψm

∂r
. (5.6)

Moreover, it is useful to perform the change of variable ζ := cos θ, so that the
previous relations become

vr,m(r, ζ) = 1
r2
∂ψm

∂ζ
, vθ,m(r, ζ) = 1

r
√

1 − ζ2
∂ψm

∂r
. (5.7)

By introducing the operator

E2 = ∂2

∂r2 + (1 − ζ2)
r2

∂2

∂ζ2 , (5.8)

we can rewrite (5.4) as

E2
(
E2 ψm(r, ζ)

)
− qm(r) E2 ψm(r, ζ) = 0, m ∈ Z, (5.9)

while for the pressure we have
∂pm

∂r
= µ

r2
∂

∂ζ
((E2 −qm(r))ψm)

∂pm

∂ζ
= − µ

1 − ζ2
∂

∂r
((E2 −qm(r))ψm)

m ∈ Z. (5.10)

Focusing on the case m ̸= 0, we have that the solution can be written as

ψm(r, ζ) = ψ1,m(r, ζ) + ψ2,m(r, ζ), (5.11)

where
E2 ψ1,m(r, ζ) = 0, E2 ψ2,m(r, ζ) − qm(r)ψ2,m(r, ζ) = 0. (5.12)

We can now solve (5.12): by using the separation of variables

ψ1,m(r, ζ) = R(r)Z(ζ), (5.13)

substituting in the first equation of (5.12) we get

r2

R

d2R

dr2 + 1 − ζ2

Z

d2Z

dζ2 = 0. (5.14)
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As the first term of (5.14) depends only on r and the second term only on ζ, the
two have to be constant, say n(n−1) with n ∈ N [84], where N is the set of natural
numbers. Hence (5.14) becomes

r2d
2R

dr2 − n(n− 1)R = 0, (5.15)(
1 − ζ2

) d2Z

dζ2 + n(n− 1)Z = 0. (5.16)

The solution of (5.15) is given by

R(n)(r) = A(n)rn +B(n)r1−n, (5.17)

for some constants A(n), B(n), while (5.16) is the Gegenbauer equation, whose solu-
tions are the Gegenbauer functions Gn, Hn with order −1/2, of the first and second
kind, respectively. Hence the solution of the first equation of (5.12) becomes

ψ1,m =
∞∑

n=0

[(
A(n)

m rn +B(n)
m r1−n

)
Gn(ζ) +

(
C(n)

m rn +D(n)
m r1−n

)
Hn(ζ)

]
for some constants A(n)

m , B(n)
m , C(n)

m , D(n)
m . Since Hn is not smooth in ζ = ±1 and

G0, G1 lead to an infinite tangential velocity, the solution simplifies as

ψ1,m(r, ζ) =
∞∑

n=2

(
A(n)

m rn +B(n)
m r1−n

)
Gn(ζ), (5.18)

for some constants A(n)
m , B(n)

m .
The second equation of (5.12) is

∂2ψ2,m

∂r2 + 1 − ζ2

r2
∂2ψ2,m

∂ζ2 − qm(r)ψ2,m = 0 (5.19)

and, using again the separation of variables,

ψ2,m(r, ζ) = R(r)Z(ζ), (5.20)

by a similar procedure as before, we obtain
d2R

dr2 − qmR − n(n− 1)
r2 R = 0, (5.21)

(1 − ζ2)d
2Z

dζ2 + n(n− 1)Z = 0. (5.22)

Equation (5.21) is a Bessel equation, hence the solution can be written as

R(n)(r) = α(n)√rJn− 1
2

(−i√qmr) + β(n)√rYn− 1
2

(−i√qmr) , (5.23)

where Js, Ys are the Bessel functions of the first and second kind, respectively.
Equation (5.22) is the same Gegenbauer equation as (5.16), hence the solution
of (5.19) is given by

ψ2,m =
∞∑

n=2

[
α(n)

m

√
rJn− 1

2
(−i√qmr) + β(n)

m

√
rYn− 1

2
(−i√qmr)

]
Gn(ζ), (5.24)

72



and the general solution ψm = ψ1,m + ψ2,m is

ψm(r, ζ) =
∞∑

n=2

[
A(n)

m rn +B(n)
m r1−n + α(n)

m

√
rJn− 1

2
(−i√qmr)

+ β(n)
m

√
rYn− 1

2
(−i√qmr)

]
Gn(ζ). (5.25)

Now we want to employ the definition of qm, so that we have to distinguish
between the Stokes and the Darcy-Brinkman case. Let us denote with A(n)

m , B(n)
m ,

α(n)
m , β(n)

m the constants of the Stokes case (R1 ≤ r ≤ R2) and with Ā(n)
m , B̄(n)

m ,
ᾱ(n)

m , β̄(n)
m those of the Darcy-Brinkman case (0 ≤ r ≤ R1). Using (5.5), we obtain,

for any m ̸= 0,

ψS
m(r, ζ) =

∞∑
n=2

A(n)
m rn +B(n)

m r1−n + α(n)
m

√
rJn− 1

2

(
−i
√
iρ0mω

µ
r

)

+β(n)
m

√
rYn− 1

2

(
−i
√
iρ0mω

µ
r

)Gn(ζ),
(5.26)

ψB
m(r, ζ) =

∞∑
n=2

[
Ā(n)

m rn + ᾱ(n)
m

√
rJn− 1

2

(
−i
√
iρ0mω

µe

+ µ

µek
r

)]
Gn(ζ), (5.27)

where the superscript S denotes the Stokes case and B the Darcy-Brinkman case,
and we used the fact that r = 0 is in the domain of ψB, so that B̄(n)

m = β̄(n)
m = 0

in view of the non degeneracy of the solution.
Regarding the pressure, we use (5.10) to obtain

pS
m(r, ζ) = CS

m + imωρ0

∞∑
n=2

[
A(n)

m

n− 1r
n−1 − B(n)

m

n
r−n

]
Pn−1(ζ) (5.28)

in the Stokes case, and

pB
m(r, ζ) = CB

m +
(
imωρ0 + µ

k

) ∞∑
n=2

Ā(n)
m

n− 1r
n−1Pn−1(ζ) (5.29)

in the Darcy-Brinkman case, where Pn are the Legendre polynomials of the first
kind.

For m = 0 we get the well-known steady solution of the Stokes equation dis-
cussed in Section 2.3.1

ψS
0 =

∞∑
n=2

(
A

(n)
0 rn +B

(n)
0 r1−n + C

(n)
0 rn+2 +D

(n)
0 r−n+3

)
Gn(ζ),

pS
0 = CS

0 − µ
∞∑

n=2

[
2(2n+ 1)
n− 1 C

(n)
0 rn−1 + 2(2n− 3)

n
D

(n)
0 r−n

]
Pn−1(ζ)

(5.30)

and for the Darcy-Brinkman equation we have
ψB

0 =
∞∑

n=2

[
Ā

(n)
0 rn + B̄

(n)
0

√
rJn− 1

2

(
−i
√

µ

µek
r

)]
Gn(ζ),

pB
0 = CB

0 + µ

k

∞∑
n=2

 Ā(n)
0

n− 1r
n−1

Pn−1(ζ).
(5.31)
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5.1.2 Geometrical and physiological parameters
We use an idealized spherical geometry based on the data obtained from a murine
(popliteal) lymph node: the radius is R2 = 0.5 mm, the subcapsular sinus (SCS)
thickness is h = 10µm, the afferent and efferent lymphatic vessels have the same
radius RLV = 40µm [5, 11, 12, 60, 62, 104, 105]. With these data, we have that
more than 90% of the lymph takes the peripheral path without entering the LC
in a pulsation cycle [5, 51, 52].

The inlet and outlet conditions are imposed in the upper and lower lymphatic
vessel (near θ = 0 and θ = π, respectively) as a pulsatile flow of the form

vin(θ, t) = L

πR2
LV

f(t)H(cos θ), (5.32)

where L is the maximum lymph mean flow of the inlet lymphatic vessel. Here we
assume L = 10−3 mm3/s, as measured in [47], and f(t) is a periodic function. The
function H is given by

H(ζ) =


1 ζ ∈ [−1,−1 + ζ0]
0 ζ ∈ (−1 + ζ0, 1 − ζ0)
−1 ζ ∈ [1 − ζ0, 1],

(5.33)

where the constant 0 < ζ0 < 1 describes the inlet and outlet regions, and is given
by

ζ0 = cos
arcsin

 RLV√
R2

LV +R2
2

 = R2√
R2

LV +R2
2

. (5.34)

Notice that we are assuming that the inlet and outlet velocities are the same.
The lymph is modeled as an incompressible Newtonian fluid similar to water [1]

with viscosity µ = 1 mg/(mm s) and density ρ0 = 1 mg/mm3. The permeability is
considered homogeneous [101] with value k = 3.84 × 10−9 mm2 [11]. The effective
viscosity is taken as µe = µ

ϕ
[106, 107], where ϕ is the porosity taken as ϕ = 0.75

[11]. The parameters are summarized in Table 5.1.

5.1.3 Boundary conditions
We now want to impose suitable boundary conditions to our general solution. We
give a Dirichlet condition at the external boundary and the Ochoa-Tapia boundary
conditions [106, 109] at the interface between the porous zone LC and the free-fluid
region SCS. In this way we can close the problem and find a unique solution.

More precisely, we will assume the no-slip condition for the velocity on R2,
except near θ = 0, π, where we impose the inlet/outlet flow (5.32). For simplicity,
given the small diameter of the afferent/efferent lymphatic vessel, we impose the
inlet/outlet condition only for the radial velocity vr, but we could use the same
procedure to impose boundary condition for vθ too. For the boundary conditions
on the internal radius R1, the Ochoa-Tapia boundary conditions imply the conti-
nuity of radial and tangential velocity, the continuity of the normal stress tensor
and a jump-condition on the shear stress.

74



Variable name Value Description
R2 0.5 mm external radius [12]
h 10µm height of SCS [5, 12, 108]
R1 R2 − h internal radius
RLV 40µm lymphatic vessel radius [12]
µ 1 mg/(mm s) viscosity [1]
ϕ 0.75 porosity [11]
µe

µ
ϕ

effective viscosity [106, 109]
ρ0 1 mg/mm3 density [1]
β 0.7 stress jump
k 3.84 × 10−9 mm2 permeability [11]
L 10−3 mm3/s maximum lymph fluid mean flow [47]

Table 5.1: Physiological parameters of Section 5.1.2.

Thanks to the above conditions, we can determine for every n the six unknown
constants in equations (5.26)-(5.27). For the sake of brevity, we rewrite the stream
functions as

ψS/B
m (r, ζ) =

∞∑
n=2

ψ̃S/B
m,n (r)Gn(ζ), pS/B

m =
∞∑

n=2
p̃S/B

m,n (r)Pn−1(ζ). (5.35)

Expanding the step function H(ζ) in (5.33) in terms of Legendre polynomials,
we get

H(ζ) =
∞∑

n=2
bn−1Pn−1(ζ), (5.36)

where

bn = 2n+ 1
2

∫ 1

−1
H(ζ)Pn(ζ)dζ = 2n+ 1

2

 −1+ζ0∫
−1

Pn(ζ)dζ −
1∫

1−ζ0

Pn(ζ)dζ

 (5.37)

and we kept into account that b0 = 0 since H is an odd function.
To impose the boundary condition, we need to expand in Fourier series the

time dependence of (5.32), as we did in (5.2). Writing

f(t) =
∞∑

m=−∞
fme

imωt, (5.38)

it follows that

vin(ζ, t) = L

πR2
LV

H(ζ)
∞∑

m=−∞
fme

imωt

= L

πR2
LV

∞∑
n=2

∞∑
m=−∞

bn−1Pn−1(ζ)fme
imωt. (5.39)
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Now we impose the boundary condition vr(R2, ζ, t) = vin(ζ, t): recalling the rela-
tion G′

n(ζ) = −Pn−1(ζ), by (5.7)1 we obtain

1
R2

2
ψS

m(R2, ζ) = − L

πR2
LV

∞∑
n=2

bn−1Gn(ζ), (5.40)

whence
ψ̃S

m,n(R2) = − R2
2L

πR2
LV

bn−1fm (5.41)

for any m ∈ Z and n ≥ 2, where we used the linear independence of the Gegen-
bauer polynomials.

By the no-slip boundary condition on vθ, recalling (5.7)2 it follows that

∂ψS
m,n

∂r
(R2, ζ) = 0 ⇒

∂ψ̃S
m,n

∂r
(R2) = 0, (5.42)

where we used again the linear independence of the Gegenbauer polynomials.
We now write in terms of the stream function the Ochoa-Tapia boundary con-

ditions on the internal radius R1 [110], using the linear independence of Legendre
and Gegenbauer polynomials:

• Continuity of vr:

vS
r,m(R1, ζ) = vB

r,m(R1, ζ) ⇒ ψ̃S
m,n(R1) = ψ̃B

m,n(R1). (5.43)

• Continuity of vθ:

vS
θ,m(R1, ζ) = vB

θ,m(R1, ζ) ⇒
∂ψ̃S

m,n

∂r
(R1) =

∂ψ̃B
m,n

∂r
(R1). (5.44)

• Continuity of normal stress:

T S
rr,m(R1, ζ) = TB

rr,m(R1, ζ), (5.45)

where
Trr,m = −pm + 2µ∂vr,m

∂r
; (5.46)

we can write this condition as

− p̃S
m,n(R1, ζ) + 4µ 1

R3
1
ψ̃S

m,n(R1, ζ) − 2µ 1
R2

1

∂ψ̃S
m,n

∂r
(R1, ζ)

= −p̃B
m,n(R1, ζ) + 4µe

1
R3

1
ψ̃B

m,n(R1, ζ) − 2µe
1
R2

1

∂ψ̃B
m,n

∂r
(R1, ζ). (5.47)

• The stress jump condition:

T S
rθ,m(R1, ζ) − TB

rθ,m(R1, ζ) = βµ√
k
vB

θ,m(R1, ζ), (5.48)
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where β is the slip constant which has to be estimated experimentally. Since
the expression of the shear stress is

Trθ,m = µ

[
1
r

∂vr,m

∂θ
− vθ,m

r
+ ∂vθ,m

∂r

]
, (5.49)

in the term ∂vr,m

∂θ
= −

√
1 − ζ2 ∂vr,m

∂ζ
there is a second derivative of the Gegen-

bauer polynomials, so that we need the following property [68, 82]:

G′′
n(ζ) = −n(n− 1)

1 − ζ2 Gn(ζ). (5.50)

Hence we have:

∂vr,m

∂θ
= −

√
1 − ζ2 1

r2
∂2ψm

∂ζ2

= −
√

1 − ζ2

r2

∞∑
n=2

ψ̃m,n(r)G′′
n(ζ) =

√
1 − ζ2

r2

∞∑
n=2

n(n− 1)ψ̃m,n(r)Gn(ζ).

(5.51)

After some computations, eq. (5.48) can be written as

µ

[
n(n− 1)
R3

1
ψ̃S

m(R1) − 2
R2

1

∂ψ̃S
m,n

∂r
(R1) + 1

R1

∂2ψ̃S
m,n

∂r2 (R1)
]

− µe

[
n(n− 1)
R3

1
ψ̃B

m,n(R1) − 2
R2

1

∂ψ̃B
m,n

∂r
(R1) + 1

R1

∂2ψ̃B
m,n

∂r2 (R1)
]

= βµ√
k

1
R1

∂ψ̃B
m,n

∂r
(R1). (5.52)

From (5.41)–(5.44), (5.47) and (5.52), for every m ∈ Z and n ≥ 2 we obtain
a linear system in the unknowns (A(n)

m , B(n)
m , α(n)

m , β(n)
m , Ā(n)

m , ᾱ(n)
m ), which are the

constants of integration of equations (5.26)-(5.27), and the same holds for the
steady case when m = 0 in the unknowns (A(n)

0 , B
(n)
0 , C

(n)
0 , D

(n)
0 , Ā

(n)
0 , B̄

(n)
0 ) which

are the constants of integration of eqs. (5.30)1–(5.31)1.
Moreover, we fix the value of the pressure in one point to find the constants

in equation (5.28)–(5.30) and have a physiological pressure value. By (5.47), it
follows that CS

m = CB
m and CB

0 = CS
0 . We fix the pressure (with respect to time)

at the exit point (r, ζ) = (R2,−1) by using the same time function of (5.32), that
is,

p(t) = p̄f(t) = p̄
∞∑

m=−∞
fme

imωt. (5.53)

Hence we can find the pressure constants by imposing

pS
m(R2,−1) = p̄fm, m ∈ Z (5.54)

where pS
m(r, ζ) is given in (5.28) for m ̸= 0, and in (5.30)2 for m = 0.
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Figure 5.1: Pressure distribution in mPa with fixed pressure p = 6.18 × 105 mPa
at the outlet.

5.1.4 Explicit results
This section is devoted to show some plots related to the explicit solution and to
make some considerations about the proposed model.

Following [17], we choose a time function of the form

f(t) = 1 − cosπt
2 . (5.55)

We notice that in this case the period of a pulsatile flow in the lymph node is 2 s,
hence ω = π, and fm = 0 for m ̸= −1, 0, 1.

In this model we do not take into account the inhibition and the autoregulation
of the contractions in the lymphangion, given by several factors like shear stress
and pressure [1, 18] (see Chapters 1 and 3); a further extension of this model can be
the coupling with a lymphangion model for taking into account these phenomena.

In Figure 5.1, we plot the pressure distribution in the LN with the fixed con-
stant p̄ = 6.18×105 mPa (corresponding to the lower limit of the pressure found in
[111]); as we can see, the values of the pressure belong to the range given in that
paper and, due to the incompressibility of the flow, the pressure translates from a
higher value in the inlet zone to a lower value in the outlet zone. We can choose
to fix any pressure at the outlet, and we have the same pressure distribution with
different values (for example with the fixed pressure of p̄ = 4×105 mPa ≈ 3 mmHg
as in [5]).

Figure 5.2 provides the Stokes shear stress given by the formula:

Trθ =
∑

m∈{−1,0,1}
µ

[
1
r

∂vr,m

∂θ
− vθ,m

r
+ ∂vθ,m

∂r

]
eimπt, (5.56)
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Figure 5.2: Shear stress Trθ(r, θ, t) in mPa with respect to the polar angle (θ = 0
near the inlet flow and θ = π near the outlet flow) calculated at t = 1 s and in
the internal radius R1 with different boundary velocities in mm/s (where vin ≈
0.22 corresponds to L = 10−3 mm3/s and vin ≈ 0.58 corresponds to L = 2.2 ×
10−3 mm3/s).

(in mPa) at time t = 1 s, where we have the maximum value of the velocity (and,
consequently, of the shear stress) and radius r = R1 (this is the shear stress at the
exterior of the LC). We plot the shear stress value with two different boundary
velocities: vin ≈ 0.22 corresponds to the physiological value of L = 10−3 mm3/s,
given in Table 5.1, found in [47], and vin ≈ 0.58 appears in [5]. As we can see,
the shear stress is similar to the one reported in [5, 12]; that is, higher near the
inlet flow and lower near θ = π

2 . The same behavior occurs in the velocity too
(see Figure 5.3). This trend is interesting because the cell adhesion to the exterior
of the LC is proportional to the shear stress [12], hence the majority of the cells
adhere (and then enter in the LC) near the inlet zone of the lymphatic vessel.
Indeed, in our model the inlet shear stress is the same as the outlet one due to
the choice of the same inlet/outlet velocity and the incompressibility of the fluid;
however, usually a part of the lymph enters in the blood capillaries in the LC [51,
52], so that the shear stress in the outer zone reduces.

As we can see in Figure 5.3 and in Figure 5.4, for θ > 0 the tangential com-
ponent vθ of the velocity in the SCS is the larger one. From the first picture
in Figure 5.3 one can see that the fluid flow in the porous medium is flat and
starts increasing near the interface that connects the LC to the SCS, showing a
non-differentiable point due to the Ochoa-Tapia boundary conditions (indeed, we
do not impose the continuity of the derivative of vθ).
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Figure 5.3: Tangential component of the velocity in mm/s with respect to the
radius at different angles at t = 1 s. The first picture corresponds to the tangential
velocity in the LC (porous part), and the second corresponds to the tangential
velocity in the SCS (free-fluid region).
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5.2 Numerical simulation
The explicit model found in the previous Section uses several simplifications. In
this section we propose some numerical simulations to describe a more general
fluid flow in a lymph node.

