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Abstract
With the High Luminosity (HL-LHC) program scheduled for the years to come, the integrated
luminosity will be increased by a factor of 10 beyond the LHC’s default value providing a wealth
of new data for observing rare phenomena and to test the SM to high accuracy. Due to the
increasing precision of LHC data, theoretical predictions should also improve in precision, as
the current state of experimental analyses is constrained by theoretical uncertainties. Therefore,
theoretical predictions play a central role for the interpretation of these collider data.

In this thesis, we address two different but related topics towards high-energy and precision
physics. Firstly, we present the implementation of the double Higgs boson production within
the Geneva Monte Carlo event generator framework. These generators are essential tools for
both theorists and experimentalists, enabling increasingly precise particle level predictions
for collider experiments. The double Higgs boson production, moreover, allows for the direct
measurement of the trilinear coupling, which is linked to many open questions about particle
physics and cosmology. However, it is a rare and challenging process to study, demanding
substantial effort from both experimentalists and theorists. For this project, we consider the
infinite top mass limit, where the top quark is treated as infinitely heavy and its mass is
integrated out. This approximation simplifies the implementation of the calculation, while
allowing the study of the new interface for the three different parton showers available in the
Geneva framework. Being a gluon-gluon initiated process, the effects of the shower have been
found to be different and more pronunced compared to other processes already implemented
in our generator, but still compatible with the associated theoretical uncertainties.

In the second part of this work, we discuss the threshold resummation for rapidity distri-
butions in the Drell-Yan process. Such logarithms, in the limit in which the invariant mass of
the tagged final state is close to the centre-of-mass energy of the initial state, invalidate the
calculation of the cross section by means of a perturbative expansion in the strong coupling,
and need to be resummed. We review the threshold resummation approaches available in the
literature for this particular case, discussing their primary differences and levels of accuracy.
We propose a new proof for two of these approaches which have been questioned. We also study
in detail their accuracy under various choices of the form of threshold logarithms, concluding
with a comparison between all the various approaches to this type of resummation.
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Chapter 1

Introduction

The discovery of the Higgs boson [3,4] at the Large Hadron Collider (LHC) has established the
Standard Model (SM) as a successful theory of fundamental particles and their interactions.
The continuous and intricate collaboration between experimental and theoretical physicists
has propelled our understanding of the universe to unprecedented levels. The LHC, with
its immense energies and precise detectors, continues to be at the forefront of this quest of
knowledge, pushing the boundaries of human understanding. From one side, experimental
measurements at the LHC are a cornerstone of high-energy physics. The detectors surrounding
the LHC collision points, such as ATLAS and CMS, meticulously record the outcomes of
these collisions, capturing a torrent of data that holds the key to understanding the universe’s
fundamental particles and their interactions. These experiments have not only confirmed the
existence of the Higgs boson, but have also unveiled groundbreaking discoveries, including the
measurement of the Yukawa coupling of the Higgs boson with fermions of the third generation
and the observation of rare particle decays. From the other side, high-energy physics is not
solely confined to the experimental realm. Theoretical measurements and models play an
equally crucial role in this field, predicting the behavior of particles, studying the fundamental
forces and exploring the limits of the SM. These theoretical measurements are essential for
guiding experimental design and interpreting the results.

Despite all the discoveries and confirmations of the SM predictions, a number of exper-
imental observations such as the neutrino masses, the dark matter and energy, call for the
existence of new physics beyond the SM or extensions of it. Moreover, the SM describes three
of the four fundamental forces of the universe leaving outside gravity, and there are many
open questions related both to particle physics and cosmology. Many of these questions regard
the Higgs self-interaction and the shape of the scalar potential. The LHC offers a unique
opportunity to look for new physics beyond the SM: the high centre-of-mass energy of the
collisions allows to search for new heavy particles directly, but new physics effects can also be
discovered indirectly, by performing precise measurements and looking for deviations from the
SM expectations.

Since LHC is a proton-proton collider, Quantum CromoDynamics (QCD) plays a central
role in the computation of theoretical predictions, determining the structure of the cross section
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formulas. Tipically, scattering processes occur at low energy and are predominantly elastic,
while at high energy they are inelastic. These inelastic processes can be studied through
perturbation theory, nameley as an expansion of the cross section in the strong coupling
αS . In addition to that, it is important to account for background contributions originating
from other processes that produce the same final state as the process under investigation.
These backgrounds introduce uncertainties which are also enhanced by the limited theoretical
knowledge of higher-order corrections. One of the main efforts into this direction is the
attempt to reducing the theoretical uncertainties on the SM predictions to a size comparable
with the experimental ones. Achieving this goal involves techniques like the calculation of
fixed-order corrections at higher orders. Moreover, it necessitates addressing the presence
of large logarithmic terms in specific kinematic regions, which have to be resummed to all
orders not to spoil the perturbative expansion of the cross section. Depending on the physical
observables and kinematic regions considered, various types of logarithmic terms may arise,
such as threshold logarithms, high-energy logarithms and tranverse momentum logarithms.
Resummation of these terms can be done through classical methods like the Mellin transform
of the physical observable [5–8], or innovative approaches like the Soft Collinear Effective
Theory (SCET) [9–13], which is able to resum a wide range of logarithmic terms. Another
effect that can improve the understanding of the QCD background is the study of multiparticle
interactions (MPI), meaning the simultaneous interactions of the costituents from one proton
with those from another proton.

Monte Carlo event generators represent indispensable tools for achieving precise theoretical
predictions, incorporating various effects described above. These generators simulate the
production of particle sets within scattering processes. Several methods have been employed in
constructing Monte Carlo event generators. Historically, generators described QCD emissions
via parton showers, primarily in the collinear and/or soft limit. Later, the predictions were
obtained by matching the showers to the tree-level matrix elements of the process considered,
improving the description also away from the soft and collinear limit. This is usually done
matching the leading-order (LO) matrix elements directly to some generators provider such
as Herwig [14], Pythia8 [15, 16] and Sherpa [17–19]. Similar matching approaches, but
with increased accuracy, are used such as Powheg [20–22], which combines the QCD next-to
leading order (NLO) prediction with the shower. There are other different methods in order
to do so, such the MiNLO [23, 24] and MEPS@NLO [25] ones. In recent years, a significant
leap has been made by extending partonic event generators to next-to-next-to leading order
(NNLO) in QCD, matched to a parton shower. Notable examples include Geneva [26–28]
and MiNNLOPS [29, 30].

The main arguments of this thesis, which drive the division into two parts, concern
the implementation of a new process, the double Higgs boson production, in the Geneva
framework, and the study of the threshold resummation approaches to rapidity distribution
for the Drell-Yan process.

The outline of this thesis is the following. The starting point is the review of the fundamental
theoretical tools used to described theoretical predictions: the fixed-order, the resummed and
the parton shower results. This allows us to introduce the notation used in the following.
The first part of this thesis regard the implementation of the double Higgs boson production
process within the Geneva framework. Therefore, we first discuss the Geneva Monte Carlo
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event generator method. In particular, we describe in detail the resummation of the resolution
variable chosen for such event generator, the formulas to obtain the differential cross section
in the N jet-regions required by Geneva and the interface to the parton shower. We then
specialise to the case of the double Higgs boson production, listing all the motivations to look
at a such rare and challenging process. We also discuss and explain all the Geneva parameters
that have to be tuned in order to describe optimally the double Higgs boson production. The
main discussion is driven by the choice of the resolution cutoffs and the energy scales for the
resummation of the resolution variable. We briefly discuss the expected effects of the three
different showers available in Geneva on the double Higgs boson production and, finally, we
present our phenomenological results.

The second part of this thesis deals with the threshold resummation for rapidity distribution
in the Drell-Yan process. After a brief reminder on the genesis of threshold logarithms, we
establish our notation for the rapidity distribution case. We briefly discuss the threshold
resummation approaches that are available in the literature, highlighting their main differences
and their accuracies. We then concentrate on two specific approaches: the Becher, Neubert,
Xu (BNX henceforth) [31] and the Bonvini-Forte-Ridolfi (BFR henceforth) [32], which validity
has been questioned. We propose a new proof for such approaches, discussing in detail its
validity. We address all the possible limitations of the BNX/BFR approach, defining the specif
limit of validity and presenting also numerical results to support our conclusions. We then
move to the study of the accuracy of these approaches, which can be improved depending on
the form of threshold logarithms that is chosen, with the support of numerical results for both
approaches and for various form of threshold logarithms. Finally, we show the comparison
at fixed-order with all the other approaches available in the literature. We add also some
representative results for the BFR resummation only, since the all orders resummation for
other approaches is not available in public codes. All the supplement material for both the
parts of the thesis is reported in the appendices.



Chapter 2

Theoretical tools

Theoretical predictions for collider processes involving strongly interacting particles are a
fundamental tool in describing experimental data. There are several methods to achieve this,
namely using the fixed-order (FO) perturbation theory, the resummed perturbation theory
and the predictions coming from a parton shower (PS). Each of these descriptions provides
the most accurate prediction in a specific limit, but none of them can fully describe a physical
process alone. The FO perturbation theory, for which the expansion parameter is the strong
coupling αS , becomes unreliable when large ratios of physical scales appear in the calculation.
Usually the large scales ratio appears as a logarithmic term, and at each order in αS there can
be up to two powers of such logarithms. In such cases, the logarithms have to be resummed
to all orders in αS to provide precise perturbative predictions. Both the FO and resummed
predictions, however, cannot predict the collision and the production of hadrons. This is due
to the asympotic freedom of QCD, which allows only the interaction of their constituents, the
partons, to be described through perturbation theory. Moreover, the higher-order resummation
is applied to observables that are sensitive to a small number of physical scales, and that are
sufficiently inclusive. To describe the final state that is fully exclusive in all emissions, parton
showers are needed. The parton shower approach allows the evolution of partons from their
production scales down to the hadronisation scale, providing a bridge between the perturbative
QCD calculations and the non-perturbative effects that dominate at low energies, described
by the hadronisation model which can be attached directly to parton showers. Monte Carlo
event generators can combine these three descriptions to obtain a fully exclusive hadronised
event with the perturbative accuracy of a higher-order calculation. As experimental results
become more precise, it is crucial for all these three components to be as accurate as possible.

In this chapter, we review all the three different descriptions for theoretical predictions,
considering a hadron-hadron collision at Large Hadron Collider (LHC) as a specific case,
highlighting their features and the main topics of this thesis.

8



9 2.1. Fixed-order prediction

2.1 Fixed-order prediction

Each proton-proton collision at LHC can be described using the collinear factorisation theorem,
as a generalization of the Deep Inelastic Scattering (DIS) case. The collision can be schematized
as the interaction between the constituents of the protons, namely quark and gluons, referred
to as partons. Considering two protons of momentum p1 and p2, the parton i has a fraction x1
of the momentum p1 of the proton, and its total momentum will be given by x1p1. Similarly
for the other parton j, its total momentum is given by x2p2. The hadronic cross section,
due to the collinear factorisation theorem, can be written as a convolution in the momentum
fractions of the partonic cross section, the perturbative term, and in the parton distribution
functions (PDFs), which are the non-perturbative part. Such cross section is given by

σ(τ,Q2) =
∑

a,b

∫ 1

τ
x1

dx1

∫ 1

τ
x2

dx2 fa
(
x1, µ

2
)
fb
(
x2, µ

2
)

× σ̂ab

(
τ

x1x2
, αS(µ

2),
µ2

Q2

)
+O

(
ΛQCD

Q

)
, (2.1)

where Q2 is the hard scale of the process, τ = Q2

S with S the collider centre-of-mass energy,
µ2 the energy chosen for the renormalisation and a, b the flavour indices. This formulation is
supposed to be valid up to corrections that are suppressed with powers of ΛQCD

Q , known as
higher twist, where ΛQCD is the hadronisation scale. Although a formal proof does not exist
for the general case of a LHC process, this theorem holds for the most important production
modes.

The perturbative part is represented by the partonic cross section, which can be written as
an expansion in αS as

σ̂ab

(
τ

x1x2
, αS(µ

2),
µ2

Q2

)
=
∑

k

α
(k)
S (µ)σ̂ab

(
τ

x1x2
,
µ2F
Q2

,
µ2R
Q2

)
, (2.2)

where µF and µR are the factorisation and renormalisation scales, respectively.1 The per-
turbative expansion is obtained by expanding up to a fixed k-th order Eq. (2.2). The fully
differential cross section at lowest order, called leading order (LO), is given by

dσ̂ab

(
τ

x1x2
, αS(µ

2),
µ2

Q2

)
= B (p1, p2, q1, ..., qN ) dΦN (q1, ..., qN ) , (2.3)

where B (p1, p2, q1, ..., qN ) is the Born term containing the matrix element squared relative to
the process considered, dependent on the initial-state proton momenta and on the N final-state
partons ones. The usual N body phase space is represented by dΦN .

In order to have meaningful predictions to be compared with experimental data, the
perturbative expansion in Eq. (2.2) has to be computed with the highest possible accuracy.
Since the expansion parameter is the strong coupling αS , going beyond the LO can be seen

1Note that any physical observable is independent of the factorisation and renormalisation scales, they are
just an artifact of the theory.
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as adding extra vertices to the Born matrix element, and, effectively, as including an extra
particle. Depending on how this additional particle is added to the Born level, it can be
classified as a real correction R, if it appears in the final state, or a virtual one V, if it is
absorbed in a loop. In the first case, the particles are resolved, meaning that extra particles
are emitted or absorbed during the interaction being considered, and they represent actual
radiation in the process. As a consequence, the phase space for a real correction will be different
from the one at the Born level, since extra particles have to be counted. Virtual corrections,
instead, arise from the exchange of virtual particles in the interaction. These particles are
not directly resolved, and thus observed, as they are involed in loops in Feynman diagrams.
When integrating over the phase space of these corrections, singular contributions can arise
from the calculation, when the extra particles are either soft or collinear to one of the other
particles involved in the process. Thanks to the Kinoshita-Lee-Nauenberg theorem [33, 34],
these singularities are always cancelled when virtual terms are combined with real emission
terms. To prove that the real emission term and the virtual one have the same exact value,
but with a different sign, the phase space integrals have to be regularised, typically using
dimensional regularisation (d = 4− 2ϵ). In this way the singularities are represented as poles
in ϵ. Moreover, due to the non-abelian nature of QCD, ultraviolet divergences also appear,
which can be effectively addressed through renormalisation.

The idea of iteratively adding an extra vertex to the LO cross section can be extended
arbitrarily, but the number of diagrams to be computed grows factorially, making the evaluation
of matrix elements time-consuming. Additionally, the virtual and real contributions belong to
different phase spaces, posing a challenge when implementing a Monte Carlo event generator
that typically deals with one phase space at a time. To address these issues, one can subtract
divergences at the integrand level, using the so-called subtraction methods. To show how the
subtraction methods work, consider computing a next-to-leading order (NLO) cross section
(one extra power of αS to the Born level). A counterterm C is introduced to subtract and
reproduce the exact soft and collinear divergences arising from the real term R. Basically, the
cross section at NLO can be written as

σNLO =

∫
B (ΦN ) dΦN + lim

d→4−2ϵ

∫ [
V (ΦN ) +

∫
C (ΦN+1)

dΦ
(d)
N+1

dΦN

]
dΦN

+

∫ [
R (ΦN+1)− C (ΦN+1)

]
dΦN+1 . (2.4)

The introduction of C (ΦN+1), requires the existence of a mapping between the ΦN+1 and ΦN
phase space. This mapping is needed to project the ΦN+1 configurations close to the soft and
collinear limits onto the ΦN configuration, for which the virtual poles and the real ones cancel.
The most commonly used subtraction methods are the Catani-Seymour dipole formalism [35]
and the Frixione-Kunszt-Signer method [36].

2.2 Resummation in perturbative QCD

Any physical observable, such as the cross section, can be described using perturbation theory.
Depending on which observable and kinematic region are considered, certain contributions in
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the perturbative coefficient of a generic expansion, like the one in Eq. (2.2), can appear, leading
to large corrections to all orders in αS . These potentially large terms appear at each order in
perturbation theory, spoiling the convergence of the perturbative series, usually guaranteed by
the small value of the strong coupling. The form of these contributions is typically expressed as
the logarithm of the ratio of two energy scales log

(
µ21/µ

2
2

)
. When µ21 and µ22 are very different,

the logarithms can become large. If the power of these logarithms grows with the power of αS ,
then the effective expansion parameter becomes

αnS log
k

(
µ21
µ22

)
∼ 1 , k ≤ n , (2.5)

and all the terms in the perturbative series are of the same order. In these cases, the
resummation of the logarithms to all orders in αS is needed.

Depending on the physical observable chosen, there can be many different logarithmic
terms that require resummation. In the particular case of the cross section, the logarithms
that need to be resummed are typically associated with large or small values of the momentum
transfer, or the energy scale in the scattering process. Thus, there are at least three different
families of logarithms to consider: the threshold logarithms, the high-energy logarithms and
the transverse momentum logarithms. Each of these families has been widely studied in
literature, and their resummation is relevant in a specific kinematic limit. The first topology
of logarithms named, the threshold logarithms, will be the subject of the second part of this
thesis, introduced in chapter 8. Concerning Monte Carlo event generators, one has to deal
with the logarithms arising when partons are emitted nearly collinear to the direction of the
parent parton, and they depend on the resolution variable chosen for that particular event
generator. The resummation to all orders can be done analytically or by numerical methods
using a parton shower Monte Carlo. In this thesis, we are interesting in the analytical method.
In QCD, this typically involves the use of techniques from renormalisation group theory and
factorisation theorems to systematically organize and sum up the logarithmic terms to all
orders in perturbation theory. A classic way to organize such logarithms is in terms of the
Mellin transform, defined in Sec. C.1, of the partonic cross section [5–8], which can then be
written as

dσ̂ab(N,αS) = exp

[
1

αS
g1(αS logN) + g2(αS logN) + αS g3(αS logN) + ...

]
+O

(
1

N

)
.

(2.6)

The functions gi only depend on αS logN , and each of them corresponds to a different order:
g1 gives the leading logarithmic (LL) accurate term, g2 contains the next-to-leading logarithmic
(NLL) accurate contribution and so on so forth for the others gi. This expression is obtained
in Mellin (N) space, and the gi values determines a whole tower of logarithms to all orders in
perturbation theory. In order to obtain the physical cross section, it is necessary to compute
the inverse Mellin transform of Eq. (2.6) taking into account the branch cut in the complex
N -plane due to the Landau pole.2 To achieve this, different solutions have been proposed: the

2The running of the strong coupling αS can be represented as

αS(µ
2) =

1

β0 log
µ2

Λ2

, (2.7)
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Minimal Prescription (MP) [37], and the Borel Prescription (BP) [38].
There are, however, other approaches to this resummation, as for example with the

introduction of an effective field theory to describe QCD in the soft and collinear regime, called
Soft Collinear Effective Theory (SCET). SCET allows to separate the full QCD theory into
different sectors introducing new fields and symmetries to describe the dynamics of soft and
collinear particles separately and achieving resummation of these large logarithms. This last
approach will be widely used in this thesis, for this reason we discuss the SCET formalism in
the following section.

2.2.1 Soft Collinear Effective Theory

Soft Collinear Effective field Theory (SCET) [9–11] is a low-energy field theory of the Standard
Model, widely used for high-energy processes involving light particles. It is particularly relevant
for collider physics and heavy-quark physics.

Effective field theories (EFTs) are used to expand a physical observable in the ratio of two
disparate scales, usually an high-energy scale (Λhigh) and a lower one (Λlow). Thanks to the
expansion, it becomes possible to separate the low-energy contributions from the high-energy
ones. For QCD processes involving initial-state hadrons, there is always a low-energy part
that is non-perturbative, represented by the parton distribution functions, and a high-energy
part that is computed perturbatively. Moreover, the perturbative part can further depend on
more than one scale, leading to large logarithms of the scale ratios that appear order by order
in the strong coupling αS . In the case of SCET, similar to what has already been said, these
logarithms can be represented by

αnS log
2n

(
Λhigh

Λlow

)
, n ∈ N . (2.8)

The basic idea behind SCET is to split the momenta of particles involved in a scattering
process into different components, each corresponding to different energy scales. The most
useful coordinate system for this purpose is the light-cone coordinates one: introducing two
light-like vectors nµ = (1, 0, 0, 1) and n̄µ = (1, 0, 0,−1) in the directions of the momenta of the
particles, any four momenta pµ can be decomposed as

pµ = (n · p) n̄
µ

2
+ (n̄ · p)n

µ

2
+ pµ⊥ ≡ pµ+ + pµ− + pµ⊥, (2.9)

resulting in a sum of two collinear terms and a perpendicular one. This allows for the analysis
of interactions of these particles by isolating the dominant contributions at each energy scale.
This separation is performed in SCET by introducing different sets of fields corresponding to
different energy regimes. The starting point is the expansion of the Feynman diagrams through
the strategy of regions. The strategy of regions, based on dimensional regularisation, allows to
carry out asymptotic expansions of loop integrals by splitting the integration into different
regions, and expanding the integrand in each of them. The expansion parameter used, λ, is

where µ is the scale at which the corresponding value of the strong coupling is computed, Λ ≈ 200 MeV is the
Landau pole and β0 =

11CA−2nf

12π
with CA = 3 and nf the number of light quarks. The Landau pole marks the

energy scale at which the strong coupling becomes infinite.
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usually defined as the ratio of a hard scale Q and another energy scale involved in the process
at hand. Once these regions have been identified, an effective Lagrangian is constructed, which
produces the different terms contributing to the expanded diagrams. Moreover, the regions
can be integrated out in sequence performing an integral over the field of the particles. All
the different pieces can be connected through a matching process, which allows to relate the
parameters of one effective region to the parameters of another region at higher or lower energy
scale. This matching process is done at a given renormalisation scale, and it is represented by
a coefficient called the Wilson coefficient. The Wilson coefficient satisfies the renormalisation
group equation (RGE) on that renormalisation scale considered.

The expansion of the loop integrals is performed in four different regions,3 separated
according to how the components of the integration momentum kµ scales:

1. Soft region: kµ ∼ (λ2, λ2, λ2)Q
dealing with particles that carry energy much smaller than the hard scale of the process.
In this region, soft interactions are described by soft Wilson lines, which encode the
long-range interactions of soft gluons;

2. Hard region: kµ ∼ (1, 1, 1)Q
involving particles that carry energy at the highest scale in the process. This region is
described by the usual perturbative QCD calculations;

3. Collinear region: kµ ∼ (λ2, 1, λ)Q
dealing with particles that carry energy much smaller than the hard scale, but larger
than the soft one. These particles move along specific directions closely aligned to the
parent particle’s direction. In this region, collinear interactions are described by collinear
Wilson lines, which encode the interactions of collinear gluons and quarks;

4. Anticollinear region: kµ ∼ (1, λ2, λ)Q
similar to the collinear region, but the particles move in directions nearly opposite to
the parent particle’s direction.

For some particular applications, such as exclusive B-mesons decays or some observables sensi-
tive to small transverse momenta, it is possible to have also the ultra-soft region characterized
by the λ4 scaling.

This procedure in the SCET formalism allows to write the cross section in a factorise form.
For the particular case of colour singlet production κ, which will be the subject of this thesis,
the differential hadronic cross section can be written, pictorially, as

dσκ
dρ

=
∑

a,b

Hκ(µH)UH(µH , µ) [Ba(µB, ρ)⊗ UB(µB, µ)][Bb(µB, ρ)⊗ UB(µB, µ)]

⊗ [Sκ(µS , ρ)⊗ US(µS , µ)] +O(ρ) . (2.10)

Here, ρ represents any resolution variable sensitive to the soft or collinear radiation. This
factorised formula is valid up to power corrections in the resolution variable chosen. H,

3It can be proven that all of the other possible scalings for the integration do not contribute to the final
result, since they give rise to scaleless integrals only.
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Ba,b and S are the hard, beam and soft functions, respectively. The hard function H is
process-dependent, and it encodes the part of the calculation coming from the hard region.
The beam functions Ba,b depend on whether the process is gluon- or quark-initiated, and they
are directly linked to the collinear and anticollinear regions. Lastly, the soft function S, for
the production of colour singlet processes, only depends on whether the Born process is quark-
or gluon-initiated. The convolution of these functions is schematically represented by the
symbol ⊗, and each of them is computed at a suitable scale µH,B,S in such a way that no large
logarithmic corrections are present in their fixed-order perturbative expansions. They are then
evaluated at a single common scale µ, through the evolution factors UH,B,S from their own
characteristic scale to the common one, resumming all the large logarithms generated by the
ratio of the two scales.

2.3 Parton Shower

A parton shower is the simulation of the evolution of a high-energy particle collision that
incorporates a sequence of parton branchings. It is a fundamental tool for performing fully
differential calculations at higher multiplicities, by adding extra radiation to a partonic event.
The emission process involves a parton emitting a gluon or a quark, and it is often referred
to as branching, as the parton branches into multiple partons. The parton shower evolves
sequentially, where each emitted parton in a branching can subsequently undergo further
emissions. This cascade-like process generates a series of successive parton emissions. Emissions
are ordered based on a specific evolution variable, ensuring that each emission is softer and
more collinear than the previous one. Parton showers respect unitarity, meaning that a parton
can either split into two partons, or not split at all. Moreover, it conserves locally flavour and
four momentum. The emissions can occur at different stages of a particle collision, resulting in
two types of radiation: initial-state radiation (ISR) and final-state radiation (FSR). Both types
of radiations are governed by the same Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
equations.

Let’s consider the case of a radiation in the final state (FSR) where a mother parton a
splits into two daughter partons b and c. The differential probability for this branching to
occur at a virtuality scale t is given by

dPa(z, t) =
∑

b,c

dt

t

αS
2π
Pa→bc(z) dz , (2.11)

where z is the fraction of the mother energy taken by b and 1− z is the one taken by c, and
Pa→bc(z) are the splitting kernels. This equation accounts for an infinite number of partons
emissions. The emissions continue until a shower cutoff Λ is reached. It usually coincides with
the hadronisation scale (∼ 1 GeV). It is then convenient to express the probability that no
emission occurs between the initial maximum scale tmax and a given t, called the Sudakov
form factor

Pno
a (tmax, t) = exp


−

∑

b,c

∫ tmax

t

∫ zmax

zmin

dPa(z′, t′)


 , (2.12)
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where the limits of integration on z depend on the kinematics and the Λ cutoff. The probability
of the first branching occuring at t = ta is then given by dPa(z, ta)Pno

a (tmax, ta). Subsequently,
the daughters b and c can branch, with their tmax given by the scale at which the mother
made its branching, tmax = ta. This can continue iteratively until the Λ cutoff is reached and
the shower stops.

The same structure of Eqs. (2.11) and (2.12) can be used to describe ISR, but this case is
usually treated with the backwards evolution, also called reverse evolution. In this approach,
the order of the shower described above is reversed. The initial-state shower starts from
the hard scattering process, where partons resulting from the collision are generated, and
evolves towards the initial state, simulating the emission of increasingly energetic partons. The
probability that a parton a resolves into two partons b and c is defined based on the DGLAP
equation as

dfb(x, t) =
∑

a=q,g

dt

t

αS
2π

∫
dy

y
fa(y, t)Pa→bc

(
x

y

)
. (2.13)

More specifically, the equation above, where fa,b are the parton densities, describes the
probability that a parton a with momentum y is resolved into a parton b at x = zy and another
parton c at y − x = (1− z)y. Similarly, a parton b can be unresolved into a parton a, and the
relative probability is given by the ratio dfb/fb, which leads to

dPb(x, t) =
∑

a=q,g

dt

t

αS
2π

∫
dz
yfa(y, t)

xfb(x, t)
Pa→bc(z) . (2.14)

As already done for the FSR case, the no-emission probability Pno
b (x, tmax, t) can be defined

as in Eq. (2.12), exponentiating Eq. (2.14). As they are defined, considering the structure of
the Sudakov form factor, parton showers are leading logarithmic accurate. There are various
studies on how to improve their accuracy, but we will not discuss them and we only consider a
leading logarithmic accurate parton shower.

Another important point to note is that partons carry momentum, flavour, spin and colour,
and all these quantum numbers have to be handled correctly. In particular, the treatment of
colour does not fit properly in the event generator formalism, since the interference between
different colour states is significant. In all the parton showers considered in this work, the
leading colour approximation is used, which means that the number of colors Nc = 3 is fixed
and all the contributions to the probability to obtain a partonic final state suppressed by
powers of 1/N2

c are neglected.
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Double Higgs production in the Geneva framework
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Chapter 3

Geneva framework

Geneva, GENerate EVents Analytically, is a Monte Carlo event generator that combines the
three theoretical predictions used to describe collider processes: the fixed-order perturbation
theory, the resummed perturbation theory and the predictions from parton shower. The
aim of Geneva is to combine these three descriptions obtaining fully exclusive hadronised
events with the perturbative accuracy of a higher-order calculation. Moreover, including
the higher-order resummation in an appropriate resolution variable, the FO and PS regimes
are separated and only connected through the resummation itself. This allows to have an
event-by-event systematic estimate of the theoretical perturbative uncertainties, and to improve
the perturbative accuracy away from the FO regions. Currently, in Geneva most of the
processes implemented are colour singlet production, but also final states with heavy coloured
partons and jets have started to be studied.

The Geneva method is based on the definition of physical and infrared-safe (IR safe)
events at a given perturbative accuracy, with the requirement that the IR singularities cancel
on an event-by-event basis. Events are discriminated according to the value of N -jet resolution
variables which divides the phase space into 0-, 1- or 2-jets. In order to match the resummation
to the fixed-order prediction, moreover, the resummation of such IR safe variable has to be
known. In principle, hence, Geneva can be used with any resolution variable which satisfies
these two requirements. One optimal choise is the N -jettiness, but in the past also the
transverse momenutum of a colour singlet system has been chosen as a resolution variable [39].

In this thesis we are going to use only the N -jettiness [40], defined as

TN =
N∑

i=1

min
q1,...qN

(
qa · p̂i, qb · p̂i, q1 · p̂i, ..., qN · p̂i

)
, (3.1)

where qa = (1, 0, 0, 1), qb = (1, 0, 0,−1) are the beam directions, and q1, ..., qN can be any jet
direction. Note that p̂i is the longitudinally boosted momenta from the laboratory frame to
the one in which the colour singlet has zero rapidity.