We define two different domains and we call ΩS the domain of the SCS in
which we have the Stokes equation, and ΩB the LC domain in which we have the
Darcy-Brinkman equation. The boundaries of the domain are ∂ΩS = ΓS

D ∪ ΓS
N ,

where ΓS
D is the part of the boundary with Dirichlet boundary condition and ΓS

N

is the one with the Neumann boundary condition and for the domain ΩB are
∂ΩB = ΓB

D ∪ ΓB
N , where ΓB

D is the part of the boundary with Dirichlet boundary
condition and ΓB

N is the one with the Neumann boundary condition. We call the
boundary interface of the two domains Γ = ∂ΩS ∩ ∂ΩB. We define the normal
n at the interface Γ as the external normal to ΩB. Moreover, we define the
spaces W I = {w ∈ H1(ΩI) : wΓD

= 0}, W I
g = {v ∈ H1(ΩI) : vΓD

= g},
QI = {q ∈ L2(ΩI), with

∫
ΩI q = 0 if ΓD = ∂ΩI}, where I = S,B.

The weak formulation of our problem is (supposing a constant density ρ = ρ0
and viscosity ν = µ/ρ0): find v ∈ W S

g , p ∈ QS, vb ∈ WB
g and pb ∈ QB such that

∫
ΩS

∂v

∂t
· wdV − 1

ρ0

∫
ΩS
p∇ · wdV + ν

∫
ΩS

D(v) : D(w)dV + 1
ρ0

∫
ΓS

N

T w · ndS

+
∫

ΩB

∂vb

∂t
· wbdV − 1

ρ0

∫
ΩB
pb ∇ · wbdV + νe

∫
ΩB

D(vb) : D(wb)dV

− 1
ρ0

∫
ΓB

N

T ewb ·ndS+ν
∫

ΩB
K−1vb ·wbdV +

∫
ΩS

∇·vqdV +
∫

ΩB
∇·vbqbdV = 0,

(5.57)

for all w ∈ W S
g , wb ∈ WB

g such that w = wb on Γ, and for all q ∈ QS and qb ∈ QB.
In equation (5.57) we have that v is the velocity in ΩS, p ∈ Q is the pressure in
ΩS, vb is the velocity in ΩB, pb ∈ Q is the pressure in ΩB, D(v) = 1/2(∇v+∇vT ),
T = −pI + µ

[
∇v + ∇vT

]
, νe = µe/ρ0, K is the permeability tensor (in the case

of Section 5.1, K = kI), T e = −pbI + µe

[
∇vb + ∇vT

b

]
.

Now we want to write the weak formulation for the boundary condition 5.1.3;
we have that the continuity of the velocity is verified automatically, and, for the
stress-jump condition, we have [107] (on the interface Γ):∫

Γ
T w · ndS −

∫
Γ

T ew · ndS =
∫

Γ
µB

√
K−1vb · wdS, (5.58)

where B is the slip tensor (in the case of Section 5.1.3, B = βI).
The boundary conditions in the external wall (inlet condition and no-slip

boundary condition) are imposed by the penalty method. Moreover, we add the
Grad-div stabilization terms

γ1

∫
ΩS/B

∇ · v · ∇ · wdV + γ2

∫
ΩS/B

∇ ·
(
∂v

∂t

)
· ∇ · wdV (5.59)
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in either Stokes and Darcy-Brinkman domains [112–115]. Thanks to this stabiliza-
tion term, we have the stability for the Darcy-Brinkman equation (see [116]). For
the numerical discretization, we use a BDF2 method for the time discretization,
instead, we use Pd

k − Pk element pairs (where k is the polynomials order and d is
the dimension) with the Brezzi-Pitkäranta stabilization, which consists in adding
the term ϵ

∫
ΩS ∇p · ∇qdV + ϵ

∫
ΩB ∇pb · ∇qbdV to the discretization of the equa-

tion (5.57), with ϵ ≈ h2
T , where hT is the maximum diameter of the triangle of

the finite element triangulation. The weak formulation here proposed has been
implemented using the open source software FreeFEM [102].

5.2.1 Numerical Test
In this section we want to qualitatively compare the results obtained with the
numerical simulation with the explicit results exposed in Section 5.1. For that
reason, we use the same geometry and parameters exhibited in Section 5.1.2;
hence, in the external boundary we will impose only Dirichlet boundary condition
(ΓN is empty), subdivided as ΓD = Γin ∪ Γout ∪ ΓBC, where we are imposing
the inlet and the outlet flow in Γin and Γout, respectively, given by the equation
(5.32) with L = 10−3 mm3/s, and the no-slip boundary condition in ΓBC. The
numerical stabilization parameters are estimated as γ2 = 0, while γ1 = 300 in ΩS

and γ1 = 106 in ΩB.
In Figure 5.5, Figure 5.6, and Figure 5.7, we can see the tangential and radial

velocity, and the shear stress, respectively. We can see that the results are very
similar to the ones explicitly found in Section 5.1.4: in order to remove some
small oscillations in the internal velocity near R1, we needed to use a finer mesh,
which meant a greater computational cost for every time step. We can do only
a qualitative comparison between the numerical solution of this section and the
explicit solution in Section 5.1.4 because we do not have available and precise
physiological data of the lymph node and we have an error in both cases: in the
explicit result from the truncation of the sum, and here due to the finite element
approximation. Qualitatively, we have the same behavior and values here and in
the explicit result.

5.2.2 Numerical results
In this section we want to show a more complete numerical simulation using the
method given in Section 5.2.

We use a spherical idealized 2D geometry with the same parameters given in
Section 5.1.2; hence we suppose that the permeability tensor K is homogeneous
and constant (this is not a limiting assumption, see [5, 11, 101]) and the same
with the slip tensor B = βI. Moreover, we add to the simulation domain a part
to the inlet and outlet lymphatic vessel (see Figure 5.10 and Figure 5.8).

As we mention in Section 5.1.2, more than 90% of the lymph takes a peripheral
path; the lymph that enters in the LC does not remain in the LC but gets out due
to the incompressibility of the lymph, because we are not taking into account the
fluid exchange behavior given by the blood vessels inside the LN.
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Figure 5.5: Tangential component of the velocity in mm/s with respect to the
radius at different angles at t = 1 s. The first graph corresponds to the tangential
velocity in the LC (porous part), and the second corresponds to the tangential
velocity in the SCS (free-fluid region).
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Figure 5.6: Normal component of the velocity in mm/s with respect to the radius
at different angles at t = 1 s. The first graph corresponds to the tangential velocity
in the LC (porous part), and the second corresponds to the tangential velocity in
the SCS (free-fluid region).
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Figure 5.7: Shear stress in mPa with respect to the polar coordinates calculated
at a fixed radius r = R1 in different times.

Unlike the explicit case, here the boundary conditions do not concern the inlet
and outlet velocity, but only the inlet one, and in the outlet we impose the pressure.

The inlet condition is imposed in the upper lymphatic vessel as a uniform
pulsatile flow in the y direction with the equation (5.32).

For the outlet condition, we need to fix the stress. For clarity and for a simpler
interpretation, we fix the pressure p̄(t) in this way:[∫

ΓS
N

T w · ndS

]
|p̄

=
[∫

ΓS
N

(
−pI + µ

[
∇v + ∇vT

])
w · ndS

]
|p̄

=
∫

ΓS
N

(
−p̄I + µ

[
∇v + ∇vT

])
w · ndS. (5.60)

We use the numerical parameters given in Section 5.2.1. In Figure 5.8, we can
see the pressure distribution in the LN with p̄ = 6.18×105f(t) mPa (= 6.3 cmH2O
as the inferior limit in the range of pressure found in [111] and as in the explicit
results in Section 5.1.4), where f(t) is the one given by the equation (5.55). As
we can see, the pressure distribution is similar to the one in Figure 5.1 and it is in
range with the corresponding results. If one has p̄ = 4 × 105f(t) mPa (= 3 mmHg
as in [5]), the behavior of the pressure is similar to the one showed in Figure 5.8
(so that we omit the picture), with a range of values comparable to [5].

In Figure 5.9, we can see the shear stress over time (in mPa). At time t = 1 s,
we have the maximum value of the velocity (and, consequently, of the shear stress)
and the shear stress is similar to the one found in the explicit result (the blue curve
with vin ≈ 0.22 plotted in Figure 5.2), that is in range with the values found in
[5, 12].

We can see the norm and the velocity behavior in more details in Figure 5.10.
The tangential velocity (the most relevant one) is shown in Figure 5.11. As ex-
pected, the maximum velocity is in the SCS near the inlet and the outlet region.
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Figure 5.8: Pressure distribution in mPa with fixed pressure p̄ = 6.18 × 105 mPa
at outlet.
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Figure 5.9: Shear stress in mPa with respect to the polar angle (θ = 0 near the
inlet flow and θ = π near the outlet flow) calculated at different times.
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Figure 5.10: Velocity magnitude in mm/s at t = 1 s (maximum velocity).

In particular, we can see that the maximum velocity is between the connections of
the SCS with the afferent/efferent vessel; then the velocity decrease with respect
to the polar coordinate θ, reaching the minimum at θ = π/2. Moreover, even if
we do not impose the outlet velocity equal to the inlet one, we have that this is
true due to the incompressibility; hence our assumption used to find the explicit
solution is not too limiting in this case.

5.3 Oblate Spheroidal Lymph Node
In this section, we want to use the numerical simulations described and tested in
the previous sections to a lymph node with a more realistic geometry, which is an
oblate spheroid [5, 8, 9, 12] of this form[

x
y

]
=
[
a cos θ
b sin θ

]
, (5.61)

with major semiaxis a = 0.5 mm, minor semiaxis b = 0.35 mm, and subcapsular
sinus thickness h = 10 µm. It follows that the parametric equation that describes
the LC geometry is

[
x
y

]
=
[
a cos θ
b sin θ

]
− h

[
2
a2 cos θ
2
b2 sin θ

]
∥∥∥∥
[

2
a2 cos θ
2
b2 sin θ

] ∥∥∥∥
. (5.62)
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Figure 5.11: Tangential component of the velocity in mm/s with respect to the
radius at different angles at t = 1 s. The first graph corresponds to the tangential
velocity in the LC (porous part), and the second corresponds to the tangential
velocity in the SCS (free-fluid region).
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The other parameters remain as in the previous sections (see Section 5.1.2).
We can see the geometry of our problem in Figure 5.14. We study the same
problem presented in Section 5.2.2 in the geometry presented above to compare
the two cases.

We plot the velocity results defining

[
x
y

]
=
[
a cos θ
b sin θ

]
− d

[
2
a2 cos θ
2
b2 sin θ

]
∥∥∥∥
[

2
a2 cos θ
2
b2 sin θ

] ∥∥∥∥
, (5.63)

varying d (when d = h we obtain the interface between the SCS and the LC and
when d = 0 we obtain the external spheroidal domain). In Figure 5.12 we can see
the tangential velocity component with respect to d at time t = 1 s. As in the case
we have studied in Section 5.2.2, the maximum velocity is in the SCS near the
inlet and the outlet region. In particular, we can see that the maximum velocity
is between the connections of the SCS with the afferent/efferent vessel; then the
velocity decreases with respect to the polar coordinate θ, reaching the minimum
at θ = π/2. Figure 5.13 shows the same behavior for the shear stress. The velocity
behavior is the same as in the spherical case, but here the tangential velocity is
lower. We can see this also in Figure 5.14, where we have the velocity magnitude
plot; as we can see, the velocity behavior is qualitatively similar to the spherical
case. Despite this, the shear stress, in this case, is very similar to the spherical
one, as shown in Figure 5.13.

In Figure 5.15, we can see the pressure distribution over the spheroidal lymph
node; as we can see, the behavior is the same and the values are very close to the
spherical case.

We can conclude that although there is some difference between the spherical
and spheroidal cases, qualitatively we have the same behavior. Moreover, the
shear stress at the external surface of the LC and the pressure are very close, which
means that the spherical shape we chose as a simplified lymph node geometry is
a pretty good approximation for a qualitative study of the fluid flow in a lymph
node.

5.4 Conclusions
We proposed a model that describes the pulsatile lymph flow inside a simplified
spherical and spheroidal lymph node (LN), using the Darcy-Brinkman equation to
describe the lymph flow in the lymphoid compartment (LC, the porous part) and
the Stokes equation to describe the flow inside the subcapsular sinus (SCS, the free
fluid region). We found the explicit solution in terms of Gegenbauer polynomials
and we showed the trend of the velocity, the pressure, and the shear stress inside
the LN; after that, we used this explicit solution to validate the numerical simu-
lations of the model. Finally, we performed a more general numerical simulation
with finite elements.
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Figure 5.12: Tangential component of the velocity in mm/s with respect to d at
different angles at t = 1 s. The first graph corresponds to the tangential velocity
in the LC (porous part), and the second corresponds to the tangential velocity in
the SCS (free-fluid region).
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Figure 5.14: Velocity magnitude in mm/s at t = 1 s (maximum velocity).
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Figure 5.15: Pressure in mPa at t = 1 s (maximum velocity).

This model allows us to better understand the fluid behavior inside the LN
and how it changes with respect to time. The results obtained by our model are
in agreement with the literature [5–7, 11, 12]. We remark that the Ochoa-Tapia
boundary condition minimally affects the fluid behavior in the SCS. Still, it affects
the flow in the LC, inducing a velocity profile which is not smooth at the interface
between the LC and SCS regions.

Particular attention has been given to the shear stress, because a lot of bio-
logical phenomena in the LN depend on it. Among them is the cell adhesion to
the exterior of the LC, which is proportional to the shear stress: this is important
because inside the LC there is a connection between the lymphatic system and
the blood system, and some cells can get access from here to the blood circulation
(for instance, tumor cells [12]). Moreover, shear stress drives drug delivery and
can affect pathologies like B-cell lymphoma [57, 117]. In our model we found that
the shear stress is higher near the inlet and the outlet regions, and decreases with
respect to the polar angle θ, reaching the minimum at θ = π/2; hence we believe
that the majority of the cell adhesion is located near these two critical regions,
which are the connections of the SCS with the afferent/efferent vessels.

If we compare the model proposed in this chapter with the one proposed in
chapter 4, we have that the difference lies not only in the geometry, but also
in the different and more general interface conditions (the Ochoa-Tapia interface
conditions) and in the fact that here we are not supposing a laminar flow.

Finally, we compared the spherical and the spheroidal case and we could con-
clude that although there was some difference between the two cases, qualitatively
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we had the same behavior. Moreover, the shear stress at the external surface of
the LC and the pressure are very close, which means that the spherical shape we
chose as a simplified lymph node geometry is a pretty good approximation.

94



Chapter 6

Multiscale
Darcy/Darcy-Brinkman Coupling
with Application to a
Vascularized Lymph Node

The motion of an incompressible Newtonian fluid inside a rigid porous matrix
can be macroscopically described by Darcy’s law, which was formulated by Henry
Darcy based on the results of experiments on the flow of water through beds of
sand [77] (see Section 2.1 and Section 2.4).

There is another important differential equation that describes the fluid flow
of an incompressible Newtonian fluid inside a rigid porous matrix: the Darcy-
Brinkman equation (see Section 2.1). This equation has been introduced by
Brinkman adding a Laplacian (viscous) term (called Brinkman term) to the clas-
sical Darcy equation [79], weighed by an effective viscosity µe. It has been used
widely to analyze high-porosity porous media. Moreover, if we have an interaction
between a free-fluid region and a porous region, we have that the Darcy-Brinkman
equation allows us to study in more detail the interface (and the boundary layer)
between them [80]; in general, the Darcy-Brinkman formulation allows us to spec-
ify the boundary conditions [81], having a differential form similar to the Stokes
one.

Despite its practical feedback, the Darcy-Brinkman equation is theoretically
less justified than Darcy’s law from a multiscale point of view [32, 78, 118] and is
computationally more demanding. Moreover, Darcy and Darcy-Brinkman equa-
tions have very different differential structures.

In this chapter we present a multiscale model using the asymptotic homogeniza-
tion technique (see Section 2.4) that couples the Darcy and the Darcy-Brinkman
equation, with inhomogeneous body forces [119].

We consider a multiscale volume load that drives the coarse scale fluid flow act-
ing on both the Darcy and the Darcy-Brinkman problems. The above-mentioned
source involves both the cell average of the body force and an additional con-
tribution related to the solution of another cell problem driven solely by fine
scale variations of the given force. Such forces can arise from the application of
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electromagnetic fields, on magnetorheological fluids and electrolytes percolating
heterogeneous tissues.

The derivation of the macroscopic equations related to this problem is as gen-
eral as possible, so we can use this model to describe plenty of multiscale phenom-
ena. However, the motivation that drives us to study this model is the application
of the latter to the movement of fluid within a lymph node. Lymph nodes are
essential organs in our immune and lymphatic system, and we refer to Section
1.2 for a detailed description of them. Essentially, lymph nodes are formed by a
thin channel near the wall (subcapsular sinus, SCS) where the fluid can flow freely
surrounding a porous core (lymphoid compartment, LC) that is the parenchyma
of the lymph node [120], where the fluid can enter from the SCS through a con-
duit system network [49, 59, 101] formed by fibroblastic reticular cells (FRC). In
particular, we focus our attention on the porous region of the lymph node (the
LC) and the fluid exchange between the node and the blood vessels, which are
only in this part of the node [5, 53, 54]; using the hypothesis of axisymmetry and
isotropy of the porous medium, we found an explicit solution and analyze it by
varying physiological parameters related to the lymph node. After that, we solve
the general case coupling the fluid flow in the SCS with the fluid flow in the LC
using numerical simulations obtained using COMSOL Multiphysics.

In Section 6.1, we define the starting equations of our problem. We formulate
the balance equations of Continuum Mechanics and the corresponding boundary
conditions. In Section 6.2 we use the asymptotic homogenization technique to find
the equations that describe the motion of the fluid at the macroscale, one starting
with the Darcy-Brinkman equation and the other with the Darcy equation, and to
describe the fluid exchange between them. In Section 6.3, we find the macroscopic
equations by averaging the leading order terms of the asymptotic expansion. In
Section 6.4 we analyze the difference in having as a microscale cell problem Darcy,
Darcy-Brinkman, or Stokes, finding an explicit result to the microscale cell prob-
lem in a specific case. In Section 6.5, we find the macroscopic explicit solution
in a sphere with axisymmetry and isotropic permeability in terms of Bessel’s and
Legendre’s polynomials. In Section 6.6 we analyze the solution found in Section
6.5 with lymph node physiological data obtained from the literature. Finally, in
Section 6.7 we study numerically the fluid flow in a lymph node coupling the free-
fluid region (SCS) with the porous region (LC) using lymph node physiological
data.

The results presented in this chapter have not yet been published, but a
preprint is in preparation.

6.1 Statement of the Problem
Let us consider a domain Ω = Ωv ∪ Ωm, where Ωm and Ωv are the portions of
the domain that indicate two different phases. The labels m and v stand for the
matrix and the vessel regions, respectively.

We use Darcy equation with inhomogeneous body forces to describe the fluid
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flow in the domain Ωv [119]:
vv(x) = −K̂v(x) (∇pv(x) − f v(x)) in Ωv

∇ · vv(x) = 0 in Ωv.
(6.1)

The Darcy-Brinkman equation with inhomogeneous body forces in the phase Ωm

can be written as:
−∇pm(x) − K̂

−1
m (x)vm(x) + µe∆vm(x) + fm(x) = 0 in Ωm

∇ · vm(x) = 0 in Ωm.
(6.2)

Here we are considering two fluid phases: one in Ωv and one in Ωm. For
γ = v,m, vγ is the velocity of the fluid, pγ the pressure, f γ the external force
density, K̂γ(x) is hydraulic conductivity tensor, which is given by the permeability
tensor divided by the viscosity µ of the fluid, and µe is the effective viscosity. We
assume that the hydraulic conductivity tensor is symmetric and positive definite,
that is

K̂γ(x) = K̂
T

γ (x), ∀a ̸= 0 : a · K̂γ(x) · a > 0. (6.3)
As our starting points are the Darcy and Darcy-Brinkman representations, the

pore structure is considered already smoothed out, and the microscale geometry
information is encoded in the hydraulic conductivity K̂γ(x).