The N -jettiness can be thought as a variable which measures the degree to which the final
state is N -jet-like for a given value of N , and automatically clusters the final state into N -jet

17
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and beam regions. Basically, any configuration with a number of final state partons that is
equal or lower than N has TN = 0. Instead, any configuration with additional emission that is
not soft nor collinear gives a nonzero value of TN .

Among the various properties of this observable, two are particularly useful for Geneva. It
is an IR-safe variables, which means that TN → 0 in presence of soft or almost collinear partons
to the beam. Moreover, its resummation is known up to next-to-next-to-next-to-leading
logarithmic (N3LL) accuracy for N = 0 (zero-jettiness, T0) in the Soft Collinear Effective
Theory (SCET) formalism. For N = 1 (one-jettiness, T1) all the ingredients required are
available up to next-to-next-to-leading logarithmic (NNLL) accuracy. For our purposes, we
will consider the resummation of the one-jettiness up to NLL. As it will be shown, these two
variables will be used to divide the events into the aforementioned jet-regions. For colour
singlet production processes, these resummed predictions are matched with the next-to-next-
to-leading order (NNLO) calculations, and then are interfaced to a parton shower. Currently,
three different showers are available: Pythia8, Dire and Sherpa. Even though the accuracy
known for the resummation of the zero-jettiness is N3LL, we will consider only the NNLL′1

accuracy not to spoil it when interfacing with the parton shower.
In this chapter, we discuss in detail the separation into jet-regions, reporting the differential

cross section formulas used. We also summarize the ingredients needed for the resummation of
the zero-jettiness in the SCET formalism and, lastly, we present the interface to the parton
shower for Geneva.

3.1 Resummation of the zero-jettiness

In the Geneva framework, we are interested in the production of a colour singlet from
the scattering of two hadrons, and we perform the zero-jettiness resummation in the SCET
formalism, already introduced in Sec 2.2.1.

We can express the T0 in the light-cone coordinate, as

T0 =
N∑

i=1

min(p̂+i , p̂
−
i ), (3.2)

where p̂±i = p̂0i ∓ p̂3i and pi is the momentum of the partons in the process considered. The
SCET factorisation theorem [41, 42] gives us the resummed, differential in the Born phase
space, cross section

dσresum

dΦ0 dT0
= Hκ(Q

2, µ)

∫
Bka(ta, xa, µ)Bkb(tb, xb, µ)Sκ

(
T0 −

ta + tb
Q

,µ

)
dta dtb, (3.3)

where κ is the production channel of a generic colour singlet coming from the scattering of
two hadrons a, b and xa,b are the fractions of momenta of the partons ka,b. Here we have
introduced the hard function Hκ, the beam functions Ba,b and the soft function Sκ, each
of these is dependent on the resummation scale µ. Their main features have already been
introduced in Sec. 2.2.1, we just remark here that the hard function, being process dependent,

1The prime means that we are including contributions proportional to δ(TN ).
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contains the corresponding Born and virtual matrix elements. Moreover, the beam functions
also depend on the transverse virtualities ta,b, and for ta,b ≫ ΛQCD they satisfy an operator
product expansion (OPE) in terms of the perturbative collinear matching coefficients and
standard parton distribution functions. Each of these three functions admits a perturbative
expansion in powers of the strong coupling, and it manifests a logarithmic dependence on a
single characteristic scale. This choice of scales is made in order to remove the large logarithms
in the perturbative expansion of H, B and S. But since the factorisation formula requires all
the components to be evaluated at a single common scale µ, the RGE operator has to act on
each function, resulting

dσNNLL′

dΦ0 dT0
=Hκ(Q

2, µH)UH(µH , µ)

×
∫
[Bka(ta, xa, µB)⊗ UB(µB, µ)][Bkb(tb, xb, µB)⊗ UB(µB, µ)]dta dtb

×
[
Sκ

(
T0 −

ta + tb
Q

,µS

)]
. (3.4)

We abbreviated the convolution over internal variables using the symbol ⊗. In the formula
above the large logarithms arising from ratios of disparate scales have been resummed by RGE
factors Ui(µi, µ).

3.2 Geneva formulas

In this section we will describe the general formulas for the matching between FO predictions
and resummation. All these details can be found in Refs. [1, 39,43–47].

As previously mentioned, Geneva employs the infrared-safe resolution variables T0 and T1
to discriminate between events which are classified as having 0- (Φ0), 1- (Φ1) or 2- (Φ2) jets.
This is done by comparing the value of the resolution variables with two cutoffs, T cut

0 and T cut
1 ,

for each configuration generated. In practice, emissions below the resolution cutoff TN < T cut
N

are considered unresolved and are integrated over. According to Ref. [28], the cutoff on the
zero-jettiness allows the discrimination between 0- and 1-partons in the final state, while the
cutoff on the one-jettiness discriminates between 1- and 2-partons. Each generated event is
distributed according to the following Monte Carlo (MC) cross sections

Φ0 events :
dσmc

0

dΦ0
(T cut

0 )

Φ1 events :
dσmc

1

dΦ1
(T0 > T cut

0 ; T cut
1 )

Φ2 events :
dσmc

2

dΦ2
(T0 > T cut

0 ; T1 > T cut
1 ) . (3.5)

Within this framework, the IR safety of each event at each perturbative order is ensured.
In the Φ1 events, configurations with two partons in the final state that do not satisfy the
condition T1 > T cut

1 are also considered. These configurations have to be projected onto the
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phase space with one parton less, which can be achieved using a mapping from Φ2 to Φ1.
Similarly, the Φ0 events contain also the configurations with one parton in the final state that
have T0 < T cut

0 . These configurations are projected through a mapping from Φ1 to Φ0. Also
the two-partons configurations with T0 < T cut

0 and T1 < T cut
1 are considered Φ0 events, and

they are projected through a composition of the Φ2 → Φ1 and Φ1 → Φ0 mappings. Not all the
ΦN+1 configurations can be projected onto the phase space with one parton less, i.e. can be
mapped to a valid ΦN configuration. Therefore, the Φ1 and Φ2 configurations can be divided
into projectable and non-projectable ones. Since the mapping has to be infrared-safe, all the
configurations close to an infrared limit must be projectable, while the non-projectable ones
are free from QCD singularities. By these projections, we ensure that the NNLO accuracy is
reached for the cross section with Φ0 events, the NLO one for the cross section with Φ1 events
and, lastly, the LO one for the cross section with Φ2 events. In general, the cross section for
any observable X will be defined as

σ(X) =

∫
dσmc

0

dΦ0
(T cut

0 )O(Φ0) dΦ0 +

∫
dσmc

1

dΦ1
(T0 > T cut

0 ; T cut
1 )O(Φ1) dΦ1

+

∫
dσmc

2

dΦ2
(T0 > T cut

0 ; T1 > T cut
1 )O(Φ2) dΦ2 , (3.6)

where O(ΦN ) is the function that computes the observable X for the N -parton final state ΦN .
Note that this cross section is not exactly equal to the fixed-order result. This is due to the
unresolved emissions for which the observable is computed on the projected phase space points
instead of the exact phase space points. This difference vanishes in the limit T cut

N → 0, so its
value should be as small as possible. Small values of T cut

N are directly linked to the appearance
of large logarithms of the ratio of TN and T cut

N , which are then resummed in Geneva.
We can now give the differential cross section implemented in our generator. Considering

the exclusive 0-jet cross section, we can write it as

dσmc
0

dΦ0
(T cut

0 ) =
dσNNLL′

dΦ0
(T cut

0 ) +
dσnons

dΦ0
(T cut

0 ), (3.7)

where the first term is the resummed contribution introduced in Eq. (3.4) integrated in T0,
the second represents the nonsingular term containing contributions that vanish as T cut

0 → 0.
In order to get NNLO0

2 accuracy, the nonsingular matching contribution has to be

dσnons

dΦ0
(T cut

0 ) =
dσNNLO0

dΦ0
(T cut

0 )−
[
dσNNLL′

dΦ0
(T cut

0 )

]

NNLO0

. (3.8)

The first contribution is the FO, while the second is the FO expansion to O(α2
S) of the resummed

cumulant. One can think of move as much of the nonsingular contributions as possible into the
resolved region of the phase space, while maintaining the IR safety requirements. In this way
the phase space can be better described with the full event kinematics. Therefore, in Geneva
is possible to replace the cut on the zero-jettiness with two separate cuts: T cut

0,re acting only
on the resummed singular contribution, and T cut

0,ns acting on the nonsingular term. The idea

2With NkLOl we refer to the FO calculation at k-th order in QCD for the final state with l resolved jets.
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is to chose T cut
0,ns smaller than T cut

0,re , in order to push down the calculation of the nonsingular
contributions to lower values. Note, however, that the result should be independent of the
exact choice of T cut

0,re , modulo higher-order corrections. We are going to show this later, for the
particular case of the double Higgs boson production.

Having said that, the exclusive 0-jet cross section is defined as

dσmc
0

dΦ0
(T cut

0,re , T cut
0,ns) =

dσNNLL′

dΦ0
(T cut

0,re )−
dσNNLL′

dΦ0
(T cut

0,ns)

∣∣∣∣
NNLO0

+ (B0 + V0 +W0)(Φ0) +

∫
dΦ1

dΦ0
(B1 + V1)(Φ1) θ

(
T0(Φ1) < T cut

0,ns

)

+

∫
dΦ2

dΦ0
B2(Φ2) θ

(
T0(Φ2) < T cut

0,ns

)
, (3.9)

where, from now on, BN defines the N -parton tree-level contributions, VN is the N -parton
one-loop contributions and W0 is the two-loop contributions. We have introduced the notation

dΦM
dΦN

= dΦM δ[ΦN − ΦN (ΦM )], N ≤M , (3.10)

to denote the radiation phase space ΦM limited to those configurations that are projected
onto the ΦN phase space.
Moving to the 1-jet cross section, we can repeat the same strategy used for the 0-jet cross
section and write

dσmc
1

dΦ1
(T0 > T cut

0,ns; T cut
0,re ; T cut

1 ) =

{
dσNNLL′

dΦ0dT0
P(Φ1) θ(T0 > T cut

0,re ) (3.11)

+

[
(B1 + V C

1 )(Φ1)−
dσNNLL′

dΦ0dT0

∣∣∣∣
NLO1

P(Φ1)

]
θ(T0 > T cut

0,ns)

}
× U1(Φ1, T cut

1 )

+

∫ [
dΦ2

dΦT
1

B2(Φ2) θ
(
T0(Φ2) > T cut

0,ns

)
θ(T1 < T cut

1 )− dΦ2

dΦC1
C2(Φ2) θ(T0 > T cut

0,ns)

]

−B1(Φ1)U
(1)
1 (Φ1, T cut

1 ) θ(T0 > T cut
0,ns) .

We have introduced a new shorthand notation

dΦM

dΦT
N

= dΦM δ[ΦN − ΦT
N (ΦM )] ΘT (ΦM ), N ≤M , (3.12)

to indicate that the integration over a region of the M -body phase space is done keeping
the N -body phase space and the value of the observable T fixed. The ΘT (ΦN ) term limits
the integration region to the phase space points included in the singular contribution for the
observable T . The V C

1 term includes contributions of soft and collinear origin and it is defined
as

V C
1 (Φ1) = V1(Φ1) +

∫
dΦ2

dΦC1
C2(Φ2) , (3.13)
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where C2 acts as a local NLO subtraction counterterm that reproduces the singular behaviour of
B2. The subtraction counterterms are integrated over the radiation variables dΦ2

dΦC
1

considering
the singular limit C of the phase space mapping.
Note also that in Eq. (3.11) the resummed and resummed expanded contributions are multiplied
by a normalized splitting function P(Φ1). This function has been introduced to make the
resummed T0 spectrum fully differential in Φ1. In general, these splitting functions P(ΦN+1)
are normalized such that

∫
P(ΦN+1)

dΦN+1

dΦN dTN
= 1, (3.14)

where, besides TN , the energy ratio z and the azimuthal angle ϕ are needed to define the
ΦN → ΦN+1 splitting. Its definition is given by

P (ΦN+1) =
fkj (ΦN , TN , z)

N+2∑

k′=1

∫ zk′
max(ΦN ,TN )

zk′
min(ΦN ,TN )

dz′Jk′ (ΦN , TN , z′) Ik
′

ϕ (ΦN , TN , z′)
nk′
split∑

j′=1

fk′j′ (ΦN , TN , z′)

, (3.15)

where
Ikϕ (ΦN , TN , z) = ϕkmax (ΦN , TN , z)− ϕkmin (ΦN , TN , z) . (3.16)

In the formula above fkj (ΦN , TN , z) are generic functions based on the Altarelli-Parisi splitting
functions, depending if the radiation is in the initial (ISR) or final (FSR) state

fkj (ΦN , TN , z) =
f(xM/z, µ)

f(xS , µ)
for ISR ,

fkj (ΦN , TN , z) = APsp(z, ϕ) for FSR , (3.17)

where f(x, µ) are the standard parton distribution functions (considering a M → DS splitting,
with M the mother and S the sister) and APsp are the unregularised Altarelli-Parisi splitting
function. In Eq. (3.15) we introduced zmin,max(ΦN , TN , z), ϕmin,max(ΦN , TN , z) that are the
integration limits, respectively, in z and ϕ and J (ΦN , TN , z) the Jacobian related to the change
of variable. One of the latest novelties in the Geneva framework is the new implementation
of these splitting functions. All the details about this new implementation can be found in
Refs. [47,48], but the idea is to compute the integral appearing in the denominator of Eq. (3.15)
for each configuration generated. In order to do this, the integration limits on z and ϕ and the
Jacobian J (ΦN , TN , z) need to be computed both for the 0 → 1 and 1 → 2 mappings. We just
want to stress that for the 0 → 1 splitting, the PDFs are evaluated at the exact momentum
fractions xa,b(z) of the real emission phase space Φ1, reproducing the correct soft and collinear
limit. In the 1 → 2 splitting case, instead, xa,b also depend on ϕ, and they are approximated
dropping this additional dependence, representing an improvement with respect to the strict
collinear limit.

Last element in Eq. (3.11) to be introduced is U1(Φ1, T cut
0 ). This is the Sudakov factor

which resums the dependence of T cut
1 to next-to-leading-logarithmic (NLL) accuracy. The

symbol U (1)
1 represents its O(αS) expansion.
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The remain cross section to be define is the 2-jet one, given by

dσmc
≥2

dΦ2
(T0 > T cut

0,ns; T cut
0,re ; T1 > T cut

1 ) = (3.18)
{[

(B1 + V C
1 )(Φ1)−

dσNNLL′

dΦ0dT0

∣∣∣∣
NLO1

P(Φ1)

]
θ(T0 > T cut

0,ns)
∣∣∣
Φ1=ΦT

1 (Φ2)

]

+
dσNNLL′

dΦ0dT0
P(Φ1) θ(T0 > T cut

0,re )
∣∣∣
Φ1=ΦT

1 (Φ2)

}
U ′
1(Φ1, T1)P(Φ2) θ(T1 > T cut

1 )

+B2(Φ2) θ(T1 > T cut
1 )θ

(
T0(Φ2) > T cut

0,ns

)

−B1(Φ
T
1 )U

(1)′
1

(
Φ1, T1

)
P(Φ2)Θ(T1 > T cut

1 ) θ
(
T0(Φ2) > T cut

0,ns

)
.

Here U ′
1 is the first derivative of U1(Φ1, T1) with respect to T1, and U ′(1)

1 its O(αS) expansions.
We can assign a cross section to all the non-projectable Φ1 and Φ2 events. These can be

due to an invalid flavour projection or come from points in the phase space not covered by the
T0-preserving mapping. Their cross section is defined as

dσmc
1

dΦ1
(T0 ≤ T cut

0,ns; T cut
1 ) = (B1 + V1)(Φ1)Θ

FKS
map (Φ1) θ(T0 < T cut

0,ns) , (3.19)

dσmc
≥2

dΦ2
(T0 > T cut

0,ns; T1 ≤ T cut
1 ) = B2(Φ2)Θ

T
map(Φ2) θ(T1 < T cut

1 ) θ
(
T0(Φ2) > T cut

0,ns

)
. (3.20)

With ΘX
map we define the constraints due to the projections in the two mappings: the FKS map

in the case of the Φ1 → Φ0 projection and the T0-preserving map for the Φ2 → Φ1 projection.
The overlined versions represent their complements.

3.3 Shower interface in Geneva

Before describing the actual interface to the parton shower in Geneva, let’s examine the
specific case of a parton shower ordered in N -jettiness. Given that the resummation in
Geneva is performed in TN , this case represents the simplest case to match the resummed
prediction with the shower. The interface to a parton shower plays a crucial role, as it must
ensure a smooth transition between the hard scattering process and the subsequent parton
shower evolution, preventing any compromise to the accuracy of both calculations. In order
to understand how this can be achieved, consider the specific case where the parton shower
is ordered using the same variable as the one employed for resummation in the Geneva
framework, a parton shower organized in N -jettiness.

As already mentioned, the N -jettiness represents the hardness of the emission, and in the
singular limit we can assume that the direction of the axes needed in the definition of TN is
aligned to the direction of the N hard partons. Calling TN−1 the N -jettiness after N emissions
and TN the (N + 1)-jettiness after one emission, the single emission can be expressed using
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the probability of branching and no-branching and incorporating a Sudakov factor ∆N and
the splitting probability P, as

S(1) = ∆N (T max
N ,Λ) +∆′

N (T max
N , TN )

dΦN+1

dΦN
P(ΦN+1) θ(T max

N > TN > Λ) . (3.21)

Here, T max
N is the maximum possible allowed value of TN limited by the hardness of the

configuration before the emission (hence T max
N ∼ TN−1) and Λ is the shower cutoff. In

Eq. (3.21), ∆′
N denotes the derivative of the Sudakov form factor with respect to TN , and

∆′
N (T max

N , TN )P(ΦN+1) gives the probability of an additional emission with respect to the
one already considered. Since the N -jettiness is the resolution scale considered for now, we
have assumed the following strong ordering

TN+1 ≪ TN . (3.22)

This condition ensures that emissions coming from the shower will not interfere with the
Sudakov of the resummation. The generalization of Eq. (3.21) with the ordering specified
in Eq. (3.22) will allow to construct a shower in the N -jettiness variable. However, in the
Geneva framework we have to face that the three showers to which we interface our results
use a different resolution scale, namely, the transverse momentum of the emission, and we
have also to ensure that the accuracy of our resummation and the accuracy of the shower
are both preserved. Therefore, matching our Geneva results to a parton shower ordered by
transverse momentum is not a straightforward process. Let’s see in detail how it can be done.

In our Monte Carlo event generator, the resummation is performed in TN , starting from
a hard scale Q down to a lower scale T c

N . A graphical illustration of this can be seen in
Fig. 3.1, where the Lund plane (ACD triangle) represents all the kinematic space available
for possible emissions. Each emission is represented as a point, with the central region of the
plane occupied by soft and collinear emissions, the region near the z = 1 line populated by
hard-collinear emissions, and the vertical line housing soft large-angle emissions.

Geneva produces events with 0, 1 or 2 final-state partonic jets, and for each of them,
different lower scales for the resummation are set, corresponding to T cut

0,re , T cut
1 and T1(Φ2),

respectively. These three scales corresponds to a diagonal line on the Lund Plane, dividing
it into two parts. The ACE triangle represents the resummation region, where emissions are
prohibited. At leading logarithmic accuracy, the integral over this region corresponds to the
Sudakov form factor of the shower, as it gives the probability of no-emission.

Since the showers considered are ordered in transverse momentum, we need to translate the
lower scales for the resummation into this variable. For each N -partonic jets, their intersection
with the maximum available energy fraction that an emission can have (E) determines the
maximum relative transverse momentum of the emission (kT (T c

N )).3 This delineates the shower
region, forming the BCDE trapezium. However, the BCE triangle is shared by both the

3The maximum allowed value for the transverse momentum of the hardest emission can be computed as

kT =

√
k̂2
0 − k̂2

3 =

√
TN (k̂0 + k̂3) ≤

√
TN

√
s <

√
T hard
N

√
s , (3.23)

having used TN = k̂0 − k̂3.
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Figure 3.1: Lund Plane representation of shower emissions after the first two performed by
Geneva, taken from [1].

resummation and shower regions, implying that the shower could potentially produce emissions
in the resummation region, thereby spoiling its accuracy. To address this issue, we introduce a
veto procedure. Any event for which, after the shower,

TN > T c
N (3.24)

is discarded and retried.
Let’s examine in detail how the shower affects each of the Geneva jet-regions. In the case of

Φ0 events, they are showered with the requirement that the emission has T0 < T cut
0,re . For these

events Geneva only predicts the normalization and not the distribution in T0. The shower
will provide the missing T0 shape below the cutoff, and due to the unitarity constraint, it will
not change the normalization of these events. For N ≥ 1 final-state partons, the zero-jettiness
at the partonic level is spoiled by the shower by an amount of TN ≪ T0. Typically, this
variation is small enough to be ignored, but for Φ1 events, it can lead to large numerical
deviations. Therefore, the first shower emission Φ1 → Φ2 is performed by hand in Geneva
using a T0-preserving mapping. Lastly, for Φ2 events, emissions are vetoed by Eq. (3.22) and
it will be shown later that the parton shower only affects the T0 spectrum beyond NNLL′.
With that in mind, and following Eq. (3.21), we decompose the N -jet differential cross sections
events into two pieces, adding emissions up to two partons. For the 0-jet region we get

dσmc
0

dΦ0
(T cut

0,re ; Λ0) =
dσmc

0

dΦ0
(T cut

0,re )U0(T cut
0,re ,Λ0) , (3.25)

where U0 represents the Sudakov factor associated with the shower emissions. For Φ1 events
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we have

dσmc
1

dΦ1
(T0 > Λ0, T cut

0,re ; T cut
1 ; Λ1) =

dσ1
dΦ1

(T0 > T cut
0,re , T cut

1 )U1(T cut
1 ,Λ1)

+
d

dT0
dσmc

0

dΦ0
(T cut

0,re ; T0)P(Φ1) θ(T cut
0,re > T0 > Λ0)U1(T max

1 ,Λ1) , (3.26)

where the first term corresponds to the emission of a single parton with T0 and T1 satisfying
the cutoff conditions, and the second term accounts for additional emissions from Φ0 events.
For Φ2 events, instead, we have

dσmc
≥2

dΦ2
(T0 > Λ0, T1 > Λ1, T cut

0,re , T cut
1 ) =

dσmc
≥2

dΦ2
(T0 > T cut

0,re , T cut
1 )

+
d

dT1
dσmc

1

dΦ1
(T0 > Λ0, T cut

0,re , T cut
1 , T1)P(Φ2) θ(T̃ max

1 > T1 > Λ1) , (3.27)

where the first term corresponds to events with at least two partons emitted with T0 and T1
satisfying the cutoff conditions, and the second term accounts for additional emissions from
Φ1 events. T̃ max

1 can be equal to T cut
1 or T max

1 depending on wheter the derivative is on the
first or second term of Eq. (3.26). In the above equations, ΛN for N = 0, 1 is a jet resolution
parameter.

In the remainder of this section we give an argument to show that no single shower emission
can end up in the vetoed region, and consequently that the parton shower acting on the jet
events does not affect the NNLL′ accuracy of the T0 spectrum. Recalling that for any given
final-state multiplicity N , TM (ΦN ) = 0 for any M ≤ N and that for any one emission from
the parton shower that produces a final state with N + 1 partons TM (ΦN+1) = T , we apply
the shower to a configuration with two partons Φ2. For this particular case, the starting scale
of the shower will be determined by the hardness of the configuration itself, so T c

N = T1(Φ2)
and the starting scale will be kT (T1(Φ2)). One additional emission of the shower will have a
hardness of T = T2(Φ3) which will be smaller than T c

N for the veto condition. Considering
a second emission, its hardness will be T = T3(Φ4) ≤ T2(Φ4) which has to be smaller than
T1(Φ2) to satisfy the veto. The relation T3(Φ4) ≤ T2(Φ4) follows because the N -jettiness is an
additive variable of strictly positive terms, so more in general we can write

TN (ΦM ) ≥ TN+1(ΦM ) . (3.28)

Basically we have constructed the following chain of inequalities4

T3(Φ4) ≤ T2(Φ4) ≤ T c
N = T1(Φ2) . (3.29)

We can generalize this chain iterating the same procedure for k additional shower emissions,
obtaining

TN+k−1(ΦN+k) ≤ TN+k−2(ΦN+k) ≤ · · · ≤ TN (ΦN+k) ≤ T c
N . (3.30)

4This argument does not impose any ordering between the hardness of the two emissions, T2(Φ3) and T3(Φ4),
it just implies that they are both lower than T c

N = T1(Φ2).
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This implies that also the hardness of each of the k-th emissions has to be smaller than T c
N .

This means that the final events accepted after the veto could always be generated via a
sequence of T -ordered emissions. Moreover, since the N -jettiness is additive, the hardness of
the first emission is constrained by the veto to be lower than the lower resummation scale.
Note also that the resummation region has a higher accuracy than that of the shower, and
in the shower region there is no double-counted contribution. Therefore the accuracy of any
observable computed with this matching is at least as accurate as the parton shower is.



Chapter 4

Double Higgs boson production

In this chapter we present the double Higgs boson production, describing its production modes
and the current state of the calculation in the literature, both in the Standard Model and in
the effective theory approach. We highlight the potential implications given by the study of
such process for the understanding of fundamental physics.

One of the main goal of the forthcoming runs at LHC is to explore all the properties of
the Higgs boson and, in particular, to access to its self-interactions. This would enable us
to reconstruct the scalar potential of the Higgs doublet field Φ, which is responsible for the
spontaneous electroweak symmetry breaking. The potential is defined as

VH = µ2Φ†Φ+
1

2
λ (Φ†Φ)2 , (4.1)

where λ =
m2

H
v2

, µ2 = −1
2m

2
H , mH the mass of the Higgs boson and v = 246 GeV the vacuum

expectation value (VEV). Introducing a physical Higgs boson field in the potential leads to
the trilinear Higgs self-coupling λHHH , given by

λHHH =
3m2

H

v
. (4.2)

It is important to note that the trilinear coupling only depends on the Higgs boson mass and
the VEV. Its value is directly linked to the shape of the scalar potential, and consequently, it
raises various open questions about cosmology and particle physics, such as the nature of the
Higgs boson (whether it is an elementary particle or not). Additionally, an improved knowledge
of the Higgs coupling will be relevant for single Higgs measurements and the exploration of
Beyond the Standard Model (BSM) physics.

The trilinear coupling can be directly measured in the production of two Higgs bosons.
There are also indirect methods of estimating the self-coupling by exploiting electroweak
corrections in high precision observables, as shown in Refs. [49–51]. Unfortunately, the cross
section for the double Higgs boson production is significantly smaller (around a thousand
times) than the cross section for single Higgs boson production. Therefore, it is a rare and
challenging process to study. At hadron colliders, several production channels exist for this

28
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Figure 4.1: Leading order diagrams for the production of a Higgs boson pair with full top-quark
mass dependence. On the left the triangle diagram, on the right the box one.

process, including gluon fusion, vector boson fusion (VBF), the top-quark associated channel
and Higgsstrahlung. The gluon fusion channel contributes the most to the process, accounting
for over 90% of the total inclusive cross section, which is approximately 35 fb at the collider
energy

√
S = 13 TeV. At the same energy, the VBF channel contributes around 1.7 fb, the

production of a pair of Higgs bosons in association with the W boson is approximately 0.50 fb,
while in association with the Z boson it is about 0.36 fb. Finally, the top-quark associated
channel contributes around 0.8 fb [52]. For the rest of this thesis, we will focus only on the
gluon fusion mode being the dominant production mode for such process.

Since the Higgs boson does not have colour charge and it is not massless, it couples to
gluons only through a quark loop, both top-quark and bottom-quark loops. However, the
case with a bottom-quark loop can be neglected due to its small percentage of the total cross
section.1

In gluon fusion, the production of two Higgs bosons through a top-quark loop [53] at
tree level is represented by the two diagrams shown in Fig. 4.1. The diagram on the left is
known as the triangle diagram, providing access to the trilinear Higgs coupling, while the
one on the right is the box diagram. Although these diagrams have different topologies and
contribute differently to the amplitude, the colour structure of the initial state gluons is the
same. As can be seen from the figure, already at leading order we have to face a one-loop
calculation [53–55], which makes the inclusion of higher-order terms particularly difficult. In
the Standard Model, considering the full top-quark mass dependence, this process is known
up to next-to-leading order (NLO) in QCD [56–59]. Some resummed results in the transverse
momentum of the pair up to next-to-leading logarithmic (NLL) accuracy have been matched to
the NLO prediction [60, 61], and a soft-gluon resummation to NLL was performed in Ref. [62].
Exact NLO results matched to the parton shower appeared in Refs. [63–65], and techniques
to systematically include finite-mass effects have been studied [66–68] before the exact NLO
results became available. Futhermore, several approaches towards analytical results for the
two-loop amplitudes with full top-mass dependence based on different expansions, are available

1Also remember that, in the Standard Model, the interaction between the Higgs boson and the bottom-quark
is relatively weak compared to other interactions. The strength of the interaction is proportional to the mass of
the particle involved and since the bottom-quark is much lighter compared to the top-quark, the bottom-quark’s
contribution is relatively small.
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Figure 4.2: Leading order diagrams for the production of a Higgs boson pair in the infinite
top mass limit. On the left the triangle typology, on the right the box one.

see [69–80].
A simpler way to study this process is to consider the limit where the top-quark mass is

much larger than the hard scale of the process, known as the infinite top mass limit (mt → ∞).
In this approximation, the gluons directly couple with the Higgs bosons through an effective
gluon-gluon-Higgs vertex [53] and the relative LO Feynman diagrams can be seen in Fig. 4.2.
In the infinite top mass limit, NLO accuracy in QCD have been computed in Ref. [81], at
next-to-next-to-leading order (NNLO) in Refs. [82, 83], and at next-to-next-to-next-to-leading
order (N3LO) in Refs. [84,85]. Threshold resummation approximations at next-to-next-leading-
logarithmic accuracy (NNLL) matched to NLO have been studied in Ref. [86], and matched to
NNLO in Ref. [87].

It is important to note that the infinite top mass limit is not the optimal approximation for
the double Higgs boson production process, although it simplifies the study of the production
itself. This approximation is known to be less accurate for the double Higgs boson production
compared to the single Higgs boson production [56,64,88]. One of the main issue is that this
approximation receives correction of the order O

(
Q2/m2

t

)
, where Q is the momentum transfer.

When its value is around the peak of the invariant mass of the Higgs boson pair, MHH , which is
much larger than the Higgs boson mass, these corrections can be three to four times larger with
respect to the single Higgs boson production. To be precise, the invariant mass of the Higgs
boson pair spectrum has a wide distribution, this implies that the average MHH value is much
larger than the position of the peak, so the magnitude of these corrections can be even worse.
Moreover, the diagrams in Fig. 4.1 interfere with each other, and this interference is large and
negative causing a large overall cancellation. The same net result cannot be reached in the
infinite top mass limit, because neither the box or the triangle diagrams are well approximated.
This effect is due to the large energy scale (MHH) that probes the top-quark loop in both the
typology of diagrams, which undermines the approximation. This issue particularly affects
the Higgs boson pair transverse momentum around pT ∼ 2mt, where the invariant mass of
the Higgs boson pair is larger than the top-quark mass and the approximation starts to break
down.

To address this problem, a slightly different approximation called Heavy Top Limit (HTL)
has been proposed in Ref. [89]. In the HTL approximation, higher-order terms are computed
in the infinite top mass limit but properly reweighted with the exact LO cross section that
includes the full top-quark mass dependence. This approach improves upon the infinite top
mass limit, making it more accurate. Anyway, in order to have a realistic event generator for
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the double Higgs boson production, heavy-quark mass effects need to be included, and ways
to include them order-by-order using approximants have been studied [90]. However, for the
purpose of this thesis, we will only consider the infinite top mass limit leaving as a future work
the inclusion of the top-quark mass correction in the Geneva framework.

Lastly, it is worth mentioning that the study of the double Higgs boson production can be
extended to the context of New Physics and Effective Field Theories (EFT). Modifications to
the Standard Model couplings, including the trilinear Higgs self-coupling, and the presence of
novel couplings not present in the Standard Model can be explored. NLO QCD corrections
including dimension 6 operators in the limit of large top-quark masses have been published in
Ref. [91], as well as within the framework of a non-linearly effective field theory in Ref. [92].
NNLO QCD corrections including effects of new physics beyond the Standard Model with
relevant dimension 6 operators have also been investigated in Ref. [93]. NLO predictions with
full top-quark mass dependence with approximate NNLO predictions in a non-linear EFT
framework are presented in Ref. [94].



Chapter 5

Higgs boson pair production in Geneva

In this chapter we describe in detail all the Geneva parameters set for the double Higgs boson
production implementation. In particular, we discuss the choice of the resolution cutoffs, the
procedure used to set all the scales entering in the Geneva calculation, and all the ingredients
needed for the resummation in the SCET formalism.

5.1 Choice of the resolution cutoff in T0
As discussed in Sec. 3.2, we consider two different cutoffs on the zero-jettiness, T cut

0,ns and
T cut
0,re . The first one is acting only on the nonsingular term, while the second on the resummed

singular contribution. The role of T cut
0,re is the same of the usual T cut

0 previously used for all
the processes implemented in Geneva, while T cut

0,ns is chosen much smaller in order to push
down the calculation of these nonsingular contributions. It is fundamental to study how the
value set for the two cutoffs affects the final theoretical prediction.

In the Geneva framework, all the contributions below the cut on the 0-jet resolution
variable are given in Eq. (3.9). This expression is NNLO accurate and fully differential in
the Φ0 phase space. To implement such term, and regulate the IR divergences appearing in
the calculation, one could use a local NNLO subtraction. Given the lack of a local NNLO
subtraction, the expression in Eq. (3.9) can be approximated, up to power corrections in T cut

0,ns,
with

d̃σMC
0

dΦ0
(T cut

0,re , T cut
0,ns) =

dσNNLL′

dΦ0
(T cut

0,re )−
dσNNLL′

dΦ0
(T cut

0,ns)

∣∣∣∣
NLO0

+ (B0 + V0)(Φ0)

+

∫
B1(Φ1) θ(T0(Φ1) < T cut

0,ns)
dΦ1

dΦ0
. (5.1)

With this replacement, only a local NLO subtraction and the expansion of the resummed term
at O(αS) are needed. Eq. (5.1) is based on the fact that the singular and FO contributions
cancel up to power corrections below the resolution cutoff at O(α2

S). The cancellation between
these two terms as a function of the resolution cutoff T0 is shown in Fig. 5.1 by plotting the
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Figure 5.1: Singular and nonsingular contributions to the double Higgs boson production cross
section as a function of T0 at NLO (left) and NNLO (right).

absolute values of their central predictions, both at LO1, which is of absolute order α3
S , on

the left and at NLO1,1 the pure α4
S contribution on the right. We notice that the nonsingular

distribution correctly approaches zero while the separate FO and singular contributions are
diverging, both at order α3

S and α4
S . This is despite the appearance of numerical instabilities

in the region where the α4
S nonsingular changes sign, around T0 ∼ 1.5 GeV. However, for

any finite choice of T cut
0,ns, there are always remaining nonsingular power corrections below the

cutoff, identified by the difference between Eq. (3.9) and (5.1), which reads

dΣ
(2)
ns

dΦ0
(T cut

0,ns) =− dσNNLL′

dΦ0
(T cut

0,ns)

∣∣∣∣
NNLO0

+
dσNNLL′

dΦ0
(T cut

0,ns)

∣∣∣∣
NLO0

+W0(Φ0)

+

∫
V1(Φ1) θ(T0(Φ1) < T cut

0,ns)
dΦ1

dΦ0

+

∫
B2(Φ2) θ(T0(Φ2) < T cut

0,ns)
dΦ2

dΦ0
. (5.2)

We show its absolute size as a function of T cut
0,ns in Fig. 5.2, as well as its relative size as a

fraction of the NNLO cross section computed by Matrix [83, 95] on the right axis.
For the results presented in this work we choose T cut

0,ns = 0.5 GeV. The size of the missing
corrections associated to that value is around 1.2% of the total cross section. These missing
contributions only affect events below the cutoff, and we can recover the exact NNLO cross
section by reweighting these events by this difference. Note that, while we could have chosen
smaller values of T cut

0,ns to further minimise the impact of power corrections, lowering this value
has shown to cause instabilities in the matrix elements used for our calculation.

1Here LO1 and NLO1 refer to the order relative to the partonic phase space with one extra emission.
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Figure 5.2: The neglected O(α2
S) nonsingular contribution to the T0 cumulant Σ

(2)
NS as a

function of T cut
0,ns. The green band represents the statistical uncertainty.

Another important check to do is to ensure that the final result is independent of the exact
choice of T cut

0,re , modulo higher-order corrections. We remark that a variation in the value of
T cut
0,re only amounts to shifting part of the resummed contribution from the 0-jet bin to the

spectrum, and vice versa. In general, the resummed calculation might be problematic when the
soft and beam scales reach small values of the order ΛQCD, due to the running of the strong
coupling. The introduction of profile scales that smoothly turn off the divergence, freezing the
soft scale and preventing it from approaching ΛQCD, partially solves this problem, but renders
the perturbative resummed calculation unreliable in that extreme region. Moreover, T cut

0,re is
eventually tied to the starting scale of the parton shower inside the 0-jet bin. Therefore, for
both of the previous reasons, it is advisable not to push the T cut

0,re to too small values. In Fig. 5.3
we study the dependence of the Geneva partonic results on the choice of T cut

0,re = 1 GeV (the
default value) and T cut

0,re = 2 GeV for a fixed T cut
0,ns = 0.5 GeV. As expected, this choice does

not impact in a statistically significant way the distributions shown, which are the transverse
momentum of the Higgs boson pair pHHT , the transverse momentum of the hardest Higgs boson
pH1
T and the zero-jettiness, respectively.
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Figure 5.3: Comparison between T cut
0,re = 1, 2 GeV at fixed T cut

0,ns = 0.5 GeV for pHHT (left),
pH1
T (centre) and T0 (right) distributions.

5.2 Choice of resummation scales

The factorisation theorem of the SCET formalism in Eq. (3.4) allows to write the resummed
cross section as a convolution of three functions. These three functions admit a perturbative
expansion in powers of the strong coupling and manifest a logarithmic dependence on a single
characteristic scale. The canonical choice of the energy scales that minimises these logarithmic
terms is

µH = Q , µB =
√
QT0 , µS = T0 , (5.3)

where Q is a hard scale of the process. With this choice, there are no large logarithms in
the perturbative expansion of H, B and S. The variable on which we have control for the
resummation is τ = T0/Q and the canonical scales are appropriate only in the resummation
region (T0 < Q), where the singular contribution dominates. When approaching the fixed-
order region (T0 ∼ Q), the resummation must be turned off since the singular contribution,
being resummed, becomes meaningless and the subsequent cancellation between singular and
nonsingular terms must be preserved. This matching of the resummed and fixed-order region
can be done interpolating between the canonical scales and the FO ones, using profile scales.

We choose Q to be equal to the FO scale, that is set to the invariant mass of the
Higgs boson pair MHH . We then have to evolve the soft and beam functions to the same
common nonsingular scale µNS =MHH , that is always the same scale for the hard function.
The renormalisation group evolution (RGE) is then used to evolve each function from their
characteristic scale to a common scale. The evolution of the soft and beam functions is done by
using profile scales µS(T0) and µB(T0). These conventions have been introduced in Ref. [96],
and are given by

µS(T0) = µNS frun(T0/Q),

µB(T0) = µNS

√
frun(T0/Q), (5.4)
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where frun is defined as

frun(x) =





x0[1 + (x/(2x0))
2] x ≤ 2x0,

x 2x0 < x ≤ x1,

x+ (2−x1−x2)(x−x1)2
2(x2−x1)(x3−x1) x1 < x ≤ x2,

1− (2−x1−x2)(x−x3)2
2(x3−x1)(x3−x2) x2 < x ≤ x3,

1 x3 < x.

(5.5)

This functional form ensures the canonical scaling, given by Eq. (5.3), between x0 and x1 and
switches off the resummation above x3. The region below 2x0 corresponds to the region where
we freeze the running of all couplings to avoid the Landau pole. The point x2 corresponds to
an inflection point in the profile function frun. In Fig. 5.4 we compare the absolute sizes of
the singular and nonsingular contributions to the cross section as functions of τ at LO1 and
NLO1 accuracy. We set the profile parameters to

x0 =
1 GeV

Q
, {x1, x2, x3} = {0.2, 0.275, 0.35}. (5.6)

The values of x1 and x3 are chosen at the points where FO and singular contributions are of
similar size and where the nonsingular contribution becomes dominant, respectively.

The theoretical uncertainties for the FO prediction are obtained by varying the central
scale µNS up and down by a factor of two and taking the maximal absolute deviation from
the central value as a measure of uncertainty. For the resummed case we vary the central
choices for the profile scales µS and µB independently, as e.g. detailed in Ref. [44], keeping
µH = µNS fixed. We include also two more profiles where all the xi are varied by ±0.05
simultaneously, while keeping all the other scales at their central values. In total we get six
profile variations and take the maximal absolute deviation in the result from the central value
as the resummation uncertainty. The total uncertainty is then given by the quadrature sum of
the resummation and FO uncertainties.

Due to the dependence on T0 of the profile scale µ, and the fact that integrating the
factorisation theorem and choosing the scales do not commute with each other, the integral
over the spectrum is not equal to the cumulant

∫ T max
0

0

dσNNLL′

dΦ0dT0
(µ(T0)) dT0 =

dσNNLL′

dΦ0
(T max

0 , µ(T max
0 )) +O(N3LL), (5.7)

where T max
0 is the upper kinematical limit. Even if this difference is of higher order, it can be

numerically relevant and it can cause a sizeable difference between the total matched cumulant
and a purely fixed-order NNLO cross section. To obviate this problem, in Geneva we add an
additional higher-order term to our spectrum,

dσimprovedXS

dΦ0dT0
(µ(T0)) =

dσNNLL′

dΦ0dT0
(µ(T0))

+ pK(T0,Φ0)

[
d

dT0
dσNNLL′

dΦ0
(T0, µh(T0))−

dσNNLL′

dΦ0dT0
(µh(T0))

]
, (5.8)
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Figure 5.4: Comparison between the absolute values of the fixed-order distribution, of the
expansion of the resummed contribution up to O(α2

S) (singular) and of their difference
(nonsingular), as a function of τ at LO1 (left) and NLO1 (right).

where µh(T0) is a dedicated profile scale and K(T0,Φ0) is a smooth function defined as

K(T0,Φ0) =
1

2
− 1

2
tanh

[
32

( T0
MHH

− 1

4

)]
. (5.9)

Note that by construction the additional term in Eq. (5.8) is of higher order, consequently
the NNLL′ accuracy of the spectrum is not spoiled. Moreover, its effects are limited to the
resummation region, since µh(T0) = Q in the FO region so that the difference in the square
brackets of Eq. (5.8) vanishes. The function K(T0,Φ0) is chosen such that it tends to zero
for large values of T0, and that the effects of the induced higher-order terms are compatible
with the scale uncertainties of the original spectrum in the peak region. Consequently, the
additional higher-order terms induced by this procedure contribute mostly in the peak and
transition regions, where they are expected to be larger. Also the p value is tuned to ensure
that the total inclusive cross section is recovered upon integration. In order to do so, the value
of p is fixed by requiring that the integral over this modified version of the spectrum is equal
to that of the cumulant,

p =

∫
dΦ0

∫
dT0
[

d
dT0

dσNNLL′

dΦ0
(T0, µh(T0))− dσNNLL′

dΦ0dT0 (µh(T0))
]

∫
dΦ0

∫
dT0
[

d
dT0

dσNNLL′

dΦ0
(T0, µh(T0))− dσNNLL′

dΦ0dT0 (µh(T0))
]
K(T0,Φ0)

. (5.10)

One must however pay attention to the fact that both the value of p in Eq. (5.10) and the
K(T0,Φ0) factor in Eq. (5.9) are obtained integrating over the Born variables Φ0. In particular,
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there is a nontrivial interplay between the Higgs boson pair invariant mass MHH and the
definition of K(T0,Φ0). Since the MHH distribution spans over a wide range, using a single
value of p across all the possible values of MHH has a sizable effect on the predicted MHH

differential distribution, despite the fact that the correct inclusive cross section is obtained by
construction. In Sec. 7 we are going to show the actual effect of such implementation in the
validation against the NNLO result.

5.3 Resummation parameters

The SCET factorisation theorem for the double Higgs boson production was firstly introduced
in Eq. (3.4). The calculation of such theorem for this process is reported in appendix A. The
resummation of the zero-jettiness is carried out up to NNLL′ accuracy, therefore, the hard,
beam and soft functions are computed at 2-loop order. The soft function has been computed
at 2-loops in Refs. [97,98]. The beam function are known up to 3-loops [99,100] and, finally,
the hard function is taken from Refs. [101] and [70], translating the result from the Catani
scheme to the MS scheme. The details of this calculation can be found in appendix B. To
reach the accuracy needed, the anomalous dimensions appearing in the evolution factors has
to be known at 2- and 3-loop order for the noncusp [96] and cusp terms [102–104], respectively.
Similarly, the QCD beta function [105,106] is required to be known at 3-loop order.

The resummation accuracy of Geneva is also extended to N3LL, including at one order
higher the noncusp and cusp anomalous dimensions [96,107,108], the QCD beta function [107]
and the running of the strong coupling. At the moment, this is not the default accuracy chosen,
because we are still studying its interface to the parton shower. The shower can, in principle,
modify the distributions at order α3

S , and consequently could spoil the resummation accuracy.
Moreover, as we are going to show, N3LL predictions can be used as a cross-check to quantify
the effects of the shower.

5.3.1 One-jettiness resummation

In Eq. (3.11), we introduced the Sudakov factor needed for the resummation of the one-
jettiness. Here, we report all the ingredients needed for such resummation for the specific case
of gluons-initiated process, as the double Higgs boson production.

The Sudakov factor for the gluon channels is given by

Uggg1 (Φ1, T cut
1 ) =

U

Γ

(
1 + 6CA ηNLL

cusp (µS , µH)

) , (5.11)

with Γ the Euler gamma function and

lnU = 6CA

[
2KNLL

Γcusp
(µJ , µH)−KNLL

Γcusp
(µS , µH)

]

+ CA

[
− ln

(
Q2
aQ

2
bQ

2
J

µ6H

)
ηNLL
Γcusp

(µJ , µH) + ln

(
Q2
aQ

2
bQ

2
J

stu

)
ηNLL
Γcusp

(µS , µH)

]

− 6 γE CA η
NLL
Γcusp

(µS , µJ) + 3KNLL
γgJ

(µJ , µH). (5.12)
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Figure 5.5: Resummed predictions matched to the appropriate fixed-order results at different
accuracies for the T0 distribution in the peak (left), transition (centre) and tail (right) region.

The functions appearing in the formula above are common in the SCET literature, see e.g.
Ref. [96], and are given by

KNLL
Γcusp

(µ1, µ2) = − Γ0

4β20

[
4π

αS(µ1)

(
1− 1

r
− ln r

)
+

(
Γ1

Γ0
− β1
β0

)
(1− r ln r) +

1

2

β1
β0

ln2 r

]
,

ηNLL
Γcusp

(µ1, µ2) = −1

2

Γ0

β0

[
ln r +

αS(µ1)

4π

(
Γ1

Γ0
− β1
β0

)
(r − 1)

]
,

KNLL
γJ

= −1

2

γ0
β0

ln r , (5.13)

with r = αS(µ2)
αS(µ1)

, the scales µH = T max
1 , µS = T cut

1 and µJ =
√
µHµS . The kinematics-

dependent terms are given by

Qa = paMHH e
YHH , Qb = pbMHH e

−YHH , QJ = 2 pJ EJ , (5.14)

where YHH is the rapidity of the Higgs boson pair, pa,b are the incoming momenta, pJ is the
momentum and EJ the energy of the jet in the final state (in the frame in which the Higgs
boson pair system has YHH = 0). The cusp and noncusp anomalous dimensions are given by

Γ0 = 4 , Γ1 = 4

[(
67

9
− π2

3

)
CA − 20

9
TFnf

]
,

γ0 = 12CF + 2β0 , β0 =
11

3
CA − 4

3
TFnf ,

β1 =
34

3
C2
A − 10

3
CAnf − 2CFnf . (5.15)

5.4 Numerical effect of T0 resummation

To study the effect of the T0 resummation, in Fig. 5.5 we show the resummed predictions across
the whole spectrum. In particular, we present the resummed predictions at various resum-
mation orders matched to the appropriate fixed-order calculations: NLL′+LO1, NNLL+LO1,
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NNLL′+NLO1 and N3LL + NLO1. We report also the statistical errors due to the Monte Carlo
integration, which appear as vertical bars, as well as the scale variation band, obtained by
the procedure previously discussed. The lower insets of the plots show instead the normalised
relative ratios between the curves. In the peak region (small T0), where resummation effects
are most important, we observe a large spread among the predictions at different resummation
accuracies. In the transition and tail region, the difference between the various predictions is
driven by the FO accuracy, with LO1 results being consistently smaller than the NLO1 ones
across the whole range. The scale variations at N3LL+NLO1 and NNLL′ +NLO1 are smaller
than those at lower orders, especially in the peak and transition regions, showing a reasonable
convergence of the perturbative predictions. We notice however that resummation effects are
still visible up to values of T0 ≲ 300 GeV in the small difference between the N3LL and the
NNLL′ results, at the order of a few percent. This can be explained by the fact that the actual
resummed variable is τ0 = T0/MHH , which, in this particular process, can be small even for
relatively large values of T0, when MHH becomes very large, as already discussed above.



Chapter 6

Parton showers for double Higgs boson
production

In this chapter we present the different showers with which Geneva interfaces, paying particular
attention to their effects in the case of the double Higgs boson production. We will only discuss
the main differences, as additional information can be found in the relative references.

The double Higgs boson production is one of the first gluon-initiated processes implemented
in Geneva. Compared to other colour singlet production processes already studied within
the Geneva framework, the impact of the parton shower to this processes is significant. Two
main reasons contribute to this behaviour. Firstly, the process is dominated by the gluon
channel, hence the gluon emissions are more abundant than those from quarks (or antiquarks),
and this difference is determined by the colour factor of the splitting, roughly speaking the
emissions are scaled by a factor CA/CF ∼ 2. Secondly, as mentioned in the previous sections,
this process has a large hard scale, defined by the invariant mass of the Higgs boson pair MHH .
Unlike the case of the single Higgs boson production, where the hard scale is simply given
by the mass of the Higgs boson, resulting in a well-defined sharp distribution, the invariant
mass for double Higgs boson production spans over a wide range of values, starting from 2mH

up to the centre-of-mass energy
√
S considered. The choice of the evolution variable t, which

usually depends on the hard scale, and the choice of the starting scale of the shower define
how much of the phase space is available for the shower emissions. Since the hard scale is set
to MHH , this feature will play a visible role in the effect of the shower.

Having said that, we will briefly comment on the main features of the parton showers
considered in the Geneva framework, emphasizing their nature as dipole showers, and
discussing their evolution variables and the structure of the splitting evolutions.

6.1 Pythia8

The first shower used in the Geneva framework is Pythia8 [15,16]. Considering a generic
splitting a→ b+c, each coloured parton a is assigned a recoiler r that carries the corresponding
anticolour. This branching can be split in two steps: a+ r → a∗ + r′ → b+ c+ r′, where a∗

41
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is an intermediate off-shell parton of virtuality Q2 and r′ its recoiler. The evolution variable
used is a modified transverse momentum, defined as

tFSRPythia8 = z(1− z)Q2 for FSR ,

tISRPythia8 = (1− z)Q2 for ISR , (6.1)

for final-state radiation and initial state radiation, respectively. Here Q2 is the virtuality of the
off-shell parton, z is related to the kinematics in the dipole rest frame. It represents the energy
sharing between daughters in the rest frame of the radiator + recoiler system (specifically,
Eb = zEa and Ec = (1− z)Ea). In this description, the colour does not flow between initial
and final states, meaning that Pythia8 does not include interference between initial-final (IF)
and final-initial (FI) emissions, treating the evolution of partons in the initial and final state
independently. Moreover, it uses a collinear evolution, represented by the following DGLAP
splitting kernels

Pq→qg(z) = CF
1 + z2

1− z
,

Pg→gg(z) = CA
(1− z(1− z))2

z(1− z)
,

Pg→qq̄(z) = TR(z
2 + (1− z)2) , (6.2)

and satisfying the symmetry relations Pa→cb(z) = Pa→bc(1− z). Here CF = 4/3, CA = 3 and
TR = 1/2 are the colour factors.

6.2 Sherpa

The parton shower implemented in Sherpa [17–19] is based on the Catani-Seymour dipole
formalism. This formalism incorporates collinear evolution and the splitting of colour dipoles,
ensuring energy-momentum conservation and proper treatment of colour flow in the shower
evolution. It accurately simulates the probabilities and kinematics of collinear parton splittings.
Considering the following splitting ãj + b̃ → a+ j + b, the evolution variable is a modified
transverse momentum which can be defined as

tSherpa =
Q2

2

[
δjg(1− z) + δjq

]
. (6.3)

Here z is defined differently depending on whether we are considering an ISR or FSR, in
particular

zISR =
(pa − pj + pb)

2

(pa + pb)2
,

zFSR =
(pa + pj + pb)

2

(pa + pb)2
. (6.4)

The only difference is in the z variable, where all the momenta acquire a plus sign since we
are considering a fully final state splitting. The expression for the splitting kernels are not
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provided here, as their definition depends on the type of radiation (ISR or FSR) and whether
the spectator is initial- or final-state. The common feature that they share is their dependence
on the transverse momentum of the emitted parton, pT , and on the hard scale Q2. Also the
definition of these two variables depends on the radiation considered, all the possible cases can
be found in Ref. [17]. Compared to the splitting kernels of Eq. (6.2), the z in the denominator
is scaled by a factor ∼ p2T /Q

2 for each configuration considered.

6.3 Dire

The Dire [109] shower is baseds on the Catani-Seymour dipole shower formalism. It describes
the parton shower evolution through the splitting of colour dipoles, focusing on the colour
connections between partons. To address the issue of the soft radiation outside the collinear
region, the Dire shower introduces a t-dependence in the splitting functions, which restores
the correct soft anomalous dimension.

For instance, consider an initial-state parton splitting process ãb → a+ b → j, where a
is the splitting parton and j the spectator in the initial state. The soft-enhanced terms are
replaced by a partial fraction of the soft eikonal for the colour dipole

1

1− z
→ 1

1− z + v
, 1− z =

pjpb
papb

, v =
pjpa
papb

. (6.5)

This replacement introduces a scaled transverse momentum t as the evolution variable, allowing
for the correct description of soft radiation, defined as tISR,iDire = (z − v)p2T . The soft-enhanced
term now reads

1− z

(1− z)2 + κ2
, κ2 =

t

Q2
, Q2 = 2papb − 2(pa + pb)pj . (6.6)

If the spectator for the considered initial-state splitting is in the final state, the variables are
slightly modified as follows

1− z =
pbpj

papb + papj
, u =

pbpa
papb + papj

,

tISR,fDire = Q2u(1− z) , κ2 =
t

Q2
, Q2 = 2pa(pb + pj)− 2pbpj . (6.7)

Lastly, for final-state splittings with final-state spectator, we have

y =
2papb
Q2

, z̃ =
papj

papj + pbpj
, Q2 = 2papj + 2(pa + pk)pb ,

tFSR,fDire = Q2y(1− y)(1− z̃) , 1− z = (1− z̃)(1− y) . (6.8)

The case of final-state splitting with initial-state spectator can be reconstructed by symmetry.
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With these replacements, the leading order splitting functions can be written as

Pqq(z, κ
2) = 2CF

[(
1− z

(1− z) + κ2

)

+

− 1 + z

2

]
+

3

2
CF δ(1− z) ,

Pgg(z, κ
2) = 2CA

[(
1− z

(1− z) + κ2

)

+

+
z

z2 + κ2
− 2 + z(1− z)

]
+ δ(1− z)

(
11

6
CA − 10

3
TR

)
,

Pqg(z, κ
2) = 2CF

[
z

z2 + κ2
− 2− z

2

]
,

Pgq(z, κ
2) = TR

[
z2 + (1− z)2

]
. (6.9)

6.4 Comparison between parton showers

The main difference between the three considered showers lies in the choice of the evolution
variable t. Typically, the physical constraint implemented for the phase space is given by

t < µ2PS , (6.10)

where µPS is the starting scale of the parton shower. Consequently, the available phase space
in which the shower can generate emissions is limited by the evolution variable. To simplify the
discussion and following Ref. [64], consider only the first hardest emission done by the shower
for the specif case of the double Higgs boson production. In this scenario, a pair of Higgs
bosons, along with a final state with momentum pj , is produced from the collision between
two massless partons of momenta pa and pb. In the centre-of-mass where the Higgs bosons
are at rest, the hard scale is set to the invariant mass of the Higgs bosons, i.e. Q2 = MHH .
Introducing the Mandelstam variables

s = (pa + pb)
2 = 2 pa pb ,

t = (pa − pj)
2 = −2 pa pk ,

u = (pb − pj)
2 = −2 pb pj , (6.11)

we can define two variables linked to them, given by

v =
2 pa pj
2 pa pb

= − t

s
w =

2 pb pj
2 pa pb

= −u
s
. (6.12)

The kinematics of the partons can be schematized as

pµa = E(1, 0, 0, 1) ,

pµb = E(1, 0, 0,−1) ,

pµj = E(1, 0, sin θ, cos θ) (6.13)

with θ the angle between the parton in the final state and the beam direction, and the
momentum conservation imposes that s+ t+ u = Q2 = 4E2. This implies that

v + w =

(
1− Q2

s

)
< 1 , (6.14)
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since the kinematic limits on s are given by the energy of the collider S and the hard scale Q2,
as Q2 < s < S. We can also define

vw =
t

s
· u
s
=

1

2
(1 + cos θ) · 1

2
(1− cos θ) =

1

4
sin2 θ <

1

4
. (6.15)

This product is useful to define the Dire evolution variable, already defined in Eq. (6.6) as

κ2 =
tDire

Q2
= vw =

(pa pj) (pb pj)

(pa pb)2
. (6.16)

From Eq. (6.15), we obtain tDire <
Q2

4 . Basically the Dire shower satisfy Eq. (6.10) and it
populates the full phase space under this condition. Exploiting the v and w variables, we can
also rewrite the Sherpa evolution variable as

tSherpa

Q2
=

vw

1− (v + w)
. (6.17)

The tSherpa is larger than tDire by construction, meaning that for a given value of the starting
scale of the shower, the emission phase space of the Sherpa shower is more restricted than
that of Dire.

Another important differences between the showers arises from the large invariant mass of
the double Higgs boson production process. Since it is a gluon-initiated process, when the pair
of Higgs boson is associated with n-jets, in the t-channel, the partons can generate dipoles due
to their colour connection. These dipoles carry a significant amount of energy, which is driven
by the invariant mass of the boson pair. This results in a substantial energy budget available
for gluon splittings, and since gluons have a large colour factor CA compared to quarks, they
have a more significant impact on the shower evolution.