The interface conditions are prescribed as follows:
vv(x) · n = vm(x) · n = Lp(pm(x) − pv(x) − p̄) on Γ

vm(x) · t = −

√
K̂m(x)
α

[(n · ∇) vm(x)] · t on Γ,
(6.4)

where Γ = ∂Ωm ∩ ∂Ωv is the interface between the domains Ωv and Ωm, K̂m(x) is
the permeability of the hydraulic conductivity tensor K̂m(x), n the outer normal
to Ωm, t any tangential vector to Γ, p̄ is a constant and α is a constant that must
be found with experiments. The second equation of (6.4) is the Beavers-Joseph-
Saffman boundary condition [121–125], which is a quite general interface condition
on the tangent component of the velocity. We remark that we need the

√
K̂m(x)

to have the same dimensions in both sides of the equation [122]. Instead, for the
normal component of the velocity, we impose the interface condition described by
the first equation of (6.4). We impose this type of interface condition having in
mind biological applications of this model (such as lymph nodes, tumors, etc...);
indeed, if we have p̄ = σ (πm − πv), we obtain the Starling equation [55, 56],
which describes the fluid exchange between two different phases, where σ is the
Staverman’s reflection coefficient, πv the oncotic pressure of phase Ωv and πm the
oncotic pressure of phase Ωm. For simplicity, in this work, we assume that the
oncotic pressures πv and πm are constant, although in general, they can depend on
the concentration of solutes which vary over time and space [126]. The quantity
Lp is given by experimental measurements and depends on both the geometry and
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the tissue wall material of the intersection Γ. Nevertheless, our model remains
valid for other choices of boundary conditions.

Now we want to write the Darcy-Brinkman equation and the interface condi-
tions in a non-dimensional form; we define the following non-dimensional quanti-
ties (denoted with a prime symbol):

p = Pp′, v = Uv′, ϵ = d

L
, (6.5)

where P is the characteristic pressure, U is the characteristic velocity, d is the
fine scale length and L is the coarse scale length. C is a representative pressure
gradient (with P = CL), say:

C = U

Kref
, (6.6)

where Kref is the representative (scalar) value for the hydraulic conductivity given
by

Kref ≈ d2

µ
, (6.7)

and we set
K ′ = K̂

Kref
, f ′

m = fm

C
. (6.8)

Substituting into (6.2) and omitting the primes, we obtain:
−∇pm(x) − K−1

m (x)vm(x) + µ̂∆vm(x) + fm(x) = 0 in Ωm,

∇ · vm(x) = 0 in Ωm,
(6.9)

where
µ̂ = Kref µe

L2 . (6.10)

Assuming that µe ≈ µ, we have µ̂ = O(ϵ2).
Substituting these equations into (6.1) and (6.9), we obtain the non-dimensional

equations: 
vv(x) = −Kv(x) (∇pv(x) − f v(x)) in Ωv

∇ · vv(x) = 0 in Ωv,
(6.11)


−∇pm(x) − K−1

m (x)vm(x) + ϵ2µ∗∆vm(x) + fm(x) = 0 in Ωm,

∇ · vm(x) = 0 in Ωm,
(6.12)

where µ∗ = µe

µ
.

Now we want to non-dimensionalize the interface conditions (6.4): by the
Starling equation, the flux Jv passing through the interface between the two phases
is given by

Jv = LpS̄ (pm(x, t) − pv(x, t) − p̄) , (6.13)
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where S̄ is the total exchange surface density. From the fact that d is related to
the distance between the vessels of the domain Ωv, we have

S̄ ∝ L

d
= 1
ϵ
. (6.14)

It is likely that the measured flux of a specific area of tissue will remain finite,
even if the number of capillaries and their total surface area within that volume
increases; hence we need to scale the interface condition by ϵ to have a finite
flux. The same conclusion can be recovered also for the Beavers-Joseph-Saffman
interface condition (see [126] for more details). Then, substituting into equation
(6.4) we have:

vv(x) · n = vm(x) · n = ϵLp(pm(x) − pv(x) − p̄) on Γ

vm(x) · t = −ϵ

√
Km(x)
α

[(n · ∇) vm(x)] · t on Γ.
(6.15)

6.2 Asymptotic Homogenization
In this section, we employ the asymptotic homogenization technique (Section 2.4)
[32, 70] to derive a continuum macroscale model for the systems (6.11)–(6.15).
Since we suppose ϵ = d

L
≪ 1, we enforce the sharp length scale separation between

d (fine scale) and L (coarse scale) and we decouple spatial scales by introducing a
new local variable

y = x

ϵ
, (6.16)

where x and y represent the coarse and fine scale spatial coordinates, respectively.
They have to be formally considered independent variables. From now on, pγ, vγ,
Kγ and f γ (where γ = m, v) are assumed to depend on both x and y.

Before we start with the asymptotic homogenization technique, we recall some
assumptions concerning the geometry of the multiscale problem (see Section 2.4):

• Local periodicity: we assume that pγ, vγ, Kγ and f γ are y-periodic. This
assumption allows us to study fine scale variations of the fields on a restricted
portion of the domain. In particular, we have that Ω is the periodic cell
domain, and Ωm and Ωv are the portions of the domain Ω related to the two
different phases.

• Macroscopic uniformity: we neglect geometric variations of the cell and in-
clusions with respect to the coarse scale variable x. Thanks to this assump-
tion, we can consider only one periodic cell Ωγ for every macroscale point x,
and we have that

∇x ·
∫

Ωγ

(·)dy =
∫

Ωγ

∇x · (·)dy. (6.17)

The differential operator transforms accordingly

∇ → ∇x + 1
ϵ
∇y. (6.18)
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Now we employ a power series representation with respect to ϵ as follows (with
γ = m, v):

vγ(x,y) ≡ vϵ
γ(x,y) =

∞∑
l=0

v(l)
γ (x,y)ϵl, (6.19)

pγ(x,y) ≡ pϵ
γ(x,y) =

∞∑
l=0

p(l)
γ (x,y)ϵl, (6.20)

f γ(x,y) ≡ f ϵ
γ(x,y) =

∞∑
l=0

f (l)
γ (x,y)ϵl. (6.21)

Substituting the power series representations (6.19), (6.20), (6.21) and the
differential operator (6.18) into the non-dimensionalized Darcy equation (6.11),
the Darcy-Brinkman equation (6.12) and the interface conditions (6.15), we have:


ϵvϵ

v(x,y) + ϵKv(x,y)∇xp
ϵ
v(x,y) + Kv(x,y)∇yp

ϵ
v(x,y)

− ϵKv(x,y)f ϵ
v(x,y) = 0

in Ωv,

ϵ∇x · vϵ
v(x,y) + ∇y · vϵ

v(x,y) = 0 in Ωv,

(6.22)



− ϵ∇xp
ϵ
m(x,y) − ∇yp

ϵ
m(x,y) − ϵK−1

m (x,y)vϵ
m(x,y)

+ µ∗ϵ3∆xvϵ
m(x,y) + µ∗ϵ∆yvϵ

m(x,y) + µ∗ϵ2∇x · (∇yvϵ
m(x,y))

+ µ∗ϵ2∇y · (∇xvϵ
m(x,y)) + ϵf ϵ

m(x,y) = 0
in Ωm

ϵ∇x · vϵ
m(x,y) + ∇y · vϵ

m(x,y) = 0 in Ωm,

(6.23)


vϵ

v(x) · n = vϵ
m(x) · n = ϵLp(pϵ

m(x) − pϵ
v(x) − p̄) on Γ

vϵ
m(x) · t = −ϵ

√
Km(x)
α

[(
n ·

(
∇x + 1

ϵ
∇y

))
vϵ

m(x)
]

· t on Γ.
(6.24)

If we collect the terms of order ϵ0 in systems (6.22) and (6.23):

∇yp
(0)
v (x,y) = 0 ⇒ p(0)

v = p(0)
v (x), (6.25)

∇yp
(0)
m (x,y) = 0 ⇒ p(0)

m = p(0)
m (x), (6.26)

∇y · v(0)
v (x,y) = 0, (6.27)

∇y · v(0)
m (x,y) = 0, (6.28)

and for the interface conditions (6.24):

v(0)
m (x,y) · n = v(0)

v (x,y) · n = 0 on Γ, (6.29)

v(0)
m (x,y) · t = −

√
Km(x,y)

α

[
(n · ∇y) v(0)

m (x,y)
]

· t on Γ. (6.30)
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Collecting the terms of order ϵ1 in systems (6.22), (6.23) and in the interface
conditions (6.24), we obtain:

v(0)
v (x,y) + Kv(x,y)∇xp

(0)
v (x) + Kv(x,y)∇yp

(1)
v (x,y)

− Kv(x,y)f (0)
v (x,y) = 0 on Ωv, (6.31)

∇x · v(0)
v (x,y) + ∇y · v(1)

v (x,y) = 0 on Ωv, (6.32)

−∇xp
(0)
m (x) − ∇yp

(1)
m (x,y) − K−1

m (x,y)v(0)
m (x,y) + µ∗∆yv(0)

m (x,y)
+ f (0)

m (x,y) = 0 on Ωm,
(6.33)

∇x · v(0)
m (x,y) + ∇y · v(1)

m (x,y) = 0 on Ωm, (6.34)

v(1)
m (x,y) · n = v(1)

v (x,y) · n = Lp

(
p(0)

m (x) − p(0)
v (x) − p̄

)
on Γ, (6.35)

v(1)
m (x,y) · t = −

√
Km(x,y)

α

[
(n · ∇x) v(0)

m (x,y) + (n · ∇y) v(1)
m (x,y)

]
on Γ.
(6.36)

Applying the ∇y· operator to the equation (6.31) and using the equation (6.27),
we obtain

∇y ·
[
Kv(x,y)∇xp

(0)
v (x) + Kv(x,y)∇yp

(1)
v (x,y) − Kv(x,y)f (0)

v (x,y)
]

= 0 in Ωv, (6.37)

and the boundary condition (6.29) becomes:[
Kv(x,y)∇xp

(0)
v (x) + Kv(x,y)∇yp

(1)
v (x,y) − Kv(x,y)f (0)

v (x,y)
]

· n

= 0 on Γ. (6.38)

Since the problem is linear and the vector function ∇xp
(0) is y-constant, we

state the following ansatz of the solution:

p(1)
v (x,y) = gv(x,y) · ∇xp

(0)
v (x) + g̃v(x,y). (6.39)

Equation (6.39) is a solution of the problem (6.37) and (6.38) (up to a y-constant
function), provided that the auxiliary vectors gv and g̃v solve the following cell
problems:∇y ·

[
∇ygv(x,y)Kv(x,y)T

]
= −∇y · Kv(x,y)T , in Ωv[

∇ygv(x,y)Kv(x,y)T
]

· n = −Kv(x,y)T · n on Γ,
(6.40)

and: ∇y · [Kv(x,y)∇yg̃v(x,y)] = ∇y · Kv(x,y)f 0
v(x,y), in Ωv

[Kv(x,y)∇yg̃v(x,y)] · n = Kv(x,y)f 0
v(x,y) · n on Γ.

(6.41)
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Moreover, we need to have ⟨gv(x,y)⟩Ωv = 0 and ⟨g̃v(x,y)⟩Ωm = 0 to ensure the
uniqueness of the solution, where ⟨·⟩Ωγ is defined as

⟨h⟩Ωγ = 1
|Ωγ|

∫
Ωγ

hdy. (6.42)

Putting together equations (6.28), (6.29), (6.30) and (6.33), we obtain an aux-
iliary Darcy-Brinkman system in (v(0)

m , p(1)
m ):

−∇xp
(0)
m (x) − ∇yp

(1)
m (x,y) − K−1

m (x,y)v(0)
m (x,y) + µ∗∆yv(0)

m (x,y)
+ f (0)

m (x,y) = 0
on Ωm,

∇y · v(0)
m (x,y) = 0 on Ωm,

v(0)
m (x,y) · n = 0 on Γ,

v(0)
m (x,y) · t = −

√
Km(x,y)

α

[
(n · ∇y) v(0)

m (x,y)
]

· t on Γ.
(6.43)

Since the problem is linear and the vector function ∇xp
(0) is y-constant, we

formulate the following ansatz for the solution:

p(1)
m (x,y) = −gm(x,y) · ∇xp

(0)
m (x) + g̃m(x,y), (6.44)

v(0)
m (x,y) = −W m(x,y)∇xp

(0)
m (x) + w̃m(x,y). (6.45)

We have that (6.44) and (6.45) are solutions of the problem (6.43) provided that
the auxiliary vectors gm, g̃m,W m, w̃m solve the following cell problems:

K−1
m (x,y)W m(x,y) − µ∗∆yW m(x,y) − I + (∇ygm(x,y))T = 0 in Ωm,

∇y · W m(x,y) = 0 in Ωm,

W m(x,y) · n = 0 on Γ,

W m(x,y)t = −

√
Km(x,y)

α
[(∇yW m(x,y)) n] t on Γ,

(6.46)

−K−1
m (x,y)w̃m(x,y) + µ∗∆yw̃m(x,y) − ∇yg̃m(x,y) + f 0

m(x,y) = 0 in Ωm,

∇y · w̃m(x,y) = 0 in Ωm,

w̃m(x,y) · n = 0 on Γ,

w̃m(x,y) · t = −

√
Km(x,y)

α
[(∇yw̃m(x,y)) n] t on Γ.

(6.47)
Moreover, we impose that ⟨gm(x,y)⟩Ωm = 0 and ⟨g̃m(x,y)⟩Ωm = 0 to ensure the
uniqueness of the solution.

6.3 Macroscopic Model
Applying the operator ⟨·⟩Ωm to the ansatz (6.45), we obtain:

⟨v(0)
m (x,y)⟩Ωm = −⟨W m(x,y)⟩Ωm∇xp

(0)
m (x) + ⟨w̃m(x,y)⟩Ωm , (6.48)
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where W m and w̃m solve (6.46) and (6.47), respectively.
We recall the equation of order ϵ1 for the divergence (6.34):

∇x · v(0)
m (x,y) + ∇y · v(1)

m (x,y) = 0. (6.49)
Applying the average operator, we obtain (using the macroscopic uniformity as-
sumption (6.17)):

∇x · ⟨v(0)
m (x,y)⟩Ωm + ⟨∇y · v(1)

m (x,y)⟩Ωm = 0. (6.50)

Moreover, using the divergence theorem and the interface conditions (6.35):

⟨∇y · v(1)
m ⟩Ωm = 1

|Ωm|

∫
Ωm

∇y · v(1)
m (x,y)dy

= 1
|Ωm|

∫
Γ

v(1)
m (x,y) · ndS

= LpS

|Ωm|
[
p(0)

m (x) − p(0)
v (x) − p̄

]
, (6.51)

where |Ωm| is the volume of the cell phase m and S is the surface area of fluid
exchange between the two phases; hence we have

∇x · ⟨v(0)
m (x,y)⟩Ωm = − LpS

|Ωm|
[
p(0)

m (x) − p(0)
v (x) − p̄

]
. (6.52)

For the Darcy problem, we apply the average operator to the equation (6.31)
and, substituting the ansatz (6.39), we obtain:

⟨v(0)
v (x,y)⟩Ωv = − ⟨Kv(x,y)∇xp

(0)
v (x)⟩Ωv − ⟨Kv(x,y)∇ygv(x,y) · ∇xp

(0)
v (x)⟩Ωv

− ⟨Kv(x,y)∇yg̃v(x,y)⟩Ωv + ⟨Kv(x,y)f (0)
v (x,y)⟩Ωv

= − ⟨Kv(x,y) + Kv(x,y)(∇ygv(x,y))T ⟩Ωv∇xp
(0)
v (x)

− ⟨Kv(x,y)∇yg̃v(x,y)⟩Ωv + ⟨Kv(x,y)f (0)
v (x,y)⟩Ωv . (6.53)

Using the same technique, applying the average operator and the divergence the-
orem to equation (6.32), it follows that

∇x · ⟨v(0)
v (x,y)⟩Ωv = LpS

|Ωv|
[
p(0)

m (x) − p(0)
v (x) − p̄

]
, (6.54)

where we considered that nv = −n.
We can write the total macroscale velocity as:

⟨v(0)
v (x,y)⟩Ωv + ⟨v(0)

m (x,y)⟩Ωm = −⟨W m(x,y)⟩Ωm∇xp
(0)
m (x) + ⟨w̃m(x,y)⟩Ωm

−⟨Kv(x,y) + Kv(x,y)(∇ygv(x,y))T ⟩Ωv∇xp
(0)
v (x)

−⟨Kv(x,y)∇yg̃v(x,y)⟩Ωv + ⟨Kv(x,y)f (0)
v (x,y)⟩Ωv .

(6.55)

Remark 3. We notice that the fluid is macroscopically incompressible, indeed the
sum of the two divergences is zero. The two phases can have non zero divergence
due to the fluid exchange between them.
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Remark 4. The local periodicity allows us to define the average operator on a
single cell, which is computationally feasible; however we can replace this assump-
tion with the local boundedness: denoting with BR the ball centered in the origin
with radius R, we can define a new average operator

⟨f⟩Ωγ = lim
R→∞

1
4
3πR

3

∫
Ωγ∩BR

fdy (6.56)

for γ = m, v, where Ωγ is the whole phase domain. For the details, we refer to [89].

Remark 5. We can also remove the hypothesis of macroscopic uniformity, using
an appropriate variant of the Reynolds Theorem [126]:

∇x · ⟨v0
γ⟩Ωα = ⟨∇x · v0

γ⟩Ωγ + 1
|Ωγ|

∫
Γ

v0
γ · (∇xr(x,y))T ndSy, (6.57)

where r denotes the interface position vector.

Substituting (6.48) into equation (6.52) and (6.53) into equation (6.54), re-
spectively, we obtain

∇x·
(
⟨W m(x,y)⟩Ωm∇xp

(0)
m (x)

)
= ∇x·⟨w̃m(x,y)⟩Ωm+ LpS

|Ωm|
[
p(0)

m (x) − p(0)
v (x) − p̄

]
,

(6.58)

∇x ·
(

⟨Kv(x, y) + Kv(x, y)(∇ygv(x, y))T ⟩Ωv ∇xp(0)
v

)
= − ∇x · ⟨Kv(x,y)∇yg̃v(x,y)⟩Ωv

+ ∇x · ⟨Kv(x,y)f (0)
v (x,y)⟩Ωv

− LpS

|Ωm|
[
p(0)

m (x) − p(0)
v (x) − p̄

]
.

(6.59)

The equations (6.58) and (6.59) are the classical Darcy’s law diffusion problem
with additional terms related to the multiscale forces [119] and the fluid exchange
between phases. We note that if the multiscale forces fm and f v are zero, the
unique solutions g̃v(x,y) and w̃m(x,y) of the systems (6.41) and (6.47) are y-
constant and zero, respectively. In this latter case, equations (6.58) and (6.59)
reduce to the double Darcy’s model with fluid exchange between phases as derived
in [127] and subsequently solved and generalised in [128] and [126], respectively.
However, even when ignoring the contributions related to the external volume
loads, the final model that we have obtained differs from the one obtained in [127]
due to the Darcy-Brinmann type cell problem which is to be solved to compute
the hydraulic conductivity ⟨W⟩Ωm

for the matrix compartment Ωm.

6.4 A comparison of the flow equations
In this section, we want to study the differences in using Darcy, Stokes, or Darcy-
Brinkman in the domain Ωv in the cell problem. We can see the cell problem
domain in Figure 6.1.
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Figure 6.1: The cell problem domains Ωv (left) and Ωm (right).

For simplicity we focus on the case f v = 0, replacing the interface boundary
conditions with the no-slip condition vv = 0 and assuming the isotropy of the
porous medium, that is Kv = KvI. Hence the Darcy cell problems (6.40) and
(6.41) reduce to ∇y · [∇ygv(x,y)] = 0, in Ωv

∇ygv(x,y) · n = −n on Γ,
(6.60)

while the Darcy-Brinkman cell problems (6.46) and (6.47) reduce to
K∗−1W v(x,y) − µ∗∆yW v(x,y) − I + (∇ygv(x,y))T = 0 in Ωv,

∇y · W v(x,y) = 0 in Ωv,

W v(x,y) = 0 on Γ,
(6.61)

where K∗ = Kvµ

d2 . Finally, the cell problem for the Stokes equation is [32, 70]


−∆yW v(x,y) − I + (∇ygv(x,y))T = 0 in Ωv,

∇y · W v(x,y) = 0 in Ωv,

W v(x,y) = 0 on Γ.
(6.62)

We want to solve and compare the problems above in the cell domain Ωv;
therefore we need to compare the same quantity at the macroscale. For Darcy-
Brinkman and Stokes, the dimensionalized macroscopic velocity is given by (6.48):

⟨vv⟩Ωv = −d2

µ
⟨W v⟩Ωv∇xp

0, (6.63)

where W v takes different expressions in Darcy-Brinkman’s and Stokes’ cases. On
the other hand, for the Darcy case we have, by equation (6.53):

⟨vv⟩Ωv = −K∗d
2

µ
⟨I + (∇ygv)T ⟩Ωv∇xp

0. (6.64)

Hence we compare ⟨W ⟩Ωv for the Darcy-Brinkman and the Stokes problem and
K∗⟨I + (∇ygv)T ⟩Ωv for the Darcy problem.
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If we consider cylinders with a small radius, so that they have a small overlap
region, we can analytically solve the previous systems up to a small error. The
differential problems (6.61) and (6.62) are three standard Darcy-Brinkman and
Stokes’ problems in W 1,v = W ve1, W 2,v = W ve2 and W 3,v = W ve3 connected
to the rows of I; hence, using the rotation invariance property of our geometry,
we can fix one arbitrary row (i.e. direction) of I, say, for example, e3 (the third
row of I). In this case, the solution is non-zero only in the branch directed along
e3, which means the only non-zero component is W 3,ve3 = W33,v.

Hence the solution of the system (6.62) is (see [128]):

W33,v = R2 − r2

4 , W31,v = W32,v = 0, 0 ≤ r ≤ R, (6.65)

where R is the radius of the cylinder. Hence we have that the resulting perme-
ability is:

⟨W33,v⟩Ωv = 1
|Ωv|

∫ lc

0
dz
∫ 2π

0
dθ
∫ R

0

R2 − r2

4 rdr = πlcR
4

8|Ωv|
. (6.66)

For the system (6.61) the problem reduces to

W ′′
33,v(r) + 1

r
W ′

33,v(r) − W33,v(r)
µ∗K∗ = − 1

µ∗ , 0 ≤ r ≤ R (6.67)

and the solution is

W33,v(r) = K∗

1 −
J0

(
i

√
1

µ∗K∗ r

)

J0

(
i

√
1

µ∗K∗R

)
 , W31,v = W32,v = 0, (6.68)

where J0 is the Bessel function of the first kind of order zero. Hence we have
(using the property xνJν−1 = d

dx
(xνJν(x))):

⟨W33,v⟩Ωv = 1
|Ωv|

∫ lc

0
dz
∫ 2π

0
dθ
∫ R

0
K∗

1 −
J0

(
i

√
1

µ∗K∗ r

)

J0

(
i

√
1

µ∗K∗R

)
 rdr

= 2πlc
|Ωv|

K∗

R
2

2 + i
√
µ∗K∗R

J1

(
i

√
1

µ∗K∗R

)

J0

(
i

√
1

µ∗K∗R

)
 . (6.69)

To solve system (6.60), we recall that n = (n1, n2, 0) = (cos θ, sin θ, 0). First
of all, we focus on the case n1 = cos θ, and we call the solution gv,1. From the
periodicity condition in the e3 direction, we have that gv does not depend on the
z variable. Hence the problem reduces to

1
r

∂

∂r

(
r
∂gv,1

∂r

)
+ 1
r2
∂2gv,1

∂θ2 = 0, 0 ≤ r ≤ R, 0 ≤ θ ≤ 2π. (6.70)
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Using the separation of variables gv,1 = R(r)Θ(θ) and substituting into the
equation above, we obtainr2R′′(r) + rR′(r) − cR(r) = 0,

Θ′′(θ) + cΘ(θ) = 0,
(6.71)

where c is the constant obtained by the separation of variables. From the second
equation of the system (6.71), we have

Θ(θ) = A sin(nθ) +B cos(nθ), n ∈ N. (6.72)

From the boundary condition of the system (6.60), it follows that n = 1. Hence
the solution of the first equation of the system (6.71) is

R(r) = C1

r
+ C2r, (6.73)

and, from the boundary condition of (6.60) and the non-degeneracy condition in
r = 0, we have C1 = 0 and C2 = 1. Hence we have

gv,1 = −r cos θ. (6.74)

In the same way, for the case n2 = sin θ we get:

gv,2 = −r sin θ. (6.75)

Hence it follows:

⟨(∇ygv)T ⟩Ωv = 1
|Ωv|

∫
Ωv

(∇ygv)T dV = −2
3 . (6.76)

These results are shown in Figure 6.2, where we set rc = 7.7×10−3, |Ωv| = 3πR2lc
(the volume is indeed a bit smaller, but we are supposing that the intersection
between the cylinders is negligible).

As expected, the Darcy-Brinkman equation has a Stokes/Darcy duality be-
havior. Indeed, suppose we decrease the relevance of the Laplace operator in the
Darcy-Brinkman cell problem (6.61). In that case, we have that the solution tends
to the solution of the Darcy cell problem (6.60). We can see this behavior in the
left Figure 6.2. The resulting permeability of the cell problem (6.61) tends to
the one of the cell problems (6.60). We can see this behavior even if we decrease
the permeability instead of the relevance of the Laplace operator because, in this
case, both the Darcy and the Darcy-Brinkman equations tend to zero. In the right
Figure 6.2 we can see that if we increase K∗ in the Darcy-Brinkman cell problem
(6.61), the solution tends to that of the Stokes cell problem (6.62).

Table 6.1 shows that, if the permeability is not too small or the Laplace oper-
ator is relevant, then the Darcy (resp. Stokes) and the Darcy-Brinkman equation
give very different results; otherwise the solutions of the two problems are similar.
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Figure 6.2: On the left: Darcy-Brinkman/Darcy comparison with respect to 1/µ∗,
for K∗ = 6.67 × 10−6. On the right: Darcy-Brinkman/Stokes comparison with
respect to K∗, for µ∗ = 1.

µ∗ K∗ relative error
1 6.67 × 10−6 74%

10−4 6.67 × 10−6 0.67%
10−6 6.67 × 10−6 0.067%

1 10−12 0.026%

µ∗ K∗ relative error
1 6.67 × 10−6 84%
1 10−4 9.5%
1 10−2 0.1%
1 1 0.001%

Table 6.1: Comparison between Darcy-Brinkman and Darcy (left), Darcy-
Brinkman and Stokes (right).

6.5 Explicit Solution
In this section, we find an explicit solution of the macroscopic problem given in
Section 6.3. For simplicity, we assume that the multiscale forces f ϵ

v, f ϵ
m vanish

and that both porous media are isotropic, that is:

K̄v = K̄vI, K̄m = K̄mI, (6.77)

where K̄v and K̄m are constants found solving the cell problems (6.40) and (6.46),
respectively, using Comsol Multiphysics, with α = 1. Our problem is

∆pv = −Mv [pm − pv − p̄] in Ω,

∆pm = Mm [pm − pv − p̄] in Ω,

pv = p̄v, pm = p̄m on ∂Ω,

(6.78)

where Mv = LpS

|Ωv|K̄v

and Mm = LpS

|Ωm|K̄m

.

We consider a spherical domain Ω, denoting by r the radial coordinate, θ the
polar coordinate, and ϕ the azimuthal angle. Moreover, we assume axisymmetry
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with respect to the azimuthal angle ϕ. Hence problem (6.78) becomes:

∆pv(r, θ) = −Mv [pm(r, θ) − pv(r, θ) − p̄] r < R, θ ∈ [0, 2π[,

∆pm(r, θ) = Mm [pm(r, θ) − pv(r, θ) − p̄] in r < R, θ ∈ [0, 2π[,

pv(r, θ)|r=R1 = p̄v(θ), pm(r, θ)|r=R1 = p̄m(θ) r = R, θ ∈ [0, 2π[,

non-degenericity r = 0, θ ∈ [0, 2π[,

(6.79)

where R is the radius of the spherical domain.
We define the quantity

ψ(r, θ) = pm(r, θ) − pv(r, θ), (6.80)

and, taking the difference between the second and the first equation of the system
(6.79), we obtain the new problem

∆ψ(r, θ) = M [ψ(r, θ) − p̄] r < R, θ ∈ [0, 2π[,

ψ(r, θ)|r=R1 = p̄m(θ) − p̄v(θ), r = R, θ ∈ [0, 2π[,

non-degenericity r = 0, θ ∈ [0, 2π[,

(6.81)

where M = Mv +Mm. Defining

ψ̂(r, θ) = ψ(r, θ) − p̄, (6.82)

we can reformulate the first equation of the system (6.81) as

∆ψ̂(r, θ) = Mψ̂(r, θ). (6.83)

In spherical coordinates, we have:

1
r2

∂

∂r

r2∂ψ̂(r, θ)
∂r

+ 1
r2

1
sin θ

∂

∂θ

sin θ∂ψ̂(r, θ)
∂θ

 = Mψ̂(r, θ), (6.84)

calling ζ = cos θ, we obtain

1
r2

∂

∂r

r2∂ψ̂(r, ζ)
∂r

+ 1
r2

∂

∂ζ

(1 − ζ2
) ∂ψ̂(r, ζ)

∂ζ

 = Mψ̂(r, ζ). (6.85)

We search for a solution in the form

ψ̂(r, ζ) = R(r)Z(ζ) (6.86)

we obtain (multiplying by r2, dividing by ψ̂ and rearranging the terms):

1
R(r)

∂

∂r

(
r2∂R(r)

∂r

)
− r2M = − 1

Z(ζ)
∂

∂ζ

((
1 − ζ2

) ∂Z(ζ)
∂ζ

)
, (6.87)
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and we obtain the two differential equations:

r2∂
2R(r)
∂r2 + 2r∂R(r)

∂r
− (Mr2 + n(n+ 1))R(r) = 0, (6.88)

∂

∂ζ

((
1 − ζ2

) ∂Z(ζ)
∂ζ

)
+ n(n+ 1)Z(ζ) = 0, (6.89)

where n ∈ N.
The differential equation (6.88) is in the form of a spherical Bessel equation,

of which the solution is

R(r) = Aj−n−1
(
i
√
Mr

)
+By−n−1

(
i
√
Mr

)
, (6.90)

where j−n−1 and y−n−1 are the spherical Bessel function of the first and second
kind, respectively, and are connected to the classical Bessel function with the
relations:

j−n−1 (x) =
√
π

2xJ−n−1+ 1
2

(x) , y−n−1 (x) =
√
π

2xY−n−1+ 1
2

(x) , (6.91)

where J−n− 1
2

and Y−n− 1
2

are the Bessel function of the first and second kind. The
differential equation (6.89) is in the form of the Legendre differential equation
(Section 2.2), of which the solution is

Z(ζ) = CPn(ζ) +DQn(ζ), (6.92)

where Pn and Qn are the Legendre polynomials of the first and second kind, re-
spectively. From the non-degeneracy at r = 0, we obtain

A = D = 0. (6.93)

Using the property that

Y−n− 1
2
(x) = (−1)nJn+ 1

2
(x), (6.94)

and the fact that
Jn(ix) = inIn(x), (6.95)

where In is the modified Bessel function of the first kind of order n, we have that
the solution is

ψ̂(r, ζ) =
∞∑

n=0
Ãn

1√
r
In+ 1

2

(√
Mr

)
Pn (ζ) , (6.96)

and then, using (6.82), we obtain

ψ(r, ζ) = p̄+
∞∑

n=0
Ãn

1√
r
In+ 1

2

(√
Mr

)
Pn (ζ) , (6.97)

with the boundary condition from the second equation in the system (6.81)

ψ(R, ζ) = p̄m(ζ) − p̄v(ζ). (6.98)
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From the properties of the orthogonal Legendre polynomials (Section 2.2) [31, 68],
we can rewrite

p̄m(ζ) − p̄v(ζ) =
∞∑

n=0
b(n)Pn(ζ), (6.99)

where
b(n) = 1

2(2n+ 1)
∫ 1

−1
[p̄m(ζ) − p̄v(ζ)]Pn(ζ)dζ, (6.100)

and, remembering that P0(ζ) = 1, we can rewrite equation (6.98) in this form

ψ(R, ζ) − (p̄m(ζ) − p̄v(ζ)) =
[
p̄+ Ã0

1√
R
In+ 1

2

(√
MR

)
− b(0)

]
P0 (ζ)

+
∞∑

n=1

[
Ãn

1√
R
In+ 1

2

(√
MR

)
− b(n)

]
Pn (ζ) = 0,

(6.101)

and using the linearly independent property of the Legendre polynomials, we ob-
tain, for n = 0:

Ã0 =

[
b(0) − p̄

]√
R

I 1
2

(√
MR

) , (6.102)

and for n ∈ N, n ̸= 0:

Ãn = b(n)
√
R

In+ 1
2

(√
MR

) . (6.103)

Exploiting the function ψ found in equation (6.97) with (6.102), (6.103) and (6.82),
we can rewrite the first two equations in the system (6.79) in this way:

∆pm(r, ζ) = Mmψ̂(r, ζ) = Mm

∞∑
n=0

Ãn
1√
r
In+ 1

2

(√
Mr

)
Pn (ζ) (6.104)

∆pv(r, ζ) = −Mvψ̂(r, ζ) = −Mv

∞∑
n=0

Ãn
1√
r
In+ 1

2

(√
Mr

)
Pn (ζ) . (6.105)

Now we search the solutions of equations (6.104) and (6.105) in these forms:

pm(r, ζ) =
∞∑

n=0
mn(r)Pn(ζ), (6.106)

pv(r, ζ) =
∞∑

n=0
vn(r)Pn(ζ). (6.107)

We focus on the equations for pm (6.104) and (6.106), but for the equations in pv

the computations are similar. Substituting (6.106) into the equation (6.104), we
obtain:

∞∑
n=0

(
1
r2

∂

∂r

(
r2∂mn(r)

∂r

))
Pn(ζ) + 1

r2
∂

∂ζ

((
1 − ζ2

) ∂Pn(ζ)
∂ζ

)
mn(r)

−MmÃn
1√
r
In+ 1

2
(
√
Mr)Pn(ζ) = 0, (6.108)
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using the fact that Pn(ζ) is the Legendre polynomial and the form of the Legendre
differential equation (6.89), we have

∞∑
n=0

[(
1
r2

∂

∂r

(
r2∂mn(r)

∂r

))
− n(n+ 1)

r2 mn(r) −MmÃn
1√
r
In+ 1

2
(
√
Mr)

]
Pn(ζ) = 0,

(6.109)
and, from the linear independence of the Legendre polynomials and for every n,
we obtain:

m′′
n(r) + 2

r
m′

n(r) − n(n+ 1)
r2 mn(r) = MmÃnr

1
2 In+ 1

2

(√
Mr

)
. (6.110)

The homogeneous part of equation (6.110) is

m′′
n(r) + 2

r
m′

n(r) − n(n+ 1)
r2 mn(r) = 0, (6.111)

in which the solution is

m(0)
n (r) = c

(n)
1 rn + c

(n)
2 r−n−1. (6.112)

For the particular part of the solution of equation (6.110), we calculate the Wron-
skian Wr:

Wr = −2n− 1
r2 , (6.113)

and we have that the particular solution is:

m(p)
n (r) = c̄

(n)
1 (r)y1(r) + c̄

(n)
2 (r)y2(r), (6.114)

where y1 and y2 are the independent solutions of the homogeneous equation and

c̄
(n)
1 (r) = −

∫ y2(r)f(r)
Wr(r) dr, c̄

(n)
2 (r) =

∫ y1(r)f(r)
Wr(r) dr. (6.115)

We have
c̄

(n)
1 (r) = MmÃn

2n+ 1

∫
r−n+ 1

2 In+ 1
2

(√
Mr

)
dr, (6.116)

calling t =
√
Mr we obtain

MmÃn

2n+ 1

∫
r−n+ 1

2 In+ 1
2

(√
Mr

)
dr = MmÃn

2n+ 1

(
1√
M

)−n+ 3
2 ∫

t−n+ 1
2 In+ 1

2
(t) dt,

(6.117)
and using the property ∫

x−p+1Ip(x)dx = x1−pIp−1(x)dx, (6.118)

we have

MmÃn

2n+ 1

(
1√
M

)−n+ 3
2 ∫

t−n+ 1
2 In+ 1

2
(t) dt = MmÃn

2n+ 1

(
1√
M

)−n+ 3
2

t−n+ 1
2 In− 1

2
(t),

(6.119)
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and it follows that

c̄
(n)
1 (r) = MmÃn

(2n+ 1)
√
M
r−n+ 1

2 In− 1
2

(√
Mr

)
. (6.120)

For c̄(n)
2 (r) we have

c̄
(n)
2 (r) = −MmÃn

2n+ 1

∫
rn+ 3

2 In+ 1
2

(√
Mr

)
dr, (6.121)

calling t =
√
Mr we obtain

−MmÃn

2n+ 1

∫
rn+ 3

2 In+ 1
2

(√
Mr

)
dr = −MmÃn

2n+ 1

(
1√
M

)n+ 5
2 ∫

tn+ 3
2 In+ 1

2
(t) dt,

(6.122)
and using the property of Bessel function∫

xp+1Ip(x)dx = xp+1Ip+1(x)dx, (6.123)

we have

−MmÃn

2n+ 1

(
1√
M

)n+ 5
2 ∫

tn+ 3
2 In+ 1

2
(t) dt = −MmÃn

2n+ 1

(
1√
M

)n+ 5
2

tn+ 3
2 In+ 3

2
(t),

and it follows that

c̄
(n)
2 (r) = − MmÃn

(2n+ 1)
√
M
rn+ 3

2 In+ 3
2

(√
Mr

)
. (6.124)

Finally, the particular solution is

m(p)
n (r) = MmÃn

√
r

(2n+ 1)
√
M

(
In− 1

2

(√
Mr

)
− In+ 3

2

(√
Mr

))

= MmÃn

M

1√
r
In+ 1

2

(√
Mr

)
, (6.125)

where we used the Bessel function relationship

Ip−1(x) − Ip+1(x) = 2p
x
Ip(x). (6.126)

Hence we have that the solution is:

mn(r) = m(0)
n (r)+m(p)

n (r) = c
(n)
1 rn +c(n)

2 r−n−1 +MmÃn

M

1√
r
In+ 1

2

(√
Mr

)
. (6.127)

By similar computations we obtain that vn(r) in (6.107) is

vn(r) = d
(n)
1 rn + d

(n)
2 r−n−1 − MvÃn

M

1√
r
In+ 1

2

(√
Mr

)
. (6.128)
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We impose the boundary conditions (6.79). To have non-degeneracy at r = 0,
we need to have (for every n)

c
(n)
2 = d

(n)
2 = 0; (6.129)

instead, from the boundary condition at r = R, rewriting the boundary condition
in terms of Legendre polynomials

p̄m(R, ζ) =
∞∑

n=0
b(n)

m Pn (ζ) , p̄v(R, ζ) =
∞∑

n=0
b(n)

v Pn (ζ) , (6.130)

where

b(n)
m = 1

2 (2n+ 1)
∫ 1

−1
p̄m(ζ)Pn(ζ)dζ, b(n)

v = 1
2 (2n+ 1)

∫ 1

−1
p̄v(ζ)Pn(ζ)dζ,

(6.131)
we obtain (using the property of linear independence of the Legendre polynomials):

c
(n)
1 =

[
b(n)

m − MmÃn

M
√
R
In+ 1

2

(√
MR

)]
Rn

, (6.132)

d
(n)
1 =

[
b(n)

v + MvÃn

M
√
R
In+ 1

2

(√
MR

)]
Rn

. (6.133)

6.6 Application to the Lymph Node
In this section, we show the results given by the explicit solution with physiological
data obtained or estimated by an idealized spherical mouse popliteal lymph node
[10]. The lymph node is basically formed by two parts: a porous bulk region
called lymphoid compartment (LC) and a thin layer against the wall where the
fluid can flow freely, called subcapsular sinus (SCS) [37, 108]. Due to the fact that
the whole blood vasculature in the lymph node is in the LC [5, 53, 54], in this
section, we apply the explicit solution found in the previous section to the LC,
implemented in Matlab.