In addition to that, the choice of splitting functions used by the showers also play a crucial
role in describing gluon branchings. The parameterisation of the splitting function by Pythia8
and Sherpa describes correctly the collinear emission, but does not describe soft emissions as
effectively. In the gluon splitting function, the leading dependence for soft emissions is given by
the factor 1/z. However, in the showers that uses Catani-Seymour-like dipoles, as mentioned
in Sec. 6.2, the z variable is scaled by a term proportional to p2T /Q

2. In the collinear limit, the
extra term appearing in the denominator is irrelevant since p2T = 0. In the soft limit, where
p2T ̸= 0, it leads to an overestimation of the gluon emission probability and, consequently,
of the Sudakov form factor. The Dire approach addresses this problem by introducing a
different parameterisation for the dipoles, taking into account the inverse of the eikonal factor,
as already seen. Consequently, the Dire shower is better suited to handle gluons splittings,
especially in the soft emission regime, compared to other showers.



Chapter 7

Phenomenological results

In this chapter, we present our results for the double Higgs production process. We begin by
describing our physical setup and then proceed to validate our results by comparing them
to a fixed-order NNLO calculation provided by an independent code. Finally, we present
the showered results. Note that, for the showered results, we ignore any effects arising from
hadronisation and fragmentation of hadrons in the shower, as well as those coming from
multi-parton scattering. This choice is motivated by the lack of available experimental data
and, more importantly, by the necessity of incorporating top-quark mass effects to ensure the
reliability of Monte Carlo event generator.

7.1 Physical parameters

We consider proton-proton collisions at a hadronic centre-of-mass energy
√
S = 13 TeV. The

process of interest is p p→ HH +X, where we work in the limit of infinite top-quark mass,
requiring two on-shell Higgs bosons in the final state. We consider only the gluon fusion
production channel. We use the PDF4LHC15_nnlo_100 PDF set [110] from LHAPDF 6 [111],
including the corresponding value of αS(MZ). The input parameters used are

mH = 125.06 GeV , v = 246.32 GeV , mt = 173.1 GeV ,

T cut
0,re = 1 GeV , T cut

0,ns = 0.5 GeV , T cut
1 = 1 GeV . (7.1)

This choice of cutoffs provides a reasonable compromise between the size of the neglected
power-suppressed terms and the stability of the singular-nonsingular cancellation. We set
both the factorisation (µF ) and renormalisation (µR) scales to the invariant mass MHH of the
Higgs boson pair. The phase space for the process is generated by the Monte Carlo integrator
Munich. To evaluate the beam functions we use the beamfunc module of scetlib [112,113].
All tree-level matrix elements are calculated using Recola [114, 115] through a custom-
built interface to Geneva, while all the one-loop terms are calculated through the standard
Openloops [116] interface already used for processes previously implemented, in both cases
we are working in the complex-mass scheme. For the validation of the NNLO accuracy of the
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Geneva results, we compare to an independent calculation implemented in Matrix [83, 95],
and we use the three-loop running of αS for both the predictions.

7.2 Validation of NNLO results

The comparison between Matrix and Geneva predictions is performed at the partonic level,
before interfacing to the parton shower. The theoretical uncertainties of both calculations are
obtained with the 3-point µR and µF variations (by multipling and dividing the scales by a
factor 2, the minimum and the maximum results are taken as the envelope of the uncertainties).
In the comparison plots, the Matrix result is presented in red, while the Geneva one in blue.

We first show the inclusive distributions in Fig. 7.1, i.e. the invariant mass of the Higgs
boson pair MHH (on the left panel) and the Higgs boson pair rapidity yHH (on the right one).
For the comparison of MHH , we also include the Geneva result obtained using Eq. (5.10),
in green, while the blue curve is obtained by Eq. (5.8). These implementations have been
discussed in Sec. 5.2. The green and blue lines differ only by higher orders, which play a
significant role for the invariant mass distribution of the Higgs boson pair. Precisely, the
blue default Geneva line is obtained by computing the value p in Eqs. (5.10) and (5.9)
in different bins of MHH . We have combined various runs in different MHH bins, with a
denser distribution in the peak region where the cross section is larger. This effect arises
from the resummation performed by Geneva, which is carried out in terms of the variable
τ0 = T0/MHH . Consequently, large resummation effects can be observed at large values of
T0 and MHH as long as their ratio is small. This effect is enlarge also by the fact that the
invariant mass distribution of the Higgs boson pair spans to a wide range of values, and the
peak region itself is large and not sharped around a specific value. As can be seen from the
figure, the difference between these two curves spans a range from −5% to roughly +10%, but
only the blue line shows perfect agreement with the Matrix result, as expected.

In Fig. 7.2, we show some exclusive distributions including the transverse momentum of
the softest of the two Higgs bosons pH2

T (left panel) and the hyperbolic tangent of the rapidity
difference between the two Higgs bosons χ (right panel). This variable is defined as

χ = tanh

( |yH1 − yH2 |
2

)
, (7.2)

where yH1,H2 are the rapidities of each Higgs boson. In Fig. 7.3, instead, we report the
transverse momentum of the hardest of the two Higgs bosons pH1

T . These exclusive distributions
exhibit good agreement between Matrix and Geneva, except in regions of small transverse
momentum for both H1 and H2, as well as in the region of large χ. These differences are
expected, since Geneva provides not only a fixed-order prediction, as done by Matrix, but
also includes resummation effects. Consequently, the Geneva results incorporate higher-order
effects and power-suppressed corrections, which can account for these discrepancies. For
example, in the region of small pT , the transverse momentum of both the hardest and softest
Higgs boson is small (due to their back-to-back nature), which coincides with the region of
small transverse momentum of the Higgs boson pair. This region is problematic for Matrix
since the fixed-order is diverging and therefore the resummation is needed. We investigated the



48 7.2. Validation of NNLO results

0.00

0.01

0.02

0.03

0.04

0.05

d
σ
/d
M

H
H

[f
b
/G

eV
]

PDF4LHC15(NNLO),mt →∞
pp→ HH +X

√
S = 13 TeV, µ = MHH

Matrix

Geneva

Geneva-single MHH bin

200 400 600 800 1000 1200 1400 1600 1800 2000

MHH [GeV]

−0.1

0.0

0.1

ra
ti

o−
1

0

2

4

6

8

10

12

14

d
σ
/d
y H

H
[f

b
]

PDF4LHC15(NNLO),mt →∞
pp→ HH +X

√
S = 13 TeV, µ = MHH

Matrix

Geneva

−2 −1 0 1 2

yHH

−0.1

0.0

0.1

ra
ti

o−
1

Figure 7.1: Comparison between Matrix (in red) and Geneva (in blue) for the invariant
mass of the Higgs boson pair, on the left, and the rapidity, on the right.

discrepancies observed in the transverse momentum distribution of the hardest Higgs boson,
where these effects are largest. In this region, the discrepancy can reach up to 100%, which is
considerably larger than that observed in the pT of the softest Higgs boson. In Fig. 7.3, we
provide a breakdown of all possible sources contributing to the differences between a purely FO
calculation, such as that obtained with Matrix, and the Geneva partonic prediction. Each
subpanel displays the relative size of the respective quantity compared to the total distribution
obtained with Matrix, and we explain each of them below. The first source of discrepancy is
denoted as A1, and is defined as

A1 ≡

dσNNLL′

dp
H1
T

− dσNNLL′

dp
H1
T

∣∣∣∣
α2
S

dσMatrix

dp
H1
T

, (7.3)

which represents the difference between the resummed contribution and the resummed expanded
up to O(α2

S) coming from Geneva, normalised to the Matrix NNLO result. As shown in the
figure, this difference, which arises from logarithmic terms beyond NNLO, leads to a large
positive effect in the region of interest. In the second ratio plot, we consider contributions
from projectable configurations with T0 < T cut

0,ns at relative O(αS), defined as

A2 ≡
dσ

NLO0
diff

dp
H1
T

dσMatrix

dp
H1
T

. (7.4)
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Figure 7.2: Comparison between Matrix (in red) and Geneva (in blue) for the transverse
momentum of the softest Higgs boson, on the left, and the hyperbolic tangent of the rapidity
difference of the two Higgs bosons, on the right.

The third ratio plot represents the contributions from projectable configurations with T0 > T cut
0,ns

and T1 < T cut
1 at relative O(α2

S), given by

A3 ≡
dσ

NLO1
diff

dp
H1
T

θ(T0 > T cut
0,ns)

dσMatrix

dp
H1
T

. (7.5)

In both cases the subscript diff refers to the difference between the observables evaluated
on exact kinematical configurations and those evaluated on projected kinematics below the
respective resolution cutoffs. These terms capture the effects of power corrections arising from
the projections used in Geneva to assign event kinematics below the resolution cutoffs. As
shown in the figure, both contributions are large and positive. Lastly, we examine the following
quantity,

A4 ≡

dσnonSing

α2
S

dp
H1
T

θ(T0 < T cut
0,ns)

dσMatrix

dp
H1
T

, (7.6)

which represents the difference between the pure O(α2
S) contributions of Geneva and Matrix

below T cut
0,ns, normalised to the same value as before. This term corresponds to the contribution

in Eq. (5.2), projected onto pH1
T . To compute this quantity, one needs to subtract the O(α2

S)
contribution from Matrix and the resummed-expanded Geneva result at the same order.
This difference is negative and significantly larger than the previously considered terms, making
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Figure 7.3: Comparison between Matrix (in red) and Geneva (in blue) for the transverse
momentum of the hardest Higgs boson. On the left, all the possible sources of discrepancy
between the two results.

it the primary driver of the discrepancy. To conclude and to demonstrate that there are no
other possible sources of differences between Geneva and Matrix, we present, in the last
panel, the difference between the partonic Geneva result and Matrix, subtracted of all the
Ai contributions. As expected, this difference is compatible with zero, indicating agreement
between the two calculations.

7.3 Showered results

To further study the impact of parton showers, we extend Geneva’s default shower interface
to Pythia8 to both Dire, as implemented in Pythia8, and the default shower in Sherpa.
In order to validate the matching with the shower, we compare the Geneva partonic result
(in blue) with the three different showers available in our framework: Pythia8 (in red), Dire
(in green) and Sherpa (in yellow).

The study of the shower effects on double Higgs boson production is particularly interesting
due to two main differences compared to other processes already implemented in Geneva [39,
44, 46,117]. As widely discussed in Sec. 6.4, since the process is dominated by gluon channel,
we expect effects due to gluon emissions to be scaled by a factor CA/CF ∼ 2. Due to the large
value of the hard scale, MHH , and considering the scale we have controll over is τ0 = T0/MHH ,
even at relatively large values of T0, τ0 can be small while MHH remains large. As a result,
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Figure 7.4: Comparison between the partonic and showered T0 in Geneva,
Geneva +Pythia8, Geneva +Dire, Geneva +Sherpa, on the left, and comparison of the
effects of the shower and the effects of the N3LL resummation, on the right.

for any fixed value of T0, the large logarithmic terms associated to this Higgs boson pair
production can be significantly larger than the corresponding terms for the same value of
T0 in other processes. This can be observed, for example, in Fig. 7.4 where we show the
T0-showered spectrum on the left panel. The choice of the parton shower can have a relatively
large impact, especially for small (≤ 10 GeV) values of T0. While all three showers show
deviations from the partonic result of roughly the same magnitude, they differ significantly
among each other, which can be approximately viewed as a shower matching uncertainty. The
net result is that, for the default choice of the evolution variable, the Catani-Seymour based
shower as implemented in Sherpa has an evolution variable t on average larger than that
of Dire, leading to its phase space reach being more constrained. This is reflected in the
suppression in the small T0 region. Moreover, the argument presented in Sec. 3.3 does not
imply the numerical preservation of the resummed variable T0. As shown in Fig. 7.4 in the
right panel, the parton shower induces a shift in the spectrum of similar size to that obtained
by including higher-order effects in the resummation (N3LL at partonic level in green).

In Fig. 7.5, we show how the shower correctly preserves the spectrum of fully inclusive
variables such as the invariant mass of the Higgs boson pair, on the left, and the rapidity of
the Higgs bosons, on the right. This indicates that the total inclusive cross section is also
preserved by the shower. Lastly, in Fig. 7.6 we show how the different showers affect the
transverse momentum of the Higgs boson pair system and that of the hardest Higgs boson.
While the parton shower is not necessarily expected to preserve these observables, we obseve
that all shower predictions are in good agreement with each other and with the partonic result,
except for the first bin where they agree within uncertainties. This is likely due to the fact
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Figure 7.5: Comparison between the partonic and showered invariant mass of the Higgs boson
pair, on the left, and their rapidity, on the right.

that partonic events produced by Geneva already feature both a T0 and a T1 resummation,
both of which have a non-trivial interplay with the transverse momentum distribution of the
colour-singlet system.

0.00

0.05

0.10

0.15

0.20

0.25

d
σ
/d
pH

H
T

[f
b
/G

eV
]

PDF4LHC15 (NNLO), mt →∞
pp→ HH +X√

S = 13 TeV, µ = MHH

Partonic NNLL′T0 + NNLO

Showered (Pythia8 Simple)

Showered (Pythia8 Dire)

Showered (Sherpa)

0 100 200 300 400

pHHT [GeV]

−0.2

−0.1

0.0

0.1

0.2

ra
ti

o−
1

0.00

0.02

0.04

0.06

0.08

d
σ
/d
pH

1

T
[f

b
/G

eV
]

PDF4LHC15 (NNLO), mt →∞
pp→ HH +X√

S = 13 TeV, µ = MHH

Partonic NNLL′T0 + NNLO

Showered (Pythia8 Simple)

Showered (Pythia8 Dire)

Showered (Sherpa)

0 100 200 300 400

pH1

T [GeV]

−0.1

0.0

0.1

ra
ti

o−
1

Figure 7.6: Comparison between the partonic and showered transverse momentum of the Higgs
boson pair, on the left, and the transverse momentum of the hardest Higgs boson, on the right.



Part II

On the approaches to threshold resummation of rapidity distributions for
the Drell-Yan process
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Chapter 8

Threshold resummation of Drell-Yan rapidity
distributions

The Drell-Yan (DY) process is a fundamental process to study to test the Standard Model to a
high accuracy, but also to probe physics beyond this model. It is one of the cleanest processes
in high-energy physics due to several reasons. The DY process involves the annihilation of a
quark and an antiquark, from the collision of two hadrons, to produce a lepton-antilepton pair
and a system of hadrons X. This can be done through the exchange of a virtual photon or a Z
boson. When considering interactions involving charged leptons and neutrinos, the exchange
of a W boson can also contribute to the DY process. This simplicity of initial and final
states makes it easier to identify and reconstruct the particles in the detector. Moreover, the
theoretical predictions for such process are well-developed, allowing for accurate estimates of
the expected cross section and kinematic distributions. Together with the clean signatures, this
allows to use the DY process as a calibration tool for particle detectors and event generators. In
addition, the well-understood theoretical background leads to reduced systematic uncertainties
in the measurements.

When one is interested in precision in a less inclusive scenario of the total cross section, the
best observable are the rapidity distributions, for both experimental and theoretical reasons.
One of the most significant advantages of rapidity is its boost-invariance under relativistic
transformations. In high-energy collisions, particles are often produced with a wide range of
velocities. Rapidities allow to study particle production independently of the energy of the
collision. This is crucial because different particles have different masses and momenta, leading
to different velocity distributions. Moreover, measuring rapidity distributions is often simpler
than measuring momentum or energy distributions, especially when considering that particle
detectors are designed to measure particle trajectories and tracks, which are closely related to
rapidity.

The study of the rapidity distribution in the DY process, therefore, constitutes a solid
testing ground for Standard Model physics and new physics too. The DY process has been study
very carefully in perturbative QCD both for inclusive and differential distributions, such as the
rapidity distributions which are considered in this work. At present, fixed-order perturbative
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55 8.1. Genesis of threshold logarithms

predictions in QCD for the cross section and rapidity distributions of this process are available
up to next-to-next-to-next-leading order (N3LO) [118–121]. Fixed order predictions, on their
own, are unable to accurately reproduce all the kinematic regions of the phase space. Therefore,
they cannot be considered reliable theoretical predictions.

In this chapter we introduce the threshold logarithms, discussing their appearance for
rapidity distributions in the specif case of the DY process, establishing our notation. We also
discuss in detail the threshold limits and the threshold resummation approaches available in
the literature.

8.1 Genesis of threshold logarithms

During high-energy collisions, a large number of partons can be produced. Consider for
simplicity a quark parton line that emits n gluons. At each emission, the gluon carries a
fraction of the emitted quark energy denoted as 1− zn. Thus, the quark energy decreases with
each emission, ultimately amounting to a fraction z = z1z2...zn of its initial energy. In the
limit in which the corresponding zn of the emitted gluon approaches one, the integration over
the phase spaces of all the emitted gluons at order αnS generates a sequence of terms of the
form

αnS
logk(1− z)

1− z
0 ≤ k ≤ 2n− 1 . (8.1)

It becomes evident that as z approaches one, these logarithms become large and require
resummation. Physically, this limit implies that after emitting n gluons, the quark retains a
substantial portion of its energy, causing the emitted gluon to become soft, with its energy
diminishing towards zero. This is the main reason why, usually, the threshold resummation is
also called the soft-gluon resummation.

To discuss in more detail the threshold region and the associated resummation, it is
convenient to introduce two variables that will be used extensively in the following

τ =
Q2

S
, z =

Q2

s
. (8.2)

The first variable, τ , represents a hadronic quantity defined as the ratio of the invariant mass
of the final state Q2 and the hadronic centre-of-mass S. The second variable, z, can be seen as
the partonic version of τ , defined as the ratio of Q2 and the partonic centre-of-mass s = x1x2S.
Here x1,2 denotes the momentum fractions of the partons originating from each hadron.

The limit in which τ → 11 is called the hadronic threshold limit, and it is not very interesting
phenomenologically because the cross section is small (indeed, at τ = 1 it becomes identically
zero). A more interesting limit is the so-called partonic threshold limit, where the parton-level s
approaches Q2, namely that z → 1. The kinematic limit for the partonic variable is τ ≤ z ≤ 1;
consequently, if τ → 1, then z is forced to be close to 1, meaning that the hadronic threshold
limit implies the partonic threshold limit. However, the converse is not true: even far from the
hadronic threshold (which is the phenomenologically interesting region for the DY process),

1This limit has to be considered from below, τ → 1−, since τ has to be smaller than one by construction.
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there are always contributions from the partonic threshold region z → 1, as the integral
extends to z = 1. In this threshold region, tipically defined as the limit in which the invariant
mass of the tagged final state is close to the centre-of-mass energy of the initial state, most
of the available energy flows into the final state so that any extra radiation has to be soft.
Moreover, this region often dominates the integral, due to the shape of the PDFs acting as a
weight favouring large values of z even at small τ . This is a well-know phenomenon called
dynamical threshold enhancement [31,32,122].

To be precise, the form of the threshold logarithms in Eq. (8.1) is not exactly the one
that appears in the calculation. Considering Eq. (2.1), when the partonic cross section σ̂ab is
convolved with the PDFs and then integrated, the terms in Eq. (8.1) present a non-integrable
singularity in z = 1. In the prediction of any IR-safe observable, this singularity must be
combined with the divergence of loop diagrams, which gives rise to

αnS

(
logk(1− z)

1− z

)

+

, 0 ≤ k ≤ 2n− 1 . (8.3)

The + sign denotes the usual plus distribution, defined as
∫ 1

0
dy [f(y)]+ g(y) =

∫ 1

0
dy f(y)[g(y)− g(1)] ,

[f(x)]+ = f(x)− δ(1− x)

∫ 1

0
f(y) dy . (8.4)

The highest power of these threshold logarithms grows with the order of the expansion in αS ,
with two extra power for each extra order. For instance, in the case of n = 1 within the bulk of
contributions from Eq. (8.3), the first term appearing in the integrated cross section will be of
the form αS log

2(1− z). When z is such that this term is roughly of order 1, all terms in the
perturbative series become of the same order, rendering it meaningless to truncate the series.
Consequently, in the partonic threshold limit, these enhanced logarithms spoil the reliability
of the fixed-order computation and call for resummation to all orders.

As already said in Sec. 2.2, also the resummation of threshold logarithms is historically
done in Mellin (N) space. The key feature in N space is that the threshold limit translates
into the large-N limit. In particular, the logarithms of the type (8.3) generate, in Mellin space,
contributions proportional to powers of logN . The logarithms in z space are divergent in the
z → 1 limit, which corresponds to the N → ∞ limit or, briefly, the large-N limit. Although
this approach for the threshold resummation is well proven, other approaches are largely
used, such as the one of SCET. In fact, SCET formalism is able to resum also this type of
contributions, as we are going to see in the following.

8.2 Factorisation for rapidity distributions

According to the factorisation theorem of QCD, as expressed in Eq. (2.1), the hadronic rapidity
(Y ) distribution for a generic LHC process of invariant mass Q2 at a centre-of-mass energy
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√
S can be defined as

1

τ σ0

d2σ

dQ2 dY
=
∑

a,b

cab

∫ 1

x01

dx1
x1

∫ 1

x02

dx2
x2

f (1)a (x1) f
(2)
b (x2)Cab

(
τ

x1 x2
, y, αS

)
, (8.5)

where Cab is the perturbative coefficient function (i.e. the partonic cross section differential in
Q2 and y), cab a constant dependent on the process considered and on the initial partons a, b
and

x01 =
√
τeY , x02 =

√
τe−Y , y = Y − 1

2
log

x1
x2
, (8.6)

with τ already defined in Eq. (8.2) and y the rapidity of the colour singlet in the partonic
centre-of-mass frame. Since the arguments of the parton distribution functions have to be
smaller than one (x1,2 ≤ 1), the allowed range for the hadronic rapidity of the colour singlet is
given by

|Y | ≤ log

(
1√
τ

)
. (8.7)

A convenient parameterisation can be obtained using the variable u instead of the partonic
rapidity y, being linked by the following equations

u =
e−2y − z

(1− z)(1 + e−2y)
, e2y =

1− (1− z)u

z + (1− z)u
, (8.8)

which show that the variable u ranges from 0 to 1, as a consequence of the physical constraint
ze2|y| ≤ 1. Therefore, we can express Eq. (8.5) in terms of the variables z, u, and the cross
section becomes

1

τ σ0

d2σ

dQ2 dY
=
∑

a,b

∫ 1

τ

dz

z

∫ 1

0
du Lab(z, u) Cab(z, u, αS) . (8.9)

The change of variables is understood implicitly, and in particular

Cab(z, u, αS) =

∣∣∣∣
∂(log x1, log x2)

∂(log z, u)

∣∣∣∣Cab
(

τ

x1 x2
, y, αS

)
. (8.10)

We have defined the non-perturbative parton luminosity Lab(z, u) as the product of the two
parton distribution functions

Lab(z, u) = cabfa (x1) fb (x2) . (8.11)

The momentum fractions x1,2 are given in terms of z, u, τ and Y by

x1 =

√
τ

z
eY−y =

√
τ

z
eY

√
z + (1− z)u

1− (1− z)u
, (8.12a)

x2 =

√
τ

z
ey−Y =

√
τ

z
e−Y

√
1− (1− z)u

z + (1− z)u
. (8.12b)
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Note that the physical constraint x1,2 ≤ 1 restricts the actual integration range of u, giving
effectively

max

[
0,

τe−2Y − z2

(1− z)(τe−2Y + z)

]
≤ u ≤ min

[
1,

z(1− τe2Y )

(1− z)(τe2Y + z)

]
. (8.13)

For a lighter notation, we are omitting the explicit dependence on Y , τ and on the factorisation
scale µF of the luminosity, which is always implicitly understood. Similarly, we are not showing
the dependence on the factorisation and renormalisation scales of the partonic coefficient
function, as their dependence is not central in our discussion.

For the specific case of the Drell-Yan process, threshold logarithms only appear in the qq̄
channel.2 For this reason, in Eq. (8.9) (and in all the other related equations) we consider
solely the qq̄ contribution to the cross section. To keep the notation light, we remove the
subscript qq̄ from the coefficient function. In addition, once chosen the production channel
and hence the value of a and b, the coefficient function does not explicitly depend anymore on
the flavour of the initial partons. The cross section for the qq̄ channel is then given by

1

τ σ0

d2σqq̄
dQ2 dY

=

∫ 1

τ

dz

z

∫ 1

0
duLqq̄(z, u)C(z, u, αS) , (8.14)

where we have defined the “total” qq̄ luminosity as

Lqq̄(z, u) =
∑

q

cqq̄fq (x1) fq̄ (x2) , (8.15)

since it is the only function to directly depend on the initial partons flavour. The general
expression for the coefficient cqq̄ appearing in Eq. (8.15), taking into account the exchange of
both a photon and a Z boson, is given by [123]

cqq̄ = [(vγq )
2 + (aγq )

2]Nγ + vγq v
Z
q NγZ + [(vZq )

2 + (aZq )
2]NZ , (8.16)

where vq and aq are the vector and axial couplings for up- and down-type quarks. For simplicity,
we are going to consider only the exchange of a virtual photon, for which these constants read

vγu =
2

3
, aγu = aγd = 0 , vγd = −1

3
,

Nγ = 1 , NγZ = 0 , NZ = 0 . (8.17)

When considering rapidity-integrated distributions, such as the invariant mass distribution
or the total cross section, the definition of the threshold logarithm Eq. (8.3) is unique. However,
it is possible to distinguish between the logarithms originating from each incoming quark. To
achieve this distinction, it is more convenient to use a different set of variables: namely, za, zb

2Contributions from other channels are suppressed by at least one power of (1 − z) with respect to the
threshold logarithms as defined in Eq. (8.3).



59 8.2. Factorisation for rapidity distributions

related to z, u (or z, y) by the following equations

za =
√
zey =

√
z

√
1− (1− z)u

z + (1− z)u
, (8.18a)

zb =
√
ze−y =

√
z

√
z + (1− z)u

1− (1− z)u
, (8.18b)

which in turn gives z = zazb. Each of these variables is related to each incoming parton. In
particular, the momentum fractions x1,2 defined in Eq. (8.12) are given by

x1 =
xa
za
, xa =

√
τeY , (8.19a)

x2 =
xb
zb
, xb =

√
τe−Y , (8.19b)

with xaxb = τ . In terms of these variables, Eq. (8.14) takes the form of a double Mellin
convolution

1

τ σ0

d2σqq̄
dQ2 dY

=

∫ 1

xa

dza
za

∫ 1

xb

dzb
zb

C̃ (za, zb, αS)
∑

q

cqq̄ fq

(
xa
za

)
fq̄

(
xb
zb

)
, (8.20)

where

C̃ (za, zb, αS) =
dz du

dza dzb
C (z(za, zb), u(za, zb), αS) . (8.21)

The coefficient function in terms of these variables contains double logarithms of the form
Eq. (8.3) but in the variables za and zb separately:

αnS

(
logk(1− za)

1− za

)

+

and αnS

(
logk(1− zb)

1− zb

)

+

, 0 ≤ k ≤ 2n− 1 . (8.22)

These are related to the threshold logarithms in the variable z, but the conversion is not
straightforward, as it involves also the u dependence. For completeness, we report in appendix C
the conversions needed to write the coefficient function in the two sets of variables, taking
the NLO coefficient function as a concrete example. Some conversions can also be found in
Ref. [124].

When using these parton-specific variables, there are two regions that generate large
logarithms: za → 1 and zb → 1. The threshold region discussed before, z → 1, coincides with
the overlap of the two regions za → 1 and zb → 1, because of the relation z = zazb. This
can be seen in Fig. 8.1, where we give a simple representation of the regions identified by
these three variables. Considering the (za, zb) plane, the limits za → 1 and zb → 1 define
the two light-blue shaded regions. These regions include the case in which just one of these
two variables is large, say za → 1, and the other is not large, zb ≪ 1. Since z = zazb, z is
not large and, consequently, in this particular case the threshold logarithms in Eq. (8.3) are
harmless. However, there are large logarithms (8.22) in the coefficient functions (those from
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z
=
z a
z b

zb

za0 1

1 1

Figure 8.1: Graphic illustration of the threshold limits in the (za, zb) plane. The light-blue
regions, corresponding to za,b → 1, define the generalized partonic threshold region. The blue
region, given by the diagonal line z = zazb, defines the partonic threshold limit.

za) which may spoil the perturbative convergence.3 These considerations show that there is a
region where these logarithms are large, bigger than the partonic threshold region previously
defined, and adopting a notation introduced in Ref. [124], we may call it generalized partonic
threshold region. In order to restore the partonic threshold limit, meaning z → 1, both the
partons have to be at threshold, za → 1 and zb → 1. This is represented by the blue shaded
region around the diagonal line in Fig. 8.1. The two light-blue shaded regions can be seen
as the partonic version of the generalized hadronic threshold region of Ref. [124], identified
by the condition τe2|Y | → 1 (or equivalently either xa or xb close to 1, depending on the sign
of Y ), which corresponds to the tails of the rapidity distribution irrespectively of the value
of τ . This corresponds to the region in which the production of the Drell-Yan lepton pair is
at threshold at a given value of the rapidity Y . In this region, either za or zb is forced to be
large, but the other variable can take any accessible value. Therefore, the generalized hadronic
threshold limit implies the generalized partonic threshold limit. It is worth noting that in the
stronger hadronic threshold limit τ → 1, both za and zb are forced to be large, and therefore
this generalized partonic threshold region coincides with the partonic threshold region z → 1.

3This mechanism can be understood in terms of the z, u variables noting that there are other large
contributions in the coefficient function coming from the u dependence. It is immediate to see from Eq. (8.18)
that za → 1 corresponds to u → 0, and zb → 1 corresponds to u → 1, as already pointed out in appendix C.
These singular contributions from the u dependence are enhanced at the partonic rapidity endpoints, as one
can see from Eq. (8.8), and are therefore relevant to describe the tails of the rapidity distribution.
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8.3 Threshold resummation approaches for rapidity distribu-
tions

Depending on which parameterisation is used, if (8.12) or (8.19), there exist at least two
families of threshold resummation approaches. The one using the parameterisation in z, u
aims at resumming the logarithms in the z variable, while the one using the za, zb variables
aims at resumming the logarithms in the single za,b variables. Concerning the first family, in
the partonic threshold region z → 1 the coefficient function can be expanded as

C(z, u) = Cthr(z, u)[1 +O(1− z)] , (8.23)

where we are omitting again the argument αS to emphasise the dependence on the other
variables. Here, Cthr(z, u) contains all leading power threshold contributions, namely the plus
distributions Eq. (8.3) and delta functions δ(1− z). With this parameterisation, there may be
terms that are apparently singular in z = 1 but multiply some u-dependent contribution that
makes them integrable. In this case, the plus distribution is not needed, see e.g. the second
term in the second line of Eq. (C.2).