Here we have that Ωv is the blood vessels phase, and Ωm is the interstitial phase.
The fluid exchange between these two phases is described by the Starling equation,
which corresponds to choose p̄ = σ (πm − πv). We assume a radius R = 0.49 mm
of the LC [12, 53]. The lymph that flows inside the lymph node is modeled as
an incompressible Newtonian fluid similar to water [1] with viscosity µ = 1 mg

mm s
and density ρ0 = 1 mg

mm3 . The interstitial permeability is considered homogeneous
[101] with value K̂m = 3.84 × 10−9 mm2 [11]. The effective viscosity is taken as
µe = µ

ϕ
[106, 107], where ϕ is the porosity taken as ϕ = 0.75 [11].

The parameters that regulate the fluid exchange between the lymph node and
the blood vessels are very heterogeneous in the literature, but we try to summarize
them here. The Staverman’s reflection coefficient σ is estimated between σ =
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0.88 − 0.9. In [50–52] they estimate the oncotic pressure difference πv − πm in a
canine popliteal lymph node as ≈ 2080 Pa = 2.08 × 106 mPa, in [5] they estimate
the values πv ≈ 1.53 × 106 mPa and πm ≈ 5.06 × 106 mPa in a mouse using the
assumption that the protein content of lymph is 40% of that of the plasma, [6,
7] found πv − πm ≈ 3.41 × 105 mPa by fitting the wild type mouse model to
experimental data, [129] measured the value πv − πm ≈ 1.5 × 106 mPa in the skin
of mice and [8] estimates πv − πm ≈ 1.69 × 106 mPa.

For the hydraulic conductivity of the blood vessel wall Lp, we have that [5]
assumed a value of Lp = 5.475 × 10−12 mm

s mPa based on the measured hydraulic
conductivity of rat mesenteric venular microvessels, [6, 7] assumed a range of
Lp ≈ 1.02 × 10−11 − 6.7 × 10−10 mm

s mPa from the values of the blood capillaries,
[8] estimates directly L = Lp

S
|Ωm| ≈ 10−6 1

s mPa (that means, in our case, Lp ≈
3.667 × 10−8 mm

s mPa, see below).
Moreover, we have that the mean blood vessels pressure p̄v in the node is

estimated as p̄v ≈ 6.67 × 105 mPa in [5], as p̄v ≈ 9.73 × 105 mPa in [6, 7] and as
p̄v ≈ 1.06 × 106 mPa in [8].

The surface of fluid exchange S between the lymph node and the blood vessels
is given by an average of the values found in [53] and is S = 13.4 mm2; the volume
of the blood vessels inside the node |Ωv| is about the 6.15% of the whole lymph
node volume, and hence we have (supposing that the SCS height is ≈ 10−2 mm
[5, 10, 12]) |Ωv| = 0.0322 mm3 [53, 54].

We suppose a geometry of the cell domain as in Section 6.4. This microscale
geometry is simpler with respect to the physiological one [53, 54]; we can assume
this simplified microscale geometry because we start with a formulation that is
already smoothed out (our starting point was a Darcy/Darcy-Brinkman formu-
lation), and hence we do not need precise information about the microstructure
geometry (see Section 6.4). What we want to keep in the physiological geometry
are the surface area of the blood vessels S and the volume of the blood vessels |Ωv|.
For this reason, we estimate the normalized radius of the cylinders r̄ = rc/d, where
rc is the radius of the cylinders and d is the microscale variable that indicates the
distance between blood vessels, in such a way that we keep the physiological pa-
rameter S and |Ωv|. We have that the surface area Sv of the whole domain Ωv can
be found with the formula

Sv = 3N
[
2πrcd− (16 − 8

√
2)r2

c

]
, (6.134)

where N is the number of cells in our domain, and remember that 3(16 − 8
√

2)r2
c

is the intersection surface of a tricylinder. From the fact that Sv = S, we find

d = (16 − 8
√

2)rc

2π + S

6Nπrc

. (6.135)

From here, we can vary rc so that we can calculate numerically the volume of
|Ωv| and we compare the results given numerically to the physiological data. We
found that rc = 5.495 × 10−3 mm, d = 2.4 × 10−2 mm and hence r̄ ≈ 0.229 gives
the desired physiological volume. Thanks to this estimation, we have that, at the
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macroscale, S and |Ωv| are the same as in the physiological data. Hence we can
use these parameters to estimate the permeability of the blood vessels Kv using
the Kozeny-Carman formula [130, 131]:

Kv = 1
c0
(

S
|Ωv |

)2 , (6.136)

where c0 is the Kozeny constant, and depends on the tortuosity of the vessels [128].
Thanks to the fact that we start from a formulation that is already smoothed out,
we can take into account the tortuosity effect by varying only the constant c0
and not the geometry of the cell problem; this is true, especially in the case
with little tortuosity. With no tortuosity effect, c0 = 5.6, and this implies Kv =
1.03 × 10−6 mm2. With these data, we have

ϵ = d

L
≈ 10−2. (6.137)

To find the permeabilities K̄v and K̄m of the macroscale problems (6.48) and
(6.53) that comes out from the microstructure problem, we need to solve the cell
problems (6.40) and (6.46) with the body forces fm = f v = 0 and using the
microstructure parameters described above (note that K̂m is the microstructure
permeability that we use in the cell problem (6.46) to find K̄m).

These parameters are summarized in Table 6.2.
As boundary conditions we choose, for pv:

pv(R, ζ) = p̄v, (6.138)

where p̄v is a constant value given by the literature (mean blood vessels pressure),
and for pm:

pm(R, ζ) = p̄m(ζ), (6.139)
where p̄m(ζ) can be any function sufficiently regular of ζ.

To begin with (and for simplicity), we assume that p̄m(ζ) = p̄m is a fixed
constant value. In this case, we can see the direction of the fluid exchange between
the interstitial space and the blood vessels explicitly. Indeed, in this case remains
only the n = 0 term (from equations (6.98), (6.99) and (6.100), from the fact that
P0(x) = 1 we have b(0) = b(0)

m − b(0)
n = p̄m − p̄v), and this implies that equation

(6.96) reduces to

ψ̂(r) = Ã0
I1/2

(√
Mr

)
√
r

=
√
RI1/2

(√
Mr

)
√
rI1/2

(√
MR

) [p̄m − p̄v − σ (πm − πv)] , (6.140)

and from the fact that (6.54) can be written as

∇x · ⟨v(0)
v (x,y)⟩Ωv = LpS

|Ωv|
[
p(0)

m (x) − p(0)
v (x) − p̄

]
= LpS

|Ωv|
ψ̂(r), (6.141)

and remembering that

I1/2(x) =

√
2
π

sinh(x)
√
x

(6.142)
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Name Physiological Range/Value Description
R 0.49 mm Macroscopic radius [10, 12].
µ 1 mg

mm s Viscosity [1, 17].
ϕ 0.75 Porosity [11].
µe

µ
ϕ

Effective viscosity [79, 106, 109].
ρ0 1 mg

mm3 Density [1, 17].
K̂m 3.84 × 10−9 mm2 Permeability of the interstitium

[11, 101].
σ 0.88 − 0.9 Staverman’s coefficient [5–8].
πv − πm 3.41 × 105 − 2.08 × 106 mPa Oncotic pressure difference [5–8,

51, 52].
Lp 5.475 × 10−12 − 3.67 × 10−8 mm

s mPa Hydraulic conductivity of the
blood vessel walls[5–8].

p̄v 6.67 × 105 − 1.066 × 106 mPa Mean blood vessel pressure [5–8].
S 13.4 mm2 Blood vessel surface [53].
|Ωv| 0.0322 mm3 Blood vessel volume [53].
N 6500 Number of cells.
rc 5.495 × 10−3 mm Blood vessel radius.
d 2.4 × 10−2 mm Blood vessel mean distance.
Kv 1.03 × 10−6 mm2 Blood vessels permeability.
c0 5.6 Kozeny constant [128].
fm, f v 0 Body forces.
K̄m 2.85 × 10−9 mm3s

mg Macroscopic interstitial hydraulic
conductivity (solving equation
(6.46)).

K̄v 5.8 × 10−7 mm3s
mg Macroscopic blood hydraulic

conductivity (solving equation
(6.40)).

Table 6.2: Physiological and estimated parameters.
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Figure 6.3: The variation of pm and pv in mPa at θ = π/2, for some values of
the Kozeny constant c0, with πv − πm = 1.02 × 106 mPa, p̄v = 1.066 × 106 mPa,
Lp = 5.475 × 10−10 mm

s mPa , p̄m = 6.727 × 105 mPa and the parameters in Table 6.2.

is positive for every x > 0, we have that, the sign of the divergence (6.54) (that is
the opposite sign of (6.52)) is given by the sign of

p̄m − p̄v − σ (πm − πv) . (6.143)

The work [111] measured that the average pressure in a lymph node is about
6.86 ± 0.56 mmH2O ≈ 6.7 × 105 ± 5.5 × 104 mPa, so, for now, we fix p̄m = 6.7 ×
105 mPa. With this value, σ = 0.88 and ∆π = 1.02 × 106 mPa, we have that the
sign of (6.143) is negative for p̄v ⪅ 1.5676 × 106 mPa ≈ 11.8 mmHg (which means
that the fluid goes from the interstitial space to the blood phase), and start to
have an inversion of the flow at p̄v ≈ 1.5676 × 106 mPa ≈ 11.8 mmHg.

In Figure 6.3 we can see the resulting pressures pm and pv varying with respect
to the Kozeny constant c0. Increasing c0 means increasing the tortuosity of the
blood vessels [128], and this is related to an increase of pv and pm at the center
of the node, and that means that there is lesser flow from the interstitial space to
the blood vessels. This is related to the fact that, an increase in c0 in the relation
(6.136) means a decrease in Kv, and consequently, an increase of the pressure pv

at the center of the node, and an increase in the pressure pv means an increase
of pm; we can see better this behavior in Figure 6.5. This is a parametric study
with the variation of c0 that is related to the tortuosity effect [128], but to study
the role of the tortuosity in more detail we need to take it into account in the
geometry of the microscale problem, which we did not do in this case.

In Figure 6.4 we can see the resulting pressures pm and pv varying with respect
to the hydraulic conductivity of the blood vessel walls Lp. Increasing Lp means a
decrease of pm and an increase of pv at the center of the node, meaning a higher
flow from the interstitial space to the blood vessels (as expected).

In Figure 6.6 we can see the resulting pressures pm and pv varying with respect
to ∆π = πv − πm. Increasing ∆π means increasing the concentration difference
between the interstitial space and the blood vessels, and consequently the increase
of the fluid flow from Ωm to Ωv.
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Figure 6.4: The variation of pm and pv in mPa at θ = π/2, for some values of
the hydraulic conductivity Lp in mm

s mPa , with πv − πm = 1.02 × 106 mPa, p̄v =
1.066 × 106 mPa, p̄m = 6.727 × 105 mPa and the parameters in Table 6.2.
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Figure 6.5: The variation of pm in mPa at θ = π/2, for some values of the blood
vessel pressure p̄v in mPa, with πv −πm = 1.02×106 mPa, Lp = 5.475×10−10 mm

s mPa ,
p̄m = 6.727 × 105 mPa and the parameters in Table 6.2.
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Figure 6.6: The variation of pm and pv in mPa at θ = π/2, for some values of the
oncotic pressure difference ∆π = πv − πm in mPa, with p̄v = 1.066 × 106 mPa,
Lp = 5.475 × 10−10 mm

s mPa , p̄m = 6.727 × 105 mPa and the parameters in Table 6.2.
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Figure 6.7: The variation of pm in mPa at θ = π/2, for some values of the
mean blood vessel pressure p̄v in mPa, with πv − πm = 1.02 × 106 mPa, Lp =
5.475 × 10−10 mm

s mPa , the boundary conditions (6.144) and the parameters in Table
6.2.

The strength of the explicit solution we found in Section 6.5 is to take into
account the variation with respect to θ of the boundary condition p̄m to mimic the
pressure distribution in the SCS. Unfortunately, as far as we know, there are no
precise physiological data available for the pressure distribution in the SCS. Hence,
inspired by [59], we take a linear variation of the pressure along the θ coordinate
between the values p̄m,max = 3.9 mmHg ≈ 5.2 × 105 mPa and p̄m,min = 3 mmHg
≈ 4 × 105 mPa; these values are taken from the resulting pressure in [5]. Hence
we can write:

p̄m(ζ) = p̄m,min + ζ + 1
2 (p̄m,max − p̄m,min). (6.144)

Given this boundary condition, if we use the physiological values used in [5]
(σ = 0.88 and πv − πm = 1.02 × 106 mPa), we have an inversion of the flow at
≈ 1.4 × 106 mPa ≈ 10.5 mmHg, the same found in [5]. We can see this behavior
in Figure 6.7.

In Figure 6.8 we show the interstitial pressure distribution in the whole domain
(remembering that we assume axisymmetry) varying the hydraulic conductivity
of the blood vessel walls Lp. As we can see, we have that the position and the
value of the minimum of the pressure vary with respect to Lp; as Lp increases, the
minimum of the pressure decreases (see Figure 6.4) and moves towards the center
of the node. This is due to a combination of the pressure variation given by the
boundary conditions (6.144) and the fluid exchange between phases. These results
confirm that the θ dependence in our explicit solution is essential to describe the
fluid motion and the pressure distribution inside a lymph node.

In Figure 6.9 we can see the interstitial pressure distribution in the whole

120



Figure 6.8: The variation of pm in mPa in all the domain, for some values of Lp,
with πv − πm = 1.02 × 106 mPa, p̄v = 6.66 × 106 mPa, the boundary conditions
(6.144) and the parameters in Table 6.2.

domain varying the blood vessel pressure p̄v. As we can see, we have that increasing
p̄v increases the minimum of the pressure pm and moves the minimum from the
center to the lower part (ζ = −1 where we have the minimum in equation (6.144))
of the node. This behavior is the opposite of what we have in Figure 6.8, in
accordance with the results found in Figures 6.4 and 6.5.

As we mentioned before, we can choose as boundary condition p̄m(ζ) what
we want; hence we can choose the more complicated pressure distribution found
with the stream function approach in the steady case (see Section 2.3.1 for more
details):

p̄m(R, ζ) = Csteady − µ
∞∑

n=1

[
(4(n+ 1) + 2)

n
Cs

nR
n + (4(n+ 1) − 6)

n+ 1 Ds
nR

−n−1
]
Pn(ζ)

(6.145)
where the constants Csteady, Cs

n and Ds
n are calculated as in Chapter 5 [10] in a

steady case without fluid-exchange (div-free solution), where we fix the pressure
at one point p̄m(R2,−1) = 6.17 × 105 mPa and with an inlet and outlet boundary
condition defined in the domain [−1,−1+ζ0] (outlet condition) and [1−ζ0, 1] (inlet
condition), where ζ0 = cos

[
arcsin

(
RLV√

R2
LV +R2

2

)]
= R2√

R2
LV +R2

2
, RLV = 0.04 mm and

R2 = 0.5 mm. The boundary pressure distribution is plotted in Figure 6.10. We
can see that we have a fast increment of pressure near the inlet boundary condition
(and a fast decrement near the outlet boundary condition). With this boundary
conditions and the parameters p̄v = 1.06 × 106 mPa, πv − πm = 1.02 × 106 mPa
and Lp = 5.475 × 10−10 mm

s mPa we obtain the pressure distribution shown in Figure
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Figure 6.9: The variation of pm in mPa in all the domain, for some values of
p̄v in mPa, with πv − πm = 1.02 × 106 mPa, Lp = 5.475 × 10−10 mm

s mPa , p̄m =
6.727 × 105 mPa, the boundary conditions (6.144) and the parameters in Table
6.2.

6.11. Varying the parameters that regulate the fluid exchange, we obtain the same
behavior obtained above. As we can see, we have a pressure distribution similar
to those found earlier, but we have a higher (lower) pressure distribution near
the inlet (outlet). In this case, we have an inversion of flow with the mean blood
vessels pressure p̄v ≈ 1.53 × 106 mPa ≈ 11.476 mmHg, similar to the one found
with the constant value p̄m ≈ 6.7 × 105 mPa.

6.7 Numerical Simulation
In this section we propose numerical simulations related to the model described in
the previous sections aimed at coupling the motion of the flow in the subcapsular
sinus (SCS) and the lymphoid compartment (LC). Indeed, in the previous section,
we suppose a given pressure distribution for the SCS and we impose this pressure
as a boundary condition for the porous bulk region (the LC). However, in general,
we need to couple these two domains. We suppose that the lymph is a Newtonian
fluid similar to water, wherein the SCS we can describe the fluid behavior with
the steady Stokes equation (due to the small velocities and small characteristic
length, see Section 2.1)

∆vf = ∇pf , (6.146)
where vf and pf are the velocity and the pressure, respectively, in the SCS, and
for the LC we use the model obtained in the previous sections. The physiological
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Figure 6.10: The pressure distribution of equation (6.145) with the values calcu-
lated in [10].

Figure 6.11: The pressure distribution of pm with boundary conditions (6.145)
(values calculated in [10]), p̄v = 1.06 × 106 mPa, πv − πm = 1.02 × 106 mPa and
Lp = 5.475 × 10−11 mm

s mPa .
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Figure 6.12: The 3D simplified geometry of our problem, inspired by a mouse
popliteal lymph node as in Chapter 5 and in [10].

data are the same exposed in Section 6.5, and the cell problems (6.40) and (6.46)
are solved using Comsol Multiphysics (as in the previous section).

We use the finite element method to solve numerically the Stokes equation and
the macroscopic model given in Section 6.3 using Comsol Multiphysics. To have
more information about the weak formulation of the Stokes equation, we refer
to Section 5.2 and to [56]. Moreover, from equations (6.58) and (6.59), we have
that the Darcy problems can be written as diffusion problems for the pressure and
we refer to [132–134] for more information about the weak formulation and the
numerical methods used to solve this kind of problem.

We suppose a simplified spherical geometry as in Chapter 5 and [10], but in
this case, we have a 3D geometry (hence we do not assume the axisymmetry of the
flow). The geometrical parameters are the same as given in the previous section
and in the Subsection 5.1.2 [10]. We can see the 3D geometry of our problem in
Figure 6.12.

The boundary conditions that we impose are: uniform flow velocity vin as inlet
condition in the upper lymphatic vessel, the pressure pout as outlet condition in the
lower lymphatic vessel, no-slip condition at the external wall, and at the interface
between the SCS and the LC we have [121]

vf · n = vp · n on ΓM , (6.147)

−
(
T (vf , pf ) · n

)
· n = pp on ΓM , (6.148)

vf (x) · tj = −

√
Km(x)
αM

[
(n · ∇) vf (x)

]
· tj on ΓM , (6.149)

where ΓM is the macroscopic interface between the free fluid region (SCS) and
the porous region (LC), vf if the velocity in the free-fluid region, vp is the velocity
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in the porous region, T is the Cauchy stress tensor of the free-fluid region (see
Section 2.1), pf is the pressure of the free-fluid region, pp is the pressure in the
porous region, Km is the macroscopic permeability (obtained from the cell problem
(6.46) of the phase Ωm, that in our specific case is constant Km(x) ≡ KI, where
I is the identical tensor), αM is a parameter that needs to be estimated, n is the
normal vector related to ΓM , and tj for j = 1, ..., d− 1 (where d is the dimension
of our problem) are the tangents related to the normal n. The last interface
condition is the so-called Beaver-Joseph-Saffman boundary condition (BJS). The
BJS is an interface condition formulated experimentally in [122, 123]. Unlike
the interface between Stokes and Darcy-Brinkman in which we have the same
differential formulation of the equations and we can impose the continuity of the
velocities (see Section 5), here we have a Stokes differential equation in the free
fluid region and a diffusion-type equation for the pressure in the porous region.

An approximation that we can use to treat the equation (6.149) is [121, 124]

vf · tj = 0 on ΓM , (6.150)

where, if we use this new boundary condition, we have an error of ≈ ϵ.
In the general case, we have that, if we take a test function w ∈ Wg = {w ∈

H1(Ω) : wΓD
= g} (where Ω is the domain of the problem and ΓD is the portion

of the boundary in which we have the Dirichlet boundary conditions, see Section
5.2), the weak formulation of the interface conditions (6.147-6.149) can be written
as [121]

−
∫

ΓM

n · T (vf , pf )wdV =

−
∫

ΓM

[
n · T (vf , pf ) · n

]
w · n −

∫
ΓM

d−1∑
j=1

[
n · T (vf , pf ) · tj

]
w · tj, (6.151)

and hence we have, using (6.148) and (6.149)

−
∫

ΓM

n · T (vf , pf )wdV =
∫

ΓM

pp(w · n) +
∫

ΓM

d−1∑
j=1

µαM√
K

(
vf · tj

)
(w · tj)

=
∫

ΓM

(pp · n)w +
∫

ΓM

d−1∑
j=1

[
µαM√

K

(
vf · tj

)
· tj

]
w.

(6.152)

First of all, we want to see the effect of the Beaver-Joseph-Saffman parameter
αM in the interface condition (6.149). If we have that αM → ∞, we obtain
the simplified interface condition (6.150). In Figure 6.13 we can see the velocity
magnitude and the pressure values with αM = 1 and αM → ∞, and, as we can
see, we have that this parameter does not influence much the velocity and the
pressure in the whole domain, but mainly affects the quantities on the interface
ΓM . Figure 6.14 shows the shear stress at the interface ΓM varying αM , with these
chosen parameters: vin = 0.22 mm

s , pout = 6.18 × 105 mPa, πv − πm = 1.02 × 106

mPa, Lp = 5.475 × 10−11 mm
s mPa and p̄v = 1.06 × 106 mPa. As we can see, αM has
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a relevant effect on the shear stress on the interface ΓM , but all the values are
qualitatively similar to the results found in Section 5.2.2. We note that when we
have a small value of αM , we need a finer mesh to get a smooth line. For this reason,
and from the fact that we want to study the lymph behavior inside the lymph node
qualitatively (because we do not have precise physiological information), from now
on we fix the value αM → ∞, which means we use the simplified interface condition
(6.150), even though a lesser value of α may give a shear stress result more similar
to the one found in Section 5.2.2.

Figure 6.13: The first two plots (upper plots) represent the velocity magnitude in
the SCS in mm

s and the other two plots (lower plots) represent the pressure values
in the LC in mPa, with two different value of αM = 1 and αM → ∞. As we can
see, the general value does not change much with respect to αM . Here we used
the parameters vin = 0.22 mm

s , pout = 6.18 × 105 mPa, πv − πm = 1.02 × 106 mPa,
Lp = 5.475 × 10−11 mm

s mPa and p̄v = 1.06 × 106 mPa.

In Figure 6.15 we can see the interstitial pressure pm values in the LC varying
the parameter Lp. We have similar behavior to the one found in Section 6.6
(Figure 6.8): increasing Lp decreases the minimum of the interstitial pressure pm

(and increasing the maximum of the blood vessels pressure pv) and moves the
minimum towards the center of the node. This behavior is due to a combination
of the pressure variation given by the pressure of the Stoke flow in the SCS and
the fluid exchange between phases.

Given an uniform inlet velocity of vin = 0.22 mm
s , the inlet fluid flow calculated

numerically is ≈ 1.083 × 10−3 mm3

s
(with a relative error of about 1.5% from the

value calculated explicitly of 1.1 × 10−3 mm3

s
). Part of the lymph goes from the

SCS to the LC (and then back to the blood circulation), and the remaining part
goes out from the efferent lymphatic vessels: these quantities change with the
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Figure 6.14: Shear Stress in mPa calculated at the interface ΓM between the LC
and the SCS with respect to the arc length calculated between the angles θ = 0
(where we have the inlet condition) and θ = π/2 (in the middle between the inlet
and the outlet condition) varying αM . Here we used the parameters vin = 0.22 mm

s ,
pout = 6.18 × 105 mPa, πv − πm = 1.02 × 106 mPa, Lp = 5.475 × 10−11 mm

s mPa and
p̄v = 1.06 × 106 mPa.

parameter Lp, and we can see some results in Table 6.3. The sum of the columns
“Outlet Flow” and “SCS → LC” must result approximately in the inlet fluid flow
value ≈ 1.083 × 10−3 mm3

s
. As expected, increasing Lp means increasing the fluid

flow from the SCS to the LC, and it follows a lesser outlet fluid flow. We can see
this behavior in Figure 6.16, where the velocity near the efferent lymphatic vessel
decreases as Lp increases.

Varying the other parameters give results with behavior similar to what we
found in Section 6.6.

The plots and the data above are obtained with pout = 6.18 × 105 mPa, that
is a value inspired by the experiments of [111] (the minimum of the value range);
in [5] they used a value of pout = 4 × 105 mPa and in [6, 7] they used a value of
pout = 0 mPa. Considering that the value of the pressure is important to study
the fluid exchange between phases, we want to see the differences between using
a different outlet pressure. Hence now we fix pout = 4 × 105 mPa. In Table 6.4
we can see the fluid flow calculated with different Lp in this case; as we can see,
to have the same outlet fluid flow (and the same SCS → LC fluid flow) as in the
case with pout = 6.18 × 105 mPa, we need a higher value of Lp. If we fix the same
outlet fluid flow value of ≈ 9.83 × 10−4 mm3

s
(that is chosen by the fact that more

than 90% of the lymph remain in the SCS without entering the LC [5]), we have
Lp = 1.6×10−11 mm

s mPa for pout = 6.18×105 mPa and a value of Lp = 3×10−11 mm
s mPa

for pout = 4 × 105 mPa. As we can see in Figure 6.17, with these different values
we have the same pressure behavior and range but with different pressure values.
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Lp Outlet Flow SCS → LC
5.475 × 10−12 mm

s mPa 1.05 × 10−3 mm3

s
3.44 × 10−5 mm3

s

1 × 10−11 mm
s mPa 1.02 × 10−3 mm3

s
6.28 × 10−5 mm3

s

1.6 × 10−11 mm
s mPa 9.83 × 10−4 mm3

s
1 × 10−4 mm3

s

3 × 10−11 mm
s mPa 8.97 × 10−4 mm3

s
1.87 × 10−4 mm3

s

5.475 × 10−11 mm
s mPa 7.44 × 10−4 mm3

s
3.398 × 10−4 mm3

s

7.94 × 10−11 mm
s mPa 5.94 × 10−4 mm3

s
4.9 × 10−4 mm3

s

Table 6.3: Outlet fluid flow and the fluid flow passing through the external surface
of the LC from the SCS in mm3

s
varying the capillaries permeability Lp. Here we

used the parameters vin = 0.22 mm
s , pout = 6.18 × 105 mPa, πv − πm = 1.02 × 106

mPa, and p̄v = 1.06 × 106 mPa.

Figure 6.15: The interstitial pressure values pm in the LC with different values
of Lp. Here we used the parameters vin = 0.22 mm

s , pout = 6.18 × 105 mPa,
πv − πm = 1.02 × 106 mPa, and p̄v = 1.06 × 106 mPa.

Lp Outlet Flow SCS → LC
5.475 × 10−12 mm

s mPa 1.06 × 10−3 mm3

s
1.84 × 10−5 mm3

s

1.5 × 10−11 mm
s mPa 1.03 × 10−3 mm3

s
5.05 × 10−5 mm3

s

2 × 10−11 mm
s mPa 1.017 × 10−3 mm3

s
6.7 × 10−5 mm3

s

3 × 10−11 mm
s mPa 9.83 × 10−4 mm3

s
1 × 10−4 mm3

s

Table 6.4: Outlet fluid flow and the fluid flow passing through the external surface
of the LC from the SCS in mm3

s
varying the capillaries permeability Lp with pout =

4 × 105 mPa. The others parameters are vin = 0.22 mm
s , πv − πm = 1.02 × 106

mPa, and p̄v = 1.06 × 106 mPa.
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Figure 6.16: The Velocity magnitude in the SCS with different values of Lp. Here
we used the parameters vin = 0.22 mm

s , pout = 6.18×105 mPa, πv −πm = 1.02×106

mPa, and p̄v = 1.06 × 106 mPa.

Figure 6.17: The pressure values in the LC with different values of pout and Lp but
with the same fluid flow values of Tables 6.3 and 6.4. Here we used the parameters
vin = 0.22 mm

s , πv − πm = 1.02 × 106 mPa, and p̄v = 1.06 × 106 mPa.
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6.8 Conclusions
In this chapter we proposed a macroscopic model using the asymptotic homog-
enization technique resulting from the starting equations (6.1)-(6.2) and the in-
terface condition (6.4), which account for blood transcapillary exchange across
the vessels walls, under the assumption of local periodicity and macroscopic uni-
formity in a steady setting. Our starting point was the Darcy/Darcy-Brinkman
equation, so we considered the pore structure already smoothed out, and this
simplified the model because we did not need precise information about the mi-
croscale geometry (this information is encoded in the hydraulic conductivity K̂γ,
γ = m, v). After that, in Section 6.4 we analyzed in detail the differences between
using Darcy, Darcy-Brinkman, or Stokes as our starting point, and we found that
the Darcy-Brinkman equation has a Darcy-Stokes duality behavior depending on
the value of the permeability (and the relevance of the Laplace operator). More-
over, the choice of these equations allowed the separation of the cell problems into
two distinct phases, one involving blood vessels and the other involving the FRC
network so that we could solve the cell problems in the two domains separately.
Although it is less theoretically justified than the Darcy equation, the Darcy-
Brinkman equation is a valid starting point for our multiscale formulation since it
has a Stokes-like structure of the differential equation, which allows us to specify
in more detail the boundary condition without the need for a precise structure of
the microscale, which is described by the permeability parameter (that in most
cases is easier to obtain).

After this model analysis, in Section 6.5 we found the macroscopic explicit
solution of the resulting equation of the proposed model (described in Section 6.3)
in a spherical domain (under certainly simplified hypothesis) in terms of Bessel
and Legendre polynomials. Then, in Section 6.6 we applied this explicit solution to
an idealized spherical lymph node using physiological data from the literature; our
multiscale formulation of the problem allowed us to study the fluid behavior and
the fluid exchange in the interstitial space and the blood vessels within the node.
Despite the blood vessel pressure being higher than the interstitial pressure of the
node, the blood vessels have a higher concentration of protein too, and this leads
to the fact that the lymph goes from the node to the blood circulation, making the
lymph nodes important in the fluid regulation within the lymphatic system [39].
After that, in Section 6.7 we solved the lymphoid compartment problem coupled
with the free-fluid thin layer (the subcapsular sinus).

We analyzed how the parameters affect the fluid absorption and the pressure
(i.e. the velocity) with different boundary pressure, and the behavior of the results
are in line with those found in the literature [5, 50–52, 111].
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Chapter 7

Time-dependent Darcy-
Brinkman Homogenization with
Application to a Vascularized
Lymph Node

The Darcy-Brinkman equation is a differential equation that describes the fluid
flow in porous media (see Section 2.1). It is based on the Darcy’s law proposed by
Henry Darcy [77], and later modified by Brinkman adding a Laplacian (viscous)
term (called Brinkman term) [79], weighed by an effective viscosity µe. Moreover,
the Darcy-Brinkman equation enables us to examine the interface and boundary
layer in more detail when there is an interaction between a free-fluid region and a
porous region [80]. In general, the Darcy-Brinkman formulation allows for speci-
fying boundary conditions in more detail [81], and its differential form is similar
to that of the Stokes equation. Moreover, the Darcy-Brinkman equation is also
valid in a time-dependent setting [76, 118, 135].

As we mentioned in Chapter 6, the Darcy-Brinkman equation is theoretically
well justified from a multiscale point of view only in particular cases [32, 78, 118],
but we saw that it is a valid starting point for a multiscale formulation.

In this chapter we present a preliminary multiscale model using the asymp-
totic homogenization technique (see Section 2.4) that couples two time-dependent
Darcy-Brinkman equations with inhomogeneous body forces as our starting point
(it can be generalized easily to the case with multiple equations).

The time dependence is taken into consideration because we aim to apply this
model to a lymph node in which the inlet flow is time-dependent (see Chapter 1).
To see the time-dependent term on the first order approximation of the asymptotic
homogenization technique, we need to assume that

ShRe = ρ0L
2

µT0
≈ 1
ϵ2 ,

where Sh is the Strouhal number, Re is the Reynolds number, L is the characteristic
macroscopic length, T0 is the characteristic time, ρ0 is the density and µ is the
viscosity.
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Moreover, we consider a multiscale volume load that drives the coarse scale
fluid flow acting on both the Darcy-Brinkman problems [119]. The source men-
tioned above includes both the average force of the body and an additional compo-
nent linked to the solution of a separate cell problem that is only affected by small
scale changes of the specified force. These forces can occur from the use of elec-
tromagnetic fields, in magnetorheological fluids, and in electrolytes that permeate
non-uniform tissues.

The main differences between the model that we propose in this chapter and
the one described in Chapter 6 lie in the fact that here we consider the time-
dependence of the flow and we have a coupling between two Darcy-Brinkman
equations, instead of a coupling between a Darcy-Brinkman equation and a Darcy
equation as in Chapter 6.

In Section 7.1 we define the starting equations of our problem. We formulate
the balance equations of Continuum Mechanics and the corresponding boundary
conditions. In Section 7.2 we use the asymptotic homogenization technique to find
the equations that describe the motion of the fluid at the macroscale. In Section
7.3 we find the macroscopic equations by averaging the leading order terms of the
asymptotic expansion. In Section 7.4 we describe the numerical scheme that we
use to solve the problem presented in Section 7.3. Unlike the previous chapter,
here we immediately use numerical methods as the inclusion of time makes the
problem more complex. Finally, in Section 7.5 we run numerical simulations with
physiological data obtained from the literature.

The results presented in this chapter are not yet complete and have to be
considered preliminary. Since the research is ongoing, further analysis is needed
before any definitive conclusions can be reached. We are still working on the
subject.

7.1 Statement of the Problem
Let us consider a domain Ω = Ωv ∪ Ωm, where Ωm and Ωv are the portions of the
domain that correspond to two different phases. The labels m and v stand for the
matrix and the vessel regions, respectively. Without loss of generality and for the
sake of ease of presentation, we focus on a single inclusion within the cell, but this
model can be easily generalized to N inclusions.

To model the unsteady fluid flow within these phases, we use the Darcy-
Brinkman equation [79] with inhomogeneous body forces [119] in both phases
Ωγ, with γ = m, v, which can be written as:

ρ0
∂vγ(x, t)

∂t
= − ∇pγ(x, t) − K̂

−1
γ (x)vγ(x, t)

+ µe∆vγ(x, t) + f γ(x, t)
in Ωγ × [0, T ]

∇ · vγ(x, t) = 0 in Ωγ × [0, T ],

(7.1)

For γ = v,m, vγ is the velocity of the fluid, pγ the pressure, f γ the inho-
mogeneous external force density, K̂γ(x) is hydraulic conductivity tensor, which

132



is given by the permeability tensor divided by the viscosity µ of the fluid, µe is
the effective viscosity and ρ0 is the fluid density. We assume that the hydraulic
conductivity tensor is symmetric and positive definite, that is, for γ = v,m

K̂γ(x) = K̂
T

γ (x), ∀a ̸= 0 : a · K̂γ(x) · a > 0. (7.2)

As our starting point we have the Darcy-Brinkman representations: the pore
structure is considered already smoothed out, and the microscale geometry infor-
mation is encoded in the hydraulic conductivity K̂γ(x).

The interface conditions are prescribed as follows:vm(x, t) · n = vv(x, t) · n = Lp(pm(x, t) − pv(x, t) − p̄(t)) on Γ × [0, T ]
vm(x, t) · t = vv(x, t) · t on Γ × [0, T ],

(7.3)
where n is taken as the outward normal of the domain Ωm, t is any tangential
component, Γ = ∂Ωm ∩ ∂Ωv is the interface between phases, and p̄ depends only
on t. As in Chapter 6, the first equation of (7.3) is the interface condition for
the normal component of the velocity; we impose this type of interface condition
having in mind biological applications of this model (such as lymph nodes, tumors,
etc). The quantity Lp is given by experimental measurements and depends on both
the geometry and the tissue wall material of the intersection Γ. Nevertheless, our
model remains valid for other choices of boundary conditions.

The initial conditions are:

vγ(x, 0) = vγ,0(x) in Ωγ, (7.4)

where the initial conditions vγ,0(x) (γ = m, v) must be compatible with the
interface conditions (7.3) and need to satisfy

∇ · vγ,0(x) = 0. (7.5)

Now we want to write the Darcy-Brinkman equation and the interface condi-
tions in a non-dimensional form for the domain Ωγ, with γ = m, v; we define the
following non-dimensional quantities (denoted with a prime symbol):

pγ = Pγp
′
γ, vγ = Uγv′

γ, ϵ = d

L
, (7.6)

where Pγ is the characteristic pressure, Uγ is the characteristic velocity, d is the
fine scale length and L is the coarse scale length. Cγ is a representative pressure
gradient, with

Pγ = CγL. (7.7)
For the time, we consider

tγ = T0t
′
γ, (7.8)

where T0 is the characteristic time; moreover, we set

K ′
γ = K̂γ

Kref,γ
, f ′

γ =
f γ

Fγ

, (7.9)
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where Kref,γ is the representative (scalar) value for the hydraulic conductivity and
Fγ is the representative force.

Substituting into (7.1), we obtain (leaving the primes):
Sh

∂vγ(x, t)
∂t

= − Eu∇pγ(x, t) − K−1
γ (x)vγ(x, t)

+ 1
Re

∆vγ(x, t) + Frf γ(x, t)
in Ωγ × [0, T ],

∇ · vγ(x, t) = 0 in Ωγ × [0, T ],

(7.10)

where Sh = L

T0Uγ

is the Strouhal Number, Eu = CL

ρ0U2
γ

is the Euler Number,

Re = ρ0UγL

µ̂
is the Reynolds Number, Fr =

U2
γ

FγL
is the Froude Number, and we

set the new non-dimensional number

Nk = L

ρ0UγKref,γ
. (7.11)

We assume that [33]

ShRe ≈ EuRe ≈ NkRe ≈ 1
ϵ2 , (7.12)

which means
ρ0L

2

µT0
≈ 1
ϵ2 ,

CL2

µUγ

≈ 1
ϵ2 ,

L2

µKref,γ
≈ 1
ϵ2 . (7.13)

Now we want to non-dimensionalize the interface conditions (7.3): by the Starling
equation, the flux Jv passing through the blood vessel wall is given by

Jv = LpS̄ (pm(x, t) − pv(x, t) − p̄(t)) , (7.14)

where S̄ is the total exchange surface density. From the fact that d is related to
the distance between the vessels of the domain Ωv, we have

S ∝ L

d
= 1
ϵ
, (7.15)

hence we need to rescale the interface condition by ϵ to have a finite flux (see
Chapter 6 and [126] for more details).