To our knowledge, there exist four approaches to resum threshold logarithms in rapidity
distribution for the Drell-Yan process. We present them in chronological order of appearance,
briefly discussing their main differences:

1. The approach of Becher, Neubert, Xu (BNX henceforth) [31], using the z, u parameter-
isation. It is based on the observation that the u dependence in the PDF luminosity
Eq. (8.15) is next-to-leading power at large z, Eq. (8.12), which allows to write the
leading power contribution in terms of the rapidity-integrated coefficient function, whose
resummation is well known. With respect to Eq. (8.23), the u dependence of the
coefficient function at threshold is further approximated as

CBNX
thr (z, u) ≡ δ(1− u) + δ(u)

2
Cthr(z) , (8.24)

where Cthr(z) is the rapidity-integrated coefficient function at threshold.4 This structure,
due to the subleading nature of the u dependence in the PDFs, is proposed to all orders.
The resummation of the coefficient function CBNX

thr (z) is computed through SCET, and
the hadronic cross section is given by

1

τ σ0

d2σres,BNX
qq̄

dQ2 dY
=

∫ 1

τ

dz

z

Lqq̄(z, 0) + Lqq̄(z, 1)

2
Cres
thr(z) , (8.25)

where the integration over the u variable has been performed.

2. The approach of Bonvini, Forte, Ridolfi (BFR henceforth) [32], using the z, u parame-
terisation. It is similar to the BNX approach, but the derivation is based on a different

4The expressions at NLO and NNLO for this coefficient are reported in appendix D.1 for completeness.
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argument in Mellin-Fourier space [125], and extends the older result of Ref. [126]. The
proposed factorisation reads

CBFR
thr (z, u) ≡ δ

(
u− 1

2

)
Cthr(z) , (8.26)

leading to the following hadronic cross section

1

τ σ0

d2σres,BFR
qq̄

dQ2 dY
=

∫ 1

τ

dz

z
Lqq̄

(
z,

1

2

)
Cres
thr(z) . (8.27)

Note that the BFR and BNX results5 are both based on factorising the u dependence
in the threshold limit, but this is achieved in two different ways. Indeed, it can be
shown that the two formulations are equivalent up to power suppressed contributions in
the threshold limit. In particular, since the difference in the two formulations is in the
structure of the parton luminosity, the equivalence is shown by providing that

Lqq̄(z, 0) + Lqq̄(z, 1)

2
− Lqq̄

(
z,

1

2

)
= O[(1− z)2] . (8.28)

This fact does not mean that the accuracy of these two formulations is higher, it just
tells that the two approaches are more similar than expected from the accuracy of the
derivation.

3. The approach of Banerjee, Das, Dhani, Ravindran (BDDR henceforth) [128, 129], using
the za, zb parameterisation. It is a two-scale extension of the original approaches to
rapidity-integrated resummation [5,6], already introduced for xF distributions in Ref. [6]
and later converted to rapidity distributions in Refs. [130–134], where a double Mellin
transform is taken with respect to the two variables za and zb and logarithms of the
product of the two Mellin conjugate variables are resummed to all orders. The novelty
of this approach is in the resummed coefficient function, which is written as the sum of
two contributions

Cres,BDDR(za, zb, Q
2) = Chard(za, zb, Q

2) + CSV(za, zb, Q
2) . (8.29)

The first term is calculated through SCET and constitutes the hard part of the process
(similarly to the hard function), while the second one is called the soft-plus-virtual (SV)
term. It is the analogous of the threshold logarithms exponentiation but in N space.
The CSV coefficient, for the specific case of the DY process and only considering the qq̄
channel, is computed doing a double Mellin transform of the individual contributions
(za → Na and zb → Nb, separately) and then the canonical exponentiated form is
obtained, yielding to

C̃SV
qq̄ (w) =

∫ 1

0
dza z

Na−1
a

∫ 1

0
dzb z

Nb−1
b CSV

qq̄ = g0qq̄(αS) exp[gqq̄(αS , w)] , (8.30)

5It is important also to stress that the integral over u of both (8.24) and (8.26) gives exactly Cthr(z).
This coefficient function is then the threshold limit of the well known inclusive coefficient function, whose
resummation has been studied for decades [5, 6, 8, 12,37,127].
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with w = αSβ0 log(NaNb), where β0 is the zeroth order coefficient of the beta function.
The coefficients gqq̄(αS , w) are process independent and contain purely logarithmically
enhanced terms that can be expanded to the desired order.

4. The approach of Lustermans, Michel, Tackmann (LMT henceforth) [124], using the
za, zb parameterisation. It considers the SCET formalism to factorise the cross section in
terms of beam and a soft functions, enabling the resummation of threshold logarithms
after solving the renormalization group equations that they obey. As already said, it is
designed to be valid in the generalized threshold region, thus enlarging its kinematic range
of applicability. The generalized threshold factorisation theorem can be schematised as

d2σ

dQ2 dY
=

1

S
Hqq̄

[
f thrq ⊗ Bq + Bq ⊗ f thrq̄ − S ⊗ f thrq f thrq̄

]
, (8.31)

where H is the hard function, B the beam function and S the soft function. The first
term of such equation represents the limit xa → 1, while the second one xb → 1, meaning
that these are two regions in which one of the two partons is at threshold while the other
one can take any allowed value. The last term is the subtraction of the overlap between
the two threshold limits considered.

To conclude this discussion, we want to stress that the BDDR approach has been recently
extended [135–138] to resum next-to-leading power contributions to the dominant qq̄ channel,
specifically those suppressed by one power of 1 − za or 1 − zb with respect to the leading
power logarithms Eq. (8.22). This extension allows to enlarge the region where threshold
contributions dominate, and is therefore very useful to obtain reliable predictions close to
threshold and more precise predictions even far from threshold. However, achieving higher
accuracy necessitates the inclusion of next-to-leading power contributions from other channels,
such as the qg channel. It is important to note that the LMT approach already captures these
subleading power contributions, predicting also the off-diagonal qg channel at leading power.
This approach is constructed to resum the leading power terms in one variables while retaining
full dependence on the other variable. Therefore, it contains contributions suppressed with
any power of 1− zb which multiples the leading-power terms in za, and vice versa.6 Although
the LMT approach provides the best analytic structure for this resummation, and it is valid in
a wider kinematic range, it currently does not implement all-order results in a numerical code.

6These towers of contributions are referred to as leading power in the generalized threshold limit (LPgen) in
Ref. [124].



Chapter 9

Validation of the BNX and BFR approaches

In this chapter, we focus on the BNX and BFR approaches introduced in Sec. 8.3, whose
validity has been criticised in Ref. [124]. We present a new detailed proof that validates both
approaches, while also addressing potential caveats and the reliability of this result. We also
comment on other criticisms that are not directly linked to the proof of the two approaches.

Before moving on, we want to stress again that the original BNX and BFR approaches use
different methods for resumming to all orders the coefficient Cthr(z), as briefly discussed in
Sec. 8.3. For our purposes, the way in which Cthr(z) is resummed is irrelevant, and the quality
of such resummation will be discussed later on.

In this section, the fundamental element is the factorisation of the luminosity in conjunction
with the expanded coefficient function. Indeed, considering Eqs. (8.24) and (8.26), the u
dependence of the coefficient function is distributional, and each equation cannot be seen as an
approximation of the other. Thus, it is not correct to assert that δ(u) + δ(1− u) ≃ 2δ(u− 1

2).
The meaning of such equations resides in the way they are convolved with the PDFs, and
consequently in the way they appear in the cross section formula (8.14). We show this in
detail.

9.1 New proof of BNX and BFR

In Ref. [124], one of the major objections is the fact that the original proof of the BFR
approach [32] has a conceptual problem in one of the steps. In particular, the authors claim
that it is not correct to assert that the Fourier transform of the coefficient function, C̃(z,M),
where M is the Fourier conjugate variable to the parton rapidity y, is independent from M .
The proof is based on the expansion of the Fourier transform kernel eiMy in powers of y, which
is truncated at order 0 because y is a variable ranging in |y| < 1

2 log
1
z ∼ 1

2(1 − z), and so
higher orders in y are effectively suppressed by powers of (1− z). The objection is that the
conjugate variable M has to be counted as of order 1

1−z according to the Fourier inversion
theorem. Therefore, the expansion in powers of y is not legitimate, in the sense that the
neglected terms are not really power suppressed. We agree with this criticism, and confirm
that the proof of BFR in Ref. [32] is not satisfactory. For this reason, we now propose a

64
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new derivation of the BFR approach, which is also valid for the BNX one, making use of the
peculiar z, u dependence of the luminosity.

As already mentioned, the key element is the convolution of the PDFs and the coefficient
function in (8.24) and (8.26). Looking at the argument of the luminosity in Eq. (8.12), we
observe that in the threshold limit, z → 1, the PDFs become independent of the u variable.
This can be further seen by expanding the arguments of the PDFs, Eq. (8.12), in powers of
(1− z)

x1 =
√
τeY

[
1 + u(1− z) +O((1− z)2)

]
, (9.1a)

x2 =
√
τe−Y

[
1 + (1− u)(1− z) +O((1− z)2)

]
. (9.1b)

Following the same line, also the luminosity (8.15) can be expanded as

Lqq̄(z, u) = Lqq̄(1, u)− L ′
qq̄(1, u)(1− z) +O[(1− z)2] . (9.2)

Here, L ′
qq̄ is the derivative with respect the z variable, and the first term represents the

luminosity computed in z = 1 which is independent of u,

Lqq̄(1, u) =
∑

q

cqq̄fq
(√
τeY

)
fq̄
(√
τe−Y

)
, (9.3)

where we are omitting again the dependence on the factorisation scale not to make the notation
heavier. When we will want to emphasise the u independence, we will write it as Lqq̄(1, ·).

The fact that the u dependence of the luminosity is power suppressed in the partonic
threshold limit z → 1 shows that the u dependence of the coefficient function can be integrated
over at leading power.1 To formally prove this, we consider the cross section formula Eq. (8.14)
and we expand the luminosity at threshold, along the lines of Ref. [31]:

1

τσ0

d2σqq̄
dQ2 dY

=

∫ 1

τ

dz

z

∫ 1

0
du
[
Lqq̄(1, ·) +O(1− z)

]
C(z, u)

= Lqq̄(1, ·)
∫ 1

τ

dz

z

∫ 1

0
du C(z, u)

[
1 +O(1− z)

]

= Lqq̄(1, ·)
∫ 1

τ

dz

z
C(z)

[
1 +O(1− z)

]

=

∫ 1

τ

dz

z
Lqq̄(z, ū)C(z)

[
1 +O(1− z)

]

=

∫ 1

τ

dz

z
Lqq̄(z, ū)Cthr(z)

[
1 +O(1− z)

]
. (9.4)

Here we have first used Eq. (9.2) to expand the luminosity at large z, then we used the u
independence of the luminosity in z = 1 to pull it out of the integral, we then computed the

1This is formally correct only at leading power, since the second term of Eq. (9.2) is suppressed by one
power of (1− z), constituting a next-to-leading power (NLP) contribution.
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u integral to obtain the rapidity-integrated coefficient function C(z).2 In the penultimate
line we restored the z dependence of the luminosity, which is again legitimate up to O(1− z)
thanks to Eq. (9.2), but in doing so we also need to restore the u dependence in the second
argument. As u has been integrated over, any value ū between 0 and 1 is formally acceptable.
Finally, in the last step we have further approximated C(z) with its threshold limit. From
this last equation, the BNX and BFR formulation can be obtained by choosing the value of ū.
In particular, the BFR formulation is given by ū = 1

2 , while the BNX one corresponds to the
average of the result with ū = 0 and ū = 1, already expressed in Eqs. (8.25) and (8.27). In
order to use these equations for resummation, the function Cthr(z) needs to be resummed to
all orders in the threshold limit. The resummed result should then be matched to fixed-order
computations, which shall not be approximated. The quality of the resummed and matched
result also depend on whether the resummed threshold logarithms are the dominant part of
the higher orders or not: we will address this question in section 10.

One last remark is that BNX and BFR are just two of infinitely many possible alternative
and equivalent formulations of resummation, which can be obtained by using different values
of ū and averages thereof. We notice however that not all combinations make physical sense.
Indeed, the rapidity distribution for the Drell-Yan process in proton-proton collisions is forward-
backward symmetric, but the luminosity Lqq̄(z, u) is not symmetric for Y → 1 − Y unless
u = 1/2. More precisely, the luminosity Eq. (8.15) is symmetric under the exchange of x1
and x2, which can in turn be realised by changing Y → −Y and u → 1− u simultaneously,
see Eq. (8.12). Therefore, only symmetric sums Lqq̄(z, u) + Lqq̄(z, 1 − u) are symmetric in
Y . Since the dependence on the rapidity Y of Eq. (9.4) only comes from the luminosity, the
general physically acceptable resummed expression is given by

1

τσ0

d2σresqq̄
dQ2 dY

=

∫ 1

τ

dz

z

Lqq̄(z, ū) + Lqq̄(z, 1− ū)

2
Cthr(z) , (9.5)

where any value of ū in the allowed range 0 ≤ ū ≤ 1 is acceptable. Also any weighted average
of results with different ū provides a valid formulation of resummation. It is easy to prove
that any symmetric average of the form Eq. (9.5) with any value of ū is equivalent to BFR
and BNX up to O[(1− z)2]. Obviously, BNX and BFR are two (maximally different) special
cases of Eq. (9.5).

In this derivation there are some delicate assumptions that needs to be clarify. Firstly,
the second term of Eq. (9.2) can be considered as truly suppressed by a power of (1− z) if
L ′
qq̄(1, u) is of the same size of Lqq̄(1, ·). Moreover, in Eq. (9.4), we are assuming that

Lqq̄(1, ·) +O(1− z) = Lqq̄(1, ·)
[
1 +O(1− z)

]
. (9.6)

This assumption is not always valid and it can potentially be one limitation of our derivation.
By comparing numerically the size of these two functions in section 9.2, we will study the

2Note that in this step we also used the fact that in the z → 1 limit the whole region 0 ≤ u ≤ 1 is
kinematically allowed, as a consequence of the fact that the restriction imposed by the condition x1,2 < 1,
expressed by the limits Eq. (8.13), are immaterial in the z → 1 limit. This is also obvious from the fact that the
restriction on u would be imposed by θ functions hidden in the luminosity, which in z = 1 no longer depends
on u.
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range of applicability of such approximation. We anticipate that keeping the parton luminosity
unexpanded is certainly more natural and ensures for instance that kinematic constraints
coming from the limits of PDF arguments are preserved by the resummed expression. However,
from a formal point of view, it is allowed to also include the parton luminosity in the threshold
expansion. The selection of terms that are expanded in Eq. (9.4) is obviously arbitrary but
legitimate according to the power counting in (1− z), and it is made in a way to reproduce
BNX and BFR as we shall see. We also stress that in Eq. (9.4) we have expanded in powers of
(1− z) selected terms of the entire integrand. This is in contrast with the standard approach
of threshold resummation [5, 6], where only the coefficient function is expanded. Note also
that the contributions of O(1− z) in the integrand of Eq. (9.4) may be large, as the integral
extends down to z = τ and if τ is small there is a part of the integration region in which these
corrections are not suppressed. This fact does not invalidate the derivation of Eq. (9.4), but
poses questions about the quality of an approximation obtained neglecting those subleading
power terms. We will see in section 9.2 that the approximation for the dependence on the
luminosity is rather good even for small values of τ .

9.2 Validity of the threshold expansion in the integrand

In this section, we address and clarify all the assumptions raised in the derivation of the new
proof for the BNX and BFR approaches, which can be seen as a limitation of the final result.
We are going to show that this is not the case and that BNX/BFR approaches are still valid
in the phenomenologically relevant region.

One first problem can be given by the luminosity expansion in Eq. (9.2), which can be
used in our derivation if the L ′

qq̄(1, u) term is of the same size of Lqq̄(1, ·). This is directly
linked to the equality in Eq. (9.6) that is used to obtain the final result of the BNX/BFR
derivation in Eq. (9.4). This equality is almost always verified, the only problematic region is
when τe2|Y | is close to 1, corresponding to the region where the PDFs are computed close to
their endpoints x = 1.

To study in detail this region, we focus on the case in which τ is close to 1, which is very
similar to consider large values of rapidity but τ small. In this case, as already said, the
identity Eq. (9.6) is no longer valid. We can see this analytically, by approximating the PDFs
as

f(x, µ2F ) ≃ (1− x)α (9.7)

for some positive value of α, which is a good approximation at large x. The luminosity is then
defined as

Lqq̄(z, u) =
∑

q

cqq̄(1− x1)
α (1− x2)

α , (9.8)

and the z = 1 case gives

Lqq̄(1, u) =
∑

q

cqq̄
(
1−√

τeY
)α (

1−√
τe−Y

)α
. (9.9)
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Figure 9.1: Ratio of the derivative of the luminosity over the luminosity in z = 1 as a function
of τ for Y = 0 (left), Y = 1/2 (central) and Y = 2Ymax/3 (right) for different values of u.

Assuming that the same value of α holds for all quark PDFs, the derivative of the luminosity
can be written as

L ′
qq̄(1, u) ≃ −α√τ

(
eY u

1−√
τeY

+
e−Y (1− u)

1−√
τe−Y

)
Lqq̄(1, ·) . (9.10)

It is clear that at large τe2|Y | → 1 one of the two denominators becomes parametrically small,
and thus for some values of u the derivative becomes parametrically larger than the luminosity.
This becomes even clearer at central rapidity Y = 0,

L ′
qq̄(1, u)

Y=0≃ −α
√
τ + τ

1− τ
Lqq̄(1, ·) , (9.11)

where the denominator enhances the derivative with respect to the luminosity for any value of
u in the τ → 1 limit. In the derivation of Eq. (9.4), therefore, when we assume that τ is close
to 1 which in turn implies that 1− z is of the same order as 1− τ , the term −L ′

qq̄(1, u)(1− z)
is not subleading power with respect to Lqq̄(1, ·) in Eq. (9.2) and the expansion in Eq. (9.4) is
not accurate.

This can be seen also numerically in figure 9.1, where we plot the ratio of the derivative
of the true luminosity (not the approximated one of Eq. (9.8)) over the luminosity in z = 1
as a function of τ for different values of Y = 0, Ymax/2, 2Ymax/3, with Ymax = 1

2 log
1
τ , and

u = 0, 1/2, 1, using the PDF4LHC21 NNLO PDF set [139] and assuming photon-mediated
Drell-Yan production at LHC

√
S = 13 TeV. At central rapidity Y = 0, we see that the

luminosity is almost independent of u, and we observe that for a wide range of τ values
10−4 < τ < 10−1 this ratio is of O(1), making the proof of the previous section valid for
these specific kinematics. We see however a clear growth of this ratio going towards large
τ , confirming that the assumption Eq. (9.6) breaks down at some point when τ is too large.
Increasing the rapidity, the situation gets worse and the ratio becomes larger at smaller values
of τ for some values of u (in this case, having used positive rapidity, the largest effect is at
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u = 1). Despite this deterioration, we notice that in the phenomenologically interesting region
of mid-low τ this ratio remais of O(1) even at large rapidities.

We can thus conclude that the BNX and BFR approaches are formally valid in a restricted
kinematical region. They are not supposed to be accurate at large τ and towards the rapidity
endpoints, although these are precisely the regions identified by the hadronic threshold limit,
where threshold resummation is certainly relevant. The point is that the BNX and BFR
formulation are based on an approximation of the dependence of z and u of the coefficient
function, and it is this particular approximation that is not valid in the hadronic threshold
region. Far from it, the approximation is legitimate, and it allows to resum the partonic
threshold logarithms in the cross section.

To further study in which kinematic region the BNX and BFR formulation are valid, we
can consider a slightly different version of the BNX and BFR expression (8.25) and (8.27). To
do so, instead of using the threshold expansion of the coefficient function Cthr(z), we replace
it with the full C(z)

1

τσ0

d2σBNX
qq̄

dQ2 dY
→
∫ 1

τ

dz

z

Lqq̄(z, 0) + Lqq̄(z, 1)

2
C(z) , (9.12)

1

τσ0

d2σBFR
qq̄

dQ2 dY
→
∫ 1

τ

dz

z
Lqq̄

(
z,

1

2

)
C(z) . (9.13)

These expressions represent alternative formulations for the rapidity distribution where only
the luminosity is approximated, and correspond to neglecting the O(1− z) contributions in
the penultimate line of Eq. (9.4). These expression cannot be used for resummation, as the
exact C(z) is not know to all orders. As such, comparing them with the exact distribution at
fixed order, we are able to judge the quality of the approximation of the luminosity, and thus
the impact of the neglected derivative terms.

In figures 9.2 and 9.3, where we plot the exact contributions to the rapidity distribution at
NLO and NNLO (in the qq̄ channel only) along with the approximations of the luminosity
dependence à la BNX and BFR, Eqs. (9.12), (9.13). In the first figure the distribution is shown
as a function of τ and for different values of Y = 0, Ymax/2, 2Ymax/3, while the second figure
shows the same distribution but as a function of Y for three values of τ = 10−4, 10−2, 10−1. The
plots are obtained considering photon-mediated Drell-Yan production at LHC

√
S = 13 TeV,

using again the PDF4LHC21 NNLO PDF set [139] and taking from it the value of the strong
coupling. The exact NNLO result is taken from the Vrap code [123,140], selecting from it only
the terms contributing to the qq̄ channel.

We observe that at small τ and central rapidity, the quality of the approximation is
excellent at NLO and NNLO, as in both cases the BNX/BFR curves are almost identical to
the exact result. Note that while we expect a failure of the validity of the expansion in powers
of (1− z) at large τ and/or large rapidity, it is perhaps surprising to see such a good agreement
at such small values of τ . Indeed, the neglected O(1 − z) contributions, though geniunely
subleading, are not necessarily small as the integration over z extends to values as small as τ .
An explanation of this effect is the fact that the shape of the luminosity strongly favours large
values of z in the integrand and suppresses the region of z close to τ , as a consequence of the
small-x growth and the large-x suppression of the PDFs fi(x, µ2f ), respectively. Therefore, the
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Figure 9.2: Rapidity distributions at NLO (up) and NNLO (down) as a function of τ for
Y = 0, Ymax/2, 2Ymax/3. The approximations are obtained expanding the luminosity à la BNX
(darker colour) and à la BFR (lighter colour), given by Eq. (9.12) and (9.13) respectively,
where we use the full C(z) instead of its threshold approximation Cthr(z).

integral over z is dominated by the large-z region, well described by a threshold approximation,
while the contribution from medium-small z down to τ is a small correction. This phenomenon
is the so-called dynamical threshold enhancement of Ref. [31], and it is responsible for the
threshold dominance also at the rapidity-integrated level, see e.g. Ref. [141].

Moving towards larger values of Y and τ we see some deterioration of the agreement, more
marked at NNLO. However, in the range of values of τ, Y considered here, the accuracy of the
approximation remains very high, with discrepancies of the order of some percent. We can
appreciate in particular a slight distorsion of the Y dependence of the distribution, clearly
visible at NNLO in figure 9.3. We stress that, by construction, the integral in rapidity of
all the curves in each plot is the same and coincides with the exact rapidity-integrated cross
section, as we also verified numerically. This constraint also contributes to the high accuracy
of the approximation.

The excellent quality of the approximation of the luminosity at the core of the BNX/BFR
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Figure 9.3: Rapidity distributions at NLO (up) and NNLO (down) as a function of Y for
τ = 10−4, 10−2, 10−1. The approximations are obtained expanding the luminosity à la BNX
(darker colour) and à la BFR (lighter colour), given by Eq. (9.12) and (9.13) respectively,
where we use the full C(z) instead of its threshold approximation Cthr(z).

formulation can be understood analytically. By repeating the derivation of Eq. (9.4) keeping
also the linear term in (1− z) of the expansion of the luminosity Eq. (9.2), it is easy to find

1

τσ0

d2σqq̄
dQ2 dY

=

∫ 1

τ

dz

z

[
Lqq̄(z, ū)C(z)

+ (1− z)

∫ 1

0
du
(
L ′
qq̄(1, ū)− L ′

qq̄(1, u)
)
C(z, u) +O

(
(1− z)2

) ]
(9.14)

where the term proportional to L ′
qq̄(1, ū) appears when we replace Lqq̄(1, ·) with Lqq̄(z, ū) in

the fourth line of Eq. (9.4). We thus observe that the linear term in (1− z) is not proportional
to the entire derivative L ′

qq̄(1, u), but to the difference L ′
qq̄(1, ū)−L ′

qq̄(1, u), which is obviously
smaller. The same holds for higher derivative terms. In other words, restoring the z dependence
in the luminosity, even if this introduces a dependence on the new, arbitrary variable ū, is
beneficial as it allows to reduce the impact of the missing contributions at higher order in
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(1− z).
We thus conclude that the limitations coming from the growth of the derivative of the

luminosity at large τe2|Y | is more formal than practical, and for all phenomenologically relevant
values of these parameters the approximation of the luminosity leading to the BNX/BFR
expressions is fully valid. In passing, we have also shown that the large-z approximation on the
luminosity in Eq. (9.4) is of very high quality even when τ is small, despite the integral contains
many values of z which are far from 1 and for which the threshold expansion is not formally
accurate. The actual quality of threshold resummation based on Eq. (9.4), performed either à
la BNX Eq. (8.25) or à la BFR Eq. (8.27), also depends on how well Cthr(z) approximates the
exact C(z), and we will discuss this in chapter 10.

9.3 Other objections to BNX and BFR

Here we analyse other objections raised in Ref. [124], claiming that the BNX and BFR
approaches are not accurate at leading power in (1− z). The main argument is that a class of
terms apparently enhanced in the z → 1 limit are missed in these approaches. Specifically,
any term in C(z, u) that vanishes after integration over u cannot be captured by the BNX
and BFR approaches. One simple example can be extracted by the coefficient at NLO given
in Eq. (C.2), in particular by the term of the form

F (z, u) =
1

1− z

[(
1

u

)

+

+

(
1

1− u

)

+

]
. (9.15)

This term is singular in z = 1, but since it multiplies plus distributions in u it vanishes after
integration over u. According to Ref. [124], this is a leading power contribution that is missing
in BNX and BFR but it is correcly counted in their approach.

If we were to count powers of (1 − z) at the level of the coefficient function only, the
term Eq. (9.15) is formally leading power, like the terms that are retained in BNX/BFR,
and we will agree with the authors of Ref. [124]. However, our derivation of BNX/BFR in
section 9.1 adopts a power counting in (1− z) at the level of the full integrand of Eq. (8.14),
thus including also the parton luminosity. What we are now going to show is that the term
Eq. (9.15), because of its peculiar u dependence, contributes at next-to-leading power to the
integral, and is thus consistently missing in the BNX/BFR leading power result.

The proof that the term Eq. (9.15) does not contribute at leading power relies again on the
fact that the luminosity in z = 1 is independent of u. To see this, we consider the u integral of
that term multiplied by the luminosity,

F̄ (z) ≡
∫ 1

0
duF (z, u)Lqq̄(z, u)

=
1

1− z

[ ∫ 1

0

du

u
(Lqq̄(z, u)− Lqq̄(z, 0)) +

∫ 1

0

du

1− u
(Lqq̄(z, u)− L _qq̄(z, 1))

]
.

(9.16)
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Each difference of luminosities in the integrands can be expanded in powers of (1− z),

Lqq̄(z, u)− Lqq̄(z, 0) =(((((((((((
Lqq̄(1, u)− Lqq̄(1, 0)

−
(

L
′
qq̄(1, u)− L

′
qq̄(1, 0)

)
(1− z) +O[(1− z)2] (9.17a)

Lqq̄(z, u)− Lqq̄(z, 1) =(((((((((((
Lqq̄(1, u)− Lqq̄(1, 1)

−
(

L
′
qq̄(1, u)− L

′
qq̄(1, 1)

)
(1− z) +O[(1− z)2] , (9.17b)

and the zeroth-order contribution in each difference vanishes because the luminosity in z = 1
does not depend on u. Therefore, each integral in the big rounded brackets in Eq. (9.16) is of
order (1− z), and thus cancels the singularity of the 1

1−z term in front. We conclude that this
contribution behaves as a constant in the z → 1 limit, and therefore counts as a next-to-leading
power contribution. This is also the reason why there is no need to surround this term with a
plus distribution, which would instead be needed if it counted as leading power.

We can verify this numerically, by plotting the function F̄ (z) Eq. (9.16) to see that it does
not diverge at z = 1. We do this in figure 9.4, for different values of τ = 10−4, 10−2, 10−1 and
of the rapidity Y = 0, Ymax/2, 2Ymax/3, using the usual physical setup. Since there are some
numerical oscillations at large z, probably due to the fact that the curve is the ratio of two
small numbers, we also plot the PDF uncertainty band to make sure that the interpretation of
the result is solid. It is clear that F̄ (z) does not diverge in z = 1, rather it is perfectly finite,
showing explicitly that this term is next-to-leading power. We also show, without uncertainty,
each of the two contributions to Eq. (9.16) coming from each integral in the rounded brackets,
as they are separately regular. We see indeed that both of them do not diverge in z = 1.

In fact, it is possible to note from the plots that the full function F̄ (z) seems to go to zero
at z = 1. This is indeed the case, as we can verify analytically by noticing that the O(1− z)
terms in the expansions Eq. (9.17) satisfy the relation

L
′
qq̄(1, u)− L

′
qq̄(1, 0)

u
+

L
′
qq̄(1, u)− L

′
qq̄(1, 1)

1− u
= 0 , (9.18)

which is easy to prove using the general form of the derivative of the luminosity given by

L
′
qq̄(1, u) = −

∑

q

cqq̄

[
u
√
τeY f ′q(

√
τeY )fq̄(

√
τe−Y ) + (1− u)

√
τe−Y fq(

√
τeY )f ′q̄(

√
τe−Y )

]
.