Substituting into (7.10), we obtain


∂vγ(x, t)

∂t
= − ∇pγ(x, t) − K̂

−1
γ (x)vγ(x, t)

+ ϵ2µ∗∆vγ(x, t) + f γ(x, t)
in Ωγ × [0, T ],

∇ · vγ(x) = 0 in Ωγ × [0, T ],

(7.16)

with µ∗ = µe

µ
, and the interface conditions (7.3):vv(x, t) · n = vv(x, t) · n = ϵLp(pm(x, t) − pv(x, t) − p(t)) on Γ × [0, T ]

vm(x, t) · t = vm(x, t) · t on Γ × [0, T ].
(7.17)
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7.2 Asymptotic Homogenization
In this section we employ the asymptotic homogenization technique (Section 2.4)
[32, 70, 90] to derive a continuum macroscale model for the system of equations
(7.17), (7.26), (7.4). Since ϵ ≪ 1, we enforce the sharp length scale separation
between d (fine scale) and L (coarse scale) and we decouple spatial scales by
introducing a new local variable

y = x

ϵ
, (7.18)

where x and y represent the coarse and fine scale spatial coordinates, respectively
(see Chapter 2.4). They have to be formally considered independent variables.
From now on, pγ, vγ, Kγ and f γ (where γ = m, v) are assumed to depend on
both x and y.

Before we start with the asymptotic homogenization technique, we recall some
assumptions concerning the geometry of the multiscale problem:

• Local periodicity: we assume that pγ, vγ, Kγ and f γ are y-periodic. This
assumption allows us to study fine scale variations of the fields on a restricted
portion of the domain. In particular, we have that Ω is the periodic cell
domain, and Ωm and Ωv are the portions of the domain Ω related to the two
different phases.

• Macroscopic uniformity: we neglect geometric variations of the cell and in-
clusions with respect to the coarse scale variable x. Thanks to this assump-
tion, we can consider only one periodic cell Ωγ for every macroscale point x,
and we have that

∇x ·
∫

Ωγ

(·)dy =
∫

Ωγ

∇x · (·)dy. (7.19)

The differential operator transforms accordingly

∇ → ∇x + 1
ϵ
∇y; (7.20)

now we employ a power series expansion with respect to ϵ as follows (with γ =
m, v):

vγ(x,y, t) ≡ vϵ
γ(x,y, t) =

∞∑
l=0

v(l)
γ (x,y, t)ϵl, (7.21)

pγ(x,y, t) ≡ pϵ
γ(x,y, t) =

∞∑
l=0

p(l)
γ (x,y, t)ϵl, (7.22)

f γ(x,y, t) ≡ f ϵ
γ(x,y, t) =

∞∑
l=0

f (l)
γ (x,y, t)ϵl, (7.23)

vγ,0(x,y, t) ≡ vϵ
γ,0(x,y, t) =

∞∑
l=0

v
(l)
γ,0(x,y, t)ϵl, (7.24)

Substituting the expansions (7.21), (7.22), (7.23), (7.24) and the differential
operator (7.20) into the non-dimensionalized Darcy-Brinkman equations (7.16),
we have:
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

ϵ
∂vϵ

γ(x,y, t)
∂t

= − ϵ∇xp
ϵ
γ(x,y, t) − ∇yp

ϵ
γ(x,y, t)

− ϵK−1
γ (x,y)vϵ

γ(x,y, t) + µ∗ϵ3∆xvϵ
γ(x,y, t)

+ µ∗ϵ∆yvϵ
γ(x,y, t) + µ∗ϵ2∇x · (∇yvϵ

γ(x,y, t))
+ µ∗ϵ2∇y · (∇xvϵ

γ(x,y, t)) + ϵf ϵ
γ(x,y, t)

in Ωγ × [0, T ]

ϵ∇x · vϵ
γ(x,y, t) + ∇y · vϵ

γ(x,y, t) = 0 in Ωγ × [0, T ],
(7.25)

and if we substitute them into the interface conditions (7.17) and the initial con-
ditions (7.4), we obtain

vϵ
v(x,y, t) · n = vϵ

m(x,y, t) · n

= ϵLp(pϵ
m(x,y, t) − pϵ

v(x,y, t) − p̄(t))
on Γ × [0, T ]

vϵ
m(x,y, t) · t = vϵ

v(x,y, t) · t on Γ × [0, T ];
(7.26)

vϵ
γ(x,y, 0) = vϵ

γ,0(x,y) in Ωγ. (7.27)
If we collect the terms of order ϵ0 from system (7.25), we obtain:

∇yp
(0)
γ (x,y, t) = 0 =⇒ p0

γ = p(0)
γ (x, t) in Ωγ × [0, T ], (7.28)

∇y · v(0)
γ (x,y, t) = 0 in Ωγ × [0, T ]. (7.29)

If we collect the terms of order ϵ0 in the interface conditions (7.26), we obtain

v(0)
m (x,y, t) · n = v(0)

v (x,y, t) · n = 0 on Γ × [0, T ], (7.30)

v(0)
m (x,y, t) · t = v(0)

v (x,y, t) · t on Γ × [0, T ], (7.31)
and for the initial condition (7.27) we have

v(0)
γ (x,y, 0) = v

(0)
γ,0(x,y) in Ωγ. (7.32)

For the terms of order ϵ1 from equations (7.25), (7.26), and (7.27):

∂v(0)
γ (x,y, t)
∂t

= − ∇xp
(0)
γ (x, t) − ∇yp

(1)
γ (x,y, t) − K−1

γ (x,y)v(0)
γ (x,y, t)

+ µ∗∆yv(0)
γ (x,y, t) + f (0)

γ (x,y, t) on Ωγ × [0, T ], (7.33)

∇x · v(0)
γ (x,y, t) + ∇y · v(1)

γ (x,y, t) = 0 on Ωγ × [0, T ], (7.34)

v(1)
m (x,y, t) ·n = v(1)

v (x,y, t) ·n = Lp

(
p(0)

m (x, t) − p(0)
v (x, t) − p̄(t)

)
on Γ× [0, T ],

(7.35)
v(1)

m (x,y, t) · t = v(1)
v (x,y, t) · t on Γ × [0, T ], (7.36)
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v(1)
γ (x,y, 0) = v

(1)
γ,0(x,y) in Ωγ. (7.37)

Putting together (7.33), (7.29), (7.30), (7.31) and (7.32) in Ωm, we obtain the
following auxiliary Darcy-Brinkman problem in (v(0), p(1)):

∂v(0)
γ (x,y, t)
∂t

= − ∇xp
(0)
γ (x, t) − ∇yp

(1)
γ (x,y, t)

− K−1
γ (x,y)v(0)

γ (x,y, t) + µ∗∆yv(0)
γ (x,y, t)

+ f (0)
γ (x,y, t)

in Ωγ × [0, T ],

∇y · v(0)
γ (x,y, t) = 0 in Ωγ × [0, T ],

v(0)
m (x,y, t) · n = v(0)

v (x,y, t) · n = 0 on Γ × [0, T ],
v(0)

m (x,y, t) · t = v(0)
v (x,y, t) · t on Γ × [0, T ],

v(0)
γ (x,y, 0) = v

(0)
γ,0(x,y) in Ωγ.

(7.38)
We apply the Fourier transformation defined by

F[ϕ(t)] = ϕ̂(ω) = 1√
2π

∫ ∞

−∞
ϕ(t)e−itωdt,

to the equations of the system (7.38), and we obtain
iωv̂(0)

γ (x,y, ω) = − ∇xp̂
(0)
γ (x, ω) − ∇yp̂

(1)
γ (x,y, ω) − K−1

γ (x,y)v̂(0)
γ (x,y, ω)

+ µ∗∆yv̂(0)
γ (x,y, ω) + f̂

(0)
γ (x,y, ω) in Ωγ × [0, T ], (7.39)

∇y · v̂(0)
γ (x,y, ω) = 0 in Ωγ × [0, T ], (7.40)

v̂(0)
m (x,y, ω) · n = v̂(0)

v (x,y, ω) · n = 0 on Γ × [0, T ] (7.41)

v̂(0)
m (x,y, ω) · t = v̂(0)

v (x,y, ω) · t on Γ × [0, T ]. (7.42)
Since the problem is linear and the vector function ∇xp

(0) depends on the
macroscale only, we formulate the following ansatz for the solutions:

p̂(1)
γ (x,y, ω) = −ĝγ(x,y, ω) · ∇xp̂

(0)
γ (x, ω) + ˆ̃gγ(x,y, ω), (7.43)

v̂(0)
γ (x,y, ω) = −Ŵ γ(x,y, ω)∇xp̂

(0)
γ (x, ω) + ˆ̃wγ(x,y, ω). (7.44)

We have that (7.43) and (7.44) are the unique solutions of the auxiliary Darcy-
Brinkman problem (7.38) provided that the auxiliary vectors ĝγ, ˆ̃gγ, Ŵ γ, ˆ̃wγ solve
the following cell problems:

−iωŴ γ(x,y, ω) = − I +
(
∇yĝγ(x,y, ω)

)T

+ K−1
γ (x,y)Ŵ γ(x,y, ω)

− µ∗∆yŴ γ(x,y, ω)

in Ωγ × [0, T ],

∇y · Ŵ γ(x,y, ω) = 0 in Ωγ × [0, T ],
Ŵ γ(x,y, ω) · n = 0 on Γ × [0, T ]
Ŵ m(x,y, ω) · t = Ŵ v(x,y, ω) · t on Γ × [0, T ],
W γ(x,y, 0) = 0 in Ωγ,

(7.45)
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

iω ˆ̃wγ(x,y, ω) = − K−1
γ (x,y) ˆ̃wγ(x,y, ω) + µ∗∆y

ˆ̃wγ(x,y)
− ∇y

ˆ̃gγ(x,y, ω) + f̂
0
γ(x,y, ω)

in Ωγ × [0, T ],

∇y · ˆ̃wγ(x,y, ω) = 0 in Ωγ × [0, T ],
ˆ̃wγ(x,y, ω) · n = 0 on Γ × [0, T ],
ˆ̃wm(x,y, ω) · t = ˆ̃wv(x,y, ω) · t on Γ × [0, T ],
w̃γ(x,y, 0) = v

(0)
γ,0(x,y) in Ωγ,

(7.46)
If we apply the inverse Fourier transform F−1 to (7.45) and (7.46), we obtain

∂W γ(x,y, t)
∂t

= − K−1
γ (x,y)W m(x,y, t) + µ∗∆yW γ(x,y, t)

+ δ(t)I − ∇ygT
γ (x,y, t)

in Ωγ × [0, T ],

∇y · W γ(x,y, t) = 0 in Ωγ × [0, T ],
W γ(x,y, t) · n = 0 on Γ × [0, T ],
W m(x,y, t) · t = W v(x,y, t) · t on Γ × [0, T ],
W γ(x,y, 0) = 0 in Ωγ,

(7.47)



∂w̃γ(x,y, t)
∂t

= − K−1
γ (x,y)w̃γ(x,y, t) + µ∗∆yw̃γ(x,y, t)

− ∇yg̃γ(x,y, t) + f 0
γ(x,y, t)

in Ωγ × [0, T ],

∇y · w̃γ(x,y, t) = 0 in Ωγ × [0, T ],
w̃γ(x,y, t) · n = 0 on Γ × [0, T ],
w̃m(x,y, t) · t = w̃v(x,y, t) · t on Γ × [0, T ],
w̃γ(x,y, 0) = v

(0)
γ,0(x,y) in Ωγ,

(7.48)
where δ(t) is the Dirac delta. For system (7.48), we can search a solution in the
form w̃γ(x,y, t) = w̃γ,1(x,y, t) + w̃γ,2(x,y, t) and g̃γ(x,y, t) = g̃γ,1(x,y, t) +
g̃γ,2(x,y, t), where w̃γ,1(x,y, t) and g̃γ,1(x,y, t) are just the evolution (without
any forcing term) of the initial condition v

(0)
γ,0(x,y). Hence we can split (7.48) in

two systems:

∂w̃γ,1(x,y, t)
∂t

= − K−1
γ (x,y)w̃γ,1(x,y, t) + µ∗∆yw̃γ,1(x,y, t)

− ∇yg̃γ,1(x,y, t)
in Ωγ × [0, T ],

∇y · w̃γ,1(x,y, t) = 0 in Ωγ × [0, T ],
w̃γ,1(x,y, t) · n = 0 on Γ × [0, T ],
w̃m,1(x,y, t) · t = w̃v,1(x,y, t) · t on Γ × [0, T ],
w̃γ,1(x,y, 0) = v

(0)
γ,0(x,y) in Ωγ,

(7.49)
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

∂w̃γ,2(x,y, t)
∂t

= − K−1
γ (x,y)w̃γ,2(x,y, t) + µ∗∆yw̃γ,2(x,y, t)

− ∇yg̃γ,2(x,y, t) + f 0
γ(x,y, t)

in Ωγ × [0, T ],

∇y · w̃γ,2(x,y, t) = 0 in Ωγ × [0, T ],
w̃γ,2(x,y, t) · n = 0 on Γ × [0, T ],
w̃m,2(x,y, t) · t = w̃m,2(x,y, t) · t on Γ × [0, T ],
w̃γ,2(x,y, 0) = 0 in Ωγ,

(7.50)
where (7.49) describes the evolution of the initial condition (and gives null result
if the initial condition is zero), and (7.50) describes the action of the multiscale
force f γ (and gives null result if f γ is zero).

For system (7.47), we define the quantities

ḡγ(x,y, t) =
∫ t

0
gγ(x,y, s)ds, (7.51)

W̄ γ(x,y, t) =
∫ t

0
W γ(x,y, s)ds, (7.52)

so that
gγ(x,y, t) =

∂ḡγ(x,y, t)
∂t

, (7.53)

W γ(x,y, t) = ∂W̄ γ(x,y, t)
∂t

; (7.54)

substituting these equations into (7.47) and integrating over time, we have

∂W̄ γ(x,y, t)
∂t

= − K−1
γ (x,y)W̄ γ(x,y, t)

+ µ∗∆yW̄ γ(x,y, t) + I − ∇yḡT
γ (x,y, t)

in Ωγ × [0, T ],

∇y · W̄ γ(x,y, t) = 0 in Ωγ × [0, T ],
W̄ γ(x,y, t) · n = 0 on Γ × [0, T ],
W̄ m(x,y, t) · t = W̄ v(x,y, t) · t on Γ × [0, T ],
W̄ γ(x,y, 0) = 0 in Ωγ.

(7.55)
Applying the inverse Fourier transform F−1 to the ansatz (7.43)–(7.44), we

obtain
v(0)

γ (x,y, t) = − F−1[Ŵ γ(x,y, ω)∇xp̂
(0)
γ (x, ω)] + w̃γ,1(x,y, t) + w̃γ,2(x,y, t)

= − F−1[F[W γ(x,y, t) ∗ ∇xp
(0)
γ (x, t)]] + w̃γ,1(x,y, t) + w̃γ,2(x,y, t)

= −
∫ ∞

−∞
W γ(x,y, t− s)∇xp

(0)
γ (x, s)ds+ w̃γ,1(x,y, t) + w̃γ,2(x,y, t)

= −
∫ t

0
W γ(x,y, t− s)∇xp

(0)
γ (x, s)ds+ w̃γ,1(x,y, t) + w̃γ,2(x,y, t)

= −
∫ t

0

∂W̄ γ(x,y, t− s)
∂t

(x,y, t− s)∇xp
(0)
γ (x, s)ds

+ w̃γ,1(x,y, t) + w̃γ,2(x,y, t), (7.56)
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where ∗ denotes the convolution with respect to time. This is Darcy’s law with
memory and is in the same form presented in [32, 33, 136].

By the same computations, we obtain

p(1)
γ (x,y, t) = −

∫ t

0

ḡT
γ (x,y, t− s)

∂t
∇xp

(0)
γ (x, s)ds+ g̃γ,1(x,y, t) + g̃γ,2(x,y, t).

(7.57)
Moreover, we need that ⟨ḡγ(x,y, t)⟩Ωγ = 0, ⟨g̃γ,1(x,y, t)⟩Ωγ = 0 and ⟨g̃γ,2(x,y, t)⟩Ωγ =

0 to ensure the uniqueness of the solution, where ⟨(.)⟩Ωγ is the average operator

⟨(.)⟩Ωγ = 1
|Ωγ|

∫
Ωγ

(·)dy. (7.58)

7.3 Macroscopic Model
We now apply the average operator ⟨(·)⟩Ωγ to the ansatz (7.43) and we obtain:

⟨v(0)
γ (x,y, t)⟩Ωγ = −

∫ t

0
⟨∂W̄ γ(x,y, t− s)

∂t
(x,y, t− s)⟩Ωγ ∇xp

(0)
γ (x, s)ds

+ ⟨w̃γ,1(x,y, t)⟩Ωγ + ⟨w̃γ,2(x,y, t)⟩Ωγ , (7.59)

where W̄ γ,w̃γ,1 and w̃γ,2 are computed by problems (7.55), (7.49) and (7.50),
respectively.

Applying the average operator (7.58) to the equation (7.34), we obtain (using
the macroscopic uniformity):

∇x · ⟨v(0)
γ (x,y, t)⟩Ωγ + ⟨∇y · v(1)

γ (x,y, t)⟩Ωγ = 0, (7.60)

where, using the divergence theorem and the interface conditions (7.35), we have,
for the phase γ = m

⟨∇y · v(1)
m (x,y, t)⟩Ωm = 1

|Ωm|

∫
Ωm

∇y · v(1)
m (x,y, t)dy

= 1
|Ωm|

∫
Γ

v(1)
m (x,y, t) · nmdS

= 1
|Ωv|

∫
Γ

v(1)
v (x,y, t) · ndS

= LpS

|Ωm|
[
p(0)

m (x, t) − p(0)
v (x, t) − p̄(t)

]
, (7.61)

hence

∇x · ⟨v(0)
m (x,y, t)⟩Ωm = − LpS

|Ωm|
[
p(0)

m (x, t) − p(0)
v (x, t) − p̄(t)

]
. (7.62)

For the phase γ = v, we have:

∇x · ⟨v(0)
v (x,y, t)⟩Ωv + ⟨∇y · v(1)

v (x,y, t)⟩Ωv = 0, (7.63)
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and using the divergence theorem and the interface conditions (7.35):

⟨∇y · v(1)
v (x,y, t)⟩Ωv = 1

|Ωv|

∫
Ωv

∇y · v(1)
v (x,y, t)dy

= 1
|Ωv|

∫
Γ

v(1)
v (x,y, t) · nvdS

= − 1
|Ωv|

∫
Γ

v(1)
v (x,y, t) · ndS

= −LpS

|Ωv|
[
p(0)

m (x, t) − p(0)
v (x, t) − p̄(t)

]
, (7.64)

where we used the fact that nv = −n; hence

∇x · ⟨v0
v(x,y, t)⟩Ωv = LpS

|Ωv|
[
p(0)

m (x, t) − p(0)
v (x, t) − p̄(t)

]
. (7.65)

Remark 6. We notice that the fluid is macroscopically incompressible, indeed the
sum of the two divergences is zero. The two phases can have non-zero divergence
due to the fluid exchange between them.

7.4 Numerical Simulations
In this section we solve numerically the problems given by (7.59) (for γ = m, v),
(7.62), and (7.65). Unlike the previous chapter, we immediately use numerical
methods in this chapter as the inclusion of time makes the problem more complex.
We focus on phase γ = m, but the computations for phase γ = v are very similar.

For simplicity, we suppose vm,0 = 0 and fm = 0 (and the same for the phase
v, that means vv,0 = 0 and f v = 0). We denote

Am(x, t) = ⟨∂W m(x,y, t)
∂t

⟩Ωm , (7.66)

where Am is symmetric, positive definite, and decays exponentially with time
[32]. Moreover, we assume that the porous medium is isotropic, which means that
Am = AmI depends only on t (Am(t), and the same for Av(t)).

Putting together (7.59) and (7.62), we obtain∫ t

0
Am(t− s)∆p(0)

m (x, s)ds = L̄p

[
p(0)(x, t)m − p(0)

v (x, t) − p̄(t)
]
, (7.67)

where
L̄p = LpS

|Ωm|
. (7.68)

The problem here is the presence of a convolutional integral in (7.59). First of
all, we want to treat that term.

We discretize the time t ∈ [0, T ] with a uniform time step ∆t such that

0 = t0 < t1 < ... < tj−1 < tj < ... < tN = T,
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with
tj − tj−1 = ∆t, for j = 1, ..., N.