(9.19)
Therefore, the whole term contributes to the rapidity distribution at next-to-next-to-leading
power, and it is thus more suppressed at threshold than naively expected. The same is true
also for the individual integrals of Eq. (9.16) when Y = 0, as a consequence of the fact that the
luminosity is symmetric for the exchange x1 ↔ x2, that at Y = 0 corresponds to a symmetry
for the exchange u↔ 1− u.

More in general, the BNX and BFR approaches miss any term in C(z, u) that vanishes
after integration in u from 0 to 1. Consider a generic function G(z, u) that may seem to be
leading power

G(z, u) =
logk(1− z)

1− z
g(u) , (9.20)
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Figure 9.4: F̄ (z) contribution in Eq. (9.16) as a function of z for τ = 10−4, 10−2, 10−1 and
Y = 0, Ymax/2, 2Ymax/3.

for some integer value of k, and with g(u) any function or distribution satisfying the constraint
∫ 1

0
du g(u) = 0 . (9.21)
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Expanding the luminosity in powers of 1− z we find
∫ 1

0
duG(z, u)Lqq̄(z, u) =

logk(1− z)

1− z

∫ 1

0
du g(u)

[
Lqq̄(1, ·)− L ′

qq̄(1, u)(1− z) +O[(1− z)2]
]

= logk(1− z)

∫ 1

0
du g(u)

[
− L ′

qq̄(1, u) +O(1− z)
]
, (9.22)

where, thanks to the fact that the luminosity in z = 1 is u independent, we could use Eq. (9.21)
in the last step to show that the first term of the expansion vanishes. We thus conclude
that any apparently leading power term of the general form Eq. (9.20) that vanishes after
integration over u contributes effectively at next-to-leading power. Therefore, the fact that
BNX and BFR miss these contributions does not represent a power-counting issue.

We observe that contributions of this kind are instead present in the approaches to threshold
resummation that keep the separate dependence on za and zb, e.g. Refs. [6, 128, 130–134].
These approaches are also supposed to be valid in the threshold z → 1 limit, but since the limit
is performed at the level of the coefficient function these contributions count as leading power
and are thus preserved. For what we have shown, in the strict z → 1 limit their inclusion does
not increase the accuracy as they are suppressed with respect to the other leading power terms.
However, if a threshold approximation/resummation is extended outside the threshold region,
namely for values of z that are not large enough, these contributions may be relevant. Indeed,
a term like Eq. (9.15) contains enhanced contributions in u → 0, 1, which are irrelevant at
z → 1 but not at generic z. To understand this, recall that u→ 0, 1 corresponds to za → 1 and
zb → 1 respectively. Since z = zazb, when z → 1 both za, zb → 1 irrespectively of the value
of u. But when z is not large, one among za and zb can be large if u tends to 0 or 1. These
non-threshold but enhanced contributions are captured by the aformentioned approaches, and
improve the description of the tails of the rapidity distribution. Therefore, the fact that these
contributions are missing in BNX and BFR makes them less accurate than other approaches
when the process is far from threshold.

In Ref. [124] there are other arguments used to criticise the validity of the BNX and BFR
approaches. One of them is an explicit calculation using the same toy PDF Eq. (9.7) showing
that after integration in z and u the two functions

A(z, u) =

(
1

1− z

)

+

δ

(
u− 1

2

)
, B(z, u) =

(
1

1− z

)

+

δ(u) + δ(1− u)

2
, (9.23)

give rise to different leading power contributions. As these correspond to a BFR and a BNX
implementation of the same term, if they are both correct at leading power, they should give
the same leading power contributions. The problem here is that the computation of Ref. [124]
assumes 1 − xa ∼ 1 − xb ≪ 1, namely τ → 1. We have already commented in section 9.2
that in this limit the derivation of BNX and BFR of section 9.1 does not hold anymore, so
this conclusion is not surprising. Moreover, the power counting is performed at hadron level,
namely the terms identified in Ref. [124] are leading power in 1− xa and 1− xb, which makes
sense because they assume τ → 1 but it cannot be directly related to the leading power terms
in (1− z) when τ is not large.
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Another objection of Ref. [124] regarding the BNX and BFR approaches is related to
the expansion of the luminosity Eq. (9.2). In particular, LMT say that the expansion of the
arguments x1,2 of the PDFs, Eq. (9.1), to the zeroth order is too trivial because it does not
depend on z. We believe that this is not a real issue: the expansion in powers of (1− z) is
legitimate at large z, and if the zeroth order of this expansion is independent of z it cannot
represent a reason for expanding to one order higher. However, for completeness, we can
consider an alternative expansion that overcomes the LMT objection, without affecting the
proof Eq. (9.4). Specifically, we can expand in powers of (1− z) not the full x1,2 expression
Eq. (8.12), but only the square root that depends on u:

x1 =

√
τ

z
eY
[
1 +

(
u− 1

2

)
(1− z) +O((1− z)2)

]
, (9.24a)

x2 =

√
τ

z
e−Y

[
1 +

(
1

2
− u

)
(1− z) +O((1− z)2)

]
. (9.24b)

Now the leading z dependence appears in the zeroth order term of the expansion, which is
still u independent. Of course, this arbitrary expansion is equivalent to that of Eq. (9.1) up to
the order at which it is truncated. We can write the luminosity as

Lqq̄(z, u) = L
(0)
qq̄ (z) +O(1− z) (9.25)

with

L
(0)
qq̄ (z) =

∑

q

cqq̄fq

(√
τ

z
eY
)
fq̄

(√
τ

z
e−Y

)
= Lqq̄

(
z,

1

2

)
, (9.26)

which is again u independent, thus making the rest of the proof identical to what discussed in
section 9.1 (except for the fact that L

(0)
qq̄ (z) can be moved outside the u integral but not the

z integral, but this is immaterial for the derivation of the final result).



Chapter 10

Accuracies estimations of BNX and BFR
approaches

In this chapter, we analytically and numerically assess the quality of the BNX and BFR
formulations by comparing the fixed-order truncation of the resummed result with the full fixed-
order cross section. These approaches, despite their simplicity, remain compelling alternatives
to more advanced resummation formalisms due to their reliance on the resummation of the
rapidity-integrated coefficient function, which is available for a broader range of processes and
with higher logarithmic accuracy.

The accuracy of any threshold approximation, and hence resummation, depends on the
definition of the threshold logarithms that are used. Any definition of threshold logarithms
that differs from Eq. (8.3) by subleading power contributions is formally equivalent and thus
acceptable, but the result may differ significantly. This difference may be seen as a limitation
of the threshold approximation, as it comes from sizeable contributions from next-to-leading
power terms that are beyond the control of leading power threshold resummation. Recently,
threshold resummation has been extended to next-to-leading power [135,142–147], opening up
the possibility of pushing the accuracy beyond that of traditional methods. Anyway, some of
these subleading power contributions have a universal structure that can be incorporated in the
definition of threshold logarithms, improving the quality of a threshold approximation [148–155].

In the following, we define and discuss different choices of threshold logarithms, giving the
analytical expression both at NLO and NNLO, and compare their accuracies numerically. In
order to do that, we consider the following pertubative expansion of the rapidity-integrated
coefficient function

C(z, αS) =

∞∑

n=0

αnS

[
cnδ(1− z) +

2n−1∑

k=0

(
cnk

(
logk(1− z)

1− z

)

+

+ dnk log
k(1− z)

)
+ ...

]
,

(10.1)

which is the key ingredient of the BNX and BFR formulations. The series with the cn and
cnk coefficients include the leading power (LP) singular terms. The dnk coefficient, instead,
multiplies a term that is suppressed by one power of (1−z) and gives the next-to-leading power
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78 10.1. z-soft approximation

(NLP) contribution. The leading logarithmic accuracy (LL) consists in the c0 and cn(2n−1)

coefficients, while including also the dn(2n−1) will give the NLP LL series of the coefficient
function. To go beyond the LL accuracy, also the other terms with intermediate indices
between 0 and 2n− 1 have to be included.

Since we are interesting in the fixed-order expansion of the coefficient function, we can
rewrite the last equation as

C(z, αS) = C(0)(z) +
αS
π
C(1)(z) +

(αS
π

)2
C(2)(z) +O(α3

S) , (10.2)

with the perturbative coefficient given by

C(0)(z) = c0 δ(1− z) = σ0 ,

C(1)(z) = c1 δ(1− z) +
1∑

k=0

(
c1k

(
logk(1− z)

1− z

)

+

+ d1k log
k(1− z)

)
,

C(2)(z) = c2 δ(1− z) +
3∑

k=0

(
c2k

(
logk(1− z)

1− z

)

+

+ d2k log
k(1− z)

)
. (10.3)

The first coefficient is defined as the Born term, i.e. the LO contribution. The second and the
third are the pure NLO and NNLO contributions, respectively.

10.1 z-soft approximation

The simplest choice for constructing a threshold approximation is to retain all contributions of
the form of Eq. (8.3) and delta functions. In this case, the coefficient function is approximated
at threshold, at order αnS , as

C
(n)
thr (z) = cnδ(1− z) +

2n−1∑

k=0

cnk

(
logk(1− z)

1− z

)

+

, (10.4)

where cn and cnk are numerical coefficients and not functions of z. Extending the notation
of Refs. [151, 152], we shall call the threshold approximation based on Eq. (10.4) z-soft
approximation, meaning the natural threshold approximation in z space (to be precise, in
Ref. [151] it was called soft-0).

The z-soft approximation is not particularly convenient and accurate, as we are going
to show in the numerical comparison. From the analytical point of view, it is not easy to
construct an all-order resummed result that contains all and only those contributions, although
there are various approaches to reproduce the logarithms Eq. (10.4) such as Ref. [31] based
on SCET and Ref. [152] based on the Borel prescription for resummation. From now on, we
conveniently write the distributional terms in a compact form defined by

Dk(z) ≡
(
logk(1− z)

1− z

)

+

. (10.5)

In appendix D.1, and in particular in Eqs. (D.2) and (D.3), we report the value of the pure
NLO and NNLO coefficient function, respectively, using this approximation.
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10.2 N-soft approximation

The most widespread definition of threshold logarithms that is used in resummed computation
is done in Mellin conjugate space, where the phase space of the gluon emissions (responsible
of threshold logarithms) factorises making possible the construction of an all-order expression
in closed form. Such a definition is based on the expansion at large-N (corresponding to the
threshold region in Mellin space) of the Mellin transform of z-space logarithmic terms [152,156]

∫ 1

0
dz zN−1

(
logk(1− z)

1− z

)

+

=
1

k + 1

k+1∑

j=0

(
k + 1

j

)
Γ(j)(1) logk+1−j 1

N
+O

(
1

N

)
, (10.6)

where Γ(j)(x) is the j-th derivative of the Euler gamma function Γ(x). Neglecting the O(1/N)
contributions (which are subleading power at threshold, N → ∞), this expansion provides
an alternative approximation at threshold, that we call N -soft according to the notation of
Refs. [151,152].

Defining the following distributions [152]

Dlog
k (z) ≡

(
logk log 1

z

log 1
z

)

+

, (10.7)

the Mellin transform can be computed using the results of appendix B.4 of Ref. [156], and it is
given by

∫ 1

0
dz zN−1

[
Dlog
k (z) +

Γ(k+1)(1)

k + 1
δ(1− z)

]
=

1

k + 1

k+1∑

j=0

(
k + 1

j

)
Γ(j)(1) logk+1−j 1

N
. (10.8)

Eqs. (10.6) and (10.8) only differ for subleading terms (∼ 1/N), while the dominant term in
the large-N limit is the same. This is a characteristic of logarithmically enhanced contribution
in z space, which contain subleading terms when converted in N space and vice versa. This
peculiarity suggests us a straight way to pass from z-soft to N -soft, simply using the following
replacement

Dk(z) → Dlog
k (z) +

Γ(k+1)(1)

k + 1
δ(1− z) . (10.9)

For the specific case of the coefficient function at NLO and NNLO, Eq. (10.9) gives the
following conversions

D0(z) → Dlog
0 (z)− γδ(1− z) ,

D1(z) → Dlog
1 (z) +

1

2

(
γ2 + ζ2

)
δ(1− z) ,

D2(z) → Dlog
2 (z)− 1

3

(
γ3 + 3γζ2 + 2ζ3

)
δ(1− z) ,

D3(z) → Dlog
3 (z) +

1

4

(
γ4 + 6γ2ζ2 + 8γζ3 + 3ζ22 + 6ζ4

)
δ(1− z) , (10.10)
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where γ is the Euler-Mascheroni constant. Basically, the N -soft approximation involves shifting
the coefficient function by a factor of

√
z. Details for the NLO and NNLO coefficient function

are given in Eqs. (D.4) and (D.5) in appendix D.1. We also notice that we can write

Dlog
k (z) +

Γ(k+1)(1)

k + 1
δ(1− z) = Dk(z) +

logk log 1
z

log 1
z

− logk(1− z)

1− z
, (10.11)

that provides an alternative, possibly simpler, implementation of N -soft.

10.3 ψ-soft1 approximation

An alternative definition of threshold logarithms was proposed in Ref. [152], whereby logN
is replaced by ψ0(N + 1), where ψ0 is the digamma function. In this case, the exact Mellin
transform of the threshold logarithms is expressed in terms of polygamma functions ψk(N),
all of which go to zero at large N as N−k with the exception of ψ0(N) which grows as logN .
To obtain a translation rule for ψ-soft, we introduce the distributions D̂k(z) already defined in
Ref. [152]

D̂k(z) = Dk(z) +
logk 1−z√

z

1− z
− logk(1− z)

1− z
. (10.12)

From an analytical point of view, this expression is equivalent to including a 1√
z

factor in the
argument of the threshold logarithm, although it is subleading. It has a kinematical origin
and is thus universal [8, 31, 151]. This operation can be done in such a way that the Mellin
transform of the D̂k(z) differ by that of Dk(z) by 1/N terms, thus providing at leading power
an equivalent but possibly better definition of threshold logarithms. Using again the results of
appendix B.4 of Ref. [156], we can write the Mellin trasform of the D̂k(z) distributions as

∫ 1

0
dz zN−1 D̂k(z) =

1

k + 1

k+1∑

j=0

(
k + 1

j

)
Γ(j)(1)Υk+1−j(N, 0) , (10.13)

where

Υ0(N, ξ) =
Γ(N − ξ/2)

Γ(N + ξ/2)
(10.14)

and Υn(N, ξ) is the n-th derivative of Υ0(N, ξ) with respect to ξ. Always considering the
coefficient function up to NNLO, the first few terms are given by

Υ1(N, 0) = −ψ0(N) ,

Υ2(N, 0) = ψ2
0(N) ,

Υ3(N, 0) = −ψ3
0(N)− 1

4
ψ2(N) ,

Υ4(N, 0) = ψ4
0(N) + ψ2(N)ψ0(N) , (10.15)



81 10.3. ψ-soft1 approximation

where ψn(N) = dn+1

dNn+1 log Γ(N) is the polygamma function. As already pointed out in
Ref. [152], we observe that

Υk(N, 0) = [−ψ0(N)]k
[
1 +O

(
1

N2

)]
, (10.16)

namely up to next-to-next-to-leading power corrections the use of D̂k(z) Eq. (10.12) can be
obtained from a N -soft expression Eq. (10.8) with the replacement logN → ψ0(N). The
ψ-soft formulation consists in using the distributions D̂k(z) for the threshold logarithms but
ignoring these subleading O(1/N2) contributions and retaining only the powers of ψ0(N),
which is easy to implement to all orders in N space. A z-space analog would be implemented
by a modified distribution D̂ψ

k (z) defined by

∫ 1

0
dz zN−1 D̂ψ

k (z) =
1

k + 1

k+1∑

j=0

(
k + 1

j

)
Γ(j)(1)

[
− ψ0(N)

]k+1−j
, (10.17)

for which however we cannot find an easy closed form for any k. Up to the order we are
interested in, we have that D̂ψ

0 (z) = D̂0(z) and D̂ψ
1 (z) = D̂1(z), while

∫ 1

0
dz zN−1

[
D̂ψ

2 (z)− D̂2(z)
]
=
ψ2(N)

12
,

∫ 1

0
dz zN−1

[
D̂ψ

3 (z)− D̂3(z)
]
= −ψ2(N)

4
(ψ0(N) + γ) . (10.18)

The inverse Mellin transforms of these differences can be computed analytically, using e.g. the
results of Refs. [156,157]. We find

D̂ψ
2 (z) = D̂2(z)−

1

12

log2(z)

1− z
,

D̂ψ
3 (z) = D̂3(z)−

ζ2
2

log(z)

1− z
+

1

12

log3(z)

1− z
− 1

2

Li2(z) log(z)

1− z
+

Li3(z)

1− z
− ζ3

1− z

− 1

4

log(1− z) log2(z)

1− z
. (10.19)

The argument of ψ0(N) can be further shifted to N + 1, which is still equivalent up to
O(1/N). This choice, denoted ψ-soft1 in Ref. [152], corresponds to the approximation obtained
by neglecting the O(1/N) contributions in the expansion

∫ 1

0
dz zN−1

(
logk(1− z)

1− z

)

+

=
1

k + 1

k+1∑

j=0

(
k + 1

j

)
Γ(j)(1)

[
− ψ0(N + 1)

]k+1−j
+O

(
1

N

)
.

(10.20)

The use of ψ0(N + 1) allows to include at the rapidity-integrated level subleading power
contributions that have a kinematical origin and are thus universal [148–155]. In particular,
the leading logarithmic terms at next-to-leading power in (1− z) are predicted correctly to
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all orders in ψ-soft1 in the dominant flavour-diagonal channel for colour-singlet production
processes such as Higgs and Drell-Yan, and subleading logarithmic contributions are also
partially included. As a consequence, at the rapidity-integrated level, the ψ-soft1 choice
of logarithmic terms provides better numerical agreement with the exact result than z-soft
or N -soft, and also leads to a better stabilisation of the scale dependence at resummed
level. These results were obtained for Higgs production [151, 152], and they also hold for
the Drell-Yan process. It is important to note, however, that this simple modification of the
resummed logarithms is not able to predict subleading power contributions coming from the
other channels, most importantly the qg channel, which would be needed for achieving a higher
accuracy of the resummation.

The formal accuracy of this expression is equivalent to that of N -soft and z-soft, as they
all differ among each other by subleading power contributions at threshold. However, the
ψ-soft1 approximation has some advantages that make its quality superior to other choices.
This simple modification of the resummed logarithms is not able to predict subleading power
contributions coming from the other channels, most importantly the qg channel, which would
be needed for achieving a higher accuracy of the resummation. The ψ-soft1 prescription
mentioned in the main text uses N + 1 rather than just N as the argument of the digamma
function: ψ0(N + 1). This is the simplest form of the “collinear improvement” introduced in
Ref. [152] that includes subleading power contributions from universal splitting functions. In z
space a shift N → N + 1 corresponds to multiplication by z, so the recipe for the conversion
of Eqs. (D.2) and (D.3) to ψ-soft1 is simply given by the replacement

Dk(z) → z D̂ψ
k (z) . (10.21)

Similarly to the N -soft case, the ψ-soft1 approximation shifts the coefficient function of a
factor z. We stress that any “traditional” Mellin-space resummation code that uses N -soft by
default can be straightforwardly upgraded to ψ-soft1 simply replacing logN with ψ0(N + 1).
The coefficient functions with this choice of threshold logarithms at NLO and NNLO are
reported in Eqs. (D.6) and (D.7).

10.4 Numerical validation at NLO and NNLO

In this section we compare the exact NLO and NNLO contributions to the Drell-Yan rapidity
distribution against threshold approximations based on the BNX and BFR formulations and
for the three choices of threshold logarithms discussed above.

To do that, we consider neutral current Drell-Yan production at LHC with
√
S = 13 TeV,

including only the contribution from the photon for simplicity (the extension to include also
the Z boson case will be straightfoward, adapting the coefficient in Eq. (8.16) of the luminosity
for this particular case). We use the PDF4LHC21 NNLO PDF set [139], and take from it the
value of the strong coupling. We always fix the renormalisation and factorisation scales to the
invariant mass of the lepton pair Q =

√
τS, µF = µR = Q. We only plot the qq̄ contribution

to the rapidity distribution. The exact NNLO result is taken from the Vrap code [123,140]. In
each figure, in the upper plots we always show the comparison at pure NLO and in the lower
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Figure 10.1: Rapidity distributions at NLO (up) and NNLO (down) as a function of τ for
Y = 0, Ymax/2, 2Ymax/3. The approximations z-soft, N -soft and ψ-soft1 are shown in darker
colour for BNX and in lighter colour for BFR.

plots at pure NNLO. The choice of the three threshold logarithms is pictured both for BNX
(darker curvers) and BFR (lighter curves) and we always show the exact result in solid red,
the z-soft in dotted blue, the N -soft in dashed green and ψ-soft1 in dot-dashed purple.

We start by showing plots of the rapidity distribution at fixed rapidity and as a function
of τ , i.e. as a function of Q since we keep the collider energy fixed. These are shown in
figure 10.1, where each plot corresponds to different values of rapidity, Y = 0, Ymax/2, 2Ymax/3
with Ymax = 1

2 log
1
τ . We observe that ψ-soft1 is by far the best approximation, in most

cases overshooting the exact result by a small amount. This is expected because integrating
over rapidity Eq. (8.25) and Eq. (8.27) we obtain the correct rapidity-integrated distribution,
for which ψ-soft1 is known to perform well. Moreover, comparing with figure 9.2, we can
observe that the ψ-soft1 curve is very similar to the curves obtained with the exact C(z),
as a consequence of the aformentioned fact. The N -soft approximation is reasonably good
but definitely worse than ψ-soft1, and it always undershoots the exact by an amount that
can reach 35%. Only at large rapidity the large-τ behaviour seems to be better for N -soft
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Figure 10.2: Rapidity distributions at NLO (up) and NNLO (down) as a function of Y for
τ = 10−4, 10−2, 10−1. The approximations z-soft, N -soft and ψ-soft1 are shown in darker
colour for BNX and in lighter colour for BFR.

than for ψ-soft1, but this is due to an accidental compensation of the deterioration of the
approximation of the luminosity visible in figure 9.2 and the undershooting of N -soft. Finally,
z-soft is the worst, especially at NNLO where it seems completely unrelated to the exact result,
except at very large τ . This failure of the z-soft approximation is well known and expected at
the rapidity-integrated level, and it has been studied in various works, mostly in the context
of Higgs production [37,151,158–160].

In figure 10.2 we show the same differential distribution as a function of the rapidity Y
for fixed values of τ = 10−4, 10−2, 10−1. We clearly see that at large rapidity the agreement
of all the approximations is good, but moving towards smaller rapidity z-soft deviates soon
and significantly, N -soft also deviates undershooting the exact result by a large amount, while
ψ-soft1 is closer to the exact result, typically overshooting it by a small amount. At NNLO for
τ = 10−1, the BNX and BFR have some oscillations. Their presence is not due to numerical
instabilities, but it depends on the PDF set used, as we verified. We note that, also for this
case, the shape of ψ-soft1 is very similar to the result obtained with the full C(z), figure 9.3.
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There is a slight deterioration of the accuracy of ψ-soft1 at NNLO with respect to the NLO,
with the shape at this order being somewhat distorted. However, reassuringly, the quality of
all the approximations is generally similar at NLO and NNLO, showing that the procedure is
stable and hopefully preserves its reliability at higher orders.

These considerations hold the same for both BNX and BFR. While the two approaches
give very similar results, in these plots we can see a small difference between them, which
is more marked at medium-small τ and in the less accurate approximations based on z-soft
and N -soft. In particular, it seems that BNX is able to better reproduce the little bump
present in the rapidity distribution at the transition between the central rapidity plateau and
the large rapidity drop. However, the difference between BNX and BFR is so mild and in
particular much smaller than the difference between exact and approximate, and between the
different choices of threshold logarithms that it cannot be used to strongly favour one of the
two approaches over the other.

In conclusion, the BNX and BFR approaches can describe well the fixed-order result, even
far from threshold, provided a good choice of threshold logarithms is used. The ψ-soft1 choice
is more accurate than the others also for rapidity distributions, thereby providing the most
convenient choice of threshold logarithms for an accurate resummation, and at the same time
it is very easy to implement at resummed level.



Chapter 11

Phenomenological comparison

In this chapter we compare the BNX/BFR approaches to other approaches to threshold
resummation available in the literature, namely BDDR [128] and LMT [124]. We also consider
the AMRST [135] approach, which is the next-to-leading power extension of BDDR. This
is not the first numerical comparison to have been done, indeed in Ref. [128] a comparison
between BDDR and BFR was performed, but the choice of logarithms used for BFR was the
one of the original paper [32] (z-soft).

For this comparison, we focus only on the BFR approach for simplicity, since BNX would
lead to very similar results, and we choose the ψ-soft1 version of threshold logarithms which we
know is the most accurate, as shown in Sec. 10.4. In particular, for BDDR and AMRST, being
them formulated in Mellin space, the logarithms are defined according to N -soft with two
separate logarithms in the variables za, zb, corresponding to logarithms in Mellin space of two
distinct variables Na and Nb. Expressions for BDDR at NLO and NNLO are given in Na, Nb

space in Ref. [128] and can be converted to za, zb space using the results of appendix D.1. For
AMRST, we have expanded the resummed formulas of Ref. [135] to order αS and α2

S . Explicit
expressions for both BDDR and AMRST at NLO and NNLO are given in appendix D.2,
both in Mellin space and in momentum space. For LMT, the logarithms used correspond
to the z-soft definition. Despite it being a choice that gives inaccurate approximations at
leading power, the fact that LMT includes subleading power contributions partially cures this
deficiency. We stress that the LMT approximation corresponds to the full distributional part
of the coefficient function when written in terms of the za, zb variables. Explicit expressions at
NLO and NNLO are given in appendix D.3.

For this comparison, we use the usual setup: we consider neutral current Drell-Yan
production at LHC with

√
S = 13 TeV including only the exchange of a photon. The PDF set

used is PDF4LHC21 NNLO, from which we take also the running of the strong coupling. The
scales are set as µF = µR = Q =

√
τS, and we only plot the qq̄ contribution to the rapidity

distribution. The exact NNLO is taken from the Vrap code. In each figure, the upper plots
show the pure NLO contribution, while the lower plots the NNLO one. The exact result is
represented in solid red, the LMT result in dotted blue, the BDDR in dashed green, the BFR
based on ψ-soft1 in dot-dashed purple and, finally, the ARMST in dot-dot-dashed orange.

86



87

10 4 10 3 10 2 10 10.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
LO

LO
0

1e 4
Y = 0

Exact
LMT
BDDR
BFR soft1
AMRST

10 4 10 3 10 2 10 10.0

0.2

0.4

0.6

0.8

1.0

1.2 1e 4 Next-to-leading order
Y = 1

2Ymax

10 4 10 3 10 2 10 10

1

2

3

4

5

6

7 1e 5

Y = 2
3Ymax

10 4 10 3 10 2 10 10.0

0.5

1.0

1.5

2.0

2.5

N
N

LO
N

LO
0

1e 5
Y = 0

Exact
LMT
BDDR
BFR soft1
AMRST

10 4 10 3 10 2 10 10.0

0.5

1.0

1.5

2.0

2.5
1e 5 Next-to-next-to-leading order

Y = 1
2Ymax

10 4 10 3 10 2 10 10.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8 1e 5

Y = 2
3Ymax

Comparison of various approaches, S = 13 TeV, qq channel, photon exchange only

Figure 11.1: Rapidity distributions at NLO (up) and NNLO (down) as a function of τ for
Y = 0, Ymax/2, 2Ymax/3, comparing the LMT, BDDR, BFR with ψ-soft1 and AMRST results.

In figure 11.1 we plot the Drell-Yan rapidity distribution as a function of τ and in figure 11.2
as a function of Y . One of the first things that can be noticed is that BFR with ψ-soft1
performs much better than BDDR both at NLO and NNLO, being much closer to the exact
result. This effect can be due to the choice of the N -soft approximation for the threshold
logarithms done in BDDR, which is not optimal as already explained. The BFR curve in
rapidity, because of the approximate nature of the BFR approach itself, does not reproduce
the shape of the exact result (e.g., the NNLO bump). However, it is overall close to the exact
result thanks to the fact that the BFR approach (as the BNX one) is designed to reproduce
the inclusive threshold result at the rapidity-integrated level, and it is also well approximated
by ψ-soft1.

Moving to the other approaches, the LMT result is generally more accurate than BDDR,
in particular at large rapidity where it is very close to the exact result. Such agreement is very
good especially at large τ , but the LMT accuracy deteriorates significantly at NNLO, being
worse than BDDR at central rapidity for small τ . The reason is mainly due to the usage of
the z-soft for threshold logarithms, and it can be noticed using a better choice of logarithms
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Figure 11.2: Rapidity distributions at NLO (up) and NNLO (down) as a function of Y for
τ = 10−4, 10−2, 10−1, comparing the LMT, BDDR, BFR with ψ-soft1 and AMRST results.

as demonstrated by the AMRST result discussed later. Indeed, the structure of the LMT
result is such that the subleading power corrections in one variable (say za), which help the
improvement of the accuracy of the resummation, are retained when multiplying only the
leading power terms in the other variable (zb). These are not accurate enough when using
z-soft, unless the kinematics forces that variable to be large, i.e. at large rapidity.

The AMRST result, lastly, formally contains less information than the LMT one. Indeed,
for each variable it only adds the next-to-leading power correction multiplied by the leading
power term in the other variable, and not all subleading power corrections as it is done in
LMT. However, the advantage of the AMRST result is that it uses the N -soft definition of the
threshold logarithms, which is superior to the z-soft one as already discussed. Therefore, the
AMRST result is the one that best approximates the exact results, being very close to it both
at NLO and NNLO. It is also able to reproduce the shape in rapidity which is only vaguely
approximated by BFR, as already commented.