For the first time step t = t1 we have, using the trapezoidal rule:∫ t1

0
Am(t1 − s)∆p(0)

m (x, s)ds = t1
2
(
Am(t1)∆p(0)

m (x, 0) + Am(0)∆p(0)
m (x, t1)

)
= ∆t

2
(
Am(t1)∆p(0)

m (x, 0) + Am(0)∆p(0)
m (x, t1)

)
.

(7.69)

For the second time step t = t2 we have:∫ t2

0
Am(t2 − s)∆p(0)

m (x, s)ds =
∫ t1

0
Am(t2 − s)∆p(0)

m (x, s)ds

+
∫ t2

t1
Am(t2 − s)∆p(0)

m (x, s)ds

=∆t
2 Am(t2)∆p(0)

m (x, 0) + ∆tAm(t2 − t1)∆p(0)
m (x, t1)

+ ∆t
2 Am(0)∆p(0)

m (x, t2). (7.70)

For the third time step t = t3 we have:∫ t3

0
Am(t3 − s)∆p(0)

m (x, s)ds =
∫ t1

0
Am(t3 − s)∆p(0)

m (x, s)ds

+
∫ t2

t1
Am(t3 − s)∆p(0)

m (x, s)ds

+
∫ t3

t2
Am(t3 − s)∆p(0)

m (x, s)ds

=∆t
2 Am(t3)∆p(0)

m (x, 0) + ∆tAm(t3 − t1)∆p(0)
m (x, t1)

+ ∆tAm(t3 − t2)∆p(0)
m (x, t2) + ∆t

2 Am(0)∆p(0)
m (x, t3).

(7.71)

Hence, for a generic t = tk ∈ [0, T ], we have

∆t
2 Am(0)∆p(0)

m (x, tk) − L̄pp
(0)
m (x, tk) = − L̄p

(
p(0)

v (x, tk) + p̄(tk)
)

+ ∆t
2 Am(tk)∆p(0)

m (x, 0)

+ ∆t
k−1∑
j=1

Am(tk − tj)∆p(0)
m (x, tj). (7.72)

142



For the phase v we have (by similar computations, for a generic t = tk ∈ [0, T ]):

∆t
2 Av(0)∆p(0)

v (x, tk) − L̄pp
(0)
v (x, tk) =L̄p

(
−p(0)

m (x, tk) + p̄(tk)
)

+ ∆t
2 Av(tk)∆p(0)

v (x, 0)

+ ∆t
k−1∑
j=1

Av(tk − tj)∆p(0)
v (x, tj). (7.73)

Remark 7. From the fact that Am and Av decay exponentially with time, we can
truncate the sum in equations (7.72) and (7.73) at a certain Ntrunc < k−1, making
the computational cost more feasible with a small error.

For the spatial discretization, we use the classical finite element method for a
diffusion problem [132–134].

7.5 Application to the Lymph Node
In this section, we use the numerical method presented in the previous section to
model the fluid flow in a lymph node, using physiological data obtained or inspired
by a mouse popliteal lymph node [10]. The lymph node is basically formed by two
parts: a porous bulk region called lymphoid compartment (LC) and a thin layer
near the wall where the fluid can flow freely, called subcapsular sinus (SCS) [37,
108]. Since the whole blood vasculature in the lymph node is in the LC [5, 53,
54], in this section we solve numerically the macroscopic model we found in the
previous sections in the LC, using Comsol Multiphysics.

Here we have that Ωv is the blood vessels phase, and Ωm is the interstitial phase.
The fluid exchange between these two phases is described by the Starling equation,
which corresponds to choose p̄ = σ (πm − πv), where πm is the oncotic pressure of
the phase m, and πv is the oncotic pressure of the phase v. We can see the cell
domain in Figure 7.1. We have that the cell problems (7.55) in the two domains
Ωm and Ωv are coupled, unlike the cell problems presented in the previous chapter;
this is because we have to impose the continuity of the tangential component of
the velocity between the two phases.

We use the same parameters as in Section 6.6; we recall these parameters in
Table 7.1.

We plot Av(t) and Am(t) in Figure 7.2, and we note that they decrease quickly
with respect to time. The permeabilities obtained by the cell problem, in this
case, are higher than the ones found for the cell problems in Chapter 6; hence
in these simulations we expect a lesser fluid exchange between phases. We fix as
boundary pressure for the phase Ωm

p̄m =
(
4 × 105

)
0.5(1 − cos(πt)) + 2.7 × 105, (7.74)

and we fix a constant blood vessels boundary pressure p̄v. In Figure 7.3 we can
see the result of our numerical simulation at time t = 1 s, with the parameters
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Figure 7.1: The cell problem domain. The grey region (internal part) is the blood
vessels domain Ωv, the blue region (external part) is the matrix domain Ωm.

Name Physiological Range/Value Description
R 0.49 mm Macroscopic radius [10, 12].
µ 1 mg

mm s Viscosity [1, 17].
ϕ 0.75 Porosity [11].
µe

µ
ϕ

Effective viscosity [79, 106, 109].
ρ0 1 mg

mm3 Density [1, 17].
K̂m 3.84 × 10−9 mm2 Permeability of the interstitium

[11, 101].
σ 0.88 − 0.9 Staverman’s coefficient [5–8].
πv − πm 3.41 × 105 − 2.08 × 106 mPa Oncotic pressure difference [5–8,

51, 52].
Lp 5.475 × 10−12 − 3.67 × 10−8 mm

s mPa Hydraulic conductivity of the
blood vessel walls[5–8].

p̄v 6.67 × 105 − 1.066 × 106 mPa Mean blood vessel pressure [5–8].
S 13.4 mm2 Blood vessel surface [53].
|Ωv| 0.0322 mm3 Blood vessel volume [53].
N 6500 Number of cells.
rc 5.495 × 10−3 mm Blood vessel radius.
d 2.4 × 10−2 mm Blood vessel mean distance.
Kv 1.03 × 10−6 mm2 Blood vessels permeability.
c0 5.6 Kozeny constant [128].
fm, f v 0 Body forces.

Table 7.1: Physiological and estimated parameters. For a complete review of these
parameters, see Section 6.6.
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Lp = 10−9 mm
s mPa, πv − πm = 1.02 × 106 mPa, and p̄v = 1.06 × 106 mPa. As we

can see, we have a lesser fluid exchange between the phases respect to the steady
case (Figure 6.4), but remains the fact that, for a lymph node, the fluid inside the
lymphoid compartment goes from the interstitial space Ωm to the blood vessels
phase Ωv.

Figure 7.2: The permeability Aγ plotted with respect to time in mm3s
mg .

If we vary the boundary pressure p̄v, we have different behavior for the inversion
of the fluid exchange direction between phases. In Figure 7.4 we can see the
interstitial pressure pm varying p̄v; as we can see, for the value p̄v ≈ 1.4 × 106

mPa, we have an inversion of the flow for the first ≈ 0.5 s, after that time the
behavior is the classical one found in Figure 7.3. Instead, with a higher boundary
pressure of p̄v ≈ 1.6 × 106 mPa, we have a flow inversion for every time. For
the value p̄v ≈ 1.5676 × 106 that is the same value found for the flow inversion
in Section 6.6 (with p̄m = 6.7 × 105 mPa), we have the flow inversion only for
the first ≈ 0.9 s; hence we need a higher p̄v to have flow inversion, in this case,
respect to the steady case. The variation of the values in this Figure is minimal
because we are plotting the results with pressure values very close to have the flow
inversion.

Now we want to define a boundary pressure p̄m that varies with respect to time
and space to mimic the pressure behavior with a pulsatile inlet condition (inspired
by the results found in Section 5). We define the following boundary pressure

p̄m = 0.5(1 − cos(πt))f(z, y, z) × 104 + 6.6 × 105, (7.75)

where
f(x, y, z) = (z/R)√

x2 + y2 + (z/R)2
(7.76)
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Figure 7.3: In the upper plots, the interstitial pressure pm and the blood vessels
pressure pv in mPa; in the lower plots, the Darcy’s velocity in Ωm and in Ωv in
mm

s . We use the boundary conditions (7.74) and the parameters Lp = 10−9 mm
s mPa,

πv − πm = 1.02 × 106 mPa, and p̄v = 1.06 × 106 mPa. The time is fixed as t = 1
s.

is a function defined on the boundary of a sphere with radius R and gives 1 in
the upper pole, 0 in the other pole, and decreases smoothly between these two
values. We run numerical simulations with the fixed parameters Lp = 10−9 mm

s mPa,
πv − πm = 1.02 × 106 mPa, and p̄v = 1.06 × 106 mPa. We can see the results in
Figure 7.5. As we can see, as time increases, the interstitial pressure’s minimum
moves from the node’s center towards the lower pole (where f(x, y, z) has the
minimum value). We have this result due to the combination between the effects
of the boundary pressure and the fluid exchange in the center of the node. Instead,
when we are in a fluid inversion situation, we have the opposite behavior, and we
can see this in Figure 7.6, where we used the same parameters as before but with
p̄v = 2 × 106 mPa.

In Figure 7.7 we can see the behavior of the interstitial pressure pm varying Lp

with the boundary condition (7.75), with the parameters πv −πm = 1.02×106 mPa
and p̄v = 1.06 × 106 mPa, at t = 1 s. When Lp is small, we have that the effect of
the boundary condition is the prevailing one, but as Lp increases, the two effects
add up.
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Figure 7.4: The interstitial pressure pm varying the boundary blood vessels pres-
sure p̄v, in mPa, at different times. We use the parameters Lp = 10−9 mm

s mPa,
πv − πm = 1.02 × 106 mPa, and p̄v = 1.06 × 106 mPa.
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Figure 7.5: The interstitial pressure pm varying the at different times with the
boundary condition given in equation (7.75). We use the parameters Lp =
10−9 mm

s mPa, πv − πm = 1.02 × 106 mPa, and p̄v = 1.06 × 106 mPa.

Figure 7.6: The interstitial pressure pm varying the at different times with the
boundary condition given in equation (7.75). We use the parameters Lp =
10−9 mm

s mPa, πv − πm = 1.02 × 106 mPa, and p̄v = 2 × 106 mPa.
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Figure 7.7: The interstitial pressure pm the at different times with the boundary
condition given in equation (7.75) varying Lp (in mPa), at t = 1 s. We use the
parameters πv − πm = 1.02 × 106 mPa, and p̄v = 1.06 × 106 mPa.

7.6 Conclusions
In this chapter we proposed a macroscopic model using the asymptotic homog-
enization technique resulting from the starting equations (7.1) and the interface
conditions (7.3), which account for blood transcapillary exchange across the ves-
sels walls, under the assumption of local periodicity and macroscopic uniformity in
a time-dependent setting. Our starting point was the Darcy-Brinkman equation,
so we considered the pore structure already smoothed out, and the information
about the microscale geometry was encoded in the hydraulic conductivity K̂γ,
γ = m, v. Since we used the Darcy-Brinkman equation for both Ωm and Ωv and
imposed continuity of the tangential component of velocity between them, the
two-phase cell problems were coupled. After that, in Section 7.4 we proposed nu-
merical simulations to treat the memory term in the macroscopic equation (7.59).
Then, in Section 7.5 we used the model and the numerical simulations to study an
idealized spherical lymph node using physiological data from the literature; the
multiscale formulation of the problem allowed us to study the fluid behavior in
the interstitial space and the blood vessels within the lymph node.

In this model, we have considered the time-dependent behavior of the lymph
pulsation with the time-derivative term in the Darcy-Brinkman equation (7.1). To
see the time-dependent term on the first order approximation of the asymptotic
homogenization technique, we needed that

ShRe = ρ0L
2

µT0
≈ 1
ϵ2 ,
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where Sh is the Strouhal number, Re is the Reynolds number, L is the characteristic
macroscopic length, T0 is the characteristic time, ρ0 is the density, and µ is the
viscosity. As we can see, we need a small characteristic time to see the time-
dependent term at the first order: this may not be true for the lymph node case.

From the time-dependent cell problem, we found a higher permeability result
for both the interstitial and the blood vessel phases and a lesser fluid exchange
between these two phases. Moreover, we found that we need a higher blood vessel
pressure to have the flow inversion with respect to the steady case of Chapter 6.
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Conclusions

In this thesis, we proposed and analyzed mathematical models describing lymph
flow through the lymphatic system.

The first proposed model (Chapter 3) referred to the movement of lymph in a
lymphangion, the part of the lymphatic vessel between two valves. Thanks to the
lymphangion geometry, we were able to propose a 1D model using the theory of the
quasilinear hyperbolic systems. Several models tried to describe the lymph flow in
a lymphangion; we proposed a model that took into account realistic data, with
the shear stress inhibition and regulation phenomena related to the contractions
(eNOS) by fitting the well-known tube law with experimental data found in the
literature (for a mesenteric lymphangion of a mouse). We chose this approach
because it prioritized fluid behavior while maintaining realistic wall deformation
results with more feasible numerical simulations. The results found by our model
are in agreement with the literature.

The other models of this thesis referred to the lymph flow through a lymph
node; we focused most of our attention here because, to our knowledge, few models
tried to describe the behavior of the lymph node from a mechanical point of view.
The lymph node has a complex structure and functioning, and the attempt to
describe the lymphatic flow within it raised some exciting mathematical questions
worth studying in detail. Indeed, as far as we know, this thesis is the first attempt
to explicitly study the lymph flow through a lymph node.

As the first lymph node mathematical model (Chapter 4), we presented a highly
idealized model for lymph flow in a cylindrical lymph node, assuming laminar flow
and driven by a pulsatile pressure gradient. We found an explicit solution in terms
of Bessel functions, and we analyzed the eigenvalues of the problem.

After that, we proposed a more realistic mathematical model of the fluid flow
in a spherical lymph node (Chapter 5) inspired by a mouse popliteal lymph node;
the geometry remained idealized, but it was more similar to a real one. We found
an explicit solution using the stream function approach. Compared to the simpler
cylindrical case in which we found all the constants of integration explicitly, here
we had to solve a 6 × 6 system for every term of the series expansion of the
solution to find them. After we found the explicit solution, we proposed numerical
simulations and compared the results with the ones found explicitly. Moreover,
thanks to these numerical simulations, we were able to study the fluid flow in more
general cases (for example, in a spheroidal geometry).

The previous models described the fluid flow in a lymph node macroscopically,
and they did not consider its vascularization. To account for the multiscale nature
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of the lymph node and the blood vessels within it, we proposed two models us-
ing the asymptotic homogenization technique, coupling two different phases: the
matrix phase, describing the fluid flow in the FRC network, and the blood vessel
phase, describing the fluid flow in the blood vessels within the node, with inho-
mogeneous body forces. For this analysis, we mainly focused on the porous part
of the lymph node (the lymphoid compartment, LC) since the blood vessels are
all in this area. The first model (Chapter 6) coupled a Darcy-Brinkman equation
for the matrix phase with a Darcy equation for the blood vessel phase in a steady
setting. The choice of these equations allowed the separation of the cell problems
into two distinct phases, one involving blood vessels and the other involving the
FRC network so that we could solve the cell problems in the two domains sepa-
rately. We studied in detail the difference between using the Stokes, Darcy, and
Darcy-Brinkman equation for the microscale problem. After that, we found the
explicit macroscopic solution of the resulting equation of the proposed model in a
spherical domain (under certainly simplified hypothesis), and we applied the re-
sults we found to a lymph node using physiological data from the literature. After
that, we numerically solved the lymphoid compartment problem coupled with the
free-fluid thin layer (the subcapsular sinus, SCS).

In the second model (Chapter 7) we considered the time dependence of the
flow in the lymph node. We coupled two Darcy-Brinkman equations for the FRC
and blood vessel phases. We used the Darcy-Brinkman equation because it seems
more justified in the time-dependent setting. In this case, the blood vessels and the
FRC phases of the cell problems are coupled, unlike the cell problems presented
in Chapter 6; this is because we chose as starting point two Darcy-Brinkman
equations, and we had to impose the continuity of the tangential component of
the velocity between the two phases. To have the time-dependent component in
the first-order approximation of the asymptotic homogenization method, we had
to assume that

ShRe = ρ0L
2

µT0
≈ 1
ϵ2 ,

where Sh is the Strouhal number, Re is the Reynolds number, L is the characteristic
macroscopic length, T0 is the characteristic time, ρ0 is the density and µ is the
viscosity. In this case, we got Darcy’s law with memory, and we solved it using
numerical simulations with physiological parameters obtained from a lymph node.
The hypothesis above may not be valid for the lymph node case; this model is still
a work in progress, and further analysis needs to be conducted.

The mathematical models presented here represent a step forward in under-
standing lymph flow through the lymphatic system and consequently to various
pathologies. These models can be a starting point for a more accurate physiological
analysis, perhaps by collaborating with medical research institutions. Moreover,
this thesis demonstrates the importance of mathematical modeling in understand-
ing the complex dynamics of the lymphatic system and highlights the need for
further research in this field.
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Future Developments
Mathematical models are a fundamental tool for understanding the physics and
the physiology of biological phenomena; moreover, the mathematical description
of the lymph flow through the lymphatic system is in its infancy, which means
that there are still many things to do.

The lymphangion model can be improved in different ways.

• We can treat the wall mechanics with a more detailed model and not only
using phenomenological behavior and data [28–30]. The difficulty is that the
wall deformations are highly nonlinear, and coupling this behavior with the
system of differential equations described in Chapter 3 is quite difficult and
computationally demanding.

• We can consider not only the NO production given by the eNOS but also
by iNOS [44, 45].

• We can improve the model by adding to the system given in Section 3.2 the
following differential equation that describes the concentration of proteins
inside the lymphangion [56]:

∂Γ
∂t

+ ∂

∂z

(
ω

ΓQ
A

)
+Kc

Γ
A

= 0, (7.77)

where
Γ = Ac̄, (7.78)

A is the cross-sectional area, c̄ is the average concentration, ω is the velocity-
concentration correlation coefficient, Q is the average flow and Kc is a coeffi-
cient depending on the permeability of the wall χ and the protein concentra-
tion of the interstitial space cext. Indeed, we have that the concentration of
proteins affects the fluid behavior and some pathologies (like lymphœdema)
[137, 138].

As for the lymph node, we can improve the model in the following ways.

• We can study and analyze in more detail the time-dependent case exposed
in Chapter 7. To start with, we can add the subcapsular sinus to the sim-
ulations in Section 7.5. Moreover, we can study in detail the role of the
characteristic time in the lymph node case, maybe considering different scale
separations.

• It may be interesting to take into account the variation over time and space
of the protein concentration and the exchange of the latter with the blood
vessels within the node, adding the following differential equations [126] to
the problems given in Chapter 6 and 7:

∂cv

∂t
+ ∇ · (cvvv −Dv∇cv) = 0 in Ωv, (7.79)
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∂cm

∂t
+ ∇ · (cmvm −Dm∇cm) = 0 in Ωm, (7.80)

where γ = m, v define the phase cell domain, Dγ is the diffusivity of the
phase Ωγ, cγ is the protein concentration of the phase Ωγ, and vγ is the fluid
velocity of the phase Ωγ. The protein concentration plays a key role in the
fluid exchange within the node. Indeed, as we can see in Chapter 6, despite
the blood vessel pressure being higher than the interstitial pressure of the
node, the higher protein concentration of the blood vessels leads to the fact
that the lymph goes from the node to the blood circulation, making the
lymph nodes important in the fluid regulation within the lymphatic system
[39]. Moreover, it would be interesting to see how the lymph flow within the
node affects protein exchange and concentration.

• We can take into account a more realistic microscale and macroscale geom-
etry [6, 7, 59]. Lymph nodes have a very heterogeneous physiology, hence
it may be difficult to obtain precise data regarding the geometry (both mi-
croscale and macroscale geometry).

• The rigid porous matrix hypothesis can be too restrictive, and a further
extension of this thesis can be to treat the lymph node as a deformable
porous medium. As mentioned in the previous point, the physiology of the
lymph node is very complex, hence it may be difficult to obtain precise
biological data to deal with this case.

A final improvement can be to couple the lymphangion model with the lymph
node model, so as to have more information about the interaction between these
two organs and about the lymph flow through the lymphatic system.
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