Notably, BFR with ψ-soft1 is closer to the exact result than BDDR and LMT, with the
exception of the high rapidity region. In fact it is rather close to the AMRST result as well,
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making BFR (and BNX) comparable even with the best approach on the market today. This
comparison confirms once more that the BNX/BFR formulation of threshold resummation of
rapidity distribution is legitimate and competitive with canonical, more complex approaches.
Indeed, the BFR/BNX approaches are based on the leading-power resummation of the rapidity
integrated cross section, which is available for a large variety of processes and to a high
logarithmic accuracy, while the recent AMRST approach requires more ingredients and it is
only available for a limited number of processes so far. We will demonstrate the value of the
BFR approach by showing representative resummed results in section 11.1.

We conclude by stressing that the comparisons presented here are for the qq̄ channel only,
but at next-to-leading power also the other channels contribute. At the moment only the LMT
approach can control the resummation in these subleading channels, which is a clear advantage
for the goal of achieving the highest precision. It would thus be very interesting to understand
if it is possible to modify the LMT approach by changing the form of the threshold logarithms
to take advantage of other better definitions like N -soft or ψ-soft1, in order to improve its
quality, reaching and possibly surpassing AMRST. In this way one could achieve the best
description of the dominant qq̄ channel, supplemented by the important contributions from
the other subleading channels.

11.1 All-order resummed results for BFR

Having established the accuracy of the BNX/BFR approaches to resummation comparing to
fixed order, in this section we present some representative all-order results. We restrict our
attention to BFR resummation with the ψ-soft1 choice for threshold logarithms, as already
done previously.

We perform the resummation using the public TROLL code [152,161,162], which implements
the resummation up to next-to-next-to-next-to-leading logarithmic accuracy (N3LL′), both for
rapidity distributions and for rapidity-integrated cross sections. The ingredients for N3LL′

resummation are all available in the literature [163–165], including the δ(1− z) term at N3LO
which is taken from Ref. [166] and the recent four-loop cusp anomalous dimension computed
in Ref. [167]. Here, the prime notation [96,168,169] indicates that on top of the purely NkLL
contributions the constant term (in N space) at NkLO is also included, despite it contributing
formally at Nk+1LL in the resummed exponent. It is well known that this addition enables
the prediction of one extra subleading power of the logarithms in the cross section and usually
captures most of the next logarithmic order. While it is possible to exponentiate the constant
terms in N space using TROLL [152,162], we choose to adhere to a more conventional approach,
as the impact on this process is relatively minor.

In figure 11.3 we show the rapidity distribution as a function of τ for Y = 0, Ymax/2, 2Ymax/3
at fixed LO (solid black), NLO (solid blue) and NNLO (solid red) along with the resummed
results at NLO+NLL′ (dashed blue), NNLO+NNLL′ (dashed red), and NNLO+N3LL′ (dotted
green). We were not able to include in the plots the N3LO curve [120] as to our knowledge
there is no public code available out of which we can extract the qq̄ contribution. Consequently,
we could not show the N3LO+N3LL′ resummed result, but we consider the NNLO+N3LL′

result, which should be equivalent to the former in the region of large τ and Y where the

https://www.roma1.infn.it/~bonvini/troll/
https://www.roma1.infn.it/~bonvini/troll/
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Figure 11.3: Rapidity distributions at fixed order (solid lines) and with resummation à la BFR
(dashed/dotted lines) as a function of τ for Y = 0, Ymax/2, 2Ymax/3.

threshold logarithms dominate the distribution. Far from this region, the addition of the
N3LO result would instead improve the accuracy.

Similarly, in figure 11.4 we plot the rapidity distributions as a function of Y for τ =
10−4, 10−2, 10−1. In all plots we also show a lower panel with the ratio to the LO result, to
better appreciate the relative size of the various perturbative corrections. As in the previous
sections, we only plot the dominant qq̄ channel.

We observe a good convergence of the resummed result, improved with respect to that
of the fixed-order result especially at large τ and Y , where threshold logarithms are more
dominant. Overall, we notice that the effect of adding resummation over the fixed order is small
at NLO and very small at NNLO, which is a consequence of the fact that the Drell-Yan process
exhibits a good perturbative convergence as long as we consider the NNLO fixed-order result,
(as opposed for instance to the Higgs production process in gluon fusion, see e.g. [170,171]).
From the ratio plots,1 it is apparent that going towards large rapidity or large τ all the
resummed curves tend to overlap, while the fixed-order contributions get larger thus showing
a perturbative instability. This is a consequence of the fact that in these regions the threshold
logarithms are dominant and large, and resumming them the perturbative expansion stabilizes
significantly and leads to reliable perturbatively-stable results.

In conclusion, we have demonstrated that the BNX/BFR formulations are available for
1The spike in the third ratio plot of figure 11.4 is due to the LO result becoming negative at large rapidity.

This is clearly unphysical, and it is an annoying artefact of the PDFs used that are not very well behaved at
large x.
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Figure 11.4: Rapidity distributions at fixed order (solid lines) and with resummation à la BFR
(dashed/dotted lines) as a function of Y for τ = 10−4, 10−2, 10−1.

producing reliable resummed results for rapidity distributions at high logarithmic accuracy.
The public TROLL code implements these results up to N3LL′ accuracy, with the ψ-soft1 choice
of threshold logarithms (N -soft is also available). The results for ψ-soft1 resummation for
Drell-Yan rapidity distributions are presented here for the first time.

https://www.roma1.infn.it/~bonvini/troll/


Conclusions

In this thesis, we have explored two distinct yet interconnected tools to achieve precise
theoretical predictions for collider processes involving strongly interacting particles.

In the first part of this thesis, we delved into the implementation of the double Higgs
boson production within the Geneva Monte Carlo event generator. In chapter 3, we presented
the Geneva framework, emphasizing its main features, which allow to obtain theoretical
predictions at least up to NNLO+NNLL′ accuracy for a wide range of colour singlet production
processes as well as processes featuring heavy-coloured partons and jets in the final state. This
achievement is made possible through the definition of physical and IR-safe events, obtained
by employing a N -jet resolution variable which divides the phase space into 0-, 1- and 2-jet
regions. In principle, Geneva can be employed with any resolution variable that satisfies
IR-safety and has a known resummation. Many of the implemented processes utilise the
N -jettiness or the transverse momentum of the colour singlet system, which resummation
is perfomed in the SCET framework. Another important feature connected to the Geneva
framework is the possibility of showering and hadronizing the generated events. One of the
main novelties of Geneva, introduced with this work, is the interface with three different
parton showers: Pythia8 [15,16], Dire [109] and Sherpa [17–19]. The study of any processes
showered with different parton showers is particularly interesting in order to estimate indirectly
the parton shower uncertainty. In chapter 4, we focused on the process chosen for this thesis,
the double Higgs boson production, presenting the state of the art and outlining the primary
motivations to look at this rare process. Considering the infinite top mass limit for simplicity,
we demonstrated the SCET factorisation formula for this specific process and computed the
hard function needed for the resummation, all the details can be found in appendix A and B.
In chapter 5, we outlined all the Geneva formulas required and parameters chosen for the
implementation of such process. Alongside describing the general setup for our generator, we
discussed the size of the missing nonsingular corrections due to configurations with T0 < T cut

0 ,
for which is possible to recover the correct integrated cross section thanks to a reweighting
from an independent NNLO fixed-order calculation. In chapter 6, we discussed the main
properties of the three showers available in the Geneva framework, also presented the expected
differences for the double Higgs boson production results. Finally, in chapter 7, we show our
final results both with and without the effect of the showers.

It is important to emphasize that this is the first time this process has been implemented
in a Monte Carlo event generator with such accuracy, considering the infinite top mass limit.
While this approximation may not be ideal for this specific process, as discussed earlier, these
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results underscore the significance of the Geneva event generator, being competitive with
other approaches and giving a valid alternative to other event generators. The inclusion of
the top-quark mass corrections is currently underway, which will be fundamental both from
the theoretical and experimental point of view. In the first case, it will constitute the first
theoretical prediction coming from a Monte Carlo event generator including the matching
between the fixed-order and the resummed result, and studies regarding the result obtained
with the full theory and the approximated one will be possible. In the second case, with the
High-Luminosity LHC phase and the forthcoming project, the possibility of measuring such
rare and challenging process becomes viable. Comparing these experimental observations with
Standard Model expectations becomes essential.

The second part of this thesis is dedicated to the threshold resummation of rapidity
distributions for the Drell-Yan process. In chapter 9, we proposed a new and detailed proof
for the BNX [31] and BFR [32] approaches, addressing their limitation and affirming their
correctness within their accuracy. We answered also to several criticisms raised by the
LMT [124] authors regarding these two approaches. We also investigated the quality of the
BNX and BFR resummation approach in chapter 10, studing the possible choices for the
form of threshold logarithms. Selecting the ψ-soft1 as the optimal choice, we validated such
approaches against the exact and pure NLO and NNLO results, concluding that despite the
approximate nature of the BNX and BFR approaches they perform rather well as they are able
to reproduce to a good accuracy the exact NLO and NNLO result, even far from threshold.
In chapter 11, we extended this comparison also to include other threshold resummation
approaches available in the literature: BDDR [128], AMRST [135] and LMT. Although the
best approximation is given by the AMRST result, the BNX /BFR approaches with the ψ-soft1
choice of threshold logarithms lead to approximations that are comparable with the others,
despite the latter are formally more accurate. We also showed representative results of BFR
resummation up to N3LL′ accuracy, using the public TROLL code.

Notably, this study confirms that the BNX/BFR approaches are rather good alternatives
to more modern approaches, providing a good framework for fast implementation of threshold
resummation in rapidity distributions at high logarithmic accuracy. Futhermore, a closer
examination of the structure of the AMRST and LMT results reveals that the LMT result
is more accurate than the AMRST one. The reason why AMRST results perform better is
the different form of threshold logarithms used in the two approaches. As already discussed,
the z-soft choice of threshold logarithms done in the LMT approach has a particularly poor
quality in approximating the exact result. This suggests us that the LMT approach could be
improved by upgrading the form of threshold logarithms, and we plan to investigate this in
the future.

https://www.roma1.infn.it/~bonvini/troll/


Appendix A

SCET factorisation formula for double Higgs
boson production

Following Refs. [10, 41, 172], we present the calculation of the factorisation formula in position
space SCET formalism for the production of two Higgs bosons plus an arbitrary hadronic final
stateX at hadron collider, expressed as p (pa)+p (pb) → H (p1)+H (p2)+X (pX). In particular,
we consider only the gluonic channel and we work in the centre-of-mass frame, introducing
two light-like vectors along the beam directions nµa = (1, 0, 0, 1) and nµb = (1, 0, 0,−1). We
define the invariant mass of the Higgs boson pair system as q2 = (p1 + p2)

2, and employ the
decomposition for the four-vector momenta given in Sec. 2.2.1.

The effective Hamiltonian for this process is defined, in position space, as follows

Heff(x) =
∑

m=1,2

∫
dr dt Cggm (r, t)Oggm (x, r, t) , (A.1)

where m represents the two general Lorentz tensor structures given in Ref. [55,72,74]. Cggm (r, t)
represents the Wilson coefficient that can be determined through the matching of the effective
theory with the full theory. The integrals over r and t are carried out along the two light-cone
directions of the initial state gluons. Oggm (x, r, t) corresponds to the SCET operator and it is
defined as

Oggm (x, r, t) = δabAa
c̄ν⊥(x+ rna)Ab

cµ⊥(x+ tnb)Rµν
m h(x)h(x) . (A.2)

Here Acµ⊥ is the collinear gauge-invariant field (c̄ refers to the anticollinear field), defined as

Acµ⊥ =
1

gs
W+
c (x)(iDµ

⊥Wc(x)) , (A.3)

where Wc is the collinear Wilson line, gs the coupling and Dµ is the covariant derivative, given
by

iDµ,c
⊥ = i ∂µ + gsAµ,c

⊥ . (A.4)
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Furthermore, Rµν
m defines the general tensor structures for this process. The real scalar Higgs

boson field is defined by h, derived from the Higgs boson doublet field Φ = 1√
2

(
0

v+h

)
, with

v the vacuum expectation value. The structure Rµν
m is given is momentum space [72, 74]

and depends on symmetric and antisymmetric combinations of gµν and the momenta of the
particles. The same dependence will be translated in position space as a combination of the
partial derivatives ∂µ,ν . In Eq. (A.2) a and b are the colour indices of the initial state gluons.

When employing the BPS decoupling transformation [173] to decouple the interactions
involving soft gluons, we obtain the following result

Oggm (x, r, t) = Rµν
m h(x)h(x) [Oc(x, r, t)]µν [O

s(x)] , (A.5)

where c and s stand for collinear and soft, respectively. In particular

[Oc(x, r, t)]µν = δabAa
c̄ν⊥(x+ rna)Ab

cµ⊥(x+ tnb) ,

[Os(x)] = [Y adj†
nb

(x)] [Y adj
na

(x)] , (A.6)

with Y adj
na,b being the soft Wilson line defined as

[Y adj
na,b

(x)] = P exp

[
igs

∫ 0

−∞
dt na,b · Ae

s(x+ tna,b) (−ifecd)
]
, (A.7)

where P takes care of the path ordering of the colour indices. Note that the soft operator
contains the soft Wilson lines Yi.

We consider the total final state hadronic momenta in the two hemispheres a and b as Bµ
a

and Bµ
b . To analyze the differential cross section in terms of these two variables, we define

the two components B+
a = na ·Ba, B+

b = nb ·Bb. In the limit where the radiation is soft or
collinear to the beam directions, the cross section is

dσ

dB+
a dB+

b

=
1

2S

1

2(N2
c − 1)2

∫
d3p⃗1

(2π)32E1

∫
d3p⃗2

(2π)32E2

×
∫∑

X

(2π)4 δ(4)(pa + pb − p1 − p2 − pX)| ⟨H(p1)H(p2)X(pX)|Heff(0) |p(pa)p(pb)⟩ |2

× δ(B+
a − na ·Ba(X)) δ(B+

b − nb ·Bb(X)) , (A.8)

where the sum over X runs over all possible radiation states and includes their respective phase
space integrals, the factor 1/(2(N2

c − 1)) is given by the average over the gluons colour and the
symmetry factor, the average over initial state polarization is already included in the Rµν term.
The hemisphere momentum operator p̂µa,b acts on the radiation state as pµa,b |X⟩ = Bµ

a,b |X⟩.
Inserting the following identity in Eq. (A.8)

1 =

∫
dM2 d4q δ(4)(q − p1 − p2) δ(M

2 − q2) , (A.9)
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we get

dσ

dB+
a dB+

b

=
1

16S

1

2(N2
c − 1)2

1

(2π)2

∫
dM dyHH d cos θ dϕHMβ

∫
d2q⃗⊥
(2π)4

×
∫∑

X

(2π)4 δ(4)(pa + pb − q − pX)

∣∣∣∣ ⟨H(p1)H(p2)X(pX)|Heff(0) |p(pa)p(pb)⟩
∣∣∣∣
2

× δ(B+
a − na ·Ba(X)) δ(B+

b − nb ·Bb(X)) , (A.10)

where yHH is the rapidity of the Higgs boson pair system, ϕH is the azimuthal angle of the
Higgs boson in the Higgs bosons system rest frame and we define

β =

√
1− 4m2

H

M2
, cos θ =

1

β

(
1 + 2

t1
M2

)
, t1 = (pa − p1)

2 −m2
H . (A.11)

Using the definition of the delta function and the translation operator acting on the effective
Hamiltonian

δ(4)(pa + pb − p1 − p2 − pX) =

∫
d4x

(2π)4
ei(pa+pb−p1−p2−pX)·x,

Heff(x) = eip̂·x̂Heff(0) e
−ip̂·x̂ , (A.12)

we can rewrite the cross section, substituting the hemisphere momentum operator p̂µa,b and
solving the integral and the sum over all possibile hadronic states, obtaining

dσ

dB+
a dB+

b dM dyHH d cos θ dϕH
=
Mβ

16S

1

(2π)2
1

2(N2
c − 1)2

∫
d2q⃗⊥
(2π)4

×
∫
d4x ⟨p(pa)p(pb)|H†

eff(x) |H(p1)H(p2)⟩

× δ(B+
a − na · p̂a) δ(B+

b − nb · p̂b) ⟨H(p1)H(p2)|Heff(0) |p(pa)p(pb)⟩ . (A.13)

We can now replace Eqs. (A.1) and (A.5), and the cross section gives

dσ

dB+
a dB+

b dM dyHH d cos θ dϕH
=
Mβ

32S

1

(2π)4
1

2(N2
c − 1)2

∫
dx+ dx−

∫
d2x⃗⊥δ

(2)(x⃗⊥)

×
∫

dr′ dt′ dr dt Cgg∗(r′, t′)Cgg(r, t)

× ⟨p(pa)p(pb)| [Rρσ h(x)h(x)]† [Oc†(x, r′, t′)]ρσ [Os†(x)] |H(p1)H(p2)⟩
× δ(B+

a − na · p̂a) δ(B+
b − nb · p̂b)

× ⟨H(p1)H(p2)|Rµν h(0)h(0) [Oc(0, r, t)]µν [O
s(0)] |p(pa)p(pb)⟩ , (A.14)

where we have also used the light-cone decomposition d4x = 1
2dx

+ dx− d2q⃗⊥ and manipulated
the Dirac deltas. In the third line, the action of the Higgs boson fields h(x) is solely applied
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to the Higgs bosons, as when they are applied to the protons the resulting value is zero.
Consequently, we can reformulate the bracket expression as follow

⟨p(pa)p(pb)| [Rρσ h(x)h(x)]† [Oc†(x, r′, t′)]ρσ [Os†(x)] |H(p1)H(p2)⟩ =
⟨0|h†(x)h(x) |H(p1)H(p2)⟩ ⟨p(pa)p(pb)| [Rρσ]† [Oc†(x, r′, t′)]ρσ [Os†(x)] |H(p1)H(p2)⟩ .

(A.15)

In particular, the first part of the aforementioned equation yields

⟨0|h(x)h(x) |H(p1)H(p2)⟩ = e−ip1·x e−ip2·x ⟨0|0⟩ = e−iq·x . (A.16)

The same operation can be done for the bracket in the last line of Eq. (A.14), but applying
the field h(0) computed at zero will correspond to the ground state configuration. So it does
not alter the existing state of the Higgs bosons, yielding to zero.

We can now write the differential cross section as

dσ

dB+
a dB+

b dM dyHH d cos θ dϕH
=
Mβ

32S

1

(2π)4
1

2(N2
c − 1)2

∫
dx+ dx− e−i(q

−x++q+x−)/2

×
∫

d2x⃗⊥δ
(2)(x⃗⊥)

∫
dr′ dt′ dr dt Cgg∗(r′, t′)Cgg(r, t)

× ⟨p(pa)p(pb)| [Rρσ]† [Oc†(x, r′, t′)]ρσ [Os†(x)] |H(p1)H(p2)⟩
× δ(B+

a − na · p̂a) δ(B+
b − nb · p̂b)

× ⟨H(p1)H(p2)|Rµν [Oc(0, r, t)]µν [O
s(0)] |p(pa)p(pb)⟩ . (A.17)

After applying the BPS transformation, the effective Lagrangian is expressed as the sum
of independent Lagrangians for the collinear, anticollinear, soft, and Higgs bosons system
sectors, which do not interact with each other. Following the same separation, we can write
the hemisphere momentum operator p̂a,b as the sum of independent operators that act within
the collinear, anticollinear and soft sector

p̂a = p̂a,na + p̂a,nb
+ p̂a,s, p̂b = p̂b,nb

+ p̂b,na + p̂b,s , (A.18)

but since the na collinear sector cannot contribute to the momentum in the nb hemisphere and
vice versa, p̂a,nb

= p̂b,na = 0 and for simplicity we define p̂a,na = p̂na and p̂b,nb
= p̂nb

, getting

p̂a = p̂na + p̂a,s , p̂b = p̂nb
+ p̂b,s . (A.19)

The separation between soft and collinear contributions to the single hemisphere can be done
exploiting the Dirac delta. Here is the explicit expression for the separation in the hemisphere
a (the same is valid for hemisphere b)

δ(B+
a − na · p̂a) =

∫
db+a dk+a δ(B

+
a − b+a − k+a ) δ(b

+
a − na · p̂na) δ(k

+
a − na · p+a,s) , (A.20)

where bµa is the contribution of the collinear momenta and kµa the contribution for the soft
momenta. We apply the multipole expansion to the argument of collinear and soft field in
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xµ so that the first one is evaluated at x+µ , while the anticollinear at x−µ and the soft one at
the origin. In order to include the integration over the x−a,b components, we rewrite the delta
function constraints on the collinear fields as

1 = eix
−
b nb·p̂nb

/2 e−ix
−
b nb·p̂nb

/2, 1 = (a↔ b) . (A.21)

In addition we use the fact that the momentum operator acts on the proton states as

na · p̂na |pa⟩ = 0, nb · p̂nb
|pb⟩ = 0 . (A.22)

We get

dσ

dB+
a dB+

b dM dyHH d cos θ dϕH
=
Mβ

32S

1

(2π)4
1

2(N2
c − 1)2

∫
dk+a dk+b db+a db+b δ(B

+
a − b+a − k+a )

× δ(B+
b − b+b − k+b )

∫
dx+ dx− e−i(q

−x++q+x−)/2

∫
dr′ dt′ dr dt Cgg∗(r′, t′)Cgg(r, t)

× ⟨p(pa)p(pb)| [Rρσ]† |0⟩ ⟨0|Rµν |p(pa)p(pb)⟩
× ⟨pa| Acρ⊥(x

+nb/2 + t′nb) δ(b
+
a − na · p̂na)Acµ⊥(tnb) |pa⟩

× ⟨pb| Ac̄σ⊥(x
−na/2 + r′na) δ(b

+
b − nb · p̂nb

)Ac̄ν⊥(rna) |pb⟩
× ⟨0| T̄[Os†(0)] δ(k+a − na · p̂a,s) δ(k+b − nb · p̂b,s) T[Os(0)] |0⟩ (A.23)

=
Mβ

32S

1

(2π)4
1

2(N2
c − 1)2

∫
dk+a dk+b db+a db+b δ(B

+
a − b+a − k+a )

× δ(B+
b − b+b − k+b )

∫
dx+ dx− e−i(q

−x++q+x−)/2

×
∫

dr′ dt′ dr dt Cgg∗(r′, t′)Cgg(r, t) ⟨p(pa)p(pb)| [Rρσ]† |0⟩ ⟨0|Rµν |p(pa)p(pb)⟩

×
∫

dx−a
4π

eix
−
a b

+
a /2 ⟨pa| Acρ⊥(x

+nb/2 + x−a na/2 + t′nb)Acµ⊥(tnb) |pa⟩

×
∫

dx−b
4π

eix
−
b b

+
b /2 ⟨pb| Ac̄σ⊥(x

−na/2 + x−b nb/2 + r′na)Ac̄ν⊥(rna) |pb⟩

×
∫∑

XS

⟨0| T̄[Os†(0)] |XS⟩ ⟨XS |T[Os(0)] |0⟩ δ(k+a − k+a (XS)) δ(k
+
b − k+b (XS)) , (A.24)

where T and T̄ are the time and anti-time ordering operators. In the equation above we have
introduced the eigenvalues k+i (XS) of the projection of the momentum operator on a soft state
|XS⟩.

We give the operatorial definition of the gluon beam function Bg/pa (the formula for pb is
equivalent)

⟨pa|Acρ⊥(x
+n̄a/2 + x−a na/2 + t′n̄a)Acµ⊥(tn̄a) |pa⟩ = (−gρµ⊥) δab (n̄a · pa)

×
∫ 1

0
dza e

iza(x+n̄a/2+(t′−t)n̄a)pa

∫
db+a

′
e−i(x

−
a b

+
a

′
)/2Bg/pa

(
za(n̄a · pa)b+a

′
, za, µ

)
. (A.25)
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Similarly, we define the soft function

Sgg(k
+
a , k

+
b , β, θ, µ) =

1

N2
c − 1

∫∑

XS

⟨0| T̄[Os†(0)] |XS⟩ ⟨XS |T[Os(0)] |0⟩

× δ(k+a − k+a (XS)) δ(k
+
b − k+b (XS)) , (A.26)

and the hard function

Hµνρσ
gg (M,β, θ, µ) =

1

(4π)2
1

2(N2
c − 1)

∫
dr′ dt′ eizat

′nb·pa eizbr
′na·pb Cgg∗(r′, t′)

×
∫

dr dt e−izatnb·pa e−izbrna·pb Cgg(r, t)

× ⟨p(pa)p(pb)| [Rρσ]† |0⟩ ⟨0|Rµν |p(pa)p(pb)⟩ . (A.27)

We can define a scalar hard function, contracting the Lorentz indices in Eq. (A.27) with the
terms proportional to gρµ⊥ (and gσν⊥) coming from Eq. (A.25)

Hgg(M,β, θ, µ) = (−gρµ⊥) (−gσν⊥)Hµνρσ
gg (M,β, θ, µ) . (A.28)

Integrating over x−a,b, the differential cross section becomes

dσ

dB+
a dB+

b dM dyHH d cos θ dϕH
=
πMβ

S

∫
dk+a dk+b db+a db+b δ(B

+
a − b+a − k+a )

× δ(B+
b − b+b − k+b )

∫
dza dzb δ

(
za −

q−

nb · pa

)
δ

(
zb −

q+

na · pb

)

× [Bg/pa
(
za(nb · pa)b+a , za, µ

)
Bg/pb

(
zb(na · pb)b+b , zb, µ

)
]

× [Hgg(M,β, θ, µ)Sgg(k
+
a , k

+
b , β, θ, µ)]

=
πβM

S

∫
d k+a dk+b [Hgg(M,β, θ, µ)Sgg(k

+
a , k

+
b , β, θ, µ)]

× [Bg/pa
(
q−(B+

a − k+a ), q
−/nb · pa, µ

)
Bg/pb

(
q+(B+

b − k+b ), q
+/na · pb, µ

)
] . (A.29)

Here q∓ =M e±yHH , and the trace over the product of the soft and hard functions arises from
the Kronecker deltas δab in the beam functions.

In order to constrain the a and b hemisphere simultaneously, we can define

B̂ =
B+
a +B+

b

M
, (A.30)

which can be used when the two hemispheres are equal in size, for example when the rapidity
of the Higgs bosons system yHH is zero. We can express the cross section in Eq. (A.29) to be
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differential in B̂, integrating over B+
a,b, using B+

a,b = k+a,b + b+a,b and ta,b = q∓b+a,b, resulting in

dσ

dM dyHH d cos θ dϕH dB̂
=
πMβ

S

∫
dk+a dk+b dB+

a dB+
b δ(MB̂ −B+

a −B+
b )

× [Bg/pa
(
q−(B+

a − k+a ), q
−/nb · pa, µ

)
Bg/pb

(
q+(B+

b − k+b ), q
+/na · pb, µ

)
]

× [Hgg(M,β, θ, µ)Sgg(k
+
a , k

+
b , β, θ, µ)]

=
πβ

MS

∫
dta dtb [Bg/pa(ta, za, µ)Bg/pb(tb, zb, µ)]

×
[
Hgg(M,β, θ, µ)SB,gg

(
MB̂ − ta

q−
− tb
q+
, β, θ, µ

)]
. (A.31)

This result is only valid in the frame where yHH = 0. If we were to boost the Higgs bosons
system to a different rapidity, the definition of the hemispheres would be altered. Hence, when
considering rapidity-dependent hemispheres denoted as a for y > yHH and b for y < yHH , we
define the boost-invariant combination as follows

τB =
q−B+

a (yHH) + q+B+
b (yHH)

M2
. (A.32)

Only in the partonic centre-of-mass frame the definition of τB coincides with the one of B̂,
consequently B̂ can be replaced with τB. In Ref. [41], it is shown that the soft function and
its arguments for the τB case is the same as for B̂. The soft function is boost-invariant up to
the hemisphere definition, linked to the arguments k+a,b. Moreover, when boosting to a frame
at a nonzero rapidity yHH , the beam functions remain unaffected. Thus, we can express the
factorisation theorem for the double Higgs boson production as

dσ

dM dyHH d cos θ dϕH dτB
=
πβ

MS

∫
dta dtb [Bg/pa(ta, za, µ)Bg/p2(tb, zb, µ)]

×
[
Hgg(M,β, θ, µ)SB,gg

(
MτB − ta + tb

M
,β, θ, µ

)]
. (A.33)



Appendix B

Hard function for gg → HH in the MS scheme

In this appendix we provide the necessary ingredients to derive the hard function for the
double Higgs boson production in the MS scheme.

In order to achieve the NNLL′ accuracy, the hard function must be computed up to order
O(α4

S) in perturbation theory. Regardless of the chosen subtraction scheme (referred to as X),
its perturbative expansion can be expressed as

HX =
(αS
4π

)2 [
H(0) +

αS
4π
H

(1)
X +

(αS
4π

)2
H

(2)
X +O(α3

S)

]
, (B.1)

with αS the strong coupling. The first contribution, H(0), is independent of the scheme, which
explains the absence of the subscript X. Indeed, it is given by the cross section at leading
order. The remaining two contributions, the one-loop H(1) and two-loop coefficients H(2), are
provided in the Catani scheme (X = C) in Refs. [70,101]. To extract the results needed for
the implementation in Geneva, we have to convert these expressions to be differential in the
usual phase space with two particles, denoted as Φ2, instead of using the Mandelstam variable
t as it is done in those references. In particular, we define

H
(i)
C =

dσ
(i)
fin

ds dt

dt

dΦ2
, (B.2)

where

t = −1

2

[
Q2 − 2m2

H −
√
Q2(Q2 − 4m2

H) cos θ
]

(B.3)

with Q2 = s the invariant mass of the final state, mH the mass of the Higgs boson and θ the
angle between one of the two Higgs bosons and the initial partons. The Jacobian needed for
our conversion is given by

dΦ2

dt
=

1

8πs

1

Γ(1− ϵ)

[
s(s− 4m2

H)− (t− u)2

16πs

]−ϵ
, (B.4)

101
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where ϵ is the dimensional regularisation parameter appearing in the d-dimensional two-particles
phase space of Refs. [70,101].

To give the explicit values of H(i)
C , we introduce the following quantities

CLO =
6λv2

s−m2
H

− 1, 2λv2 = m2
H , v4 =

1

2G2
F

, (B.5)

where v is the vacuum expectation value, λ the Higgs trilinear coupling and GF the Fermi
constant. Expanding in powers of ϵ and taking the limit ϵ→ 0, the hard function coefficients
in the Catani scheme are

H(0)(s) =
sC2

LO

144 v4
,

H
(1)
C (s) =

(
5CA − 3CF +

4

3

1

CLO

)
H(0)(s),

H
(2)
C (s, t, u) =

(
F (2) +

1

CLO
R(2)(s, t, u) +

1

C2
LO

V(2)(s, t, u)

)
H(0)(s), (B.6)

where CA = 3 and CF = 4/3. Defining for brevity

Lm = log

(
s

m2
t

)
, Lu = log

(
s

−u

)
, Lt = log

(
s

−t

)
, (B.7)

where mt is the mass of the top quark, and setting the energy scale µ2 to the partonic
centre-of-mass, the coefficients in Eq. (B.6) are given as

F (2) = C2
A

(
23827

648
− 83

6
ζ2 −

253

36
ζ3 +

5

8
ζ4 +

7

2
Lm

)
+ CACF

(
−145

6
− 11

2
Lm

)

+ 9C2
F − 22

9
ζ2n

2
fT

2
F − 5

24
CA − 1

3
CF − 1

3
nfTFCA

(
2255

54
− 217

6
ζ2 +

49

3
ζ3

)

− 1

3
nfTFCF (41− 12Lm − 24ζ3) ,

R(2)(s, t, u) = −7C2
A + 11CACF − 8nfCFTF +

1

3
CA

(
476

9
+

11

3
(Lt + Lu) +

4m2
H

s

)

− 8CF − 4

9
TFnf

(
10

3
+ Lt + Lu

)
− 1

3
CA

(
1 +

2m4
H

s2

)[
2Li2

(
1− m4

H

tu

)

+ 4Li2

(
m2
H

t

)
+ 4Li2

(
m2
H

u

)
+ 4 log

(
1− m2

H

t

)
log

(
−m

2
H

t

)

+ 4 log

(
1− m2

H

u

)
log

(
−m

2
H

u

)
− 8ζ2 − log2

(
t

u

)]
,

V(2)(s, t, u) =
1

(3 s t u)2

[
m8
H(t+ u)2 − 2m4

H t u(t+ u)2 + t2u2(4s2 + (t+ u)2)

]
, (B.8)

where nf is the number of flavours and TF = 1/2.
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As a first step, we have to convert Eq. (B.6) in the MS scheme exploiting the following
relations

H
(1)

MS
(s, µ) = H

(1)
C (s) + lim

ϵ→0
2Re [2 I(1)(ϵ, µ) + Z(1)(ϵ, µ)]H(0)(s),

H
(2)

MS
(s, t, u, µ) = H

(2)
C (s, t, u, µ) + lim

ϵ→0

{
2Re [2 I(1)(ϵ, µ) + Z(1)(ϵ, µ)]

}
H

(1)
C (s)

+

{
| lim
ϵ→0

[2 I(1)(ϵ, µ) + Z(1)(ϵ, µ)]|2 + 2Re lim
ϵ→0

(
4 I(2)(ϵ, µ)

+ 2 I(1)(ϵ, µ)[2 I(1)(ϵ, µ) + Z(1)(ϵ, µ)] + Z(2)(ϵ, µ)

)}
H(0)(s) . (B.9)

The I(i)(ϵ, µ) are the perturbative coefficients of the I(ϵ, µ) operator defined as [159]

I(ϵ, µ) = 1 +
(αS
2π

)
I(1)(ϵ, µ) +

(αS
2π

)2
I(2)(ϵ, µ) +O(α3

S) . (B.10)

We give the definition of the first two coefficients

I(1)(ϵ, µ) = −
(
µ2

−s

)ϵ exp(ϵ γE)
Γ(1− ϵ)

(
Cg

1

ϵ2
+ γg

1

ϵ

)
,

I(2)(ϵ, µ) =

(
µ2

−s

)ϵ exp(ϵγE)

72 Γ(1− ϵ)ϵ4

{
12ϵ(Cg + ϵγg)(11CA − 2nf )

− 36 exp(ϵγE)

(Γ(1− ϵ)

(
µ2

−s

)ϵ
(Cg + ϵγg)

2 + ϵ

(
µ2

−s

)ϵ[
36ϵ2Hg

+ 2(3 + 5ϵ)(Cg + 2ϵγg)nf + CA(Cg + 2ϵγg)(−33− 67ϵ+ 3ϵπ2)

]}
, (B.11)

since the process considered is gluon-initiated, all the factors appearing in Eq. (B.11) are given
by

Cg = CA, γg =
β0
2

=
11

6
CA − 4

6
TFnf ,

Hg = C2
A

(
1

2
ζ3 +

5

12
+

11π2

144

)
− CAnf

(
29

27
+
π2

72

)
+

1

2
CFnf +

5

27
n2f . (B.12)

The Z(i)(ϵ, µ) in Eq. (B.9) are obtained from the following expansion of the Z(ϵ, µ) factor [174],

Z−1(ϵ, µ) = 1 +
(αS
4π

)
Z(1)(ϵ, µ) +

(αS
4π

)2
Z(2)(ϵ, µ) +O(α3

S) , (B.13)

where

Z(1)(ϵ, µ) = − Γ′
0

4ϵ2
− Γ0(µ)

2ϵ
,

Z(2)(ϵ, µ) =
(Γ′

0)
2

32ϵ4
+

3β0Γ
′
0 + 2Γ′

0Γ0(µ)

16ϵ3
+

4β0Γ0(µ) + 2Γ2
0(µ)− Γ′

1

16ϵ2
− Γ1(µ)

4ϵ
, (B.14)
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and

Γi(µ) = −CAΓi log
(
µ2

−s

)
+ 2γgi , Γ′

i = −2CAΓi ,

Γ0 = 4, Γ1 =

(
268

9
− 4

3
π2
)
CA − 80

9
TFnf ,

γg1 = C2
A

(
− 692

27
+

11π2

18
+ 2ζ3

)
+ CATFnf

(
256

27
− 2π2

9

)
+ 4CFTFnf . (B.15)

Setting µ2 = s, we find the following results for the translation to the MS scheme of the hard
function coefficients

H
(1)

MS
(s) = H

(1)
C (s) +

7CAπ
2

3
H(0)(s),

H
(2)

MS
(s, t, u) = H

(2)
C (s, t, u) +

7CAπ
2

3
H

(1)
C (s) +

(
167

6
C2
Aπ

2 − 367

54
CAnfπ

2

+
11n2fπ

2

27
+

73

36
C2
Aπ

4 − 11

3
C2
Aζ3 +

2

3
CAnfζ3

)
H(0)(s). (B.16)

As a last step, we have to restore the exact µ dependence of the hard function. This is
done using the renormalisation group equations (RGE)

d

d log(µ2)
H(µ2) = Re[Γ(µ2)]H(µ2). (B.17)

The first order of the expansion, O(α3
S), is given by

d

d log(µ2)
H(1)(s, µ2)− 2β0H

(0)(s) = Re[Γ0(µ
2)]H(0)(s) , (B.18)

having used

1

4π

d

d log(µ2)
αS = −

(
αS
4π

)2∑

n=0

(
αS
4π

)n
βn. (B.19)

with β0 = 11
3 CA − 4

3TFnf . The second order of the expansion, O(α4
S) in Eq. (B.17), gives

d

d log(µ2)
H(2)(s, t, u, µ2)− 2β1H

(0)(s)− 3β0H
(1)(s, µ2) =Re[Γ0(µ

2)]H(1)(s, µ2)

+ Re[Γ1(µ
2)]H(0)(s) , (B.20)

where β1 = 34
3 C

2
A − 10

3 CAnf − 2CFnf .
To summarize, the hard function in the MS scheme is given by

HMS(s, µ
2) =

(αS
4π

)2 [
H(0)(s, µ2) +

(αS
4π

)
H

(1)

MS
(s, µ2) +

(αS
4π

)2
H

(2)

MS
(s, t, u, µ2) +O(α3

S)

]
,

(B.21)
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where

H(0)(s, µ2) = H(0)(s),

H
(1)

MS
(s, µ2) = H

(1)

MS
(s)− 2CA log2

(
µ2

s

)
H(0)(s),

H
(2)

MS
(s, t, u, µ2) = H

(2)

MS
(s, t, u)−H

(1)

MS
(s)

[
2CA log2

(
µ2

s

)
− 11

3
CA log

(
µ2

s

)
+

2

3
nf log

(
µ2

s

)]

+H(0)(s)

[
log

(
µ2

s

)(
−772

27
C2
A +

76

27
CAnf +

11

9
C2
Aπ

2 − 2

9
CAnfπ

2 + 4C2
Aζ3

)

+ log2
(
µ2

s

)(
−134

9
C2
A +

20

9
CAnf +

2

3
C2
Aπ

2

)

+ log3
(
µ2

s

)(
−22

9
C2
A +

4

9
CAnf

)
+ 2C2

A log4
(
µ2

s

)]
. (B.22)



Appendix C

Distribution identities

In this appendix we present the distribution identities between the z, u and za, zb variables,
using the coefficient function up to next-to-leading order as an example.

Starting from the perturbative expansion of the qq̄ coefficient function for rapidity distri-
bution, given by

C(z, u, αS) = δ(1− z) +
αS
π
C(1)(z, u) +

(αS
π

)2
C(2)(z, u) +O(α3

S) , (C.1)

the NLO coefficient C1(z, u) is defined, omitting for semplicity the dependence on αS , as

C(1)(z, u)

CF
=
δ(1− u) + δ(u)

2

[
(2ζ2 − 4)δ(1− z) + 2(1 + z2)

(
log(1− z)

1− z

)

+

+ log
Q2

µ2

(
1 + z2

1− z

)

+

− 1 + z2

1− z
log(z) + 1− z

]
+

1

2

1 + z2

1− z

[(
1

u

)

+

+

(
1

1− u

)

+

]
− (1− z) . (C.2)

Note that the term 1
1−z

[ (
1
u

)
+
+
(

1
1−u

)
+

]
does not need the plus distribution for the z

singularity, as it is already regularised by the plus distribution in the u variable. This can
easily be seen using the definition of the plus distribution and the fact that the luminosity,
when z = 1, is independent on the value of u (see Eq. (8.12)). Integrating in z and u, indeed,
we get

∫ 1

0
dz

∫ 1

0
du

(
1

1− z

)

+

[(
1

u

)

+

+

(
1

1− u

)

+

]
L (z, u) =

∫ 1

0
dz

∫ 1

0
du

1

u(1− z)

[
L (z, u)− L (z, 0)

((((((((((−L (1, u) + L (1, 0)

]

+

∫ 1

0
dz

∫ 1

0
du

1

(1− u)(1− z)

[
L (z, u)− L (z, 1)

((((((((((−L (1, u) + L (1, 1)

]

=

∫ 1

0
dz

∫ 1

0
du

1

1− z

[(
1

u

)

+

+

(
1

1− u

)

+

]
L (z, u) . (C.3)

106



107

dz du LHS dza dzb RHS

δ(1− z) δ(1− za) δ(1− zb)
g(z) δ(1− u) g(za) δ(1− zb)
g(z) δ(u) g(zb) δ(1− za)(

1
1−z

)
+

[ (
1
u

)
+
+
(

1
1−u

)
+

] (
1

1−za

)
+

(
1

1−zb

)
+
+ 1

(1+za)(1+zb)
+ ζ2δ(1− za)δ(1− zb)

−
[ ( log(1−za)

1−za

)
+
+

log 1+za
2za

1−za
]
δ(1− zb)

−
[ ( log(1−zb)

1−zb

)
+
+

log
1+zb
2zb

1−zb
]
δ(1− za)

Table C.1: Conversion of two-dimensional plus distributions between the z, u and za, zb sets of
variables. In this case, g(z) can be either a function or a distribution.

Using the relations in Eq. (8.18), we can compute the same coefficient but in the za, zb variables
through Eq. (8.21). First, we express the z, u variables in function of za, zb, yielding to

z = zazb , u =
zb(1− z2a)

(1− zazb)(za + zb)
. (C.4)

The Jacobian associated with this change of variables is given by

dz du

dza dzb
=

2[1− u(1− z)][1− (1− u)(1− z)]

1− z2
=

2z(1 + z)

(1− z)(za + zb)2
. (C.5)

In order to compute C̃(1)(za, zb), the functional form of each term can be computed directly
with the change of variables, for distributional terms, such as the plus distributions, the
boundary terms at za,b = 1 are determined by comparing the integrals over the integration
region in z, u and za, zb.

In table C.1, we show the conversion for all the distributional terms appearing in Eq. (C.2).
The first relation is straightfoward, as z = zazb and the delta functions on the za,b variables.
The validity of such calculation can be proven comparing the integral over the whole domain
of both sets of variables

∫ 1

0
dz

∫ 1

0
du

1
dzadzb
dzdu

· dzadzb
dzdu

=

∫ 1

0
dza

∫ 1

0
dzb δ(1− za)δ(1− zb) = 1 , (C.6)

having used the property of the delta function. The second and third line of the table follow
from the definitions in Eqs. (C.4) and (8.18), and can be proven using again the comparison
of the integral in the two sets of variables (which we do not report here since it is as trivial
as for the first line of the table). The δ(1− u) condition corresponds to zb = 1 and za = z,
leading to g(z)δ(1− u) → g(za)δ(1− zb). Equally, the δ(u) condition corresponds to za = 1
and zb = z, giving g(z)δ(u) → g(zb)δ(1− za). For the last line of the table, we perform the
conversion away from the endpoints of these distributions, restoring the singularities after the
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calculation. In particular we have

1

1− z

(
1

u
+

1

1− u

)
→ 2z(1 + z)

(1− z)(za + zb)2
· 1

1− z
· (1− z)2(za + zb)

2

(1− z2a)(1− z2b )

=
1

(1− za)(1− zb)
+

1

(1 + za)(1 + zb)
. (C.7)

Restoring the distributions, we get
(

1

1− z

)

+

[(
1

u

)

+

+

(
1

1− u

)

+

]
→
(

1

1− za

)

+

(
1

1− zb

)

+

+
1

(1 + za)(1 + zb)

+ f(za) δ(1− zb) + f(zb) δ(1− za) , (C.8)

where f can be any function or distribution. By symmetry, it will be the same for the two delta
terms. In order to determine the function f , we can use the fact that the LHS of Eq. (C.8)
vanishes upon integration over u, as reported in section 9.3. To integrate over u on the RHS,
we can use the projector

∫
dza dzb δ(z − zazb). Therefore, we get

0 =

∫ 1

0
dza

∫ 1

0
dzb δ(z − zazb)

[(
1

1− za

)

+

(
1

1− zb

)

+

+
1

(1 + za)(1 + zb)
+ f(za)δ(1− zb)

+ f(zb)δ(1− za)

]
,

= 2

(
log(1− z)

1− z

)

+

− ζ2δ(1− z)− log z

1− z
+

log (1+z)2

4z

1− z
+ 2f(z) . (C.9)

The nontrivial projection integral required in this formula is

(f ⊗ g)(z) =

∫ 1

0
dza

∫ 1

0
dzb δ(z − zazb)

(
1

1− za

)

+

(
1

1− zb

)

+

(C.10)

which computation is reported in section C.1. From Eq. (C.9), we determine the value of f as

f(z) = −
(
log(1− z)

1− z

)

+

− log 1+z
2z

1− z
. (C.11)

The term ζ2 δ(1− za)δ(1− zb) in Eq. (C.9) is a double distributional term, and it has to be
counted directly in the conversion of the δ(1− z). Replacing this result in Eq. (C.8), the last
line of the table becomes

(
1

1− z

)

+

[(
1

u

)

+

+

(
1

1− u

)

+

]
→
(

1

1− za

)

+

(
1

1− zb

)

+

+
1

(1 + za)(1 + zb)

+ ζ2δ(1− za)δ(1− zb)−
[(

log(1− za)

1− za

)

+

+
log 1+za

2za

1− za

]
δ(1− zb)

−
[(

log(1− zb)

1− zb

)

+

+
log 1+zb

2zb

1− zb

]
δ(1− za) . (C.12)
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Finally, using the relations in Tab. C.1 and applying the change of variables to the finite
terms in Eq. (C.2), the NLO coefficient function in the za, zb variables reads

C̃(1)(za, zb)

CF
=

(
3ζ2 − 4 +

3

2
log

Q2

µ2

)
δ(1− za)δ(1− zb)

+

(
log(1− za)

1− za

)

+

δ(1− zb) + δ(1− za)

(
log(1− zb)

1− zb

)

+

+

(
1

1− za

)

+

(
1

1− zb

)

+

+

(
1

1− za

)

+

[
log

Q2

µ2
δ(1− zb)−

1 + zb
2

]
+

[
log

Q2

µ2
δ(1− za)−

1 + za
2

](
1

1− zb

)

+

+ δ(1− za)

[
1− zb

2
− 1 + zb

2
log(1− zb) +

1

2

1 + z2b
1− zb

log
2

1 + zb
− 1 + zb

2
log

Q2

µ2

]

+ δ(1− zb)

[
1− za

2
− 1 + za

2
log(1− za) +

1

2

1 + z2a
1− za

log
2

1 + za
− 1 + za

2
log

Q2

µ2

]

+
(z2a + z2b )[(1 + za)

2 + (1 + zb)
2 + 2zazb(3 + za + zb + zazb)]

2(1 + za)(1 + zb)(za + zb)2
, (C.13)

where we have used the following properties of the plus distribution

[g(z)f(z)]+ = g(z)[f(z)]+ − δ(1− z)

∫ 1

0
dy g(y)[f(y)]+ ,

g(z)[f(z)]+ = g(1)[f(z)]+ + [g(z)− g(1)]f(z) . (C.14)

C.1 Convolutions in Mellin space

For functions defined in the range 0 < x < 1, the Mellin transform is defined as

f̃(N) ≡ M[f ](N) ≡
∫ 1

0
dxxN−1f(x) , (C.15)

and the inverse Mellin transform is given as

f(x) ≡ M[f ](N) ≡
∫ 1

0
xN−1f(x) dx . (C.16)

The convolution between two functions f and g is given by

(f ⊗ g)(x) =

∫ 1

0

∫ 1

0
f(y)g(z) δ(x− yz) dy dz

=

∫ 1

x
f(y) g

(
x

y

)
dy

y
. (C.17)

In Mellin space, the convolution of two functions diagonalizes, giving

M[f ⊗ g](N) =

∫ 1

0
dz zN−1

∫ 1

0
dza

∫ 1

0
dzb f(za)g(zb)δ(z − zazb)

=

∫ 1

0
dza z

N−1
a f(za)

∫ 1

0
dzb z

N−1
b g(zb) = f̃(N)g̃(N) . (C.18)
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For some convolutions, such as Eq. (C.10), the computation is much simpler in Mellin space.
In order to do that, using again the results of appendix B.4 of Ref. [156], we observe that

M
[(

1

1− z

)
+

]
(N) = D0(N) = −L , (C.19a)

M
[(

log(1− z)

1− z

)
+

]
(N) = D1(N) =

1

2

[
L2 + ζ2 − ψ1(N)

]
, (C.19b)

defining L = γ + ψ0(N), with γ the Euler gamma. In the large-N limit, corresponding to the
threshold limit z → 1, ψ0(N) ∼ log(N). Eq. (C.10) in Mellin space becomes

D0(N)D0(N) = L2 = 2D1(N)− ζ2 + ψ1(N) , (C.20)

having determined the value of L2 from Eq. (C.19b). Knowing that

M
[
logk(z)

1− z

]
= −ψk(N) , (C.21)

the inverse Mellin transform gives

M−1 (D0D0) (z) = M−1
[
L2
]
= 2D1(z)− ζ2δ(1− z)− log(z)

1− z
, (C.22)

which is the result of the projection in Eq. (C.10).



Appendix D

Analytical expressions for threshold
resummation approaches

In this appendix, we provide first the explicit expressions for the approximations based on
the BNX and BFR approaches for all the three choices of threshold logarithms discussed, and
then the expressions for BDDR, AMRST and LMT, both at NLO and NNLO which are used
in the text.

D.1 Coefficient function for BNX/BFR approximations

In the BNX and BFR approaches the threshold approximation of rapidity distributions is
obtained from the threshold approximation of the rapidity-integrated coefficient function. For
simplicity we define

ℓ = log
Q2

µ2
, (D.1)

with µ the factorization scale, assumed to be equal to the renormalization scale and the
logarithmically enhanced contributions are given by Eq. (10.5). The only relevant channel
at threshold for the Drell-Yan process is the qq̄ channel, its coefficient function at threshold
Eq. (10.4) at NLO is given by

C
(1)
thr(z) = CF

[
4D1(z) + 2ℓD0(z) +

(
2ζ2 − 4 +

3

2
ℓ

)
δ(1− z)

]
. (D.2)

At NNLO, instead, it is defined as

C
(2)
thr(z) = 8C2

FD3(z)

+
[
12C2

F ℓ−
11CA − 2nf

3
CF

]
D2(z)

+
[ (

4ℓ2 + 6ℓ− 16− 8ζ2
)
C2
F − 11CA − 2nf

3
CF ℓ+

67CA − 10nf
9

CF − 2ζ2CACF

]
D1(z)
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+

[ (
3ℓ2 − (8 + 4ζ2)ℓ+ 16ζ3

)
C2
F +

(
−11

12
ℓ2 +

(
67

18
− ζ2

)
ℓ+

7

2
ζ3 +

11

3
ζ2 −

101

27

)
CACF

+

(
1

6
ℓ2 − 5

9
ℓ+

14

27
− 2

3
ζ2

)
nfCF

]
D0(z)

+

[((
9

8
− 2ζ2

)
ℓ2 +

(
3

2
ζ2 + 11ζ3 −

93

16

)
ℓ+

1

10
ζ22 − 35

8
ζ2 −

15

4
ζ3 +

511

64

)
C2
F

+

(
−11

16
ℓ2 +

(
193

48
− 3

2
ζ3

)
ℓ− 3

20
ζ22 +

37

9
ζ2 +

7

4
ζ3 −

1535

192

)
CACF

+

(
1

8
ℓ2 − 17

24
ℓ+

1

2
ζ3 −

7

9
ζ2 +

127

96

)
nfCF

]
δ(1− z) . (D.3)

For the N -soft approximation, using Eq. (10.7), the coefficient function at NLO is given by

C
(1),N
thr (z) = CF

[
4Dlog

1 (z) + 2ℓDlog
0 (z) +

(
4ζ2 − 4 +

3

2
ℓ+ 2γ2 − 2γℓ

)
δ(1− z)

]
, (D.4)

while the NNLO

C
(2),N
thr (z) = 8C2

FDlog
3 (z)

+
[
12C2

F ℓ−
11CA − 2nf

3
CF

]
Dlog

2 (z)

+
[ (

4ℓ2 + 6ℓ− 16− 8ζ2
)
C2
F − 11CA − 2nf

3
CF ℓ+

67CA − 10nf
9

CF − 2ζ2CACF

]
Dlog

1 (z)

+

[ (
3ℓ2 − (8 + 4ζ2)ℓ+ 16ζ3

)
C2
F +

(
−11

12
ℓ2 +

(
67

18
− ζ2

)
ℓ+

7

2
ζ3 +

11

3
ζ2 −

101

27

)
CACF

+

(
1

6
ℓ2 − 5

9
ℓ+

14

27
− 2

3
ζ2

)
nfCF

]
Dlog

0 (z)

+

[((
9

8
− 3γ + 2γ2

)
ℓ2 +

(
− 93

16
+ 8γ + 3γ2 − 4γ3 +

9

2
ζ2 − 8γζ2 + 3ζ3

)
ℓ

+
511

64
− 8γ2 + 2γ4 − 99

8
ζ2 + 8γ2ζ2 +

21

10
ζ22 − 15

4
ζ3 + 12ζ4

)
C2
F

+

((
− 11

16
+

11

12
γ

)
ℓ2 +

(
193

48
− 67

18
γ − 11

6
γ2 − 11

6
ζ2 + γζ2 −

3

2
ζ3

)
ℓ

− 1535

192
+

101

27
γ +

67

18
γ2 +

11

9
γ3 +

47

6
ζ2 − γ2ζ2 −

23

20
ζ22 +

151

36
ζ3 −

7

2
γζ3

)
CACF

+

((
1

8
− 1

6
γ

)
ℓ2 +

(
− 17

24
+

5

9
γ +

1

3
γ2 +

1

3
ζ2

)
ℓ

+
127

96
− 14

27
γ − 5

9
γ2 − 2

9
γ3 − 4

3
ζ2 +

1

18
ζ3

)
nfCF

]
δ(1− z) . (D.5)

Lastly, the coefficient functions for the ψsoft1 approximation are given by

C
(1),ψ
thr (z) = CF

[
4zD1(z) + 2zℓD0(z) +

(
2ζ2 − 4 +

3

2
ℓ

)
δ(1− z)− 2z log(z)

1− z

]
, (D.6)
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and

C
(2),ψ
thr (z) = 8C2

F zD3(z)
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F ℓ−
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3
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]
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+
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+
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9

2
ζ2 − 8γζ2 + 3ζ3

)
ℓ

+
511

64
− 8γ2 + 2γ4 − 99

8
ζ2 + 8γ2ζ2 +
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. (D.7)

D.2 Coefficient function for BDDR/AMRST approximations

The expansion of the resummed result of BDDR [128] (at leading power) and AMRST [135]
(at next-to-leading power) in N space is given at NLO by (setting µF = µR = Q)

C̃1(Na, Nb) = CF

[
L̄2

2
+ 4ζ2 − 4 +

L̄

2N̄
+O

(
1

N̄2

)]
(D.8)
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and at NNLO by
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(D.9)

with

1

N̄
≡ 1

Na
+

1

Nb
L̄a,b ≡ logNa,b + γ L̄ ≡ log(NaNb) + 2γ = L̄a + L̄b , (D.10)

with γ the Euler-Mascheroni constant. To convert these results to z space, we can invert
Eq. (10.8) for the leading power terms, while for the next-to leading power contributions we
further need the relation

∫ 1

0
dz zN−1 logp

1

z
logk log

1

z
=

1

N1+p

k∑

j=0

(
k

j

)
Γ(j)(1 + p) logk−j

1

N
, k, p ≥ 0 , (D.11)

which can be derived from the generating function logξ 1
z deriving k times with respect to ξ in

ξ = p. Using these results we get at NLO

C̃1(za, zb) = CF

[(
Dlog

1 (za)− γDlog
0 (za)

)
δ(1− zb) + δ(1− za)

(
Dlog

1 (zb)− γDlog
0 (zb)

)

+Dlog
0 (za)Dlog

0 (zb) +
(
4ζ2 − 4 + 2γ2

)
δ(1− za)δ(1− zb)

]

+
CF
2

[(
γ − log log

1

zb

)
δ(1− za) +

(
γ − log log

1

za

)
δ(1− zb)−Dlog

0 (za)−Dlog
0 (zb)

]

(D.12)

and at NNLO

C̃2(za, zb) =

[
C2
F

(
511

64
− 99

8
ζ2 +

69

10
ζ22 − 15

4
ζ3 + 8ζ2γ

2 − 8γ2 + 2γ4
)
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+ CFCA

(
−1535
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+

47

6
ζ2 −

23

20
ζ22 +

151

36
ζ3 − ζ2γ
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9
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9
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+
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F
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3 (zb)
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+
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+ C2
F

(
−ζ2 −
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ζ3 +

5
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(
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+
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log log

1

za
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1
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− 2ζ2

]
, (D.13)

having used the Dlog
k (z) distributions defined in Eq. (10.7).

D.3 Coefficient function for LMT approximation

In the generalized threshold expansion of LMT, the expansion of the resummed result can be
obtained from the expression

C̃LMT
ij (za, zb, αS) = Hkr(αS)

[
δkiÎrj(za, zb, αS) + Îki(zb, za, αS)δrj − Ŝ(za, zb, αS)

]
, (D.14)

in terms of the functions defined in the LMT paper [124]. Focussing on the qq̄ channel and
expanding in powers of αS , we obtain at NLO at central scales

C̃LMT
1 (za, zb)

CF
= (3ζ2 − 4)δ(1− za)δ(1− zb) +D1(za)δ(1− zb) + δ(1− za)D1(zb)
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log(1− zb) +

1

2
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log
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2
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}
, (D.15)

corresponding to the distributional part of Eq. (C.13), and at NNLO we get

C̃LMT
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+ CFCA

(
−1535

192
+

215

36
ζ2 −

13

20
ζ22 +

43

12
ζ3

)

+ CFnf

(
127

96
− 19

18
ζ2 +

ζ3
6

)]
δ(1− za)δ(1− zb)

+
C2
F

2

[
D3(za)δ(1− zb) + δ(1− za)D3(zb)

]

+
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+ 3C2
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, (D.16)

where the functions Fi(z) are given by

F2(z) = −3

4
C2
F (1 + z) , (D.17a)
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, (D.17b)
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Fδ(z) = C2
F

(
7

4
ζ2 − 2

)(
1− z − (1 + z) log(1− z) +

1 + z2

1− z
log

2

1 + z

)

+
1

16
reg
[
Ĩ
(2)
qqV (z) + Ĩ

(2)
qqS(z)

]
. (D.17d)

In the last function we have kept the dependence on the functions I(2)qqV (z) and I(2)qqS(z) given
in equation (S53) of Ref. [124]. Specifically, these functions contain distributional terms in
Dk(z) and δ(1 − z), which are already taken into account explicitly in Eq. (D.16) as they
contribute to the double-distributional part of the result, so here only the remaining regular
part, denoted by reg[...] in the formula, has to be considered. The factor 1/16 finally fixes the
different normalization due to the different expansion parameters (we use αS/π while LMT
use αS/(4π)). It is useful to write explicitly the large z expansion of the Fi(z) functions,

F2(z) = −3

2
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F , (D.18a)
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